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Abstract Let � be a geometrically finite discrete subgroup in SO(d + 1, 1)◦
with parabolic elements.We establish exponential mixing of the geodesic flow
on the unit tangent bundle T1(�\H

d+1) with respect to the Bowen–Margulis–
Sullivan measure, which is the unique probability measure on T1(�\H

d+1)

with maximal entropy. As an application, we obtain a resonance-free region
for the resolvent of the Laplacian on �\H

d+1. Our approach is to construct a
coding for the geodesic flow and then prove aDolgopyat-type spectral estimate
for the corresponding transfer operator.

1 Introduction

1.1 Exponential mixing of the geodesic flow

Let H
d+1 be the hyperbolic (d + 1)-space. Let G = SO(d + 1, 1)◦, which

is the group of orientation preserving isometries of H
d+1. Let � < G be

a non-elementary, torsion-free, geometrically finite discrete subgroup with
parabolic elements. Denote by δ the critical exponent of �, which is defined
as the abscissa of convergence of the Poincaré series

∑
γ∈� e−sd(o,γ o). Set
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932 J. Li, W. Pan

M = �\H
d+1, so M contains cusps. We consider the geodesic flow (Gt )t∈R

acting on the unit tangent bundle T1(M) over M . The invariant measure for
the flow we will work with is the Bowen–Margulis–Sullivan measure mBMS,
which is supported on the non-wandering set of the geodesic flow and is known
to be the unique probability measure with maximal entropy δ [37].

Our main result is establishing exponential mixing of the geodesic flow.

Theorem 1.1 The geodesic flow is exponentiallymixingwith respect tomBMS:
there exists η > 0 such that for any functions φ, ψ ∈ C1(T1(M)) and any
t > 0, we have
∫

T1(M)

φ · ψ ◦ Gt dmBMS = mBMS(φ)mBMS(ψ) + O(‖φ‖C1‖ψ‖C1e−ηt ),

where ‖ ·‖C1 is the C1-norm with respect to the Riemannian metric on T1(M).

For a geometrically finite discrete subgroup �, Sullivan [49] proved the
ergodicity of the geodesic flowwith respect tomBMS and Rudolph [43] proved
that the geodesic flow is mixing with respect to mBMS. When δ > d/2, The-
orem 1.1 was proved by Mohammadi–Oh [33] and Edwards–Oh [19] using
the representation theory of L2(M) and the spectral gap of Laplace operator
[28]. When� is convex cocompact, i.e., geometrically finite without parabolic
elements, Theorem 1.1 and its corollaries were proved byNaud [34], Stoyanov
[47] and Sarkar–Winter [44] building on the work of Dolgopyat [18]. There-
fore, the main contribution of our work lies in the groups with small critical
exponent and with parabolic elements, completing the story of exponential
mixing of the geodesic flow on a geometrically finite hyperbolic manifold.

Using Roblin’s transverse intersection argument [35,36,42], we obtain the
decay of matrix coefficients (Theorem 9.1) from Theorem 1.1. Theorem 1.1
and 9.1 are known to have many immediate applications in number theory
and geometry. To name a few, see [32] for counting closed geodesics, [25] for
shrinking target problems and [7] for some general counting results.

1.2 Resonance-free region

Recall M = �\H
d+1. Consider the Laplace operator �M on M . Lax and

Phillips completely described its spectrum on L2(M) when M has infinite
volume [28]. The half line [d2/4,∞) is the continuous spectrumand it contains
no embedded eigenvalues. The rest of the spectrum (point spectrum) is finite
and starting at δ(d/2 − δ) if δ > d/2 and is empty if δ ≤ d/2. Let S be the
set of eigenvalues of �M . The resolvent of the Laplacian

RM(s) = (�M − s(d − s))−1 : L2(M) → L2(M)
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Exponential mixing of geodesic flows 933

is well-defined and analytic on{�s > d/2, s(d − s) /∈ S}. Guillarmou and
Mazzeo showed that RM(s) has a meromorphic continuation to the whole
complex plane as an operator from C∞

c (M) to C∞(M) with poles of finite
rank [21]. These poles are called resonances. Patterson showed that on the line
�s = δ, the point s = δ is the unique pole of �(s − d

2 + 1)RM(s) and it
is a simple pole [39]. We use Theorem 1.1 to further obtain a resonance-free
region.

Theorem 1.2 There exists η > 0 such that on the half-plane�s > δ−η, s = δ

is the only resonance for the resolvent RM(s) if δ /∈ d/2 − N≥1; otherwise,
RM(s) is analytic on �s > δ − η.

In the convex cocompact case, a resonance-free region of the resolvent is
closely related to a zero free region of the Selberg zeta function. But in the
geometrically finite case, such relation is not well understood except for the
surface case.

1.3 On the proof of the main theorem

The proof of Theorem 1.1 can be reduced to the case when � is Zariski dense
and then the proof falls into two parts: we code the geodesic flow and prove
a Dolgopyat-type spectral estimate for the corresponding transfer operator.
Ultimately, the obstructions to applying Dolgopyat’s original argument in our
context are purely technical, but to overcome these obstructions in any context
is the heart of the matter.

To prove exponential mixing using the symbolic-dynamic approach of Dol-
gopyat, one approach is to construct a section to the flow. In sum, one seeks a 2d
submanifold S in T1(M) transversal to the geodesic flow which is a Poincaré
section, on which the return map can be tightly organized. The challenge lies
in that it is required to find a return map R defined on a full measure subset
S0 of S, such that the map F(v) := GR(v)(v), v ∈ S0, on S0 is hyperbolic and
can be modelled on a full shift of countable many symbols.

Weovercome this difficulty by connecting the returnmapon S0 to an expand-
ing map on the boundary ∂H

d+1. The precise description of the expanding
map on the boundary is as follows. We consider the upper-half space model
for H

d+1 and without loss of generality, we may assume that ∞ is a parabolic
fixed point of �. Let Stab∞(�) be the group of stabilizers of ∞ in � and �∞
be a maximal normal abelian subgroup in Stab∞(�). Set �0 := �∞ to be a
fundamental domain of �∞ in ∂H

d+1\{∞} (see Sect. 2.3 for details). Denote
by 
� the limit set of � and μ the Patterson–Sullivan measure, which is a
finite measure supported on 
� .
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934 J. Li, W. Pan

Proposition 4.1 There are constants C1 > 0, λ, ε0 ∈ (0, 1), a countable
collection of disjoint, open subsets {� j } j∈N in �0 and an expanding map
T : 
 j� j → �0 such that:

1.
∑

j μ(� j ) = μ(�0).
2. For each j , there is an element γ j ∈ � such that � j = γ j�0 and T |� j =

γ −1
j .

3. Each γ j is a uniform contraction: |γ ′
j (x)| ≤ λ for all x ∈ �0.

4. For each γ j , |D(log |γ ′
j |)(x)| < C1 for all x ∈ �0, where D(log |γ ′

j |)(x) is
the differential of the map z �→ log |γ ′

j (z)| at x.
5. Let R be the function on 
 j� j given by R(x) = log |DT (x)|. Then∫

eεoRdμ < ∞.

The last property is known as the exponential tail property. Moreover, we
show that the coding satisfies the uniform nonintegrable condition (UNI)
(Lemma 4.5). We use Proposition 4.15 as a bridge to connect the geodesic
flow (Gt )t∈R on T1(M) and the expanding map T on �0. We show that the
geodesic flow is a factor of a hyperbolic skew product flow constructed using
T .

The construction of the coding starts with the following observation: locally,
in a neighborhood of a parabolic fixed point, we can use the structure of the
parabolic fixed points to find a “flower” centered at this parabolic fixed point,
and the “flower” can be partition into a countable union of open sets of the form
γ (�0) for some γ ∈ �. Once we have the algorithm to find the partition for
local regions, we still face the question of how to patch these flowers together.
We introduce an inductive algorithm to find pairwise disjoint flowers.

But the bulk of the work lies in proving the exponential tail property. We
show that this follows from Proposition 6.15 which says that the measure of
the set that has not been partitioned at time n decays exponentially. At the
time n, the remaining part is a sheet with many holes, consisting of “flowers”;
while the Patterson–Sullivan measure is a measure supported on the fractal
limit set, and we have limited knowledge of the regularity of this measure. It is
interesting to figure out how to use minimal tools to get the required estimate.

When the non-wandering set of the geodesic flow is compact, the coding is
well-studied andwehave, for example, theBowen–Series’ coding [6],Bowen’s
coding [9] and Ratner’s coding [41]. When manifolds contain cusps, only
some partial knowledge is available. Dal’bo–Peigné [15,16] and Babillot–
Peigné [3] provided the coding for generalized Schottky groups. Stadlbauer
[45] and Ledrappier-Sarig [31] provided the coding for non-uniform lattices
in SO(2, 1)◦. They made use of the fact that such a discrete subgroup is a free
group and has a nice fundamental domain inH

2. Our coding works for general
geometrically finite discrete subgroups with parabolic elements and is partly
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Exponential mixing of geodesic flows 935

inspired by the works of Lai–Sang Young [51] and Burns–Masur–Matheus–
Wilkinson [11].

In a forthcoming joint work with Sarkar [29], we establish the exponen-
tial mixing for frame flows on geometrically finite hyperbolic manifolds with
cusps. We prove this by using the coding of the geodesic flow constructed in
this paper and then performing a frame flow version of Dolgopyat’s method.
The crucial cancellations of the summands of the transfer operators twisted
by holonomy are obtained from the local non-integrability condition and the
non-concentration property of Sarkar–Winter [44]. But the challenge in the
presence of cusps is that the latter holds only on a certain good subset. This is
resolved by a large deviation property for symbolic recurrence to the good sub-
set, which is inspired by thework of Tsujii–Zhang [50]. It is proved by studying
the combinatorics of cusp excursions and showing an effective renewal the-
orem, as in the work of Li [30], which uses the spectral gap of the transfer
operator for the geodesic flow in Proposition 7.3.

In [22], using the coding of Schottky groups, Guillopé–Lin–Zworski were
able to study the Selberg zeta function through a dynamical zeta function.
They gave a simple proof of the analytic continuation and a growth estimate
of the Selberg zeta function. Hopefully, the coding constructed in our work
will be helpful in the study of the Selberg zeta function for higher dimensional
geometrically finite manifold.

Other applications include the Fourier decay of the Patterson–Sullivanmea-
sure. In [4], Bourgain–Dyatlov proved Fourier decay of Patterson-Sullivan
measures for convex cocompact Fuchsian groups. The first step of their proof
is to use the coding of the limit set to construct an appropriate transfer operator.
With our coding available, it is very likely to generalize the Fourier decay to
geometrically finite discrete subgroups with parabolic elements.

Our proof of obtaining a Dolgopyat-type spectral estimate is influenced by
the one in [1,2,5,18,34,47]. The key of Dolgopyat’s approach is to estimate
the decay of certain oscillatory integrals against the fractal Patterson-Sullivan
measure: for function f of the form

∑
j∈J exp(ibτ j (x)), where b is a real

number, τ j ∈ C2(�0) and J is some index set, we have | ∫ f dμ| is bounded by
some negative power of |b|. We successfully attain this estimate by combining
dynamics and the regularity properties of the Patterson–Sullivan measure,
which we think are the essential ingredients to gain the decay.

Another possible argument is to analyze each
∫
exp(ibτ j ) dμ and show the

decay. Such a result is known as the Fourier decay of the Patterson–Sullivan
measure. This is especially challenging when the critical exponent δ is small.
In [23], Jordan–Sahlsten proved the Fourier decay of some fractal measures.
Their idea is to approximate the fractal measure by the Lebesgue measure and
use the Fourier decay of the Lebesgue measure, which is well-studied. But
this approximation is sensitive to the Hausdorff dimension of the fractal sets.
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936 J. Li, W. Pan

A similar idea also appears in a preprint by Kahlil [26]. It is unclear whether
their approach provides an alternative way to establish the Fourier decay of
fractal measures without dimension restriction.

There are works trying to use anisotropic Banach spaces to prove expo-
nential mixing. The key is to show there exists ε > 0 such that the strip
{−ε < �s < 0} is free of Pollicott–Ruelle resonances. For a geometrically
finite discrete subgroup with the critical exponent δ < d/2, it might happen
that there are resonances with large imaginary parts and real parts close to
zero. Recently, there is a work in progress of Gouëzel–Tapie–Schapira on the
Pollicott–Ruelle resonances for SPR manifolds, which include geometrically
finite manifolds. They show the resonances are discrete, but it is not clear
whether one can use this property to attain the required resonance-free region.

Organization of the paper.

• In Sect. 2, we gather the basic facts and preliminaries about hyperbolic
spaces, geometrically finite discrete subgroups, the structure of cusps,
Patterson-Sullivan measure, and Bowen–Margulis–Sullivan measure.

• In Sect. 3, we prove that Theorem 1.1 can be reduced to Zariski dense case.
• In Sect. 4, we state the results of the coding (Proposition 4.1, Lemma 4.5,
4.8).We construct a hyperbolic skew product flow and state the result that it
is exponential mixing (Theorem 4.13). We show that the geodesic flow on
T1(M) is a factor of this hyperbolic skew product flow (Proposition 4.15)
and deduce the exponential mixing of the geodesic flow from Theorem
4.13.

• In Sect. 5, we provide an explicit description of the action of an element
γ ∈ � on ∂H

d+1 and the estimate on the norm of the derivative of γ (Sect.
5.1). We list the basics for the multi-cusp case (Sect. 5.2). The doubling
property and the friendliness of Patterson-Sullivan measure are proved in
Sects. 5.3 and 5.4.

• In Sect. 6, we start with the construction of the coding for one cusp case,
which is also the first step for multi-cusp case. The main result is expo-
nential decay of the remaining set (Proposition 6.15). Section 6.3–6.6 are
devoted to the proof the Proposition 6.15. The coding for the multi-cusp
casewill be provided in Sects. 6.7 and 6.8. The results of the coding (Propo-
sition 4.1, Lemma 4.5, 4.8) will be proved in Sect. 6.7-6.9.

• In Sect. 7, we prove a Dolgopyat-type spectral estimate for the correspond-
ing transfer operator and the main result is an L2-contraction proposition
(Proposition 7.3).

• In Sect. 8, we finish the proof of Theorem 4.13.
• In Sect. 9, we prove the application of obtaining a resonance-free region
for the resolvent RM(s) (Theorem 1.2).
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Exponential mixing of geodesic flows 937

Notation. In the paper, given two real functions f and g, we write f 
 g
if there exists a constant C > 0 only depending on � such that f ≤ Cg. We
write f ≈ g if f 
 g and g 
 f .

2 Preliminary of hyperbolic spaces and PS measure

2.1 Hyperbolic spaces

We will use the upper-half space model for H
d+1:

H
d+1 = {x = (x1, . . . , xd+1) ∈ R

d+1 : xd+1 > 0}.

Let o = (0, . . . , 0, 1) ∈ H
d+1. For x ∈ H

d+1, write h(x) for the height of the
point x , which is the last coordinate of x . The Riemannian metric on H

d+1 is
given by

ds2 = dx21 + · · · + dx2d+1

x2d+1

.

Let ∂H
d+1 be the visual boundary. On ∂H

d+1 = R
d ∪ {∞}, we have the

spherical metric, denoted by dSd (·, ·). We also have the Euclidean metric,
denoted by dE (x, x ′) or |x − x ′| for any x, x ′ ∈ ∂H

d+1. This metric will be
used most frequently; we will simply write d(·, ·) when there is no confusion.

For g ∈ G, it acts on ∂H
d+1 conformally. For x ∈ ∂H

d+1, let |g′(x)| be the
linear distortion of the conformal action of g at x with respect to the Euclidean
metric. It is also the norm of the derivative seen as a linear map on tangent
spaces. Let |g′(x)|Sd be the norm with respect to the spherical metric. We have
the relation

|g′(x)|Sd = 1 + |x |2
1 + |gx |2 |g

′(x)|. (2.1)

Another formula for |g′(x)|Sd is

|g′(x)|Sd = e−βx (g−1o,o),

whereβx (·, ·) is theBusemann functiongivenbyβx(z, z′) = limt→+∞ d(z, xt )
− d(z′, xt ) with xt an arbitrary geodesic ray tending to x .

We denote H
d+1 ∪ ∂H

d+1 by Hd+1.
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938 J. Li, W. Pan

2.2 Geometrically finite discrete subgroups

Let � be a torsion-free, non-elementary discrete subgroup in G. We list some
basics of geometrically finite discrete subgroups.

The limit set of � is the set 
� of all the accumulation points of an orbit
�x for some x ∈ H

d+1. As we assume � is torsion-free, 
� is contained in
∂H

d+1. The convex hull, hull(
�), of 
� is the smallest convex subset in
H

d+1 which contains all the geodesics connecting any two distinct points of

� . The convex core of M is C(M) = �\hull(
�) ⊂ M .

A limit point x ∈ 
� is called conical if there exists a geodesic ray tending
to x and a sequence of elements γn ∈ � such that γno converges to x , and the
distance between γno and the geodesic ray is bounded. A subgroup �′ of � is
called parabolic if�′ fixes only one point in ∂H

d+1. A point x ∈ 
� is called a
parabolic fixed point if its stabilizer in �, Stab�(x), is parabolic. A parabolic
fixed point is called bounded parabolic if the quotient Stab�(x)\(
� − {x})
is compact.

A horoball based at x ∈ ∂H
d+1 is the set {y ∈ H

d+1 : βx (y, o) < t}
for some t ∈ R. The boundary of a horoball is called a horosphere. We call
a horoball H based at a parabolic fixed point x ∈ 
� a horocusp region, if
we have γ H ∩ H = ∅ for any γ ∈ � − Stab�(x). Then the image of H in
M under the quotient map, �\�H , is isometric to Stab�(x)\H and is called
a proper horocusp of M .

Definition 2.2 (Geometrically finite discrete subgroup [8,40]) A non
-elementary discrete subgroup � < SO(d + 1, 1)◦ is called geometrically
finite if it satisfies one of the following equivalent conditions:

(i) There is a (possibly empty) finite union V of proper horocusps of M ,
with disjoint closures, such that C(M) − V is compact.

(ii) Every limit point of � is either conical or bounded parabolic.

2.3 Structure of cusps

Assume that � is a geometrically finite discrete subgroup with parabolic ele-
ments and ∞ is a parabolic fixed point of �. Let �

′
∞ = Stab�(∞) be the

parabolic subgroup of � fixing ∞. Then �
′
∞ acts on R

d , part of ∂H
d+1, iso-

metrically with respect to the Euclidean metric. The following is a result of
Bieberbach (see [21, Page 5] or [8, Section 2.2]).

Lemma 2.3 (Bieberbach) Consider the action of �′∞ on R
d . Then there exist

a maximal normal abelian subgroup �∞ ⊂ �
′
∞ of finite index and an affine

subspace Z ⊂ R
d of dimension k, invariant under �′∞, such that �∞ acts

as a group of translations of rank k on Z. If R
d = Y × Z is an orthogonal
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Exponential mixing of geodesic flows 939

decomposition, with Y � R
d−k and associated coordinates (y, z), then we

can write each element γ ∈ �
′
∞ in the form

γ (y, z) = (Aγ y, Rγ z + bγ ), bγ ∈ R
k, Aγ ∈ O(n − k), Rγ ∈ O(k)

where for each γ , Rm
γ = Id for some m ∈ N, with m = 1 if γ ∈ �∞.

The dimension k is called the rank of the parabolic fixed point ∞.
Fix an orthogonal decompositionR

d = Y×Z � R
d−k×R

k . As�∞ acts on
R
k as a group of translations, it admits a fundamental region �′∞ which is an

open k-dimensional parallelotope in R
k . Since � is geometrically finite, ∞ is

a bounded parabolic fixed point. By definition, the quotient �′∞\(
� − {∞})
is compact; the quotient �∞\(
� − {∞}) is also compact as �∞ is a finite
index subgroup of �′∞. Therefore, there exists a constant C > 0 such that the
set BY (C) = {y ∈ R

d−k : |y| < C} in R
d−k has the property that Fig. 1


� ⊂ {∞} ∪
(
∪γ∈�∞γ

(
BY (C/2) × �′∞

))
.

Definition 2.4 We call the open set �∞ := BY (C) × �′∞ a fundamental
region for the parabolic fixed point ∞.

2.4 PS measure and BMS measure

Patterson–Sullivan measure. Recall δ is the critical exponent of �. Patterson
[38] and Sullivan [48] constructed a�-invariant conformal density {μy}y∈Hd+1

of dimension δ on 
� , which is a set of finite Borel measures such that for
any y, z ∈ H

d+1, x ∈ ∂H
d+1 and γ ∈ �,

dμy

dμz
(x) = e−δβx (y,z) and (γ )∗μy = μγ y, (2.5)

where γ∗μy(E) = μy(γ
−1E) for anyBorel subset E of ∂H

d+1. This family of
measures is unique up to homothety, and the action of � on ∂H

d+1 is ergodic
relative to the measure class defined by these measures (Fig. 1).

Asμy’s are absolutely continuous with respect to each other, for most of the
paper, wewill considerμo and denote it byμ for short.We call it the Patterson–
Sullivan measure (or PS measure). The following quasi-invariance property
of the PS measure will be frequently used: for any Borel subset E of ∂H

d+1

and any γ ∈ �,

μ(γ E) =
∫

E
|γ ′(x)|δ

Sd
dμ(x). (2.6)
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Δ′∞

R
2

Fig. 1 Here ∞ is a parabolic fixed point of rank 2 in ∂H
4. The intersection 
� ∩ R

3 has
bounded distance to R

2

Bowen–Margulis–Sullivanmeasure. Let ∂2(Hd+1) = ∂H
d+1×∂H

d+1−
Diagonal. The Hopf parametrization of T1(Hd+1) as ∂2(Hd+1) × R is given
by

v �→ (x, x−, s = βx (o, v∗)),

where x (resp. x−) is the forward endpoint (resp. backward) endpoint of v

under the geodesic flow, and v∗ ∈ H
d+1 is the based point of v. The geodesic

flow on T1(Hd+1) is represented by the translation on R-coordinate.
The Bowen–Margulis–Sullivan measure (or BMS measure) on T1(Hd+1)

is defined by

dm̃BMS(x, x−, s) = eδβx (o,x∗)eδβx− (o,x∗)dμ(x)dμ(x−)ds,

where x∗ is the based point of the unit tangent vector given by (x, x−, s). It is
invariant under the geodesic flow Gt from the definition. The group � acts on
∂2(Hd+1) × R by

γ (x, x−, s) = (γ x, γ x−, s − βx (o, γ
−1o)).

This formula, together with (2.5), implies that m̃BMS is left �-invariant; hence
m̃BMS induces a measure mBMS on T1(M), which is the Bowen–Margulis–
Sullivan measure on T1(M). For geometrically finite discrete subgroups,
Sullivan showed that mBMS is finite and ergodic with respect to the action
of the geodesic flow [49]. Otal and Peigné showed that mBMS is the unique
measure supported on the non-wandering set of the geodesic flow with maxi-
mal entropy δ [37]. After normalization, we suppose thatmBMS is a probability
measure.
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Exponential mixing of geodesic flows 941

3 Reduction to Zariski dense case

The group SO(d + 1, 1) is Zariski closed and connected and the subgroup
SO(d + 1, 1)◦ is its analytic connected component containing identity. For a
subgroup � of SO(d + 1, 1)◦, it is said to be Zariski dense in SO(d + 1, 1)◦ if
it is Zariski dense in SO(d + 1, 1). The proof of Theorem 1.1 can be reduced
to Zariski dense case.

Theorem 3.1 Assume that � < SO(d + 1, 1)◦ is a Zariski dense, torsion-
free, geometrically finite subgroup with parabolic elements. The geodesic flow
(Gt )t∈R on T1(M) is exponentially mixing with respect to mBMS: there exists
η > 0 such that for any functions φ, ψ ∈ C1(T1(M)) and any t > 0, we have
∫

T1(M)

φ · ψ ◦ Gt dmBMS = mBMS(φ)mBMS(ψ) + O(‖φ‖C1‖ψ‖C1e−ηt ).

From Theorem 3.1 to Theorem 1.1 Suppose � is not Zariski dense. Let H be
the Zariski closure of � in SO(d + 1, 1) and let H1 be the Zariski connected
component of H containing the identity. Let �1 = � ∩ H1. Then �1 is a finite
index subgroup of � and the Zariski closure of �1 is H1. We will only consider
�1 because the exponential mixing of � follows from the same statement for
�1 by taking covering space.

Let Ho be the analytic connected component of H1 containing identity. Since
� is non-elementary, the group Ho doesn’t fix any point on the boundary. By a
classic result (see [14] for example), up to conjugacy, Ho preserves a hyperbolic
subspace H

m with m ≤ d and the restriction of Ho to H
m contains SO(m, 1)◦

with compact kernel. Preserving subspace is a Zariski closed condition, we
know that H1 also preserves H

m and the restriction of H1 to H
m satisfies

the same properties as Ho. Since �1 is a torsion free discrete subgroup, the
restriction map �1 → �1|Hm is injective. Then the Zariski closure of �1|Hm

also contains SO(m, 1)◦. At most passing to an index 4 subgroup, we can
suppose that �1|Hm is a subgroup of SO(m, 1)◦. Hence �1|Hm is Zariski dense
in SO(m, 1)◦ and geometrically finite. (Definition 2.2 (2) implies that�1|Hm is
still geometrically finite.) The BMS measure mBMS of �1 on the unit tangent
bundle �1\T1

H
d+1 is actually supported on �1\T1

H
m , which is the Zariski

dense case. �


4 The geodesic flow and the boundary map

For the rest of the paper, our standing assumption is

� < G Zariski dense, torsion-free, geometrically finite with parabolic elements

and ∞ is a parabolic fixed point of �.
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942 J. Li, W. Pan

Let �0 := �∞ be a fundamental region for the parabolic fixed point ∞
described in Sect. 2.3. In Sect. 6, we will construct a coding of the limit set
satisfying the following properties.

Proposition 4.1 There are constants C1 > 0, λ, ε0 ∈ (0, 1), a countable
collection of disjoint, open subsets {� j } j∈N in �0 and an expanding map
T : 
 j� j → �0 such that:

1.
∑

j μ(� j ) = μ(�0).
2. For each j , there is an element γ j ∈ � such that � j = γ j�0 and T |� j =

γ −1
j .

3. Each γ j is a uniform contraction: |γ ′
j (x)| ≤ λ for all x ∈ �0.

4. For each γ j , |D(log |γ ′
j |)(x)| < C1 for all x ∈ �0, where D(log |γ ′

j |)(x) is
the differential of the map z �→ log |γ ′

j (z)| at x.
5. Let R be the function on 
 j� j given by R(x) = log |DT (x)|. Then∫

eεoRdμ < ∞.

Denote byH = {γ j } j∈N the set of inverse branches of T . The last property is
known as the exponential tail property andwewill prove another form instead:

∑

γ∈H
|γ ′|δ−εo∞ < ∞, (4.2)

where |γ ′|∞ = supx∈�0
|γ ′(x)|. Proposition 4.1 (5) can be deduced from

(4.2) by separating the integral to the sum of integrals over � j and using
quasi-invariance of PS measure.

Using Proposition 4.1, it can be shown that there exists a T -invariant ergodic
probability measure ν on�0 which is absolutely continuous with respect to PS
measure and the density function f̄0 is a positive Lipschitz function bounded
away from 0 and ∞ on �0 ∩ 
� (see for example [51, Lemma 2]).

The coding satisfies uniform nonintegrable condition (UNI). Let

Rn(x) :=
∑

0≤k≤n−1

R(T k(x)) for x with T k(x) ∈ 
 j� j

for all 0 ≤ k ≤ n − 1,

Hn = {γ j1 · · · γ jn : γ jk ∈ H for 1 ≤ k ≤ n}.
For γ ∈ Hn , we have Rn(γ x) = − log |γ ′(x)|. Set

C2 = C1/(1 − λ). (4.3)

Then by Proposition 4.1 (3) and (4), we obtain for any γ ∈ Hn ,

sup
x∈�0

∣
∣D(log |γ ′|)(x)∣∣ ≤ C2. (4.4)
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Lemma 4.5 (UNI) There exist r > 0 and ε0 > 0 such that for any C > 1
the following holds for any large n0. There exist j0 ∈ N and {γmj : 1 ≤ m ≤
2, 1 ≤ j ≤ j0} in Hn0 such that for any x ∈ 
� ∩ �0 and any unit vector
e ∈ R

d there exists j ≤ j0 such that for all y ∈ B(x, r)

|∂e(τ1 j − τ2 j )(y)| ≥ ε0, (4.6)

where τmj (x) = Rn0(γmj x). Moreover, for all m, j ,

|Dτmj |∞ ≤ C2, |γ ′
mj |∞ ≤ ε0/C. (4.7)

The expanding map in the coding gives a contracting action in a neighbor-
hood of ∞.

Lemma 4.8 There exist 0 < λ < 1 and a neighbourhood 
− of ∞ in 
�

such that 
− is disjoint from �0 and for any γ ∈ H and any y, y′ ∈ 
−,

γ −1(
−) ⊂ 
−, dSd (γ
−1y, γ −1y′) ≤ λdSd (y, y

′). (4.9)

The proofs of these results will be postponed to Sect. 6. Proposition 4.1 and
Lemma 4.8will be proved at the end of Sect. 6.8 and Lemma 4.5will be proved
in Sect. 6.9.

4.1 A semiflow over hyperbolic skew product

Hyperbolic skew product. We construct a hyperbolic skew product using
Lemma 4.8. Let 
+ = 
� ∩ (
 j� j

)
and 
− be given as Lemma 4.8. Define

the map T̂ on 
+ × 
− by

T̂ (x, x−) = (γ −1
j x, γ −1

j x−) for (x, x−) ∈ 
+ × 
− with x ∈ � j ,

(4.10)

where γ j is given as in Proposition 4.1 (2). Lemma 4.8 implies γ −1
− ⊂ 
−
for any γ ∈ H. So T̂ is well-defined.

Let p : 
+ × 
− → 
+ be the projection to the first coordinate. This
gives rise to a semiconjugacy between T̂ and T . We equip 
+ × 
− with the
metric

d((x, x−), (x ′, x ′−)) = dE (x, x ′) + dSd (x−, x ′−).

(4.9) implies that the action of T̂ on the fibre {x} × 
− is contracting. Using
this observation,we obtain
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Proposition 4.11 1. There exists a unique T̂ -invariant, ergodic probability
measure ν̂ on 
+ × 
− whose projection to 
+ is ν.

2. We have a disintegration of ν̂ over ν: for any continuous function w on

+ × 
−,

∫


+×
−
wdν̂ =

∫


+

∫


−
wdνx(x−)dν(x).

Moreover, there exists C > 0 such that for any Lipschitz function w on

+ × 
−, defining w̄(x) = ∫

wdνx , we have

‖w̄‖Lip ≤ C‖w‖Lip.
Proof For the first statement, see [27, Theorem A] or [10, Proposition 1].
For the second statement, see [10, Proposition 3, Proposition 6], where they
considerRiemannianmanifold case but the sameproofs alsowork in our fractal
case. �

Remark The measure ν̂ is actually independent of the choice of the stable
direction 
−: any 
− satisfying Lemma 4.8 will lead to the same measure ν̂.

Hyperbolic skew product flow. Let R : 
+ → R+ be the function given
in Proposition 4.1. By abusing notation, define R : 
+×
− → R+ by setting
R(x, x−) = R(x). Define the space


R = {(x, x−, s) ∈ 
+ × 
− × R : 0 ≤ s < R(x, x−)}.
Let Rn = ∑n−1

j=0 R ◦ T̂ j . The hyperbolic skew product flow {T̂t }t≥0 over
R is

defined by T̂t (x, x−, s) = (T̂ n(x, x−), s + t − Rn(x, x−)) for ν̂-almost every
x , where n is the nonnegative integer such that 0 ≤ s + t − Rn(x, x−) <

R(T̂ n(x, x−)). We equip 
R with the measure dν̂R := dν̂ × dt/R̄, where
dt is Lebesgue measure on R+ and R̄ = ∫


+×
− Rdν̂. This is a T̂t -invariant
ergodic measure.

Remark We don’t use the commonly used “suspension space” construction to
construct 
R . The reason is that we will use a cutoff function in the proof of
Theorem 1.1 and such cutoff functions are ill-defined in the suspension space,
which is a quotient space of 
+ × 
− × R.

For any L∞ function w : 
R → R, the Lipschitz norm of w is defined by

‖w‖Lip = |w|∞ + sup
(y,a)�=(y′,a′)∈
R

|w(y, a) − w(y′, a′)|
d(y, y′) + |a − a′| . (4.12)

In Sect. 8, we will prove that T̂t is exponential mixing with respect to ν̂R .
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Theorem 4.13 There exist ε1 > 0 and C > 1 such that for any Lipschitz
functions u, w on 
R and any t > 0, we have

∣
∣
∣
∣

∫

u w ◦ T̂tdν̂
R −

∫

udν̂R
∫

wdν̂R
∣
∣
∣
∣ ≤ Ce−ε1t‖u‖Lip‖w‖Lip.

4.2 Exponential mixing of geodesic flow

The map from 
R to T1(M). We construct a map from 
R to T1(M) which
allows us to deduce the exponential mixing of the geodesic flow from that of
T̂t .

Recall the Hopf parametrization in Sect. 2.4. We introduce the following
time change map to have the function R given by derivative (see Proposi-
tion 4.1):

�̃ : 
R → ∂2(Hd+1) × R, (x, x−, s) �→ (x, x−, s − log(1 + |x |2)).

The map �̃ induces a map � : 
R → T1(M), where we use the Hopf
parametrization to identify T1(M) with �\∂2(Hd+1) × R. Note that 
+ ×
{∞} × {0} is mapped to the unstable horosphere based at ∞ and passing o.
The map � defines a semiconjugacy between two flows:

� ◦ T̂t = Gt ◦ �, for t ≥ 0. (4.14)

To see this, note that for any (x, x−, s) ∈ 
R , we have the expresssion

T̂t (x, x−, s) = (T̂ n(x, x−), s + t − Rn(x, x−)),

T̂ n(x, x−) = γ −1(x, x−) for some γ ∈ Hn.

By straightforward computation, we obtain

�̃ ◦ T̂t (x, x−, s) = Gt ◦ γ −1�̃(x, x−, s),

which leads to (4.14) by passing to the quotient space.
Relating ν̂R with mBMS. The map � is not injective in general. Neverthe-

less, we are able to use (
R, T̂t , ν̂R) to study (T1(M),Gt ,mBMS). The main
result is the following proposition.

Proposition 4.15 The map � : (
R, T̂t , ν̂R) → (T1(M),Gt ,mBMS) is a
factor map, i.e.,

�∗ν̂R = mBMS and � ◦ T̂t = Gt ◦ � for all t ≥ 0.
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We need two lemmas to prove this proposition.

Lemma 4.16 There exists a measurable subset U in 
R such that by setting
V = �(U ) in T1(M), the restriction map of� on U gives a bijection between
U and V . Moreover, the set V is of positive BMS measure.

Proof We make use of the following commutative diagram


R ∂2(Hd+1) × R

T1(M)

�

�̃

π

where π is the covering map. Let ε > 0 be a number such that ε <

inf(x,x−)∈
+×
− R(x, x−). Set S = 
+ × 
− × [0, ε). The restriction map
�̃|S gives a bijection between S and its image. Pick any x ∈ S. As π is a
covering map, there exists an open set W ⊂ ∂2(Hd+1) × R containing �̃(x)
such that the restriction map π |W is a bijection. The setsU = �̃−1(W ∩�̃(S))

in 
R and V = π(W ∩ �̃(S)) satisfy the proposition. �

Lemma 4.17 LetQ′ be any subset in 
R with full ν̂R measure andQ be any
subset in T1(M) with full mBMS measure. Then there exist x ∈ Q′ and y ∈ Q
such that �(x) and y are in the same stable leaf.

Proof The idea of the proof is straightforward:wemakeuse of the local product
description of ν̂R and mBMS.

Let�U be the restriction of� onU . In viewofLemma4.16,we can consider
the measure �∗

U (mBMS|V ) on U , the pull back of mBMS|V , and denote it by
m for simplicity. We can chooseU and V sufficiently small so that m is given
by

dm(x, x−, t) = cD(x, x−)−2δdμ(x)dμ(x−)dt,

where c is a positive constant and D(x, x−) = eβx (o,x∗)/2eβx− (o,x∗)/2 known as
the visual distance. Let p : 
R → 
+ × R be the projection map, forgetting
the 
−-coordinate. Then the pushforward measure p∗m is given by

dp∗m(x, t) = cdμ(x)dt
∫

{x}×
−×{t}∩U
D(x, x−)−2δdμ(x−).

So it is absolutely continuous with respect to the measure dν ⊗ dt .
We can find a set of the form B = B+ ×
− × (t1, t2) such that ν(B+) > 0

and m(B ∩U ) > 0. The pushforward measure p∗(ν̂R|B) is given by

dp∗(ν̂R|B) = dν ⊗ dt. (4.18)
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On the one hand, we have that p(Q′ ∩B) is a conull set in p(B)with respect
to p∗(ν̂R|B).

On the other hand, we consider B ′ := �−1
U (Q ∩ V ) ∩ B. It is a set with

positive m measure and hence p∗(B ′) is of positive p∗(m) measure. The fact
that dp∗(m) is absolutely continuous with respect to dν ⊗ dt and (4.18) imply
that p∗(B ′) is of positive p∗(ν̂R|B) measure. Therefore,

p(Q′ ∩ B) ∩ p(B ′) �= ∅.

Let (x, t) be a point in the intersection. Then the points (x, x−, t) ∈ Q′ and
�(x, x ′−, t) ∈ Q satisfy the conditions of the lemma. �


Proof of Proposition 4.15 Let f be a C1 function on T1(M) with finite C1-
norm. SincemBMS is ergodic [49], by Birkhoff ergodic theorem, formBMS-a.e.
y in T1(M)

lim
T→+∞

1

T

∫

0≤t≤T
f (Gt y)dt =

∫

f dmBMS. (4.19)

Let Q be the set of points at which (4.19) hold and it is a set of full mBMS

measure.
We consider f ◦�, which can be thought as the lifting of f to 
R . It is ν̂R-

integrable. Since T̂t is mixing with respect to ν̂R , by Birkhoff ergodic theorem,
for ν̂R-a.e. x ,

lim
T→+∞

1

T

∫

0≤t≤T
f ◦ �(T̂t x)dt =

∫

f ◦ �dν̂R.

Using the semiconjugacy � ◦ T̂t = Gt ◦ �, we actually have

lim
T→+∞

1

T

∫

0≤t≤T
f (Gt�x)dt =

∫

f ◦ �dν̂R. (4.20)

LetQ′ be the set of points at which (4.20) hold and it is a set of full ν̂R measure.
By Lemma 4.17, there exist points x ∈ 
R and y ∈ T1(M) such that �(x)

and y are in the same stable leaf. Due to d(Gt y,Gt�x) → 0 as t → +∞ and
the uniform continuity of f ,

lim
T→+∞

(
1

T

∫

0≤t≤T
f (Gt y)dt − 1

T

∫

0≤t≤T
f (Gt�x)dt

)

= 0.
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Therefore, we can deduce that

∫

f dmBMS =
∫

f ◦ �dν̂R.

The above equation holds for every C1 function on T1(M). The proof is com-
plete. �


Proof of Theorem 3.1. We are ready to prove Theorem 3.1. With Theo-
rem 4.13 and Proposition 4.15 available, the work lies in the comparing the
norm of the functions on
R with that on T1(M). This is not obvious. Consider
two points of the form (y, a) and (y′, a) in 
R . By (4.12), d((y, a), (y′, a))

remains the same when a changes. But if these two points are projected to
T1(M), changing a means flowing these two points by the geodesic flow and
d(�((y, a), �(y′, a))) will change. Moreover, the function R used to define

R is unbounded, making the argument more complex.

Proof of Theorem 3.1 Let u, v be any two C1-functions on T1(M) with finite
C1-norm. Without loss of generality, we may assume that mBMS(u) = 0. Set
U = u ◦ � and W = w ◦ �. Using the semiconjugacy of �, we obtain

∫

u · w ◦ GtdmBMS =
∫

U · W ◦ T̂tdν̂
R.

We use a cutoff function to relate the norms ofU,W with those of u, w. Let
ε > 0 be a constant less than ε1/2. Let τt be a decreasing Lipschitz function
on [0,∞) such that τt = 1 on [0, εt], τt = 0 on (εt + 1,∞) and |τt |Lip < 2.
Set Ut = U · τt and Wt = W · τt . For any two points (y, a) and (y′, a′) (we
may assume a ≥ a′), we have

|Ut (y, a) −Ut (y
′, a′)|

≤ |Ut (y, a) −Ut (y, a
′)| + |Ut (y, a

′) −Ut (y
′, a′)|

≤ τt (a
′)|U (y, a) −U (y, a′)| + |u|∞|τt (a) − τt (a

′)|
+ τt (a

′)|U (y, a′) −U (y′, a′)|

 |u|C1 |a − a′| + |u|∞|a − a′| + eεt |u|C1d(y, y′),

where to obtain the last inequality, we use the fact d(�(y, a′), �(y′, a′)) ≤
ea

′
d(y, y′) and τt �= 0 only on [0, εt + 1]. Therefore, we have

‖Ut‖Lip 
 eεt‖u‖C1 . (4.21)

A verbatim of the above argument also implies ‖Wt‖Lip 
 eεt‖w‖C1 .
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Wealso need the following L1-estimate.Using the exponential tail condition
(Proposition 4.1 (5)), we obtain

|Ut −U |L1(ν̂R) ≤ |u|∞
∫

max{R(x) − εt, 0}dν(x)


 |u|∞
∫

eεo(R(x)−εt)dν(x) 
 e−εoεt |u|∞. (4.22)

The similar estimate holds for Wt − W . As mBMS(u) = 0, we have

|
∫

Utdν̂
R| 
 e−εoεt |u|∞. (4.23)

Using Theorem 4.13 together with (4.21), (4.22) and (4.23), we obtain

|
∫

U · W ◦ T̂tdν̂
R|

≤ |
∫

Ut · Wt ◦ T̂tdν̂
R|

+ |
∫

(U −Ut ) · Wt ◦ T̂tdν̂
R| + |

∫

U · (W − Wt ) ◦ T̂tdν̂
R|


 |
∫

Utdν̂
R| · |

∫

Wtdν̂
R|

+ e−ε1t‖Ut‖Lip‖Wt‖Lip + |w|∞|U −Ut |L1(ν̂R)

+ |u|∞|W − Wt |L1(ν̂R)


 (e−(ε1−2ε)t + e−εoεt )|u|C1 |w|C1 .

Due to ε < ε1/2, the proof is complete. �


5 Parabolic fixed points and measure estimate

In this section, we provide a detailed description of the �-action on ∂H
d+1

and different types of estimate for the PS measure.

5.1 Explicit computation

Let H∞ be the horoball based at ∞ given by R
d × {x ∈ R : x > 1}. For a

horoball H , we define the height of the horoball by

h(H) := sup
y∈H

h(y).
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Lemma 5.1 Suppose g ∈ G is not in StabG(∞). Let p = g∞ and p′ =
g−1∞. Then we have

•

h(gH∞) = h(g−1H∞). (5.2)

• For any x ∈ H
d+1 ∪ ∂H

d+1, we have

gx = h(gH∞)
x − (p′, 0)

|x − (p′, 0)|2
(
A 0
0 1

)

+ (p, 0)

g−1x = h(gH∞)
x − (p, 0)

|x − (p, 0)|2
(
A−1 0
0 1

)

+ (p′, 0), (5.3)

where A ∈ SO(d), and we view x, (p, 0) and (p′, 0) as row vectors in
R
d+1.

Proof By Proposition A.3.9 (2) in [12], the action of g on the upper half space
is given by

gx = λι(x)

(
A 0
0 1

)

+ (b, 0),

where A is in SO(d), λ ∈ R
+, b ∈ R

d and ι(x) either equals x or is given by
an inversion with respect to a unit sphere centered at R

d × {0}. In fact, this is
the Bruhat decomposition of G. Since g does not fix ∞, ι(x) is an inversion.
We have for any x ∈ H

d+1

gx = λ
x − (x ′, 0)

|x − (x ′, 0)|2
(
A 0
0 1

)

+ (b, 0)

with x ′ ∈ R
d . Hence b = g∞ = p and x ′ = g−1∞ = p′.

Note that

h(gx) = λh(x)/|x − (p′, 0)|2.

Since g maps the original horoball H∞ = R
d × {x > 1} to the horoball gH∞

based at p, it follows from the above formula that

h(gH∞) = sup
x∈Rd×{1}

h(gx) = λ.
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To obtain the formula for g−1x , note that

x = g(g−1x) = h(gH∞)
g−1x − (p′, 0)

|g−1x − (p′, 0)|2
(
A 0
0 1

)

+ (p, 0).

This yields

1

h(gH∞)
(x − (p, 0))

(
A−1 0
0 1

)

+ (p′, 0) = g−1x − (p′, 0)
|g−1x − (p′, 0)|2 + (p′, 0).

Applying both sides the inversion with respect to the unit sphere centered at
(p′, 0) and using the fact that A ∈ SO(d), we obtain the formula for g−1x .
Meanwhile, we apply to g−1x the argument used to get the formula for gx .
Comparing the formulas given by these twomethods, we have that h(gH∞) =
h(g−1H∞). �

Lemma 5.4 For a horoball H based at p �= ∞ and g ∈ G not in StabG(∞),
we have

h(gH) ≥ h(g−1H∞)h(H)

d(g−1∞, p)2 + h(H)2
, (5.5)

h(gH) ≤ h(g−1H∞)h(H)

(d(g−1∞, p) − h(H)/2)2
. (5.6)

Proof Using (5.3), we obtain

h(gH) ≥ h(g(p, h(H))) = h(g−1H∞)h(H)

d(p, g−1∞)2 + h(H)2
.

For (5.6), we have

h(gH) = sup
y∈∂H

h(gy) = sup
y∈∂H

h(g−1H∞)h(y)

|y − (g−1∞, 0)|2 .

Note that for every y ∈ ∂H , we have |y − (g−1∞, 0)|2 ≥ dE (y′, g−1∞)2 ≥
(d(g−1∞, p) − h(H)/2)2, where y′ is the projection of y to ∂H

d+1 and this
yields (5.6). �


Let P be the set of parabolic fixed points in ∂H
d+1. Two parabolic fixed

points are called equivalent if they are in the same�-orbit. Let P be a complete
set of inequivalent parabolic fixed points. As � is geometrically finite, the set
P is finite. Suppose that P = {p1, . . . , p j } for some j ∈ N, a complete set of
inequivalent parabolic fixed points and set p1 = ∞.
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Fix a collection of pairwise disjoint horoballs based at parabolic fixed points
as follows. Without loss of generality, we may assume that H∞ is a horocusp
region for∞. For the parabolic fixed point γ∞, we attach the horoball Hγ∞ :=
γ H∞ to it. For other parabolic fixed point pi in P, we fix a horoball Hpi based
at pi which is a horocusp region for pi . For other parabolic fixed points γ pi
in the � orbit of pi , we attach the horoball Hγ pi := γ Hpi to it. By Definition
2.2, we can choose the horoballs in such a way that they are pairwise disjoint.
For p ∈ P , we define the height function h(p) of p as the height of Hp based
at p, that is

h(p) := h(Hp).

For x ∈ ∂H
d+1 and r > 0, set B(x, r) to be the ball centered at x of radius

r in ∂H
d+1 with respect to the Euclidean metric.

Lemma 5.7 (Explicit computation) Suppose γ is not in Stab∞(�). Then for
any r > 0 and x ∈ ∂H

d+1,

• γ −1B(p, r) = B(p′, h(p)/r)c,
• |(γ −1)′(x)| = h(p)/d(x, p)2, |γ ′(x)| = h(p)/d(x, p′)2,

where p = γ∞ and p′ = γ −1∞.

Proof The first equation follows from (5.3) easily.
In view of Lemma 5.1, the computation of the derivative of inversion maps

gives the expression of |γ ′(x)| and |(γ −1)′(x)|. �


5.2 Multi-cusps

Recall that P = {p1, . . . , p j }. For each pi , we consider a coordinate change
transformation: let gi be an element in G such that gi pi = ∞. This gi is not
unique and we can choose a gi such that gi Hpi = H∞ = R

d × {x > 1}. We
will frequently make use of the following commutative diagram:

H
d+1

H
d+1

H
d+1

H
d+1.

gi

� gi�g
−1
i

gi

(5.8)

On the right hand side of the diagram, the acting group is gi�g
−1
i and ∞ is a

parabolic fixed point of the group.
Once gi ’s are fixed, we consider the action of gi�g

−1
i and its parabolic

fixed points giP . We think they are in i-th hyperbolic space. Set the horoball
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Hgi p(i) = gi Hp for p ∈ P and define the height

h(gi p, i) := h(Hgi p(i)).

If there is no confusion, we always abbreviate Hgi p(i) and h(gi p, i) to Hgi p
and h(gi p).

The results in Sect. 2.3 hold for each pi . We have the group (gi�g
−1
i )∞,

which is a maximal normal abelian subgroup in Stabgi�g−1
i

(∞). Write

�pi = g−1
i (gi�g

−1
i )∞gi . (5.9)

Let �′
pi be a fundamental region for the parabolic fixed point ∞ under the

gi�g
−1
i -action. We can choose �′

pi in such a way that for �pi = g−1
i �′

pi

{pi , 1 ≤ i ≤ j} ∩ (∪1≤k≤ j�pk ) = ∅. (5.10)

This choice is possible because, for each pi , we can find a �′
pi such that �pi

sufficiently close to pi in ∂H
d+1 under the spherical metric. Set

� = ∪1≤k≤ j�pk .

By (5.10), we have � ∩ {∞} = ∅. So the set � is compact.
Consider any parabolic fixed point p = γ pi with γ ∈ �. We know that such

γ is not unique (any element in γ Stab�(pi ) also works) and we fix a choice
of γ such that γ −1 pi ∈ �pi . We call γ the representation of p. Set

xp := γ −1 pi .

Lemma 5.11 There exists C > 1 such that for 1 < i ≤ j and for any
parabolic fixed point p in �, we have

1/C ≤ h(gi p)/h(p) ≤ C.

Proof Consider the action of gi on ∂H
d+1. Notice that pi = g−1

i ∞ and
h(pi ) = h(Hpi ) = h(g−1

i H∞). Applying (5.5) to the horoball Hp based at p
and the element gi , we obtain

h(gi p) = h(gi Hp) ≥ h(pi )h(p)

d(pi , p)2 + h(p)2
.

It follows from� compact that d(pi , p) is bounded for p ∈ �. Then h(gi p) ≥
h(p)/C .
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For the other inequality, notice that gi p1 = gi∞ and h(gi p1) = h(gi H∞).
Applying (5.5) with with the horoball Hgi p based at gi p and g−1

i we have

h(p) = h(g−1
i Hgi p) ≥ h(gi p1)h(gi p)

d(gi p1, gi p)2 + h(gi p)2
.

It follows from (5.10) that gi�∩{∞} = gi�∩{gi pi } = ∅. So gi� is compact
and d(gi p1, gi p) is bounded for p ∈ �. Then h(p) ≥ h(gi p)/C . �

Lemma 5.12 For 1 < i ≤ j , the map gi : � → gi� is bi-Lipschitz.

Proof By (5.3), we have

d(gi x, gi y) = h(pi )d

(
x − pi

|x − pi |2 ,
y − pi

|y − pi |2
)

≤ C |x − y| = Cd(x, y),

where the inequality due to (5.10).
For the other direction, we use (5.3) to obtain

d(g−1
i x, g−1

i y) = h(pi )d

(
x − gi p1

|x − gi p1|2 ,
y − gi p1

|y − gi p1|2
)

≤ C |x − y| = Cd(x, y),

where the inequality is due to that d(x, gi p1) is bounded below for x ∈ gi�
by (5.10). �


Patterson–Sullivanmeasure under conjugation. In the presence ofmulti-
cusps, we need to consider the Patterson–Sullivan measure for the conjugation
of�. Recall that {μy}y∈Hd+1 is the�-invariant conformal density of dimension
δ and we denoted μo by μ for short. For each gi with 1 < i ≤ j , set �i =
gi�g

−1
i . The limit set 
�i is gi
� and the critical exponent of �i equals δ.

For every y ∈ H
d+1, define the following measure

μ̃y := (gi )∗μg−1
i y,

where (gi )∗μg−1
i y(E) = μg−1

i y(g
−1
i E) for any Borel subset E of ∂H

d+1. It is

easy to check that μ̃y is supported on
�i and for any y, z ∈ H
d+1, x ∈ ∂H

d+1

and γ ∈ �i ,

dμ̃y

dμ̃z
(x) = e−δβx (y,z) and (γ )∗μ̃y = μ̃γ y .

It follows from the uniqueness of �i -invariant conformal density that this con-
struction gives exactly the�i -invariant conformal density on
�i of dimension
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δ. In later sections, we will denote μ̃o by μ�i and the above analysis yields
that for any Borel subset E of ∂H

d+1

e−δd(o,gi o)μ(g−1
i E) ≤ μ�i (E) ≤ eδd(o,gi o)μ(g−1

i E). (5.13)

5.3 Doubling property of PS measure

We start with two results: Proposition 5.14 and Lemma 5.15, deduced from
[46, Theorem 2]. They used spherical metric, but locally it is equivalent to
euclidean metric.

Proposition 5.14 • (Doubling property) For every C > 1, there exists ε < 1
such that for every x ∈ 
� ∩ � and 1/C ≥ r > 0,

μ(B(x, r)) > εμ(B(x,Cr)).

• (Growth of measure) There exists C3 > 1, such that for every x ∈ 
� ∩ �

and r < 1/C3,

2μ(B(x, r)) < μ(B(x,C3r)).

Lemma 5.15 Let p be a parabolic fixed point in � of rank k. For 0 < r ≤
h(p),

μ(B(p, r)) ≈ r2δ−kh(p)k−δ. (5.16)

Lemma 5.17 For every C > 1, there exists C ′ > 1 such that for every
parabolic fixed point p = γ∞ ∈ � with γ the representation, for any Borel
subset E ⊂ B(p,Ch(p)), we have

h(p)δμ(γ −1E)/C ′ ≤ μ(E) ≤ C ′h(p)δμ(γ −1E).

Proof As the PS measure is quasi-invariant, we have

μ(γ −1E) =
∫

x∈E
|(γ −1)′x |δ

(
1 + |x |2

1 + |γ −1x |2
)δ

dμ(x).

By Lemma 5.7, we have |(γ −1)′x | = h(p)/d(x, p)2. We also have

|d(γ −1∞, 0) − h(p)/d(x, p)| ≤ |γ −1x | ≤ d(γ −1∞, 0) + h(p)/d(x, p).

Due to γ −1∞ ∈ �, if h(p)/d(x, p) > max{2d(γ −1∞, 0), 1}, then 1 +
|γ −1x |2 ≈ (h(p)/d(x, p))2. Otherwise, due to h(p)/d(x, p) ≥ 1/C , we
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also have 1 + |γ −1x |2 ≈ (h(p)/d(x, p))2. The lemma follows from these
bounds on |(γ −1)′x | and 1 + |γ −1x |2. The computation also makes sense
even if x = p, because the ratio |(γ −1)′x |/(1 + |γ −1x |2) is always bounded
in B(p,Ch(p)) − {p} and we can extend it continous to p. �


Recall �0 := �∞ = �p1 .

Lemma 5.18 There exists C > 0 such that for any Borel set E of diameter
less than the diameter of �0 and γ1 ∈ �∞, we have that for any x ∈ E

μ(γ1E)

μ(E)
∈ (1/C,C)

(
1 + |x |2
1 + |γ1x |2

)δ

.

Proof Due to the derivative of γ1 and the quasi-invariance of PS measure, we
obtain

μ(γ1E) =
∫

E

(
1 + |x |2
1 + |γ1x |2

)δ

dμ(x).

Now for any x, y in E , we have

1 + |x |2
1 + |y|2 = 1 + (|x | − |y|)(|x | + |y|)

1 + |y|2 ≤ C ′, (5.19)

with C ′ > 1 only depending on the diameter of E . The same argument also
gives the same upper bound for (1+|y|2)/(1+|x |2). The set γ1E is a set with
the same diameter as E . So we also have

1 + |γ1x |2
1 + |γ1y|2 ∈ (1/C ′,C ′) (5.20)

for any x, y in E . The proof is complete by applying (5.19) and (5.20) to the
formula of μ(γ1E). �

Lemma 5.21 There exist constants c > 0 and C > 1 such that for every
parabolic fixed point p �= ∞, if r ≤ h(p)/C, then

μ(B(p, r) − B(p, r/
√
e)) ≥ cμ(B(p, r)).

Proof Consider p ∈ �0. Indeed, since�∞�0 covers the intersectionR
d∩
� ,

we can always find a γ1 in �∞ such that γ1 p ∈ �0. Then applying Lemma
5.18 to E = B(p, r) and E = B(p, r) − B(p, r/

√
e), we have

μ(B(p, r) − B(p, r/
√
e))

μ(B(p, r))
≈ μ(B(γ1 p, r) − B(γ1 p, r/

√
e))

μ(B(γ1 p, r))
.
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We only need to give a lower bound to μ(B(p, r) − B(p, r/
√
e)) and then

use (5.16) to obtain Lemma 5.21.
Assume p ∈ �0 is of rank k. Consider the case when p = γ∞ with γ ∈ �

the representation of p. We claim that there exists a constant C > 1 such that
for γ1 ∈ �∞, with γ γ1�0 ⊂ B(p, r) − B(p, r/

√
e), we have

μ(γ γ1�0) � h(p)δ

(d(γ1�0, xp) + C)2δ
. (5.22)

Proof of the claim: By Lemma 5.17, we have μ(γ γ1�0) ≈ h(p)δμ(γ1�0).
By Lemma 5.18, we have

μ(γ1�0) ≈
(

1 + |x |2
1 + |γ1x |2

)δ

μ(�0),

for any x ∈ �0. Now, since |γ1x | ≤ d(γ1�0, xp) + |xp| + C ′, so

μ(γ1�0) ≥ μ(�0)/(d(γ1�0, xp) + C)2δ

for some constant C > 1.
ByLemma5.7,wehaveγ −1(B(p, r)−B(p, r/

√
e)) = B(xp,

√
eh(p)/r)−

B(xp, h(p)/r). Let C ′ = diam(�0). Let R
k be the subspace described in

Lemma 2.3. For a set E in R
d , we define VolRk (E) as Vol(E ∩ R

k). Since
xp ∈ 
� ∩ R

d has bounded distance to R
k , the number of γ1�0’s in such

region is at least

VolRk

(
B

(
xp,

√
eh(p)/r − C ′) − B

(
xp, h(p)/r + C ′)) /VolRk (�0)

� h(p)kr−k . (5.23)

Then (5.23) and (5.22) imply

μ(B(p, r) − B(p, r/
√
e))

≥
∑

γ1�0⊂B(xp,
√
eh(p)/r)−B(xp,h(p)/r)

μ(γ γ1�0)

� h(p)k−δr2δ−k .

Consider general case when p = γ pi with γ ∈ � the representation of p.
We estimate the measure μ(γ γ1�pi ) for any γ1 ∈ �pi satisfying γ γ1�pi ⊂
B(p, r) − B(p, r/

√
e). Using (5.13), we have

μ(γ γ1�pi ) ≈ μ�i (giγ γ1�pi ),
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where �i := gi�g
−1
i . Lemma 5.12 yields

giγ γ1�pi ⊂ gi (B(p, r) − B(p, r/
√
e)) ⊂ B(gi p,Cr) − B(gi p, r/(C

√
e)).

(5.24)

So we can use the argument for the previous case to obtain

μ�i (giγ γ1�pi ) ≈ r2δh(gi p)
−δ. (5.25)

Then we count the number of γ γ1�pi ’s in B(p, r)− B(p, r/
√
e). It equals

the number of giγ γ1�pi ’s in gi (B(p, r) − B(p, r/
√
e)). The map gi maps

B(p, r) and B(p, r/
√
e) to two spheres and the distance between gi B(p, r)

and gi B(p, r/
√
e) is at least (1 − 1/

√
e)r/C . The map giγ −1g−1

i maps
gi B(p, r) and gi B(p, r/

√
e) to two spheres and let R and p′ be the radius

and the center of the outer sphere respectively. Using (5.24) and Lemma 5.7,
we have

R ∈ (h(gi p)/(Cr),C
√
eh(gi p)/r). (5.26)

For every x ∈ B(gi p,Cr) − B(gi p, r/(C
√
e)), we have |(giγ −1g−1

i )′(x)| ∈
(h(gi p)/(C2r2),C2eh(gi p)/r2). So the distance between giγ −1B(p, r) and
giγ −1B(p, r/

√
e) is at least (1−1/

√
e)h(gi p)/(C3r). This distance estimate

together with (5.26) implies there exists some constant c ∈ (0, 1) such that

giγ
−1(B(p, r) − B(p, r/

√
e)) ⊃ B(p′, R) − B(p′, cR).

The number of giγ1�pi in giγ −1(B(p, r) − B(p, r/
√
e)) is at least

VolRk

(
B

(
p′, R − C ′′) − B

(
p′, cR + C ′′)) /VolRk (gi�pi )

� Rk � h(gi p)
kr−k, (5.27)

where C ′′ = diam(gi�pi ). A lower bound for μ(B(p, r) − B(p, r/
√
e)) can

be obtained using Lemma 5.11, (5.25) and (5.27). �


5.4 Friendliness of PS measure

For any r > 0, set

Nr (�0) := {x ∈ �0 : d(x, ∂�0) ≤ r}. (5.28)
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Lemma 5.29 There exist 0 < ε0 < 1 such that for all 0 < ε < ε0 there exists
λ = λ(ε) ∈ (0, 1) for all r < 1

μ(Nεr (�0)) ≤ λμ(Nr (�0)). (5.30)

Moreover, the constant λ(ε) tends to zero as ε tends to zero.

Recall from Sect. 2.3 that �0 = BY (C) × �′
0. Recall that the set �′

0 is a
parallelotope. Let l ′ be a facet of �′

0 and l = BY (C)× l ′. Let γ be the element
in �∞ identifying l ′ with the opposite facet l ′′ so γ also identifies BY (C) × l ′
with BY (C) × l ′′. Set

Nr (l) := {x ∈ �0 ∪ γ −1�0 : d(x, l) ≤ r}.
Lemma 5.29 is deduced from the following lemma.

Lemma 5.31 There exist 0 < ε, λ < 1 such that for all r < 1

μ(Nεr (l)) ≤ λμ(Nr (l)).

Proof of Lemma 5.29 Assume that ∞ is a rank k cusp. If ∞ is not a cusp
of maximal rank, then note that (∂BY (C)) × �′

0 = {|y| = C} × �′
0 does

not intersect 
� . A small neighborhood of this boundary has zero PS mea-
sure. Therefore, we just need to consider the neighborhood of l’s. Using
Lemma 5.31, we obtain

μ(Nεr (�0)) ≤
∑

l

μ(Nεr (l)) ≤ λ
∑

l

μ(Nr (l)).

Each Nr (l) is covered by �0 and one of its translates γ�0. By Lemma 5.18,
there exists C ′ > 0 such that

λ
∑

l

μ(Nr (l)) ≤ λC ′2kμ(Nr (�0)).

We can replace ε by εn and using Lemma 5.31 repeatedly, which will yield
an arbitrary small λ in Lemma 5.29. �

Proof of Lemma 5.31 The proof is similar to the argument of using Lemma
3.11 to deduce Lemma 3.10 in [17]. Let L be the hyperplane containing l and
Nr (L) be the r -neighborhood of L . [17, Lemma 3.11] is stated in spherical
metric but locally spherical metric is equivalent to the euclidean metric. So
[17, Lemma 3.11] implies that there exists ε > 0 such that for every ξ ∈ E :=

� ∩ Nεr (l), there exists 0 < ρξ < 1 satisfying

μ(B(ξ, ρξ ) ∩ (Nr (L) − Nεr (L))) ≥ cμ(B(ξ, ρξ )), (5.32)
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where 0 < c < 1 is a constant only depending on�. The family {B(ξ, ρξ )}ξ∈E
forms a covering of E .

It follows from Vitali covering Lemma that there exists a disjoint subcol-
lection {B(ξ, ρξ )}ξ∈I with I ⊂ E countable, such that

∪ξ∈I B(ξ, 5ρξ ) ⊃ ∪ξ∈E B(ξ, ρξ ) ⊃ E .

The set B(ξ, ρξ )∩ (Nr (L)−Nεr (L))may not be contained in Nr (l)−Nεr (l),
but we can cover it by some translations of Nr (l) − Nεr (l). By elementary
computation, we can use no more than k0 number of elements γ j ’s in �∞ with
k0 depending on �0 such that

∪ jγ j (Nr (l) − Nεr (l)) ⊃ B(ξ, ρξ ) ∩ (Nr (L) − Nεr (L)).

Using this inclusion, Lemma 5.18 and disjointness of B(ξ, ρξ )’s for ξ ∈ I , we
obtain

C ′k0μ(Nr (l) − Nεr (l)) ≥ μ(∪ jγ j (Nr (l) − Nεr (l)))

≥
∑

ξ∈I
μ(B(ξ, ρξ ) ∩ (Nr (L) − Nεr (L))

Using (5.32) and doubling property in Proposition 5.14, we have

∑

ξ∈I
μ(B(ξ, ρξ ) ∩ (Nr (L) − Nεr (L)) ≥ c

∑

ξ∈I
μ(B(ξ, ρξ ))

≥ cε′ ∑

ξ∈I
μ(B(ξ, 5ρξ )) ≥ cε′μ(Nεr (l)),

Combining the above two formulas, we conclude that there exists 0 < λ < 1
such that

μ(Nεr (l)) ≤ λμ(Nr (l)).

�


6 Coding of limit set

In this section, we construct the coding and prove Proposition 4.1, Lemma 4.5,
and Lemma 4.8. At first reading, the reader might want to concentrate on the
case when there is one cusp in the manifold, i.e., P = {p1} and the coordinate
change of transformation g1 is the identity. This will significantly reduce the
notational burden while not sacrificing too much of the main results.
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6.1 Coding for local regions

We introduce “flower” Jp, the building block for the coding. Actually, Jp’s
are almost the union of a countable subcollection of open subsets � j in the
coding. The advantage of considering Jp is that Jp has a clean boundary which
makes it possible to estimate the measure.

We first consider the case when p = γ∞ is a parabolic fixed point in �

with γ ∈ � the representation of p and xp = γ −1∞. Let η ∈ (0, 1). We
define the set Jp,η as follows. By Lemma 5.7, we have

γ −1B(p, ηh(p)) = B(xp, 1/η)c.

Suppose that ∞ is a parabolic fixed point of maximal rank. Then R
d ⊂

∂H
d+1 is tessellated by the translations of �0. Take Rp,η to be the smallest

parallelotope tiled by the translations of �0 such that it contains B(xp, 1/η).
Let

Jp,η = γ Rc
p,η, (6.1)

Np = {γ1 ∈ �∞ : γ1�0 ⊂ Rc
p,η} = {γ1 ∈ �∞ : γ γ1�0 ⊂ Jp,η}.

(6.2)

Suppose ∞ is a parabolic fixed point of rank k in general. Let Z be the
affine subspace in ∂H

d+1 described in Lemma 2.3 where elements in �∞ act
as translations, and �0 = BY (C)×�′

0. So Z is tessellated by the translations

of �′
0. Take Rp,η in Z to be the smallest parallelotope tiled by the translations

of �′
0 such that BY (2/η) × Rp,η contains B(xp, 1/η). Set

Jp,η = γ (BY (2/η) × Rp,η)
c ⊂ B(p, ηh(p)), (6.3)

Np = {γ1 ∈ �∞ : γ1�0 ⊂ (BY (2/η) × Rp,η)
c}

= {γ1 ∈ �∞ : γ γ1�0 ⊂ Jp,η}. (6.4)

The set Jp,η enjoys the following property

Jp,η ∩ 
� = γ

(

∪
γ1∈Np

γ1
(
�0 ∩ 
�

)
)

, (6.5)

that is to say, the countable disjoint union 

γ1∈Np

γ γ1�0 is a conull set in Jp,η.

The open sets γ γ1�0 with γ1 ∈ Np are the ones described in Proposition
4.1 in Jp,η, and on each γ γ1�0, the expanding map T is given by T |γ γ1�0 =
(γ γ1)

−1 (Fig. 2).
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p = γ∞
γ

Δ0

xp

Fig. 2 The shaded region on the left hand side is Jp,η, which is the image under the action of
γ on the complement of the white rectangle on the right hand side

We also have the following distance relation:

d((γ γ1)
−1∞, �0) = d(γ −1

1 xp, �0) ≥ 1/η for any γ1 ∈ Np. (6.6)

Lemma 6.7 There exists 0 < c4 < 1 such that for any η ∈ (0, 1)

B(p, c4ηh(p)) ⊂ Jp,η ⊂ B(p, ηh(p)),

B(xp, 1/η) ⊂ (γ −1 Jp,η)
c ⊂ B(xp, 1/(c4η)).

Proof Due to the compactness of �0, there exists c4 such that (γ −1 Jp,η)c =
(BY (2/η) × Rp,η) ⊂ B(xp, 1/(c4η)). The first statement can be deduce from
the second using Lemma 5.7. �


In the following, we abbreviate Jp,η to Jp. For r > 0, let

Nr (∂ Jp) := {x ∈ J cp : d(x, ∂ Jp) ≤ r},
Nr (∂γ −1 Jp) := {x ∈ (γ −1 Jp)

c : d(x, ∂γ −1 Jp) ≤ r}. (6.8)

Lemma 6.9 Fix C > 1. For every 0 < η < 1/4C2, there exists 0 < c =
c(η) < 1 depending on η such that for any r < h(p),

μ(NCηr (∂ Jp)) ≤ cμ(Nr (∂ Jp)). (6.10)

Moreover, c(η) tends to zero as η tends to zero.

The proof of Lemma 6.9 will be given in the “Appendix”.
We consider the general case. Let p be any parabolic fixed point in �.

Write p = γ pi with γ ∈ � the representation of p. If pi = ∞, let Jp and
Np be defined as (6.3) and (6.4) respectively. Otherwise, we use the following
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commutative diagram to define Jp:

H
d+1

H
d+1

H
d+1

H
d+1.

gi

� gi�g
−1
i

gi

Note that gi p = (giγ g
−1
i )∞ ∈ gi�. So for the action of gi�g

−1
i on ∂H

d+1,
we can define Ji,p for the parabolic fixed point gi p as (6.3). Set

Jp := g−1
i Ji,p, Np = {γ1 ∈ �pi : γ γ1�pi ⊂ Jp}, (6.11)

where �pi is a subgroup of � defined in (5.9). The set Jp enjoys the property

Jp ∩ 
� = 

γ1∈Np

(
γ γ1�pi ∩ 
�

)
. (6.12)

On each set γ γ1�pi , we have an expandingmap given by (γ γ1)
−1 whichmaps

this set to �pi .
The following lemma is an analog of Lemma 6.7.

Lemma 6.13 There exists some constant C5 > 1 such that for any η ∈ (0, 1)

B(gi xp, 1/η) ⊂ (giγ
−1 Jp)

c ⊂ B(gi xp, 1/(c4η)),

B (p, ηh(p)/C5) ⊂ g−1
i B (gi p, c4ηh(gi p)) ⊂ Jp ⊂ g−1

i B (gi p, ηh(gi p))

⊂ B (p,C5ηh(p)) ,

where xp = γ −1 pi .

Proof We use Lemma 6.7, 5.11 and 5.12 to obtain the lemma. �


6.2 Coding for �0

The construction of the coding for thewhole�0 is by induction. Let�0 := �0.
Since we already have a nice coding for flowers Jp, the idea is to find a

collection of pairwise disjoint flowers Jp to cover the intersection 
� ∩ �0.
Here p is a parabolic fixed point. From the construction of Jp (Lemma 6.7),
we know that the higher the height h(p) is, the larger Jp is. So we start with
parabolic fixed points with large heights. We want that the full flower Jp is
inside�0.Henceweonly take parabolic fixed points p away from the boundary
of �0.
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Take

hn = e−n,

η ∈ (0, 1) a sufficiently small constant to be specified at the end of the proof

of Proposition6.15.

All the constants appearing later will be independent of η unless we state it
explicitly.

• For n ∈ N, let

Pn+1 = {p ∈ P : ηh(p) ∈ (hn+1, hn], B(p, hn/(4η)) ⊂ �n}. (6.14)

• For any p ∈ Pn+1, write p = γ pi with γ ∈ � the representation of p.
Construct Jp and Np as in the previous section.

• Set

�n+1 = �n − Dn+1 = �n − ∪p∈Pn+1 Jp.

Using the definition of Jp, Lemma 6.13 and the separation property (Lemma
6.16), it can be shown that the sets Jp’s with p ∈ Pn and n ∈ N are mutually
disjoint (Lemma 6.17) and inside �0. In Proposition 6.15, it will be shown
that the union ∪n ∪p∈Pn Jp is conull in �0 with respect to the PS measure μ.
By (6.12), the countable disjoint union

⋃

n∈N

⋃

p=γ pi∈Pn

⋃

γ1∈Np

γ γ1�pi

is also conull in �0 with respect to PS measure. On each set γ γ1�pi we have
an expanding map given by (γ γ1)

−1 which maps this set to �pi . For one
cusp case, these are the countable collection of disjoint open subsets and the
expanding map. When there are multi-cusps, this is the first step to construct
the coding and the rest will be provided in Sects. 6.7 and 6.8.

The main result of this section is the following proposition.

Proposition 6.15 There exist ε0 > 0 and N > 0 such that for all n > N, we
have

μ(�n) ≤ (1 − ε0)
n.

For one cusp case, this yields Proposition 4.1 (1). Moreover, the exponential
tail property (4.2) will follow from Proposition 6.15 rather directly and it will
be proved in Sect. 6.7. To prove this proposition, we need a lot of preparations
and we postpone its proof to the end of Sect. 6.6.
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6.3 Separation

Lemma 6.16 (Separation property) For any two different parabolic fixed
points p, p′, we have

d(p, p′) >
√
h(p)h(p′).

Proof Let x, x ′ be the euclidean centers of Hp and Hp′ repectively. By dis-
jointness of horoballs, then dE (x, x ′) ≥ (h(p) + h(p′)/2. By the Pythagoras’
theorem, we obtain

d(p, p′) ≥
√

dE (x, x ′)2 − ((h(p) − h(p′))/2)2 ≥ √
h(p)h(p′).

�

This property plays a key role in the construction of the coding and the proof
of Proposition 6.15.

Lemma 6.17 If η < 1/(4eC5), then the sets Jp’s with p ∈ Pn and n ∈ N are
mutually disjoint, and the distance between any two connected components of
∂�n is strictly greater than hn/(2η).

Proof Notice that �n = �n−1 − ∪p∈Pn Jp. By induction, we only need to
prove two cases.

Case 1: We consider Jp, Jp′ with distinct p, p′ in Pn . Using Lemma 6.13
and Lemma 6.16, we obtain

√
h(p)h(p′) − C5η(h(p) + h(p′)) ≥ hn

η
− 2C5hn−1 ≥ hn

2η
.

Therefore, two sets Jp, Jp′ are disjoint and the distance between them is at
least hn/(2η).

Case 2: We consider Jp with p ∈ Pn and�n−1. By (6.14) and Lemma 6.13,
the distance between Jp and ∂�n−1 is also greater than

hn−1

4η
− C5ηh(p) ≥ hn−1

4η
− C5hn−1 >

hn
2η

.

Hence Jp is inside �n−1.
By induction, for different connected components of �n , their distance is

at least hn/(2η). �
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6.4 Equivalence classes in Qn

Motivation of equivalence classes. We introduce the notion of equivalence
classes to attain the exponential tail property.

Let’s start with some definitions. The visual map π : T1(Hd+1) → ∂H
d+1

is defined by

π(x) = lim
t→∞Gt (x),

which maps x to the forward endpoint in ∂H
d+1 of the geodesic defined by x .

Recall that we fix p1 as ∞ and H∞ is the horoball based at ∞ given by
R
d × {x ∈ R : x > 1}. Let H̃∞ be the corresponding unstable horosphere.

More precisely, let xo be the unit tangent vector based at (0, 1) ∈ R
d ×R with

π(xo) = 0. Then H̃∞ is the set of x in T1(Hd+1) such that d(G−t xo,G−t x) →
0 as t → +∞. For a set E ⊂ ∂H

d+1 − {∞} � R
d , let

Ẽ = π |−1
H̃∞

(E)

be the preimage of E under the map π restricted on H̃∞.
Let

Hp(η) be the horoball based at p with height equal to ηh(p),

Cη = ∪p∈P� T1(Hp(η)).

Then Cη is the lift of the unit tangent bundle over proper horocusps of M .
At the time n, the set Gn�̃n is a large sheet with many holes, consisting

of “flowers” of different sizes, corresponding to different Gn J̃p. Here is the
source of the exponential tail: for x ∈ Gn�̃n with π(x) ∈ 
� ∩ �0 and x
not in the cusp region Cη, the recurrence of geodesic flow implies that there
exits a new flower Gn J̃p inside the neighborhood of x with size bounded below
(Lemma 6.55). So a fixed proportion of the neighborhood of x will be coded
in a fixed time (Lemma 6.53).

Lemma 6.55 doesn’t apply to the set Gn�̃n ∩Cη. Points in the set π(Gn�̃n ∩
Cη) are contained in the balls centered at certain parabolic fixed points. We
want to argue that from step n to step n + 1, the points near the outer edge
of the balls will escape the cusps. We illustrate the scheme of the proof. For
n ∈ N, define

Qn+1 = {p ∈ P : ηh(p) ∈ (hn+1, hn], B(p, ηh(p)) ∩ �n �= ∅,

d(p, ∂�n) ≤ hn/(4η)}.
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Then we can cover Cη ∩Gn�̃n by the union of balls centered at parabolic fixed
points in Qm with m ≤ n (Lemma 6.37, 6.38):

Cη ∩ Gn�̃n = Gn(∪m≤n ∪p∈Qm B̃(p, r(p, n))) ∩ Gn�̃n,

where r(p, n) = √
ηh(p)hn . From step n to step n + 1, the part

Gn+1(B̃(p, r(p, n)) − B̃(p, r(p, n + 1)))

will leave the cusp region Cη. We want a lower bound for the measure
of (B(p, r(p, n)) − B(p, r(p, n + 1))) ∩ �n . The main difficulty is that
B(p, r(p, n)) ∩ �n may not be a full ball, in which case its PS measure
is hard to estimate.

We introduce the notion of equivalence classes to resolve this issue.Consider
a subset of Qn:

Q′
n = {p ∈ Qn : B(p, r(p, n)) ∩ ∂�n−1 �= ∅}.

Pick any p ∈ Q′
n . As the ball B(p, r(p, n)) ∩ �n−1 is not a full ball, we will

pair it with another partial ball and use the doubling property of the PSmeasure.
Notice that there is a unique component in ∂�n−1 closest to p (Lemma 6.17).
If it is ∂�0, note that 
� ∩ R

d is covered by the translations of �0, so the
symmetry property of these translations gives the point p′ to pair with p (if p
is around the corners of ∂�0, we may need more than one point to pair with
p). If it is some ∂ Jq , write q = γ −1 pi with γ −1 ∈ � the representation of q.
Wemap B(p, r(p, n)) and ∂ Jq by giγ and get a picture similar to the previous
case. We find the paring point for giγ p and map it back to get the one for p
(Fig. 3). The work lies in modifying the radius r(p, n): r(p, n) is defined to√

ηhnh(p) depending on h(p), and it may happen that the horosphere attached
to the pairing point of p has a different height.

Finding the radius. For Lemma 6.18 - Lemma 6.23, we consider p ∈ Q′
n

such that the component in ∂�n−1 closest to p is ∂ Jq with q ∈ ∪n−1
l=1 Pl . Write

q = γ −1 pi for some γ ∈ � the representation of q (Fig. 3).

Lemma 6.18 There exists C > 1 such that we have

ηh(p) ≤ hn−1 ≤ Cη3h(q),
ηh(gi p)

C
≤ hn−1 ≤ Cη3h(giq).

Proof It follows from Lemma 6.16 that

d(p, q) ≥ √
h(p)h(q) ≥ √

hn−1h(q)/(eη).
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giγ

p
(giγ)−1γ1p

′

p′
γ1p

′

B1 ∩ giγJc
q

γ1(B1) ∩ giγJc
q

(giγ)−1(B1) ∩ Jc
q

(giγ)−1(γ1(B1)) ∩ Jc
q

q

Fig. 3 Pairing partial balls: q = γ−1 pi , p′ = giγ p, B1 = B(giγ p, r̃ p,m/C6), γ1 ∈
(gi�g

−1
i )∞

Meanwhile by Lemma 6.13, we have

d(p, q) ≤ d(p, ∂ Jq) + max
y∈∂ Jq

d(y, q) ≤ r(n, p)

+C5ηh(q) ≤ hn−1 + C5ηh(q) ≤ (1 + C5)ηh(q).

So the above two inequalities lead to first statement. The second statement
follows easily from the first statement and Lemma 5.11. �

Lemma 6.19 There exists C > 1 such that

B(gi p, h(gi p)) ⊂ B(giq,Cηh(giq)) − B(giq, ηh(giq)/C).

Proof For any ξ ∈ ∂B(gi p, h(gi p)), an upper bound for d(ξ, giq) is given by

d(ξ, giq) ≤ d(ξ, gi p) + d(gi p, ∂ Jgiq) + max
y∈∂ Jgi q

d(y, giq)

≤ h(gi p) + Chn−1 + ηh(giq) ≤ Cηh(giq).
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A lower bound for d(ξ, giq) is given by

d(ξ, giq) ≥ d(giq, ∂ Jgiq) − d(gi p, ∂ Jgiq) − h(gi p)

≥ c4ηh(giq) − Chn−1 − h(gi p) ≥ c4ηh(giq) − Cη2h(giq).

Hence by taking η sufficiently small, we reach the conclusion. �

Lemma 6.20 There exists C > 1 such that we have

h(gi p)

Cη2h(giq)
≤ h(giγ p) ≤ Ch(gi p)

η2h(giq)
.

Proof Apply Lemma 5.4 to the horoball H = Hgi p based at gi p and the
element g = giγ g

−1
i . Notice that giq = (giγ g

−1
i )−1∞ = g−1∞ and

h(giq) = h(Hgiq) = h(g−1H∞). We have

h(giq)h(gi p)

d(giq, gi p)2 + h(gi p)2
≤ h(giγ p) = h(gH) ≤ h(giq)h(gi p)

(d(giq, gi p) − h(gi p)/2)2
,

By Lemma 6.18 and 6.19, we obtain the lemma. �

For any m ∈ N, set

r̃ p,m =
√
hmh(giγ p)

ηh(giq)
. (6.21)

At the point giγ p, we will consider ball B(giγ p, r̃ p,m/C6), where C6 > 1 is
a constant given in Lemma 6.23 such that r̃ p,m/C6 guarantees the equivalence
classes we introduce later are well-defined. Once we have chosen the ball
B(giγ p, r̃ p,m/C6), we will map it back by (giγ )−1 to attain the “correct” ball
at p.

By Lemma 6.20, 5.11 and 6.18, we have

r̃ p,n ≤ C
√

ηhnh(gi p)

η2h(giq)
≤ Ch(gi p)

ηh(giq)
≤ Cηh(giγ p). (6.22)

Lemma 6.23 There existsC6 > 1 such that for anypoint p′, if d(giγ p′, giγ ∂ Jq)
≤ r̃ p,n/C6, then d(p′, ∂ Jq) ≤ hn.

Proof It follows from Lemma 6.7 applying giγ g
−1
i that for any C6 > 1, if

d(giγ p′, giγ ∂ Jq) ≤ r̃ p,n/C6, then

giγ p
′ = giγ g

−1
i (gi p

′) ∈ B(gi xq , 2/(c4η)) − B(gi xq , 1/(2η)),
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where gi xq = giγ pi = giγ g
−1
i ∞. For any x in the line segment between

giγ p′ and giγ ∂ Jq , we use Lemma 5.7 to obtain |(giγ −1g−1
i )′x | ≤ 4η2h(giq).

By Lemma 5.12 and (6.22), we obtain

d(p′, ∂ Jq) ≤ Cd(gi p
′, gi∂ Jq) ≤ Cη2h(giq)d(giγ p

′, giγ ∂ Jq)

≤ Cη2r̃ p,nh(giq)/C6 ≤ Cηh(gi p)/C6.

By taking C6 > 1 large enough, we have d(p′, ∂ Jq) ≤ hn . �

Definition of equivalence classes. Now we define equivalence classes in Qn .
We define them by induction. For Q1,

• for p ∈ Q1 − Q′
1, set the equivalence class C(p) of p to be {p}.

• for p ∈ Q′
1, set

C(p) = {γ1 p : γ1B(p,
√

ηh1h(p)) ∩ ∂�0 �= ∅, γ1 ∈ �∞}.

Set

Q′′
1 := ∪p∈Q1C(p),

and for any p′ ∈ Q′′
1 and m ≥ 1, define

rp′,m = √
ηhmh(p′), Bp′,m = B(p, rp′,m).

Suppose we have defined Q′′
n . We define the equivalence classes in Qn+1

and the set Q′′
n+1 as follows:

Case 1: for p ∈ Q′
n+1 − ∪l≤nQ′′

l such that the component in ∂�n closest to
p is ∂�0, set

C(p) = {γ1 p : γ1B(p,
√

ηhn+1h(p)) ∩ ∂�0 �= ∅, γ1 ∈ �∞}.

For any p′ ∈ C(p) and m ≥ n + 1, define

rp′,m = √
ηhmh(p′), Bp′,m = B(p′, rp′,m).

Case 2: for p ∈ Q′
n+1 − ∪l≤nQ′′

l such that the component in ∂�n closest to
p is some Jq , write q = γ −1 pi with γ −1 the representation of q.
Let r̃ p,n and C6 be as given in (6.21) and Lemma 6.23 respectively.
If B(giγ p, r̃ p,n/C6) ∩ giγ ∂ Jq �= ∅, set

123



Exponential mixing of geodesic flows 971

C(p) = {(giγ )−1γ1giγ p : γ1B(giγ p, r̃ p,n/C6) ∩ giγ ∂ Jq �= ∅,

γ1 ∈ (gi�g
−1
i )∞}. (6.24)

Otherwise, set C(p) = {p}.
For any p′ ∈ C(p) and m ≥ n + 1, define

rp′,m = 1

C6

√
hmh(giγ p′)

ηh(giq)
(which equals rp,m), (6.25)

Bp′,m = (giγ )−1B(giγ p
′, rp′,m). (6.26)

Case 3: for p ∈ Qn+1 − ∪l≤nQ′′
l such that p does not belong to the union of

equivalence classes defined in the previous two cases, setC(p) = {p}
and for any m ≥ n + 1, define

rp,m = √
ηhmh(p), Bp,m = B(p, rp,m).

Set

Q′′
n+1 =

⋃

p∈Qn+1−∪l≤nQ′′
l

C(p).

Then ∪1≤l≤(n+1)Q′′
l ⊃ ∪1≤l≤(n+1)Ql .

It is worthwhile to point out that under our definition of equivalence classes,
it may happen that for p ∈ Qn − ∪l<nQ′′

l , its equivalence class C(p) may
contain points p′ whose associated horospheres don’t appear in the time inter-
val [n−1, n). This is our motivation to establish results like Lemmas 6.27 and
6.40.

In the following discussion of the points p in Q′′
n , if the definition of p

involves a boundary component of ∂�n−1, we will need to consider this
boundary component a lot of the times. For simplicity, we call the bound-
ary component used to define p ∈ Q′′

n the associated boundary component
of p.

Uniformity among equivalence classes.For p ∈ Qn−∪l<nQ′′
l , we show that,

up to some constant, the points in the equivalence class C(p) are “uniform".

Lemma 6.27 There exists C7 > 1 such that for any p ∈ Qn − ∪l<nQ′′
l and

any p′ ∈ C(p) we have

1/C7 ≤ h(p)/h(p′) ≤ C7.

It suffices to prove Lemma 6.27 for the case when #C(p) ≥ 2 and the asso-
ciated component of p in ∂�n−1 is some ∂ Jq . Write q = γ −1 pi with γ −1
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the representation of q. Let rp,m and Bp,m be defined as in (6.25) and (6.26)
respectively. We first show the following estimate.

Lemma 6.28 (Location of balls) There exists a constant C > 1 such that for
C(p) with the associated boundary component ∂ Jq and for p′ ∈ C(p)

B(giγ p
′, rp′,m) ⊂ B

(
gi xq ,C/η

) − B(gi xq , 1/(Cη)), (6.29)

gi Bp′,m ⊂ B(giq,Cηh(giq)) − B(giq, ηh(giq)/C). (6.30)

Proof By Lemma 6.13, we have

giγ ∂ Jq ⊂ B(gi xq , 1/(c4η)) − B(gi xq , 1/η).

We also have rp,n ≤ Cη by (6.22). Meanwhile, the construction of the equiv-
alence class C(p) implies that rp′,m = rp,m . Hence we obtain (6.29). We use
Lemma 5.7 to obtain (6.30) from (6.29). �

Proof of Lemma 6.27 We prove the following explicit estimate:

h(gi p
′) ≈ η2h(giq)h(giγ p

′). (6.31)

This together with Lemma 5.11 and h(giγ p′) = h(giγ p) will lead to
Lemma 6.27. Note that h(giγ p′) ≤ C , with C a constant depending on �.
We apply Lemma 5.4 to the horoball H = Hgiγ p′ based at giγ p′ and the
element g = giγ −1g−1

i . Notice that gi xq = (giγ −1g−1
i )−1∞ = g−1∞ and

h(gi xq) = h(g−1H∞). We obtain

h(gi xq)h(giγ p′)
d(gi xq , giγ p′)2 + h(giγ p′)2

≤ h(gi p
′)

= h(gH) ≤ h(gi xq)h(giγ p′)
(d(gi xq , giγ p′) − h(giγ p′)/2)2

.

Due to (5.2), we have h(gi xq) = h(g−1H∞) = h(gH∞) = h(giq). By (6.29),
we have d(giγ p′, gi xq) ≈ 1/η. Therefore, we obtain

η2h(giq)h(giγ p′)
C

≤ h(gi p
′) ≤ Cη2h(giq)h(giγ p

′).

�

Lemma 6.32 There exists C8 > 1 such that for any p ∈ Q′′

n and any m ≥ n,
the ball Bp,m satisfies

B(p,
√

ηh(p)hm/C8) ⊂ Bp,m ⊂ B(p,C8
√

ηh(p)hm).
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Proof It is enough to prove the case when the associated component of p in
∂�n−1 is some ∂ Jq . Write q = γ −1 pi with γ −1 the representation of q. By
definition,

Bp,m = (giγ )−1B(giγ p, rp,m)

with rp,m = 1
C6

√
hmh(giγ p)
ηh(gi q)

.

Consider the action of giγ −1g−1
i on B(giγ p, rp,m). By Lemma 5.7 and

(6.29), we have

|(giγ −1g−1
i )′x | ≈ η2h(giq) for any x ∈ B(giγ p, rp,m). (6.33)

Meanwhile, there exists a point p′ ∈ C(p) such that p′ satisfies Lemma 6.20.
We have h(giγ p) = h(giγ p′) and h(p) ≈ h(p′) (Lemma 6.27). As a result,
we obtain

h(giγ p) ≈ h(gi p)

η2h(giq)
. (6.34)

(6.33) and (6.34) yield there exists C > 1 such that

B(gi p,
√

ηh(gi p)hm/C) ⊂ gi Bp,m ⊂ B(gi p,C
√

ηh(gi p)hm).

We use Lemma 5.11 and 5.12 to finish the proof. �

Well-definedness of equivalence classes

Lemma 6.35 For any two equivalence classes C(p′) and C(p′′), they are
either the same or disjoint.

Proof Assume that these two equivalence classes are not the same and the
intersection is nonempty.

Case 1: Suppose one of these two equivalence classes just consists of one
point, say #C(p′) = 1 and #C(p′′) ≥ 2. We may assume that p′′ ∈ Q′

n
for some n. If the associated component of p′′ is ∂�0, then we are in Case
1 of the definition of equivalence classes. For p′ ∈ C(p′′), we obtain that
h(p′) = h(p′′) ∈ (hn, hn−1]/η. As #C(p′) = 1, we know that p′ is contained
in Ql − ∪i<l Q′′

i for some l < n, which contradicts h(p′) ∈ (hn, hn−1]/η.
In the sequel, we assume further that the associated component of p′′ is

some ∂ Jq . Write q = γ −1 pi . As p′ belongs to the equivalence class C(p′′),
it follows from the definition that
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B(giγ p
′, rp′,n) ∩ giγ ∂ Jq �= ∅, B(giγ p

′′, rp′′,n) ∩ giγ ∂ Jq �= ∅,

(6.36)

where rp′,n is defined as in (6.25) and equals rp′′,n .
The fact that C(p′) just consists of p′ implies p′ ∈ Ql − ∪i<l Q′′

i for some
l < n. Meanwhile, as ∂ Jq is the associated component of p′′, by Lemma 6.18
and 6.27, we have

h(q) ≥ h(p′′)/(Cη2) ≥ h(p′)/(Cη2) ≥ hl/(Cη3).

Hence ∂ Jq ⊂ ∂�l .
(6.36) allows us to apply Lemma 6.23 to p′, and we obtain

d(p′, ∂ Jq) ≤ hn <
√

ηhlh(p′).

So p′ ∈ Q′
l − ∪i<l Q′′

i . (6.36) yields

B(giγ p
′, rp′,l) ∩ giγ ∂ Jq �= ∅, B(giγ p

′′, rp′′,l) ∩ giγ ∂ Jq �= ∅.

As l < n, C(p′) contains p′′, which is a contradiction.
Case 2: Suppose that #C(p′), #C(p′′) ≥ 2. Without loss of generality, we

may assume that p′ ∈ Q′
m − ∪l<mQ′′

l and p′′ ∈ Q′
n − ∪l<nQ′′

l and m ≤ n.
Let p ∈ C(p′)∩C(p′′). Then it follows from the construction of equivalence

classes and Lemma 6.23 that there are boundary components ∂1 and ∂2 in
∂�n−1 such that

d(p, ∂1) ≤ hm−1, d(p, ∂2) ≤ hn−1.

On the one hand, as ∂1 and ∂2 are in ∂�n−1, if they are distinct, Lemma 6.17
states that their distance is greater than hn−1/(2η). On the other hand, using
Lemma 6.27, we obtain

hn/hm ≥ h(p′′)/(eh(p′)) = (h(p′′)/h(p))(h(p)/(eh(p′))) ≥ 1/(eC2
7).

Then

d(∂1, ∂2) ≤ hm−1 + hn−1 ≤ (1 + eC2
7)hn−1 < hn−1/(2η).

We conclude that ∂1 = ∂2.
There are two possibilities for ∂1. One possibility is that ∂1 is some ∂ Jq .

Write q = γ −1 pi with γ −1 the representation of q. As giγ p is related with
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giγ p′ and giγ p′′ by elements in (gi�g
−1
i )∞, we have γ1giγ p′′ = giγ p′ for

some γ1 ∈ (gi�g
−1
i )∞. As m ≤ n, we have

∅ �= B(gi p
′′, rp′′,n) ∩ giγ ∂ Jq ⊂ B(gi p

′′, rp′′,m) ∩ giγ ∂ Jq .

As a result, we have C(p′) = C(p′′). The other possibility is that ∂1 = ∂�0.
It follows directly from the construction of equivalence classes that

∅ �= B(p′′, rp′′,n) ∩ ∂�0 ⊂ B(p′′, rp′′,m) ∩ ∂�0.

Hence C(p′) = C(p′′). �


6.5 Auxiliary sets An and Bn in �n

We introduce auxiliary sets An and Bn in �n . By Lemma 6.35, the set Q′′
n

is disjoint with ∪1≤l≤(n−1)Q′′
n . For any p ∈ Q′′

n and any m ≥ n, we have
defined the ball Bp,m . Note that it follows from the construction of Q′′

n that if
#C(p) = 1, then the full ball Bp,n is contained in �n . For each n, we define

Bn = �n ∩
⋃

p∈∪1≤l≤nQ′′
l

Bp,n and An = �n − Bn.

In the followings, we will show how to use the set Bn to detect whether a
point is in the cusps of the manifold at time t = n or not.

Bn and cusps

Lemma 6.37 For x ∈ �̃0, if Gnx ∈ Cη, then there exists a parabolic fixed
point p with ηh(p) > hn such that

d(π(x), p) <
√

ηh(p)hn.

Proof By assumption, in the universal cover T1(Hd+1), the point Gnx is con-
tained in a horoball Hp(η). Hence hn < ηh(p). If hn ≤ ηh(p)/2, then we
can use Pythagorean’s theorem to conclude that d(π(x), p) ≤ √

ηh(p)hn (see
Figure 4). If hn ≥ ηh(p)/2, then d(π(x), p) ≤ ηh(p)/2 ≤ √

ηh(p)hn . �


Lemma 6.38 Fix c9 < min{1/C5, 1/C2
8}, where C5 and C8 are constants

given in Lemma 6.13 and Lemma 6.32 respectively. For any x ∈ �̃n, if Gnx ∈
Cc9η, then π(x) ∈ Bn.
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Fig. 4 Radius

Proof For x ∈ �̃n , if Gnx ∈ Cc9η, then it follows from Lemma 6.37 that there
exists a parabolic fixed point p with c9ηh(p) > hn such that

d(π(x), p) <
√
c9ηh(p)hn ≤ c9ηh(p). (6.39)

By the definition of Pn and Qn , this p must belong to
⋃

j<n(Pj ∪ Q j ). If p
is in some Pj , then by Lemma 6.13 we have

ηh(p)/C5 < d(π(x), p),

contradicting the assumption that c9 < 1/C5. So p must be in some Q j . We
use the construction of Bn , Lemma 6.32, that is Bn ⊃ B(p,

√
ηh(p)hn/C8),

and (6.39) to conclude that π(x) ∈ Bn . �

Remark If π(x) ∈ Bn , then the point Gnx is contained in CCη. So the set Gn B̃n
is almost the same as the set of points in the cusps at time t = n, i.e. Cη∩Gn�̃n .

Parabolic fixed points, Bn and different generations

Lemma 6.40 We have Pn ∩ (∪l≤nQ′′
l ) = ∅.

Proof If not, suppose p ∈ Pn is also contained in an equivalence class C(p′)
with p′ ∈ Qm − (∪1≤l≤m−1Q′′

l ) and m ≤ n. Due to #C(p) ≥ 2, by the
construction of equivalence classes, we must have p′ ∈ Q′

m . Let ∂ be the asso-
ciated boundary component of p′. Recall the construction of the equivalence
classes. If ∂ is ∂�0, it is easy to obtain d(p, ∂�0) < hm . If ∂ is some ∂ Jq ,
due to #C(p′) ≥ 2, we use Lemma 6.23 to deduce that d(p, Jq) ≤ hm . By
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Lemma 6.27, we have hm/hn ≤ h(p′)/h(p) ≤ C7. Hence by the definition
of Pn

d(p, ∂) ≥ hn−1/(4η) ≥ hm/(4eC7η) > hm,

which is a contradiction. �

Lemma 6.41 There exists a constant 0 < c10 < 1 such that for any p ∈
Pn+1 ∪ Q′′

n+1, we have

d(p, Bn) ≥ c10hn/η. (6.42)

Proof Let p ∈ Pn+1 ∪ Q′′
n+1 and Bq,n be a ball in Bn . By Lemma 6.40, p and

q are two different parabolic fixed points. We have

d(p, Bq,n) ≥ d(p, q) − C
√

ηh(q)hn (by Lemma 6.32)

≥ √
h(p)h(q) − C

√
ηh(q)hn (by Lemma 6.16)

= √
h(q)(

√
h(p) − C

√
ηhn)

≥ √
hn/Cη

(√
hn/(Ceη) − C

√
ηhn

)
≥ hn/(Cη).

�

Recall that Dn+1 = ∪p∈Pn+1 Jp and �n+1 = �n − Dn+1.

Lemma 6.43 If η < c10
C5C8

, then:
1. We have the followings:

Dn+1 ∩ Bn = ∅ and
(
∪p∈Q′′

n+1
Bp,n+1

)
∩ Bn = ∅,

An+1 = (An − Dn+1 − An ∩ Bn+1) ∪ (An+1 ∩ Bn), (6.44)

An ∩ Bn+1 = ∪p∈Q′′
n+1

(Bp,n+1 ∩ �n+1), An+1 ∩ Bn = Bn − Bn+1.

(6.45)

2. For p ∈ Q′′
n and m ≥ n, we have Bp,m ∩ �m = Bp,m ∩ �n.

Proof For p ∈ Pn+1, by Lemma 6.13, we have Jp ⊂ B(p,C5ηh(p)). Then
C5ηh(p) ≤ C5hn ≤ c10hn/η. By Lemma 6.41, we have Jp ∩ Bn = ∅. For
p ∈ Q′′

n+1, by Lemma 6.32, we have Bp,n+1 ⊂ B(p,C8
√

ηh(p)hn). Then
C8

√
ηh(p)hn ≤ C8hn < c10hn/η.

By Lemma 6.41, we have Bp,n+1 ∩ Bn = ∅.
The rest of the first statement can be obtained easily.
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For m > l ≥ n, by Dl+1 ∩ Bl = ∅ and Bp,m ∩ �l ⊂ Bl when p ∈ Q′′
n we

know that

Bp,m ∩ �l+1 = Bp,m ∩ (�l − Dl+1) = Bp,m ∩ �l,

which implies the second part of the statement. �


6.6 Energy exchange argument

We are ready to prove Proposition 6.15.

Lemma 6.46 There exists c11 > 0 such that

μ(Bn ∩ An+1) > c11μ(Bn). (6.47)

The definition of equivalence classes is mainly used in this lemma. The idea
is that the left hand side of (6.47) can be expressed as a sum over equivalence
classes. Over one equivalence class, we obtain a full ball whose measure we
are able to estimate (Fig. 5).

Proof of Lemma 6.46 We claim that for any distinct p, p′ ∈ ∪1≤l≤nQ′′
l , we

have Bp,n ∩ Bp′,n = ∅. The first equation in Lemma 6.43 verifies the case
when p ∈ Q′′

l and p′ ∈ Q′′
j with l �= j .

When p, p′ ∈ Q′′
l , using Lemma 6.16, and 6.32, we have

d(Bp,l , Bp′,l) ≥ d(p, p′) − C
√

ηh(p)hl − C
√

ηh(p′)hl
≥ √

h(p)h(p′) − C
√

ηh(p)hl − C
√

ηh(p′)hl
≥ hl/(Cη) − 2Chl−1 > 0,

showing the claim.
So μ(Bn ∩ An+1) can be divided into the sum over p ∈ ∪1≤l≤nQ′′

l . Using
Lemma 6.35, we can further group the sum into equivalence classes. Due to
(6.45), μ(Bn ∩ An+1) = μ(Bn − Bn+1). Then the proof of (6.47) is reduced
to proving that there exists c11 > 0 such that for each equivalence class C(p),
we have

∑

p′∈C(p)

μ((Bp′,n − Bp′,n+1) ∩ �n) ≥ c11
∑

p′∈C(p)

μ(Bp′,n ∩ �n).

We first consider the equivalence classes defined in Case 1 and Case 3 in
page 28. Then by the definition of equivalence class and Lemma 5.18, we
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obtain

∑
p′∈C(p) μ((Bp′,n − Bp′,n+1) ∩ �n)

∑
p′∈C(p) μ(Bp′,n ∩ �n)

≥ μ(Bp,n − Bp,n+1)

Cμ(Bp,n)
= μ(B(p, rp,n) − B(p, rp,n+1))

Cμ(B(p, rp,n))
≥ c

C
,

where the last inequality follows from Lemma 5.21 and rp,n = √
ηhmh p 


ηh(p).
Next we consider the equivalence classes defined inCase 2 (Fig. 5). Suppose

the associated boundary component of p is ∂ Jq with q = γ −1 pi and γ −1 is
the representation of q. We first assume that pi = ∞. By Lemma 5.17 and
(6.30) for any Borel subset E ⊂ Bp,n , we have

hδ
qμ(γ E)/C ≤ μ(E) ≤ Chδ

qμ(γ E).

giγ

p
(giγ)−1γ1p

′

p′ γ1p
′

B1 ∩ giγJc
q

γ1(B1) ∩ giγJc
q

(giγ)−1(B1) ∩ Jc
q

(giγ)−1(γ1(B1)) ∩ Jc
q

q

Fig. 5 Pairing partial balls: q = γ−1 pi , p′ = giγ p, B1 = B(giγ p, r̃ p,m/C6), γ1 ∈
(gi�g

−1
i )∞
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We have
∑

p′∈C(p) μ((Bp′,n − Bp′,n+1) ∩ �n)
∑

p′∈C(p) μ(Bp′,n ∩ �n)

≥
∑

p′∈C(p) μ((B(γ p′, rp′,n) − B(γ p′, rp′,n+1)) ∩ γ J cq )

C
∑

p′∈C(p) μ(B(γ p′, rp′,n) ∩ γ J cq )
. (6.48)

For each p′ ∈ C(p), we can write p′ = γ −1γ1γ p with γ1 ∈ �∞. We have

μ(B(γ p′, rp′,n) ∩ γ J cq ) = μ(γ1B(γ p, rp,n) ∩ γ J cq )

≈ μ(B(γ p, rp,n) ∩ γ −1
1 γ J cq ),

where we use Lemma 5.18 and (6.29) to compute |γ1(x)| and |x | for x in
B(γ p, rp,n). Summing over p′ ∈ C(p), we can get a full ball. Similarly, we
have

μ((B(γ p′, rp′,n) − B(γ p′, rp′,n+1)) ∩ γ J cq )

≈ μ((B(γ p, rp,n) − B(γ p, rp,n+1)) ∩ γ −1
1 γ J cq ).

We use these two observations and Lemma 5.21, rp,n 
 ηh(γ p) (6.22) to
conclude

(6.48) ≥μ(B(γ p, rp,n) − B(γ p, rp,n+1))

Cμ(B(γ p, rp,n))
≥ c

C
.

For general pi , let gi pi = ∞ and �i = gi�g
−1
i . Using (5.13), we obtain

∑
p′∈C(p) μ((Bp′,n − Bp′,n+1) ∩ �n)

∑
p′∈C(p) μ(Bp′,n ∩ �n)

≈
∑

p′∈C(p) μ�i (gi (Bp′,n − Bp′,n+1) ∩ gi�n)
∑

p′∈C(p) μ�i (gi Bp′,n ∩ gi�n)
. (6.49)

This fraction can be estimated the same way as we estimate (6.48). So

(6.49) ≥ c/C.

�

Let C12 = 2C5C3 + 4C8, where C3, C5 and C8 are constants given by

Proposition 5.14, Lemma 6.13 and Lemma 6.32 respectively. Let

�′
n = {x ∈ �n : d(x, ∂�n) ≤ C12hn}.
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This is the set of points with distance less than C12hn to the boundary of �n .

Lemma 6.50 (Boundary estimate) There exists c13 > 0 depending on C12η

such that

μ(�′
n) ≤ c13μ(�n)

and c13 tends to 0 as C12η tends to 0.

Proof The boundary ∂�n consists of ∂�0 and ∂ Jp with p ∈ ∪1≤l≤n Pl . For
any p ∈ ∪1≤l≤n Pl , write p = γ pi with γ ∈ � the representation of p and
�i = gi�g

−1
i . Recall the definitions (5.28) and (6.8). Note that hn/(4η) ≤

h(p). It follows from Lemmas 5.11 and 5.12 that there exists C > 1 such that
hn/(Cη) < h(gi p) and

gi NC12hn (∂ Jp) ⊂ NCC12hn (∂ Ji,p), Nhn/(Cη)(∂ Ji,p) ⊂ gi Nhn/(4η)(∂ Jp),

where Ji,p is defined as in (6.11). It follows from (5.13), Lemma 5.29 and 6.9
that there exists c > 0 such that

μ(�′
n) = μ(NC12hn (∂�0)) +

∑

p∈∪1≤l≤n Pl

μ(NC12hn (∂ Jp))

≤ cμ(Nhn/(4η)(∂�0)) + C ′ ∑

p∈∪1≤l≤n Pl

μ�i (NCC12hn (∂ Ji,p))

≤ cμ(Nhn/(4η)(∂�0)) + cC ′ ∑

p∈∪1≤l≤n Pl

μ�i (Nhn/(Cη)(∂ Ji,p))

≤ cμ(Nhn/(4η)(∂�0)) + cC ′2 ∑

p∈∪1≤l≤n Pl

μ(Nhn/(4η)(∂ Jp))

≤ cC ′2μ(�n),

where the last inequality is due to Lemma 6.17 and C ′ = maxi eδd(o,gi o). �

Lemma 6.51 There exists 0 < c14 < 1 such that

μ(An ∩ (Dn+1 ∪ Bn+1)) ≤ c14μ(An) + μ(�′
n).

Proof By Lemma 6.43, we have

An ∩ Bn+1 ∩ (�n − �′
n) ⊂

⋃

p∈Q′′
n+1

Bp,n+1.
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We consider the points p ∈ Q′′
n+1 such that Bp,n+1 intersects the set on the

left. Denote the set of such points by Q′′′
n+1. By Lemma 6.32, we have

Bp,n+1 ⊂ B(p,C8
√

ηh(p)hn+1) ⊂ B(p,C8hn).

Then its distance to ∂�n is greater than (C12 − 2C8)hn ≥ C12hn/2. So
Q′′′

n+1 must be a subset of points in Case 3 in page 28, and Bp,n+1 =
B(p,

√
ηh(p)hn+1) ⊂ B(p, hn).

For p ∈ Pn+1, by Lemma 6.13, we have Jp ⊂ B(p,C5ηh(p)) ⊂
B(p,C5hn).
By (6.42), for p ∈ Pn+1 ∪ Q′′′

n+1

d(p, Bn) ≥ c10hn/η ≥ C12hn/2. (6.52)

Hence

B(p,C5hn) ⊂ B(p,C12hn/2) ⊂ An.

Then by doubling property in Proposition 5.14

μ(B(p,C5hn)) ≤ c14μ(B(p,C12hn/2)).

By Lemma 6.16, the points in the set Pn+1 ∪ Q′′′
n+1 are of distance hn+1/η

apart from each other. Hence the balls B(p,C12hn/2) are disjoint. Adding
them together, we obtain

μ(An ∩ (Dn+1 ∪ Bn+1) − �′
n) ≤

∑

p∈Pn+1∪Q′′′
n+1

μ(B(p,C5hn))

≤ c14
∑

p∈Pn+1∪Q′′′
n+1

μ(B(p,C12hn/2)) ≤ c14μ(An).

�

Set A′

n = An − �′
n which is the set of points in An with distance at least

C12hn to the boundary ∂�n .

Lemma 6.53 There exist N ∈ N and c15 > 0 depending on η such that

μ(∪N
l=1Dn+l) ≥ c15μ(A′

n).

Let Ãn be the subset of �̃n such that π( Ãn) = An . The key point of the
proof is thatwe can use the recurrence property of the geodesic flowonGn( Ãn),
since Lemma 6.38 tells us that Gn( Ãn) stays in a compact subset. Recall that
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we introduce some notations. We assumed that there are j cusps in M and
{pi }1≤i≤ j is a complete set of inequivalent parabolic fixed points. We used the
notation Hpi to denote the horoball based at pi . Now let Hs

pi ⊂ T1(Hd+1) be
the strong stable horosphere, that is,

Hs
pi := {x ∈ T1(Hpi ) : the basepoint of x is at ∂Hpi andπ(x) = pi }.

By abusing the notation, we also use Hs
pi to denote its image in the quotient

space T1(M).
For every x ∈ T1(M) and ε > 0, setWu(x, ε) to be the local strong unstable

manifold at x , that is,

Wu(x, ε) := {y ∈ T1(M) : lim
t→−∞ d(Gt x,Gt y) = 0, du(y, x) ≤ ε},

where d(·, ·) is theRiemannianmetric onT1(M) and du(·, ·) is theRiemannian
metric restricted on the strong unstable manifold.

Denote by W in T1(M) the non-wandering set of the geodesic flow.

Lemma 6.54 Let K be any compact subset in W. Then there exists U0 > 0
such that for every x in K and every Hs

pi in T1(M), there exists a time t ∈
[0,U0] such that Gt (Wu(x, 1)) meets Hs

pi .

Proof Let ε < 1/10 and consider Z1 = ∪x∈∂Hs
pi
Wu(x, ε) and Z2 =

∪x∈∂Hs
pi
Wu(x, 5ε) in T1(M). Then Z1 is a transversal section to the geodesic

flow. By ergodicity of geodesic flow on non-wandering set W , there exists a
point y such that its negative time orbit is dense and there exists t0 ≥ 0 such
that Gt0 y ∈ Z1. We can cover the compact set K with a finite number of balls
of radius ε. There exists t1 > 0 such that G[−t1,0]y intersects every ball.

Fix any x in K . There exists x ′ ∈ Wu(x, ε) and −s ∈ [−t1, 0] such that
d(x ′,G−s y) ≤ 2ε and G−s y are in the same strong stable manifold (that is to
say, limt→∞ d(Gt x ′,Gt (G−s y)) = 0). Therefore

d(Gs+t0x
′,Gt0 y) ≤ 2ε.

Using Gt0 y ∈ Z1 and local product structure, we have Gs+t0x
′ ∈ Gs1Z2 for

some s1 ∈ [−ε, ε]. Due to the definition of Z2, we can find x ′′ ∈ Wu(x, 6ε)
such that Gs+t−s1x

′′ ∈ Hs
pi . �


The following lemma is a straightforward corollary of Lemma 6.54. Recall
that c9 > 0 is the constant given in Lemma 6.38. Let Kc9η = W − �\Cc9η.
The base of non-wandering set in M is the convex core C(M) and the base of
�\Cc9η is a union of proper horocusps. By Definition 2.2, we know that Kc9η
is compact.
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Lemma 6.55 LetU0 be the constant in Lemma 6.54 with K = Kc9η. For every
x in �0 ∩ 
� and n ∈ N, if Gn x̃ is in Kc9η, where x̃ is the point in �̃0 such
that π(x̃) = x, then the ball B(x, hn) contains a parabolic fixed point with
height in hn[e−U0, 1].
Proof Let B̃ be the set in �̃0 such that π(B̃) = B(x, hn). We have Gn B̃ =
Wu(Gn x̃, 1). AsGn x̃ ∈ Kc9η, by Lemma 6.54, there exists t ∈ [0,U0] such that
GtWu(Gn x̃, 1) intersects some Hs

pi . Hence in the universal cover T1(Hd+1),
the unstable leaf GtWu(Gn x̃, 1) is tangent to a horoball. Let q be the basepoint
of the horoball. Then q is in B(x, hn). �

Proof of Lemma 6.53 Set N = U0 + 2�− log η� + 2. We claim that: There
exists C ′ > 1 depending on η such that ∪1≤l≤N Pn+l is a C ′hn dense set
in A′

n ∩ 
� . That is to say, for every x ∈ A′
n ∩ 
� , there exists some p ∈⋃

1≤l≤N Pn+l such that d(x, p) ≤ C ′hn .
Let k = �− log η�. Fix any point x ∈ A′

n ∩ 
� . We consider the position
of x in �n+k .

Case 1 Suppose x /∈ �n+k . Then x ∈ Jp for some p ∈ ∪1≤l≤k Pn+l . So
d(x, p) ≤ C5ηh(p) ≤ C5hn .

Case 2 Suppose x ∈ �n+k and d(x, ∂�n+k) < 3hn+k/η. As x /∈ �′
n , we

have d(x, ∂�n) ≥ C12hn . Meanwhile, we have 3hn+k/η < C12hn .
Consequently, the connected component in ∂�n+k closest to x is
some ∂ Jp with p ∈ ∪1≤l≤k Pn+l . Hence

d(x, p) ≤ d(x, ∂ Jp) + d(∂ Jp, p) ≤ 3hn+k/η + C5ηh(p) ≤ Chn.

Case 3 Suppose x ∈ An+k ∩ 
� and d(x, ∂�n+k) > 2hn+k/η. By
Lemma 6.38, Gn+k x̃ ∈ Kc9η. It then follows from Lemma 6.55
that B(x, hn+k) contains a parabolic fixed point p with height in
hn+k[e−U0, 1]. Let j = �− log(ηh(p))�, then j ∈ n+2k+[0,U0+1].
Let’s consider the position of p.

– Suppose p ∈ Pj+1. Then d(x, p) ≤ hn+k .
– Suppose p /∈ Pj+1 and p /∈ � j . Note that the conditions on x and

p ∈ B(x, hn+k) imply that p ∈ �n+k . So there exists some q ∈
∪ j−n−k
l=1 Pn+k+ j such that p ∈ Jq . We obtain

d(x, q) ≤ d(x, p) + d(p, q) ≤ hn+k + C5ηh(q) ≤ Chn+k .

– Suppose p /∈ Pj+1 and p ∈ � j . Because ηh(p) ∈ (h j+1, h j ], we must
have p ∈ Q j+1. By the definition of Q j+1, we have d(p, ∂� j ) ≤ h j/η.
Observe that

d(p, ∂�n+k) ≥ d(x, ∂�n+k) − d(x, p) > 2hn+k/η − hn+k > h j/η.

123



Exponential mixing of geodesic flows 985

So there exists q ∈ ∪ j−n−k
l=1 Pn+k+l such that d(p, Jq,η) ≤ h j/η. This

implies

d(x, q) ≤ d(x, p) + d(p, q) ≤ hn+k + h j/η + C5ηh(q) ≤ Chn+k .

Case 4 Suppose x ∈ Bn+k and d(x, ∂�n+k) ≥ 3hn+k/η. As x ∈ An , we
have x ∈ Bn+k − Bn . So there exists p ∈ ∪1≤l≤k Q′′

n+l such that
x ∈ Bp,n+k . By Lemma 6.32, we have

Bp,n+k ⊂ B(p,C8
√

ηh(p)hn+k) ⊂ B(p,C8
√
hnhn+k).

Since hk ≥ η, for any y ∈ Bp,n+k , using Lemma 6.32, we have

d(y, ∂�n+k)≥d(x, ∂�n+k) − d(x, y)≥3hn+k/η−2C8
√
hnhn+k ≥ 2hn+k/η.

So the full ball Bp,n+k is contained in �n+k . By a similar argument
as in the proof of Lemma 6.46, we have μ(Bp,n+k − Bp,n+k+1) > 0.
We can find a point y ∈ 
� ∩ (Bp,n+k − Bp,n+k+1). By (6.45), we
know that in fact y is in An+k+1 ∩ 
� .

– If d(y, ∂�n+k+1) > 2hn+k+1/η, the point y belongs to Case 3.
– Otherwise, d(y, ∂�n+k+1) ≤ 2hn+k+1/η. But d(y, ∂�n+k) >

2hn+k/η, there exists Jq with q ∈ Pn+k+1 such that d(y, ∂ Jq) ≤
2hn+k+1/η.
It follows that there exists q ∈ ∪1≤l≤N Pn+l such that

d(x, q) ≤ d(x, y) + d(y, q) ≤ 2C8
√
hnhn+k + d(y, q) ≤ Chn.

Finally, by Lemma 6.13 we know that for p ∈ ∪1≤l≤N Pn+l , the balls
B(p, ηh(p)/C5) are disjoint. Using the claim and doubling property (Propo-
sition 5.14),

μ(∪N
l=1Dn+l) ≥

∑

p∈∪1≤l≤N Pn+l

μ(B(p, ηh(p)/C5))

≥ c15
∑

p∈∪1≤l≤N Pn+l

μ(B(p,C ′hn)) ≥ c15μ(A′
n ∩ 
�) = c15μ(A′

n),

finishing the proof. �

Proof of Proposition 6.15 We will prove the following statement and Propo-
sition 6.15 is a direct consequence of this: for η sufficiently small, there exist
N and c0 > 0 depending on η such that

μ(∪N
l=1Dn+l) ≥ c0μ(�n).
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Recall that c11, c13 and c14 are the constants given in Lemma 6.46, 6.50
and 6.51 respectively. We can take c13 small enough such that c13 < c11 and
c13 + c14 < 1. Write tn = μ(An)

μ(Bn)
, which makes sense even if μ(Bn) = 0. Then

by Lemma 6.43, 6.46, 6.51, and 6.50

tn+1 = μ(An+1)

μ(Bn+1)
= μ(An) + μ(Bn ∩ An+1) − μ(An ∩ (Dn+1 ∪ Bn+1))

μ(Bn) − μ(Bn ∩ An+1) + μ(An ∩ Bn+1)

≥ μ(An) + c11μ(Bn) − (c14μ(An) + c13μ(�n))

μ(Bn) − c11μ(Bn) + (c14μ(An) + c13μ(�n))

= tn − (c14 + c13)tn + (c11 − c13)

1 + (c14 + c13)tn − (c11 − c13)
= f (tn).

Here f is fractional function and of the form f (t) = a1t+a2
b1t+b2

with ai , bi > 0,
which is a monotone function. Hence

inf
t∈R+ f (t) ≥ min

{
a1
b1

,
a2
b2

}

= min

{
1 − (c14 + c13)

c14 + c13
,

c11 − c13
1 − (c11 − c13)

}

= q(c13).

By tn > 0, there is a uniform lower bound of tn for all n ∈ N.
Then use Lemma 6.53 to obtain the desired statement:

μ(∪N
l=1Dn+l) ≥ c15μ(A′

n) ≥ c15(μ(An) − μ(�′
n))

≥ c15(μ(An) − c13μ(�n)) = c15

(
tn

1 + tn
− c13

)

μ(�n).

If c13 is small enough, then tn
1+tn

≥ q(c13)
1+q(c13)

> c13. Then we can fix a small η
in Lemma 6.50 such that c13 satisfies these restriction. �


6.7 Exponential tail

For one cusp case, we have described how to construct the countable collection
of disjoint open subsets in �0 and the expanding map in Sect. 6.2. When there
are multi-cusps, the coding is constructed in two steps and we describe the
first step here and finish the rest in Sect. 6.8.

Suppose that there are j cusps. Recall the regions �pi introduced in Sect.
5.2.We claim: there is a countable collection of disjoint open subsets
i,k�pi ,k
in �(= 
i�pi ) and an expanding map T0 : 
i,k�pi ,k → � such that

• ∑
i,k μ(�pi ,k) = μ(�).
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• For each �pi ,k , it is a subset in �pi . And there exists an element γ0 ∈ �

such that �pi ,k = γ0�pl for some 1 ≤ l ≤ j and T |�pi ,k
= γ −1

0 .

Denote by H0 the set of inverse branches of T0.
The construction is as follows: for each �pi , we apply the construction in

Sect. 6.2 to the group �i = gi�g
−1
i and the region gi�pi = �′

pi . In partic-
ular, we attain a countable collection of disjoint open sets �′

pi ,k
. Moreover,

Proposition 6.15 holds for �′
pi . We set �pi ,k = g−1

i �′
pi ,k

.
For an element γ0 inH0, if γ0 maps �pl into some �pi ,k , then we define

|γ ′
0|∞ = sup

x∈�pl

|γ ′
0(x)|. (6.56)

The infinity norm of the derivative of a composition map is defined similarly.
We prove the following.

Lemma 6.57 There exists ε > 0 such that

∑

γ0∈H0

|γ ′
0|δ−ε∞ < ∞. (6.58)

For one cusp case, this gives the exponential tail (4.2). When there are multi-
cusps, (6.58) can be understood as that the map T0 satisfies the exponential
tail property.

We start the proof of Lemma 6.57 with the following result. Denote by
∪n Pn the set of “good parabolic fixed points" which appear in the first step of
the construction of the coding for multi-cusp case and are defined similarly as
(6.14).

Lemma 6.59 There exists C > 0 such that for any parabolic fixed point
p = γ pi ∈ �0 ∩ ∪n Pn, we have for any ε ∈ (0, δ − k/2),

∑

γ1∈Np

|(γ γ1)
′|δ−ε∞ ≤ C(2δ − k − 2ε)−1h(p)−εη−2εμ(Jp),

where k is the rank of the parabolic fixed point p and Np is defined in (6.4).

Proof We first consider the case when p = γ∞. By Lemma 5.7, we have for
every x ∈ �0 and every γ1 ∈ Np,

|(γ γ1)
′(x)| = |γ ′(γ1x)| = h(p)

d(γ1x, xγ )2
.
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As ∪γ1∈Npγ1�0 ⊂ B(xγ , 1/η)c where xγ = γ −1∞, we use general polar
coordinates to obtain

∑

γ1∈Np

|(γ γ1)
′|δ−ε∞ 
 h(p)δ−ε

∑

γ1∈Np

1

d(γ1�0, xγ )2δ−2ε 
 h(p)δ−εη2δ−2ε−k

2δ − 2ε − k
.

(6.60)

Meanwhile, by the quasi-invariance of PSmeasure and (2.1), we have for every
γ1 ∈ Np

μ(γ γ1�0) =
∫

x∈�0

|(γ γ1)
′(x)|δ

Sndμ(x) ≈
∫

x∈�0

|(γ γ1)
′(x)|δdμ(x)

≈ μ(�0)h(p)δ

d(γ1�0, xγ )2δ
.

Therefore,

μ(∪γ1∈Npγ γ1�0) � μ(�0)h(p)δ
∑

γ1∈Np

1

d(γ1�0, xγ )2δ
� h(p)δη2δ−k

2δ − k
.

(6.61)

Hence (6.60) and (6.61) together yield the statement for the case when p =
γ∞.

For the general case when p = γ pi with gi pi = ∞. Note that for every
γ1 ∈ Np, we have γ γ1 = g−1

i (giγ γ1g
−1
i )gi . Hence by Lemma 5.11 and 5.12

h(gi p) ≈ h(p), |(γ γ1)
′|∞ = sup

x∈�pi

|(γ γ1)
′(x)|

≈ sup
x∈gi�pi

|(giγ γ1g
−1
i )′(x)| = |(giγ γ1g

−1
i )′|∞.

Write �i = gi�g
−1
i . Using (5.13), we obtain

μ(γ γ1�pi ) ≈ μ�i (giγ γ1g
−1
i (gi�pi )).

We have gi xp = (giγ g
−1
i )−1∞ ∈ gi�pi . Because gi p = giγ g

−1
i ∞ and

giγ1g
−1
i (gi�pi ) ⊂ B(gi xp, 1/η)c for any γ1 ∈ Np, we are able to compare

∑
γ1

|(giγ γ1g
−1
i )′|δ−ε∞ with μ�i (∪γ1giγ γ1g

−1
i (gi�pi )) as above and this will

prove Lemma 6.59 for the general case. �
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Proof of Lemma 6.57 We only need to sum the inverse branches inH0 whose
images are in �0. For a general inverse branches whose image is in �p j ,

we consider the group g j�g
−1
j and the inequality can be proved in the same

fashion. By Lemma 6.59 and Proposition 6.15, for any sufficiently small ε ∈
(0, 1),

∑

n∈N

∑

p=γ pi∈Pn∩�0

∑

γ1∈Np

|(γ γ1)
′|δ−ε∞ 


∑

n∈N

∑

p∈Pn
μ(Jp)h(p)−εη−2ε

≤ η−2ε
∑

n∈N

μ(�n)e
ε(n+1)

≤ η−2ε
∑

n≥N

(1 − ε0)
neε(n+1) + η−2ε

∑

n<N

μ(�n)e
ε(n+1).

By choosing an ε small enough such that (1 − ε0)eε < 1, the above sum is
finite. �


6.8 Coding for multi-cusps

We caution the readers that the symbol γ will be used to denote an inverse
branch in this section.

In Sect. 6.7, we have found a countable collection of disjoint open subsets

i,k�pi ,k in�(= 
i�pi ) and an expandingmap T0 : 
i,k�pi ,k → �.Without
loss of generality, we may suppose that T0 is irreducible, which means there
doesn’t exist a nonempty subset of I1 � {1, . . . , j} such that

T0(∪i∈I1�pi ) ⊂ ∪i∈I1�pi .

Otherwise, we can consider the restriction of T0 to the union ∪i∈I1�pi .
For x ∈ �0 = �p1 , define the first return time

n(x) = inf{n ∈ N : T n
0 (x) ∈ �p1}.

Set n(x) = ∞ if T n
0 (x) doesn’t come back to �p1 for all n ∈ N or T n

0 (x) lies
outside of the domain of definition of T0 for some n.

The expanding map T in Proposition 4.1 is defined by

T (x) = T n(x)
0 (x) for x such that n(x) < ∞.

By the definition of T0, we have

• either T (x) = γ −1x with γ ∈ H0 and γ : �p1 → �p1 ,
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• or T (x) = γ −1
n(x) · · · γ −1

1 x with γl ∈ H0 for l = 1, . . . , n(x), where γl
maps �pk(l+1) to �pk(l) with pk(1) = pk(n(x)+1) = p1 and pk(l) �= p1 for
1 < l ≤ n(x).

The string γ −1
n(x) · · · γ −1

1 gives an open subset γ1 · · · γn(x)�p1 ⊂ �p1 . They
consist of open subsets described in Proposition 4.1.

To prove (1), (3) and (4) in Proposition 4.1, we start with a preliminary
version of Lemma 4.8. Define

Ui = g−1
i B(gi�pi , 1/(2η))c for 1 ≤ i ≤ j.

Lemma 6.62 If γ is an inverse branch in H0 which maps �pi into �pl , then
γ −1Ul ⊂ Ui .

Proof Due to the construction, we know that γ pi is a parabolic fixed point
inside �pl . The definition of Ul implies

glUl ⊂ B(glγ pi , 1/(2η))c.

Because the maps gi ’s are bi-Lipschitz (Lemma 5.12), we obtain

giUl ⊂ B(giγ pi , 1)
c = B(giγ g

−1
i ∞, 1)c. (6.63)

By Lemma 5.7, we have

(giγ g
−1
i )−1B(giγ g

−1
i ∞, 1)c = B((giγ g

−1
i )−1∞, h(giγ pi ))

⊆ B((giγ g
−1
i )−1∞, 1). (6.64)

By (6.6), we obtain

d(gi�pi , (giγ g
−1
i )−1∞) ≥ 1/η. (6.65)

Combining (6.63)-(6.65) together, we conclude that

giγ
−1Ul ⊂ B((giγ g

−1
i )−1∞, 1) ⊂ B(gi�pi , 1/(2η))c.

�

We prove Proposition 4.1 (1) and (4.2). The proof is to consider an induced

map and reduce the number of cusps by 1 at a time.
Let q = p j . Denote∪1≤i≤ j−1�pi = �−�q by X1 and for x ∈ X1, define

n1(x) = inf{n ∈ N : T n
0 (x) ∈ X1}.
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The map T1 is given by T1(x) = T n1(x)
0 (x) for x such that n1(x) < ∞. Since

T0 is irreducible, this induced system is also irreducible on X1. Write

Hq := the set of the inverse branches of T0 which are from �q to �q ,

Hp := the set of the inverse branches of T0 which are from X1 to X1,

Hpq := the set of the inverse branches of T0 which are from X1 to �q ,

Hqp := the set of the inverse branches of T0 which are from �q to X1.

As T1 is a composition of multiples of T0’s, we have

• either T1(x) = γ −1x with γ ∈ Hp,
• or T1(x) = γ −1

n1(x)
· · · γ −1

1 x with γ1 ∈ Hqp, γn1(x) ∈ Hpq and γl ∈ Hq for
l = 2, . . . , n1(x) − 1.

The string γ1 · · · γn1(x) is an inverse branch of T1. Set

H1 := the set of all inverse branches of T1,

Hn
q := {γ1 · · · γn : γi ∈ Hq for 1 ≤ i ≤ n} for every n ∈ N.

Lemma 6.66 There exists C > 0 such that for every n ∈ N and for every
γ ∈ Hn

q , we have

|γ ′(x)| ≥ |γ ′|∞/C for any x ∈ �q .

Proof We first notice that |γ ′(x)| ≈ |(g jγ g
−1
j )′(g j x)|. Write p = γ p j . By

Lemma 5.7, we have

|(g jγ g
−1
j )′(y)| = h(g j p)

d(y, g jγ −1 p j )2
.

By (6.6), we have d(g j�q , g jγ
−1 p j ) = d(g j�q , (g jγ g

−1
j )−1∞) > 1/(2η).

Then for every y ∈ g j�p j = g j�q , the distance d(y, g jγ
−1 p j ) ∈

[d(g j�q , g jγ
−1 p j ) ± diam(g j�q)], which implies the lemma. �


Lemma 6.67 There exist C > 0, ε > 0 such that for every l ∈ N

∑

1≤k≤l, γk∈Hq

|(γ1 · · · γl)′|δ∞ < C(1 − ε)l .
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Proof Claim: there exists ε > 0 such that for every n ∈ N and for any h ∈ Hn
q ,

we have
∑

γ∈Hq

μ(hγ�q) ≤ (1 − ε)μ(h�q). (6.68)

Proof of the claim: for a measurable set E ⊂ �q , by Lemma 6.66

μ(hE) =
∫

E
|h′(x)|δ

Sd
dμ(x) ≈

∫

E
|h′(x)|δdμ(x) ∈ μ(E)|h′|δ∞[1/C, 1].

(6.69)

Write F = ∪γ∈Hqγ�q . Since T0 is irreducible, we have μ(F) < μ(�q). By
(6.69)

∑

γ∈Hq

μ(hγ�q) = μ(hF) ≤ |h′|δ∞μ(F)

= μ(F)

μ(�q − F)
|h′|δ∞μ(�q − F) ≤ C ′μ(h(�q − F)).

So we have

(1 + 1/C ′)
∑

γ∈Hq

μ(hγ�q) ≤ μ(hF) + μ(h(�q − F)) ≤ μ(h�q).

Using (6.68), Lemma 6.66 and (6.69) with E = �q , we obtain

∑

1≤k≤l, γk∈Hq

|(γ1 · · · γl)′|δ∞ ≤ C
∑

1≤k≤l, γk∈Hq

μ(γ1 · · · γl�q)

≤ C
∑

1≤k≤l−1, γk∈Hq

(1 − ε)μ(γ1 · · · γl−1�q) ≤ C(1 − ε)l .

�

Proof of Proposition 4.1 (1) and (4.2) We first use Proposition 6.15, (6.58),
Lemma 6.66 and 6.67 to prove that for the expanding map T1, we have

1. There exists ε1 > 0 such that

∑

γ∈H1

|γ ′|δ−ε1∞ < ∞, (6.70)

where |γ ′|∞ is defined as in (6.56).
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2. There exists ε > 0 such that for every n ∈ N,

μ({x ∈ X1 : n1(x) > n + 1}) 
 (1 − ε)n. (6.71)

The second statement in particular implies that the map T1 is defined almost
everywhere in � − �q .

Due to Lemma 6.67, we can find a large l0 such that
∑

1≤k≤l0, γk∈Hq

|(γ1 · · · γl0)′|δ∞ < 1. Then using (6.58) and submultiplicativity |(γ1γ2)′|∞ ≤
|(γ1)′|∞|(γ2)′|∞, we obtain

∑

1≤k≤l0, γk∈Hq

|(γ1 · · · γl0)′|δ−ε∞ < ∞,

where ε > 0 is the constant given by (6.58). Hence we can find 0 < ε1 < ε

small such that

∑

1≤k≤l0, γk∈Hq

|(γ1 · · · γl0)′|δ−ε1∞ < 1.

Using submultiplicativity, we obtain constants C > 0, ρ < 1 such that for
l ∈ N

∑

1≤k≤l, γk∈Hq

|(γ1 · · · γl)′|δ−ε1∞ ≤ Cρl . (6.72)

Denote
∑

γ∈H1
|γ ′|δ−ε1∞ by Eq . For every inverse branch of T1, it can be

uniquely decomposed as γ0γ1 · · · γlγl+1 with γl+1 ∈ Hpq , γi ∈ Hq with
i = 1, · · · l and γ0 ∈ Hqp. Using this expression and submultiplicativity, we
obtain

Eq ≤
∑

γ∈Hp

|γ ′|δ−ε1∞ +
∑

l≥1

⎛

⎝
∑

γ0∈Hqp

|γ ′
0|δ−ε1∞

⎞

⎠

⎛

⎝
∑

γl+1∈Hpq

|γ ′
l+1|δ−ε1∞

⎞

⎠

⎛

⎝
∑

γi∈Hq ,1≤i≤l

|(γ1 · · · γl)′|δ−ε1∞

⎞

⎠ . (6.73)

Therefore Ep is also finite due to (6.73), (6.72) and (6.58).
The set of x such that T n

0 (x) is outside of domain of definition of T0 for
some n has zero PSmeasure by Proposition 6.15.We only need to consider the
set of x such that T n

0 (x) is in the domain of definition for every n. If x ∈ X1
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with n1(x) > n + 1, then x must be in γ0γ1 · · · γn�q with γ0 ∈ Hqp and
γi ∈ Hq for 1 ≤ i ≤ n. Therefore Lemma 6.67 implies

μ({x ∈ X1 : n1(x) > n + 1}) ≤
∑

γ0∈Hqp

∑

γi∈Hq ,1≤i≤n

μ(γ0γ1 · · · γn�q)

≤
⎛

⎝
∑

γ0∈Hqp

|γ ′
0|δ∞

⎞

⎠

⎛

⎝
∑

γi∈Hq ,1≤i≤n

|(γ1 · · · γn)′|δ∞
⎞

⎠ 
 (1 − ε)n.

We keep reducing the number of cusps by considering the set X2 := X1 −
�p j−1 and the induced map T2 : X2 → X2 which is constructed similar to
T1: in particular, the inverse branches of T2 are compositions of elements in
H1. Analogs of Lemma 6.66 and 6.67 for T2 also hold. The replacements of
Proposition 6.15 and (6.58) are (6.71) and (6.70) respectively. Using these
three ingredients, we can show the properties like (6.70) and (6.71) also hold
for T2. The proof of Proposition 4.1(1) and (4.2) will be finished by repeating
this. �


Now, we will finish proving the rest of results for the coding except
Lemma 4.5 (UNI).

Proof of Lemma 4.8 Take


− = 
� ∩ {|x | > 1/(2η)} = 
� ∩U1. (6.74)

The contracting map γ from �0 to �0 is a composition of maps inH0, so the
inclusion follows directly from Lemma 6.62. Write p = γ∞. By Lemma 5.7,

|(γ −1)′(x)|Sd = h(p)

d(x, p)2
1 + |x |2

1 + |γ −1x |2 .

For x ∈ 
−, as p = γ∞ ∈ �0, we have

1 + |x |2
d(x, p)2

≤ 1 + |x |2
(|x | − diam(�0))2

.

The right hand side of the inequality is around 1 as |x | ≥ 1/(2η). For
γ −1x ∈ 
−, we have |γ −1x | ≥ 1/(2η). Hence |(γ −1)′(x)|Sd ≤ λ for some λ

independent of γ . �

Proof of Proposition 4.1 (3) By Lemma 5.7, we have

|γ ′(x)| = h(p)

d(x, γ −1∞)2
.
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By Lemma 4.8, we have γ −1∞ ∈ 
−, which implies d(γ −1∞, x) ≥ 1/(2η).
Hence

|γ ′(x)| ≤ (2η)2h(p) ≤ 4η2.

�

Proof of Proposition 4.1 (4). We need the following lemma, which will

also be needed in later sections.

Lemma 6.75 Let γ be any element in� which does not fix∞. For any x ∈ �0
and any unit vector e ∈ R

d , we have

∂e log |γ ′(x)| = −2〈x − ξ, e〉
|x − ξ |2

where ξ = γ −1∞.

Proof It can be shown using Lemma 5.7 and elementary computation. �

For γ ∈ H, Proposition 4.1 (4) can be deduced using Lemma 6.75 and the

observation that |γ −1∞| ≥ 1/(2η) (Lemma 4.8 and (6.74)).

6.9 Verifying UNI

We prove Lemma 4.5 in this part. Let � f be the semigroup generated by γ in
H and �b be the semigroup generated by γ −1 with γ ∈ H. Let 
 f and 
b
be the limit set of � f and �b on ∂H

d+1, that is the set of accumulation points
of orbit � f o and �bo for some o ∈ H

d+1 respectively. It follows from the
definition that the limit set 
 f is � f -invariant and 
b is �b-invariant. Due to
[24, Proposition 3.19] (convergence property of Möbius transformation), we
have that 
 f is a � f -minimal set and 
b is a �b-minimal set.

Lemma 6.76 The limit set 
b is not contained in an affine subspace in R
d ∪

{∞} or a sphere in R
d .

Proof Let A be an affine subspace or a sphere with minimal dimension which
contains 
b. Because 
b is �b invariant, the semigroup �b must preserve
A, so does the Zariski closure of �b. The Zariski closure of a semigroup
is a group (see for example [13, Lemma 6.15]). The Zariski closures of � f
and �b are the same. Hence � f also preserves A and 
 f is in A. We claim:
μ(
 f ) = μ(
�∩�0) > 0. Then because� is Zariski dense, by [20, Corollary
1.4], we conclude that μ(A) is non zero if and only if A = R

d , finishing the
proof.
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Proof of the claim: Let x be any point in
� ∩�0 such that T nx ∈ 
� ∩�0
for every n ∈ N. We can write x = γnT n(x) ∈ γn�0 for some γn ∈ Hn . Fix
any y ∈ 
 f , it follows from Proposition 4.1 (3) that d(γn y, γnT n(x)) → 0.
So γn y → x and x ∈ 
 f . Due to Proposition 4.1 (1), the set of x’s such
that T nx ∈ 
� ∩ �0 for every n ∈ N is a conull set in 
� ∩ �0. Hence
μ(
 f ) = μ(
� ∩ �0). �

Lemma 6.77 For every x ∈ 
�∩�0, there exist pairs of points (ξ1m, ξ2m), m =
1, . . . , kx in the limit set 
b and ε′

x > 0 such that for every unit vector e ∈ R
d

there exists m,
∣
∣
∣
∣

〈
x − ξ1m

|x − ξ1m |2 − x − ξ2m

|x − ξ2m |2 , e

〉∣
∣
∣
∣ > 2ε′

x > 0.

Proof The map invx : ξ �→ x−ξ

|x−ξ |2 is an inversion and this map is injective. If

there exists a unit vector e ∈ R
d such that

〈
x − ξ1

|x − ξ1|2 − x − ξ2

|x − ξ2|2 , e

〉

= 0

for all ξ1, ξ2 in 
b, then invx (
b) is contained in an affine subspace parallel
to e⊥. Hence 
b itself is contained in an affine subspace in R

d ∪ {∞} or a
sphere in R

d , which contradicts Lemma 6.76. Therefore, for every unit vector
e ∈ R

d , there exist ξ1, ξ2 in 
b such that

〈
x − ξ1

|x − ξ1|2 − x − ξ2

|x − ξ2|2 , e

〉

�= 0.

We use continuity and compactness to finish the proof. �

Lemma 6.78 Let ξ be any point in
b. For any ε2, ε3 > 0, there exists nξ ∈ N

such that for any n ≥ nξ , there exists γ in Hn satisfying

dSd (γ
−1∞, ξ) ≤ ε2, |γ ′|∞ ≤ ε3.

Proof Since 
b is �b minimal, for any point ξ ′ ∈ 
b, there exists a sequence
{γ −1

n } in �b such that γ −1
n ξ ′ converges to ξ and |γ ′

n|∞ tends to zero. By
Lemma 4.8, we know that γ −1

n 
− also converges to ξ . Hence we can always
find a γ in � f with |γ ′|∞ ≤ ε3 and dSd (γ

−1
−, ξ) ≤ ε2. Let nξ be the unique
number such that γ ∈ Hnξ .

For any γ1 ∈ ∪n≥1Hn , we have |(γ1γ )′|∞ ≤ |γ ′
1|∞|γ ′|∞ ≤ |γ ′|∞ and

dSd ((γ1γ )−1∞, ξ) = dSd (γ
−1(γ −1

1 ∞), ξ) ≤ dSd (γ
−1
−, ξ) ≤ ε2.
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Exponential mixing of geodesic flows 997

Therefore, for any m = nξ + n, choose any γ1 ∈ Hn and then γ1γ ∈ Hm and
it satisfies Lemma 6.78. �


Combining the above two lemmas, by Lemma 6.75 and the formula
Rn(γ x) = − log |γ ′(x)| for γ ∈ Hn , we have

|∂e(Rn ◦ γ1m − Rn ◦ γ2m)(y)| =
∣
∣
∣
∣
∣

〈
y − γ −1

1m ∞
|y − γ −1

1m ∞|2 − y − γ −1
2m ∞

|y − γ −1
2m ∞|2 , e

〉∣
∣
∣
∣
∣
.

Using this expression, Lemma 6.77, 6.78 and continuity, we obtain

Lemma 6.79 For every x ∈ 
� ∩ �0, there exist εx , ε
′
x > 0 such that for

any ε3 > 0, there exists nx ∈ N such that the following holds for any n ≥ nx .
There exist kx ∈ N, γim ∈ Hn with i = 1, 2 and m = 1, . . . , kx satisfying

• |γ ′
im | < ε3 for every i = 1, 2 and m = 1, . . . , kx .

• for any unit vector e ∈ R
d , there exists m ∈ {1, . . . , kx } such that for any

y ∈ B(x, εx ),

|∂e(Rn ◦ γ1m − Rn ◦ γ2m)(y)| ≥ ε′
x > 0.

Proof of Lemma 4.5 For every x ∈ 
� ∩ �0, we apply Lemma 6.79 to x and
get two constants εx , ε

′
x > 0. Since 
� ∩ �0 is compact, we can find a finite

set {x1, . . . , xl} such that ∪B(x j , εx j /2) ⊃ 
� ∩ �0. Let ε0 = inf{ε′
x j } and

r = inf{εx j /2}. Take ε3 = ε0/C and n0 ≥ sup1≤ j≤l{nx j }. Then for every
x j , there exists a finite set {γim} in Hn0 satisfying results in Lemma 6.79.
We put all these γim’s together and this is the finite set in Hn0 described in
Lemma 4.5. For any x ∈ 
� ∩ �0, it is contained in some B(x j , εx j /2).
Then B(x, r) ⊂ B(x j , εx j ). The family {γim} for x j will satisfy nonvanishing
condition on B(x, r), that is for every unit vector e ∈ R

d there exists m such
that for any y ∈ B(x, r)

|∂e(Rn0 ◦ γ1m − Rn0 ◦ γ2m)(y)| ≥ ε0 > 0.

Finally, the inequality |Dτim |∞ ≤ C2 is due to (4.4).
�


7 Spectral gap and Dolgopyat-type spectral estimate

In this section, we prove a Dolgopyat-type spectral estimate and the main
result is Proposition 7.3. Our argument is influenced by the one in [1,2,5,18,
34,47] and there is some technical variation in the current setting. The proof
involves proving a cancellation lemma (Lemma 7.14) and using it to obtain
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L2 contraction. The rough idea is as follows. Denote the set �0 ∩ 
� by

0. With the UNI property (Lemma 4.5) available, for each ball B(y, r) with
y ∈ 
0, one uses the doubling property of the PS measure to find a point
x ∈ B(y, r)∩
0 such that cancellation happens on B(x, r ′). Then, to run the
classical argument, one needs to find finitely many such pairwise disjoint balls
B(xi , r ′)’s contained in �0 such that 
B(xi , Dr ′) covers �0 for some D > 1.
The difficulty lies in that the balls B(xi , r)’s are produced using PS measure
so the position of B(xi , r ′)’s is in some sense random and some B(xi , r ′) may
not be fully contained in �0. To overcome this, we find B(xi , r ′)’s which only
cover a subset of �0 and divide the proof of Proposition 7.3 into the cases
when the iteration is small and when the iteration is large.

7.1 Twisted transfer operators

For s ∈ C, let Ls be the twisted transfer operator defined by

Ls(u)(x) =
∑

γ∈H
|γ ′(x)|δ+su(γ x). (7.1)

For u : �0 → C, define

‖u‖Lip = max{|u|∞, |u|Lip},
where |u|Lip = supx �=y |u(x) − u(y)|/d(x, y), where d(·, ·) is the Euclidean
distance.Denote byLip(�0) the space of functions u : �0 → Cwith ‖u‖Lip <

∞. We also introduce a family of equivalent norms on Lip(�0):

‖u‖b = max{|u|∞, |u|Lip/(1 + |b|)}, b ∈ R.

WithProposition 4.1 available,we obtain the following lemmaby a verbatim
of the proof of [1, Proposition 2.5].

Lemma 7.2 Write s = σ + ib. The family s �→ Ls of operators on Lip(�0)

is continuous on {s ∈ C : σ > −εo}, where εo is given as in Proposition 4.1
(4). Moreover, sup|σ |<εo

‖Ls‖b < ∞.

Define the PS measure μE on �0 with respect to the Euclidean metric by

dμE (x) = (1 + |x |2)δdμ(x).

Using the quasi-invariance of the PS measure μ, we obtain that the dual oper-
ator of L0 preserves the measure μE by a straightforward computation. Our
main result ofDolgopyat argument is the following L2 contracting proposition.
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Proposition 7.3 There exist C > 0, β < 1, ε > 0 and b0 > 0 such that for
all v in Lip(�0), m ∈ N and s = σ + ib with |σ | ≤ ε and |b| > b0, we have

∫

|Lm
s v|2dμE ≤ Cβm‖v‖2b.

The proof will be given at the end of Sect. 7.5.
Recall that ν is the unique T -invariant ergodic probability measure on�0∩


� which is absolutely continuous with respect to the PS measure μ with a
positive Lipschitz density function f̄0. So ν is also absolutely continuous with
respect to μE with a positive Lipschitz density function f0. Based on these, it
is a classical result that the operator L0 acts on Lip(�0) and has a spectral gap
and a simple isolated eigenvalue at 1 with f0 the corresponding eigenfunction.

For σ ∈ R close enough to 0, Lσ acting on Lip(�0) is a continuous per-
turbation of L0 (see Lemma 7.2). Hence, it has a unique eigenvalue λσ close
to 1, and the corresponding eigenfunction fσ (normalized so that

∫
fσ = 1)

belongs to Lip(�0), strictly positive, and tends to f0 in Lip(�0) as σ → 0.
Choose a sufficiently small ε ∈ (0, εo) such that for σ ∈ (−ε, ε), fσ is well
defined and

1/2 ≤ λσ ≤ 2, f0/2 ≤ fσ ≤ 2 f0, | f0|Lip/2 ≤ | fσ |Lip ≤ 2| f0|Lip.

For s = σ + ib with |σ | < ε and b ∈ R, define a modified transfer operator
L̃s by

L̃s(u) = (λσ fσ )−1Ls( fσu). (7.4)

It satisfies L̃σ1 = 1, and |L̃su| ≤ L̃σ |u|.

Lemma 7.5 (Lasota-Yorke inequality) There is a constant C16 > 1 such that

|L̃n
s v|Lip ≤ C16(1 + |b|)|v|∞ + C16λ

n|v|Lip (7.6)

holds for any s = σ + ib with |σ | < ε, and all n ≥ 1, v ∈ Lip(�0), where λ

is given as in Proposition 4.1.

Theproof of this lemma is a verbatimof proof of [1, Lemma2.7]. The following
lemma can be deduced from Lemma 7.5 by a straightforward computation.

Lemma 7.7 We have ‖L̃n
s ‖b ≤ 2C16 for all s = σ + ib with |σ | < ε and all

n ≥ 1.
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7.2 Cancellation lemma

The main result of this subsection is the cancellation lemma (Lemma 7.14)
and the proof is inspired by the proof of analogous results in [34] and [47].
We start with detailing all the constants.

LetC17 be the constant which will be specified in (7.28).We define the cone

Definition 7.8 For b ∈ R, let

Cb ={(u, v) : u, v ∈ Lip(�0), u > 0, 0 ≤ |v| ≤ u, | log u|Lip ≤ C17|b|,
|v(x) − v(y)| ≤ C17|b|u(y)d(x, y) for all x, y ∈ �0}.

Let r > 0 and ε0 > 0 be the same constants as the ones in Lemma 4.5.
We apply Lemma 4.5 with C = 16C17. Let n0 be a sufficiently large integer
which satisfies Lemma 4.5 and the inequality

λn0C17(1 + diam(�0)) ≤ 1. (7.9)

Let γmj , with m = 1, 2, j = 1, . . . , j0 be the inverse branches given by
Lemma 4.5.

Let k ∈ N be such that

kε0 > 16(C2 + ε0), (7.10)

where C2 is given in (4.3).
Note that the measure ν is absolutely continuous with respect to the PS

measure μ. Let D > 0 be such that for all x ∈ 
� ∩ �0 and r ′ ≤ 1/C3 with
C3 given in Proposition 5.14

ν(B(x, Dr ′)) > ν(B(x, (k + 2)r ′)). (7.11)

Let ε2 > 0 be such that

(2C17ε2 + 1/4)e2C17ε2 ≤ 3/4. (7.12)

Let ε3 > 0 be such that

ε3(D + 2) < min{ε2, r, 1/C3}, ε3(D + 2)(C2 + ε0) < 3π/2, ε3kε0 < π.

(7.13)

Recall the notation τmj introduced in Lemma 4.5. For s = σ + ib ∈ C,
define

As,γmj (v)(x) = e(s+δ)τmj (x) fσ (γmj x)v(γmj x).
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Lemma 7.14 There exists 0 < η0 < 1 such that the following holds. For
s = σ + ib with |σ | ≤ ε, |b| > 1, for (u, v) ∈ Cb, and for any y ∈ 
0,
there exists x ∈ B(y, ε3D/|b|) ∩ 
� such that we have the following: there
exists j ∈ {1, . . . , j0} such that one of the following inequalities holds on
B(x, ε3/|b|):

type γ1 j : |As,γ1 j (v) + As,γ2 j (v)| ≤ η0Aσ,γ1 j (u) + Aσ,γ2 j (u),

type γ2 j : |As,γ1 j (v) + As,γ2 j (v)| ≤ Aσ,γ1 j (u) + η0Aσ,γ2 j (u).

We first prove a quick estimate.

Lemma 7.15 Let ε2 be the constant defined in (7.12). For any |b| > 1, for
(u, v) ∈ Cb and for a ball Z of radius ε2/|b|, we have
1. inf Z u ≥ e−2C17ε2 supZ u;
2. either |v| ≤ 3

4u for all x ∈ Z or |v| ≥ 1
4u for all x ∈ Z.

Proof The first inequality is due to | log u(x) − log u(y)| ≤ C17|b||x − y| for
every x, y ∈ �0.

Suppose there exists x0 ∈ Z such that |v(x0)| ≤ 1
4u(x0). Then by (7.12)

|v(x)| ≤ |v(x) − v(x0)| + 1

4
u(x0) ≤ C17|x − x0||b| sup

Z
u + 1

4
sup
Z

u

≤
(

2C17ε2 + 1

4

)

sup
Z

u ≤ (2C17ε2 + 1

4
)e2C17ε2 inf

Z
u ≤ 3

4
u(x).

�

Proof of Lemma 7.14 It follows (7.11) that there exists x0 ∈ (B(y, ε3D/|b|)−
B(y, (k + 2)ε3/|b|)) ∩ 
� . Let B1 = B(y, ε3/|b|), B2 = B(x0, ε3/|b|) and
B̂ the smallest ball containing B1 ∪ B2. For all x ∈ B1, x ′ ∈ B2, we have

d(x, x ′) ∈ ε3

b
[k, D + 2]. (7.16)

In view of (7.13), the radius of B̂ is smaller than ε2/|b| and it is contained in
B(y, r). Let e0 = (y − x0)/|y − x0|.
By Lemma 4.5 for the point y there exists j in {1, . . . , j0} such that (4.6)

holds for B(y, r) with e = e0. From now on, j is fixed, so we abbreviate
(γ1 j , γ2 j ) to (γ1, γ2) and (τ1 j , τ2 j ) to (τ1, τ2).

Due to |γ ′
m |∞ ≤ λ ≤ 1, the radius of γm B̂ is smaller than ε2/|b|. So we can

apply Lemma 7.15 to γm B̂ and we have that either |v(γmx)| ≥ 1
4u(γmx) for

all x ∈ B̂ or |v(γmx)| ≤ 3
4u(γmx) for all x ∈ B̂. Suppose that

|v(γmx)| ≤ 3

4
u(γmx)
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1002 J. Li, W. Pan

holds for some m ∈ {1, 2} for all x ∈ B̂. Then Lemma 7.14 can be proved by
a straightforward computation.

Suppose that for x ∈ B̂ and m = 1, 2

|v(γmx)| ≥ 1

4
u(γmx). (7.17)

Claim Under the assumption of (7.17), there exists C18 > 0 independent of
b and (u, v) such that for l ∈ {1, 2}, we have

either

∣
∣
∣
∣
As,γ1(v)

As,γ2(v)

∣
∣
∣
∣ ≤ C18 for all x ∈ Bl or

∣
∣
∣
∣
As,γ2(v)

As,γ1(v)

∣
∣
∣
∣ ≤ C18 for all x ∈ Bl .

(7.18)

Proof of the claim Fix any x0 ∈ �0. Due to |τ ′
m |∞ ≤ C2 (see (4.4)), we have

for any x ∈ B̂,

|τ1(x) − τ2(x)| ≤ |τ1(x0) − τ2(x0)| + 2C2|x − x0|.
Hence there exists a constant C(τ1, τ2) depending on τ1, τ2 such that

∣
∣
∣
∣
As,γ1(v)

As,γ2(v)

∣
∣
∣
∣ ≤ C(τ1, τ2)

fσ (γ1x)u(γ1x)

fσ (γ2x)u(γ2x)
.

For the middle term,

fσ (γ1x)

fσ (γ2x)
≤ 4

sup f0
inf f0

.

Since the radius of γ2Bl is less than ε2/|b|, using Lemma 7.15, we have for
every x in Bl

u(γ1x)

u(γ2x)
≤ supBl u(γ1)

infBl u(γ2)
≤ e2C17ε2

supBl u(γ1)

supBl u(γ2)
.

Putting these together, we have

∣
∣
∣
∣
As,γ1(v)

As,γ2(v)

∣
∣
∣
∣ ≤ C18

supBl u(γ1)

supBl u(γ2)

where C18 = 4C(τ1, τ2)e2C17ε2 sup f0
inf f0

. We have a similar inequality for
∣
∣
∣
As,γ2 (v)

As,γ1 (v)

∣
∣
∣. Note that either

supBl u(γ1)

supBl u(γ2)
≤ 1 or

supBl u(γ2)

supBl u(γ1)
≤ 1. The proof of

the claim finishes. �


123



Exponential mixing of geodesic flows 1003

Now we start to compute the angle and our definitions are only for x ∈ B̂.
The function arg(v(γmx)) is well defined because |v(γmx)| ≥ u(γmx)/4 > 0.
Let

�(x) = b(τ1(x) − τ2(x)), V (x) = arg(v(γ1x)) − arg(v(γ2x)),

and let

�(x) = �(x) + V (x).

We apply Lemma 4.5 to B̂ and obtain that for x ∈ B̂,

|∂e0�(x)| ≥ |b|ε0, |�′(x)| ≤ |b|C2.

For the angle function,
by (7.17) and (4.7), we have for i ∈ {1, 2} and x, x ′ ∈ B̂

| arg v(γi x) − arg v(γi x
′)| = | Im(log v(γi x) − log v(γi x

′))|
≤ |v(γi x) − v(γi x ′)|

|v(γi x)|
≤ C17|b|u(γi x)|γi x − γi x ′|

|v(γi x)| ≤ |b|ε0|x − x ′|/4.

This implies that for x, x ′ ∈ B̂

|V (x) − V (x ′)| ≤ |b|ε0|x − x ′|/2.
Combining the estimates for � and V , we obtain for x, x ′ ∈ B̂

|�(x) − �(x ′)| ≤ b(C2 + ε0)|x − x ′|, (7.19)

and for x, x + te0 ∈ B̂ with t ∈ R
+,

|�(x) − �(x + te0)| ≥ bε0t/2.

Hence for x1 = y, x2 = x0 which are the centers of B1 and B2 respectively,
by (7.16),

|�(x1) − �(x2)| ∈ ε3[kε0/2, (D + 2)(C2 + ε0)]. (7.20)

Let ε4 = ε3kε0/8. We claim that there exists l ∈ {1, 2} such that
d(�(xl), 2πZ) > ε4. (7.21)
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If not so, then both the distance from �(x1) to 2πZ and that from �(x2) to
2πZ are less than ε4. By (7.20) and (7.13)

|�(x1) − �(x2)| ≤ ε3(D + 2)(C2 + ε0) ≤ 3π/2 < 2π − 2ε4.

Hence �(x1), �(x2) are in a ball (2nπ − ε4, 2nπ + ε4) with n ∈ Z. This
implies that

|�(x1) − �(x2)| ≤ 2ε4 = ε3kε0/4,

contradicting with (7.20).
Without loss of generality, we may assume (7.21) holds for x1. For any x

in the ball B1, by (7.19) and (7.10)

|�(x) − �(xl)| ≤ (C2 + ε0)ε3 ≤ kε3ε0/16 = ε4/2.

Combined with (7.21), we have

d(�(x), 2πZ) ≥ ε4/2. (7.22)

In conclusion, there exists l ∈ {1, 2} such that for all x ∈ Bl ,
d(�(x), 2πZ) > ε4/2 and (7.18) holds. Without loss of generality, we may
assume |As,γ1(v)(x)/As,γ2(v)(x)| ≤ C18 for all x ∈ Bl . By an elementary
inequality [34, Lemma 5.12], there exists 0 < η0 < 1 depending on ε4 and
C18 such that on Bl

|As,γ1(v) + As,γ2(v)| ≤ η0|As,γ1(v)| + |As,γ2(v)| ≤ η0Aσ,γ1(u) + Aσ,γ2(u).

�

For b with |b| ≥ 1, let

�b =
{

x ∈ �0| d(x, ∂�0) >
ε3(D + 1)

|b|
}

. (7.23)

For any (u, v) ∈ Cb, we can find {xi }1≤i≤l0 ⊂ 
0 := 
� ∩ �0 such that
B(xi , ε3/|b|)’s are disjoint balls contained in �0,


0 ∩ �b ⊂ ∪1≤i≤l0B(xi , 2ε3D/|b|),

and on each B(xi , ε3/|b|) one of the 2 j0 inequalities in Lemma 7.14 holds. In
fact, suppose we have already found some points xi ’s but ∪B(xi , 2ε3D/|b|)
don’t cover the set
0∩�b. Then for a point y ∈ 
0∩�b−∪B(xi , 2ε3D/|b|),
we apply Lemma 7.14 to y and obtain a point x ∈ B(y, ε3D/|b|) ∩ 
0 such
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that Lemma 7.14 holds on B(x, ε3/|b|). Moreover, the ball B(x, ε3/|b|) is
contained in �0 and it is disjoint from ∪B(xi , ε3/|b|).

Let Bi = B(xi , ε3/|b|) and B̃i = B(xi , ε3/(3|b|)) for i = 1, . . . , l0. Let
η ∈ [η0, 1) and define a C1 function χ : �0 → [η, 1] as follows: it equals 1
outside of ∪m, j,iγmj Bi ; for each Bi , if Bi is of type γmj , let χ(γmj (y)) = η

for y ∈ B̃i and χ ≡ 1 on other γm′ j ′Bi . We can choose η close to 1 and
independent of b such that |χ ′(x)| ≤ |b| for all x ∈ �0.

Corollary 7.24 Under the same assumptions as in Lemma 7.14, for (u, v) ∈
Cb and χ = χ(b, u, v) a C1 function described as above, we have

|L̃n0
s v| ≤ L̃n0

σ (χu).

Define Ji = B(xi , 2ε3D/|b|) for i = 1, . . . , l0 and let B̃ = ∪B̃ j .

Proposition 7.25 Suppose that w is a positive Lipschitz function with
| logw(x) − logw(y)| ≤ K |b||x − y| for some K > 0. Then

∫

B̃
wdν ≥ ε4

∫

�b

w dν, (7.26)

with ε4 = ε5e−4ε3DK , where ε5 comes from doubling property only depending
on D and ν.

Proof Since ∪i Ji covers �b, it is sufficient to prove for each i we have a
similar inequality. Due to hypothesis, we obtain inf B̃i w ≥ e−4ε3DK supJi w.
By doubling property, there exists ε5 depending on D such that

ν(B̃i ) ≥ ε5ν(Ji ).

Therefore
∫

B̃i
w dν ≥ ν(B̃i ) inf

B̃i
w ≥ ε5ν(Ji )e

−4ε3DK sup
Ji

w ≥ ε4

∫

Ji
w dν.

�


7.3 Invariance of cone condition

We define the constants

C ′
17 = 16(δ + ε)C2| f0|∞| f −1

0 |∞ + 16| f −1
0 |∞| f0|Lip + 4C2 + 2, (7.27)

C17 = max{8| f −1
0 |∞| f0|Lip + (δ + 3)C2 + 1 + 4| f0|∞| f −1

0 |∞C ′
17, 6C16}.

(7.28)
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Lemma 7.29 Let C17 > 0 be the constant defined in (7.28) and n0 be the
constant defined in (7.9). For s = σ + ib with |σ | < ε and |b| > 1, for
(u, v) ∈ Cb, we have

(L̃n0
σ (χu), L̃n0

s v) ∈ Cb, (7.30)

where χ = χ(b, u, v) is the same as the one in Corollary 7.24.

The proof is a verbatim of the proof of [1, Lemma 2.12].

7.4 L2 contraction for bounded iterations

In this part, we will prove Proposition 7.3 for the case when m bounded by
log |b|. Compared with [2], where they can finish the proof of an analog of
Proposition 7.3 at this stage, we have the difficulty about the boundary. More
precisely, Proposition 7.25 is one of the ingredients to obtain Proposition 7.3.
Now the integration region of the right hand side of (7.26) is �b, which is
smaller than�0, so it just enables us to obtain L2 contraction for bounded iter-
ations. For large iteration, we will use a Lipschitz contraction lemma (Lemma
7.39) to obtain L2 contraction in the next subsection.

Lemma 7.31 For |b| > 1 and v ∈ Lip(�0), if |v|Lip ≥ C17|b||v|∞, then

‖L̃n0
s v‖b ≤ 9

10
‖v‖b.

Proof We have

|L̃n0
s v|∞ ≤ |v|∞ ≤ 1

C17|b| |v|Lip ≤ 2

C17
‖v‖b.

By Lemma 7.5, we obtain

|L̃n0
s v|Lip ≤ C16(1 + |b|)|v|∞ + C16λ

n0 |v|Lip
≤ (1 + |b|)

(
C16(1 + |b|)

C17|b| + C16λ
n0

)

‖v‖b

≤ (1 + |b|)
(
1

3
+ 1

6

)

‖v‖b = (1 + |b|)1
2
‖v‖b,

where the last inequality is due to C17 ≥ 6C16 and λn0C17 ≤ 1. �


123



Exponential mixing of geodesic flows 1007

Lemma 7.32 There exist C19 > 0 and β < 1 such that for all s = σ + ib
with |σ | < ε and |b| large enough and m ≤ [C19 log |b|]

∫

|L̃mn0
s v|2dν ≤ βm‖v‖2b. (7.33)

Proof If for all 0 ≤ p ≤ m − 1, we have |L̃ pn0
s v|Lip ≥ C17|b||L̃ pn0

s v|∞, then
by Lemma 7.31,

∫

|L̃mn0
s v|2dν ≤ ‖L̃mn0

s v‖2b ≤ (
9

10
)m‖v‖2b.

Otherwise, suppose p is the smallest integer such that |L̃ pn0
s v|Lip ≤

C17|b||L̃ pn0
s v|∞.We consider v′ = L̃ pn0

s v. Then Lemma 7.31 implies ‖v′‖b ≤
( 9
10 )

p‖v‖b. We only need to show that

∫

|L̃(m−p)n0
s v′|2dν ≤ βm−p‖v′‖2b.

We reduce to the case when p = 0, that is |v|Lip ≤ C17|b||v|∞. Define
u0 ≡ 1, v0 = v/|v|∞ and induitively,

um+1 = L̃n0
σ (χmum), vm+1 = L̃n0

s (vm),

where χm = χ(b, um, vm). It is immediate that (u0, v0) ∈ Cb, and it follows
from Lemma 7.29 that (um, vm) ∈ Cb for all m. Hence in particular the χm’s
are well defined.

We will show that there exist β1 ∈ (0, 1), κ > 0 and C > 0 such that for
all m

∫

u2m+1dν ≤ β1

∫

u2mdν + C |b|−κ . (7.34)

Then note that

|L̃mn0
s v| = |v|∞|L̃mn0

s v0| = |v|∞|vm | ≤ |v|∞um .

As a result,
∫

|L̃mn0
s v|2dν ≤ |v|2∞

∫

u2mdν

≤ |v|2∞(βm
1

∫

u20dν + C |b|−κ
∑

0≤l≤m−1

βl
1)

≤ (βm
1 + C |b|−κ/(1 − β1))|v|2∞.
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1008 J. Li, W. Pan

We can find C19 > 0 and β < 1 such that for any large enough |b|, (7.33)
holds for all m ≤ [C19 log |b|].

Now we prove (7.34). By definition

um+1(x) = λ−n0
σ f −1

σ (x)
∑

γ∈Hn0

|γ ′(x)|δ+σ fσ (γ x)χm(γ x)um(γ x)

= λ−n0
σ f −1

σ (x)
∑

γ∈Hn0

(|γ ′(x)|δ/2 f 1/2σ (γ x)um(γ x)
)

(|γ ′(x)|δ/2+σ f 1/2σ (γ x)χm(γ x)
)
,

so by Cauchy-Schwarz

u2m+1(x) ≤ (λ−n0
σ fσ (x))−2

⎛

⎝
∑

γ∈Hn0

|γ ′(x)|δ fσ (γ x)u2m(γ x)

⎞

⎠

⎛

⎝
∑

γ∈Hn0

|γ ′(x)|δ+2σ fσ (γ x)χ2
m(γ x)

⎞

⎠

≤ ξ(σ )L̃n0
0 (u2m)L̃n0

2σ (χ2
m)

where (noting that λ0 = 1)

ξ(σ ) = (λ−2
σ λ2σ )n0

∣
∣
∣
∣
f0
fσ

∣
∣
∣
∣∞

∣
∣
∣
∣
f2σ
fσ

∣
∣
∣
∣∞

∣
∣
∣
∣
fσ
f0

∣
∣
∣
∣∞

∣
∣
∣
∣
fσ
f2σ

∣
∣
∣
∣∞

.

As in Proposition 7.25, we write �0 = B̃ 
 B̃c. Let Hc be the set of inverse
branches given by Lemma 4.5. If y ∈ B̃, then there exists γi ∈ Hc such that

L̃n0
2σ (χ2

m)(y) ≤ λ
−n0
2σ f2σ (y)−1

⎛

⎝η2|γ ′
i (y)|δ+2σ f2σ (γi y)

+
∑

γ∈Hn0\{γi }
|γ ′(y)|δ+2σ f2σ (γ y)

⎞

⎠

= L̃n0
2σ (1)(y) − (1 − η2)λ

−n0
2σ f2σ (y)−1|γ ′

i (y)|δ+2σ f2σ (γi y)

≤ 1 − (1 − η2)2−(n0+2) inf f0 · | f0|−1∞ · inf{γi∈Hc}
|γ ′

i |δ+2σ = η1 < 1,
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Exponential mixing of geodesic flows 1009

In this way we obtain that there exists η1 < 1 such that

u2m+1(y) ≤
{

η1ξ(σ )L̃n0
0 (u2m)(y), y ∈ B̃,

ξ(σ )L̃n0
0 (u2m)(y), y ∈ B̃c.

Since (um, vm) ∈ Cb, it follows in particular that | log um |Lip ≤ C17|b|.
Hence by (7.9),

u2m(γ x)/u2m(γ y) ≤ exp(2C17λ
n0 |b|d(x, y)) ≤ exp(2|b|d(x, y)).

Let w = L̃n0
0 (u2m). Then

w(x)

w(y)
= f0(y)

∑
γ∈Hn0 |γ ′(x)|δ f0(γ x)u2m(γ x)

f0(x)
∑

γ∈Hn0 |γ ′(y)|δ f0(γ y)u2m(γ y)

≤ exp
((

2| f −1
0 |∞| f0|Lip + δC2 + 2|b|

)
d(x, y)

)
.

Hence | logw|Lip ≤ K |b|with K = 2| f −1
0 |∞| f0|Lip + δC2 +2. Using Propo-

sition 7.25, we have

(1 − η1)

∫

B̃
wdν ≥ ε4(1 − η1)

∫

�b

wdν.

Setting β ′ = 1 − ε4(1 − η1), we can further write

η1

∫

B̃
wdν +

∫

�b−B̃
wdν ≤ β ′

∫

�b

wdν ≤ β ′
∫

�0

wdν.

Hence
∫

�b

u2m+1dν ≤ ξ(σ )

(

η1

∫

B̃
L̃n0
0 (u2m)dν +

∫

�b−B̃
L̃n0
0 (u2m)dν

)

≤ ξ(σ )β ′
∫

�0

L̃n0
0 (u2m)dν = ξ(σ )β ′

∫

�0

u2mdν. (7.35)

By (5.30), (7.23) and |um+1| ≤ 1,

∫

�0−�b

u2m+1dν ≤ ν(�0 − �b) ≤ C |b|−κ . (7.36)

Finally we can shrink ε if necessary so that ξ(σ )β ′ < 1 for |σ | < ε and
then (7.35) and (7.36) imply (7.34). �
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1010 J. Li, W. Pan

7.5 Proof of Proposition 7.3

Lemma 7.37 There exist ε ∈ (0, 1), τ ∈ (0, 1) and C20 > 0 such that for all
s = σ + ib with |σ | < ε, n ≥ 1 and v ∈ Lip(�0), we have

|L̃n
s v|2∞ ≤ C20(1 + |b|)τ n|v|∞‖v‖b + C20B

n|v|∞
∫

|v|dν

where B > 1 is a constant depending on ε and it tends to 1 as ε → 0.

Proof We have

|L̃n
s v(x)| ≤ λ−n

σ f −1
σ (x)

∑

γ∈Hn

|γ ′(x)|δ+σ fσ (γ x)|v|(γ x)

= λ−n
σ f −1

σ (x)
∑

γ∈Hn

(|γ ′(x)|δ/2+σ f 1/2σ (γ x)|v|1/2(γ x))

(|γ ′(x)|δ/2 f 1/2σ (γ x)|v|1/2(γ x)) .

Using Cauchy-Schwarz, we obtain

|L̃n
s v(x)|2 ≤ (λ−2

σ λ2σ )nξ(σ )L̃n
2σ (|v|)(x) · L̃n

0(|v|)(x),

where ξ(σ ) = | f0/ fσ |∞| f2σ / fσ |∞| fσ / f0|∞| fσ / f2σ |∞ ≤ 64. Hence

|L̃n
s v|2∞ ≤ 64Bn|v|∞|L̃n

0(|v|)|∞, (7.38)

where B > 1 is a constant depending on ε with B → 1 as ε → 0.
Since L̃0 is a normalized transfer operator for the uniformly expanding map

T , there exists τ1 ∈ (0, 1) such that |L̃n
0v|∞ ≤ Cτ n1 ‖v‖Lip for all v ∈ Lip(�0)

with
∫

vdν = 0. (This is a consequence of spectral gap of quasi-compact
operator L̃0.) Hence by decomposing |v| into (|v| − ∫ |v|dν) + ∫ |v|dν, we
obtain

|L̃n
0(|v|)|∞ ≤ 2Cτ n1 ‖v‖Lip +

∫

|v|dν.

Substituting into (7.38), we have

|L̃n
s v|2∞ ≤ 128C(Bτ1)

n(1 + |b|)|v|∞‖v‖b + 64Bn|v|∞
∫

|v|dν.

Finally, shrink ε if necessary so that τ = Bτ1 < 1. �
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Lemma 7.39 There exist C > 0, ε ∈ (0, 1), A > 0 and β ∈ (0, 1) such that

‖L̃mn0
s v‖b ≤ Cβm‖v‖b

for all m ≥ A log |b|, s = σ + ib with |σ | < ε and |b| large enough, and all
v ∈ Lip(�0).

Proof Let N = [C19 log |b|]n0. Using Lemma 7.37 for L̃ N
s v and n = lN ,

Lemma 7.7 and (7.33), we obtain

|L̃(l+1)N
s v|2∞ ≤ C20(1 + |b|)τ lN |L̃ N

s v|∞‖L̃ N
s v‖b

+ C20B
lN |L̃ N

s v|∞(

∫

|L̃ N
s v|2dν)1/2.

≤ 2C16C20(1 + |b|)τ lN |v|∞‖v‖b + 2C16C20B
lN |v|∞βN/2‖v‖b.

We fix l depending on τ,C19 and n0 such that (1 + |b|)τ lN/2 ≤ 1. Then by
shrinking B if necessary, there exists β1 < 1, such that

|L̃(l+1)N
s v|∞ ≤ β

(l+1)N
1 ‖v‖b. (7.40)

For Lipschitz norm, we have

|L̃(l+2)N
s v|Lip
≤ C16(1 + |b|)|L̃(l+1)N

s v|∞ + C16λ
N |L̃(l+1)N

s v|Lip
≤ C16(1 + |b|)β(l+1)N

1 ‖v‖b + C2
16λ

N ((1 + |b|)|v|∞ + λ(l+1)N |v|Lip)
≤ C2

16(1 + |b|)‖v‖b(β(l+1)N
1 + λN + λ(l+2)N ) ≤ 3C2

16(1 + |b|)βN
2 ‖v‖b,

for some β2 < 1, where we use Lemma 7.5 to get the first inequality and
(7.40) to get the second one. For the infinity norm, by (7.40) and Lemma 7.7,
we obtain

|L̃(l+2)N
s v|∞ ≤ 2C16β

(l+1)N
1 ‖v‖b.

Combining these two norm estimates, we obtain

‖L̃(l+2)N
s v‖b ≤ C2

16(2β
(l+1)N
1 + 3βN

2 )‖v‖b ≤ β
(l+2)N/n0
3 ‖v‖b, (7.41)

for some β3 < 1 if |b| is large enough to absorb the constant 6C2
16.

Let A = 2(l + 2)C19 and N1 = (l + 2)N/n0 = (l + 2)[C19 log |b|] ≤
A log |b|. For m ≥ A log |b|, we can write m = dN1 + r with r ∈ N and
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1012 J. Li, W. Pan

r < N1. Therefore by (7.41) and Lemma 7.7,

‖L̃mn0
s v‖b = ‖L̃dN1n0

s (L̃rn0
s v)‖b ≤ β

dN1
3 ‖L̃rn0

s v‖b
≤ 2C16β

dN1
3 ‖v‖b ≤ 2C16(

√
β3)

m‖v‖b.

�

Proof of Proposition 7.3 It is sufficient to prove that for all m ∈ N,

∫

|L̃mn0
s v|2dν ≤ Cβm‖v‖2b. (7.42)

Then for any k ∈ N, suppose k = mn0 + r with 0 ≤ r < n0. We have

∫

|Lk
sv|2dμE ≤ Cλ2kσ

∫

|L̃k
s ( f

−1
σ v)|2dν ≤ Cλ2kσ βm‖L̃r

s( f
−1
σ v)‖2b

≤ Cλ2kσ βm‖ f −1
σ v‖2b ≤ Cλ2kσ βm‖v‖2b.

By choosing ε small such that λ2n0σ β < 1 for any |σ | < ε, we obtain Proposi-
tion 7.3.

It remains to prove (7.42). For m > A log |b|, by Lemma 7.39, we obtain

∫

|L̃mn0
s v|2dν ≤ ‖L̃mn0

s v‖2b ≤ Cβm‖v‖2b.

For A log |b| ≥ m ≥ C19 log |b|, by (7.33) and Lemma 7.7, we know

∫

|L̃mn0
s v|2dν ≤ β[C19 log |b|]‖L̃(m−[C19 log |b|])n0

s v‖2b
≤ 2C16β

[C19 log |b|]‖v‖2b ≤ 2C16β
m
1 ‖v‖2b

for some β1 = βC19/A < 1.
The case when m ≤ C19 log |b| has been verified in Lemma 7.32. �


8 Exponential mixing

In this section, we prove Theorem 4.13. As a first step, an analogous result
concerning expanding semiflow will be proved. Let T : 
+ → 
+ be the
uniformly expanding map and R : 
+ → R+ be the roof function as defined
in Proposition 4.1. Set 
R+ = {(x, t) ∈ 
+ × R : 0 ≤ t < R(x)}. We define
a semi-flow Tt : 
R+ → 
R+ by Ts(x, t) = (T nx, t + s − Rn(x)) where n
is the unique integer satisfying Rn(x) ≤ t + s < Rn+1(x). Recall that ν is
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Exponential mixing of geodesic flows 1013

the unique T -invariant ergodic probability measure on 
+. Then the flow Tt
preserves the probability measure νR = ν × Leb /(ν × Leb)(
R+). We will
also use the probability measure μR

E = μE × Leb /(μE × Leb)(
R+) on 
R+.
We show that Tt is exponentially mixing.

For a bounded function on 
R+, we define two norms. Set

‖U‖B0 = |U |∞ + sup
(x,a)�=(x ′,a′)∈
R+

|U (x, a) −U (x ′, a′)|
d(x, x ′) + |a − a′| ,

‖V ‖B1 = |V |∞ + sup
x∈
+

Var(0,R(x)){t �→ V (x, t)}
R(x)

,

where Var(0,R(x)){t �→ V (x, t)} is the total variation of the function t �→
V (x, t) on the interval (0, R(x)).

Theorem 8.1 There exist C > 0, ε > 0 such that for all t > 0 and for any
two functions U, V on 
R+ with ‖U‖B0, ‖V ‖B1 finite, we have

∣
∣
∣
∣

∫

U · V ◦ Ttdμ
R
E −

(∫

UdμR
E

) (∫

V dνR
)∣

∣
∣
∣ ≤ Ce−εt‖U‖B0‖V ‖B1 .

Remark 8.2 Applying this theorem to the functionU (x, t) dν
R

dμR
E
(x), we obtain

∣
∣
∣
∣

∫

U · V ◦ Ttdν
R −

(∫

UdνR
)(∫

V dνR
)∣

∣
∣
∣ ≤ Ce−εt‖U‖B0‖V ‖B1 .

(8.3)

With Proposition 7.3 available, Theorem 8.1 can be proved essentially
along the same lines as the proof of [2, Theorem 7.3] (see also [2, Section
7.5]). We provide a sketch of the proof here. For a pair of functions U, V ,
let ρ(t) = ∫

U · V ◦ TtdμR
E be the correlation function and the observation

is that the Laplace transform of ρ, denoted by ρ̂, can be expressed as a sum
of twisted transfer operators Ls [2, Lemma 7.17]. One shows that ρ̂ admits
an analytic continuation to a neighborhood of each point s = ib and this
part of the argument uses the quasi-compactness of the twisted transfer oper-
ators [2, Lemma 7.21, 7.22]. When |b| is large, the Dolgopyat-type estimate
(Proposition 7.3), which is a replacement of [2, Proposition 7.7] in the cur-
rent setting, is used to imply that ρ̂ admits an analytic extension to a strip
{s = σ + ib ∈ C : |σ | < σ0} for all sufficiently small σ0 [2, Corollary 7.20].
The result of exponential mixing then follows from the classical Paley-Wiener
theorem [2, Theorem 7.23].

The difference between our result and that in [2] is the classes of functions
in concern. The only adjustment we need to make is [2, Lemma 7.18], which is
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1014 J. Li, W. Pan

a norm estimate forC1 functions in their paper, but for functions with finiteB0
norm in the current setting. The precise statement is as follows. For a function
U : 
+ → R with ‖U‖B0 < ∞ and s ∈ C, set Ûs(x) = ∫ R(x)

0 e−tsU (x, t)dt .

Lemma 8.4 There exists C > 0 such that for s = σ + ib with |σ | ≤ εo/4 (εo
is given as in Proposition 4.1 (5)), the function LsÛ−s is Lipschitz on �0 and

‖LsÛ−s‖b ≤ C‖U‖B0

max{1, |b|} .

Proof We first prove for x ∈ 
+ we have

|Û−s(x)| ≤ CeεoR(x)/2

max{1, |b|}‖U‖B0 .

By definition, we have

Û−s(x) =
∫ R(x)

0
U (x, t)etsdt.

The case when |b| ≤ 1 is easy. When |b| > 1, one uses integration by parts
and the fact that U is Lipschitz with respect to t to obtain

|Û−s(x)| ≤ (2|U |∞eεoR(x)/4 + |U |LipR(x)eεoR(x)/4)/max{1, |b|}.
Then

|LsÛ−s | ≤ C‖U‖B0

max{1, |b|}Lσ (eεoR/2).

Observe that by (4.2)

Lσ (eεoR/2) =
∑

γ∈H
|γ ′(x)|δ+σ eεoR(γ x)/2 ≤

∑

γ∈H
|γ ′(x)|δ−3εo/4 < ∞.

(8.5)

So |LsÛ−s | ≤ C‖U‖B0
max{1,|b|} .

We estimate the Lipschitz norm of LsÛ−s . We have

LsÛ−s(x) − LsÛ−s(y) =
∑

γ∈H
|γ ′(x)|δ+s(Û−s(γ x) − Û−s(γ y))

+(|γ ′(x)|δ+s − |γ ′(y)|δ+s)Û−s(γ y).
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The term |γ ′(x)|δ+s − |γ ′(y)|δ+s can be estimated using Proposition 4.1 (4).
For the term Û−s(γ x) − Û−s(γ y), suppose that R(γ x) ≥ R(γ y), we use
Proposition 4.1 (4) again and get

|Û−s(γ x) − Û−s(γ y)| ≤ |R(γ x) − R(γ y)||U |∞eσ R(γ x)

+
∫ R(γ y)

0
|U (γ x, t) −U (γ y, t)|etσdt

≤ (C1e
σ R(γ x) + R(γ y)eσ R(γ y))‖U‖B0d(x, y).

Then we use (8.5) to conclude that there exists some C (independent of U )
such that

|LsÛ−s |Lip ≤ C‖U‖B0 .

�

Proof of Theorem 4.13 NowTheorem 4.13 can be proved using the same lines
as the proof of [2, Theorem 2.7] (see also [2, Section 8.2]). In particular, in
the proof of [2, Lemma 8.3], we use (8.3) to replace [2, Theorem 7.3] and
Proposition 4.11 (2) to relate the measures ν̂R and νR . �


9 Resonance-free region

Recall that� is a geometrically finite discrete subgroup inG = SO(d+1, 1)◦.
We begin by defining themeasuresmBR,mBR∗ andmHaar. Recall the definition
of the BMS measure on T1(Hd+1) ∼= ∂2(Hd+1) × R:

dm̃BMS(x, x−, s) = eδβx (o,x∗)eδβx− (o,x∗)dμ(x)dμ(x−)ds,

where x∗ is the based point of the unit tangent vector given by (x, x−, s). We
define the measures m̃BR, m̃BR∗ and m̃Haar on T1(Hd+1) ∼= ∂2(Hd+1) × R

similarly as follows:

dm̃BR(x, x−, s) = edβx (o,x∗)eδβx− (o,x∗)dmo(x)dμ(x−)ds;
dm̃BR∗(x, x−, s) = eδβx (o,x∗)eδβx− (o,x∗)dμ(x)dmo(x−)ds;
dm̃Haar(x, x−, s) = edβx (o,x∗)edβx− (o,x∗)dmo(x)dmo(x−)ds,

where mo is the unique probability measure on ∂(Hd+1) which is invariant
under the stabilizer of o in G.

Thesemeasures are all left�-invariant and inducemeasures onT1(�\H
d+1),

which we will denote by mBR, mBR∗ and mHaar respectively. Here we do not
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1016 J. Li, W. Pan

normalize the BMS measure to a probability measure, which is different from
the previous part.

By [36, Theorem 5.8], Theorem 1.1 implies exponential decay of matrix
coefficients.

Theorem 9.1 There exists η > 0 such that for any compactly supported func-
tions φ, ψ ∈ C1(T1(M)), we have

e(d−δ)t
∫

T1(M)

φ · ψ ◦ Gt dmHaar = mBR∗(φ)mBR(ψ)

mBMS(T1(M))
+ O(‖φ‖C1‖ψ‖C1e−ηt )

for all t > 0, where O depends on the supports of φ, ψ .

For x, y ∈ H
d+1 and T > 0, let

N (T, x, y) = #{γ ∈ � | d(x, γ y) ≤ T },
where d is the hyperbolic distance onH

d+1. In [33], it was shown that Theorem
9.1 implies the following:

Corollary 9.2 There exists η > 0 such that for any x, y ∈ H
d+1 and T > 0,

we have

N (T, x, y) = cx,ye
δT + O(e(δ−η)T ),

where cx,y > 0 is a constant depending on x, y.

Proof of Corollary 1.2 For x, y ∈ H
d+1 and s ∈ C with �s > δ, let Ps(x, y)

be the Poincaré series defined by

Ps(x, y) =
∑

γ∈�

e−sd(x,γ y).

We first prove that Ps(x, y) is meromorphic on�s > δ −η with a unique pole
s = δ. By Fubini’s theorem

Ps(x, y) =
∫ ∞

0

1

s
e−sT N (T, x, y)dT =

∫ ∞

0

1

s
e−(s−δ)T cx,ydT

+
∫ ∞

0

1

s
e−sT (N (T, x, y) − cx,ye

δT )dT .

The first part is ameromorphic function of s having a unique pole at s = δ. The
second part, it follows from Corollary 9.2 that it is absolutely convergence if
�s > δ−η, hence it is analytic on�s > δ−η. Thenweuse [21,Theorem7.3] to
deduce that the resolvent RM(s) is also analytic on {s ∈ C : δ−η < �s < δ}.

�
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10 Appendix: Proof of Lemma 6.9

Proof of Lemma 6.9 We divide into the cases when r lies in different intervals.
Let β = C

√
η.

• Case A: r ≤ ηh(p) By Lemma 5.7, we have |(γ −1)′x | = h(p)/d(x, p)2.
Using Lemma 6.7, we have

Nr (∂ Jp) ⊂ B(p, 2ηh(p)) − B(p, c4ηh(p)). (10.1)

Hence for x ∈ Nr (∂ Jp)

|(γ −1)′x | ∈ [1/(4η2h(p)), 1/(c24η
2h(p))].

Then

Nr/(4η2h(p))(∂γ −1 Jp) ⊂ γ −1Nr (∂ Jp) ⊂ Nr/(c24η
2h(p))(∂γ −1 Jp). (10.2)

Notice that ∂γ −1 Jp = ∂(BY (2/η)×Rp,η) and Rp,η is a parallelotope tiled

by the translations of �
′
0.

– Case A1: r ≤ η2h(p)
Recall that Lemma 5.29 is proved using Lemma 5.31. Using the
same argument, we obtain an analog of Lemma 5.29 for Nr (∂γ −1 Jp).
Using this version of Lemma 5.29 with ε = 4β/c24, the inequality
r/(4η2h(p)) < 1 and (10.2), we have

μ(γ −1Nβr (∂ Jp)) ≤ μ(Nβr/(c24η
2h(p))(∂γ −1 Jp))
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≤ λμ(Nr/(4η2h(p))(∂γ −1 Jp)) ≤ λμ(γ −1Nr (∂ Jp)).

Using Lemma 5.17, we obtain

μ(Nβr (∂ Jp))

μ(Nr (∂ Jp))
≤ C

μ(γ −1Nβr (∂ Jp))

μ(γ −1Nr (∂ Jp))
≤ Cλ,

where λ tends to zero as η tends to zero.
– Case A2: η3/2h(p) < r ≤ ηh(p)
We compute the measure by counting the number of translations of�0.
By (10.1) and Lemma 5.7, we obtain γ −1Nr (∂ Jp) ⊂ B(p′, 1/(c4η))−
B(p′, 1/(2η)). Let γ ′�0 be any fundamental domain contained in
γ −1Nr (∂ Jp) with γ ′ ∈ �∞. Using Lemma 5.18, we obtain that
μ(γ ′�0) ≈ η2δμ(�0). By Lemma 5.17, (10.2)

μ(Nβr (∂ Jp)) 
 h(p)δμ(Nβr/(c24η
2h(p))(∂γ −1 Jp)).

By counting the number of fundamental domains, we obtain that
the region Nβr/(c24η

2h(p))(∂γ −1 Jp) can be covered by (1/η)k−1 ·
(βr/(c24η

2h(p))) disjoint rectangles γ ′�0 with γ ′ ∈ �∞. So we have

μ(Nβr (∂ Jp)) 
 h(p)δ · (1/η)k−1 · (βr/(c24η2h(p))) · η2δμ(�0).

By Lemma 5.17, (10.2)

μ(Nr (∂ Jp)) � h(p)δμ(Nr/(4η2h(p))(∂γ −1 Jp)).

Meanwhile, as r/(4η2h(p)) ≥ 1/4η1/2, the number of rectangles γ ′�0
inside Nr/(4η2h(p))(∂γ −1 Jp) is greater than (1/η)k−1 · (r/(4η2h(p))).
Hence we have

μ(Nr (∂ Jp)) � h(p)δ · (1/η)k−1 · (r/(4η2h(p))) · η2δμ(�0).

Therefore,

μ(Nβr (∂ Jp) 
 βμ(Nr (∂ Jp)).

• Case B: η1/2h(p) ≤ r ≤ h(p)
We handle this case using (5.16). By Lemma 6.7 and the inequality
h(p)/2 > βr ≥ ηh(p), we have

μ(Nβr (∂ Jp)) ≤ μ(Jp ∪ Nβr (∂ Jp)) ≤ μ(B(p, ηh(p) + βr))
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≤ μ(B(p, 2βr)) 
 (2βr)2δ−kh(p)k−δ.

Meanwhile, we have

μ(Jp ∪ Nr (∂ Jp)) ≥ μ(B(p, r)) � r2δ−kh(p)k−δ.

Hence

μ(Nr (∂ Jp) − Nβr (∂ Jp))

μ(Nβr (∂ Jp))
= μ(Jp ∪ Nr (∂ Jp)) − μ(Jp ∪ Nβr (∂ Jp))

μ(Nβr (∂ Jp))

� r2δ−kh(p)k−δ − (2βr)2δ−kh(p)k−δ

(2βr)2δ−kh(p)k−δ
.

Therefore

μ(Nβr (∂ Jp)) 
 β2δ−kμ(Nr (∂ Jp)).

Now to prove (6.10) we consider η1/2r and r . Then one of them belongs to
(0, η2h(p))∪[η3/2h(p), ηh(p)]∪[η1/2h(p), h(p)]. Inequality (6.10) follows
from the observation that

μ(NCηr (∂ Jp))

μ(Nr (∂ Jp))
≤ min

{
μ(NCηr (∂ Jp))

μ(Nβr (∂ Jp))
,
μ(Nβr (∂ Jp))

μ(Nr (∂ Jp))

}

.
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17. Das, T., Fishman, L., Simmons, D., Urbański, M.: Extremality and dynamically defined
measures, part ii: measures from conformal dynamical systems. Ergodic Theory Dyn. Syst.
41(8), 2311–2348 (2021)

18. Dolgopyat, D.: On decay of correlations in Anosov flows. Ann. Math. (2) 147(2), 357–390
(1998)

19. Edwards, S.,Oh,H.: Sepctral gap and exponentialmixing on geometrically finite hyperbolic
manifolds. Duke Math. J. 170, 3417–3458 (2021)

20. Flaminio, L., Spatzier, R.J.: Geometrically finite groups. Patterson–Sullivan measures and
Ratner’s ridigity theorem. Invent. Math. 99(1), 601–626 (1990). https://doi.org/10.1007/
BF01234433

21. Guillarmou, C., Mazzeo, R.: Resolvent of the Laplacian on geometrically finite hyperbolic
manifolds. Inventionesmathematicae 187, 99–144 (2012). https://doi.org/10.1007/s00222-
011-0330-y

22. Guillopé, L., Lin, K.K., Zworski, M.: The Selberg zeta function for convex co-compact
Schottky groups. Commun. Math. Phys. 245(1), 149–176 (2004). https://doi.org/10.1007/
s00220-003-1007-1

23. Jordan, T., Sahlsten, T.: Fourier transforms of Gibbs measures for the Gauss map. Math.
Ann. 364(3–4), 983–1023 (2016)

24. Kapovich, M.: Hyperbolic Manifolds and Discrete Groups. Birkhäuser, Boston (2010)
25. Kelmer, D., Oh, H.: Exponential mixing and shrinking targets for geodesic flow on geo-

metrically finite hyperbolic manifolds. J. Mod. Dyn. 17, 401–434 (2021)
26. Khalil, O.: Mixing, resonances, and spectral gaps on geometrically finite locally symmetric

spaces. Preprint: http://www.math.utah.edu/~khalil/publications/mixing.pdf
27. Kloeckner,B.R.: Extensionswith shrinkingfibers, ErgodicTheory andDynamical Systems,

pp. 1–40. https://doi.org/10.1017/etds.2020.22
28. Lax, P.D., Phillips, R.S.: The asymptotic distribution of lattice points in Euclidean and non-

Euclidean spaces. J. Funct. Anal. 46(3), 280–350 (1982). https://doi.org/10.1016/0022-
1236(82)90050-7

29. Li, J., Pan, W., Sarkar, P.: Exponential mixing of frame flows for geometrically finite
hyperbolic manifolds with cusps. Preprint (2022)

30. Li, J.: Fourier decay, renewal theorem and spectral gaps for randomwalks on split semisim-
ple Lie groups. arXiv:1811.06484, to appear in Annales scientifiques de l’Ecole normale
supérieure

123

https://doi.org/10.1007/s11856-017-1477-z
https://doi.org/10.1007/s11856-017-1477-z
https://doi.org/10.1088/0951-7715/17/5/006
https://doi.org/10.1515/crll.1998.037
https://doi.org/10.1007/BF01234433
https://doi.org/10.1007/BF01234433
https://doi.org/10.1007/s00222-011-0330-y
https://doi.org/10.1007/s00222-011-0330-y
https://doi.org/10.1007/s00220-003-1007-1
https://doi.org/10.1007/s00220-003-1007-1
http://www.math.utah.edu/~khalil/publications/mixing.pdf
https://doi.org/10.1017/etds.2020.22
https://doi.org/10.1016/0022-1236(82)90050-7
https://doi.org/10.1016/0022-1236(82)90050-7
http://arxiv.org/abs/1811.06484


Exponential mixing of geodesic flows 1021

31. Ledrappier, F., Sarig, O.: Fluctuations of ergodic sums for horocycle flows on Z
d -covers

of finite volume surfaces. Discrete Contin. Dyn. Syst. 22(1–2), 247–325 (2008)
32. Margulis, G., Mohammadi, A., Oh, H.: Closed geodesics and holonomies for Kleinian

manifolds. GAFA 24, 1608–1636 (2014)
33. Mohammadi, A., Oh, H.: Matrix coefficients, counting and primes for orbits of geometri-

cally finite groups. J. Eur. Math. Soc. 17, 837–897 (2015)
34. Naud, F.: Expanding maps on Cantor sets and analytic continuation of zeta functions.

Annales scientifiques de l’Ecole normale supérieure 38, 116–153 (2005)
35. Oh, H., Shah, N.: Equidistribution and counting for orbits of geometrically finite hyperbolic

groups. J. Am. Math. Soc. 26(2), 511–562 (2013)
36. Oh, H., Winter, D.: Uniform exponential mixing and resonance-free regions for convex

cocompact congruence subgroups of SL2(Z). J. Am. Math. Soc. 29(4), 1069–1115 (2015).
https://doi.org/10.1090/jams/849

37. Otal, J.-P., Peigné, M.: Principe variationnel et groupes kleiniens. Duke Math. J. 125(1),
15–44 (2004)

38. Patterson, S.J.: The limit set of a Fuchsian group. Acta Math. 136, 241–273 (1976)
39. Patterson, S.J.: On a lattice-point problem in hyperbolic space and related questions in

spectral theory. Ark. Mat. 26(1–2), 167–172 (1988). https://doi.org/10.1007/BF02386116
40. Ratcliffe, J.: Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics, 149.

Springer, New York (2006)
41. Ratner,M.:Markov partitions forAnosov flows on n-dimensionalmanifolds. Israel J.Math.

15, 92–114 (1973)
42. Roblin, T.: Ergodicité et équidistribution en courbure négative.M’em. Soc.Math. Fr. (N.S.),

(95):vi+96 (2003)
43. Rudolph, D.: Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite

hyperbolic manifold. Ergodic Theory Dyn. Syst. 2(3–4), 491–512 (1982)
44. Sarkar, P., Winter, D.: Exponential mixing of frame flows for convex cocompact hyper-

bolic manifolds. Compositio Math. 157(12), 2585–2634 (2021). https://doi.org/10.1112/
S0010437X21007600

45. Stadlbauer,M.: The return sequence of theBowen-Seriesmap for punctured surfaces. Fund.
Math. 182, 221–240 (2004)

46. Stratmann, B., Velani, S.L.: The Patterson measure for geometrically finite groups with
parabolic elements, new and old. Proc. Lond.Math. Soc. s3–71(1), 197–220 (1995). https://
doi.org/10.1112/plms/s3-71.1.197

47. Stoyanov, L.: Spectra of Ruelle transfer operators for axiom A flows. Nonlinearity 24(4),
1089–1120 (2011)

48. Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes
Études Sci. Publ. Math. 50, 171–202 (1979)

49. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically
finite Kleinian groups. Acta Math. 153, 259–277 (1984)

50. Tsujii, M., Zhang, Z.: Smooth mixing Anosov flows in dimension three are exponential
mixing. arXiv:2006.04293, to apper in Annals of Mathematics

51. Young, L.-S.: Statistical Properties of Dynamical Systems with Some Hyperbolicity. Ann.
Math. 147(3), 585–650 (1998). https://doi.org/10.2307/120960

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123

https://doi.org/10.1090/jams/849
https://doi.org/10.1007/BF02386116
https://doi.org/10.1112/S0010437X21007600
https://doi.org/10.1112/S0010437X21007600
https://doi.org/10.1112/plms/s3-71.1.197
https://doi.org/10.1112/plms/s3-71.1.197
http://arxiv.org/abs/2006.04293
https://doi.org/10.2307/120960

	Exponential mixing of geodesic flows for geometrically finite hyperbolic manifolds with cusps
	Abstract
	1 Introduction
	1.1 Exponential mixing of the geodesic flow
	1.2 Resonance-free region
	1.3 On the proof of the main theorem

	2 Preliminary of hyperbolic spaces and PS measure
	2.1 Hyperbolic spaces
	2.2 Geometrically finite discrete subgroups
	2.3 Structure of cusps
	2.4 PS measure and BMS measure

	3 Reduction to Zariski dense case
	4 The geodesic flow and the boundary map
	4.1 A semiflow over hyperbolic skew product
	4.2 Exponential mixing of geodesic flow

	5 Parabolic fixed points and measure estimate
	5.1 Explicit computation
	5.2 Multi-cusps
	5.3 Doubling property of PS measure
	5.4 Friendliness of PS measure

	6 Coding of limit set
	6.1 Coding for local regions
	6.2 Coding for Δ0
	6.3 Separation
	6.4 Equivalence classes in Qn
	6.5 Auxiliary sets An and Bn in Ωn
	Bn and cusps
	Parabolic fixed points, Bn and different generations

	6.6 Energy exchange argument
	6.7 Exponential tail
	6.8 Coding for multi-cusps
	6.9 Verifying UNI

	7 Spectral gap and Dolgopyat-type spectral estimate
	7.1 Twisted transfer operators
	7.2 Cancellation lemma
	7.3 Invariance of cone condition
	7.4 L2 contraction for bounded iterations
	7.5 Proof of Proposition 7.3

	8 Exponential mixing
	9 Resonance-free region
	Acknowledgements
	10 Appendix: Proof of Lemma 6.9
	References




