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Abstract Let I" be a geometrically finite discrete subgroup in SO(d + 1, 1)°
with parabolic elements. We establish exponential mixing of the geodesic flow
on the unit tangent bundle T! (I"\H?*!) with respect to the Bowen—Margulis—
Sullivan measure, which is the unique probability measure on T'(I'\H¢*+1)
with maximal entropy. As an application, we obtain a resonance-free region
for the resolvent of the Laplacian on I'\H¢*!. Our approach is to construct a
coding for the geodesic flow and then prove a Dolgopyat-type spectral estimate
for the corresponding transfer operator.

1 Introduction
1.1 Exponential mixing of the geodesic flow

Let H?*! be the hyperbolic (d + 1)-space. Let G = SO(d + 1, 1)°, which
is the group of orientation preserving isometries of H?*! Let ' < G be
a non-elementary, torsion-free, geometrically finite discrete subgroup with
parabolic elements. Denote by § the critical exponent of I', which is defined
as the abscissa of convergence of the Poincaré series Zy T ¢34 Set
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M = F\Hd+1, so M contains cusps. We consider the geodesic flow (G;);er
acting on the unit tangent bundle T! (M) over M. The invariant measure for
the flow we will work with is the Bowen—Margulis—Sullivan measure mBMS,
which is supported on the non-wandering set of the geodesic flow and is known
to be the unique probability measure with maximal entropy & [37].

Our main result is establishing exponential mixing of the geodesic flow.

Theorem 1.1 The geodesic flow is exponentially mixing with respect to mBMS :

there exists 1 > 0 such that for any functions ¢, € C'(TY(M)) and any
t > 0, we have

/TI(M) ¢ . lﬁ ) g, deMS — mBMS((p)mBMS(w) + 0(”¢”Cl ”w”CIe—m)’

where || - || c1 is the C Lnorm with respect to the Riemannian metric on TV(M).

For a geometrically finite discrete subgroup I', Sullivan [49] proved the
ergodicity of the geodesic flow with respect to mBMS and Rudolph [43] proved
that the geodesic flow is mixing with respect to mBMS. When 8 > d/2, The-
orem 1.1 was proved by Mohammadi—Oh [33] and Edwards—Oh [19] using
the representation theory of L2(M) and the spectral gap of Laplace operator
[28]. When I" is convex cocompact, i.e., geometrically finite without parabolic
elements, Theorem 1.1 and its corollaries were proved by Naud [34], Stoyanov
[47] and Sarkar—Winter [44] building on the work of Dolgopyat [18]. There-
fore, the main contribution of our work lies in the groups with small critical
exponent and with parabolic elements, completing the story of exponential
mixing of the geodesic flow on a geometrically finite hyperbolic manifold.

Using Roblin’s transverse intersection argument [35,36,42], we obtain the
decay of matrix coefficients (Theorem 9.1) from Theorem 1.1. Theorem 1.1
and 9.1 are known to have many immediate applications in number theory
and geometry. To name a few, see [32] for counting closed geodesics, [25] for
shrinking target problems and [7] for some general counting results.

1.2 Resonance-free region

Recall M = I'\H¢*!. Consider the Laplace operator Ay, on M. Lax and
Phillips completely described its spectrum on L?(M) when M has infinite
volume [28]. The half line [d? /4, 00) is the continuous spectrum and it contains
no embedded eigenvalues. The rest of the spectrum (point spectrum) is finite
and starting at §(d/2 — §) if 6 > d/2 and is empty if § < d/2. Let S be the
set of eigenvalues of As. The resolvent of the Laplacian

Ryu(s) = (Ay —s(d —s)"' 1 L2(M) — L*(M)

@ Springer



Exponential mixing of geodesic flows 933

is well-defined and analytic on{Ns > d/2, s(d — s) ¢ S}. Guillarmou and
Mazzeo showed that Rys(s) has a meromorphic continuation to the whole
complex plane as an operator from C°(M) to C*°(M) with poles of finite
rank [21]. These poles are called resonances. Patterson showed that on the line
Ns = 4, the point s = § is the unique pole of I'(s — % + 1Ry (s) and it
is a simple pole [39]. We use Theorem 1.1 to further obtain a resonance-free
region.

Theorem 1.2 There exists n > 0 such that on the half-plane Ns > 6—n,s = §
is the only resonance for the resolvent Ry (s) if § ¢ d/2 — Nx1; otherwise,
Ry (s) is analytic on Rs > & — n.

In the convex cocompact case, a resonance-free region of the resolvent is
closely related to a zero free region of the Selberg zeta function. But in the
geometrically finite case, such relation is not well understood except for the
surface case.

1.3 On the proof of the main theorem

The proof of Theorem 1.1 can be reduced to the case when I' is Zariski dense
and then the proof falls into two parts: we code the geodesic flow and prove
a Dolgopyat-type spectral estimate for the corresponding transfer operator.
Ultimately, the obstructions to applying Dolgopyat’s original argument in our
context are purely technical, but to overcome these obstructions in any context
is the heart of the matter.

To prove exponential mixing using the symbolic-dynamic approach of Dol-
gopyat, one approach is to construct a section to the flow. In sum, one seeks a 2d
submanifold S in T!(M) transversal to the geodesic flow which is a Poincaré
section, on which the return map can be tightly organized. The challenge lies
in that it is required to find a return map R defined on a full measure subset
So of S, such that the map F(v) := Grw)(v), v € Sp, on Sy is hyperbolic and
can be modelled on a full shift of countable many symbols.

We overcome this difficulty by connecting the return map on Sp to an expand-
ing map on the boundary 9HY+!. The precise description of the expanding
map on the boundary is as follows. We consider the upper-half space model
for HY+! and without loss of generality, we may assume that oo is a parabolic
fixed point of I'. Let Stabs, (I") be the group of stabilizers of co in I' and '
be a maximal normal abelian subgroup in Stabs,(I"). Set Ag := Ay to be a
fundamental domain of 'y in JH4 ! \{oco} (see Sect. 2.3 for details). Denote
by Ar the limit set of I' and p the Patterson—Sullivan measure, which is a
finite measure supported on Ar.
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Proposition 4.1 There are constants C; > 0, A, g € (0, 1), a countable
collection of disjoint, open subsets {A}jen in Ao and an expanding map
T :UjA; — Ao such that:

132 (A ) = n(Ao).

2. Foreach j, there is an element yj € T such that Aj = yjAgand T|a; =
y; .

3. Each yj is a uniform contraction: |)/j’. (x)| < Aforall x € Ao.

4. For each yj, |D(log |yj/.|)(x)| < Cy forall x € Ay, where D(log |yjf|)(x) is
the differential of the map z — log |ny ()] at x.

5. Let R be the function on UjA; given by R(x) = log|DT (x)|. Then
[e“Rdp < oco.

The last property is known as the exponential tail property. Moreover, we
show that the coding satisfies the uniform nonintegrable condition (UNI)
(Lemma 4.5). We use Proposition 4.15 as a bridge to connect the geodesic
flow (G¢);er on TH(M) and the expanding map 7 on Ag. We show that the
geodesic flow is a factor of a hyperbolic skew product flow constructed using
T.

The construction of the coding starts with the following observation: locally,
in a neighborhood of a parabolic fixed point, we can use the structure of the
parabolic fixed points to find a “flower” centered at this parabolic fixed point,
and the “flower” can be partition into a countable union of open sets of the form
¥ (Ap) for some y € I'. Once we have the algorithm to find the partition for
local regions, we still face the question of how to patch these flowers together.
We introduce an inductive algorithm to find pairwise disjoint flowers.

But the bulk of the work lies in proving the exponential tail property. We
show that this follows from Proposition 6.15 which says that the measure of
the set that has not been partitioned at time n decays exponentially. At the
time n, the remaining part is a sheet with many holes, consisting of “flowers”;
while the Patterson—Sullivan measure is a measure supported on the fractal
limit set, and we have limited knowledge of the regularity of this measure. It is
interesting to figure out how to use minimal tools to get the required estimate.

When the non-wandering set of the geodesic flow is compact, the coding is
well-studied and we have, for example, the Bowen—Series’ coding [6], Bowen’s
coding [9] and Ratner’s coding [41]. When manifolds contain cusps, only
some partial knowledge is available. Dal’bo—Peigné [15,16] and Babillot—
Peigné [3] provided the coding for generalized Schottky groups. Stadlbauer
[45] and Ledrappier-Sarig [31] provided the coding for non-uniform lattices
in SO(2, 1)°. They made use of the fact that such a discrete subgroup is a free
group and has a nice fundamental domain in HZ. Our coding works for general
geometrically finite discrete subgroups with parabolic elements and is partly
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inspired by the works of Lai—Sang Young [51] and Burns—Masur—Matheus—
Wilkinson [11].

In a forthcoming joint work with Sarkar [29], we establish the exponen-
tial mixing for frame flows on geometrically finite hyperbolic manifolds with
cusps. We prove this by using the coding of the geodesic flow constructed in
this paper and then performing a frame flow version of Dolgopyat’s method.
The crucial cancellations of the summands of the transfer operators twisted
by holonomy are obtained from the local non-integrability condition and the
non-concentration property of Sarkar—Winter [44]. But the challenge in the
presence of cusps is that the latter holds only on a certain good subset. This is
resolved by a large deviation property for symbolic recurrence to the good sub-
set, which is inspired by the work of Tsujii—Zhang [50]. Itis proved by studying
the combinatorics of cusp excursions and showing an effective renewal the-
orem, as in the work of Li [30], which uses the spectral gap of the transfer
operator for the geodesic flow in Proposition 7.3.

In [22], using the coding of Schottky groups, Guillopé—Lin—Zworski were
able to study the Selberg zeta function through a dynamical zeta function.
They gave a simple proof of the analytic continuation and a growth estimate
of the Selberg zeta function. Hopefully, the coding constructed in our work
will be helpful in the study of the Selberg zeta function for higher dimensional
geometrically finite manifold.

Other applications include the Fourier decay of the Patterson—Sullivan mea-
sure. In [4], Bourgain—Dyatlov proved Fourier decay of Patterson-Sullivan
measures for convex cocompact Fuchsian groups. The first step of their proof
is to use the coding of the limit set to construct an appropriate transfer operator.
With our coding available, it is very likely to generalize the Fourier decay to
geometrically finite discrete subgroups with parabolic elements.

Our proof of obtaining a Dolgopyat-type spectral estimate is influenced by
the one in [1,2,5,18,34,47]. The key of Dolgopyat’s approach is to estimate
the decay of certain oscillatory integrals against the fractal Patterson-Sullivan
measure: for function f of the form ) jeJ exp(ibtj(x)), where b is a real

number, 7; € C?%(Ag) and J is some index set, we have | f f du|is bounded by
some negative power of |b|. We successfully attain this estimate by combining
dynamics and the regularity properties of the Patterson—Sullivan measure,
which we think are the essential ingredients to gain the decay.

Another possible argument is to analyze each [ exp(ibt;) du and show the
decay. Such a result is known as the Fourier decay of the Patterson—Sullivan
measure. This is especially challenging when the critical exponent & is small.
In [23], Jordan—Sahlsten proved the Fourier decay of some fractal measures.
Their idea is to approximate the fractal measure by the Lebesgue measure and
use the Fourier decay of the Lebesgue measure, which is well-studied. But
this approximation is sensitive to the Hausdorff dimension of the fractal sets.
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A similar idea also appears in a preprint by Kahlil [26]. It is unclear whether
their approach provides an alternative way to establish the Fourier decay of
fractal measures without dimension restriction.

There are works trying to use anisotropic Banach spaces to prove expo-
nential mixing. The key is to show there exists € > 0 such that the strip
{—e < Ns < 0} is free of Pollicott—Ruelle resonances. For a geometrically
finite discrete subgroup with the critical exponent § < d/2, it might happen
that there are resonances with large imaginary parts and real parts close to
zero. Recently, there is a work in progress of Gou&zel-Tapie—Schapira on the
Pollicott—Ruelle resonances for SPR manifolds, which include geometrically
finite manifolds. They show the resonances are discrete, but it is not clear
whether one can use this property to attain the required resonance-free region.

Organization of the paper.

e In Sect. 2, we gather the basic facts and preliminaries about hyperbolic
spaces, geometrically finite discrete subgroups, the structure of cusps,
Patterson-Sullivan measure, and Bowen—Margulis—Sullivan measure.

e In Sect. 3, we prove that Theorem 1.1 can be reduced to Zariski dense case.

e In Sect. 4, we state the results of the coding (Proposition 4.1, Lemma 4.5,
4.8). We construct a hyperbolic skew product flow and state the result that it
is exponential mixing (Theorem 4.13). We show that the geodesic flow on
T (M) is a factor of this hyperbolic skew product flow (Proposition 4.15)
and deduce the exponential mixing of the geodesic flow from Theorem
4.13.

e In Sect. 5, we provide an explicit description of the action of an element
y € I on dHY+! and the estimate on the norm of the derivative of y (Sect.
5.1). We list the basics for the multi-cusp case (Sect. 5.2). The doubling
property and the friendliness of Patterson-Sullivan measure are proved in
Sects. 5.3 and 5.4.

e In Sect. 6, we start with the construction of the coding for one cusp case,
which is also the first step for multi-cusp case. The main result is expo-
nential decay of the remaining set (Proposition 6.15). Section 6.3—6.6 are
devoted to the proof the Proposition 6.15. The coding for the multi-cusp
case will be provided in Sects. 6.7 and 6.8. The results of the coding (Propo-
sition 4.1, Lemma 4.5, 4.8) will be proved in Sect. 6.7-6.9.

e In Sect. 7, we prove a Dolgopyat-type spectral estimate for the correspond-
ing transfer operator and the main result is an L?-contraction proposition
(Proposition 7.3).

e In Sect. 8, we finish the proof of Theorem 4.13.

e In Sect. 9, we prove the application of obtaining a resonance-free region
for the resolvent Ry;(s) (Theorem 1.2).
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Notation. In the paper, given two real functions f and g, we write f < g
if there exists a constant C > 0 only depending on I" such that f < Cg. We
write f ~gif f K gand g K f.

2 Preliminary of hyperbolic spaces and PS measure
2.1 Hyperbolic spaces

We will use the upper-half space model for H*!:

d+1 d+1 .
H+ :{x:(xl,...,xd+1)eR+ .xd+1>0}.

Leto = (0,...,0,1) € H*! For x € H4*!, write h(x) for the height of the
point x, which is the last coordinate of x. The Riemannian metric on H*! is
given by

2 2
ds? dxy +---+dxg,,
x2 .
d+1

Let 9HYt! be the visual boundary. On dH¢t! = R¢ U {oo}, we have the
spherical metric, denoted by dga (-, -). We also have the Euclidean metric,
denoted by dg (x, x) or |x — x’| for any x, x’ € dH*!. This metric will be
used most frequently; we will simply write d (-, -) when there is no confusion.

For g € G, it acts on dH4*! conformally. For x € 9HYH!, let |g’(x)| be the
linear distortion of the conformal action of g at x with respect to the Euclidean
metric. It is also the norm of the derivative seen as a linear map on tangent
spaces. Let |g’(x)|s«s be the norm with respect to the spherical metric. We have
the relation

) x>,
lg" (x)|ga = Tg}dﬂg (). (2.1
Another formula for |g"(x)|ga is
—ﬂx(g_lo,o)’

|g,(x)|sd =e
where By (-, -) is the Busemann function given by B, (z, z’) = lim;_, 4 o0 d(z, X;)
—d(7Z/, x;) with x, an arbitrary geodesic ray tending to x.

We denote H*! U aH?*! by Hd+!.
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2.2 Geometrically finite discrete subgroups

Let I" be a torsion-free, non-elementary discrete subgroup in G. We list some
basics of geometrically finite discrete subgroups.

The limit set of I" is the set Ar of all the accumulation points of an orbit
I'x for some x € HYH!. As we assume I is torsion-free, Ar is contained in
dHI*!. The convex hull, hull(Ar), of Ar is the smallest convex subset in
H4+! which contains all the geodesics connecting any two distinct points of
Ar. The convex core of M is C(M) = I'\hull(Ar) C M.

A limit point x € Ar is called conical if there exists a geodesic ray tending
to x and a sequence of elements y,, € I" such that y,,0 converges to x, and the
distance between y,,0 and the geodesic ray is bounded. A subgroup I’ of T is
called parabolic if I"” fixes only one point in dH“*+!. A point x € Ar is called a
parabolic fixed point if its stabilizer in I, Stabr(x), is parabolic. A parabolic
fixed point is called bounded parabolic if the quotient Stabr (x)\(Ar — {x})
is compact.

A horoball based at x € dHYH! is the set {y € HH' : B.(y,0) < 1}
for some ¢ € R. The boundary of a horoball is called a horosphere. We call
a horoball H based at a parabolic fixed point x € Ar a horocusp region, if
we have yH N H = () for any y € I' — Stabr(x). Then the image of H in
M under the quotient map, I'\I" H, is isometric to Stabr(x)\ H and is called
a proper horocusp of M.

Definition 2.2 (Geometrically finite discrete subgroup [8,40]) A non
-elementary discrete subgroup I' < SO(d + 1, 1)° is called geometrically
finite if it satisfies one of the following equivalent conditions:

(i) There is a (possibly empty) finite union V' of proper horocusps of M,
with disjoint closures, such that C(M) — V is compact.
(i) Every limit point of I" is either conical or bounded parabolic.

2.3 Structure of cusps

Assume that I is a geometrically finite discrete subgroup with parabolic ele-
ments and oo is a parabolic fixed point of I". Let F;o = Stabr(c0) be the
parabolic subgroup of I' fixing co. Then F;o acts on RY, part of 9H?*!, iso-
metrically with respect to the Euclidean metric. The following is a result of
Bieberbach (see [21, Page 5] or [8, Section 2.2]).

Lemma 2.3 (Bieberbach) Consider the action of T, on R?. Then there exist
a maximal normal abelian subgroup I'so C F;,o of finite index and an affine
subspace Z C RY of dimension k, invariant under I, such that T« acts

as a group of translations of rank k on Z. IfR? = Y x Z is an orthogonal
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Exponential mixing of geodesic flows 939

decomposition, with Y =~ R and associated coordinates (v, z), then we
. / .
can write each element y € I"  in the form

y(,2) = (Ayy, R,z +by), b, eRF, A, € O(n—k), R, € O(k)

where for each vy, RJ’f’ = Id for somem € N, withm = 1 ify € Nx.

The dimension k is called the rank of the parabolic fixed point co.

Fix an orthogonal decomposition R = ¥ x Z ~ R4~* x R¥. As 'y, acts on
R¥ as a group of translations, it admits a fundamental region A’ which is an
open k-dimensional parallelotope in R¥. Since I' is geometrically finite, oo is
a bounded parabolic fixed point. By definition, the quotient I',_\ (Ar — {o0})
is compact; the quotient I'oo\ (AT — {o0}) is also compact as ' is a finite
index subgroup of ', . Therefore, there exists a constant C > 0 such that the
set By(C) = {y € RA—k . |ly| < C}in R?—* has the property that Fig. 1

Ar C {00} U (uyepmy (By(C/Z) x Ago)) .

Definition 2.4 We call the open set Ay, := By(C) x AL, a fundamental
region for the parabolic fixed point co.

2.4 PS measure and BMS measure

Patterson—Sullivan measure. Recall § is the critical exponent of I'. Patterson
[38] and Sullivan [48] constructed a I'-invariant conformal density {i} yeHd+!
of dimension § on Ar, which is a set of finite Borel measures such that for
any y,z € Ht! x e 9H ! and y €T,

duy
du;

(x) = e %P2 and (V)xlby = [yy, (2.5)

where yyy (E) = 1y (y ~'E) for any Borel subset E of 9 H¢+!. This family of
measures is unique up to homothety, and the action of I on dH?*! is ergodic
relative to the measure class defined by these measures (Fig. 1).

As 11y’s are absolutely continuous with respect to each other, for most of the
paper, we will consider 1, and denote it by u for short. We call it the Patterson—
Sullivan measure (or PS measure). The following quasi-invariance property
of the PS measure will be frequently used: for any Borel subset E of dH?*!
andany y €T,

u(yE) = fE ly ()2 dp(x). (2.6)
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RQ

Al

(oo}

Fig. 1 Here oo is a parabolic fixed point of rank 2 in dH*. The intersection Ar N R3 has
bounded distance to R?

Bowen-Margulis—Sullivan measure. Let 8% (HYt!) = 9H*! x gHIt! —
Diagonal. The Hopf parametrization of T!(H¢*!) as 92(H*!) x R is given
by

V> (X,X_,S = ﬂx(07 U*)),

where x (resp. x_) is the forward endpoint (resp. backward) endpoint of v
under the geodesic flow, and v, € H¢*+! is the based point of v. The geodesic
flow on T! (H*1) is represented by the translation on R-coordinate.

The Bowen—Margulis—Sullivan measure (or BMS measure) on T {4+
is defined by

dmBMS (x| x_, 5) = x (0% x(0XI)q ) (x)dp(x_)ds,

where x, is the based point of the unit tangent vector given by (x, x_, s). Itis
invariant under the geodesic flow G; from the definition. The group I' acts on
3?(HI*1) x R by

y(x,x_,8) = (yx, yx_,s — Bx(o, y o).

This formula, together with (2.5), implies that 77#2BMS is left I"-invariant; hence

mBMS induces a measure mBMS on T! (M), which is the Bowen—Margulis—
Sullivan measure on T!(M). For geometrically finite discrete subgroups,
Sullivan showed that mBMS is finite and ergodic with respect to the action
of the geodesic flow [49]. Otal and Peigné showed that mBMS g the unique
measure supported on the non-wandering set of the geodesic flow with maxi-

mal entropy 8 [37]. After normalization, we suppose that m®MS is a probability
measure.
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Exponential mixing of geodesic flows 941

3 Reduction to Zariski dense case

The group SO(d + 1, 1) is Zariski closed and connected and the subgroup
SO(d + 1, 1)° is its analytic connected component containing identity. For a
subgroup I' of SO(d + 1, 1)°, it is said to be Zariski dense in SO(d + 1, 1)° if
it is Zariski dense in SO(d + 1, 1). The proof of Theorem 1.1 can be reduced
to Zariski dense case.

Theorem 3.1 Assume that I' < SO(d + 1, 1)° is a Zariski dense, torsion-
free, geometrically finite subgroup with parabolic elements. The geodesic flow
(G)ier on TV (M) is exponentially mixing with respect to mPMS: there exists

n > 0 such that for any functions ¢, ¥ € CH(T'(M)) and any t > 0, we have
/ YOG dm®M = mPMS (@) mPM ) + O gllci v llcre™).
T (M)

From Theorem 3.1 to Theorem 1.1 Suppose I' is not Zariski dense. Let H be
the Zariski closure of I" in SO(d + 1, 1) and let H; be the Zariski connected
component of H containing the identity. Let I'y = I' N H;. Then I'; is a finite
index subgroup of I" and the Zariski closure of I' is H;. We will only consider
"1 because the exponential mixing of I" follows from the same statement for
I'1 by taking covering space.

Let H, be the analytic connected component of H; containing identity. Since
I" is non-elementary, the group H, doesn’t fix any point on the boundary. By a
classicresult (see [ 14] for example), up to conjugacy, H, preserves a hyperbolic
subspace H" with m < d and the restriction of H, to H"™ contains SO(m, 1)°
with compact kernel. Preserving subspace is a Zariski closed condition, we
know that H; also preserves H™ and the restriction of H; to H™ satisfies
the same properties as H,. Since I' is a torsion free discrete subgroup, the
restriction map I'j — I'y|gr is injective. Then the Zariski closure of I'y|gm
also contains SO(m, 1)°. At most passing to an index 4 subgroup, we can
suppose that I'{ | is a subgroup of SO(m, 1)°. Hence I'{ = is Zariski dense
in SO(m, 1)° and geometrically finite. (Definition 2.2 (2) implies that I'1 |y is
still geometrically finite.) The BMS measure mPMS of I'; on the unit tangent
bundle I';1\ T! H?*! is actually supported on I';\ T! H”, which is the Zariski
dense case. O

4 The geodesic flow and the boundary map
For the rest of the paper, our standing assumption is

I' < G Zariski dense, torsion-free, geometrically finite with parabolic elements

and oo is a parabolic fixed point of T
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Let Ag := A be a fundamental region for the parabolic fixed point co
described in Sect. 2.3. In Sect. 6, we will construct a coding of the limit set
satisfying the following properties.
Proposition 4.1 There are constants C; > 0, A, €9 € (0, 1), a countable
collection of disjoint, open subsets {A}jen in Ao and an expanding map
T :uUjA; — Ag such that:
1. Zj n(Aj) = u(Ao).
2. For each j, there is an element y; € I such that A j = y;Ag and T|Aj =
—1
Vi -
3. Each y; is a uniform contraction: |)/J/. (x)] < Aforall x € Ag.
4. Foreach yj, |D(log |y]’.|)(x)| < Cy forall x € Ay, where D(log |)/Jf|)(x) is
the differential of the map 7 — log |yj’. (2)| at x.
5. Let R be the function on U;A; given by R(x) = log|DT (x)|. Then
i e“oRdp < oo.
Denote by H = {y;} jen the set of inverse branches of T'. The last property is
known as the exponential tail property and we will prove another form instead:

DI < oo, (4.2)

yeH

where [y'[oc = Sup,ca, |¥'(x)|. Proposition 4.1 (5) can be deduced from
(4.2) by separating the integral to the sum of integrals over A; and using
quasi-invariance of PS measure.

Using Proposition 4.1, it can be shown that there exists a 7-invariant ergodic
probability measure v on Ay which is absolutely continuous with respect to PS
measure and the density function fj is a positive Lipschitz function bounded
away from 0 and oo on Ag N Ar (see for example [51, Lemma 2]).

The coding satisfies uniform nonintegrable condition (UNI). Let

Ry(x):= > R(T*(x)) for x with TX(x) € ;A
0<k=<n-—1
forall 0 <k <n-1,

H" ={yj, v, Vi € H for 1 <k <n}.
For y € H", we have R, (yx) = —log|y’(x)|. Set
Cr=C1/(1 —A). 4.3)
Then by Proposition 4.1 (3) and (4), we obtain for any y € H,,,

sup [D(log [y (x)| < Ca. (4.4)

XEAQ
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Lemma 4.5 (UNI) There exist r > 0 and €9 > 0 such that for any C > 1
the following holds for any large n. There exist jo € N and {y,j : 1 <m <
2,1 < j < jo}in Hp, such that for any x € Ar N Ao and any unit vector
e € RY there exists j < jo such that forall y € B(x, r)

[0e(T1j — 12,) (V)] = €0, (4.6)
where Ty j(x) = Ry, (Ymjx). Moreover, for all m, j,
IDTijloo < Cas [Vjloo < €0/C. 4.7)

The expanding map in the coding gives a contracting action in a neighbor-
hood of co.

Lemma 4.8 There exist 0 < A < 1 and a neighbourhood A_ of oo in Ar
such that A _ is disjoint from A and for any y € H and any y,y' € A_,

yHAD) AL, dsa(y Ty, yTY) < ddsa (v, Y). (4.9)

The proofs of these results will be postponed to Sect. 6. Proposition 4.1 and
Lemma 4.8 will be proved at the end of Sect. 6.8 and Lemma 4.5 will be proved
in Sect. 6.9.

4.1 A semiflow over hyperbolic skew product

Hyperbolic skew product. We construct a hyperbolic skew product using
Lemma4.8.Let AL = ArN (uj AJ-) and A_ be given as Lemma 4.8. Define

the map T on AL X A_ by

T(x,x-) = (y; %, y;'x2) for (x,x2) € Ay x A_ with x € A},
(4.10)

where y; is given as in Proposition 4.1 (2). Lemma 4.8 implies yIA_ C A
for any y € H. So T is well-defined.

Let p : AL x A_ — A be the projection to the first coordinate. This
gives rise to a semiconjugacy between T and T. We equip Ay X A_ with the
metric

d((x,x2), (x',x)) =dg(x,x") + dga(x_, x").

(4.9) implies that the action of T on the fibre {x} x A_ is contracting. Using
this observation,we obtain
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Proposition 4.11 [. There exists a unique T -invariant, ergodic probability
measure b on Ay X A_ whose projection to A, is v.
2. We have a disintegration of v over v: for any continuous function w on

A+ X A_,
/ wdd =/ / wdvy (x_)dv(x).
A+XA_ A+ —

Moreover, there exists C > 0 such that for any Lipschitz function w on
A4 X A_, defining w(x) = fwdvx, we have

lwliLip < CllwllLip-

Proof For the first statement, see [27, Theorem A] or [10, Proposition 1].
For the second statement, see [10, Proposition 3, Proposition 6], where they
consider Riemannian manifold case but the same proofs also work in our fractal
case. O

Remark The measure ¥ is actually independent of the choice of the stable
direction A_: any A _ satisfying Lemma 4.8 will lead to the same measure ».

Hyperbolic skew product flow. Let R : A4 — R, be the function given
in Proposition 4.1. By abusing notation, define R : A4 x A_ — R by setting
R(x,x_) = R(x). Define the space

R:{(x,x_,s)eA+xA_xR: 0<s <R(x,x_)}.

LetR, = Z’};(l) RoT/.The hyperbolic skew product flow {f}},zo over AR is

defined by f}(x X_,s) = (f"”(x x_),s +1t— Ry(x, x_)) for D-almost every
x, where n is the nonnegative integer such that 0 < s +17 — R,(x,x_) <
R(T”(x x_)). We equip AR with the measure dd® := dbd x dt/R where
dt is Lebesgue measure on Ry and R = fA <A RdD. This is a T;-invariant
ergodic measure.

Remark We don’t use the commonly used “suspension space” construction to
construct AR, The reason is that we will use a cutoff function in the proof of
Theorem 1.1 and such cutoff functions are ill-defined in the suspension space,
which is a quotient space of A; x A_ x R.

For any L* function w : A® — R, the Lipschitz norm of w is defined by

lw(y,a) —w(y,a)l
lwliLip = lwleo + sup 4 YAl 412

(.ay£(aheark 40, Y) +la —d'|

In Sect. 8, we will prove that T, is exponential mixing with respect to DX,
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Theorem 4.13 There exist €, > 0 and C > 1 such that for any Lipschitz
functions u, w on AR and any t > 0, we have

‘/uwof",df)R—/udf)R/wdf)R

4.2 Exponential mixing of geodesic flow

< Ce™ " [lulluipllwllLip-

The map from AR to TY(M). We construct a map from AR to TH(M) which
allows us to deduce the exponential mixing of the geodesic flow from that of
T;.

Recall the Hopf parametrization in Sect. 2.4. We introduce the following
time change map to have the function R given by derivative (see Proposi-
tion 4.1):

o AR - 82(Hd+1) xR, (x,x_,s)— (x,x_,s —log(l + |x|2)).

The map ® induces a map ® : AR — T! (M), where we use the Hopf
parametrization to identify T!(M) with T\3?(H?*!) x R. Note that A X
{oo} x {0} is mapped to the unstable horosphere based at oo and passing o.
The map @ defines a semiconjugacy between two flows:

®oT, =G od, for t>0. (4.14)
To see this, note that for any (x, x_, s) € AR we have the expresssion

Tr(x, x_,s) = (T"(x,x_), s +1 — Ry(x,x_)),

T"(x,x_) =y '(x,x_) forsome y € H".
By straightforward computation, we obtain
do f}(x, x_,8) =G0 J/_l&)(x,x_, s),

which leads to (4.14) by passing to the quotient space.

Relating D® with mBMS_ The map @ is not injective in general. Neverthe-
less, we are able to use (AR, f}, Ry to study (TI(M), G, mBMS). The main
result is the following proposition.

Proposition 4.15 The map ® : (AR, T,, %) — (T'(M), G;, mBMS) is a
factor map, i.e.,

O, 08 = mBMS and ® o7, =G o®d forall t > 0.
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We need two lemmas to prove this proposition.

Lemma 4.16 There exists a measurable subset U in AR such that by setting
V = ®U) in TY(M), the restriction map of ® on U gives a bijection between
U and V. Moreover, the set V is of positive BM S measure.

Proof We make use of the following commutative diagram

AR 2 B2 x R

lq’/

T'(M)

where 7 is the covering map. Let ¢ > 0 be a number such that ¢ <
inf(x x_yea,xa_ R(x,x-).Set § = Ay x A_ x [0, €). The restriction map
®|s gives a bijection between S and its image. Pick any x € S. As 7 is a
covering map, there exists an open set W C 9>(H¢t!) x R containing QD(x)
such that the restriction map 7 |w is abijection. The sets U = o lwn <I>(S))
in ARand V =7n(WnN <I>(S)) satisfy the proposition. O

Lemma 4.17 Let Q' be any subset in AR with full >® measure and Q be any
subset in TI(M) with full mBMS yeasure. Then there exist x € Q' and yeQ
such that ®(x) and y are in the same stable leaf.

Proof Theidea of the proofis straightforward: we make use of the local product
description of D and mBMS,

Let @y be the restriction of ® on U. In view of Lemma 4.16, we can consider
the measure d>’{](mBMS|V) on U, the pull back of mBMS|y, and denote it by
m for simplicity. We can choose U and V sufficiently small so that m is given
by

dm(x,x_, 1) = c¢D(x, x_) " Pdu(x)dpu(x_)dt,

where c is a positive constant and D (x, x_) = ePx(©%:)/2¢P+-(0:X9/2 known as
the visual distance. Let p : A® — A, x R be the projection map, forgetting
the A _-coordinate. Then the pushforward measure p,.m is given by

dp.m(x,t) = cdu(x)dt/ D(x,x_)fz‘sdu(x_).
{x}xA_x{t}nU

So it is absolutely continuous with respect to the measure dv ® dt.
We can find a set of the form B = B4 x A_ x (¢, t2) such that v(B4) > 0
and m(B N U) > 0. The pushforward measure p«(DR|p) is given by

dp.(VR|p) = dv @ dr. (4.18)
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On the one hand, we have that p(Q’'N B) is a conull setin p(B) with respect
to p«(bR|p).

On the other hand, we consider B’ := CDEI(Q N V)N B. Itis a set with
positive m measure and hence p,(B’) is of positive p,(m) measure. The fact
that dp..(m) is absolutely continuous with respect to dv ® df and (4.18) imply
that p,(B’) is of positive p*(f)R | ) measure. Therefore,

p(@'NB)N p(B") #0.

Let (x, t) be a point in the intersection. Then the points (x, x_, ¢) € Q' and
®(x, x', 1) € Q satisfy the conditions of the lemma. O

Proof of Proposition 4.15 Let f be a C! function on T'(M) with finite C!-

norm. Since mBMS is ergodic [49], by Birkhoff ergodic theorem, for mBMS-ae.
y in TH (M)
1
lim — / f(Giy)dt = / FdmBMS, (4.19)

Let Q be the set of points at which (4.19) hold and it is a set of full mBMS
measure.

We consider f o ®, which can be thought as the lifting of f to AR, Itis DR-
integrable. Since T, is mixing with respect to DX, by Birkhoff ergodic theorem,
for pR-a.e. x,

1 .
lim —/ f o ®(T,x)dt :/f o ddd R,
0<t<T

T—+o00 T

Using the semiconjugacy ® o T, =G o ®, we actually have

lim / (G dx)dt = / f o ®dvk. (4.20)
0<t<T

T—+oco T

Let Q' be the set of points at which (4.20) hold and it is a set of full DR measure.

By Lemma 4.17, there exist points x € AR and yE TY(M) such that ®(x)
and y are in the same stable leaf. Due to d(G;y, G;®x) — 0 ast — 400 and
the uniform continuity of f,

1 1
li — g dt——/ g o dt):o.
T_lg_loo (T /05ng fGry) T Jocier f(G;Px)
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Therefore, we can deduce that
/ fdmBMS = / f o ®ddR.

The above equation holds for every C'! function on T!(M). The proof is com-
plete. |

Proof of Theorem 3.1. We are ready to prove Theorem 3.1. With Theo-
rem 4.13 and Proposition 4.15 available, the work lies in the comparing the
norm of the functions on A ® with that on T' (M). This is not obvious. Consider
two points of the form (y, a) and (¥, a) in AR. By (4.12), d((y, a), (', a))
remains the same when a changes. But if these two points are projected to
T!(M), changing a means flowing these two points by the geodesic flow and
d(®((y,a), ®(y', a))) will change. Moreover, the function R used to define
AR is unbounded, making the argument more complex.

Proof of Theorem 3.1 Let u, v be any two C'-functions on T! (M) with finite
C!-norm. Without loss of generality, we may assume that mBMS (1) = 0. Set
U=uo®and W = w o ®. Using the semiconjugacy of ®, we obtain

/u-wog,deMssz-Wof}df)R.

We use a cutoff function to relate the norms of U, W with those of u, w. Let
€ > 0 be a constant less than €1/2. Let 7; be a decreasing Lipschitz function
on [0, co) such that t; = 1 on [0, €z], T, = 0 on (e + 1, 00) and |t/ |Lip < 2.
SetU; = U -ty and W; = W - 1. For any two points (y, a) and (y’, a’) (we
may assume a > a’), we have

Ui (y, @) = Ur (y', a)
< Uiy, @) = Uy, a)l + Ui (y, ) = Uy (v, )|
< @)Uy, a) = U(y,a)| + lulclw (@) — w(a")]
+ (@)U (y,d) = UG, a)l
< |uleila —a'| + |uloola — a'| + e ulcrd(y, ¥,

where to obtain the last inequality, we use the fact d(®(y, a’), ®(y',d’)) <
e“d(y,y") and 7, # 0 only on [0, €t + 1]. Therefore, we have

U lILip < e [lullcr. (4.21)

A verbatim of the above argument also implies || W;||Lip < ewllcr.
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We also need the following L' -estimate. Using the exponential tail condition
(Proposition 4.1 (5)), we obtain

Ut = Ulpipry < Iuloo/max{R(x) —et, 0}dv(x)
< lulso / RN qy (x) < e u o (4.22)
The similar estimate holds for W, — W. As mBMS(y) = 0, we have
| / U dvR| <« e u| . (4.23)
Using Theorem 4.13 together with (4.21), (4.22) and (4.23), we obtain
| / U-WoT,ddR|
< I/U,-W,of",df)R|

+I/(U—Ut)-Wtoftdf)Rl+|/U~(W—W,)of}dﬁR|

< |/deﬁR| - |/W,df»’*|

+ ¢ VU Lipl Wellip + [wloolU = Url 1oy
+ |uloolW — Wilp16r)

<< (e—(61—26)l‘ +e_6061)|ulcllwlcl-

Due to € < €/2, the proof is complete. |

5 Parabolic fixed points and measure estimate

In this section, we provide a detailed description of the I'-action on dH?*!
and different types of estimate for the PS measure.

5.1 Explicit computation

Let Hy, be the horoball based at oo given by RY x {x € R : x > 1}. For a
horoball H, we define the height of the horoball by

h(H) := sup h(y).
yeH
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Lemma 5.1 Suppose g € G is not in Stabg(00). Let p = goo and p' =
g Loo. Then we have

h(gHs) = h(g™ ' Heo). (5.2)

e forany x € H+ U 9HIt!, we have

x—(p',0) (A0
gx = h(gHOO)m (0 1) + (p,0)
- ’0 -1 /
g lx = h(gHoa% (AO ?) L0, (53)

where A € SO(d), and we view x, (p,0) and (p’,0) as row vectors in
Rd-i-l.

Proof By Proposition A.3.9 (2) in [12], the action of g on the upper half space
is given by

gx = hi(x) (?) (1)) + (b,0),

where A is in SO(d), » € RT, b € R? and ((x) either equals x or is given by
an inversion with respect to a unit sphere centered at R? x {0}. In fact, this is
the Bruhat decomposition of G. Since g does not fix oo, ¢(x) is an inversion.
We have for any x € HY*!

x—x0) (40
=pA—" b,0
PR <0 1) 0
with x’ € R?. Hence b = goo = pand x’ = g~ loo = p/.

Note that

h(gx) = rh(x)/1x — (p/,0)[%.

Since g maps the original horoball Hy, = R? x {x > 1} to the horoball g Hs
based at p, it follows from the above formula that

h(gHsx) = sup h(gx) =AX.
xeR4 x (1}
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1

To obtain the formula for g~ x, note that

—1 l
_ —1 _ 8 X — (p ) 0) A 0
v= e = et = (1) + 00
This yields
A_l O , _ g—lx_(p/’o) )

Applying both sides the inversion with respect to the unit sphere centered at
(p’, 0) and using the fact that A € SO(d), we obtain the formula for gilx.
Meanwhile, we apply to g~ !x the argument used to get the formula for gx.
Comparing the formulas given by these two methods, we have that 2(g Hyo) =
h(g™" Hoo)- O

Lemma 5.4 For a horoball H based at p # oo and g € G not in Stabg(00),
we have

h(g~' Hoo)h(H)
M8 2 G oo, 2+ (R
h(s~" Hoo)h(H)
h(gH .
@) = G o0, p) — h(H)/2°

(5.5)

(5.6)

Proof Using (5.3), we obtain

h(g~'Hoo)h(H)
d(p, g7 '00)2 + h(H)*'

h(gH) = h(g(p, h(H))) =

For (5.6), we have

h(g™" Hoo)h(y)
h(gH) = sup h(gy) = sup —o 22T
yedH year |y — (g7100,0)]

Note that for every y € 0 H, we have |y — (g_loo, O)|2 >de(y, g_loo)2 >
(d(g~'oo, p) — h(H)/2)?, where ' is the projection of y to dHT! and this
yields (5.6). O

Let P be the set of parabolic fixed points in dH¢*!. Two parabolic fixed
points are called equivalent if they are in the same I"-orbit. Let P be a complete
set of inequivalent parabolic fixed points. As I' is geometrically finite, the set
P is finite. Suppose that P = {py, ..., p;} for some j € N, a complete set of
inequivalent parabolic fixed points and set p; = oo.
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Fix a collection of pairwise disjoint horoballs based at parabolic fixed points
as follows. Without loss of generality, we may assume that H, is a horocusp
region for oo. For the parabolic fixed point y 0o, we attach the horoball H,, o, :=
y Hy to it. For other parabolic fixed point p; in P, we fix a horoball H),, based
at p; which is a horocusp region for p;. For other parabolic fixed points y p;
in the I" orbit of p;, we attach the horoball H,, ), := y H), to it. By Definition
2.2, we can choose the horoballs in such a way that they are pairwise disjoint.
For p € P, we define the height function i (p) of p as the height of H, based
at p, that is

h(p) :== h(H)).

For x € dH* ! and r > 0, set B(x, r) to be the ball centered at x of radius
r in dH?*! with respect to the Euclidean metric.

Lemma 5.7 (Explicit computation) Suppose y is not in Stabso(I'). Then for
any r > 0 and x € JHT!,

e vy 'B(p,r) = B(p,h(p)/r)",
o |y @) =h(p)/d(x, p)*, ly' ()| =h(p)/d(x, p")>
where p = yoo and p' =y~ loo.
Proof The first equation follows from (5.3) easily.
In view of Lemma 5.1, the computation of the derivative of inversion maps
gives the expression of |y (x)| and |(y ~1)'(x)]. O

5.2 Multi-cusps

Recall that P = {p1, ..., p;}. For each p;, we consider a coordinate change
transformation: let g; be an element in G such that g; p; = oco. This g; is not
unique and we can choose a g; such that g; H), = Hoo = R? x {x > 1}. We
will frequently make use of the following commutative diagram:

Hd-i—l 8i ; Hd—f—l
rl ig,-rg;‘ (5.8)
Hd+1 81'; He+!

On the right hand side of the diagram, the acting group is g;I"g;” land oo is a
parabolic fixed point of the group.

Once g;’s are fixed, we consider the action of giFgl._1 and its parabolic
fixed points g;P. We think they are in i-th hyperbolic space. Set the horoball
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Hyg,,(i) = gi Hp, for p € P and define the height

h(gip,i) == h(Hyg ().

If there is no confusion, we always abbreviate Hg, ,(i) and h(g; p,i) to Hg,p

and h(g; p).
The results in Sect. 2.3 hold for each p;. We have the group (giFglfl)oo,

which is a maximal normal abelian subgroup in Stabg,rgfl (00). Write

Ty =8 (T8 Dogi- (5.9)
Let A/p,- be a fundamental region for the parabolic fixed point co under the
gil'g I_action. We can choose A/pi in such a way that for A, = g~ ! A’pi

(pi» 1 <i <jIN(Uik<jA,,) = 0. (5.10)

This choice is possible because, for each p;, we can find a A;I, such that A,
sufficiently close to p; in H“*! under the spherical metric. Set

A =Ui<k<jAp-

By (5.10), we have A N {oo} = @. So the set A is compact.

Consider any parabolic fixed point p = yp; with y € I'. We know that such
y is not unique (any element in y Stabr(p;) also works) and we fix a choice
of y such that y ! p; € A,,. We call y the representation of p. Set

-1
Xp =V Pi

Lemma 5.11 There exists C > 1 such that for 1 < i < j and for any
parabolic fixed point p in A, we have

1/C < h(gip)/h(p) <C.

Proof Consider the action of g; on dH?*!. Notice that p; = g oo and
h(pi) = h(Hp,) = h(gi_lHoo). Applying (5.5) to the horoball H), based at p
and the element g;, we obtain

h(pi)h(p)
d(pi, p)* + h(p)*

h(gip) = h(giHp) >

It follows from A compact that d(p;, p) is bounded for p € A.Then h(g; p) >
h(p)/C.
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For the other inequality, notice that g; p; = gioo and h(g; p1) = h(gi Ho).
Applying (5.5) with with the horoball Hy, , based at g; p and g; ! we have

h(gip1)h(gip)
d(gip1, gip)> +h(gip)?

h(p) = h(g; ' Hgp) =
It follows from (5.10) that g; AN{oc} = giAN{gipi} = B. So g; A is compact
and d(g; p1, gi p) is bounded for p € A. Then h(p) > h(gip)/C. O
Lemma 5.12 For 1 <i < j, themap g; - A — g; A is bi-Lipschitz.
Proof By (5.3), we have

X — Pi Y — Di
Ix — pil>" |y — pil?

d(gix,giy)=h(pi)d< >§C|x—y| =Cd(x,y),

where the inequality due to (5.10).
For the other direction, we use (5.3) to obtain

- — X — &Pl Yy — 8iD1
d(g; 'x. g; ‘y>=h(pl~>d< — ’ 2)
lx — gipil® |y — gip1l

<Clx —y| =Cd(x,y),

where the inequality is due to that d(x, g; p1) is bounded below for x € g; A
by (5.10). O

Patterson—Sullivan measure under conjugation. In the presence of multi-
cusps, we need to consider the Patterson—Sullivan measure for the conjugation
of I'. Recall that {1, } yeHd+! is the I"-invariant conformal density of dimension
4 and we denoted u, by u for short. For each g; with 1 < i < j,set[; =
gil'g ! The limit set Ar; is g; Ar and the critical exponent of I'; equals 8.
For every y € H?*!, define the following measure

My = (gi)*'ugi_ly’

where (gi)*/J,g_—ly(E) = Mg_—ly(gi_lE) for any Borel subset E of dH ! It is

easy to check that fi is supported on Ar; and forany y, z € HI*!, x e aHdH!
and y €Iy,

dfiy

_ 0B (¥,2) T
x)=¢e and = .
d~z( ) (V)*My MHyy

It follows from the uniqueness of I';-invariant conformal density that this con-
struction gives exactly the I';-invariant conformal density on Ar; of dimension
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8. In later sections, we will denote i, by ur; and the above analysis yields
that for any Borel subset E of dH¢+!

72819 (g7 E) < pry (B) < MO8 u(g E). (5.13)

5.3 Doubling property of PS measure
We start with two results: Proposition 5.14 and Lemma 5.15, deduced from

[46, Theorem 2]. They used spherical metric, but locally it is equivalent to
euclidean metric.

Proposition 5.14 e (Doubling property) For every C > 1, there exists € < 1
such that for everyx € Ar NAand 1/C >r > 0,

n(B(x,r)) > eu(B(x, Cr)).

o (Growth of measure) There exists C3 > 1, such that for every x € Ar N A
andr < 1/Cj3,

2 (B(x, 1)) < w(B(x, C3r)).

Lemma 5.15 Let p be a parabolic fixed point in A of rank k. For 0 < r <
h(p),

w(B(p,r) ~r?Fn(p)*2. (5.16)
Lemma 5.17 For every C > 1, there exists C' > 1 such that for every

parabolic fixed point p = yoo € A with y the representation, for any Borel
subset E C B(p, Ch(p)), we have

h(p)’u(y'E)/C" < wW(E) < C'h(p)’u(y~'E).

Proof As the PS measure is quasi-invariant, we have

~ 1 L+ x2
u(y IE)Z/XGEKV 1)36|(S (m) du(x).

By Lemma 5.7, we have |(y‘1)’x| = h(p)/d(x, p)z. We also have
ld(y ~'00,0) — h(p)/d(x, p)| < |y ‘x| <d(y~'oo,0) + h(p)/d(x, p).

Due to y~'oo € A, if h(p)/d(x, p) > max{2d(y 'oo,0), 1}, then 1 +
ly x| ~ (h(p)/d(x, p))?. Otherwise, due to h(p)/d(x, p) > 1/C, we
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also have 1 + |y‘1x|2 ~ (h(p)/d(x, p))z. The lemma follows from these
bounds on |(y~!)'x| and 1 + |y~'x|%. The computation also makes sense
even if x = p, because the ratio |(y ~1)'x|/(1 + |y ~'x|?) is always bounded
in B(p, Ch(p)) — {p} and we can extend it continous to p. O

Recall Ag := Aso = Ay,.

Lemma 5.18 There exists C > 0 such that for any Borel set E of diameter
less than the diameter of Ag and y1 € s, we have that for any x € E

uwyE)
u(E)

1+ |x|? )‘3

/6.6 (1 Il

Proof Due to the derivative of y; and the quasi-invariance of PS measure, we

obtain
)
1+ |x|?
E) = — = ) d )
n E) /l€(1+|)/1x|2 m(x)

Now for any x, y in E, we have

LRl (= DAx D _ (5.19)
[+ 1P [+ 1P | |

with C’ > 1 only depending on the diameter of E. The same argument also
gives the same upper bound for (1+ |y|?)/(1+ |x|?). The set y; E is a set with
the same diameter as E. So we also have

1+ |yix|?

/ /

for any x, y in E. The proof is complete by applying (5.19) and (5.20) to the
formula of w(y| E). O

Lemma 5.21 There exist constants ¢ > 0 and C > 1 such that for every
parabolic fixed point p # oo, if r < h(p)/C, then

1w(B(p,r) — B(p,r//e€) = cu(B(p, ).

Proof Consider p € Ay. Indeed, since I'ag Ag covers | the intersection RY N A,
we can always find a y; in ' such that y;p € Ag. Then applying Lemma
5.18t0 E = B(p,r) and E = B(p,r) — B(p, r/+/e), we have

w(B(p,r) = B(p,r/Je))  wBwp.r) = Blyip,r/V/e)
w(B(p,r)) uw(B(y1p,1)) .
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We only need to give a lower bound to w(B(p, r) — B(p, r//e)) and then
use (5.16) to obtain Lemma 5.21.

Assume p € Ay is of rank k. Consider the case when p = yoo withy € T
the representation of p. We claim that there exists a constant C > 1 such that
for y1 € s, With yy1Ag C B(p,r) — B(p, r//e), we have

h(p)?

(d(y1A0, xp) + C)?° (5.22)

n(yy1o) >

Proof of the claim: By Lemma 5.17, we have u(yy1Ap) = h(p)‘s,u(yle).
By Lemma 5.18, we have

(A)N<1—|—|x|2 )5 o~
1(y1Ao ) A0

for any x € Ag. Now, since |y1x| < d(y1A0, xp) + |x,| + C', 50

1(y1A80) = w(Ao)/(d(y1 A9, xp) + C)?

for some constant C > 1.

ByLemma5.7, wehavey ~'(B(p, r)—B(p, r//€)) = B(xp, \/eh(p)/r)—
B(xp, h(p)/r). Let C’' = diam(Ag). Let R* be the subspace described in
Lemma 2.3. For a set E in R?, we define Volgk (E) as Vol(E N R¥). Since
X, € Ar N R? has bounded distance to R¥, the number of yY1Ag’s in such
region is at least

Volg (B (xp, /eh(p)/r — C') = B (xp, h(p)/r + C')) / Vol (Ag)
> h(p)kr*. (5.23)
Then (5.23) and (5.22) imply

w(B(p,r) — B(p,r//e))
> > 1(yy180)

Y1A0CB(xp,/eh(p)/r)—B(xp,h(p)/r)
> h(p)k—ér%—k‘

Consider general case when p = yp; with y € I the representation of p.
We estimate the measure w(yy1A,) for any y; € Ty, satisfying yy1Ap, C
B(p,r) — B(p, r/s/e). Using (5.13), we have

n(yvidp) = ur;(givviAp),
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where I'; 1= gil"gi_l. Lemma 5.12 yields

givV1Ap, C gi(B(p,r) — B(p,r//e)) C B(gip,Cr) — B(gip,r/(C\/e)).
(5.24)

So we can use the argument for the previous case to obtain

ur @iy Ap) ~ r¥h(gip) . (5.25)
Then we count the number of y 1 A p,’sin B(p, r) — B(p, r/+/e). It equals
the number of g;yy1A),’s in g;(B(p,r) — B(p, r/+/e)). The map g; maps

B(p,r) and B(p, r/+/e) to two spheres and the distance between g; B(p, r)
and g;B(p,r/+/e) is at least (1 — 1//e)r/C. The map giy_lgl._1 maps
giB(p,r) and g; B(p, r/+/e) to two spheres and let R and p’ be the radius
and the center of the outer sphere respectively. Using (5.24) and Lemma 5.7,
we have

R € (h(gip)/(Cr), C/eh(gip)/r). (5.26)
For every x € B(gip. Cr) — B(gip.r/(C+/e)), we have |(giy ~'g; ) (x)] €
(h(gip)/(C2r2), Czeh(g,-p)/rz). So the distance between g,-y_lB(p, r) and

giv 'B(p,r//e)isatleast (1 —1//e)h(g; p)/(C>r). This distance estimate
together with (5.26) implies there exists some constant ¢ € (0, 1) such that

gy~ (B(p,r) = B(p,r/€) D B(p'. R) = B(p', cR).
The number of g;y1 A, in giy Y (B(p,r) — B(p,r//e)) is at least

Volgi (B (p',R—C") = B(p'.cR+C")) / Volg(gi Ap,)
> R > higip)r™, (5.27)

where C” = diam(g; A ;). A lower bound for u(B(p, r) — B(p,r/+/e)) can
be obtained using Lemma 5.11, (5.25) and (5.27). O

5.4 Friendliness of PS measure

For any r > 0, set

Ny (Ag) :={x e Ay: dx,0Ag) <r}. (5.28)
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Lemma 5.29 There exist 0 < €9 < 1 such that for all 0 < € < € there exists
A=A(e) € (0,1) forallr <1

U(Ner(Ao)) = Ap(Nr(Ao)). (5.30)

Moreover, the constant A(€) tends to zero as € tends to zero.

Recall from Sect. 2.3 that Ag = By(C) x Aj{. Recall that the set A is a
parallelotope. Let /" be a facet of Ajyand ! = By (C) x I'. Let y be the element
in ' identifying I” with the opposite facet I” so y also identifies By (C) x [’
with By (C) x I”. Set

Ny():={x € AgUy 'Ag: d(x,1) <r).

Lemma 5.29 is deduced from the following lemma.

Lemma 5.31 There exist 0 < €, . < 1 such that forallr < 1

m(Ner (1)) = A (Nr (D).

Proof of Lemma 5.29 Assume that oo is a rank k cusp. If co is not a cusp
of maximal rank, then note that (dBy (C)) x A, = {|y| = C} x A, does
not intersect Ar. A small neighborhood of this boundary has zero PS mea-
sure. Therefore, we just need to consider the neighborhood of I’s. Using
Lemma 5.31, we obtain

1(Ner(A0) < D u(Ner (1) < 1) (N, (D),
1 1

Each N, (I) is covered by Ag and one of its translates y Ag. By Lemma 5.18,
there exists C’ > 0 such that

LY (N (1) < AC"2k (N (Ao)).
l

We can replace € by €” and using Lemma 5.31 repeatedly, which will yield
an arbitrary small A in Lemma 5.29. O

Proof of Lemma 5.31 The proof is similar to the argument of using Lemma
3.11 to deduce Lemma 3.10 in [17]. Let L be the hyperplane containing / and
N, (L) be the r-neighborhood of L. [17, Lemma 3.11] is stated in spherical
metric but locally spherical metric is equivalent to the euclidean metric. So
[17, Lemma 3.11] implies that there exists € > 0 such that forevery § € E :=
Ar N Nep (1), there exists 0 < pg < 1 satisfying

n(B(&, pg) N (N (L) = Ner(L))) = cu(B(§, pg)), (5.32)

@ Springer



960 J. Li, W. Pan

where 0 < ¢ < 11isaconstant only depending on I'. The family {B(§, p¢)}eck
forms a covering of E.

It follows from Vitali covering Lemma that there exists a disjoint subcol-
lection {B(&, pg)}ecs with I C E countable, such that

Ueer B(§,505) D Ugee B(§, pg) D E.

The set B(&, pg) N (N, (L) — N (L)) may not be contained in N, (1) — Ne, (1),
but we can cover it by some translations of N,(I[) — N¢,(l). By elementary
computation, we can use no more than ky number of elements y;’s in I'o with
ko depending on A such that

Ujvj(Nr(I) = Ner (1)) D B(&, pg) N (Nr(L) — Ner(L)).

Using this inclusion, Lemma 5.18 and disjointness of B(&, pg)’sfor& € I, we
obtain
C'kopt(Ny (1) = Ner (1)) = Uy (N, (1) = Ner (1))

> Y (B, pg) N (N (L) = Ner (L))
Eel

Using (5.32) and doubling property in Proposition 5.14, we have

> W(BE, pe) N (N (L) = Nep(L) = ¢ Y ju(B(E, pe))

§el tel
> ce' Y (B, 5pz)) = c€' u(Ner (1)),
tel

Combining the above two formulas, we conclude that there exists 0 < A < 1
such that

p(Ner (D) < A (N (D).

6 Coding of limit set

In this section, we construct the coding and prove Proposition 4.1, Lemma 4.5,
and Lemma 4.8. At first reading, the reader might want to concentrate on the
case when there is one cusp in the manifold, i.e., P = {p;} and the coordinate
change of transformation g; is the identity. This will significantly reduce the
notational burden while not sacrificing too much of the main results.
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6.1 Coding for local regions

We introduce “flower” J,,, the building block for the coding. Actually, J),’s
are almost the union of a countable subcollection of open subsets A ; in the
coding. The advantage of considering J), is that J, has a clean boundary which
makes it possible to estimate the measure.

We first consider the case when p = y oo is a parabolic fixed point in A
with y € T the representation of p and x, = y ~'occ. Let n € (0, 1). We
define the set J), ; as follows. By Lemma 5.7, we have

vy B(p, nh(p)) = B(xp, 1/n)".

Suppose that oo is a parabolic fixed point of maximal rank. Then R?
dH*! is tessellated by the translations of Ag. Take R p.n to be the smallest

parallelotope tiled by the translations of A such that it contains B (x ps 1/M).
Let

Jpn = VRZ,n’ 6.1)
Np ={rmelw: 1A C R;.,’,,} ={rymelw: yr1loC Jp,n}-
(6.2)

Suppose oo is a parabolic fixed point of rank k£ in general. Let Z be the
affine subspace in dH?*! described in Lemma 2.3 where elements in I's, act
as translations, and Ag = By (C) x A{). So Z is tessellated by the translations
of Aj. Take R, , in Z to be the smallest parallelotope tiled by the translations

of A such that By(2/n) x R, , contains B(x,, 1/n). Set

Jpn =v(By(2/n) x R, ) C B(p,nh(p)), (6.3)
Np={y1 €T : Y10 C (By(2/n) x Rp )}
={ymelw: yr1lo C Jp,n}~ (6.4)

The set J,, ;, enjoys the following property

Jpn N AP =y ( U yi(AoN Ar)) : (6.5)

Y1 eNp

that is to say, the countable disjoint union I_IN YY1Aq is a conull setin J, ;.
YIENp
The open sets yy; Ao with y; € N, are the ones described in Proposition

4.1in J) 5, and on each y y; A, the expanding map T is given by 7|, a, =
(vyn)~ (Fig. 2).
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Fig. 2 The shaded region on the left hand side is Jp ;, which is the image under the action of
y on the complement of the white rectangle on the right hand side

We also have the following distance relation:

d((yy1)~'oo, Ag) = d(y; 'xp, Ag) = 1/ forany y; € N, (6.6)

Lemma 6.7 There exists 0 < c4 < 1 such that for any n € (0, 1)

B(p, canh(p)) C Jpy C B(p, nh(p)),
B(xp, 1/n) C (v ' Jpn)¢ C B(xp, 1/(can)).

Proof Due to the compactness of Ao, there exists ¢4 such that (y ~'J o)< =
(By(2/m) X Rp ) C B(xp, 1/(can)). The first statement can be deduce from
the second using Lemma 5.7. |

In the following, we abbreviate J,, , to J,,. For r > 0, let

NoJp) i={x € J§: d(x,0J,) <r},
N@y ') i={x e (y 1) s d(x, 8y ) <) (6.8)

Lemma 6.9 Fix C > 1. For every 0 < 1 < 1/4C?, there exists 0 < ¢ =
c(n) < 1 depending on n such that for any r < h(p),

U(Neyr(0Jp)) < cu(Np(8J)p)). (6.10)
Moreover, c(n) tends to zero as n tends to zero.
The proof of Lemma 6.9 will be given in the “Appendix”.
We consider the general case. Let p be any parabolic fixed point in A.

Write p = yp; with y € I" the representation of p. If p; = oo, let J,, and
N, be defined as (6.3) and (6.4) respectively. Otherwise, we use the following
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commutative diagram to define J,:

Hd+1 81‘5 Ha+!

Fl lgil"gf !

Hd+1 gi} He+!

Note that g; p = (g,-ygl._l)oo € giA. So for the action of g,-l"gi_l on JH4H!,
we can define J; ;, for the parabolic fixed point g; p as (6.3). Set

Jpi=g iy Npy={y €lp 1 yyiAp CJpl, (6.11)
where I, is a subgroup of I' defined in (5.9). The set J;, enjoys the property

JyNAr= U (yyidp NAr). (6.12)

YIEN),

Oneachset yy1 A, we have an expanding map given by (y y; )~ ! which maps
this set to A ,.
The following lemma is an analog of Lemma 6.7.

Lemma 6.13 There exists some constant C5 > 1 such that for any n € (0, 1)

B(gixp, 1/n) C (giy ") C B(gixp, 1/(can)),
B (p,nh(p)/Cs) C g7 ' B (gip, canh(gip)) C J» C g ' B (gip, nh(gip))
C B (p, Csnh(p)),

where x, = vy Lpi.

Proof We use Lemma 6.7, 5.11 and 5.12 to obtain the lemma. O

6.2 Coding for A

The construction of the coding for the whole Ag is by induction. Let Q¢ := Ag.

Since we already have a nice coding for flowers J,, the idea is to find a
collection of pairwise disjoint flowers J;, to cover the intersection Ar N €.
Here p is a parabolic fixed point. From the construction of J, (Lemma 6.7),
we know that the higher the height i (p) is, the larger J), is. So we start with
parabolic fixed points with large heights. We want that the full flower J, is
inside €2¢9. Hence we only take parabolic fixed points p away from the boundary
of Q.
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Take

h, =e -,

n € (0, 1) a sufficiently small constant to be specified at the end of the proof
of Proposition6.15.

All the constants appearing later will be independent of 7 unless we state it
explicitly.

e Forn e N, let

Py ={p €P: nh(p) € (hps1,h,], B(p, h,/(4n)) C Q,}. (6.14)

e For any p € P,41, write p = yp; with y € T the representation of p.
Construct J, and N, as in the previous section.
e Set

Qn+1 =Q — Dn+1 =Q, — UpeP,,HJp-

Using the definition of J,, Lemma 6.13 and the separation property (Lemma
6.16), it can be shown that the sets J,,’s with p € P, and n € N are mutually
disjoint (Lemma 6.17) and inside Ag. In Proposition 6.15, it will be shown
that the union U, U,cp, J,, is conull in A with respect to the PS measure u.
By (6.12), the countable disjoint union

U U Uwma,

neN p=yp;eP, y1€N,

is also conull in A with respect to PS measure. On each set yy1 A, we have
an expanding map given by (yy;)~! which maps this set to A p;- For one
cusp case, these are the countable collection of disjoint open subsets and the
expanding map. When there are multi-cusps, this is the first step to construct
the coding and the rest will be provided in Sects. 6.7 and 6.8.

The main result of this section is the following proposition.

Proposition 6.15 There exist g > 0 and N > 0 such that for alln > N, we
have

w(2,) < (1 —€p)".

For one cusp case, this yields Proposition 4.1 (1). Moreover, the exponential
tail property (4.2) will follow from Proposition 6.15 rather directly and it will
be proved in Sect. 6.7. To prove this proposition, we need a lot of preparations
and we postpone its proof to the end of Sect. 6.6.
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6.3 Separation

Lemma 6.16 (Separation property) For any two different parabolic fixed
points p, p', we have

d(p, p") > Vh(p)h(p").

Proof Let x, x" be the euclidean centers of H, and H, repectively. By dis-
jointness of horoballs, then dg (x, x") > (h(p) + h(p’)/2. By the Pythagoras’
theorem, we obtain

d(p,p") = \/dE(x,x/)2 — ((h(p) = h(p"))/2)* = Vh(p)h(P").
O

This property plays a key role in the construction of the coding and the proof
of Proposition 6.15.

Lemma 6.17 Ifn < 1/(4eCs), then the sets J,’s with p € P, and n € N are
mutually disjoint, and the distance between any two connected components of
0%, is strictly greater than h,/(2n).

Proof Notice that 2, = 2,1 — Upep,Jp. By induction, we only need to
prove two cases.

Case 1: We consider J,, J,y with distinct p, p’ in P,. Using Lemma 6.13
and Lemma 6.16, we obtain

hy, hy,
Vh(p)h(p') = Csn(h(p) + h(p") > P 2Cshp—1 = o

Therefore, two sets Jp,, J, are disjoint and the distance between them is at
least i,/ (2n).

Case 2: We consider J, with p € P, and 2,,_1. By (6.14) and Lemma 6.13,
the distance between J;, and 9€2,,_; is also greater than

hn—l hn—l hn
— Csnh > — Csh,, —.
™ snh(p) > ™ shn 1>2}7

Hence J), is inside €2, .
By induction, for different connected components of €2, their distance is
at least h,, /(2n). O
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6.4 Equivalence classes in Q,

Motivation of equivalence classes. We introduce the notion of equivalence
classes to attain the exponential tail property.

Let’s start with some definitions. The visual map 7 : T'(H?*!) — aHd+!
is defined by

(@) = lim G,(x),

which maps x to the forward endpoint in dH?*! of the geodesic defined by x.
Recall that we fix p; as 00 _anc and H is the horoball based at oo given by
x{x e R: x > 1}. Let HOo be the corresponding unstable horosphere.
More precisely, let et Xo be the unit tangent vector based at (0, 1) € RY x R with
7 (x,) = 0. Then Hoo is the set of x in T! (H*+1) such that d(G_;x,, G_ix) —
0ast — 4oo.Foraset E C dHt! — {00} ~ R, let

=~ -l
E—JTI;I;(E)

be the preimage of E under the map m restricted on/H;
Let

H,(n) be the horoball based at p with height equal to nhi(p),
Cy = UpepT T' (H, ().

Then C,, is the lift of the unit tangent bundle over proper horocusps of M.

At the time n, the set G,€2, is a large sheet with many holes consisting
of “flowers” of different sizes, corresponding to different QnJ . Here is the
source of the exponential tail: for x € G,Q, with w(x) € Ar N Qg and x
not in the cusp region C;, the recurrence of geodesic flow implies that there
exits a new flower G, J,, inside the neighborhood of x with size bounded below
(Lemma 6.55). So a fixed proportion of the neighborhood of x will be coded
in a fixed time (Lemma 6.53).

Lemma 6.55 doesn’t apply to the set Qnﬁ;, NC,. Points in the set n(gnﬁ; N
Cy) are contained in the balls centered at certain parabolic fixed points. We
want to argue that from step n to step n + 1, the points near the outer edge
of the balls will escape the cusps. We illustrate the scheme of the proof. For
n € N, define

Ony1 =1{p € P: nh(p) € (hyy1, hyl, B(p,nh(p)) N2, # 0,
d(p, 92,) < h,/(4n)}.
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Then we can cover C;, NG, Qn by the union of balls centered at parabolic fixed
points in Q,, with m < n (Lemma 6.37, 6.38):

Cn N gnﬁ;t = gn(Umfn Upe, E(p, r(p,n))) N gnﬁ;z,
where r(p, n) = /nh(p)h,. From step n to step n + 1, the part
Gu1(B(p,r(p,m) = B(p, r(p,n + 1))

will leave the cusp region C,. We want a lower bound for the measure
of (B(p,r(p,n)) — B(p,r(p,n + 1))) N Q,. The main difficulty is that
B(p,r(p,n)) N 2, may not be a full ball, in which case its PS measure
is hard to estimate.

We introduce the notion of equivalence classes to resolve this issue. Consider
a subset of Q,,:

0, ={p€Qn: B(p,r(p,n)NdQu_1 # ¥}

Pick any p € Q),. As the ball B(p, r(p, n)) N 2,_ is not a full ball, we will
pair it with another partial ball and use the doubling property of the PS measure.
Notice that there is a unique component in 92,1 closest to p (Lemma 6.17).
If it is 920, note that A N R is covered by the translations of Ag, so the
symmetry property of these translations gives the point p’ to pair with p (if p
is around the corners of 9€2p, we may need more than one point to pair with
p). If it is some 9J,, write g = v ~!p; with y~! € I the representation of g.
We map B(p, r(p,n)) and dJ, by g;¥ and get a picture similar to the previous
case. We find the paring point for g;p and map it back to get the one for p
(Fig. 3). The work lies in modifying the radius r(p, n): r(p, n) is defined to
/nh,h(p) depending on h(p), and it may happen that the horosphere attached
to the pairing point of p has a different height.

Finding the radius. For Lemma 6.18 - Lemma 6.23, we consider p € Q)
such that the component in d€2,,_ closest to p is dJ, withg € U;’:_ll P;. Write
g = y~ ! p; for some y € T the representation of g (Fig. 3).

Lemma 6.18 There exists C > 1 such that we have

nh(gip)
C

nh(p) < ha_1 < C*h(q), < hp_1 < Ch(giq).

Proof 1t follows from Lemma 6.16 that

d(p,q) = Vh(p)h(q) > V/hu—1h(q)/(en).

@ Springer



968 J. Li, W. Pan

By N givJe Y1(B1) N givJy

’7117'

gi7

Fig. 3 Pairing partial balls: ¢ = yflp,', p’ = givyp, B1 = B(gi)/p,fp‘m/Cf,), Y1 €
(gil“gi_l)oo

Meanwhile by Lemma 6.13, we have
d(p,q) <d(p,dJy) + max d(y,q) <r(n, p)
Y€dJy4
+Csnh(q) < hy—1 + Csnh(q) < (1 + Cs)nh(q).

So the above two inequalities lead to first statement. The second statement
follows easily from the first statement and Lemma 5.11. O

Lemma 6.19 There exists C > 1 such that
B(gip, h(gip)) C B(giq, Cnh(giq)) — B(giq. nh(giq)/C).
Proof Forany & € 0B(g;p, h(gip)), an upper bound for d(&, g;q) is given by
d(&,giq) <d(§, gip) +d(gip, 0Jgq) + (max d(y, giq)

8id

< h(gip) + Chy—1 +nh(giq) < Cnh(giq).
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A lower bound for d(&, g;q) is given by

d,giq) > d(giq,dJgq) —d(gip, 0Jgq) — h(gip)
> canh(giq) — Chy—1 — h(gip) > canh(giq) — Cn*h(giq).

Hence by taking n sufficiently small, we reach the conclusion. O

Lemma 6.20 There exists C > 1 such that we have

h(gip) Ch(gip)
2—1 < h(giyp) =< 2—1
Cn~h(giq) n-h(giq)
Proof Apply Lemma 5.4 to the horoball H = H,,, based at g; p and the
element g = giygi_l. Notice that gig = (giygi_l)_loo = g loo and

h(giQ) = h(Hgiq) = h(g_lHoo). We have

h(giq)h(gip) h(giq)h(gip)
h(g; =h(gH) < ,
dq aip) +higpy =~ 8P =) < ) — hgip) 2P

By Lemma 6.18 and 6.19, we obtain the lemma. O

- hmh(giyp)
= [2mMEVP) 6.21
P nh(giq) (6.21)

At the point g;y p, we will consider ball B(g;yp, 7p,m/Cs), where Cg > 11is
a constant given in Lemma 6.23 such that 7, ;, / C¢ guarantees the equivalence
classes we introduce later are well-defined. Once we have chosen the ball
B(giyp,7p,m/Ce), we will map it back by (g; ]/)_1 to attain the “correct” ball
at p.

By Lemma 6.20, 5.11 and 6.18, we have

. CV/nh,h(gip) _ Ch(gip)
Fp < —n 8P 28D Cpn(giyp). (6.22)
n-h(giq) nh(giq)

For any m € N, set

Lemma 6.23 There exists C¢ > 1suchthatforany point p',ifd(giyp’, giy9Jy)
<7pn/Cs, thend(p',dJ;) < hy.

Proof 1t follows from Lemma 6.7 applying giygi_l that for any C¢ > 1, if
d(giyp', giydJy) <7pn/Ce,then

givp = give (gip') € Bgixg, 2/(can)) — B(gixg, 1/(20)),
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where gix, = gvypi = &VYE& l'00. For any x in the line segment between
giyp'and g;ydJ,, we use Lemma 5.7 to obtain I(giy_lgi_l)’x| < 4n’h(giq).
By Lemma 5.12 and (6.22), we obtain

d(p',8J,) < Cd(gip', gdJy) < Cn*h(giq)d(giyp', givdJy)
< Cn*pah(8iq)/Ce < Cnh(gip)/Cs.
By taking C¢ > 1 large enough, we have d(p’, 3J,) < hy,. |

Definition of equivalence classes. Now we define equivalence classes in Q,.
We define them by induction. For Qj,

e for p € Q1 — Q/, set the equivalence class C(p) of p to be {p}.
e for p € O, set

C(p)=1{yvip: viB(p,vnhih(p)) N0 #D, y1 € I'x}.
Set
07 :=Upe0,C(p).

and for any p’ € Q and m > 1, define

'n'm = Uhmh(l?/), Bp/,m = B(P, rp’,m)-

Suppose we have defined Q). We define the equivalence classes in Q1
and the set Q)| as follows:

/

Case I: forp € Q)
p is 02, set

— U<, @/ such that the component in 92, closest to

C(p) ={yip: iB(p, vVnhuyt1h(p)) N0 # 0, y1 € Foo}.

For any p’ € C(p) and m > n + 1, define

'p'.m = nhyh(p'), Bp’,m = B(p/a rp’,m)-

Case 2: for p € Q). | — U<, Q; such that the component in 3€2,, closest to
p is some J,, write g = ¥~ pi with y~! the representation of ¢.
Let 7, , and Cg be as given in (6.21) and Lemma 6.23 respectively.
If B(giyp., ’:p,n/C6) N giydJy # @, set
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C(p) ={(giv) " 'vigivp : »iB(&iyDp.Fpn/Ce) N giydJy # 0,
1 € (&Tg ool (6.24)

Otherwise, set C(p) = {p}.
For any p’ € C(p) and m > n + 1, define

1 |huh(giyp
Fp'm = o % (which equals 7 ), (6.25)
6 nn\giq

By m = (giy) 'B(giyp 1y m)- (6.26)

Case 3: for p € Q41 — U<, Q) such that p does not belong to the union of
equivalence classes defined in the previous two cases, set C(p) = {p}
and for any m > n + 1, define

'pm =+ nhmh(p)’ Bp,m = B(p, rp,m)-

Set

o= U cw.

PEQnt+1—Yi<p Q;/

Then Ui <i<mt1) Q) D Ut<i=(n+1) Q1

It is worthwhile to point out that under our definition of equivalence classes,
it may happen that for p € Q, — U;, QJ, its equivalence class C(p) may
contain points p’ whose associated horospheres don’t appear in the time inter-
val [n — 1, n). This is our motivation to establish results like Lemmas 6.27 and
6.40.

In the following discussion of the points p in Q/, if the definition of p
involves a boundary component of 9€2,_;, we will need to consider this
boundary component a lot of the times. For simplicity, we call the bound-
ary component used to define p € Q) the associated boundary component
of p.

Uniformity among equivalence classes. For p € 0, —U;-, Q/, we show that,
up to some constant, the points in the equivalence class C(p) are “uniform".

Lemma 6.27 There exists C7 > 1 such that for any p € Qn, — U<y Q;/ and
any p' € C(p) we have

1/C7 < h(p)/h(p") < C7.

It suffices to prove Lemma 6.27 for the case when #C(p) > 2 and the asso-
ciated component of p in 92,1 is some 9J,. Write g = vy~ 'p; with y~!
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the representation of ¢. Let 7}, ;, and B), ;, be defined as in (6.25) and (6.26)
respectively. We first show the following estimate.

Lemma 6.28 (Location of balls) There exists a constant C > 1 such that for
C(p) with the associated boundary component 8J, and for p’ € C(p)

B(giyp',rp.m) C B(gixg, C/n) — B(gixg, 1/(Cn)), (6.29)
8By .m C B(giq, Cnh(giq)) — B(giq, nh(giq)/C). (6.30)

Proof By Lemma 6.13, we have

givdJy C B(gixg, 1/(cam) — B(gixg. 1/m).

We also have r), , < Cn by (6.22). Meanwhile, the construction of the equiv-
alence class C(p) implies that 7/ ,, = rp . Hence we obtain (6.29). We use
Lemma 5.7 to obtain (6.30) from (6.29). O

Proof of Lemma 6.27 We prove the following explicit estimate:

h(gip') ~ n*h(giqQ)h(giyp). (6.31)

This together with Lemma 5.11 and h(g;yp’) = h(giyp) will lead to
Lemma 6.27. Note that i(g;yp’) < C, with C a constant depending on TI.
We apply Lemma 5.4 to the horoball H = H,,,, based at g;yp’ and the
element g = gl-y_lgi_l. Notice that g;x; = (g,-y_lgi_l)_loo =g !
h(gixq) = h(g~! Ho). We obtain

oo and

h(gixg)h(giyp") < higp)

d(gixq, &ivp)?* +h(giypH? ~
h(gixg)h(giyp')

(d(gixq, 8ivp') —h(giyp)/2)*

Dueto (5.2), we have h(g;x,) = h(g_lHoo) = h(gHx) = h(giq)- By (6.29),
we have d(giyp’, gixq) ~ 1/n. Therefore, we obtain

=h(gH) =

n*h(giq)h(giyp)
C

< h(gip)) < Cn*h(gig)h(giyp)).

O

Lemma 6.32 There exists Cs > 1 such that for any p € Q) and any m > n,
the ball By, ,, satisfies

B(p, vnh(p)hm/Cs) C Bpm C B(p, Cs+/nh(p)hm).
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Proof 1t is enough to prove the case when the associated component of p in
02,1 is some 9J,. Write ¢ = ¥ "' pi with ! the representation of g. By
definition,

Bp,m = (giy)_lB(gin’ rp,m)

: _ 1 [hwh(giyp)
with Tp.m = Ts nh(giq) -

Consider the action of giy_lgi_l on B(giyp,rp,m). By Lemma 5.7 and
(6.29), we have

I(giv g1 x| ~ n’h(giq) forany x € B(giyp, rpm).  (6.33)

Meanwhile, there exists a point p’ € C(p) such that p’ satisfies Lemma 6.20.
We have h(g;yp) = h(giyp’) and h(p) ~ h(p’) (Lemma 6.27). As a result,
we obtain

h(gip)
h(giyp) ~ ———. (6.34)
SR h(giq)
(6.33) and (6.34) yield there exists C > 1 such that
B(gip, vnh(gip)hm/C) C &iBpm C B(gip, C/nh(gip)hm).
We use Lemma 5.11 and 5.12 to finish the proof. O

Well-definedness of equivalence classes

Lemma 6.35 For any two equivalence classes C(p') and C(p”), they are
either the same or disjoint.

Proof Assume that these two equivalence classes are not the same and the
intersection is nonempty.

Case 1: Suppose one of these two equivalence classes just consists of one
point, say #C(p’) = 1 and #C(p”) > 2. We may assume that p” € Q)
for some n. If the associated component of p” is 9, then we are in Case
1 of the definition of equivalence classes. For p’ € C(p”), we obtain that
h(p) = h(p") € (hy, hy—1]1/n. As#C(p’) = 1, we know that p’ is contained
in Q; — U; QY for some [ < n, which contradicts h(p’) € (hy, hp—11/1.

In the sequel, we assume further that the associated component of p” is
some 9J,. Write ¢ = y ! p;. As p’ belongs to the equivalence class C(p”),
it follows from the definition that
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B(giyp'.ryn) Ngivddy # 9, B(giyp . rpyn) Ngiydly # 0,
(6.36)

where r, ,, is defined as in (6.25) and equals r 7 ;.

The fact that C(p’) just consists of p" implies p’ € Q; — U;; Q7 for some
I < n. Meanwhile, as 9J, is the associated component of p”, by Lemma 6.18
and 6.27, we have

h(g) = h(p")/(Cn*) = h(p')/(Cn?) = h1/(Cn?).

Hence dJ, C 9€2;.
(6.36) allows us to apply Lemma 6.23 to p’, and we obtain

d(p',9Jy) < hy, < /nhih(p).

So p' € Q) —U; Q7. (6.36) yields

B(giyp', ry ) Ngivddy #0, B(giyp”,rpyr ) Ngivdly # 0.

Asl < n, C(p’) contains p”, which is a contradiction.
Case 2: Suppose that #C (p’), #C(p”") > 2. Without loss of generality, we
may assume that p’ € Q;, —Uj, Q) and p” € Q) —U;., Q) and m < n.
Let p € C(p')NC(p”). Thenit follows from the construction of equivalence
classes and Lemma 6.23 that there are boundary components d; and d; in
0€2,,—1 such that

d(p,01) < hp—1, d(p,d2) <h,_1.
On the one hand, as 91 and 9, are in 9€2,_1, if they are distinct, Lemma 6.17

states that their distance is greater than /,_1/(2n). On the other hand, using
Lemma 6.27, we obtain

hu/ b > h(p")/(eh(p')) = (h(p")/ h(P))(h(p)/(eh(p))) > 1/(eCT).
Then
d®@1,3) < hm-1 +hy—1 < (1 +eCHhyp—1 < hy_1/(2n).

We conclude that 0; = 9.
There are two possibilities for 9. One possibility is that 9, is some 9J,.
Write ¢ = y ! p; with y ! the representation of ¢. As g;yp is related with
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giyp' and giyp” by elements in (g;Tg; ' )oo, we have y1giyp” = giyp' for
some y| € (ging_l)oo. Asm < n, we have

B # B(gip", ryrn) N givddy C B(gip",rprm)NE&ivddy.

As aresult, we have C(p’) = C(p”). The other possibility is that 9; = 9.
It follows directly from the construction of equivalence classes that

B # B(p", rprn) N3Q0 C B(P", rpr m) N 3.

Hence C(p') = C(p"). O

6.5 Aucxiliary sets A, and B, in 2,

We introduce auxiliary sets A, and B, in Q,. By Lemma 6.35, the set Q)
is disjoint with Uj<j<(»—1)Q,. For any p € Q) and any m > n, we have
defined the ball B), ,,. Note that it follows from the construction of Q) that if
#C(p) = 1, then the full ball B, , is contained in £2,,. For each n, we define

B,=Q,n |J Bpnand A,=Q,-B,.
peUl<i<n Q]

In the followings, we will show how to use the set B, to detect whether a
point is in the cusps of the manifold at time # = n or not.

By, and cusps

Lemma 6.37 For x € S’Z), if Gux € Cy, then there exists a parabolic fixed
point p with nh(p) > h, such that

d((x), p) < v/nh(p)hy.

Proof By assumption, in the universal cover T! (H¢*+1), the point G, x is con-
tained in a horoball H,(n). Hence h, < nh(p).If h, < nh(p)/2, then we
can use Pythagorean’s theorem to conclude that d (7w (x), p) < +/nh(p)h,, (see
Figure 4). If h, = nh(p)/2, then d (7w (x), p) < nh(p)/2 < nh(p)h,. O

Lemma 6.38 Fix c9 < min{1/Cs, l/Cg} where Cs and Cg are constants
given in Lemma 6.13 and Lemma 6.32 respectively. For any x € Q, ifGux €
Ceons then w(x) € By,
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Fig. 4 Radius

Proof For x € ﬁ;, if Gux € Ceqp, then it follows from Lemma 6.37 that there
exists a parabolic fixed point p with conh(p) > h, such that

d(m(x), p) < +/conh(p)h, < conh(p). (6.39)

By the definition of P, and Q,, this p must belong to U,‘<n(Pj UQ;.lfp
is in some P;, then by Lemma 6.13 we have '

nh(p)/Cs < d(z(x), p),

contradicting the assumption that cg < 1/Cs. So p must be in some Q ;. We
use the construction of B,, Lemma 6.32, thatis B, D B(p, «~/nh(p)h,/Csg),
and (6.39) to conclude that 7w (x) € B,,. |

Remark 1f w(x) € B,, then the point G, x is contained in C¢,. So the set G, E,
is almost the same as the set of points in the cusps at time t = n,i.e.C, NG, ;.

Parabolic fixed points, B, and different generations

Lemma 6.40 We have P, N (Uj<, Q)) = ¥.

Proof 1f not, suppose p € P, is also contained in an equivalence class C(p’)
with p’ € Qpm — (Ui<i<m—1Q)) and m < n. Due to #C(p) > 2, by the
construction of equivalence classes, we must have p’ € Q). Let d be the asso-
ciated boundary component of p’. Recall the construction of the equivalence
classes. If 9 is 0€2, it is easy to obtain d(p, 9€29) < hy,. If 9 is some 9J,,
due to #C(p’) > 2, we use Lemma 6.23 to deduce that d(p, Jy) < hpm. By
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Lemma 6.27, we have h,,/h,, < h(p’)/h(p) < Cy. Hence by the definition
of P,

d(p,0) > hy_1/(4n) = hy/(4eC7n) > hp,
which is a contradiction. O

Lemma 6.41 There exists a constant 0 < c19 < 1 such that for any p €
Py U QZ_H, we have

d(p, Bp) > ciohn/n. (6.42)

Proof Letp € P41 U QZH and B, , be aball in B,. By Lemma 6.40, p and
q are two different parabolic fixed points. We have

d(p, Bg.n) 2 d(p,q) — Cy/nh(g)h,  (by Lemma 6.32)
> h(p)h(q) — Cy/nh(q)h, (by Lemma 6.16)
= V(@) h(p) = Cynhy)

> Vha/Cn (Vha/(Cen) = Cy/nhy) = ha/(C).

O
Recall that D11 = Upep,,Jp and 2,41 = Q2 — Dy y 1.
Lemma 6.43 Ifn < Ccslgg, then:
1. We have the followings:
Dyy1NB, =0 and (UPEQ::_HBP,”+1) N B, =0,
An+1 = (An - Dn+1 - An N Bn+1) ) (An+1 N Bn)a (644)
An D Bn—H = UPEQZ+1(BP’H+1 N Qn—‘,—l), An+1 NB, =B, — Bn+l-
(6.45)

2. For p € Q,, and m > n, we have B, ,, N\ Qp = Bp 1 N Q.

Proof For p € P,41, by Lemma 6.13, we have J, C B(p, Csnh(p)). Then
Csnh(p) < Csh, < ciohn/n. By Lemma 6.41, we have J, N B, = @. For
p € QZH, by Lemma 6.32, we have B), ,+1 C B(p, Cg+/nh(p)hy,). Then
Cs/nh(p)h, < Cgh, < cirohn/n.

By Lemma 6.41, we have B), ,41 N B, = .

The rest of the first statement can be obtained easily.
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Form > 1> n,by Diy1 N B =@and By ,, N Q; C By when p € Q) we
know that

Bp,m N Ql+1 = Bp,m N (Ql - Dl+l) = Bp,m N le

which implies the second part of the statement. O

6.6 Energy exchange argument
We are ready to prove Proposition 6.15.

Lemma 6.46 There exists ci1 > 0 such that

p(Bp N Ant1) > cr1p(Bn). (6.47)

The definition of equivalence classes is mainly used in this lemma. The idea
is that the left hand side of (6.47) can be expressed as a sum over equivalence
classes. Over one equivalence class, we obtain a full ball whose measure we
are able to estimate (Fig. 5).

Proof of Lemma 6.46 We claim that for any distinct p, p’ € Uj<<, 0], we
have By, N B, , = §. The first equation in Lemma 6.43 verifies the case
when p € Q] and p’ € Q’jf with [ # j.

When p, p’ € Q], using Lemma 6.16, and 6.32, we have

d(Bp1, By ) = d(p, p') — Cy/nh(p)hy — C/nh(p)h

> Vh(p)h(p') — Cy/nh(p)hi — Cy/nh(p")hi

> hi/(Cn) —2Ch;—1 > 0,

showing the claim.

So (B, N Ay41) can be divided into the sum over p € Uj<<, Q). Using
Lemma 6.35, we can further group the sum into equivalence classes. Due to
(6.45), u(B, N Apt+1) = uw(By — Byy1). Then the proof of (6.47) is reduced
to proving that there exists c11 > 0 such that for each equivalence class C(p),
we have

Y By = Byar)NQ) =cii Y By N Q).
p'eC(p) p'eC(p)

We first consider the equivalence classes defined in Case 1 and Case 3 in
page 28. Then by the definition of equivalence class and Lemma 5.18, we
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obtain

Zp/GC(p) M((Bp/,n - Bp/,n—i-l) N Q2y)
Zp’ec(p) M(Bp/,n N 2,)

> M(Bp,n - Bp,n—H) _ w(B(p, rp,n) — B(p, ”p,n+l)) > 2
Cu(Bp.n) Cu(B(p,1p.n)) - C
where the last inequality follows from Lemma 5.21 and ), , = \/nhnh, <

nh(p).

Next we consider the equivalence classes defined in Case 2 (Fig. 5). Suppose
the associated boundary component of p is 9J, with g = y'piand y~1is
the representation of g. We first assume that p; = oco. By Lemma 5.17 and
(6.30) for any Borel subset E C B), ,, we have

hgu(yE)/C < u(E) < Chou(y E).

By N givJ Y1(B1) N givJg

giy

Fig. 5 Pairing partial balls: ¢ = yflp,', p' = givyp. B1 = B(ivyp.7p.m/Cé), y1 €
(gil“gi_l)oo
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We have

2 pecp) M(Bpn = By 1) N )
Zp’eC(p) w(Bpy n N 2y)
- > pecp) HBWDP 1y ) — Blyp's 1y nv1) Ny Jy)
- CY ey MBI Ty n) Ny JE)

(6.48)

For each p’ € C(p), we can write p’ = ¥ ~'y1yp with y; € I'no. We have

wBp' 1y ) Nydy) =pwiByp,rpn) Ny Jy)
~ uw(B(yp.rpa) Ny v 9,

where we use Lemma 5.18 and (6.29) to compute |y;(x)| and |x| for x in
B(yp, rp.n). Summing over p’ € C(p), we can get a full ball. Similarly, we
have
w(Byp' 1) = Byp', 1y at1) Ny Jy)
~ u((B(yp.rpn) — Byp.rpns)) Nyy v IS,

We use these two observations and Lemma 5.21, r, , < nh(yp) (6.22) to
conclude

w(Byp,rpn) — Bp,rpns1)) -

(6.48) > > <
Cu(B(yp,rp.n)) C

For general p;,let g;pi = ocoand I'; = g,-l"gi_l. Using (5.13), we obtain

> pecip MByn = By nr1) N Q)
Zp/eC(p) /’L(Bp/,n N 2,)
 Ypecip Mri@i(Byn — By ny1) N 8iS2)
- > pec(p) Hri(8i By n N &)

(6.49)

This fraction can be estimated the same way as we estimate (6.48). So
(6.49) > ¢c/C.

O

Let C12 = 2CsC3 + 4Cg, where C3, C5 and Cg are constants given by
Proposition 5.14, Lemma 6.13 and Lemma 6.32 respectively. Let

Q= {x €Q,: d(x,02,) < Ciahy).
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This is the set of points with distance less than C2h, to the boundary of €2,,.
Lemma 6.50 (Boundary estimate) There exists c13 > 0 depending on Cian
such that

() < ci3pu ()
and c13 tends to 0 as C1an tends to 0.

Proof The boundary 9€2,, consists of €2y and dJ, with p € Uj<;<, P;. For
any p € Uj<j<, P, write p = yp; with y € T the representation of p and
I, = ging_l. Recall the definitions (5.28) and (6.8). Note that 4, /(4n) <
h(p). It follows from Lemmas 5.11 and 5.12 that there exists C > 1 such that
hn/(Cn) < h(gip) and

&iNc»1,(3Jp) C Necipn, (0Jip), Npyycn)(0Ji,p) C 8iNp,jan)(0Jp),

where J; j, is defined as in (6.11). It follows from (5.13), Lemma 5.29 and 6.9
that there exists ¢ > 0 such that

() = t(Nepn, @)+ > w(Neyn, (3,))
peVI<i<n P

< ctWNijam@Q0) + €' > ur,(Necin, (3i,p))
peEVI<i<n P

< (N, jany@Q0) +¢C" Y (N, oy @)
peulf[gnpl

SCM(Nhn/(4n)(3QO))+cC’2 Z w(Np, j@an(0Jp))
peVi<i<n P

< cC?u(y),

where the last inequality is due to Lemma 6.17 and C’ = max; %489 g

Lemma 6.51 There exists 0 < c14 < 1 such that

w(Ar N (Dpy1 U Byi1)) < crap(Ay) + M(Q;)

Proof By Lemma 6.43, we have

An N Bui N =) C ([ Bpawsr-
PEQ,
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We consider the points p € Q)

left. Denote the set of such points by Q

such that B, ,+ intersects the set on the

ny1- By Lemma 6.32, we have

Bpn+1 C B(p, Cs/nh(p)hy+1) C B(p, Cghy).

Then its distance to 9€2, is greater than (Cio — 2Cg)h, > Cia2h,/2. So

w1 must be a subset of points in Case 3 in page 28, and Bj 41 =

B(p, nh(p)hu+1) C B(p, hy).

For p € P,y1, by Lemma 6.13, we have J, C B(p,Csnh(p)) C
B(p, Cshy).

By (6.42), for p € Pyy1 U Q)

d(p, By) = ciohn/n = C12hp /2. (6.52)
Hence
B(p, Cshy) C B(p, C12hn/2) C Ay.
Then by doubling property in Proposition 5.14

w(B(p, Cshy)) < ciapu(B(p, Ci12h,/2)).

By Lemma 6.16, the points in the set P41 U Q). are of distance /,11/7

apart from each other. Hence the balls B(p, C12h,/2) are disjoint. Adding
them together, we obtain

AN Dyt UBp) =) < Y u(B(p, Cshy))
pGP”+]UQ:1”+1

<cia Z w(B(p, C12h,/2)) < c1aiu(Ap).
pEPn+lUQ/n”+1

O

Set A, = A, — ), which is the set of points in A, with distance at least
C12hy, to the boundary 9€2,,.

Lemma 6.53 There exist N € N and c15 > 0 depending on n such that
P(UL  Dntt) = c1spu(Ay).

Let A; be the subset of ﬁ; such that JT(A;) = A,. The key point of flhe
proof is that we can use the recurrence property of the geodesic flow on G, (A),
since Lemma 6.38 tells us that G, (A,) stays in a compact subset. Recall that
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we introduce some notations. We assumed that there are j cusps in M and
{Pi}1<i<; is acomplete set of inequivalent parabolic fixed points. We used the
notation H, to denote the horoball based at p;. Now let H ;I, c THHH) be
the strong stable horosphere, that is,

staf ={x e Tl(H,,i) : the basepoint of x is at d H),, and w (x) = p;}.

By abusing the notation, we also use H, to denote its image in the quotient
space T! (M).

Forevery x € TY(M)and e > 0, set W(x, €) to be the local strong unstable
manifold at x, that is,

Wi, €)= {y e T (M) : lim_d(Gix, Gry) =0, d"(y,x) < e},

where d (-, -) is the Riemannian metric on T! (M) and d*(-, -) is the Riemannian
metric restricted on the strong unstable manifold.
Denote by W in T!(M) the non-wandering set of the geodesic flow.

Lemma 6.54 Let K be any compact subset in W. Then there exists Uy > 0

such that for every x in K and every H ]il, in TV (M), there exists a time t €
[0, Uol such that G(W"(x, 1)) meets H, .

Proof Let ¢ < 1/10 and consider Z; = UxeaH;.W”(x,e) and Z, =

Ures Hs, Wk (x, 5€) in T'(M). Then Z; is a transversal section to the geodesic
flow. Bly ergodicity of geodesic flow on non-wandering set W, there exists a
point y such that its negative time orbit is dense and there exists o > 0 such
that G,y € Z;. We can cover the compact set K with a finite number of balls
of radius e. There exists #; > 0 such that G|_;, o}y intersects every ball.

Fix any x in K. There exists x’ € W"(x, €) and —s € [—11, 0] such that
d(x’,G_sy) < 2e and G_yy are in the same strong stable manifold (that is to
say, lim;_, o0 d(G;x’, G;(G_sy)) = 0). Therefore

d(Gs+1%', Gryy) < 2e.

Using G,y € Z; and local product structure, we have Gy, x" € Gs, Z> for
some 51 € [—e, €]. Due to the definition of Z,, we can find x”/ € W¥(x, 6¢)
such that Gs4,—5,x" € H,,. O

The following lemma is a straightforward corollary of Lemma 6.54. Recall
that cg > 0 is the constant given in Lemma 6.38. Let Koy = W — I'\Cqy.
The base of non-wandering set in M is the convex core C (M) and the base of
I'\Ccyy is a union of proper horocusps. By Definition 2.2, we know that K,
is compact.
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Lemma 6.55 Let U be the constant in Lemma 6.54 with K = K. Forevery
xin AgN Ar andn € N, if G,X is in Ky, where X is the point in Qg such
that w(X) = x, then the ball B(x, hy,) contains a parabolic fixed point with
height in hple= Y0 1].

Proof Let B be the set in SZ) such that n(é) = B(x, h,). We have gné =
WH"(G,x,1). As G,x € Koy, by Lemma 6.54, there exists ¢ € [0, Up] such that
G, W*(G,x, 1) intersects some H ;7; Hence in the universal cover T!(H4t!),
the unstable leaf G; W" (G, x, 1) is tangent to a horoball. Let g be the basepoint
of the horoball. Then ¢ is in B(x, h;). O

Proof of Lemma 6.53 Set N = Ug + 2| —logn] + 2. We claim that: There
exists C’ > 1 depending on 71 such that Uj<j<y Py4; is a C'h, dense set
in A, N Ar. That is to say, for every x € Aj N Ar, there exists some p €
Uj<j<n Puti such that d(x, p) < C'hy,.

Let k = |—logn]. Fix any point x € A], N Ar. We consider the position
of x in Q4.

Case 1 Suppose x ¢ €2,4«. Then x € J, for some p € Uj<<k Pyyy. So
d(x, p) < Csnh(p) < Cshy.

Case 2 Suppose x € Q4 and d(x, 0Q,4%) < 3hpqi/n. As x ¢ Q, we
have d(x, 0€2,;) > Ci2h,. Meanwhile, we have 3h,i/n < Ciah,.
Consequently, the connected component in d€2,; closest to x is
some d.J, with p € Uj<j<x P, ;. Hence

d(x,p) =d(x,d8Jp) +d(0Jp, p) = 3hptik/n+ Csnh(p) = Chy.

Case 3 Suppose x € Ap4x N Ar and d(x, 0Q2,4%) > 2h,4x/n. By
Lemma 6.38, G, X € Kcyy. It then follows from Lemma 6.55
that B(x, h,+r) contains a parabolic fixed point p with height in
hoikle™Y0, 1]. Let j = |—log(nh(p))],then j € n4+2k+[0, Up+1].
Let’s consider the position of p.

— Suppose p € Pj41. Thend(x, p) < hy«.

— Suppose p ¢ Pji1 and p ¢ Q. Note that the conditions on x and
p € B(x, hyyr) imply that p € ,4%. So there exists some g €
UIJ:_I"_kPnJrHj such that p € J,. We obtain

d(x,q) =d(x,p) +d(p,q) < hpyik + Csnh(q) < Chyyi.
— Suppose p ¢ Pjijand p € ;. Because nh(p) € (hjy1, h;l, we must
have p € Q41.Bythedefinitionof Q 1, wehaved(p, 0R2;) < h;/n.
Observe that

d(p, 02, 4k) = d(x, 0Qu4%) —d(x, p) > 2hpii /0 — hpyr > hj/n.
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So there exists g € Ulj:_ln_k Py k4 such that d(p, J, ) < hj/n. This
implies

d(x,q) <d(x,p)+d(p,q) < hpyk +hj/n+ Csnh(q) < Chpyi.

Case 4 Suppose x € B, and d(x, 02,4%x) > 3h,4x/n. As x € A,, we
have x € By4x — By. So there exists p € Uj</<¢ QZH such that
X € By 4. By Lemma 6.32, we have

Bpntk C B(p, Csy/nh(p)hyyi) C B(p, Cgy/hnhyti).

Since hy > n, for any y € By 4, using Lemma 6.32, we have

d(y, 092 44) =d(x, 0Q244) — d(x, ¥) = 3hyuq i /n—2C8/ hnhpik = 2hpqi /1.

So the full ball B, 1 is contained in €2, 4. By a similar argument
as in the proof of Lemma 6.46, we have (B 1k — Bp ntk+1) > 0.
We can find a point y € Ar N (Bp nik — Bpnvkt1). By (6.45), we
know that in fact y is in A, 4x4+1 N Ar.
- Ifd(y, 0Qu4k+1) > 2hutk+1/1, the point y belongs to Case 3.
— Otherwise, d(y, 0Qu4k+1) =< 2hu4i+1/n. But d(y, 0Q2,4%) >
2hpyk/n, there exists J; with ¢ € P,y such that d(y,0J;) <

2hntk41/7-
It follows that there exists ¢ € Uj<j<y Py such that

dx,q) <d(x,y)+d(y,q) <2Csy/hyhpirx +d(y,q) < Chy.

Finally, by Lemma 6.13 we know that for p € Uj<;<y Py4, the balls
B(p, nh(p)/Cs) are disjoint. Using the claim and doubling property (Propo-
sition 5.14),

wUL Duy) = Y w(B(p.nh(p)/Cs))

PEVI<i<N Py

>cis Y, wB(p, C'hy)) = cisp(A, N Ar) = ci5iL(A}),

PEeVI<i<N Prti
finishing the proof. O

Proof of Proposition 6.15 We will prove the following statement and Propo-
sition 6.15 is a direct consequence of this: for n sufficiently small, there exist
N and cg > 0 depending on 7 such that

(U D) > com ().
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Recall that cq1, ¢13 and ¢4 are the constants given in Lemma 6.46, 6.50
and 6.51 respectively. We can take c3 small enough such that cj3 < c¢q1 and
c13+cia < 1. Write t,, = “Egz) , which makes sense even if (£ (B,) = 0. Then
by Lemma 6.43, 6.46, 6.51, and 6.50

W(Ant1)  p(Ap) + 0 (By N Apg1) — 0(Ap N (Dpg1 U Byg1))
w(Byi1) B w(By) — u(By N Apy1) + w(Ap N Byyr)
w(An) + crip(By) — (crap(An) + c130(82,))

w(Byp) — c11iu(Bp) + (c14p(Ay) + c131(82,))

tn — (c14 + c13)tn + (c11 — €13)

=TTt emin— (e —ep) 7

Inr1 =

Here f is fractional function and of the form f(¢) = % with a;, b; > 0,
which is a monotone function. Hence

teR+

inf () Zmin{%, Z—z}

: { 1 —(c14 + c13) c11 —c13
= min ,
c14 +c13 1 —(c11 —c13)

} = q(c13).

By t, > 0, there is a uniform lower bound of #,, for all n € N.
Then use Lemma 6.53 to obtain the desired statement:

(U Dyst) > c1si(AL) > c15(u(Ay) — u(S2)))

> c15(i(Ap) — ci3(Qn)) = c1s (1 jft - c13) ().

If 13 is small enough, then l—t:tn > 115;'(‘51)3) > c13. Then we can fix a small n

in Lemma 6.50 such that c¢3 satisfies these restriction. O

6.7 Exponential tail

For one cusp case, we have described how to construct the countable collection
of disjoint open subsets in Ag and the expanding map in Sect. 6.2. When there
are multi-cusps, the coding is constructed in two steps and we describe the
first step here and finish the rest in Sect. 6.8.

Suppose that there are j cusps. Recall the regions A, introduced in Sect.
5.2. We claim: there is a countable collection of disjoint open subsets Li; x A . «
in A(= U;Ap,;) and an expanding map Ty : U; ¢ Ap, ¢ — A such that

o ik (Ap ) = ().
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e For each A, 1, it is a subset in A ;. And there exists an element yy € I'
such that Ap, x = YoAp, forsome 1 </ < jand T|a, , = yo_l

Denote by Hy the set of inverse branches of Tj.
The construction is as follows: for each A, , we apply the construction in

Sect. 6.2 to the group I'; = g;I'g;” and the region g;Ap, = A;)l_. In partic-
ular, we attain a countable collection of disjoint open sets A/pi - Moreover,

Proposition 6.15 holds for A, . We set A, x = g;° A/
For an element yy in H, 1f Yo maps A, into some A pi.k» then we define

¥5loe = sup |y ()1 (6.56)

xeApl

The infinity norm of the derivative of a composition map is defined similarly.
We prove the following.

Lemma 6.57 There exists € > 0 such that

Z 1Y5125¢ < oo. (6.58)

vo€Ho

For one cusp case, this gives the exponential tail (4.2). When there are multi-
cusps, (6.58) can be understood as that the map Ty satisfies the exponential
tail property.

We start the proof of Lemma 6.57 with the following result. Denote by
U, P, the set of “good parabolic fixed points" which appear in the first step of
the construction of the coding for multi-cusp case and are defined similarly as
(6.14).

Lemma 6.59 There exists C > 0 such that for any parabolic fixed point
p =vypi € A NU, Py, we have for any € € (0,8 — k/2),

)15 = €28 —k —26)" h(p) " 0 (),
Y1EN)

where k is the rank of the parabolic fixed point p and N, is defined in (6.4).

Proof We first consider the case when p = yoo. By Lemma 5.7, we have for
every x € Ag and every y| € N,

h(p)

(yy) () =1y (nix)| = TP
» Xy
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As Uyen, 7180 C B(xy, 1/n)¢ where x,, = y ~loo, we use general polar
coordinates to obtain

~ ~ 1 h<p)5—6 n28—26—k
/16—¢€ 5—€
E h E
|(yyl) |oo < (P) d(yl AOv xy)25—2€ < 26 —2¢ — k
YieN, YIEN)

(6.60)

Meanwhile, by the quasi-invariance of PS measure and (2.1), we have for every
Y1 € N p

w(yyido) = / 1) () () ~ / ) ()P o)
XEAQ xX€AQ
u(Ao)h(p)®

d(y1Ao, x)%"
Therefore,

1 h 8..20—k
s (p)°n
d(y100, x,)% 26 — k

(6.61)

w(Uy,en, ¥v180) 3> n(A)h(p)® Y
YVIEN),

Hence (6.60) and (6.61) together yield the statement for the case when p =
y 0.

For the general case when p = yp; with g; p; = oo. Note that for every
y1 € Ny, we have yy| = gi_l(giyylgi_l)gi. Hence by Lemma 5.11 and 5.12

h(gip) ~ h(p), 1(yy1)lee = sup |(yy1)' (%)l

xeApi
~ sup [(givvigr ) @ =1@ivrig ) loo-
xeg,-A,,i
Write I'; = ging_l. Using (5.13), we obtain

wyviAy) = ur(givrigy (ginp)).

We have gix, = (giygi_l)*loo € giZ,,i. Because gip = giygi_loo and
giylgfl(giApi) C B(gixp, 1/n)¢ for any y; € N, we are able to compare

> l@ivyigr Y 135€ with pur, (Uy, giv v18; ' (1A p,)) as above and this will
prove Lemma 6.59 for the general case. O
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Proof of Lemma 6.57 We only need to sum the inverse branches in Hy whose
images are in Ag. For a general inverse branches whose image is in A,
we consider the group g; ng_l and the inequality can be proved in the same

fashion. By Lemma 6.59 and Proposition 6.15, for any sufficiently small € €
0, D),

Z Z Z |(VV1)/|§;§€ < Z Z ,Uv(-]p)h(p)fen*k

neN p=yp;eP,NAg y1ENp neN peP,
< n—26 ZM(Qn)EG(I’H-I)
neN
5 7,)—26 Z(l _ Eo)nee(n-H) _|_ 77—26 Z M(Qn)€€(n+l)
n>N n<N

By choosing an € small enough such that (1 — €g)e€ < 1, the above sum is
finite. O

6.8 Coding for multi-cusps

We caution the readers that the symbol y will be used to denote an inverse
branch in this section.

In Sect. 6.7, we have found a countable collection of disjoint open subsets
Ui kA p; k in A(= U; Ap,) and an expanding map Ty : U; kA p, ¢ — A. Without
loss of generality, we may suppose that Ty is irreducible, which means there
doesn’t exist a nonempty subset of /1 C {1, ..., j} such that

To(Uien, Ap,) C Uier, Ap,.

Otherwise, we can consider the restriction of 7p to the union U;¢;, A,
For x € Ag = A, define the first return time

n(x) =inf{n e N: Tj'(x) € Ap,}.
Set n(x) = oo if T (x) doesn’t come back to A, for alln € Nor T;j (x) lies

outside of the domain of definition of T for some 7.
The expanding map 7 in Proposition 4.1 is defined by

T(x) = T;™ (x) for x such that n(x) < oco.

By the definition of Ty, we have

1

o cither T'(x) =y~ 'xwithy e Hpandy : Ay, — Ay,
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eorT(x) = yn_(i) . --yl_lx with y; € Hy for [ 1,...,n(x), where y,

maps Ap, .y, 10 Apy With pry = Prmo+1) = p1 and prgy # pi for
1 <l <nk).

The string yn_(;) ‘e yl_l gives an open subset y1 - -+ Yux)Ap, C Ap,. They
consist of open subsets described in Proposition 4.1.

To prove (1), (3) and (4) in Proposition 4.1, we start with a preliminary
version of Lemma 4.8. Define

Ui =g 'B(giAy, 1/2n)° for 1 <i < j.

Lemma 6.62 If y is an inverse branch in Ho which maps A, into A, then
y— U C Uj.

Proof Due to the construction, we know that yp; is a parabolic fixed point
inside A ,. The definition of U; implies

gUi C B(giypi, 1/(2n)°.
Because the maps g;’s are bi-Lipschitz (Lemma 5.12), we obtain
giUr C B(givpi, )¢ = B(givg; o0, 1)°. (6.63)

By Lemma 5.7, we have

(give; DT B(give too, 1) = B((give; ) oo, h(givpi))
C B((givg ") 'oo, 1). (6.64)

By (6.6), we obtain
d(giDp,. (givg; ) 'o0) = 1/n. (6.65)
Combining (6.63)-(6.65) together, we conclude that
giv~'Ui C B((giyg; )00, 1) C B(giAp,, 1/20)".
]

We prove Proposition 4.1 (1) and (4.2). The proof is to consider an induced
map and reduce the number of cusps by 1 at a time.
Letg = pj.Denote Uj<j<j 1A, = A— A, by Xy and forx € X1, define

ni(x) =inf{n e N: Tj (x) € X }.
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The map T is given by T} (x) = Tonl(x)(x) for x such that ny(x) < oo. Since
Ty is irreducible, this induced system is also irreducible on X{. Write

H, := the set of the inverse branches of T which are from A, to A,
‘H,, := the set of the inverse branches of 7 which are from X; to X,
Hpq = the set of the inverse branches of Tp which are from X to A,
Hyp = the set of the inverse branches of Ty which are from A, to Xj.

As T is a composition of multiples of 7y’s, we have

e cither 77(x) = y " 'x with y € Hp,
eorTi(x) = y_l

() -'yl_lx with y1 € Hyp, Yn(x) € Hpg and y; € H, for
[=2,...,n1(x) — 1.

The string yy - - - ¥, (x) 18 an inverse branch of 7. Set

‘H1 := the set of all inverse branches of 77,
Hy =={y1---vn:vi € Hy for 1 <i <n} forevery n eN.

Lemma 6.66 There exists C > 0 such that for every n € N and for every
y € ‘H2, we have

17" )| = |y |loo/C forany x € A,.

Proof We first notice that |y’ (x)| ~ I(ng/gj_l)/(gjx)l. Write p = yp;. By
Lemma 5.7, we have

h(g;p)

(givg; ' DI = 20 2P

By (6.6), we have d(g; Ay, gjv ™' pj) = d(gj Ay, (gjyg‘,-_l)‘IOO) > 1/(2n).
Then for every y € gjA,, = gjA,, the distance d(y,gjy_lpj) €
[d(gjAy, gjy_lpj) + diam(g;A4)], which implies the lemma. O

Lemma 6.67 There exist C > 0, € > 0 such that for everyl € N

S w1k < C—e)

1<k<l, yreH,
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Proof Claim: there exists € > 0 such that for every n € N and for any & € H”,
we have

Yy Ay < (1 —euhA,). (6.68)
y€H,

Proof of the claim: for a measurable set E C A, by Lemma 6.66

W(hE) = /E 1 ) () /E B () Pdur) € pBNI1/C, 11
(6.69)

Write F = Uyen, v Aq. Since Ty is irreducible, we have w(F) < u(Ay). By
(6.69)

D ulhy Ag) = w(hF) < |W'|3 u(F)
y€H,

w(F)

- mWIE;M(Aq — F) < C'u(h(Ag — F)).

So we have

(1+1/C") Y ulhy Ay) < whF) + p(h(dg — F)) < u(hAy).
y€H,

Using (6.68), Lemma 6.66 and (6.69) with E = A, we obtain

Yo w1 =C D pne vy

1<k=l, y€Hy 1<k=l, yeHy

<C ) (d-9un--y-1b)=Cl-e
1<k=<I—1, yxeHy

O

Proof of Proposition 4.1 (1) and (4.2) We first use Proposition 6.15, (6.58),
Lemma 6.66 and 6.67 to prove that for the expanding map 77, we have

1. There exists €; > 0 such that

DI < oo, (6.70)
y€HI

where |y'| is defined as in (6.56).

@ Springer



Exponential mixing of geodesic flows 993

2. There exists € > 0 such that for every n € N,
u{xeXi:nx)>n+1h) <1 —-e)". (6.71)

The second statement in particular implies that the map 7 is defined almost
everywhere in A — A,.
Due to Lemma 6.67, we can find a large /o such that } yeeH,

|(v1 -+ y1,) 1% < 1. Then using (6.58) and submultiplicativity |(y172)lec <
|(1) |00l (72) | 00> We obtain

Do w15 < oo,

1<k=<ly, yreHy

where € > 0 is the constant given by (6.58). Hence we can find 0 < €] < €
small such that

Yo ) < L

I<k<lo, yeH,

Using submultiplicativity, we obtain constants C > 0, p < 1 such that for
leN

Yo w15 = Co. 6.72)
1<k<l, yreHy

Denote Zye?—( 1 ly’ |§gfl by E,. For every inverse branch of 77, it can be
uniquely decomposed as yoy1 - - yivi+1 With yi11 € Hpq, vi € Hy with
i =1,---land yy € Hyp. Using this expression and submultiplicativity, we
obtain

Eg< Y i+ | > e > ke

vEH), I=1 \yo€Hqp Vi+1€H pq
1é—
Yo (6.73)
Yi€Hg, 1<i<l

Therefore E, is also finite due to (6.73), (6.72) and (6.58).

The set of x such that 7jj' (x) is outside of domain of definition of T for
some n has zero PS measure by Proposition 6.15. We only need to consider the
set of x such that 7§ (x) is in the domain of definition for every n. If x € X
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with ny(x) > n + 1, then x must be in yoy1 - -y, Ay with y9 € H,, and
vi € Hy for 1 <i < n. Therefore Lemma 6.67 implies

pxeXi:m@>n+1D< > Y woricYaly)

YWEHp vi€Hy, 1<i<n

<| X ool | < A=

Yo€Hgp Vi€Hg,1<i<n

We keep reducing the number of cusps by considering the set X := X —
A P and the induced map 7> : X, — X, which is constructed similar to
T1: in particular, the inverse branches of 7, are compositions of elements in
‘H1. Analogs of Lemma 6.66 and 6.67 for 7> also hold. The replacements of
Proposition 6.15 and (6.58) are (6.71) and (6.70) respectively. Using these
three ingredients, we can show the properties like (6.70) and (6.71) also hold
for T,. The proof of Proposition 4.1(1) and (4.2) will be finished by repeating
this. O

Now, we will finish proving the rest of results for the coding except
Lemma 4.5 (UNI).

Proof of Lemma 4.8 Take
A_=Arn{x|>1/2n)} = ArnuU. (6.74)

The contracting map y from Ag to Ag is a composition of maps in Hy, so the
inclusion follows directly from Lemma 6.62. Write p = yoo. By Lemma 5.7,

h(p) 1+ |x|?
(x,p)? 1+ |y~ x>

1y (0)lga = y

Forx € A_,as p = yoo € Ap, we have

1+ |x|? - 1+ |x|?
d(x, p)> = (x| — diam(Ag))?’

The right hand side of the inequality is around 1 as |x| > 1/(2n). For
y~x € A_, we have |y~ 'x| > 1/(2n). Hence |(')/_1)/(X)|Sd < X for some A
independent of y. m|

Proof of Proposition 4.1 (3) By Lemma 5.7, we have

’ _ h(p)
Yl = gt
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1

By Lemma 4.8, we have y ~'oo € A_, which implies d(y ~loo, x) > 1/(2n).

Hence

Y’ ()] < @)2h(p) < 4n>.
O

Proof of Proposition 4.1 (4). We need the following lemma, which will
also be needed in later sections.

Lemma 6.75 Let y be any element in I" which does not fix co. For any x € Ag
and any unit vector e € RY, we have

2(x —§,e)
delog |y’ (x)| = ———1>5—
‘ x — €12
where &€ = y~loo.
Proof 1t can be shown using Lemma 5.7 and elementary computation. O

For y € 'H, Proposition 4.1 (4) can be deduced using Lemma 6.75 and the
observation that |y‘1oo| > 1/(2n) (Lemma 4.8 and (6.74)).

6.9 Verifying UNI

We prove Lemma 4.5 in this part. Let I' ; be the semigroup generated by y in
H and T, be the semigroup generated by y~! with y € H. Let A rand Ap
be the limit set of I' y and I', on dHY*! | that is the set of accumulation points
of orbit I' o and I'o for some o € HA+! respectively. It follows from the
definition that the limit set A ¢ is I" g-invariant and A is I'p-invariant. Due to
[24, Proposition 3.19] (convergence property of Mdbius transformation), we
have that A ¢ is a I' ;-minimal set and A, is a I',-minimal set.

Lemma 6.76 The limit set Ay, is not contained in an affine subspace in R? U
{00} or a sphere in RY.

Proof Let A be an affine subspace or a sphere with minimal dimension which
contains Ajp. Because Ay is I'j invariant, the semigroup I', must preserve
A, so does the Zariski closure of I',. The Zariski closure of a semigroup
is a group (see for example [13, Lemma 6.15]). The Zariski closures of I" ¢
and I', are the same. Hence I" also preserves A and A 7 is in A. We claim:
w(A¢) = u(ArNAg) > 0. Thenbecause I is Zariski dense, by [20, Corollary
1.4], we conclude that j(A) is non zero if and only if A = R, finishing the
proof.
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Proof of the claim: Let x be any pointin Apr N Ag such that T"x € Ar N Ay
for every n € N. We can write x = y,T"(x) € y,A¢ for some y,, € H". Fix
any y € Ay, it follows from Proposition 4.1 (3) that d(y,y, y,T" (x)) — 0.
So ypy — x and x € Ay. Due to Proposition 4.1 (1), the set of x’s such
that T"x € Ar N Ag for every n € N is a conull set in Ar N Ag. Hence

(A y) = pu(Ar N Ao). O

Lemma 6.77 Foreveryx € Ar NAy, there exist pairs of points (&1, E2m), m =
1, ..., ky inthe limit set Ay and €, > 0 such that for every unit vector e € R4
there exists m,

X — X —
< Elmz— $2m2’e> > 2¢. > 0.
X =&l [x — &oml
Proof The map invy : & — ﬁ is an inversion and this map is injective. If

there exists a unit vector ¢ € R¥ such that

<X—51 x =& e>:0

x—&F  x =&

for all &1, & in Ay, then inv, (Ap) is contained in an affine subspace parallel
to e. Hence Ay, itself is contained in an affine subspace in R? U {oo} or a
sphere in R?, which contradicts Lemma 6.76. Therefore, for every unit vector
e € R4, there exist &1, & in Ap such that

X — X —
< 512_ 522’e>#0.
lx —&11°  |x — &l
We use continuity and compactness to finish the proof. O

Lemma 6.78 Let& be any point in Ap. For any €3, €3 > 0, there existsng € N
such that for any n > ng, there exists y in H" satisfying

dsa(y 1o, €) < €2, |Y|oo < €3.

Proof Since Ay, is T’ minimal, for any point & € Ay, there exists a sequence
{yn_l} in I'p such that yn_lfg‘/ converges to & and |y, |~ tends to zero. By
Lemma 4.8, we know that y,fl A _ also converges to £. Hence we can always
finday inT' y with |y'|oc < €3 and dga (y 'A_, &) < €. Let ng be the unique

number such that y € H".
For any y1 € Up>1H", we have [(117) oo < 1¥]lool¥'loo < 1¥'loo and

dsa((1y) o0, &) = dsa(y "Ny 100), &) < dsa(y T A, 6) < €.
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Therefore, for any m = ng 4 n, choose any y; € ‘H" and then y;y € H™ and
it satisfies Lemma 6.78. O

Combining the above two lemmas, by Lemma 6.75 and the formula
R,(yx) = —log|y’(x)| for y € H", we have

—1 —1
Y= Vim ® Y= Vo X
19 (R © Vim — Ru 0 y2m) ()] = n— e
Iy = ¥Vim0ol? |y — ¥, ol

Using this expression, Lemma 6.77, 6.78 and continuity, we obtain

Lemma 6.79 For every x € Ar N Ao, there exist €y, €, > 0 such that for
any €3 > 0, there exists ny € N such that the following holds for any n > n,.
There existky € N, yip, € H" withi = 1,2 andm = 1, ..., ky satisfying

o |y | <esforeveryi=12andm=1,... k,.
e for any unit vector e € RY, there exists m € {1, ..., ky} such that for any
y 6 B(xaéx),

[0¢ (R © Yim — Rn o Vo) (Y)| > 6; > 0.

Proof of Lemma 4.5 For every x € Ar N Ag, we apply Lemma 6.79 to x and
get two constants €, €. > 0. Since Ar N Ay is compact, we can find a finite
set {x, ..., x7} such that UB(x}, €x;/2) D Ar N Ag. Let €9 = inf{e;j} and
r = inf{exj/Z}. Take €3 = ¢¢/C and ng > Suplfjfl{nxj}' Then for every
xj, there exists a finite set {y;,} in H"? satisfying results in Lemma 6.79.
We put all these y;,,’s together and this is the finite set in H"0 described in
Lemma 4.5. For any x € Ar N Ay, it is contained in some B(x;, exj/2).
Then B(x,r) C B(xj, exj). The family {y;,,} for x; will satisfy nonvanishing
condition on B(x, r), that is for every unit vector e € R? there exists m such
that for any y € B(x, r)

|a€(Rn() o Vim — Rn() o Vzm)()’)| > €0 > 0.

Finally, the inequality |D7j;; |00 < C3 is due to (4.4).

7 Spectral gap and Dolgopyat-type spectral estimate

In this section, we prove a Dolgopyat-type spectral estimate and the main
result is Proposition 7.3. Our argument is influenced by the one in [1,2,5,18,
34,47] and there is some technical variation in the current setting. The proof
involves proving a cancellation lemma (Lemma 7.14) and using it to obtain
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L? contraction. The rough idea is as follows. Denote the set Ag N Ar by
Ag. With the UNI property (Lemma 4.5) available, for each ball B(y, r) with
y € Ay, one uses the doubling property of the PS measure to find a point
x € B(y, r) N Ao such that cancellation happens on B(x, r’). Then, to run the
classical argument, one needs to find finitely many such pairwise disjoint balls
B(x;, r")’s contained in A such that LB(x;, Dr’) covers Ag for some D > 1.
The difficulty lies in that the balls B(x;, r)’s are produced using PS measure
so the position of B(x;, r’)’s is in some sense random and some B(x;, r’) may
not be fully contained in Ag. To overcome this, we find B(x;, r")’s which only
cover a subset of Ag and divide the proof of Proposition 7.3 into the cases
when the iteration is small and when the iteration is large.

7.1 Twisted transfer operators

For s € C, let L be the twisted transfer operator defined by

L) (x) = Y 1y 0P uyx), (7.1)

yeH

Foru : Ag — C, define
lullLip = max{|u|oo, |u|Lip},

where [u|Lip = SUP, lu(x) — u(y)|/d(x,y), where d(-, -) is the Euclidean
distance. Denote by Lip(A) the space of functions u : Ag — Cwith [Ju||Lip <
o0. We also introduce a family of equivalent norms on Lip(Ag):

llully = max{luleo, |ulLip/(1+ b))}, b eR.
With Proposition 4.1 available, we obtain the following lemma by a verbatim

of the proof of [1, Proposition 2.5].

Lemma 7.2 Write s = o + ib. The family s — Ly of operators on Lip(Ap)
is continuous on {s € C : o > —¢,}, where ¢, is given as in Proposition 4.1
(4). Moreover, sup‘a‘<€0||Ls||b < Q.

Define the PS measure ug on Ag with respect to the Euclidean metric by
dug () = (1+ 2} dp ().
Using the quasi-invariance of the PS measure w, we obtain that the dual oper-

ator of Lo preserves the measure pg by a straightforward computation. Our
main result of Dolgopyat argument is the following L? contracting proposition.
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Proposition 7.3 There exist C > 0, B < 1,€ > 0 and bg > 0 such that for
allvinLip(Ag), m € Nand s = o +ib with |o| < € and |b| > by, we have

f|Lz’v|2duE < CB™|vli3.

The proof will be given at the end of Sect. 7.5.

Recall that v is the unique 7 -invariant ergodic probability measure on AgN
At which is absolutely continuous with respect to the PS measure p with a
positive Lipschitz density function fy. So v is also absolutely continuous with
respect to g with a positive Lipschitz density function f. Based on these, it
is a classical result that the operator L acts on Lip(Ag) and has a spectral gap
and a simple isolated eigenvalue at 1 with fj the corresponding eigenfunction.

For 0 € R close enough to 0, L, acting on Lip(Ap) is a continuous per-
turbation of Lg (see Lemma 7.2). Hence, it has a unique eigenvalue A, close
to 1, and the corresponding eigenfunction f,, (normalized so that [ f, = 1)
belongs to Lip(Ayp), strictly positive, and tends to fp in Lip(Ag) as o — 0.
Choose a sufficiently small € € (0, €,) such that for o € (—¢, €), f, is well
defined and

1/2< ko =2, f0/2 = fo =2f0, |folLip/2 = |fsILip = 2| f0lLip-

Fors = o +ib with |[o| < € and b € R, define a modified transfer operator
Lg by

Lyu) = (o fo) ' Ly (fou). (7.4)

It satisfies Ly 1 = 1, and |Lyu| < Ly |ul.
Lemma 7.5 (Lasota-Yorke inequality) There is a constant C16 > 1 such that
|L§vlLip < Cio(1 + [bDIvloe + Ci6h" [vlLip (7.6)

holds for any s = o +ib with |o| < €, and alln > 1, v € Lip(Ag), where A
is given as in Proposition 4.1.

The proof of this lemma is a verbatim of proof of [ 1, Lemma 2.7]. The following
lemma can be deduced from Lemma 7.5 by a straightforward computation.

Lemma 7.7 We have ||l~,’;||b <2Cigforalls = o +ibwith |o| < € and all
n>1.
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7.2 Cancellation lemma

The main result of this subsection is the cancellation lemma (Lemma 7.14)
and the proof is inspired by the proof of analogous results in [34] and [47].
We start with detailing all the constants.

Let Cy7 be the constant which will be specified in (7.28). We define the cone

Definition 7.8 For b € R, let

Cp ={(u,v) : u, v € Lip(Ag), u >0, 0 < |[v| < u, |logulLip < C17/b],
lv(x) —v(y)| < C71blu(y)d(x, y) forall x,y € Ap}.

Let » > 0 and ¢y > 0 be the same constants as the ones in Lemma 4.5.
We apply Lemma 4.5 with C = 16Cy7. Let ng be a sufficiently large integer
which satisfies Lemma 4.5 and the inequality

A C17(1 4 diam(Ap)) < 1. (7.9)
Let yjnj, withm = 1,2, j = 1,..., jo be the inverse branches given by
Lemma 4.5.
Let £ € N be such that
keg > 16(C2 + €p), (7.10)
where C; is given in (4.3).
Note that the measure v is absolutely continuous with respect to the PS

measure w. Let D > 0 be such that for all x € Ar N Ag and v’ < 1/C3 with
C3 given in Proposition 5.14

v(B(x, Dr")) > v(B(x, (k +2)r")). (7.11)

Let € > 0 be such that
(2C17€r + 1/4)e*C17€2 < 3/4. (7.12)

Let €3 > 0 be such that

€3(D +2) <min{ey, r, 1/C3}, e3(D 4+ 2)(Ca + €9) < 37/2, e3keg < m.
(7.13)

Recall the notation t,; introduced in Lemma 4.5. For s = o +ib € C,
define

Agyy @) (x) = ST (XY 0 (Yimjix).
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Lemma 7.14 There exists 0 < no < 1 such that the following holds. For
s = o +ibwith|o| <€ |b| > 1, for (u,v) € Cp, and for any y € Ay,
there exists x € B(y, e3D/|b]) N Ar such that we have the following: there
exists j € {1,..., jo} such that one of the following inequalities holds on
B(x, e3/1b)):

ype vy : |As,y1j(v) + As,yzj ()| = UOAa,ylj(”) + Aa,yzj (),
type y2] . |AS,]/1_/‘ (U) + AS,VQ_/‘ (U)l S Ao’,)/lj (I/t) + nOAU,)/zj (M)

We first prove a quick estimate.
Lemma 7.15 Let € be the constant defined in (7.12). For any |b| > 1, for
(u, v) € Cp and for a ball Z of radius €;/|b|, we have
1. infz u > e~ 2C17€2 supy u;
2. either |v| < %uforallx € Zor|v| > %uforallx eZ.
Proof The first inequality is due to |logu(x) —logu(y)| < C17|b||x — y| for
every x,y € Ag.

Suppose there exists xg € Z such that |v(xg)| < J—tu(xo). Then by (7.12)

1 1
lv(x)] = [v(x) — v(xo)| + 74X0) = Crlx — xol|b|supu + 7 Supu
z z

1 1 3
< (201762 + Z) supu < (2C17ex + Z)ezcm infu < Zu(x).

O
Proof of Lemma 7.14 Itfollows (7.11) that there exists xo € (B(y, e3D/|b|) —
B(y, (k +2)e3/|b])) N Ar. Let By = B(y, €3/|bl), B, = B(xo, €3/]b|) and
B the smallest ball containing B; U B,. For all x € By, x’ € By, we have

d(x, x') € %[k, D+2]. (7.16)

In view of (7.13), the radius of B is smaller than €3/|b| and it is contained in
B(y,r). Leteg = (y — x0)/|y — xol-

By Lemma 4.5 for the point y there exists j in {1, ..., jo} such that (4.6)
holds for B(y, r) with e = eg. From now on, j is fixed, so we abbreviate
(Y1), v2j) to (y1, y2) and (71, T2;) to (11, T2).

Due to |y,,loc < A < 1, the radius of ymé’ is smaller than €5 /|b|. So we can
apply Lemma 7.15 to ymﬁ and we have that either |v(y,x)| > %u(ymx) for

allx € Bor [V(Vimx)| < %u(ymx) forall x € B. Suppose that

3
[v(Ymx)| < Zu(me)
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holds for some m € {1, 2} for all x € B. Then Lemma 7.14 can be proved by
a straightforward computation.
Suppose that forx € Bandm =1, 2

1
|U(me)| = Zu(ymx)' (7.17)

Claim Under the assumption of (7.17), there exists C1g > 0 independent of
b and (u, v) such that for [ € {1, 2}, we have

As,yz (v)
Aspy (V)

. As,yl (v)
either |————| < Cygforall x € B; or < Cigforall x € B;.
Agy, (V)

(7.18)

Proof of the claim Fix any xo € Ag. Due to |1,,|cc < C2 (see (4.4)), we have
for any x € é

lT1(x) — 72(x)| < |T1(x0) — T2(x0)| + 2C2|x — X0].
Hence there exists a constant C (71, 72) depending on 71, 72 such that

‘ As g (V)
Asy, (V)

fo (1x)u(y1x)

C(1y, .
=) u(ar)

For the middle term,

Jo (y1x) <4SUPf0'
fo(yax) = inf fy

Since the radius of y, B; is less than €;/|b|, using Lemma 7.15, we have for
every x in B;

u(yix) _ supp uly) _ 2Ce SUPB u(y1)
u(yrx) — infp u(yr) ~ supg, u(y2)’

Putting these together, we have

supg, u(y1)

<Cig
supp, u(y2)

‘ Ag (V)
Ag .y, (V)

where Cig = 4C(11, 12)e?C7€232J0  We have a similar inequality for

inf fo°
‘As,n(v) WP M)y o BB MDD e broof of
Aoy @

supp, u(y2) — supp, u(y1) —
the claim finishes. O

. Note that either
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Now we start to compute the angle and our definitions are only for x € B.
The function arg(v(y,,x)) is well defined because |v(y,x)| > u(ymx)/4 > 0.
Let

O(x) = b(r1(x) — 12(x)), V(x) = arg(v(y1x)) — arg(v(y2x)),
and let
P(x) =0(x)+ V(x).
We apply Lemma 4.5 to B and obtain that for x € B,
|96,©(x)| > |bleg, |©'(x)] < |b|Ca.

For the angle function, .
by (7.17) and (4.7), we have for i € {1,2} and x, x’ € B

|arg v(y;x) —argv(y;x")| = | Im(log v(y;x) — log v(y;x"))|
_ vy - v(yix')|
[v(yix)]
. . —_ . /
< Cpplp) X VXL ey
[v(yix)]

This implies that for x, x” € B
|V (x) = V(x')| < |bleolx — x'|/2.
Combining the estimates for ® and V, we obtain for x, x’ € B
|®(x) — ()| < b(Ca+€)lx — x|, (7.19)
and for x, x + tep € B witht € RY,
|®(x) — P(x +teg)| = beot /2.

Hence for x; = y, xo» = xo which are the centers of B; and Bj respectively,
by (7.16),

| (x1) — P (x2)| € €3[ken/2, (D + 2)(C2 + €0)]. (7.20)
Let €4 = e3keg/8. We claim that there exists [ € {1, 2} such that

d(®(x),277) > e (7.21)
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If not so, then both the distance from ®(x;) to 27 Z and that from ®(x;) to
2n 7 are less than €4. By (7.20) and (7.13)

|D(x1) — P(x2)| < €3(D +2)(Cr + €9) < 37/2 < 27 — 2e4.

Hence ®(x;), ®(xp) are in a ball 2nx — €4, 2nm + €4) with n € Z. This
implies that

|D(x1) — P(x2)| < 2€4 = e3kep/4,

contradicting with (7.20).
Without loss of generality, we may assume (7.21) holds for x;. For any x
in the ball By, by (7.19) and (7.10)

[®(x) — P(x))| < (C2 4 €0)e3 < kezen/16 = €4/2.
Combined with (7.21), we have
d(®(x),2n7) > €4/2. (7.22)

In conclusion, there exists / € {1,2} such that for all x € B,
d(®(x),277Z) > €4/2 and (7.18) holds. Without loss of generality, we may
assume |Ag ,, (v)(x)/As,,, (v)(x)| < Cig for all x € B;. By an elementary
inequality [34, Lemma 5.12], there exists 0 < 79 < 1 depending on €4 and
Cig such that on B;

|As,y1(v) + As,yz )| < 770|As,y1 )|+ |As,y2(v)| =< 770Aa,y1 () + Aa,yz ().

O
For b with |b| > 1, let

(7.23)

D+1
Ap = {x € Aol d(x, dAg) > M}

b

For any (u,v) € Cp, we can find {x;}1<i<;, C Ao := Ar N Agp such that
B(x;, €3/|b])’s are disjoint balls contained in Ay,

Ao N Ap C Ui<i<iyB(xi,2e3D/1b]),
and on each B(x;, €3/|b|) one of the 2 jj inequalities in Lemma 7.14 holds. In
fact, suppose we have already found some points x;’s but UB(x;, 2e3D/|b|)

don’t cover the set AgNAp. Thenforapointy € AgNA,—UB(x;, 2e3D/|b|),
we apply Lemma 7.14 to y and obtain a point x € B(y, e3D/|b|) N Ap such
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that Lemma 7.14 holds on B(x, €3/|b|). Moreover, the ball B(x, €3/|b]) is
contained in Ag and it is disjoint from UB(x;, €3/|b|).

Let B; = B(x;, e3/|b]) and B = B(xi,e3/(3|b])) fori = 1,...,1p. Let
n € [no, 1) and define a C! function X : Ao — [n, 1] as follows: it equals 1
outside of Uy, j ;vmjBi; for each B;, if B; is of type vy, let x (vmj(y)) = n

for y € B; and x = 1 on other y,, ;s B;. We can choose 1 close to 1 and
independent of b such that |x’(x)| < |b| for all x € Ay.

Corollary 7.24 Under the same assumptions as in Lemma 7.14, for (u, v) €
Cp and x = x (b, u, v) a C' function described as above, we have

|L"0v] < L' (xu).

Define J; = B(x;,2e3D/|b|) fori = 1,...,lp and let B = UB;.

Proposition 7.25 Suppose that w is a positive Lipschitz function with
|logw(x) —logw(y)| < K|b||x — y| for some K > 0. Then

/~wdv > 64/ w dv, (7.26)
B Ap

—43DK \where es comes from doubling property only depending

with €4 = €5e
on D and v.

Proof Since U; J; covers Ay, it is sufficient to prove for each i we have a
similar inequality. Due to hypothesis, we obtain inf ; w > e —4e3DK gup 5w
By doubling property, there exists €5 depending on D such that

V(B;) > esv(Jp).
Therefore

/1 wdy > v(gi)ir}fw > esv(Jp)e *PK supw > 64/ w dv.
i B; Ji Ji

7.3 Invariance of cone condition

We define the constants

Cly = 16(8 + €)Cal folool fy Moo + 161 £y ool folLip +4C2 +2,  (7.27)

C17 = max{8| fy ool folLip + (8 +3)Ca + 1 + 4| folool f3 oo Cl7, 6C16)-
(7.28)
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Lemma 7.29 Let C17 > 0 be the constant defined in (7.28) and no be the
constant defined in (7.9). For s = o + ib with |o| < € and |b| > 1, for
(u, v) € Cp, we have

(L™ (xu), L™v) € Cp, (7.30)

where x = x (b, u, v) is the same as the one in Corollary 7.24.

The proof is a verbatim of the proof of [1, Lemma 2.12].

7.4 L? contraction for bounded iterations

In this part, we will prove Proposition 7.3 for the case when m bounded by
log |b|. Compared with [2], where they can finish the proof of an analog of
Proposition 7.3 at this stage, we have the difficulty about the boundary. More
precisely, Proposition 7.25 is one of the ingredients to obtain Proposition 7.3.
Now the integration region of the right hand side of (7.26) is A, which is
smaller than A, so it just enables us to obtain L? contraction for bounded iter-
ations. For large iteration, we will use a Lipschitz contraction lemma (Lemma
7.39) to obtain L? contraction in the next subsection.

Lemma 7.31 For [b| > 1 and v € Lip(Ag), if [v|Lip = C171b|[v]oo, then

~ 9
ILS vy < Tolvls-

Proof We have

2
irip < =—lvllp-
Ci7

|L?0U|oo < vl =

— Ci71bl

By Lemma 7.5, we obtain

|L2v|Lip < Ci6(1 + [b])|v]oo + C16A™|v]Lip

<+ (C16(1+ |b)

+ C16)~"°> lvllp
C171b|

1 1 1
=1 +12D (5 + 3) lllo = L+ 16D vlle.

where the last inequality is due to C1;7 > 6C16 and A"0C7 < 1. O
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Lemma 7.32 There exist C19 > 0 and B < 1 such that for all s = o + ib
with |o| < € and |b| large enough and m < [C19 log |b|]

/Ii?’”ovlzdv < B"Ivll3. (7.33)

Proof If forall 0 < p < m — 1, we have |I:fn°v|Lip > C17/b||LY"v| o, then
by Lemma 7.31,

- - 9
f |L™0p|2dy < |L™MO0v||? < (E)'"nvn%,.

Otherwise, suppose p is the smallest integer such that LY "°v|Lip <
C171b]|LE"™v|so. We consider v/ = L§"%v. Then Lemma 7.31 implies [[v/]|, <
(%)pllvllb. We only need to show that

/ Lm0y 2dy < BP0 |3

We reduce to the case when p = 0, that is |v|Ljp
ug = 1, vgp = v/|v|x and induitively,

< C17|b||v|so. Define

Un+1 = LgO(Xmum)» Un4+1 = L?O(Um)’

where x,, = x (b, u;, vy). It is immediate that (ug, vg) € Cp, and it follows
from Lemma 7.29 that (u,,, v,) € Cp for all m. Hence in particular the x,,’s
are well defined.

We will show that there exist 81 € (0, 1), x > 0 and C > 0 such that for
all m

/u,%mdv < ﬂ1fu§1dv+C|b|_K. (7.34)
Then note that
ILT0v] = [v]oo|L20v0| = [v]oc|vm] < [Vloottm.

As a result,

/|Zsm"°v|2dv < |v|gofu%1dv
< |v|io(ﬁf"/u%dv+0|b|—“ > BD
0<i<zm-—1

< (B +CIbI™ /(1 = Bi)|v|%.
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We can find Cj9 > 0 and 8 < 1 such that for any large enough |b|, (7.33)
holds for all m < [C19 log |b]].
Now we prove (7.34). By definition

g1 () = 25" 710 Y 1Y P fo () Xon ()t (v %)
yeH"0

=1," 071 D (1Y @PP L xum(yx))

yeH"0
(17" 12 £12(px) i (v X))

so by Cauchy-Schwarz
U1 () < A" fo N2 Y 1Y P fo (yx)u, (yx)
yeH"0
Y YOI fo (yx) (v X)
yeH"0
< E(0) Ly (up) L5 (x)

where (noting that Ag = 1)

fo
fo

S
fo

fo
Jo

3

= (A, 2 hao)™0
£(0) = (A, A20) o

oo e} e.¢] o0

As in Proposition 7.25, we write Ag = B U B€. Let ‘H. be the set of inverse
branches given by Lemma 4.5. If y € B, then there exists y; € H, such that

LYY (x2) () < 257 oo ) 21 O)O1PT fao (vi9)

+ Y WO e ry)
yeH"0\{y;}
=LY () = (A =115 oo )y )P far (viy)
<1—(1—nH27"inf fo - | folod - inf [y/1PT27
{yieH:}
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In this way we obtain that there exists n; < 1 such that

mé@) Ly’ w2)(y), ye B,

2
in1 (V) = E@)LYW2)(y), ye B

Since (uy, vy) € Cp, it follows in particular that |log u,|Lip
Hence by (7.9),

< Cr171b|.

13, (Y %) [ (yy) < exp(2C172"|bld (x, ¥)) < exp(2|bld(x, y)).

Letw = ZSO (u2). Then

w@) S0 X, e v 1 folyx)uy, (yx)
w®)  fox) X, e [V P folyy)uz,(vy)

< exp (215 ool foluip +5C2 +21b1) d(x, ) ).

Hence |log w|Lip < K |b| with K = 2|f0_1|00|f0|Lip + 6C, + 2. Using Propo-
sition 7.25, we have

(1- 771)/~ wdv > €4(1 —n1) [ wdv.
B Ap

Setting B’ = 1 — €4(1 — n1), we can further write
g

)71/ wdv —}—/ wdy < g/ wdy < g/ wdv.
B Ap—B Ap Ao

Hence

f M;Hdv <&(o) <771 /~ Izgo(ui)dv —1—/ i I:go(u,zn)dv)
Ap B Ap—B

<&@ | LYwi)dv==&©0)p | uldv. (7.35)
Ao Ao
By (5.30), (7.23) and |upmi1] < 1,
f uZ v < v(Ag — Ap) < Clb| ™", (7.36)
Aog—Ap

Finally we can shrink € if necessary so that £(o)8’ < 1 for |o| < € and
then (7.35) and (7.36) imply (7.34). |
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7.5 Proof of Proposition 7.3

Lemma 7.37 There existe € (0,1), t € (0, 1) and Cr9 > 0 such that for all
s =0 +ibwith|o| <€, n > 1andv € Lip(Ag), we have

ILiv]3, < Cao(1+ [bDT" [vleo /vl + C20B™ [v]oo / lvldv

where B > 1 is a constant depending on € and it tends to 1 as € — Q.

Proof We have

(LYo 25" 7100 Y0 1Y @P fo (yo)lvl(yx)

yeH"

=2," 170 Y0 (Y PP LR o) (v )

yeH"
(17" P2 2 rolol 2 (rn)
Using Cauchy-Schwarz, we obtain
L) < (g 2220)"E (@) L5, (0D (x) - L (Jv) (),
where £(0) = | fo/fo ool f20 / fo ool fo [ folool o/ f20 looc < 64. Hence
L5 vl < 64B"[v]ocl L (1vD)]oos (7.38)
where B > 1 is a constant depending on € with B — 1 as e — 0.
Since Lo is a normalized transfer operator for the uniformly expanding map
T, there exists 71 € (0, 1) such that [Ljv|e < Ct}'||v]|Lip for all v € Lip(Ao)
with ['vdv = 0. (This is a consequence of spectral gap of quasi-compact

operator f,o.) Hence by decomposing |v| into (Jv| — f lv|dv) + f |v|dv, we
obtain

L (wDo < 20 ol + [ Toldy.
Substituting into (7.38), we have
|L"v|%, < 128C(Bt1)" (1 4 |b)|v|sollv]lp + 64B"|v|oo/ lv|dv.
Finally, shrink € if necessary so that T = Bty < 1. O
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Lemma 7.39 There exist C > 0, € € (0,1), A > 0and B € (0, 1) such that
17" vl < CB™ 0]l

forallm > Alog|b|, s = o +ib with |o| < € and |b| large enough, and all
v € Lip(Ap).

Proof Let N = [Cy9log|b|]ng. Using Lemma 7.37 for I:évv and n = I[N,
Lemma 7.7 and (7.33), we obtain

ILFDNY 2 < Cop(1 4 BTN LN vIs ILY ]l
+ CaoB™ LN vluo / N uPdn) 2,
< 2C16C20(1 + DTN vl so V]l 4+ 2C16C20B™ (0100 BN 2|05

We fix [ depending on 7, C19 and ng such that (1 + |b|)‘L’lN/2 < 1. Then by
shrinking B if necessary, there exists 81 < 1, such that

T I+1)N
LIV ) < BN 1y, (7.40)

For Lipschitz norm, we have

LNy
< Ci6(1 + [BDILTDN | + CreA L DN v
1
< Ci6(1+ BBV ully + CEHAN (1 + 16D [v]oo + APV o)1)
[+1
< CE (1 + 1BDIllpBTIN 43N ANy <32 (1 + bDBY Il
for some B> < 1, where we use Lemma 7.5 to get the first inequality and

(7.40) to get the second one. For the infinity norm, by (7.40) and Lemma 7.7,
we obtain

LNl <2168V 10l
Combining these two norm estimates, we obtain
¥ I+1)N [+2)N
1LV oly < @B + 3800110l < B3N Il (7.41)
for some B3 < 1 if |b| is large enough to absorb the constant 6C 126.
Let A =2(+2)Ci9and Ny = (I +2)N/nop = (I + 2)[Ci9log|b|] <

Alog|b|. For m > Alog|b|, we can write m = dN| + r with r € N and
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r < Ni. Therefore by (7.41) and Lemma 7.7,

3 FdNino (f dNy | 7
1L Ovllp = IILG" (L") lp < B3 ILE™ vl

<2C16B5M vllp < 2C16(v/B3)" 101l

Proof of Proposition 7.3 It is sufficient to prove that for all m € N,
/ Ly™vPdv < CB™ vl (7.42)
Then for any k € N, suppose k = mng + r with 0 < r < ng. We have
/ IL§vlPdug < CA3 / L5 (f; toPdv < CAZB™ LY (f, o)l
< AR £y ol = CAZB™ Ivll3-
By choosing € small such that )\3"05 < 1 for any |o| < €, we obtain Proposi-

tion 7.3.
It remains to prove (7.42). For m > Alog|b|, by Lemma 7.39, we obtain

/ |Ly™ovldv < | LY™0v]l; < CB™ vl
For Alog|b| = m > Ci9log|b|, by (7.33) and Lemma 7.7, we know

/|i§””°v|2dv < BICwlogbll 7 (n=ICiolog Do, 2
<2C16B1 PPy |7 < 2C 1687 V]I

for some B = B€19/A < 1.
The case when m < Cj9log|b| has been verified in Lemma 7.32. O

8 Exponential mixing

In this section, we prove Theorem 4.13. As a first step, an analogous result
concerning expanding semiflow will be proved. Let T : Ay — A be the
uniformly expanding map and R : Ay — R, be the roof function as defined
in Proposition 4.1. Set AR ={(x,1) e AL xR :0 <t < R(x)}. We define
a semi-flow T; : A_’i — Af by Ts(x,t) = (T"x,t + s — R, (x)) where n
is the unique integer satisfying R,(x) < ¢t + s < R,4+1(x). Recall that v is
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the unique T -invariant ergodic probability measure on A . Then the flow T;
preserves the probability measure v = v x Leb /(v x Leb)(Aﬁ). We will
also use the probability measure ,ug = ug x Leb /(ug x Leb) (Af_) on Af
We show that 7; is exponentially mixing.

For a bounded function on Aﬁ, we define two norms. Set

|U(x,a) = UK, a")

U = |U|x + su )
1Ullsy = U1 p dG) Fla—a

()£’ ,a) el
Var(O’R(x)){t — Vi(x,t)}

IVIg, = V] + sup ,
: X eAs R(x)

where Var ruy{t = V(x,1)} is the total variation of the function #
V (x, t) on the interval (0, R(x)).

Theorem 8.1 There exist C > 0, € > 0 such that for all t > 0 and for any
two functions U, V on Af; with U sy, IV |5, finite, we have

V UV oTduk - (/ Udug) (/ VdvR>‘ < Ce U g IV 115,

Remark 8.2 Applying this theorem to the function U (x, t) (‘1%; (x), we obtain
E

‘/U.VoTtdvR — (/ UdvR) </ VdvR)‘ < Ce “"|U|g, IV 13-

(8.3)

With Proposition 7.3 available, Theorem 8.1 can be proved essentially
along the same lines as the proof of [2, Theorem 7.3] (see also [2, Section
7.5]). We provide a sketch of the proof here. For a pair of functions U, V,
let p(t) = f U-Vo Ttd,ug be the correlation function and the observation
is that the Laplace transform of p, denoted by p, can be expressed as a sum
of twisted transfer operators L [2, Lemma 7.17]. One shows that 6 admits
an analytic continuation to a neighborhood of each point s = ib and this
part of the argument uses the quasi-compactness of the twisted transfer oper-
ators [2, Lemma 7.21, 7.22]. When |b| is large, the Dolgopyat-type estimate
(Proposition 7.3), which is a replacement of [2, Proposition 7.7] in the cur-
rent setting, is used to imply that ¢ admits an analytic extension to a strip
{s=0+ibeC:|o| < og} for all sufficiently small o [2, Corollary 7.20].
The result of exponential mixing then follows from the classical Paley-Wiener
theorem [2, Theorem 7.23].

The difference between our result and that in [2] is the classes of functions
in concern. The only adjustment we need to make is [2, Lemma 7.18], which is
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anorm estimate for C! functions in their paper, but for functions with finite By
norm in the current setting. The precise statement is as follows. For a function

U: Ay — Rwith |Ullg, < ooands € C,set Uy(x) = ™ e U (x, 1)dr.
Lemma 8.4 There exists C > 0 such that for s = o +ib with |o| < €,/4 (&,
is given as in Proposition 4.1 (5)), the function LyU_; is Lipschitz on Ay and

CllU I,

LU_g|lp < ———22.
|| K s”b_ max{1,|b|}

Proof We first prove for x € A} we have

€oR(x)/2

A Ce
U_ <—|\Ullg,.
[U_s(x)] < max (1. 5[] U5,

By definition, we have

R R(x)
U_s(x) = / U(x, t)e™dr.
0

The case when |b| < 1 is easy. When |b| > 1, one uses integration by parts
and the fact that U is Lipschitz with respect to ¢ to obtain

1U_s(0)] < QU |00 RO* 1 |U|Lip R(x)e ROy max(1, |b]).

Then
; CllU g, s
LU | < ——— T R/ .
| N s| = max{l, |b|} g(e )
Observe that by (4.2)
La(eeoR/Z) _ Z |y/(x)|5+aeeoR(yx)/2 < Z |y/(x)|8—3eo/4 < 00,
yer yeH

(8.5)

N C||UHB()
So [LsU—s| < mxmen

We estimate the Lipschitz norm of L U_ s- We have

LU 5(x) = LU s(y) = Y [V 0P O s (yx) = U_s(yy)
yeH

+(Y P — 1y DT (v y).

@ Springer



Exponential mixing of geodesic flows 1015

The term |y’(xA)|5+S —1y'(y) 19+5 can be estimated using Proposition 4.1 (4).
For the term U_;(yx) — U_s(yy), suppose that R(yx) > R(yy), we use
Proposition 4.1 (4) again and get

1U_s(yx) = U_s(yy)| < |R(yx) — R(yy)||U|ooe’ RO
R(yy)
+/ Ulyx, 1) = Ulyy, D]edr
0
< (C1"RYD L R(yy)e” RN U |Ig,d (x, y).

Then we use (8.5) to conclude that there exists some C (independent of U)
such that

ILsU—s|Lip < CI1U |5,

O

Proof of Theorem 4.13 Now Theorem 4.13 can be proved using the same lines
as the proof of [2, Theorem 2.7] (see also [2, Section 8.2]). In particular, in
the proof of [2, Lemma 8.3], we use (8.3) to replace [2, Theorem 7.3] and
Proposition 4.11 (2) to relate the measures DR and vR. m|

9 Resonance-free region

Recall that I" is a geometrically finite discrete subgroupin G = SO(d+1, 1)°.
We begin by defining the measures mBR, mBR+ and mH2 Recall the definition
of the BMS measure on T' (H? 1) = 52(HAH!) x R:

dimBMS (x| x_, 5) = %< (0X0) (0.9 q ), (x)dp(x_)ds,

where x, is the based point of the unit tangent vector given by (x, x_, s). We
define the measures mBR, mBR+ and Mm@ on TI(HIT!) = 92(HH) x R
similarly as follows:
diPR(x, x-, 5) = e O PO dm, (x)dpu(x-)ds;

dmBR (x, x_, 5) = (@) P (0XI q . (x)dm, (x_)ds;

At (x, x_, 5) = WP (050 s (0 gy (x)dm, (x_)ds,
where m, is the unique probability measure on d(H¢+!) which is invariant
under the stabilizer of 0 in G.

These measures are all left I'-invariant and induce measures on T! (I’ \Hd“ ),
which we will denote by mBR, mBR+ and mHa" respectively. Here we do not
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normalize the BMS measure to a probability measure, which is different from
the previous part.

By [36, Theorem 5.8], Theorem 1.1 implies exponential decay of matrix
coefficients.

Theorem 9.1 There exists n > 0 such that for any compactly supported func-
tions ¢, ¥ € CH(TY(M)), we have

mBR ()mBR (yr)

1 1 —nt
mBMS (T (M) + O0(¢licil¥licre ™)

e(d—zS)t/ ¢ . w ° gt deaar —
T!(M)

forallt > 0, where O depends on the supports of ¢, V.
Forx,y e H¥*'and T > 0, let

N(T,x,y)=#{y e'|d(x,yy) =T},
where d is the hyperbolic distance on H4+! In [33], it was shown that Theorem

9.1 implies the following:

Corollary 9.2 There exists n > 0 such that for any x,y € H**' and T > 0,
we have

N({T,x,y) = cx’ye‘ST + 0Ty,

where cy y > 0 is a constant depending on x, y.

Proof of Corollary 1.2 For x, y € H*t! and s € C with is > 8, let Py(x, y)
be the Poincaré series defined by

Py(x,y) =Y e s,
yell

We first prove that P (x, y) is meromorphic on fs > § — n with a unique pole
s = 8. By Fubini’s theorem

%1 1
Py(x,y) = / —eTN(T, x, y)dT = / —e” 0"y \dT
0o s 0o

o0

1

+f —e_ST(N(T, x,y) — cx,yeéT)dT.
0 A

The first part is a meromorphic function of s having a unique pole ats = §. The
second part, it follows from Corollary 9.2 that it is absolutely convergence if
Ns > 6—n, henceitisanalyticonfs > —n. Thenweuse[21, Theorem 7.3] to
deduce that the resolvent Ry (s) is also analyticon {s € C: § —n < fs < §}.

O
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10 Appendix: Proof of Lemma 6.9

Proof of Lemma 6.9 We divide into the cases when r lies in different intervals.

Let § = C. /7.

e Case A: r < nh(p) By Lemma 5.7, we have |(y ~1)x| = h(p)/d(x, p)*.
Using Lemma 6.7, we have

N (3Jp) C B(p,2nh(p)) — B(p, canh(p)). (10.1)

Hence for x € N,(9J))

Iy~ x| € [1/@n*h(p)), 1/(cin*h(p)].

Then
N, canhpy @7 Ip) C ¥ T INP@Tp) C N, ) @ 7 Tp)- (10.2)

Notice that 3y ~'J, = 3(By(2/n) x R.,) and R, ,, is a parallelotope tiled
by the translations of KE).
- Case A1:r < n*h(p)
Recall that Lemma 5.29 is proved using Lemma 5.31. Using the
same argument, we obtain an analog of Lemma 5.29 for N,(3y ~'J »)-
Using this version of Lemma 5.29 with € = 48/ cﬁ, the inequality
r/(4n*h(p)) < 1 and (10.2), we have

M(V_lNﬂr(ajp)) = M(ngr/(cinZh(p))(ay_ljp))
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< AN iy @y~ Tp)) < ey ™ Ny (BTp)).

Using Lemma 5.17, we obtain

WNgr @) _ R Ner(@4,))
wN@Tp) Gy TINA@) T

CA,

where A tends to zero as 7 tends to zero.

— Case Ay: n°?h(p) < r < nh(p)
We compute the measure by counting the number of translations of Ag.
By (10.1) and Lemma 5.7, we obtain y_lNr(E)Jp) C B(p', 1/(can)) —
B(p’,1/(2n)). Let y'Ag be any fundamental domain contained in
y~IN,(3J,) with ' € T's. Using Lemma 5.18, we obtain that
w(y'Ag) ~ n* u(Ag). By Lemma 5.17, (10.2)

W(Npr (3Tp) < h(P) (N g, 220y @7 ™' )

By counting the number of fundamental domains, we obtain that
the region Nﬁr/(cinZh(p))(a)/_lJp) can be covered by (1/m)*! .

(Br/(cin*h(p))) disjoint rectangles ¥’ A with ' € T So we have

u(Npr (3J,)) < h(p)® - (/)= (Br/(cin*h(p))) - n*° 1(Ao).
By Lemma 5.17, (10.2)
1(N- (3T )) > (P’ LN,y an2ni iy @Y ™ ).
Meanwhile, as r/(4n>h(p)) > 1/4n'/2, the number of rectangles y’ Ao

inside N, 4,25 (p)) @y~ Jp) is greater than (1/n)*~1 - (r/(4n*h(p))).
Hence we have

(N (3T) > h(p) - (1/m* =" (r/@n°h(p))) - n*° 1 (Ao).
Therefore,
1(Ngr(3Jp) < BN (D).
e Case B:n'?h(p) <r < h(p)

We handle this case using (5.16). By Lemma 6.7 and the inequality
h(p)/2 > Br = nh(p), we have

n(Ngr(8Jp)) < u(Jp U Ngr(8Jp)) < w(B(p, nh(p) + Br))
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< u(B(p,2Br) < 2Br)*n(p)*=2.
Meanwhile, we have

1y UN ) = u(B(p,r) > r***h(p)*~°.

Hence
M(Nr(ajp) - Nﬂr(a-]p)) _ M(Jp U Nr(a-]p)) - M(Jp U Nﬂr(a-]p))
[L(Nﬁr(a.]p)) M(Nﬂr(ajp))
r28fkh(p)k78 _ (2ﬂr)287kh(p)k78
> @B Fh(p)Fd '
Therefore

1(Npr(3J)) < B2 (N (07,)).

Now to prove (6.10) we consider '/ and r. Then one of them belongs to
0. ”*h(p) UIn**h(p). nh(p)1V[n"*h(p), h(p)]. Inequality (6.10) follows
from the observation that

M(NCnr(aJp)) <min{,u(NCnr(aJp)) M(Nﬂr(ajp))}
W, @0 = N @0, N0, |
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