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Abstract We construct a class of global, dynamical solutions to the 3d Euler
equations near the stationary state given by uniform “rigid body” rotation.
These solutions are axisymmetric, of Sobolev regularity, have non-vanishing
swirl and scatter linearly, thanks to the dispersive effect induced by the rotation.
To establish this, we introduce a framework that builds on the symmetries
of the problem and precisely captures the anisotropic, dispersive mechanism
due to rotation. This enables a fine analysis of the geometry of nonlinear
interactions and allows us to propagate sharp decay bounds, which is crucial
for the construction of global Euler flows.
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1 Introduction

While global regularity of solutions to the incompressible 3d Euler equations
forU :R x R — R3

hU+U-VU+VP =0, div(U) =0, (1.1

remains an outstanding open problem, there are several examples of stationary
states (see e.g. [10,11,20,24] for some nontrivial ones). A particularly simple
yet relevant one is given by uniform rotation around a fixed axis. In Cartesian
coordinates with ¢3 along the axis of rotation, these “rigid motions” are given
by U,os = (—x2, x1, 0) (with pressure P, = (xl2 + x%)/2). Working with
solutions that are axisymmetric (i.e. invariant with respect to rotation about €3)
and writing U = U,,; + u, one sees that U solves (1.1) iff the velocity field
u : R x R3 — R3 satisfies the Euler—Coriolis equations

u+u-Vu+ezs xu+Vp =0, (1.2)

div(u) = 0. '
As an alternative viewpoint, (1.2) are the incompressible, 3d Euler equations
written in a uniformly rotating frame of reference, where the Coriolis force
is given as 3 x u. The scalar pressure p : R x R? — R serves to maintain
the incompressibility condition div(#) = 0 and can be recovered from u by
solving the elliptic equation Ap = —(djuy — dhuy) — div(u - Vu).

Our main result shows that sufficiently small and smooth initial data ug that

are axisymmetric lead to global, unique solutions to (1.2):

Theorem 1.1 There exist Ny > 0 and a norm Z, finite for Schwartz data, and
&9 > 0 such that ifug € H 3R3) is axisymmetric and satisfies

lwollz + lluoll vy < & < o, (1.3)

then there exists a unique global solution u € C(R : H*No) of (1.2) with
initial data wo, and thus also a global solution U for (1.1) with initial data
Uo=U;o + uy.
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Global axisymmetric Euler flows with rotation

Moreover, u(t) decays over time at the optimal rate

lu@®l e S eft)™!

and scatters linearly in L?: There exists u8° such that the solution u;i,(t) of
the linearization of (1.2) with initial data ug’,

duiin + €3 X iin +Vp =0, div(win) =0, win(0) =ug’, (1.4)

satisfies

lu(t) —wiin(®)ll;2 — 0, t— oo.

We comment on a few points of immediate relevance:

(D

2)

3)

A more precise version of Theorem 1.1 is given below in Theorem 3.3
of Sect. 3.3. In particular, the Z norm in the above statement is given
explicitly as a sum of B and X norms—defined in (3.3) resp. (3.4) after
the introduction of appropriate technical tools—plus regularity in terms
of a scaling vector field. With this, the scattering statement can be refined
and holds in a stronger topology than L?—see Corollary 3.6.

We may view Theorem 1.1 as a global stability result (in the class of
axisymmetric perturbations satisfying (1.3)) for uniformly rotating solu-
tions U,,; = rég in cylindrical coordinates (r, @, z) to the incompressible
3d Euler equations (1.1). From this perspective, our result connects with
the study of stability of infinite energy solutions to the 2d Euler equa-
tions, such as shear flows [5,38,39,52] or stratified configurations [4],
even though the stability mechanism (“phase mixing”) in these settings is
different. However, to the best of our knowledge there are no such results
for the Euler equations in 3d.

We point out that the particular rotating solution U, is but one example
of a family of stationary states of the 3d Euler equations, given by U y =
f(r)ég, with f : Rt — R. The 3d Euler dynamics near U s can be
described as U = U y + u where u satisfies

ou+u- Vu—}—&é} X u+M89u+rar (f(r)) (u-é)ey+Vp =0,
r r r

div(u) = 0.

(For f(r) = r and under axisymmetry this reduces to (1.2).) Our result
thus initiates the study of the stability of these equilibriums.

Apart from smallness, localization and axisymmetry assumptions, no
restrictions are put on the initial data in Theorem 1.1. Classical theory
thus only predicts the existence of local solutions for a time span of order

@ Springer



Y. Guo et al.

4

&)

(6)

e~!. In contrast, the global solutions we construct can (and in general
do—see Remark 2.1) have non-vanishing swirl. (We recall that without
swirl, solutions exist globally under relatively mild assumptions, see e.g.
[51, Section 4.3].) In this context, the crucial role of axisymmetry is to
suppress a 2d Euler-type dynamic in (1.2). Without axial symmetry, it is
unclear whether a similar stability result can hold: the 3d Euler equations
are notoriously unstable and there are reasons to believe that even for small
initial data the aforementioned 2d Euler dynamic (with its potential for
extremely fast norm growth) would play an important role—for more on
this we refer the reader to the discussion in Sect. 2.2.2.

It is remarkable that a uniform rotation keeps solutions from Theorem 1.1
globally regular in the absence of dissipation. Without rotation, even
axisymmetric initial data may lead to finite time blow-up, as conjectured
in [33,34,50] and recently established in [16,17] for C La golutions. For
related equations, one can produce finite time blow-up even in the pres-
ence of rotation, e.g. in the inviscid primitive equations [35].

At the heart of this result is a dispersive effect due to rotation. This is
a linear mechanism that on R? leads to amplitude decay of solutions of
the linearization (1.4) of the Euler—Coriolis system. The anisotropy of the
problem is reflected in the dispersion relation, which is degenerate and
yields a critical decay rate of at most r~! (see Corollary 4.3). In particular,
our nonlinear solutions decay at the same rate as linear solutions.

The influence and importance of rotational effects in fluids has been docu-
mented in various contexts, in particular in the geophysical fluids literature
(see e.g. [22,53,54] or for the B-plane model [18,21,55]). In the setting
of fast rotation, the (inverse) speed of rotation introduces a parameter of
smallness that can be used to prolong the time of existence of solutions.
For Euler—Coriolis (1.2), this has been done in [1,8,15,45,49,59,60] via
Strichartz estimates associated to the linear semigroup, based on work
in the viscous setting [9,23]. Such results do not require axisymmetry
and apply for sufficiently smooth initial data without size restrictions. By
rescaling’, these results amount to a logarithmic improvement of the time
scale of existence in Sobolev spaces, with a slightly stronger improvement
available in Besov spaces [1,60].

This article expands on the line of work initiated in [29]: we glob-
ally control the evolution of small, axisymmetric initial data and find
their asymptotic behavior. We develop a framework that tracks various
important anisotropic parameters and—crucially—introduce an angular
Littlewood—Paley decomposition to propagate fractional type regularity

I Note that if u solves (1.2) on a time interval [0, T'], then for @ > 0 we have that u,(z, x) :=
wu(wt, x) solves (1.2) with €3 replaced by we3 on the time interval [0, w171, so that speed
of rotation and size of initial data can be related.
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in certain angular derivatives on the Fourier side. This is coupled with a
novel, refined analysis of the linear effect due to rotation, which allows us
to obtain sharp decay rates with a weak control of the unknowns, and a
precise understanding of the geometry of nonlinear interactions. We refer
the reader to Sect. 1.1 for a more detailed description of our “method of
partial symmetries”.

(7) While the techniques and ideas of this article are developed with a precise
adaptation to the geometry of the Euler—Coriolis system, we believe they
can be of much wider use, for instance for stratified systems (such as the
Boussinesq equations of [61] or [7]), plasmas with magnetic background
fields (e.g. in the Euler—Poisson or Euler—Maxwell equations [30,31]), or
in a broader context dynamo theory in the MHD equations (see e.g. [19,
Section 7.9]). Moreover, they may open directions towards new results or
improved thresholds also in the viscous setting [9,48].

We give next an overview of the methodology this article proposes and
how these ideas are used to overcome the challenges posed by the anisotropy,
quasilinear nature and critical decay rate of (1.2).

1.1 The method of partial symmetries

Underlying our approach are classical techniques for small data/global regu-
larity problems in nonlinear dispersive equations, such as vector fields [47] and
normal forms [56] as unified in a spacetime resonance approach [25,26,32]
and further developed in [6,12-14,27,30,40-44,46] (see also [36,37]). To ini-
tiate such an analysis, we observe that the linearization of (1.2) is a dispersive
equation, with dispersion relation given by

AGE) =&/IEl, £eR’.

This is anisotropic and degenerate, and leads to L°° decay at the critical rate
t~1, which is also sharp—see also Proposition 4.1 resp. Corollary 4.3 and the
discussion thereafter.

This anisotropy is also manifest in the full, nonlinear problem (1.2), which
exhibits fewer symmetries and conservation laws than the 3d Euler equations
without rotation (1.1). In our setting, we only have two unbounded commuting
vector fields: the rotation 2 about the axis €3, and the scaling S (see Sect. 2). To
obtain regularity in all directions, we complement them with a third vector field
Y, corresponding to a derivative along the polar angle in spherical coordinates
on the Fourier side. This choice ensures that Y commutes with both €2 and S,
but it does not commute with the equation.

Our overall strategy leans on a general approach to quasilinear dispersive
problems and establishes a bootstrapping scheme as follows:
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(1) Choice of unknowns and formulation as dispersive problem (Sect. 2). We
parameterize the fluid velocity by two real scalar unknowns Uy which
diagonalize the linear system and commute with the geometric struc-
ture (Hodge decomposition and vector fields). Normalizing them properly
then reveals a “null type” structure in the case of axisymmetric solutions
(Lemma 2.3).

(2) Linear decay analysis (Sect. 4). The key point here is to identify a weak cri-
terion for sharp decay which will allow to retain optimal pointwise decay
even though the highest order energies increase slowly over time. This
criterion largely determines the norm we will propagate in the bootstrap;
it incorporates localized control of vector fields and angular derivatives in
direction Y via a B and X norm, respectively.

(3) Nonlinear Analysis 1: energy and refined estimates for vector fields
(Sect. 7). Thanks to the commutation of S with the equation, energy esti-
mates for (arbitrary) powers of S on the unknowns U4 follow directly
from the decay at rate ~'. We then upgrade these L? bounds of many
vector fields to refined, uniform bounds for fewer vector fields on the pro-
files U+ of U+ in a norm B. This norm is designed as a relaxation of the
requirement that the Fourier transform of the profiles ¢/+ be in L*°.

(4) Nonlinear Analysis 2: propagation of regularity in Y (Sect. 8). This is
the most delicate part of the arguments, and the design of the X norm to
capture the angular regularity in Y plays a key role: roughly speaking,
while stronger norms give easier access to decay, they are also harder to
bound along the nonlinear evolution. In the balance struck here the X norm
corresponds to a fractional, angular regularity on the Fourier transforms
of the profiles U..

We highlight some key aspects of our novel approach:

e Anisotropic localizations: To precisely capture the degeneracy of disper-
sion and to be able to quantify the size of nonlinear interactions, it is
important to track both horizontal and vertical components of interacting
frequencies. New analytical challenges include the control of singularities
due to anisotropic degeneracy (see e.g. Proposition 4.1 or Lemma 5.1). We
thus work with Littlewood—Paley decompositions (with associated parame-
ters p, g € 7~ ) relative to the horizontal |&,| / |£| and vertical components
1831/ 1] of a vector & = (&1, &, &) € R?, where & = (&1, &).

e Angular Littlewood—Paley decomposition: A crucial new ingredient is the
introduction of an “angular” Littlewood—Paley decomposition quantifying
angular regularity (see Sect. 3.2). Since our solutions are axisymmetric, this
amounts to define and control fractional powers Y!™# for 0 < g « 1.

@ Springer



Global axisymmetric Euler flows with rotation

This is fundamental for our analysis in that it enables us to pinpoint a weak
criterion for sharp decay that moreover can be controlled globally.>

e Emphasis on natural derivatives: We view the vector fields §, 2 gener-
ated by the symmetries as the natural derivatives of this problem, and our
approach is tailored to rely on them to the largest extent possible. In par-
ticular, we develop a framework of integration by parts along these vector
fields (Sect. 5). The precise quantification of this technique is achieved
by combining information from the anisotropic localizations and the new
angular Littlewood—Paley decomposition. Furthermore, a remarkable inter-
play with the “phases” of the nonlinear interactions reveals a natural
dichotomy on which we can base our nonlinear analysis. Compared to
traditional spacetime resonance analysis, one may view this as a qualified
version of the absence of spacetime resonances, relying only on the natural
derivatives coming from the symmetries.

In what follows, we describe some of our arguments in more detail.
Linear decay

We collect the control necessary for decay in a norm D in (4.1), that combines
the aforementioned B and X norms (associated with localized control of vector
fields and angular derivatives in direction Y, respectively). In particular, it
guarantees L°°-control of the Fourier transform. This enables a stationary
phase argument adapted to the vector fields, and yields (in Proposition 4.1)
a novel, anisotropic dispersive decay result: we split the action of the linear
semigroup of (1.2) on a function into two well-localized pieces (related to the
angular regularity we have), which decay in L™ resp. L. In addition, away
from the sets of degeneracy of A, these pieces display decay at a faster rate.
To quantify this accurately, our anisotropic setup makes use of the horizontal
and vertical projections P,, P, , and associated parameters p,q € Z™. In
combination with the localization information and a null structure of nonlinear
interactions, this provides a key advantage over some traditional dispersive
estimates.

Choice of norms

Our norms are modeled on L? to exploit the Hilbertian structure, and play a
complementary role. The B-norm (3.3) weights the projections P, , negatively
in p, q. For functions localized at unit frequencies, this provides normal L?
control of f for frequencies where dispersion yields full 73/ decay (i.e.

2 While sharp decay would also follow from control of a higher power of Y such as T2, the
resulting terms seem to resist uniform in time bounds and are thus very hard to manage.
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when p,q > —1), but strengthens to scale as L control on f where the
decay degenerates to the nonintegrable rate r~!. It is primarily used to control
the contribution of the region where ¢ < — 10. The X-norm (3.4) gives a strong
control of 1+ 8 angular derivatives in Y, quantified via the angular Littlewood—
Paley decomposition R, of Sect. 3.2, £ € Z*. Weighting positively in p we
obtain a control that degenerates to scale as the L°° norm of f for vertical
frequencies. This is used chiefly to control the region where p< — 10. In
addition to the weighting in terms of anisotropic localization, our norms also
include factors that help overcome the derivative loss due to the quasilinear
nature of the equations.

Nonlinear analysis

With a suitable choice of two scalar unknowns Uy and U_ (Sect. 2), the
quasilinear structure of (1.2) reveals a “null type” structure (Lemma 2.3) that
will be important for the estimates to come. Conjugating by the linear evolution
we can reformulate (1.2) in terms of bilinear Duhamel formulas for two scalar
profiles U, U_—see Sect. 2.2.4. The nonlinear analysis can then be reduced
to suitable bilinear estimates for the profiles in the B and X norms relevant
for the decay. For the resulting oscillatory integrals of the form (2.8), we have
versions of the classical tools of normal forms or integration by parts at our
disposal.

Here our anisotropic framework invokes the horizontal and vertical param-
eters p, pj and q, q;, j = 1, 2—corresponding to the interacting and output
frequencies—that are adapted to capture (inter alia) the size of the nonlinear
“phase” functions @ and its vector field derivatives V® (Lemma 5.1). It is
valuable to observe that a gap in the values of either the horizontal or vertical
parameters immediately yields a robust lower bound for S® or Q®, expressed
again in terms of those parameters p, p;, g, q;, with additional singularity in
pj due to the anisotropy, see (5.1) and (5.3). Moreover, we have the strik-
ing fact that if @ is (relatively) small, then V ® will be (relatively) large for
some vector field V € {S, @} (see Proposition 5.2). To take full advantage of
this dichotomy, it is important to establish sharp criteria for when integration
by parts along vector fields is beneficial (Sect. 5). Here the Littlewood—Paley
decomposition Ry in the angular direction Y plays a vital role, and quantifies
the effect on “cross terms” via associated parameters £;, j = 1,2 (see also
Lemma 5.6).

In bilinear estimates, the resulting framework for iterated integration by
parts along vector fields then allows us to force parameters £, £; at the cost of
p,pjand g, qj, j = 1,2, roughly speaking. As it is not viable to localize in
all parameters at once (see also Remark 3.2), we first decompose our profiles
with respect to Ry i Py ;o and only later include the full P, IWIE j=12.1In
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practice, we will then be able to first enforce that p, p; are all comparable (no
“gapin p”, as we call it), then that there are no size discrepancies in g, g; (no
“gapin q”), and either work with normal forms or use our new decay estimates
for the linear semigroup (Proposition 4.1).

The simplest version of these arguments appears in Sect. 6, and gives an

improved decay at almost the optimal rate £ for the L2 norm of time deriva-
tives of the profiles /4. This is a demonstration of the flexibility and power
of our approach, which in this instance overcomes the criticality of the sharp
t~! decay with relative ease. Here, when there are no gaps in p nor ¢ (and
integration by parts is thus not feasible), normal forms are not available due
to the time derivative. However, with our novel decay analysis and its well-
localized contributions (Proposition 4.1) we can gain additional decay in a
straightforward L? x L estimate.

Including normal form arguments and a refined study of the delicate con-
tributions of terms with localization in ¢, ¢;, we can then show the B norm
bounds (3.11)—see Sect. 7. Finally, the control of the X norm in Sect. 8 is
the most challenging aspect of this article and requires a more subtle splitting
of cases and an adapted version of iterated integration by parts along vector
fields (as presented in Sect. 5.3.3).

1.2 Plan of the article

After the necessary background in Sect. 2, in Sect. 3 we introduce the func-
tional framework (including the angular Littlewood—Paley decomposition) and
present our main result in detail with an overview of its proof. This is followed
by the linear dispersive analysis that gives the decay estimate (Sect. 4).

The formalism for repeated integration by parts in the vector fields is subse-
quently developed in Sect. 5, and first used in Sect. 6 to establish some useful
bounds for the time derivative of our unknowns in L?. In Sect. 7 we recall
the straightforward L? based energy estimates and prove the claimed B norm
bounds, while those for the X norm are given in Sect. 8.

Appendix A includes the proof of basic properties of the angular Littlewood—
Paley decomposition (Appendix A.1) and collects some useful lemmata that
are used throughout the text (Appendices A.2—-A.5).

2 Structure of the equations

In this section we present our choice of dispersive unknowns and investigate
the nonlinear structure of the equations (1.2) in these variables. Parts of this
have already been developed in our previous work [29, Section 2], but we
include all necessary details for the convenience of the reader.
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2.1 Symmetries and vector fields

The equations (1.2) exhibit the two symmetries of scaling and rotation
w,(t,x) = u(t, 27 'x), 1>0, up(t,x) = OTu(t,Bx), O e 0Q3).

These are generated by the vector fields S resp. €2, which act on vector fields
v and functions f as

3
Sv=>Y xlgjv—v, Sf=x-Vf
j=1

resp.3
Qu=(x'0y —x?0)v — v,  Qf = (x'd — x29) f.

In both cases, we observe that the vector field V € {S, Q} commutes with
the Hodge decomposition and leads to the linearized equation:

WVu+Vu-Vu+u-VVu+ez3 x Vu+Vpy =0, divVu =0.

In particular, the nonlinear flow of (1.2) preserves axisymmetry, the invariance
under the action of €, i.e. under rotations about the €3 axis.

We note that both S and €2 are natural in the sense that they correspond to
flat derivatives in spherical coordinates (p, 6, ¢):

Q=05 S=pd,.

In particular, they commute and they both behave well under Fourier transform:
we have

Sf=-3f-Sf= Qf =qf.

In practice, we will thus be able to equivalently work with F~1(V fyor vy,
V € {Q, S} (since they differ by at most a multiple of f), and will henceforth
ignore this distinction.

3 In terms of the rotations Qup of Sect. 3.2 we have that Q = Q5.
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2.2 Choice of unknowns and nonlinearity in axisymmetry

To motivate our choice of variables, we first observe that the linear part of
(1.2),

u+e3sxu+Vp=0, divu=0,

is dispersive. Here Ap = curlyu := d,1u> — d,2u', so using the divergence
condition one sees directly that the linear system is equivalent to

oscurlhu — 83u3 =0, 8tu3 + 83A_lcurlhu =0.
The dispersion relations &i A (§) satisfies (i A)? = —‘;‘32 /& |2, and we choose

&3
A = —.
&) |

We also use this notation to denote the associated differential operators, e.g.
the real operator i A = 03 V|1

2.2.1 Scalar unknowns

Due to the incompressibility condition, # has two scalar degrees of freedom.
To exploit this we will work with the (scalar) variables

A= |Vp| eurlh,  C:=|V||Vul e, V= (0,1,0,2,0) (2.1)

which are chosen such that the normalization (2.3) holds. Here u can be recov-
ered from (A, C) as

Uu=up+uc,

where?
Uy = —V}f‘ VL' A, uf; =% 1WA,
e = i AV Vo~ C + V1 — A2C &, (2.2)

ul. = iAVh|7'9,C, ud=V1-A2C

4 We use the convention that repeated latin indices are summed 1 — 2 and repeated greek indices
are summed 1 — 3.
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and for any vector field V e {S, Q} and any Fourier multiplier m : R? — R,

Vu® =uf, +uf. Ve(s, Ql,

(2.3)

Imul7, = ImAl7 + ImCl17, = Imuallj> + lmucll7, .
Using that
Ap = |Vp|A —div[u - Vu] = |Vh|A — 3,95 [uu’].
we obtain that (1.2) is equivalent to
A —iANC = —|Vy|~'9;8, /¥ [u"uk] —iAIV] € |V, [u3uk],
0C —iNA = —iAIVIVT = A2 [ Vil 200 [wlut | + w' 2.4)
— [VI|Va " 9;(1 — 2A2) [uju3] .

Here the structure of the nonlinearity is apparent as a quasilinear, quadratic
form in A, C without singularities at low frequency.

Remark 2.1 In the classical axisymmetric formulation of flows as u = ugéy +
u,e, +u,esz where (éy, €, €3) are the basis vectors of a cylindrical coordinate
system, one has that curlhu = r~19,(rug). Our unknown A is thus closely
linked to the swirl uy of u: it satisfies | V| A = r 18, (rup). In general A will
not vanish for the solutions we construct, and neither will their swirl.

2.2.2 On the role of axisymmetry

A particular family of solutions to (1.2) is given by a 3d system of 2d Euler
equations, i.e. u(t, xy, x2,x3) = (vp(t, x1, x2), w(t, x1, x3)) satisfies (1.2)
provided that v : R x R? > R%2and w : R x R? — R solve

0;vp + vp - Vop + (—v2, v)T + Vg =0,
oow + vy - Vw =0, div(vy) = 0.

Since in 2d the rotation term (—vy, v1)T is a gradient, it can be absorbed into
the pressure and thus u as above is a solution to the Euler—Coriolis system if
vy satisfies the 2d Euler equations, with w passively advected by vy. While
such solutions have infinite energy and are thus excluded from our functional
setting on R3, they have been shown in [3,28] to be of leading order on a
(generic) torus T3 with sufficiently fast rotation.

In the setting of R? one also encounters the 2d Euler equations through a
resonant subsystem: substituting u in terms of A, C as in (2.2) one sees that
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(2.4) is of the form

A —iAC = Q4 (A, C)+ Q4(A, C) + 04(A, O),

2.5
3C —iAA = 05,(A C)+ 05(4,0) + 0%(A, O), (2)

where for W € {A, C} the quadratic terms

° Qr‘f;”(A, C) contain a favorable null type structure (discussed below in
Sect. 2.2.3 in detail),

° Qg (A, C) contain a rotational product structure,

° QE’(A, C) contain the 2d Euler equations in the following sense: near

A = 0 their contribution to A is
WA+ (ViF|Vu|2A) - VA = Lot.,  A:=|Vh| A = curly(u),

in which one recognizes the 2d Euler equations in vorticity formulation for
A, while C is being passively transported by A.

In terms of the nonlinear structure, the crucial observation for our purposes
is that QYEV vanishes on axisymmetric functions, so that in our setting we do
not have to contend with a possible fast norm growth due to 2d Euler-type
nonlinear interactions in (2.5). Moreover, it turns out that also Qg/ vanishes
under axisymmetry, but this is less important for our analysis.

Remark 2.2 (1) The assumption of axisymmetry brings some further simpli-
fications (see e.g. Lemma 5.6), but those are less vital for our arguments.

(2) Although all our functions (including the localizations) are axisymmetric
in their arguments and we have that

Qf =0 if f axisymmetric,
the vector field €2 still plays an important role, since it does not vanish on
expressions of several arguments, such as the phase functions @ (see e.g.
Lemma 5.1).
2.2.3 The equations in axisymmetry
In order to properly describe the structure of the nonlinearity in (2.4) for

axisymmetric solutions, we introduce the following collection of zero homo-
geneous symbols:

_ .0 1.9
E= A yi—ar@), s SO e eee—mnl.
EXICYNENY

(2.6)
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With the standard notation

F(Ou(f () = / n(E. ) FE — mamdn

n

for quadratic expressions with multiplier n, we have the following result (see
also [29, Lemma 2.1]):

Lemma 2.3 Let u be an axisymmetric solution to (1.2) on a time interval
[0, T'], so that A, C as defined in (2.1) are axisymmetric functions that solve
(2.4). Then the dispersive unknowns

Uy =A+C, U_:=A—-C,
satisfy the equations

(O = iMUy = Qi+ (Uy, Us) + Qi (Uy, U) + Q- (U, U-),
@ +iMU- = Qe+ (Us Up) + Qo= (Us U-) + Q_,— (U, U-),
2.7)

with multipliers satisfying

n;l:v("i:v 77) = |§|ﬁ‘KLV(§7 77)’ K, WU,V € {+’_}a
A € spang {AQDVT =A%) - RE 1), 61, &2 € (6,6 —n.n) R e B}

In words: in the axisymmetric case, in the dispersive variables Uy the sym-
bols of the quadratic, quasilinear nonlinearity of (2.7) contain a derivative | V|

and factors of A(z1)y/1 — A%(>) for some ¢, & € {£, € — n, n}. We shall

make frequent use of this null type structure in our nonlinear estimates—a
quantified version of it may be found below in Lemma 5.3.

Proof of Lemma 2.3 This has been established in our prior work [29, Lemma
2.1]. O

2.2.4 Profiles and bilinear expressions
Introducing the profiles U+ of the dispersive unknowns Uy as
Up(t) = e MU0, U-_(1) =" MU_(),
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we can express (2.7) in terms of /1 and see that the bilinear terms are of the
form

O Uy, Uy (s) 1= F! (/M e ED (e Uy (s, & — MUy (s, n)dn) ,
w,v e f{—,+}, (2.8)

for a phase function
CuE, ) =AE)+FuAE —n)+vAMm), wvef{—+} 29

and m one of the multipliers nt"" of Lemma 2.3. By Duhamel’s formula we
thus have from (2.7) that

Us (1) = Uy (0) +/0 [Qm¢+ Uy, U + Qe U U + Q- (U u,)] (s)ds,

U-(1) = U_(0) + /0 [ Qs U U + Qe U U + Q- U U | ()4,

(2.10)
Defining for a multiplier n the bilinear expression
t
Buh 90 = [ Qu(f9)ds
we may thus write (2.10) compactly as
Us() =U0)+ Y By Uy, U) (). (2.11)

w,vel{+,—}

We will use this expression as the basis for our bootstrap arguments.

3 Functional framework and main result

We begin with a discussion of some necessary background in Sects. 3.1 and 3.2,
to make our statement in Theorem 1.1 more precise—see Sect. 3.3.

3.1 Localizations

Let v € C*(R, [0, 1]) be a radial, non-increasing bump function supported
in [, 8] with Vli_g 4 = 1. and set (x) := 1 (x) — ¥ (2x).
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We use the notations that fora € Z and b, c € Z~

ab (@) = Q7 tDe27"V1 = A2(0)),
Ya,b,c(§) = @ap(O)p(27A()),

and will generically denote by ¢ a function that has similar support properties
as ¢, and analogously for ¢, , and @, .. We define the associated Littlewood—
Paley projections Py, ,; and Py, p; 4; as

F(Pryp, IE) = @r,p, EVFE) F(Phy g, IE) = ryopyq, € FE),

and remark that these projections are bounded on L, 1 < r < oco. We note that
D, q are not independent parameters—on the support of Py, , there holds that
22P+4 = min{22P, 29} and 227 4 29 ~ 1. In particular, there is a discrepancy
between p and ¢, in that the natural comparison of scales is between 2p and
g (rather than p and q).

To collect the above localizations we will make use of the notation

Xh(é’ ’7) = §0k,p(§)§0kl,p1 (5 - n)wkz,pz (77),
X(Sv 77) ‘= Qk,p.q (S)wkl,pl,ql(s - n)wkz,pz,qz(n)a (31)

and write

Wmax = Max{w, wi, w2}, Wnin := min{w, wy, wa}, w ek, p,q}.

3.2 Angular Littlewood—Paley decomposition

We now introduce angular regularity localizations via associated Littlewood—
Paley type projectors. Due to axial symmetry, these can be constructed based
on the spectral decomposition® of the Laplacian on S, Ag = 2.

Let N = (0,0, 1) € R? denote the north pole of the standard 2-sphere S?
and let Z,,(P) = 3,({P, N)) denote the n-th zonal spherical harmonic, given
explicitly via the Legendre polynomial L, by

Ml L
4 M BT S dz

3,(x) = [(z2 — D"].

5 That this controls regularity in Y can be seen from (3.2) and (4.4) below.
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Using this, for k € Z we define the “angular Littlewood-Paley projectors”
R<¢, R; by

(R ) ) = 3wy [ 13,00, S ),

=~ x]
(Ref) 1) = 9@ n) /S FU2)3,((9, l%))dvgzw),

n>0

where dvg denotes the standard measure on the sphere (so that v (S?) =
477). These operators are bounded on L? and self-adjoint; their key properties
parallel those of standard Littlewood—Paley projectors:

Proposition 3.1 For any ¢ € Z, the angular Littlewood—Paley projectors Ry
satisfy:

(i) Ry commutes with regular Littlewood—Paley projectors, both in space and
in frequency. Besides, Ry commutes with vector fields Q0 = x40y, —
Xpoy, (a,b € {1,2,3}), S, and the Fourier transform:

[Qab, Rel =[S, Rel = [Re, Pl = [Re, F1 =0.
(ii) Ry constitutes an almost orthogonal partition of unity in the sense that

f=Y Ref. ReRy=0 whenever |t —1{| >4,
£>0

1172 = Y IR f 170

£>0
Ry [R(lf . Rgzg] =0 whenever max{{, {1, ly} > med{{, £, {2} + 4

(iii) Ry and ng are boundedon L, 1 <r < o0,

IRefllLr + IR<e fllr SN fller

(iv) We have a Bernstein property: There holds that

Y IQuwReflr 22 Refllr. 1sr=oco. (39

1<a<b<3

We refer the reader to Appendix A.1 for the proof of this proposition. It is
important to understand the interplay between the R, and Py j, localizations.
By direct computations we have that
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Lo S27P 0 j=12, 1<r<oo

|182)3, Pe |

In particular, for localization Py, pRg (in both horizontal frequency p and
“angular frequency” £) this shows that we should not go below the scale
—p > £, since there the projections do not commute (up to lower order terms).
In practice we will thus work with projectors that incorporate this “uncertainty
principle” £ + p > 0: for p € Z~, £ € Z*, we introduce the operators

0, p+4L <0,
Rép) = Iége, p+€=0,
Ry, p+4€>0.

Convention: For simplicity of notation we shall henceforth drop the super-
script (p) on Ry, i.e.

Ry =R,

since it will always be clear from the context of localization in the correspond-
ing p.

Clearly, key features of Proposition 3.1 transfer to R;: For example, we have
the decomposition

Pif= Y PpRPf= > PipRef.

L+p>0 {+p=>0

Remark 3.2 One checks that

oS24 j=1,2, 1<r<oo,

11823, Pr.p.q]|

Since g plays a similar role as 2 p in terms of scales, it does not seem advanta-
geous to at once localize in p, £ and additionally g. Rather, typically we will
first only work with localizations in p and ¢, and only introduce localizations
in g once the other parameters are under control.

3.3 Main result
With the notations k* := max{0, k}, k= := min{k, 0} and for 8 > 0 to be

chosen we introduce now our key norms, both weighted, L? based to allow
for a Fourier analysis based approach:
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+_1lp— o4
Ifllg:=sup 2% 72275 P, f e (3.3)
keZ, p,qel~
N
Iflx:= sup 2% 20D P Rif|,.. (B4
keZ, e, peZ~
{+p>0

As discussed in the introduction, these norms play complementary roles.
Through appropriate weighting of the anisotropic resp. angular Littlewood—
Paley projectors, the B norm captures anisotropic localization and scales like
the Fourier transform in L>,% while the X norm accounts for angular deriva-
tives in Y. The additional weights in terms of the frequency size k are designed
to capture both the sharp decay at the linear level, and also allow to overcome
the derivative loss inherent to the nonlinearity. In particular the large power of
k™ ensures that we have

IVRofliLee S27NFlxs  IVPepgfliee 2P| flip.

In detail, our main result from Theorem 1.1 can then be stated as the fol-
lowing global existence result for the Euler—Coriolis system (1.2):

Theorem 3.3 Let N > 5. There exist M, Ny € N, 8 > 0 with Ny > M >
B~ + N, and e, > 0 such that if Ux ¢ satisfy

A
™
@
)
A
Q
A
<

HU:I:,OHI_IzNomH—I + HSaU:I:,()HLZQH—l =

3.5
B b'¢

IA

e, O0<b<N,

for some 0 < g9 < &, then there exists a unique global solution Uy €
C(R, R3) 10 (2.7). Moreover, U (1) decay and have (at most) slowly growing
energy

ULl S e0l)™",  NU£@ | gavy S £0(r)°

for some C > 0, and in fact UL (t) scatters linearly.

Remark 3.4 In order to keep the essence of the arguments as clear as possible,
we have not striven to optimize the number of vector fields and derivatives in
the above result. As our arguments show, a choice of § = 1072, Ng = 0(107)
and such that No > M > B~! works.

6 Such a scaling may also be motivated by the fact that the stationary phase arguments that
yield linear decay can only be optimal if one controls the Fourier transform in L°°. This control
is indeed given by a combination of B and X norms including some vector fields S, as we show
in Lemma A.5—we refer to its proof for a further demonstration of the different roles in terms
of angular regularity of the two norms in (3.3), (3.4).
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Theorem 3.3 is established through a bootstrap argument, which we discuss
next. We will show the following result, which implies all of Theorem 3.3
except for the scattering statement:

Proposition 3.5 Let U+ € C([0, T, R3) be solutions to (2.7) for some T > 0
with profiles Us. := eT'"AUL, and initial data satisfying (3.5).
If for t € [0, T] there holds that

|suew)| +|sueo| sen 0sbsw, (3.6)
for some 0 < g1 < \/eq, then in fact we have the improved bounds
|sus| +|stuco| Seo+el. 0sb=N. G
and for some C > 0 there holds that

()l 2mong—1 + | SULD) | 21 S 00, 0<a <M.
(3.8)

Finally, the linear scattering in L? is a direct consequence of the fast decay
of 9,14+ (), and more is true:

Corollary 3.6 Let Uy (t) be global solutions to (2.7), constructed via the boot-
strap in Proposition 3.5 that in particular satisfy the bounds (3.7) and (3.8).
There exist US° € B N X such that

Fith gy t—Z/{OOH 0. ¢ .
e U@ b I R

Proof By Lemma 6.1 we have that ||0,U+ (1) || ;2 < (1) _%, and hence U/ (¢) are
L? Cauchy sequences (in time) and converge to U ast — oo. Similarly, by
Proposition 7.3 resp. Propositions 8.1 and 8.2 we have that (/1. (¢) are Cauchy

sequences in the B resp. X norm. O

We outline next the strategy of proof of Proposition 3.5. In particular, we
show how control of the nonlinearity can be obtained through a reduction to
several bilinear estimates, which are at the heart of the rest of this article.

Proof of Proposition 3.5 We note that under the assumptions (3.6) it follows
from the linear decay estimates in Proposition 4.1 that

1S°U+@®) 0 S ()™, 0<a<N-3,
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and thus the slow growth of the energy and vector fields (3.8) follows from
a standard energy estimate for the system (1.2)—see Corollary 7.2. We note
further that by interpolation we also have bounds for up to N vector fields in
H™Mo: With Lemma A.6 and (3.8) there holds that for » < N we have

[stva)] e (3.9)
HNo
The key point is thus to establish (3.7). We proceed as follows.

Reduction

From the Duhamel formula (2.11) for the profiles /1 we have that

’

SU0)] ., =[S0 |55zt t
[sus| < |stueo] y ; 7B U th)|

hence to prove (3.7) it suffices to show that under the bootstrap assumptions
(3.6), for any multiplier m = ni’” as in Lemma 2.3 there holds that

<&, 0<b<N.

| 8" B @, U4) S

o+ | " B @, )

Since S generates a symmetry of the equation, its application to a bilinear
term By, yields a favorable structure: With S A(§ —n) = =S, A(§ — n) and
SA = 0 there holds that (S + S;;)®,, = 0, and one computes directly’ that
(S + §;)m = m, so that from integration by parts we deduce that

SeF (QmUp. Uy)) (€) = Se /R et Em e, MU (s, & — MU (s, 1

= [ S+ 80Dy T & = il

+ /R HOEN (S, 45,) (m(E, MU (s, & — (s, ) dn

N 3f e EM (e UL (s, € — n)Uy (s, n)dn
R3

= f(—Z Qm(upu uv) + Qm(Suva uv) + Qm(up,, Suv)) (S)

7 Note that Sg + Sy vanishes on the elements of E from (2.6), and Sg |&] = |&] (alternatively,
see [29, Lemma A.6]).
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It thus suffices to show that for i, v € {+, —}, and by, by > 0 there holds that

H B (S"'U,,., SPU,)

- | Bu(s" 4y szuv>\(x <& bi4+by<N.
(3.10)

Bilinear estimates
To prove (3.10) it is convenient to localize the time variable. For ¢ € [0, T']

we choose a decomposition of the indicator function 19, by functions
0, ..., To41 : R = [0, 1], |[L — log,y (2 + 1)| < 2, satisfying

suppto € [0,2], supptr4+1 €[t —2,1],

supp T, < 2" 2"+t for me{l,..., L},
L+1
D tw(s) =1.(s). T € C'(R)

m=0

t
and / T, (s)|ds <1 for me{l,...,L}.
0

We can then decompose

t
Bu(F.G) = Y BY(F.G). BY(F.G)i= [ ta(s) Qu(F. G)s)ds.
0

m

For simplicity of the expressions we will not carry the superscript (m) and
instead generically write By, for any of the time localized bilinear expressions

B&m) above. After establishing the relevant background and methodology in
Sects. 4, 5 and 6, we prove (3.10) by establishing for some § > 0 the stronger
bounds

[Bucs™ e, s2Un| <27 bi+b =N @D
in Proposition 7.3, and
HBm(SbIUM, szuv)HX <M piab <N (312)

in Propositions 8.1 and 8.2. Explicitly we will choose
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and another relevant parameter of smallness will be
8o := 2N, .

For technical reasons, in the proofs it will be useful to have the following
hierarchy between &g and §, related to the sizes of Ng, M in Theorem 3.3:

1089 < 82, ie. Ny > 20M.

O
4 Linear decay
Introducing the “decay norm”
1fllp = sup ([S*7]5+ 157 ]x) 4.1
we have the following decay result:
Proposition 4.1 Let [ be axisymmetric and t > 0. We can split
Pipg€ ™ f = Tip.g(f) + Ui p.q ()
where for any 0 < B/ < B
17ipg (D) oo S 237" - min22r 4 2775173 | £, )

| pg (P 2 S 273 e 17F 212000 g £

The proof gives a slightly finer decomposition and makes crucial use of the
fact that the D norm of a function bounds its Fourier transform in L°°—see
Lemma A.5. We remark that the ideas and techniques underlying Proposi-
tion 4.1 also apply in a general (i.e. non-axisymmetric) setting, where upon
inclusion of sufficient powers of the rotation vector field €2 in the D norm an
analogous result can be established.

Remark 4.2 We note that the corresponding L°° bound for Iy , 4(f) reads

3 2t _1_p/ /
| 1 pg ()| oo S 222071272 P it 1 I
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and we have summability in p, g:
Yo N D] 2 S22 N f
22p+qu_1

S (D] e S 2 £

22p+qzt—1

Together with the above bound for I, ,(f), we thus conclude that:
Corollary 4.3

[Pt r| s 02 fl 4.3)

In particular, under the bootstrap assumptions (3.6) there holds for a solution
u to (1.2) that

()|l oo + IVeu(®) |10 S ert) L

We highlight that the decay rate r~! in (4.3) is optimal: For radial f € L? N
CO(R?) there holds that e f(0) = 2L £(0).

After a brief review of some geometrlc background in the following
Sect. 4.1, we give the proof of these results in Sect. 4.2.

4.1 Spanning the tangent space

The vector fields S, 2 are related to spherical coordinates as follows: For
(0,0, ¢) € [0,00) x [0,27) x [0, 7] we let

& = (pcosBsing, psinb sing, p cos )

= (pcosHv 1 — A2, psinfv 1 — A2, pA),
with
=cos¢, +1—A%=sing,

and have that

R S T T e

0p& = (pcosB cos¢, psinf cosp, —psing) = &, —V1—AZpes,

1—A?

0aE = — (pcosB, psinf, 0) + (0,0, p),

A
V1—A?
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sothat Sis the radial scaling vector field and €2 the azimuthal angular derivative,
ie.

Se =&-Ve=pdy, Q=& V=20

To complement these to a full set of vector fields® that spans the tangent
space at a point in R3, we define the polar angular derivative by

A
Yo =g = —V1 = A2 = =18 + £2) — [EIV] - A2,

ASS — |&] 353] .

1
V1 — A2 [
In terms of the rotation vector fields 2, = x40y, — X}0y, introduced in the

context of the angular Littlewood—Paley decomposition (Sect. 3.2), this can
also be expressed as

& of 3 o

= - 2205 4.4
ST el g B &5

4.2 Proof of Proposition 4.1

By scaling and rotation symmetry, we may assume thatk = Oandx = (x, 0, z)
for some x > 0. If 122714 < C, we simply use a crude integration to get

2
110.p.q) S 277011 fllg -

Henceforth we will assume that 2=27—9 < C~!7. We have that

P p g™ f(x) = /R 3 AOTEEN P F (&, £, E3)dE.

In spherical coordinates & — (p, A, 8), with

dé = p>singdOdedp = p>dodA dp,

8 While other choices of complementing vector field are possible, Y seems to play a particularly
favorable role with respect to the linear and nonlinear structure. In the context of cylindrical
symmetry, (a 0-homogeneous version of) the vertical derivative dg; would be another natural
choice, but this leads to a degenerate coordinate system near the vertical axis (where § = £30z;)
and complicates the nonlinear analysis.
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Fig. 1 The vector fields z
S, QT

upon integration in € we thus need to consider the integral

I(x,2,1) = f eA+PA2 =P 5 /T — A2)p(279pA)
Ry x[—1,1]

Jo(pv/1 = A2x) - fpPp(p)dpdA,

where Jy denotes the Bessel function of order 0. By standard results on Bessel
functions (see e.g. [57, page 338]), this reduces to studying

e, 2, 1) = / Vo2 o1 = A2 pA)
Ry x[—1,1]
- Hi(pv/1 — A2x) - fp2p(p)dpdA,
v ::tA—i—p[Azj:\/l —AZx],

where

S @

d\* H
(E) +(x)
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We focus on the case with sign +; the other estimate is similar. We can compute
the gradient

A
BA\IJ:I—}—,o[z——x], ap\IJ:Az—l—\/l—Azx,

JI=AZ
RPw—_ P oy w— D Ru—o
A [I—AZ]%’ P m ' P

For fixed p,q and 0 < « < (B — B’)/20, we let £( be the greatest integer
such that 2% < 27¢ . (22P+4¢)~%  and we decompose

f = RS&)f + (Id - RSZ())f,

with It =17

0 T I;L t accordingly. On the one hand, we see that

1E, N2 S Y 27 WP | py R f |
=L
<Pyl 2ty mBREBE 0aB | £l

which yields the L? contribution to (4.2). From now on, together with (3.2)
we can thus assume that f = R<y, f satisfies foralla > 0and 0 < b <2
that

15299 Fllzoe Sa 19 - Q¥ =[S oo g 19+ (22PH 1) £ p.
4.5)

We will bound the remaining terms in L°°, and distinguish cases as follows:
Case 1:

0<x<C '2Pt4,  and  |z| < C7'12%P.
In these conditions, there holds that

0AW] > 1/2,  [83¥| <C7'207%, a3 w| < CTl2% A,
(4.6)
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Using that (with & = @27 Pp/1 —ADeR 9pA)H(pv/1 — A2x)
2
P 9(p))

. —~ . h —~
—i // eVl fdpdA = /f eV —— 3" Fdpda
Ry x[—1,1] Ryx[=1,1]  9AY

iv h n gy
+ ¢Vou (—— ) 0% FdpdA,
Ry x[—1,1] N4

we integrate by parts at most N times in A, with Nk > 2, stopping before if
a second derivative does not hit f. Note that the boundary terms vanish since
we assume 227¢ > 1. Once this is done, we have several types of terms:

(1) if all derivatives hit f, a crude estimate using (4.5) gives
V/ e"\"LaNfdpdA
Rox(—11]  (9aW)N A
S22 N N @R TN fllp S @2 T .

(i1) if all but one derivative hit ]/’\, we have a similar estimate since by (4.6)
there holds that

10Ah/IAW| + 02 W/ (020)2] < 1.

(ii1) if two derivatives do not hit ]/‘\, using (4.6) we compute that

3 2012 2 2
oy W] [9x VI [0x W] [0ah] d < @2r+ap)?
OAW [0 W[* T [0AW|? |0AY]  [0A V)2

and therefore a crude estimate gives a similar bound.

Case 2:°

either x > C~'12PT9 and |z| < C™212°7,

or |x| < C7%2P% and |z| > C~ 2%,
Here we have that

10,W| > 1224,

9 Cases 2 and 3 have already been treated similarly in [29, Proof of Proposition 4.1].
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and we can integrate by parts twice with respect to p to obtain after crude
integration that

170 20| S @22 72 2204 (1,95, ) ] o
SR, S, SHf

upon using Lemma A.5.
Case 3:

x> C722P%4 ) and |z| > C 21220,
In these conditions, there holds that
2910, W| + 10,00 W] 2 ¢

which follows from

1 A z
AonBpW = 0¥ = =t MY T = T

using the first estimate if p < —10 and the second otherwise. We now decom-
pose

1:21,1,

n>0
Bzt = [ G o T N9, P o) dp d,
ex[=1,1]
Gpg =92 PpV1—= A2 IpA).

On the support of Ip we have that [0, 0,¥| 2 ¢, and thus with g(p, A) = 0, ¥

1Io| < ||f||Loof |Hi(pV'1 — A2x)| - 9(g) - pp(p) dp d A
1 o~
<t @I .

For n > 1, we integrate by parts twice in p and we find that

n &K . a I 2 P
R+X[—l,l] ( 14 )

2 (g - He (VT = 2200 - ToP0(0)) dpdA
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and we hence deduce
L] S 272 / |H(pV/1 = A20)] - 9(27"0,9)3, ,F&(p) dp dA,
Ry x[—1,1]

Dpq = 0@ V1= ADFQ2pA),

~ dHy , d*Hy
H(x) := [Hy ()| + (x)] p O+ X)) ==,
X dx

F = |f1+ 10, f1+ 182 71,
so that

_1 _ _ _ ~
Yl a2t Y 2 2"||F||Loo/ 027" Q)1 920G (p) dp d A
n>1 g+n<In() Ry x[-1,1]
1 ~
+ 2P N 2P e / ?3(p)dp d A
g+n=In(r) Ry x[-1.1]

1
5(;22P+q)—z||F||Loo( Yooty M 2—2”221’+4).

g+n<In(z) g+n>In(t)

Summing and using Lemma A.5 finishes the proof.

5 Integration by parts along vector fields

In this section we develop the formalism for repeated integration by parts
along vector fields. To systematically do this, we first address (Sect. 5.1) some
important analytic aspects of the vector fields and how they relate to the bilinear
structure of the equations (2.7). Then we introduce some multiplier classes
related to the nonlinearity of (2.7) and study their behavior under the vector
fields (Sect. 5.2). Subsequently we prove bounds for repeated integration by
parts along vector fields in Sect. 5.3.

5.1 Vector fields and the phase

We discuss here some aspects related to the interaction of the vector fields

V € {§, 2} and the phase functions @, as in (2.9). We use subscripts to

denote the Fourier variable in which a vector field acts, so that
annﬁ'vnh’ Sp=mn-Vy.

We begin by recalling that by construction there holds that

ScAQ) = QAE) =0,
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and thus

Vi@ m) =puVyAE —m), VeSS Q) wve{-+}

To simplify the notation we will henceforth assume that @ = + and simply
write ® for any of the phase functions ®,,,, when the precise sign combination
in (2.9) is inconsequential.

The quantity

& =0, n) = &nn— n3kn = —(E X i (5.1)

will play an important role in our analysis. We note that

o, n=0—nn=-0,§—n),

and o combines horizontal and vertical components of our frequencies, over
which we will have precise control (see e.g. (3.1)). Moreover, it turns out that
o controls the size of vector fields acting on the phase. A direct computation
yields:

Lemma 5.1 There holds that

&h — T (En — )t

S, ®=0&,n) - —, Q,b=-0(E,n)- , 5.2
n O_(%- 7]) |§—7]|3 n O(‘E 77) |§—7’]|3 ( )
and hence
| Sy + |2 @] ~ % & —nl 715G ml. (5.3)
Proof See [29, Lemma 6.1]. |

We will make frequent use of this lemma when integrating by parts along
vector fields (see Sect. 5.3).

Another crucial observation is contained in the following proposition: it
shows that either we have a lower bound for ¢ (and by (5.3) thus also for
V, ®), or the phase is relatively large. More precisely, we have shown in [29,
Proposition 6.2] that:

Proposition 5.2 Assume that |®| < 29x~19 Then in fact 2P ~ 1, and
|6—| > 2‘]max2kmax+kmin‘

In practice, this implies that either we can integrate by parts along a vector field
V € {S, Q} or perform a normal form. This may also be viewed as a qualified
(and quantified) statement of absence of spacetime resonances. Remarkably,
it only makes use of the easily accessible derivatives given by the symmetries,
rather than the full gradient.
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5.2 Some multiplier mechanics

Let us consider the following set of “elementary”” multipliers

E = A(g“)\/T(g “Cih flh’ -8
|§h|‘§lh 1821231

{,;] 6{5’5_77777}’4'2,(36{5_77»77}}-

We note that for e € E there holds that |e] < 1, and E is an enlarged version of
E in (2.6), that includes the horizontal “angles” between all frequencies. As
we will see, up to products and homogeneity this yields a class of multipliers
that is closed under the action of the vector fields V € {S, 2}, and allows us
to express not only multipliers but also dot products with ¢ (as is needed for
V,®) in terms of building blocks from E.

To track the orders of multipliers we encounter, we define the following
collections of products of elementary multipliers

N
EOEEg :=spanR{l_[ei D e eE,NeN],
i=1

Eg = spang {I€ = 1™ 1l 16 — ml " Im[" e : e € Eo}, a,bez.
Furthermore, for n € N we let

E(I’l) = Ua+b§nEgv E(_n) ::Ua+b27nEga

a,b>0 a,b<0

which includes all multipliers up to a certain order of homogeneity.

We remark that ® € E(y. From Lemma 2.3 it follows that the multipliers of
the nonlinearity of Euler—Coriolis in dispersive formulation (2.7) are elements
of Ey that satisfy certain bounds:

Lemma 5.3 Let m be amultiplier of the nonlinearity of (2.7). Then there exists
e € Ey such that

=1[]-e
Moreover, we have the bounds

Im| - xn 5 2k+pmax’ lm| - x 5 2k+pmax+Qmax' (5.4)

As a consequence, it will be important to understand the effect of vector
fields on the above classes of multipliers, allowing us to keep track of their
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orders (e.g. when integrating by parts). This is the goal of the following lemma.

Lemma 5.4 Ife € Ey, then Vye € E(1) and Ve _ye € E(—1), and thus

‘V,,e‘ “xmE,m ST+ 2ka=ki (| 4 pr2=r1y

ok (5.5)
|Veone| - xn&, ) S 1+ 207k 4 2P1702),
More generally, if e € Ej then
Vyee EfUET UES | -
Vel - xn(E, m) S 11+ 227F1 (1 42727 P ] leypll oo 56

Ve_,e € Ej U EZ_I UE,_;:
|Ve_ne| - xn(&, m) S T1+28752(01 + 2277 ] flexu |l oo -

Proof By symmetry it suffices to show the above claims for V), and (5.6)
follows with analogous computations as for (5.5).

To establish (5.5) we recall that V), A (n) = 0, and we note that V), A(§ —n) =
V,®, so that by (5.2) of Lemma 5.1 there holds

A —n)
VH(M) = —mvﬂ\@ - 77)

Eh—1Ih —

__—A(é_n)(}(g n) - {fh(gﬁﬂ’)l V=5,
—_nl? ’ _ h—nh —

& =l Gom > V=

and we note that o (&, n) = o (§ — n, n). Together with some straightforward,
but slightly tedious computations for the “angles” (see [29, Appendix A.2])
this is implies the claim. O

As aconsequence, we can establish bounds for vector field quotients in cases
where we can integrate by parts, i.e. when we have a suitable lower bound for
o:

Lemma 5.5 Assume that |G| - x > 2kmaxtkmin)Pmaxtdmas  Then for V, V' e
{S, @} and n, m > 0O there holds if |V, ®| 2 |2, P| + |S,P|

(v vyt
V,®

‘ xS+ 2k1—k2(1 42711+ oka—ki (14 2P2=Prypn,
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Proof A direct computation gives that

S,%q>=an>[3—"'(5_;7)+2]— o
& —n] & —n|
ab .
Q20 = 32,05 14D _ £ g S
& —nl & — 7|
J_. . —
S0 d =0 8d=sd M Lo eyl EZD,
" " g2 & —nl

With Lemmas 5.1 and 5.4, by induction we thus see that for m € N
there exist e;,eo € E(m) and (e:?)ﬂeE/ Cc E(m — 1), where E/ =

1
{A(C’)é—hl, A(g/)l% 2., el —n, n}}, such that

VIt = Q@ e+ S5, e + il Z( S -0)e§. (5.7)
& —nl =, \I&§ —nl

Together with the bounds in Lemmas 5.1 and 5.4 this proves the claim when
n = 0, since

(2| + 8, @] _

el 7

’

and since for ¢ € E’ there holds that

nl |&nl
& —nl 1§ —nl

9] - |an>}_1 < pha=2kigktp Qa4 22y (2P 4 2P2)
. 22k1 —D1 2_kmax_kmin 2_Pmax —qmax
<1+ 2P27Py (] 4 Zkz—kl)_

When n > 0 the claim follows analogously: we compute that

_ &l —ml
& —nl |5 —nl?
Qe_pSy® = —Se_y 2 ® = Q,®, S, 5,®=-S5,9,

Q2 ® — §,®,

so that with (5.7) there holds that

Vi)'Vl =@ -6+ 5,®- & + dil Z( Sh -ﬂ)é’;‘
& —nl =\ —n|
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£ & — mnl?
& —nl |g —n)?

’

where €1, &, é4 € E(m) U E(—n) and (&)ycrr C E(m — 1) U E(—n). To
conclude it suffices to note that

2
1§31 1&n Tlh2| . }V,ﬂ)\_]
& —nl [&—n
< 2k+422pl—k1 . 22k1_p12_kmax_kmin2_pmax_qmax <1 + 2kl_k2.
O
5.3 Integration by parts in bilinear expressions
Consider now a typical bilinear term Q,, (f1, f2) as in (2.8):
Qu(fi. f2)(s) = F~! ( /R S ENmE ) fi(s. € =) Fals. n)dn) :

with multiplier in our standard multiplier classes, i.e. m = |£]| - e for some

e € Ej. Our strategy for integration by parts will be to get bounds for |7 |
via localizations—firstly in p, p; and £, £, or with more refinement also in
q,qj, j = 1,2—from which control of the size of the vector fields applied
to the phase follows by (5.3) in Lemma 5.1. Together with the corresponding
quantified control on the inputs this informs us when integration by parts can
be carried out advantageously.

We thus decompose

Qm(fl, fZ): E Qm(Pk],leelflasz,szfsz)’
kjspjtjs
j=1,2

and using our notation (3.1) for the localizations we have that
Qi (Pry,pyRey 1. Py, py Rey 12) = Qo (Rey f1, Ry f2).
5.3.1 Formalism
We begin by recalling from [29, Lemma 6.4] that we can resolve the action of
a vector field in a variable ¢ € {£& — 7, n} on a function of & — ¢ (as we will

frequently encounter them when integrating by parts along vector fields in the
bilinear expressions (2.10)) as follows:
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Lemma 5.6 Let 1"‘5,’)7, Fg,n € Eé be defined by

Iy = - I$|i|n| [0/ 1= A2)V/1T= A2 — )+ A~ mAG)].
rs, = %w 1= 221 - A2 — ),

¥, =7 'ﬁ'm [am “AXDAGE ) — A(H)M} ,
g, = %w 1= A2 AE — 1),

where

~ n- (6h — 1) e En— )T
W=, Wy = ————————.
[7n] [&n — 7l I7nl [&h — 7l

Then on axisymmetric functions there holds that
N T S T
Sy =Ty Se—n+Tsy Yoy, Sy =Tg, Se—n+Tgq, Ye,

The symmetric statement holds with the roles of n and & — n exchanged and

Iy, € Ey! for W e (S, ).

Proof See [29, Lemma 6.4]. O

To systematically treat several integrations by parts, we introduce the fol-
lowing notations. For ¢ € {n, & — n}, we consider the following three types of
operators, as they naturally arise in integration by parts (according to where
the vector fields “land”):

1
1, . _
Lvi = Vo'
1
w,id w
Ly, = _V§<1>FV@’ W e (S, T},
gty (Lo L, cs=3, cq=0
vie = Ve V, ® V.o Vs s =3, cq=0.

The first one corresponds to V; hitting the input of variable ¢, the second to a
“cross term” with W € {§, T} and the last to V, acting on the multiplier itself.
Letting further

7:={ld, S), (S,1d), (Y, 1d), (Id, Id)},
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we can write an integration by parts in e.g. V;, compactly as

Qu(F.G)=is"" Y Quuz,, (WF.ZG),
w.zex "

s /
and in Vg_)7 as
Qu(F,G)=is™" Y~ Qi (uy(ZF. WO,
(W,Z)eT s
and analogously for several consecutive integrations by parts.!?

5.3.2 Bounds

The following lemma gives bounds for iterated integration by parts along
vector fields (when this is possible).

Lemma 5.7 We have the following bounds for repeated integration by parts:

(1) Assume the localization parameters are such that |6| - xp 2 L1 2
2kmaxtkmin 2 Pmax  Then we have for any N € N that

|F (Qumxn (R, f1, Rey 12)) ||

N
Slmxnllpeo - (s_l -2‘p1+2’<1L1—1 1+ Zkz—k1+Z1])

. HPkl,leﬁl(la S)Nfl HLZ Hpkz,p2R€2(17 S)NfZ‘ 12 .

(2) Assume the localization parameters are such that |6| - x 2 Ly 2
2kmax+kmin D Pmax+dmax  Then we have for any N € N that

| F (Quy (Re, f1. Rey f2)) | ;o0
Slimx |l e - (s_l .2—P1+2k|L£1 1+ ka2 —ki (2421 4 251)])N

NPama R VA | Papa R 9V ) -

These claims hold symmetrically if the variables n, & — n are exchanged.

10 For example, integrating once along Vy, then VS/ —p then Vy, gives

Qu(F,G) =53 3 Qw2 pwnzy gy, (WaZaWiF, Z3WaZ1G).
WiZneT, 1=iz3 Vm Ve v ()

We note that in such an expression, only the W; may equal Y, and we have Z; € {S, 1d}.
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We note that the precise estimates are slightly stronger, and in fact show
that with a loss of 21 also comes a gain of ¢, := 2P! + 272 resp. cp, =
2P1+42 4 P2t

Proof (1) Let us denote for simplicity of notation F' = Ry, f1, G = Ry, f>.
By (5.3) in Lemma 5.1 we may partition

L= =xv)+xv,.  xv =0 =)@ Ll v o),
where V, V' € {S, @} are such that
Vo] - sty + |Vy@| (1 = ) 227 70Ly.
We then have that
Oy (F,G) = QthXV,, (F,G) + Qth(l—Xv,,)(F’ G), (5.8)

and can integrate by parts in V), resp. V,; in the first resp. second term.

We discuss in detail the first term on the right hand side of (5.8), the second
being almost identical. We begin with the demonstration of (1) for N = 1:
Upon integration by parts in V;, we have

|
QthXVﬂ (F,G) =is Z): Qﬁxva,’nz(thxvn)(WF’ 26).
(W,Z)eT

It suffices to estimate the three types of terms separately:

o (W, Z) = (I1d, S): Then we have that

142k g —1
S Imxnllpee 277 L
LOO

”.7: (memv,, (F, SG))

Vi

) HP/q,p]FHLZ Hpkz,mSGHLZ'

e (W, Z) = (S, 1d): Here we have that

S lmxnll oo - 252K 7Pk oL

1 S

5 S mtnr,)
so that

ko—k — 2k 7 —1
S ||th||LOO.2 27Kk .9 p1+ 1L1
LOO

H]: (QLSA,Id(thXVn)(SF, G))

V.n

: ” Pku?lSF”L2 ” szd?zGHL2
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e (W, Z) = (7, 1d): Similarly, we have

Fg,n “MxYhXV,

,Id
Ly (mxnxv,)

1
V,®
S lImxnll e - QP1 4272 . 2kekt g=piF2ki =1

so that

Hf(Q s1d (TF, G))

Ly mxnxvy)

LOO
S lmmll o - (142727 Py2tth . Lh . 2f
’ ” Pkl,P1F||L2 H sz,sz”LZ ’
having used that by (4.4) and (3.2) there holds

[T Res fill 2 527 [ Re fil] 2

e (W, Z) = (Id, Id): Here we have by Lemma 5.5 (and by direct computation
on the localizations xn and xy, ) that

£ ommav,)| S Il (14297014 202y 2mPr26 L1

so that

”.7: <Q 1d.1d )(F, G))

Ly mxnxvy

LOO
S llmxnllpee - 2—p1+2k1L1—1 1+ 2Rk 4 2P2m Py
' Hpkl’l’lFHLz Hpkz,lizG”Lz .

Since £; + p; > 0 by iteration and Lemma 5.5 we obtain the claim (1) for
general N € N.

The proof of (2) is similar. The only difference arises from the case where
the vector fields land on the localization functions y. Here we observe that

V@t pran € = )| S (1429701 427277 42270)) G gy (6 = ),

Hence (2) is proved. O
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5.3.3 A “vertical” variant

When no localizations in A are involved, a zero homogeneous version of the
vertical derivative can also be useful for iterated integrations by parts: We let

D =0l 3y = A, — /1 = A2y,

and note that

D} (A(m) =1—A*(), Dj <\/1 - Az(n)) = —A()y/1 — A%(n),

(5.9)

as well as

Dy (A —m) =~ (1 = AE =),

Dy (V1= a2 —m) = P ae - w1 - w2 -,

Thus

D]p(2 72y 1 — A2(n))
=—2"P2A()y/1 — A2’ Q721 — A2(n)) = —A(n) - 2772V 1 — A2()),

Dlp@ PV = A2 =) =277 lilm AGE =1 = A2 =g @7V = A2 =)

=AE—n)- |s|j|n|‘m_m“ — A2E — ).

Together with D;I Inl = Inl A(n), D;’ |E —n| = —|n| A(§ — n) and the fact

that DJ = — %Dg_" we thus have that

D} F (Piy.py R, G) (1) ~ ADF (P, py Rey (1, $)G) ()
+ 2922 F (P, o R, G) (),
D} F (Piy.p R, F) (6 =) ~ 2278 [AGE — ) F (P py Rey (1, )F) (6 — 1)
F2PE (P Ry F) (6 = ).
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To make use of this in an iterated integration by parts we also need to control
Dg ®. From (5.9) we see iteratively that for any M € N there holds

(DM am| 51 - A%,

N NN In|™
ODYAE |5

o A% —m)). (5.10)

Example

In the particular case where 2€2 ~ 2% and 0 > p, > pi, we have that
‘ng)‘ ~ 222 and with (5.10) we see analogously as in Sect. 5.3.2 that
repeated integration by parts along Dg’ inaterm Qu(Py, p, Re, F, Py, p, R, G)
is beneficial if

2—2172 (1 +2€1+p1 +2Zz+p2) < Sl—é.
5.3.4 A preliminary lemma to organize cases

Since we have a multitude of parameters that govern the losses and gains
when integrating by parts as in Lemma 5.7, it is useful to get some overview
of natural restrictions. To guide the organization of cases later on we will make
use of the following result:

Lemma 5.8 Assume that p < min{p1, pa} — 10. Then on the support of xn
there holds that p + k < p1 + ki — 4, and thus p» + ko —2 < p1 + k1 <
P2 + ko + 2. Moreover, either one of the following options holds:

(1) |ky — ka| <4, and thus also |py — p2| <6,

(2) ko < ki —4then |k —ki| <2and p1 < py —2,sothat p < p; — 10 <
p2 — 12.

(3) ki < ky —4then |k —ky| <2and py < p1 —2,s0that p < pp — 10 <
p1 — 12.

Remark 5.9 We comment on a few points:

(1) The analogous result applies with the roles of p, p; permuted.
(2) The analogous results hold in the variables ¢, g; on the support of x in
case of a gap in gmin < gmax — 10.

Notation. Since the constants involved here and in many future, similar
case by case analyses are independent of the other important parameters in our
proofs, we will use the slightly less formal <, ~, etc. Since the decisive scales
are usually given in terms of parameters in dyadic decompositions, to unburden
the notation we will use the same symbols to denote both multiplicative bounds
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zZ,
Y
f
([ §&—n
é

27 !

| n
fl
............... e,
.7 Y K Y
x T 7
Case (1) Case (2)

Fig. 2 Exemplary illustration of the scenarios of Lemma 5.8 in Cartesian coordinates

(resp. equivalences) at the level of the dyadic scales 2", as well as additive
bounds at the level of the parameter n € Z, where the distinction is clear from
the context. For example, we will refer to the assumption of Lemma 5.8 as
p < min{py, p>}, and will take p ~ 0 as equivalent to 27 ~ 1, namely that
there exist C € N such that —C < p < C.

For the proof it is convenient to visualize the triangle of frequencies &, & —
n, n—see also Fig. 2 for illustration.

Proof of Lemma 5.8 Consider (£, n) € supp(xn). Let p < min{p1, p2} — 10,
and assume for the sake of contradiction that p + k > p; + k; — 4. Then
from ny, = &, — (&, — np) we have that pp + ko < p + k + 6, and it also
follows that k| < p— p1+k+4 <k —6,andhence k —2 < ky <k +2
since n = & — (¢ — n). But then we arrive at the contradiction that p >
p2+ky —k —6> p> — 8. Hence we conclude that p + k < p; +k; — 4, and
thus p; + ky € [p2 + ko — 2, pa + ko + 2].

Moreover, if |k; — k| < 4, then it follows that |p; — p2| < 6. Finally, if
ko < k; —4,then |k — k{| <2 and thus p; — p» < ky —k; +2 < —2,so that
p < p1 — 10 < po — 12. The third statement is the symmetric version upon
exchanging the roles of & — 1 and 7. O

5.4 Remark on normal forms

In the bilinear expressions we encounter we will also perform normal forms.
For a parameter A > 0 to be chosen we decompose the multiplier into “reso-
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nant” and “non-resonant” parts

mE, n) = vy emE, ) + (1 — v e)mE, )
= m"(E, n) +m'"(E, ), (5.11)

and correspondingly have that
Bw(Fi1, F2) = Bues (F1, F2) + B (F1, F2).
A direct integration by parts in time yields that

| Pe.p B (F1, F2) | 12 S || Prop Qo1 (F1, F2) | 2
+ H Pk,qu)flmnr (0:F1, F») HL2
+ H Pk’qu;.flmnr (F], 8;F2) HL2 . (512)

Lemma 5.10 Let & > 0and Gj = Py;,p; G j. We have the following bounds:
(1) The non-resonant part satisfies

| Pe.p Qa1 yanr (G1. G2) | ;2 < 2KFPmaxa =11 S| Gy 2 1G22 -
(5.13)
(2) If we can choose A > 0 such that |®xn| > A = 1, then we have that

m'® = 0 and thus m = m'"", and in addition to (5.13) there holds the
alternative bound

H Pk,qu;.flmnr (G, GZ)”LZ < 9k+pmax - min{ eitAGl

1G22 Gy l,2

| i P

(3) If there holds that |8,,3CI> Xh| 2 L > 0, then we also have the following
set size gains:

11 .
| Pe.p Qunres (G1. Go) | ;2 S 2 FPmax a2 L7 2 - min{2K1P1 2k24P2) Gy 12 1Gall 2

(5.14)
and
1 1 . .
| Pe.p Qo1 r (G1. G2 2 < Mog Al 26 Pm =2 L7 - min(21+P1 2R P2y |Gy || 12 (| Gall 2

(5.15)

(4) The analogous bounds hold when additional localizations in q, q;j, j =
1, 2 are considered.

Proof The first claim (1) follows from Lemma A.3 and the fact that
‘CD_lm’” Xh‘ < 2k+pmax) =1 For (2) it suffices to notice that under these

assumptions by Lemma A.8 there holds that || o~ lmr HVT/h < 2k Pmax
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Finally, (5.14) follows with the improved set size gain of Lemma A.4. To
obtain (5.15), we further decompose

mrE D =Y meE ), meE ) =eQ 2T eE MY E, ),

r>1

and correspondingly Qg1 (G1, G2) = Zrzl Q¢-1m, (G1, G2). For these
we invoke again Lemma A.4 and note that since |®| < 1 there are at most
|log 1| terms. O

6 Bounds for 3;S" f in L2

We have the following estimates for the time derivative of the dispersive
unknowns. We note that in view of the fact that these are bilinear expres-
sions in 3d, without further removal of resonant parts this is the fastest decay
(up to minor losses) one can hope for.

Lemma 6.1 Let f be a dispersive unknown in Euler—Coriolis, and assume
the bootstrap assumptions (3.6).

Then there exists 0 < y < B such that form € Nandt € [27,2"t) N
[0, T'] there holds that

o.pes? | , 28K 2mdmim 2 0<h< N,

Proof We know that 0, PSP f,0 < b < N is a sum of terms of the form
Zb1+b2§N PO (SPFy, S”2F>) with m a multiplier as in Lemma 2.3 and
F; € {Uy,U_} dispersive unknowns, j = 1,2, so it suffices to bound such
expressions in L2. Localizing the inputs in frequency we have that

| PeQu(s™ Fr. s )|

L2 R sl

1,k2€
By the energy estimates (3.9) and direct bounds we have that
| PeQm (P S 1, P )| | 2k 4Rk =Mk )

. HS”‘ F Sb2F2

HNo HNo

so the claim follows provided that kmax > 2N, lm, or if kpin < —2m. With
8o = 2N0_1 we will thus assume that —2m < k, k1, ko < Som.

Localizing furtherin p, p; and ¢;,i = 1, 2, and writing f; = Py, p, Ry, Sbi F;
for simplicity of notation, we can further assume that p, p; > —2m and
£; < 2m, since
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3 . . _
| Pep Qu(f1s f2)]) 2 S 25 2wt Poin min (2Pt | f1]l 5, 275 | f1ll )
-min{2”? || fall 27 || fallx }-

Assuming without loss of generality that k» < kj (so that 2kmaxtkmin ~ pk+k2y
it thus suffices to show that

| Pep O fis )] 2 S 273" F5m 62, (6.1)

The basic strategy for this will be to either repeatedly integrate by parts as
in Lemma 5.7, or to use the X and B norm bounds. For this it is useful to
distinguish cases based on the localizations and whether there are size gaps,
firstin p, p; (Case 1), then in g, g; (Case 2), since this gives lower bounds for
|o'| and thus for V: ®, ¢ € {n, & — n}, as per Lemma 5.1. At the end (Case 3)
this leaves us with the setting where these localizations are comparable.

Case 1: Gap in p Here we assume that ppin << pmax- By Lemma 5.1 we have
|o| > 2Pmax2k+ke and we may choose V € {S, ©} such that

|V§—77CD| ~ DP2=2k2 5 pmaxtkthy 2p2+pmax2k_k2’

where we used that by convention k; < ki, so that knin € {k, k2}.
Case 1.1: k» = ki, Here we have that 2% ~ 2k1,

Then from Lemma 5.7(1) we see that repeated integration by parts along
Ve_y gives for K € N that

K
” Pk,me(fl» f2)|| 12 < 2k+%k2 (2—”12—P2—Pmax . pka—k 2k1—k2[1 4 252]>

JaeFal |aof |

L? L?

K
5 2k+%k2 (2—m2—P2—Pmax2€2) . 812.

Choosing K = O(M) > 1 yields the claim, provided that for § = 2K~ =
O(M~") we have (since £, + p2>0)

—Pmax + 20 < (1 —8)m.

If on the other hand ¢, > (1 — 5)% + Pmax ysing an L™ x L? estimate and
(5.4) and Corollary A.7 with k <« B if f; has more than N — 3 vector fields,
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we have that

| Pep@ulfis 2 S 2540w |2 i 27l

< ok+Pmaxg—mtxm o—5 485 — L5 8% 6.2)

< skn—3m+(§+m &2,

Case 1.2: k = kpin We now aim to show (6.1) in case k = knin, Where in
particular 251 ~ 2%2_ This can be done as Case 1.1 above, with the difference
that now there may be a loss in k. This however, is recovered directly by the
multiplier m, so we can proceed in close parallel to Case 1.1.

By Lemma 5.7 integration by parts is feasible provided that

=M  p=p2—Pmax—k+ka (1427772 4 2132) < 2—3"1,
which can be guaranteed by requiring that — pymax + 282 —k +ky < (1 —6)m.

If on the other hand — pax + 2¢2 — k + ka > (1 — §)m, then as in (6.2) we
have

[Pep@uifis 2 S 2540 |2 i 27l

1-8 k, ko
5 2k+Pmax2—m+Km2—Tm—§+7 . 8%

k+ ky 3 ) 3 8 k
< 9 BN Sy —smA(k+5)m 2 < 2—§m+(§+K+Bo)m27812_

We may henceforth assume that 27max ~ 2 Pmin,
Case 2: Gap in q Now we localize further in ¢, g;, and write g; =
Py pi.qi Re; fi» 1 = 1,2. Then by B norm estimates and the set size bound

3 q . .
IS| < 22kmaxP+3 we can assume that q,q; > —4m, since if gpin < —4m
there holds

5 q q1 a2
Sk q a1 2
1P, p.g Omg, 82| 2 S 22°HPFT 27172 gy [ 5 27277 || gall

5
< 23kp7med,

Assuming now that gmin << ¢max, We have that 2Pmax ~ 1 and thus by the
previous case that 2Pmax ~ 2Pmin ~ ] Apalogously to before we choose
V € {S, 2} such that

|Ve_y®| ~ 27220 maxthbke — pdmaxpk =k,
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Case 2.1: kp = kpin By Lemma 5.7(2), repeated integration by parts along
Ve_y gives
[Popa@an, sl S 24488 (20 it o e )

3 [EROLH B IERULYS

L? L?

< 2k+%k2 (2—m2—qmax max {29179, 2% })K . 8%,
and the claim follows provided that
27Mp " dmax max (291792 22y < oM

Case 2.1a In case £5 < g1 — ¢ this is satisfied if g > (—1 + 8)m. If on the
other hand ¢ < (—1 4 §)m, then by a L™ x L? norm estimate and (5.4) we
have

itA

Pr.p.qQm(g1. 82)|| 2 S 2FFImx . A g
| L

1-§
S 2k . 2—m+/{m . 2—Tm812

2%
2%l

< gkp=3mtletm g2,

Case 2.1b In case ¢, > g — g2 we can repeatedly integrate by parts if
€y — gmax < (1 — §)m. Else we use an L™ x L? estimate to get that

| P p.g Qmlg1. g2) | o S 28 Fm e"’Aglan 270 glly

5 2k2—2m+(/(+8)m . 8%.

Case 2.2: k = kpin and |k; — k2| < 10 By Lemma 5.7(2), repeated integration
by parts along V;_,, is feasible if

pmmpmmu gk max =2 2ty < p7Om

If this condition is violated we distinguish cases as above in Cases 2.1a resp.
2.1b: either —g2 + ko — k > (1 — §)m and then

| Pt p.gOm(gr, 8|2 S Sk+-gmax .

itA s
] 2% lgalls

< —pm 2—m+Km 2—Tm82
k 3 3+609+2
kom0 2y o

5 22272 2 -7,
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or {3 — gmax + k2 — k > (1 — 8)m and then

12
k itA =7
[ Plp.g Qi g2 5 20 it | 2% lgally
2k+k2 2= m+km 27—(1 8 '82
k 3 546
<237 amtE T hm g2,

Thus the only scenario we are left with is the following:
Case 3: No gaps In this case we have that 27 ~ 2P and 29 ~ 29 i =1, 2.
As before we can also assume that p,gq > —4m. Then we are done by a
direct L? x L estimate: Assuming without loss of generality that g; has
fewer vector fields than g, (i.e. b1 < b; in our original notation), we have by
Proposition 4.1 that e"’APkl,pl’q1 Re g1 = 111 + 112 with

”11 1||Loo Ser-27 3lkily—p—4 —%

HII,ZHLz Serp- _i‘kll(fzp)_ 122p+q>4-1,
so that using (5.4),

| Pe.p.g Qm(g1. 82)]| 12 S 27T 1t | o 274 g + Iz, ™

k —3m 2
52 .272 '81,

82 H

where we have used the dispersive decay (at rate at least t~1/2) of ¢tA g2,
which in case g» has more than N — 3 vector fields follows by interpolation
(see Lemma A.6 resp. Corollary A.7). O

7 Energy estimates and B norm bounds

Itis classical to obtain energy estimates for (1.2). As we showed in [29, Propo-
sition 5.1], both derivatives and vector fields can be controlled in L? as follows:

Proposition 7.1 (Proposition 5.1 in [29]) Assuming that u solves (1.2) on
0<t<T, forn € N there holds that

! ds
()3 — 12(0) |3 5/ als) - llu(s) | - o
s=0 +s

1" 1 = 15" < Ol(S)‘(||u(S)||%-1n+Z||Sbu(s)||iz>’lcfis,

s=0 b=0

VIS ()12, — IIVI~ 1S"u<0>||L2N/ als) - Znsbu(s)n

s=0 b=0
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where
a(s) = (14 s) [llu(s)llze + [IViu(s)llre].
As a consequence, with the decay bounds of Corollary 4.3 we obtain:
Corollary 7.2 Under the bootstrap assumptions (3.6) there holds that
U=l avonpy 1 + [SUz® ] 21 S e0t)F, 0<a <M.

Proof 1t suffices to note that under the assumptions (3.6), we can use Propo-
sition 4.1 to get a constant C > 0 such that

a(s) < Cey.

O

The main goal of this section is then to upgrade this L? information on
many vector fields to stronger B norm bounds of fewer vector fields on the
solution profiles. After the reduction to bilinear bounds as in the proof of
Proposition 3.5, this is done by establishing the following claim (see also

(3.11)):

Proposition 7.3 Assume the bootstrap assumptions (3.6) of Proposition 3.5.
Then for § = 2M~'* > 0 and with Fj = SPit4,;, 0 < by + by < N,
wj € {+, =} j = 1,2, there holds that

3
|Bun(F1, F2)llg S 27°™"ef. (7.1)
We recall again that here m is one of the multipliers of the Euler—Coriolis
system in the dispersive formulation (2.7) (see Lemma 2.3), for which we have

the bounds of Lemma 5.3. The remainder of this section now gives the proof
of Proposition 7.3.

Proof of Proposition 7.3 In most cases, we will be able to prove the stronger
bound

+ _ 3
2N F [ PeBu(F1, Fo)]ll oo < 27562, (7.2)

7.0.1 Some simple cases
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From the energy bounds (3.9) and with [m| < 2 and |S| < 2P 43K e
deduce that since F; = Zki Py, F; there holds that

2k F [ P B (F1, F)]ll oo

+ . —
S 2" 2N ming2 NN By g L 28 T FL )
ki,ka
: —Nok k
-min{27N% | Byl g L 29 (| Fall g ).

and (7.2) follows if min{k, k1, ko} < —2m or max{k, ki, kp} > Som, where
8o = 2Ny .
Localizing in p;, £; with £; > —p;, j = 1,2, we have that with
Ji = PejpiRe;Fjs =12,

there holds that

+ _ _
TN F [P B (f1, )l e <2020 =8y g1y - 272 | Sl
< 2(1+250)m41428%’

and this gives (7.2) if min{€y, {2} > 2m, so that to prove (7.1) it suffices to
show that for

—2m§k,kj§80m, —2m§pj§0, —pjfﬁifzm, j:1,2,
(7.3)
we have
a4 _
sup 2725 27772 | Py g Bu(f1. )| 12 S 270 (7.4)
k.p.q

The rest of this section establishes (7.4), by first treating the case of a gap
in p (i.e. pmin < Pmax) With 2Pmax ~ 1 (Sect. 7.1), secondly that of pyax < 0
(Sect. 7.2), thirdly that of a gap in g (Sect. 7.3, and finally the case of no gaps
(Sect. 7.4).

7.1 Gapin p, with ppax ~ 0

We show (7.4) when (7.3) holds and in addition ppjn < pmax ~ O.

We further subdivide according to whether the output p or one of the inputs
pi is small, and use Lemma 5.8 to organize these cases. Without loss of gen-
erality we will assume that p; < p», so that we have two main cases to
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consider. Noting that |5 | ~ 2Pmax2kmintkmax and using that ¢; + p; > 0 (and
thus po — p1 < —¥1, p1 — p2 < —¥£3), repeated integration by parts is feasible
if (see Lemma 5.7)

VVI . 2_P122k1_kmin_kmax(1 + 2k2_k12€1) < 2(1_8)’"’
Ve_p: 2_p222k2_kmin_kmax(1 + 2k|—k2252) < pU=8)m
7.1.1 Casel: p < pi1, p2
By Lemma 5.8 we have three scenarios to consider:
Subcase 1.1: 2k ~ 2k
Here we have 27! ~ 2P2 ~ 1. Using Lemma 5.7, iterated integration by parts
in V;, or Ve_, gives the result if min{¢y, ¢2} < (1 — §)m + k — ky. Else we

have the bound

+ _ 9t oy
AN F [Prop Q1 ] oo S 2722 2702 A1lIx | ol
B
S2720=0m iy ol < 27 Dmed,
Subcase 1.2: 2k2 « 2kv ~ 2k
Then we have that 2P1=P2 ~ 2k2=ki « 1 g0 that p L pr L px~0.

Using Lemma 5.7, iterated integration by parts in Vg_, gives the claim if
£y < (1 — 8)m. Else, when £, > (1 — §)m there holds that

ok+ak* |F [Pe.p Qulf1: D] 0

< 2R £y, 270D |y < 270D,
Subcase 1.3: 2k « 2k ~ 2k
This leads to pp < p; which is excluded.
7.1.2 Case2: p1 < p, p2
By Lemma 5.8 we have three scenarios to consider:
Subcase 2.1: 2K ~ 2k

Then 27 ~ 2P2 ~ 1. Iterated integration by parts in V,, (with |o| 2 2ki+ky
gives the claim if £; — p; < (1 — §)m, whereas iterated integration by parts
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in Vs, suffices if
2k2—k1 +2Zz < 2(1—8)m.

We may thus assume that ¢; — p; > (1 — §)m and that max{k, — ky, {2} >
(1 — §)m, but this suffices in view of the crude bound

pt—Llp—~—4
2 2t 272 ”Pk,p,qu(fl,fZ)HLz
-4 k=L k= 43k H—1—¢
S22 8- 22 R | Ayl fallx
ktkt

S 2z = U=dmep=t g )| ol

Spglpt ko —(-
< 2aktakT pkimhe=t o= (=0m ) f ) fally

Subcase 2.2: 2% « 2k2 ~ 2ki

Then 272~ P ~ 2=k « 1, and thus p1 K p2 < p ~ 0 and we only need
to recover g. Repeated integration by parts in Vg_, (where now [o| ~ 2katky
gives the claim if

—p2t+ky—k+4 < (1 —8)m.
In the opposite case we use that, since 8 < %, with 28—k~ 2=Br2 gpd

k+q
|S| <277 2k1+P1 we can bound

+_ 1= _4q
2K 2T | Py Qu(f1. ) 2
_q 14— ki _ _Bpr—3kT
S27IS| 28R 2Pt | fy g 2 PR TER T )y
< kKT R 3H2p1 | | L 2~ B8y =(142B) P2 (1+B) la=k)p=3kT || £
< 9= (+p)(1=8)my p1=3pp2 I f1lls 120 x

< 2—(l+§)mg%.

Subcase 2.3: 2%2 « 2k ~ 2ki
Then 2P~ P2 ~ 2k2=k « 1 and thus p; < p < p2 ~ 0. This is as in Subcase

1.2:if £, < (1 — 8)m, then repeated integration by parts in Vg _, gives the
claim, whereas for £, > (1 — §)m we have that

+ + _
AN F [ Pep Qi )] oo S22 fill 2 27 THP2 | 1)1
< 2—(“5)’"8%.
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7.2 Case pmin K Pmax K 0

Here we have that |®| 2> 1. We can use a normal form as in (5.11)—(5.12) with
A= % so that m"®* = 0 and we see that

| Pe.pBufis 2] 12 S | Pip Qa1 (frs 2] 12
+ || PepBro-1 1 f1, )] 12
+ [P pBunao-1 (f12 9 )] 12 -

Using Lemma 6.1 the second term can be bounded as

+
2N F [P p B @ f1, )] oo
< 2m 2 pp g, ) 1 fall 2 S 27D
and similarly for the third one.
It thus remains to control the boundary term. If min{p1, p2} = p1 < p, this

follows from Proposition 4.1, Lemma A.8, Corollary A.7 and the multiplier
bounds (5.4) as follows:

S ey,

< 2~ P2k+k +3k+217max2171 ”fl”B ltAf2||Loo < 2—8m 2

Ifmin{py, p2} = p2 < p,thessituation is similar. We note that if ppax < —8m,
then we have that

2T | F Py Qs (frs )] e S 22 20mes | £, 1 f2l 2

+
S 2K pprtpatemar | f| gl foll g
—26m 2
S 27,

so we may assume that ppax > —8m. Then with |6 > 279 2kmaxtkmin and
the fact that

1
V,®

S_l

<s_1|CI>| 2<s

’

we are done by integration by parts as in the case of a gap in p, Sect. 7.1.
After the estimates in Sects. 7.1 and 7.2, we may assume that all p’s are
comparable:

Pmax < Pmin + 100.
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7.3 Gaping

We additionally localize in g;, writing g; = Py, p;.q; Re; fi» 1 = 1,2, and can
assume by B norm bounds that ¢; > —3m.

For this case we now assume that gnin < ¢gmax and thus (by the pre-
vious case) 2Pmin ~ 2Pmx  ~ ] (and thus also ¢; > 0). Noting that
o] ~ 29max2kmintkmax and using Lemma 5.7, repeated integration by parts
is feasible if

V)7 . 2_qmax22k1_kmin_kmax(1 4 2k2—k1 (2q2—q1 4 241)) < 2(1—8)m’
Vg_n . 2_Qmax22k2—kmin—kmax(l + 2k1—k2(2tI1—qz 4 2[2)) < 2(1—6)m‘
(7.5)

We have two main cases to consider.

7.3.1 Case3:q < q1,q2

By Lemma 5.8 and Remark 5.9, we have three scenarios to consider:
Subcase 3.1: 2K1 ~ 2k

Then also 29! ~ 292, Using (7.5), we see that repeated integration by parts
gives the claim if

—@max + k1 — k +min{l, £2} < (1 — &)m.

Otherwise, using a crude bound and (5.4), we have that

2 F [ Prpq Ot 8]
< QAR 3 pmax T gy 274 gy
<20 2By (HAU=DM o oo,
which is an acceptable contribution.

Subcase 3.2: 2k2 « 2k1 ~ 2k

Then we have 291792 ~ 22—k « 1 and thus ¢ < g1 < ¢». From (7.5), we
see that repeated integration by parts in Ve _, gives the claim provided that

—q2+ 4 < (1 —=58)m.

Otherwise we can conclude just as in Subcase 3.1.
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Subcase 3.3: 2F1 « 2k
This is symmetric to Subcase 3.2.
7.3.2 Case 4: min{q, g2} < q

Without loss of generality, we may assume that g; < g». By Lemma 5.8 we
have three scenarios to consider:

Subcase 4.1: 2F ~ 2k
Then also 29 ~ 292, Inspecting (7.5), repeated integration by parts gives the
claim if

Vi e max{—qi, €1 — gmax} < (1 —8)m,

VE—n o max{ky — ki, £} < (1 —&)m + gmax.
In the opposite case, if 291 < 2~(1=9™ we can use Lemma A.3 and (5.4) to
bound

2K K078 | Py Onlgr 222

_ ¢gmax _1— q1 _
<27 8] 2k ek a2 gy )| 27 A gy

ktkt 3
SJ 2‘““%2412%+§k12—(1+ﬁ)42812

< o 22k1+%k+2—(1—3)m2%2—(1+ﬂ)628%,

which suffices since max{€,, k —k1} > (1 — §)m + gmax. If on the other hand
€1 — gmax > (1 — 8)m, then a crude estimate gives

2| F [Py Qutar 0]

2k+2kt +gmax  ~A—(1+B)¢ 2
< 22 dmax (A 101114 27 |l gallp

< 23k+2_(1+ﬂ)(£l_‘1max)8% < 2—(1+6)mg%
which is an acceptable contribution.
Subcase 4.2: 2F « 2k ~ 2k

Then also 29279 ~ 2k—k2 « 1 5o that q1 < g2 < q. Using (7.5), repeated
integration by parts then gives the claim if

|/ —q+ky—k+L<(1—-8m.
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Otherwise we get the acceptable contribution

+
2N F [ Prpg Qg1 82| o
< 92Kt 23+Y lgillg 2~ A% | ga]l

< 22er2—(1+/3)(132+k2—k—f1)8]2.

Subcase 4.3: 2%2 « 2k ~ 2k

Then also 299 ~ 2k=k2 « 1, 5o that q1 < q < q». From (7.5), repeated
integration by parts then gives the claim if

Vey: bo—q < (1 —=98m.
Otherwise, we get an acceptable contribution as in Subcase 4.2:

T + LI _
PN T [Propg Qg1 8] [ oo S 2422747 gy g 27 140 gy

< ¥ (4= 2 < 9= (+8/2m 2,

7.4 No gaps

Assume now that 2Pmin ~ 2Pmax gnd 29min ~ 29max - Agsuming further w.l.o.g.
that g has at most % copies of S, by the decay estimate in Proposition 4.1 we
then have that

g =T1+11
with
q _3 35 21+ _art 1
1o S27P7 22220730 g 1|2 S 2730 12y,

By Corollary A.7 we further have that

itA < n—3kin—3m
e ngLOON2 2737y,
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and using (5.4) and an L™ x L? estimate, we find that

A N | NI

SRR N e N (PR N PIPRA (1Y P
< pdkT i (273" +27%275m) o
< 2_%’"8%.

O

8 X norm bounds

In this section we finally prove the X norm bounds for the quadratic expressions
(3.12). This is done first for the case of “large” ¢ in Sect. 8.1, then for “small”
£ in Sect. 8.2.

8.1 X norm bounds for £ > (14 §)m

The goal here is to show that if ¢ is sufficiently large, then we have the X
norm bounds claimed in the bootstrap conclusion (3.7). More precisely, we
will show:

Proposition 8.1 LetO0 < § =2M -3 & B, and assume the bootstrap assump-
tions (3.6) of Proposition 3.5 and let F; = SbJ'Z/IMj, 0 < b +by <N,
wj € {+, =}, j = 1,2. Then there holds that

+ _ 82
sup 2R 2WHPBP || Py R B (F1, Fo) |2 S 270 et
k, e+p>0, £>(1+8)m

We give next the proof of Proposition 8.1. As one sees below, here the choice
of 82 = O(M~") will be convenient for repeated integrations by parts, where
M e N is the number of vector fields we propagate.

Proof of Proposition 8.1 Assuming that £ > (1+ &)m, we split our arguments
into two cases: If £ + p < 8m (Sect. 8.1.1) “only” a gain of 2149 s needed,
and relatively simple arguments suffice. If on the other hand ¢ 4+ p > dm
(Sect. 8.1.2) we can make use of a “finite speed of propagation” feature!! of
the equations via the Bernstein property (3.2) of the angular Littlewood—Paley

LI This refers to the fact that localization on scales greater than ¢ and linear flow almost commute,
similar to the terminology in e.g. [13, Section 7.2] or [55, Section 3B].
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decomposition. We remark that in the arguments that follow, no localizations
in g, g; are used.

8.1.1 Casel+ p <dém
Here we have that p < —¢ + ém < —m.

We begin with some direct observations to treat a few simple cases, akin to
Sect. 7.0.1. Noting that

Jr
K2R || Py Ry Bin(P Fi, Py 2) )2
< KT QUED P Y i (2N | By vy L 240 [ Fyll 1)
-min{2~ Y% | Bl vy L 2 | Foll i}

+43 ; - i -
5 23k +2k2m+(1+ﬂ)5m mln{2 Noky s 2k1}mln{2 NOkz, 2k2} : 8%’

we see that it suffices to prove thatif £ > (1 +8)m then with 89 = 2N, I« 82
we have

2P | Py p ReBen(Pry F1. Piy o) | 1

<2Wm2 o <k k; < 8om, j=1,2.
Asin Sect. 7.0.1 we can now further reduce cases by considering localizations
in pj,£;, j = 1,2, and see that to show the claim it suffices to establish that
for f; = ij,ijngj,j =1, 2, when
there holds that

2UHPPP | Py ReBu (1, f2) | ;2 S 270" e
This is done in the following Case a and Case b.

Case a: 2P1 4+ 2P2 « 1

In this case there holds that |®| = 1 and a normal form (as in (5.11)—(5.12)
with A = % so that m"®* = 0) gives

| Pe B fis 2] 2 S [ Php Quvaomr (Fis )| 2+ [ PhpBrnomr @ fis )] 2
+ | PhpBromt (F1, 0022
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A crude estimate using Lemma 6.1 gives

2 (1+B)EHfp ” Pk’pRgBm@rl (0 f1, 12) HL2
< 23kpU+A)(+p) |F [Pr.p ReBr.o-1(3 f1. f2)]

5
<22m UEAEEP) Y3k 10: f1ll 2 1 f2ll 2
< om '2—%m+ym+(1+ﬁ)5f71+350m8%

[

and symmetrically for the term with 9; f>. Assume now w.l.o.g. that py < p;.
For the boundary term a direct L> x L estimate using Corollary A.7 then
gives the claim if 27 > 272 since

20HDPP | Py Re Qo1 (f1s )] 12
S 200 Pinymr oith | ol 5 27 R
LOO

We thus assume that p < pr < p1. If p1 < —28m, using (5.4), we are done
since

2D Qo1 (fis ] 12 S 2D [ F [ Qg (fi, )] t
< 23k pmax || £ 1 |l fall 5 -

Else we have p; > —28m, and thus |5| > 2717517 and using Lemma 5.7,
we can repeatedly integrate by parts in V), if

p2pitki—k (| 4 oka—kigtyy o p(1=d)m

If this inequality is reversed, we use crude bounds: In case k = ki, we can
assume that —2p; + €1 + k1 — k > (1 — §)m and then, using (5.4),

2(1"1‘/5)5"‘/31’ “ Pk,pRZ Qm.q>—1 (f1, f2) || L?
< 23UPED) | F [Py Ry Qg (fis £2)]

< 2 (I+B)8m 2%‘*’17] .27l I fillx - 2p2 21 g
-m/3 .2
g 2 m/ 815

[

whereas if knjn € {k1, k2} we can assume that —2p; +£; > (1 — §)m and the
conclusion follows just as above.
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Case b: 2P' ~ 1

Then |G| ~ 2%17% and thus by Lemma 5.7(1) repeated integration by parts in
V), gives the claim if

2k1—k(1 + 2k2—k1 2@1) < 2(1—8)m’
whereas, in the opposite case, a crude estimate using (5.4) suffices

20D0BP | Py, R Bl f1, 1)) 12
< U+A (P 3k |F [Pr.p ReBu(f1, f2)]]

5
A A P A

< o (I438)m min{1, 2(%—ﬂ)(k—k1)} - min{1, 2—(1+ﬂ)(@1—k+kz)}8%
8.1.2 Casel+ p > ém

By analogous reductions as at the beginning of Sect. 8.1.1 it suffices to prove
that with f; = ij,ijngj,j =1, 2, and when

(with 89 := 2N, '« 82 as above) there holds that

20D | Py ReBu( i, f2) 2 S 2770270},

~

(Note here that the reductions are given naturally in terms of the large parameter
£ > m).
A crude bound using (5.4) gives that

2UHPPP | Py ReBu (1, )] 1 @)
kmin . ’
< 2m2(1+ﬂ)(€*€142)2ﬂ(17*m*P2)2k+kmax+7+pmm||f1”X”fz”x

When
2m+p + 2k—kj2m+pj + 2k—kj+ﬁj < 2(1—52)5’ ] =1,2,

we want to use the Bernstein property: As in (A.4), we can rewrite

2
R On(f1, f2) =Y 27 R{VQLOn(f1. fo).

a=1
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for Réo) = Ry and where RénH) is bounded for all n > 1. We find that
Qig Qi (f1, 2) =Q v+ (f1, f2) — Q 4+n(Sf1. f2) + Qi+ (a3 f1, /2)
1 2 3

. . o,
where for some coefficient matrices Ay, r =2, 3,

mi Ve, ) = [is(@5,0€ m) - 3]0, ) + 25m .
m V& ) = AT e, (5 — )y 18 — 0172 mD(E, ),
my TV E ) = ALV e — ), 1 — 172 mD(E, )

and we see by induction that
||m(j+1)|| =< ok+Pmax [z—p +2mP 4 2k—k1+p1) n 2k—k1_pl]./ ’
Imy Pl + Img Vg S w250
Iterating this at most K times, stopping before once a term involves three S

derivatives, we use a crude estimate to conclude with (3.2) for f; that

2
3, . _ — —
IReQn(fi, )2 S 23kmn2btpmes . 3o =KE[9=p 4 gmar 4 otk
a=0

K
RS YT

3 ) _
+ 22kmin gkt pmax . 2738 63 £ || fal 12,

which gives an acceptable contribution. Using this for & — 5 and for n, and
supposing wlog that ko < k1, we obtain an acceptable contribution whenever

<=8t or k—ky+max{m+ py, Lo} < (1 -8

If ¢, > m + po, this and (8.1) cover all the cases. In the opposite case, it
remains to consider the case when

ky <ki~k, £ >(1—=8)6(0+8m<t<(1+28)m+pr+k—ky) (8.2)

which in particular implies that py + k — ky» > dm /2.
Assume now that (8.2) holds and in addition,

2_p2_Pmax2k2_k + 2_172_Pmax+‘€2 < 2(1_52)””‘
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In this case, if pmin < pmax We can integrate by parts along the vector field
Ve_y using Lemma 5.7 or else an L? x L™ estimate (£1 > (1 — 8§2)¢) using
Cor.43and pr +k — ky > ‘37’" gives an acceptable contribution.

If (8.2) holds and

— P2 — Pmax + k2 —k = (1 — §%)m — 100,
a crude estimate using (5.4) gives that
22| P, R B f1, )2

< 2T sy HBIBP QK opmin | £y ol ol 2

< oM QU0 2P (=P g mint Pt 122 % | £yl fa L5

< pm)2kt 252y (1=P) printPmaxtp2ky g2
which gives an acceptable contribution. Finally, if (8.2) holds and

—P2 = Pmax + €2 = (1 — 8%)m — 100,

we estimate f in the X norm instead to get

+
2K 2UHPPP | P R B (f1, )]l 12

k +
< 2o P g (4B 9B kot T HEE L 1 ol

Pi+p -
< 2m22k+2(1+ﬁ)(€—61—82)2ﬁ(p—p1—p2)2 1 2+Pmax2k2 I Allxll Fllx

< gmp2kT P28y —(1+B)1=8m ) (3=B)p1p—(3+P)P2ky 62

and since pp + k — ko > dm/2, this also leads to an acceptable contribution.
This covers all cases. O

8.2 X norm bounds for £ < (14 d)m

Next we prove the main bounds for the propagation of the X norm. By Propo-
sition 8.1 it suffices to consider the case where £ < (1 + §)m. We will show
the following:

Proposition 8.2 Assume the bootstrap assumptions (3.6) of Proposition 3.5,
and let § = 2M_% > 0. Then for F; = SbJ'Z/{Mj, O0<by+by <N, puj;e
{+, =}, j = 1,2 there holds that

+ 2
sup K2R | Py RyBn(F1, Fo) |2 S 27 e
k, £+p=0, L<(1+8)m
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The remainder of this section is devoted to the proof of Proposition 8.2.
After a standard reduction to “atomic” estimates with localized versions of the
inputs, we will make ample use of the integration by parts along vector fields
and normal forms. To this end, we note that by choice of § we can repeatedly
integrate by parts at least M = O(8§72) > O(5~") times.

We proceed in a similar fashion as in the proof of the B norm bounds in
Sect. 7, but the estimates are more delicate since we always require a gain
of (2 + B+) powers of the time variable. We use the possibility to integrate
by parts along vector fields to push ¢; ~ (1 — §)m up to losses in adjacent
parameters k;, p;, then we use a normal form to gain a copy of m at the cost
of adjacent parameters.

Proof of Proposition 8.2 We begin with a reduction: Note that if £ < (1 +
8)m then (1 4+ B)¢ < (1 4+ B + 28)m, and thus by energy estimates, further
localizations in p;, £;, j = 1,2, and B resp. X norm bounds it suffices to

prove that (again with §o = 2N, 1) for

fj:ij,PjREij’ —2m§k,k] 550”1,

—2m <p; <0, —p;=<¢{;<2m, j=1,2,
we have that
sup  2UERERIBY | p R Bu(fi, £o) |0 S 27

k. t4+p>0, £<(1+8)m

This is the bound we shall prove in the rest of this section. Similar to the
B norm bounds we do this first in the setting of a gap in p with pypax ~ 0
(Sect. 8.2.1), secondly when ppax < 0 (Sect. 8.2.2), then for the case of a gap
in g (Sect. 8.2.3) and finally for the case of no gaps (Sect. 8.2.4).

8.2.1 Gap in p, with pmax ~ 0

We consider here the case where pmin < pmax ~ 0. We further subdivide
according to whether the output p or one of the inputs p; is small, and use
Lemma 5.8 to organize these cases. Wlog we assume that p; < p», so that we
have two main cases to consider.

Noting that |5| ~ 2Pmaxkmintkma and using that ¢; + p; > 0, by
Lemma 5.7(1) repeated integration by parts is feasible if

V,, . 2—P122k1—kmin—kmax(1 + 2k2_k12€1) < 7 (1=8)m

’

VE—I] . 2_P222k2_kmin_kmax(l + 2k|—k22E2) < 2(1—5)m. (83)
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Case I: p < p1, p2

By Lemma 5.8 we have three scenarios to consider:
Subcase 1.1: 2K1 ~ 2k
Here we have 271 ~ 2P2 ~ 1,
As for (8.3), after repeated integration by parts (0(6~Y) « M times) we

canassume that¢; > (1—-8)m+k—ky,i = 1, 2. Then a direct X norm bound
gives the claim: we have that

| Pi.p ReQum(f1. 1)) 12 S 2818127 UFAPEFR Y f v follx
< 2G2220k21 k= 20+HA=8m | £y ol

and hence

2K 2UHD | P ReB(fis 12)] 2 S 20FBF2M || P R B f1, 1) 12

< 2 (2+-B+28)m ” Pr p Ry On(/f1, 12) HL2
< 2~ (B-2C+H—Fo0m 2

which suffices since g > §.

Subcase 1.2: 2F2 « 2k ~ 2k
Then we have that 271 =72 ~ 2k2=K1 « 1 so that p < p1 < p2 ~ 0.
Asin (8.3), by iterated integration by parts we can assume that £, > (1—8§)m

and £1 > p; + (1 — 8)m, which suffices for a direct X norm bound provided
that B < 1,

| Pep ReQu(fis f2)] 12 S 2618127 D280 | Ayl | foll
< ok p3ka o=(142B)p1 2—2(1+ﬁ)(1—6)m812

< 23kpG=20m1 =214+ —5m 2,

using that 2F2 ~ 25171 This leads to an acceptable contribution.

Subcase 1.3: 251 « 2k2 ~ 2k

This would imply p» < p1, which is excluded by assumption.

@ Springer



Global axisymmetric Euler flows with rotation

Case 2: p1 < p, p2
By Lemma 5.8 we have three scenarios to consider:
Subcase 2.1: 2F ~ 2k2

Then 27 ~ 2P2 ~ 1, Using (8.3), we can assume that £{ — p; > (1 — §)m and
maxi{ky — ki, €2} = (1 — §)m.

. 3

(a) ko — k1 > (1 — 8)m. Here we have that since |S| < 27122k there holds
3 +

| P pReQm (1. f2)] 2 S 2KISI2780 I il N fall 2 S 22k Noky p=(1=)m 2.

which is more than enough thanks to the smallness of k1 — k».
(b) 2 > (1 — §)m. Here we will further split cases towards a normal form.
Assume first that

2p1 — ki = —k — 100. (8.4)
In this case, a crude estimate gives

| PepReQufis f2)] 2 S 24181 L full2 1L f2ll 2
3 _ _ _ .
N e P PR T

< 2(1+ﬂ)k2(%—ﬂ)k1Zﬁ(kl—k—2m)2—2(1+ﬁ)(1—5)m8f’
which gives an acceptable contribution.
We now assume that (8.4) does not hold and do a normal form away from
the resonant set (see also Sect. 5.4). For A = 272000m e decompose as

in (5.11)

mE, n) =y emE, ) + (1 — ¢ e)mE, n)
= m' (&, n) +m" (&, ).

res

On the support of m”¢*, using (the contraposite of) (8.4), we observe that
|3y @(E. )| 2 27
and using Lemma 5.10(3) we find that

ko A
| PipReBures (f1, f2)| 1 S 27 - 2827 +h131/20% o=t~ | £y |l foll

< Skt +% 172 Lgn=@HA =8 2
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and again, we obtain an acceptable contribution. On the support of m™",
the phase is large and we can perform a normal and see as in (5.12) that

| Pe.pReBror (fis 2] 12 S [ PhpReQa 1o (fis f2) 12
+ || Prp ReBoy-tr B f1 £2) | 12
+ || Pr.p ReBop—tr (f1, 00.f2) | 12 »

and using crude estimates and Lemma 5.10(1), we see that

3 _ _ _
| Pe.p Re Qo1 (1. f2) ] 2 S 22012kt o=t~ WD g o £l
< 2k+%k1 ) 22008m7(2+l3)(17(3)m8%’

which suffices since 8 > §. Similarly, using Lemma 6.1, we obtain that

k 3kiy—19—t
| Pr.p ReBoy-1yr (f1, 0 f2) | 2 S 27 - 2521 F3R0 71275 ) £l 110, fall 2
ko 3
5 2k+k1+7 . 2}/+3005m—§m8%’

and similarly for the term with 9, fi.

Subcase 2.2: 2% « 2k2 ~ 2ki

Then 2727 ~ 2k=k2 « 1, and thus p; < p» < p ~ 0.
After repeated integration by parts we may assume that

li > max{p; — k1 +k+ (1 —8m,—p;}, i e{l,2}. (8.5)
This is sufficient if
p1 = —108m.

We first localize the analysis to the resonant set by decomposing m(§, n) =
m (&, n) +m" (&, n) as in (5.11) with A = 2710924 4 22P2) For the non-
resonant terms, we can do a normal form as in (5.12), and with Lemma 5.10(1)
a crude estimate gives

| Pr.p.gRe Qo1 (f1. )] 12
SISI- 281 + 222 Al Nl ol e
L G T T
< 2—(1+ﬂ+28)m8% . 2P2+%(24 + 22172)—1 . 2(ﬂ+38)m22k12%k2—(1+/3)(€2+172).
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If
max{k; — k, €2 + pa} > 58m

this gives an acceptable contribution; else, using that 272 < 2Kk we
obtain a contradiction with (8.5). In addition, another use of Lemma 6.1 and
Lemma 5.10(1) gives

| Pe.p.g ReBay—taunr (1.0 f2) |2
<22k 2278 fill 2 18 ol 2
S m (2q + 22p2)—12%2%k+k1 . 2P1—E12—%m+ym . 8?.

Now, using that (29 + 22P2)=1232k=k1 < 2=rpk=ki < | we see that if
p1 < —m/2, then

Z | Pr. p.g ReBo-1nr (f1. 00 f2) | ;2
q

1 3
5 om 2§k+2k1 . 22p12—§m+ym . 8?,

which gives an acceptable contribution, while if —m/2 < p; < p>, we see
that

> 1P ReBotgur (1. 80 f2) 1 2
q
< gm o—p2, 2%k+2k1 ,2k7k1+p172127%m+ym . 8';’

<2=Goy=9m p=3p2 3k g3,
which is acceptable. The term involving 9, f7 is treated similarly.
We now turn to the resonant term. First, we observe that, on the support of
mres ,
A€ =)+ [AMm] =3/2,

VI = JI=AE—1)
IAGE —mI+AM]

IAGE =] —|AM)| = > 27892

so that smallness of |®| implies that 29 ~ 2272 ~ 22(=kD byt we will need
to restrict the support further.

@ Springer



Y. Guo et al.

We first observe that since |k; — k2| < 10 and p; < p», we have that, on

the support of m”*,

10, D (&, )| = 2227k,

and we can use the analysis in Sect. 5.3.3 to obtain an acceptable contribution
unless we have

max{€1 + p1 —2p2, r — p2} > (1 = §)m,

which improves upon (8.5) in that it does not incur k losses. If the first term is
largest, a crude estimate gives that

H Pk,p,qRZer” (f1, f2) ” L2
S22 28181 N Aillz L Aol 2
< pm '2%k2%2*(1+ﬂ)€1*ﬂm2*(1+ﬁ)52*ﬂp2||f1||X||f2||X
< 9—(+2=38m Hpi—p2 | 2—(1+4/3)p22(%—ﬂ)k2(2+ﬂ)k1 8%,

and since 2¥~%1 < 272 we obtain an acceptable contribution. Thus from now
on, we may assume that

G—pi—k+k>0=8m, €o—pr>(1—8m, 2% ~2P~02kh
In this case, a crude estimate gives that

| Px.p.g ReBures (f1. f2)] ;2

<2m 2K IS fill 2 Ll 2
5 om 2%k+k12p1+%2—@12—ﬁ(€1+p1)2—(1+5)522—ﬂpz”fl||X||f2||X
< 9=(HB=38m 5—=B(li+p1) | H(5—Bky—2Bp2  HC+P)ki ¢2

and this leads to an acceptable contribution whenever
p2 < —408m. (8.6)

In the opposite case, we do another normal form, choosing a smaller phase
restriction A = 273909 Thus we set

m (&, n) =Yy ATIOE MM E, ) + (1 — YT OE, n))M S E, n)
=" (&,n) +m""(E, 7).
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On the support of m"”, we have that
|y @5, )| 2 2272712 2 27100

and using Lemma A.4, as in Lemma 5.10(3) we see that

1
| Pi.p.g ReBrrr (fi. f2)]| 2 S 27 - 28R @109may 200 A1l 2 £l 2
< om 2k12—1008m . 2p1+k—ﬂ|

(2T HRCER DR £i)1x 1 fallx

< 9= (1+B=35+1008)m 92k '2—(1-1-2,3)[72812’

which gives an acceptable contribution using (8.6). Independently, we treat the
nonresonant term via a normal form as in (5.12). First a crude estimate using
Lemma 5.10(1) gives that

kq—1 Aliktk 1
| Pr.p.g Re Qa1 (f1, 2|2 S 2071 228225 £y 2 fal 2
1
< 22%03000m apH=tia =l g x| ol x

1
S 2—(2—6005)m2§k+2k1 8%,

which is again acceptable. In addition, Lemma 6.1 and Lemma 5.10(1) give

|| Pk,p,q ReB(b—lmnrr (f], 8[f2)|| L2
_ 1 q
S22 KR A 2119, ol 2
< otk opitk—ti _2—(%—y—5006)m||f1 Ixe
—(3—y—=5008)m~ 2 k+k; .3
<272 225 ey,

and once again the term involving 9, f] is easier.
Subcase 2.3: 2F2 « 2k ~ 2ki

Then 2P~ P2 ~ 2k2=k « 1 and thus p1L<<Lp<KLpr~0.
Using Lemma 5.7, repeated integration by parts give the result unless

by > (1 —6m and —-p1+&=>0-98)m.
A crude estimate gives that

| PepReBu(fi, f2)| o S 27 -2k - 2kmaske .o=tp=(HBl 1 ol

~

< o= (+p=30m '22k+%k28%’
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and this gives an acceptable contribution unless k; > —10m. In this case,
we split again into resonant and nonresonant regions with A = 2720097 g
in (5.11). On the support of the resonant term, we see that (since p; < p»,
ky < k1)

|0y, D (&, )| Z 277,
and using crude estimates and Lemma 5.10(3), we see that

|| Py, p ReBres (f1, f2) ” 12

< om ok gkt 25mE ab=UHBIE | AL | ol
-2 508 2k 2
5 2 2+p+ )m2 e7.

For the nonresonant term, we use a normal form as in (5.12). Using crude
estimates and Lemma 5.10(1), we see that

3 _ _ _
| Pe.p Re Qo (f1, f2)|| 12 S 2F2P 201071 270~ HD0 £ 1 follx
< 2§k ) 22008m—(2+,3)(1—6)m812’

which suffices since g >> §. Similarly, using Lemma 6.1, we obtain that

k 3kiq—1n—t
| P, p ReBay—1onr (f1, 0 f2) || 2 S 27 - 2522172907275 | fill i 110y fall 2
< 23k .y +300n —%mg%’

and similarly for the symmetric case, and once again, we obtain an acceptable
contribution.

8.2.2 Case pmax < 0

In case 2Pmx < 1 we have that |®| = 1, and we can do a normal form as in
(5.11)—(5.12) with A = 11—0 so that m"* = 0. Using Lemma A.6, we have that

|€* fi]| oo S 273761, i = 1,2, and thus by Lemma 5.10(2)

| PepReBror G fis )] 2 S 2725 N fil2 | 1]

3 3 2
5 2k+§k22m—§m+ym—§m8%

and symmetrically for B, 4-1(f1, 0; f2). The boundary term requires a bit
more care: Assuming w.l.o.g. that p» < p1, we distinguish two cases:
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e If f1 has fewer vector fields than f,, by Proposition 4.1 (and again
Lemma 5.10(2)) there holds that

[PerQuant (1 )] 12 S 2| 0] 272 12l

i ira »@
42 ‘el 1 ‘

itA < h—3m2
el fz”Loc S22
and analogously if 272 > 271,
e If fi; has more vector fields than f, and p; < py, we note that since
|G| ~ 2PmaxQkmaxtkmin we have that repeated integration by parts in Vi
gives the claim if

2_P1—Pm3x22k1_kmax—kmin(1+2k2—k1251) < 2(1—8)m'

Otherwise we are done by a standard L x L° estimate, using the local-
ization information. The most difficult term is when k = kyy;n, Where we
can assume that —p; — pmax + k1 — k + €1 > (1 — §)m and obtain

| Pi.p Re Qo1 (F1. 12| 12 S 25FPme | £l 2

itA
1

0+ 1 1
k i _f1Tp
S 2P =TS AN AN

itA
1)

k+pmax , k1 1= 2
P ) Mgl

<2
an acceptable contribution.

8.2.3 Gaping

We additionally localize in g;, write g; = Py, p;.q; Re; fi» i = 1,2. A crude
estimate using (5.4) gives that

k 3k 4min
| Pr.p.g ReBm(g1, g2)|| 2 S 27 - 28 dmax . 23Kmax T30 gy 121 g2l 2

5 9mint+41+42
2k IminT91T92
< 2m . 22kma g ST a1 gy | g g 5,

and we obtain acceptable contributions unless
Gmin > —10m, Gmax = —6m/7, 8.7)
and in particular, we have at most O (m>) choices for {q, g1, ¢2}.

In this section, we assume that guin < gmax and (by the previous case)
2Pmin ~ 2Pmx ~ 1, Using Lemma 5.7 and noting that |5 | ~ 2%max2kmin+kmax_
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repeated integration by parts is allow us to deal with the case when

V'I . 2_‘Imax22k1 —kmin—Kmax (1 + 2k2—k1 (2112_(]1 + 261 )) < 2(1—5)m’
V%._n . Z_Qmaxzzkz—kmin—kmax (l + 2k1—k2 (2q1 —q2 + 2@2)) < 2(1—5)m‘
(8.8)

Wlog we assume that g1 < g2, so that we have two main cases to consider:

Case 3: g <L q1, ¢

By Lemma 5.8 we have two scenarios to consider:

Subcase 3.1: 2kt ~ 2k

Then also 29! ~ 292,

Using (8.8), we see that we can assume —q; + ki — k + min{{y, £} >
(1 — §)m. We now want to use the precised decay estimate. Assuming wlog
that g has fewer vector fields than g, we recall that by Proposition 4.1 we
have

e”Agz — eitAgél) +€itAg§2),
with
itA (D) k-2 3 ith(2) —1-p
¢ 8 HLOO SBEERe MEER PR St Ligaz—m}€1-

Using a simple L> x L? bound with (5.4), we get

k
S22 g1l 2

1
H Pk,p,qREQm(gl, gé ))

i 1
e”Agé ) H
L? L

<273k min(e1 2~ (A2 < p—gm 2
and using a crude estimate with Lemma A.3,

ith _(2)

(2))‘ eith g

| PepaReQuigi e L S2521S] - gl

L2
5 22k+k72+%q22—(1+ﬂ)f1 ”gl”X X 2—(1-}-,3/)m - €1

L2

< U=kt GHPk (G =P)az | g =B +B=30m 2,
which are acceptable contributions.
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Subcase 3.2: 2F2 « 2k

Then we have 291792 ~ 2k2=K1 « | ‘and thus ¢ < ¢1 < ¢». Using (8.8), we
can assume that

—g2+ 40> (1—=8m—100 and
max{—qi, £1 — g2} = (1 = §)m — 100. (8.9)

We also observe that
(&, n)| = 202710, (8.10)

Assume first that g; > (1 + 28)q2, so that from (8.9), we see that ¢; 2>
(1 —6&)m + g fori = 1,2. We can use the precised dispersive decay from
Proposition 4.1. The worst case is when g has more than N — 3 vector fields.
In this case, we split

eitAg1 — ztAg{ -{-eltAgl”,
a1 _ ’
leM gl S 273 %, (e Bgll) 2 S g2+

and we use a crude estimate to estimate

< 2m X 2k+q2 . ” itA 1

| PepaReButel 22 , < gllli=lgall

S 2B el gy ey

5;2—U+ﬂ+2&m8%.2—{%—4&m2k2—%m—ﬂq2

and this is enough using (8.7) since —q; < —(1 +2B)g2 and g5 > —6m/7.
Similarly a crude estimate gives

221821l 72

| PeraReButel 82,

< om pkt3katiq =18 my—(14H)E

<2m'2k+qz,|8|.” ltA II
2N

-e1llgallx
< pm(UHB+B=30m H(G=P)ax 3k

and this is acceptable.
We can now assume that g1 < (1 + 28)qa, so that 2k < 2k122842 We can
do a normal form as in (5.11)—(5.12) with A = 292720 5o that m = m" by
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(8.10). On the one hand, a crude estimate using (5.4) gives that

3 2
| Pe.p.g ReQua1(81. 82| 12 S 2°-22°F 2 lgill 12 llgall 2
<203kt min ¥, om0+ gy + llgilx] g2l
< 9=(HB=20m 3ko=(3+B)az . p(1=p) S 5—BU+B)1 | 2ke2,

which gives an acceptable contribution. Similarly,

3 a2
| Pe.p.g ReBmo1 (Brgi, g2)]) 2 S 2™ - 2822025 19,g111 2 g2l 2
1 3 5
<2 Germ D@ Fo-(4Ho3k o201

< p=Gy=2my—jap3k . £
which is enough since g» > —6m /7 and B < 1/10. The other case is simpler:

3,492
| Pi.p.g ReBro-1(81, 9182) | 2 S 27 - 25 - 220F 5 gyl 2 19182l 12
< 2—(%-)’)'" . 2(41—42)+q7' min{ijl’ 2—(1+ﬂ)€1}2%k . 8%“81 llx
and if g1 < —(1 — &)m, we obtain an acceptable contribution, while if £; >

(1 — &)m + g2 — 300, we have the same numerology as in the term above. In
all cases, we have an acceptable contribution.

Case4: q1 < q, q2
By Lemma 5.8 we have three scenarios to consider:
Subcase 4.1: 2F ~ 2%2

Then also 29 ~ 292,
Here repeated integration by parts gives the claim if

Voo 27 g pbime < oU=m

Ve, 272k kg oy < pd=dm &1
This leads to the following cases to be distinguished:
(a) Assume first that
ky — ki — gy = (1 = 8)m — 200. (8.12)
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Global axisymmetric Euler flows with rotation

In this case, we can use (5.4) with crude estimates as in Lemma A.3 to get

3 a1
| Pe.p.qg ReBm(gi. g2)] 2 S 27 - 25792 2385 ey 2]l gall 2
< gm, 2%(42+k1—k)2%k2q71 min{2q71, 2—(1+ﬂ)‘31}
llgills + llgrllx]llg2llB
1 5
< 2-(G=30mp3ko % minp 2= (1+ANY . 2,

If g1 < —(1 — §)m — 100, we can use the first estimate, while if £; >
g2 + (1 — 8)m — 100, we can use the second term in the minimum since
q» > —6m/7 from (8.7). In view of (8.11), this covers all cases when
(8.12) holds.

(b) From (8.12), we can now assume that

b —qr > (1 —-686m—100 and
either q» —ko>q — k1 +10 or £1—qr» > (1 —356m — 10.

Assume first that
g2 — ka = q1 — ki1 + 10,
in this case, we have that, on the support of integration,
Vo, @&, )| Z 292752, (8.13)

We will proceed as in Lemma 5.10(3), and decompose for A > 0 to be
determined

mE, ) =mE D)+ Yy meE ),

r>1

m (g, ) =y RE, n)mME, ),
m,(€,1) = 27" A7 D E, n)m(E, n).

We can treat the resonant term using (8.13), Lemma A.4 and (5.4):

B <om oktar MG k=425
| Pe, p.g Re m'ff(gl,gz)HLzNZ -2 277 (27N g2 llgall 2

<om ¥ 5 minar, 2 (ALY (1P 0+

(8.14)
gl + g llx]- llg2llx

< 7= (B=38)m 23k-§k1 2*(%4*/3)112 _)L% - min{29!, 2*(14‘/3)(314*{]7'} . 8%.
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On the other hand, for the nonresonant terms, » > 1, we use a normal form
transformation as in (5.12) and we estimate with a crude estimate, using
(8.13) and Lemma A.4 (see also Lemma 5.10(3)):

. — 1
| PipgRe @m0 8118, S 2 @R gl 2 lgall

3k+k1

<275t 0751 ming2d! 2~ (AT p-(+pH 0L+ %

~

(8.15)
llgtlix + g1l - lg2llx

< o (1+4-28)mp H5H

2~ GHARY=5 =1 min2a, 2~ (AL e2,
and using Lemma 6.1 as well

| Pr.p.g ReBrg, 1381, 82) ”Lz

k1+4q1

k
Som o oktend o7 ko) E L 912l g2l 16)

4k+k1 +q1+q2

<om.pTrt 27ET2 L pm B p=Gyim 3

and

| Pr.p.g ReBen, o-1(g1, 0:82) | 2
ki +
S ookt gt gyl ks qzzfx)z-||g1||Lz||afgz||Lz

* ,
< o=Goym TR ot

. _ q1
-min{291, 27UFAUTTY et llx + llg1ll 8] - €7

Inspecting (8.14), (8.15), (8.16) and (8.17), we obtain an acceptable con-
tribution when

g1 < —(1=3p)m —2pqz,  and ) =20F0Nw=0mm,
since go > —6m /7 from (8.7) and B < 1/100.

Finally, when

tizg+0—=38m and ¢ =—(1=38)m—2Bq

we use the precised dispersive decay from Proposition 4.1. The worst case
is when g» has too many vector fields, in which case we decompose

itA PltA oI 4 pith 11
e 81 = 81 te g
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Global axisymmetric Euler flows with rotation

and we compute that

L S22 A g o a2

H Py p.gReBm (gl gz)‘
S 27 Gl =bn g | p gy S 27D,

and

11
HPk,p,qRKBm(gl ’
k tA 11
AR R K I 218222

<2‘“+'3/+'~"‘2‘”m2<7‘ﬁ>‘”22 lgillpligallx £ 27HHIOme,

which is acceptable.
Subcase 4.2: 2 « 2k2 ~ 2k

Then also 27279 ~ 2Kk « 1, so0 that g1 < ¢» < q. Using Lemma 5.7,
repeated integration by parts then gives the claim if

(Vy) max{—gi, &1 —q} = (1 —=8)m+k —ky, or

(Vo) g = (1= Om+k—ks. (519
In addition, we have that
(@] 2 20m,
so that, using Lemma A.8, we see that
Imd !5 < 2. (8.19)

And we can do a normal form as in (5.12). The most difficult term is the
boundary term. First a crude estimate using Lemma A.3 gives

k
| Pe.p.g Re Qa1 (g1, 82)]| 12 S 2°1S1 - llgill 2 llg2ll 2
k
S 22k+71+‘171 ) 2‘11‘;‘12

-lg1liBllg2llB

< 23kina1+% ‘8%’
which is acceptable if g» + g1 /2 < —5/4m. Independently, if
q1 = —(1=8)m —k +k», q2 > —5m/6,
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a crude estimate using Lemma A.3 gives

| Pe.p.g Re Qa1 (81, 82) | 12 S 28181 - llgill 2 gl 2

ka1
< 22U+ +Y S Y s—(4p)E lgrllslig2llx

< 92— (14+B=28)mrq1—q2—B4> ,2§k12(1—ﬂ)(/€—k1)8%

and this gives an acceptable contribution. Finally, if

1
>0 —=8m+k—ky+qo, i€{l,2} qz+§q1 > —5/4m,

we can use the precised dispersion inequality from Proposition 4.1. The most
difficult case is when g» has too many vector fields, in which case we decom-
pose

g1 =g+
AT — 5 k
e’ gillze S 27 am—4+3 egillp,

5 27(1+/3 ym

i .2 lgilip

and we compute using (8.19)

” Pr.p.qRiQmo-1(g]. S 2k }

ZAI
el ezl

Im-Y
< oktskig=am -llgiliplig2llx

< p3kip=G-m—Y - g2
and, using a crude estimate from Lemma A.3,

| Pepa ReQuoni el )|, < 25151 [ ¢!

I g2l 22
< 93kt —(1+8)m—(14+p)t

S : ||gl||D||82||X
< 3kp= QB+ -2)m—(3+P)a2 . o

which is acceptable since g > (2/3)(ky + k1/2) > —5/6m. The terms with
derivatives are easier to control using Lemma 6.1.:

| Pr.p.g ReBo-1(3:81, 82) | 12 S 2" - 28 ISI - 1,811l 2 g2l 2

(1 koo, _ ')
<2 GYImRAA T mina@ 2~ AL E 2 0015 4+ |lgallx].
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Global axisymmetric Euler flows with rotation

If g < —3/4m, the first term in the min gives an acceptable contribution, else
the second term gives an acceptable contribution using (8.18). Similarly,

| Pe.p.g ReBo-1m(g1, 9:82) | 12 < 2™ - 28181 - llgall 2 19r g2l 2

k
<27 G2 mingoi 2= MHOUEE )2 gy 5 + g1 1x]
and we can conclude similarly.
Subcase 4.3: 22 « 2k ~ 2k

Then also 29792 ~ 22~k « 1 5o that g < g < ¢». Using Lemma 5.7,
repeated integration by parts gives the claim if

(Vy) max{—q1, €1 —q2} < (1 =8)m, or (Ve—y) £r—q> = —38m,
and we can proceed as for Subcase 4.2, since once again

[P, m)| 2 29m=
sothat (8.19) holds and since we do not need to keep track of the k contributions.
8.2.4 No gaps

It remains (see (8.7)) to consider the case ppin > —10 and —6m /7 < gmax
gmin + 10. We use the dichotomy of Proposition 5.2. We decompose m
m’® +m" asin (5.11) with A = 2710029,

1A

The nonresonant case w'*"

On the support of the nonresonant set, we use a normal form transformation
asin (5.12). Lemma A.8 gives

m7 e~ < Jm e 5 < 28 (8.20)

For the boundary term, we may assume that g; has fewer vector fields than g»
and we use the precised dispersion estimate from Proposition 4.1 to decompose

g1 =gl +gll,
; _3 _9q
le ™ gflle S 272272 g1, (8.21)

11 —(1 !
gt 12 S 27 ey p,
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and using (8.20) we compute that

k itA 1
S28 e gy lieligall 2

H Pk,p,q anrq>—1 (glla gZ) ‘ 12

_3 _3
<28 272" glIpllgallp S 2F - 272 e,

while for the other term, we use Corollary A.7 as well to get

k oy Il itA
S 2% gy gz llet™ P gallnee

H Pk,p,q anr(pfl (gf[, g2) 2

(14248
S 2k 2 UHSHIM gy | p ey

For the terms with the time derivatives, we proceed similarly, using (8.20),
Lemma 6.1 and Corollary A.7:

| P Brvr o181, 8r82) | 2 < 2725 - Nl gnllLe 19,82l 2
5 2k . 27(%+%7V)mg‘;’
and similarly for the symmetric term.

The resonant term m’ ¢S

A crude estimate using Lemma A.3 gives

| P p.qg Brvres (g1, 82) | ;2 S 27294 - 1S] - lgrll 2 112l 2
< oMokt akmint 39 . min{oki 2%}
. q
-min{22,22} - [llgill g1 + llg1ll 5]

[lg2ll -1 + llg2118]
< oMokt ikuint24 pinn% ok ok2ye2

This gives an acceptable contribution when
kmin +¢ < —(1 — B)m. (8.22)
We see from Proposition 5.2 that |&| > 29 kmaxtkmin and we can proceed as
above in the case of gaps (without need to worry about the losses in p’s and
q’s). Observing that

sV ® v, 21e)) = 2120y o)
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Global axisymmetric Euler flows with rotation

we can use Lemma 5.7 to control the terms when
max{2k;, k1 + ko + ¢;} < (1 —8)m + g + kmax + kmin, i €{1,2}.
Using the conclusion from (8.22), it suffices to consider the case
ki+ka+ & > (1 —8)m +q + kmax + kmin, i € {1,2},

(else kmin + 9 < —( — B)m). To conclude, we want to use the precised
dispersion from Proposition 4.1. Assuming that g has fewer vector fields, we
decompose as in (8.21), we compute, using Lemma 5.3,

+k it A
S 2727 e Pl ll g2l 2

H Pk’p’qurex (gll, g2) ‘LZ

1 g3
< 2mamp k=L 10 I p g2l x

< 2= (G=9mp =4k 3h —hnan —knin-+ho 2

and this gives an acceptable contribution since ¢ > —6m /7. Similarly, using
Lemma A.3

S 220K 18] gl 2 llgall 2

11
| PpaBures el 2],

S 27t (g | g

< 2= (1+B+B'—26)m 3 kihax £2

which gives an acceptable contribution. |
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Appendix A: Auxiliary results
A.1 Proof of Proposition 3.1

Here we give the proof of the properties of the angular Littlewood—Paley

decomposition introduced in Sect. 3.2. Denoting by P,g“’b) the Jacobi polyno-
mials, we begin by recalling that with

d}’l
POY@) = La() = 2o = 1))
there holds that (see [58, Section 4.5])
d 2 1
L plaa NI pattath e, (A1)

dz " 2
Moreover, we have the following asymptotics (see [58, Section 8.21]):

Lemma A.1 Fix0 < ¢ < 7, then

P,f“*“) (cos )

nsinf

0 (n*) else.

_ 2“\/2 mmlwé (cos((n+a+ o — @tbr) 1 0<1>) if c/n<6<m—c/n (A2)

These estimates are relevant in view of the following fact about angular
regularity (see [2, Section 2.8.4]):

Lemma A.2 Let I1,, denote the L?-projector onto the n-th eigenspace of the
spherical Laplacian As» associated to the eigenvalue n(n + 1). Then for any
P € S?and f € L*(S?) there holds that

2 1
(I, £)(P) = / F(O)3n((P, ONdvea(Q), 3 := L pO0),
S2 47T
(A3)

We are now in the position to give the proof of Proposition 3.1.
Proof of Proposition 3.1 We start with a proof of (i). It is straightforward to

see that for any £ € Z there holds that [Re, S] = 0. The commutation with
Qqp follows from the identity

(5, + Q%) (x, ) = 0.
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Global axisymmetric Euler flows with rotation

It thus suffices to prove that R, commutes with the Fourier transform. After
writing down the explicit formula, we see that it suffices to check that

[ 93 v = [ I3, (a0 (e
; . q

Let p, denote a rotation that sends N to y € S?. After a change of variable,
we observe that

fS i M3, () B))dvg (@) = /S i NN 3 (B, pya))dvg (o)
= [N (p;, ' B).

(A4)

It remains to observe that ¢/*(N-) is a zonal function, and that IT, respects

zonal functions: this follows by direct inspection, or by the fact that Ag2 and
the z-angular momentum £21> commute. Hence I, [e* V-] only depends on
the distance to the north pole. But

(0, ' B, NY = (B,v) = (ps'y, N)

and therefore the last term in (A.4) is symmetric in y, .

The first and third affirmation in (ii) follow from the same properties on
L2(S?). For the second statement, using the reproducing property (A.3), we
compute that

(ReRy f) (x)

3 0@ tnp@ ) /S F(xi)

n,n’>0

(/ 3w (7, &) 3n (o, l‘/‘))dez(Oé)) dvg2 (D)

=Yy Zn’)w(z ) [ )3 9 (9)

n'>0

This shows that 154155/ = 0 whenever |E — v | > 4. The last statement in (ii)
follows by duality from the fact that

Lz Hn1[f] : an[g] . Hn3[h]dVSZ =0

whenever max{ni, ny, n3} > %med{nl, ny,n3} + 4. (This can also be seen
from the fact that spherical harmonics of degree n are restrictions to S* of
homogeneous harmonic polynomials of degree n.)

@ Springer



Y. Guo et al.

For (iii) we let

Ke(,9) = 92 ‘n)3, (o, 9)),

n>0
and we claim that

sup | Ke (@, )12, + sup [ Ke(e, D) p1s2) S 1.
1) ! b2
This essentially follows from (A.2): With (A.1) we have that

en DAV = L (P40 P00 0) = 2 (0422 0 - np D).

and thus

_ 2 + 1 _ _
Yo T =P 0w = = 3 BV Du Dui= 4 2) [p@ I gt +2)].
T

n>0 n>0

In view of (A.2), let

no

3 3n 3w 01— ¢inf sin % n 3n
Cn(0) = Z COS((J+2)9_4)_m(el46121—6’0>=SIH§COS<<2+1)0_4>’

0<j<n—1

then

1,0) := sin(0)~ 3/22 — cos((n + )9—3”)-1),,

n>0 4
= sin(9)"3/?. Z [Cns1(6) — Cr(0)]
n>0
= sin@®) 2.y "¢, (0)[ — D"]
n>0 \/_

nt+l Dy
n

so that since ‘\IZ:_? < 2732 and |C, ()] < ‘sin(%)rl we have

/ [1,(0)] - sin(0)d6 < 1.
2-t<h<m—c2-¢
Similarly,

I (0) == sin(®) Y " — 3/2, /CZ_RM 62_l|114(9)|'5111(9)d9§ 1,

n>0
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and again by (A.2)

Zw(Z‘Zn)fo

n>0

P1D(cos(8))] - sin(@)do < 1.

<f<c2-t

This shows that the kernel of Ry is integrable. A similar proof works for ng.
We now turn to (iv). Starting from

Ag = Z Q2
j<l

we obtain the self-reproducing formula
1
Zy = ——0: Quv b2, Zy(P) = P, N
n n(n—{—l);? abréab<n n(P) 3n(< )

and therefore

Ref =27 " QuyQabRe f,

a<b

~ 22t x
o -t
Ref = 0@ mers fS , FxI2)30 (0, 7 dvee (@)

n>0

(A4)

where Ry obeys similar properties as Ry. It suffices now to show that
IRl S 20 f e, 1 <7 <00,

and similarly for Ri. We provide the details for Re, Ry is similar. Once again
we consider the kernel of Q2,5 Ry:
_ X
(QupRe f)(x) =2° /sz F(x[d) - /Ce(m, Pdvg: (D),

Ke(9) =273 0@ m)Qup [3n(<i, z&>>]

’
x| = x|

and claim that

sup [[Ce(w, D12y + sup I1Ke(@, Dlpisz) S 1.
1) ! o2

@ Springer



Y. Guo et al.

Indeed, we compute that

Ke(w, 9) =273 0@ m)3), (0. 9)) - Q% (0, 9)),

n>0

120, (0, 9D S V1 — (0, 9)2,

and the rest follows in a similar way from the boundedness of R; by using
(A.1) and (A.2). ]

A.2 Set size gain

The idea here is that in the bilinear estimates we can always gain the smallest
of both p, pj and q, q;, since they correspond to different directions.

Lemma A.3 Consider atypical bilinear expression Oy, with localizations and
a multiplier m, i.e.

Ou(f: 8)() = / ey (&, mm(E, n) (& — mEnydn,
n
X(‘Ss'» 77) = <Pk,p,q(5)¢k1,p1,q1 (g - n)wkz,pz,qz(n)'

Then with
+k q1+k qr+k
S| := min{2P Tk, 2P1tk opathey pinr®eT 2T 2%

we have that

| Qu (f, 2 SJ |S] - ”m”Lg"77 ” Pk],pl,qlfH 12 Hpkz,pz,ng”Lz .

Proof To begin, let us assume that p + k < p; +k; and g + k > g1 + k; (the
“symmetric cases” of p +k < p1 + k; with g + k < g1 + k1 and reverse are
direct). Then, for any h € L? we find that

(Qm(f, &) )| S / A; L ImE Q@7 P | FE — e 7 & — n3) g (E)ldédn
< Imll Lo 1) F & - mlz, lo@~* = Peyp@ =01 (& - M2

k q
k451 a1
S2F22PFT mlpoe | fll 2 llgll 2 1l 2

The claim then follows upon changing variables n <> & — 7. m|
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Lemma A.4 With notation as in Lemma A.3, consider

—

Om(f, 9)(&) = / Py e, Mo d)mE, n) fE — memdn, x> 0.
n

(1) Assume that on the support of x we have ‘8,,3@‘ 2 L > 0. Then we have
that
| Ol 9] 2 S minf2bi 71 2tatr2y . Lol

’ ”m”L?i; ” Pquplf”LZ ” szyngHH'

(2) Assume that on the support of x we have |V,7h<I>| 2 L > 0. Then we have
that

ka+po

|On(f, @] ,2 S minf2bitar 2bteys 025 L -1y

. ||m||Lg<f?7 || Pk1,p1,q1f”L2 H sz,pz,ng”L2 :

(Analogous statements hold if ‘853613‘ 2 L > 0resp. |VghCI>‘ > L>0)
Proof 1t suffices to prove (1), part (2) is similar. Assume without loss of gen-

erality that 2k2+P2 < 2ki+P1 (else exchange the roles of f and /1 below). We
have for any i € L? that

[(Qum(f, &), 1)
S //R3 [m(&, )l x (& mMe ) FE —mEmIIhE)|dE dn

S Imllgg - | 7€ = mgm 2, - [x & meGT @R 2

and the claim follows since

1

1
|x (&, n)so(rlcl>>h<s>||L§n SA2- L7222 i

where we have used that
SUP/ xE e dydy S ALt 22tk
&

by changing variables (for fixed £) n — ¢ := (1, n2, ® (&, n)) with Jacobian
detf2| = [a, 0 S L. o
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A.3 Control of Fourier transform in L%

We record here that our decay norm D in (4.1) also controls the Fourier trans-
form in L*°:

Lemma A.5 Assume that f is axisymmetric. Then there holds that

— 3% 3%
I P, pg fllLe 5272 [IIPkfIIB + ||SPkf||3] +272 [IIPkfllx + ||SPkf||x]

_3k
S22 10 flp -

Proof We recall the notation

Ok pg ) = Q7T EDPQ27PV1 — A2(£)p27IA &),

and assume that f = Py 4 f.

Switching to spherical coordinates (p, 6, ¢) € Ry x [0, 2] x [0, 7] and
using that f is axisymmetric (and thus independent of 8), we have that for any
(0o, ¢o) on the support of g p 4 fthere holds

Dk, p.q f(/% ) = Pk,p.q ]’C\(PO’ ®0)

14 N ¢ N
+ / 8,0 ((pk,p,q (s, po)ds + /q& 8(}5 ((ﬂk,p,q ) (po, a)da
0 0

¢ rp .
—i—/ / 0006 (@k, p,q ) (s, )dsdar.
$o Y po

On the one hand, for any choice of (oo, ¢9) we have that for ¢, , with similar
support properties as ¢, » 4 there holds

199 (@k.p.g ) (s, )]
S Bop [27277 7 T s 0l 427771, F s, @)

+27k|8¢f(s, a)| + |8p8¢f(s, oz)l] )
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Now we note that for any g there holds that

¢ ro 2
‘/4) / Ok, p,q8(s, )dsda| < f/ p € [2k, 2k+1 dopd¢ - n=2k—p
0 ,00 ’ £

sing € [2P2, 2P 2],
cos ¢ € [2972,2412]

N[ ) ey, (@R singdpds
sing € [2P~2,2P%2],
cos¢ € [2472 2412]

S27k241gl13,.

Recalling that § = pd, and 94 = T, it thus follows that

¢ rp -
‘/ f 0000 (@, p.q ) (s, a)dsda
$o /ro
S22 e + 27 sf

q q
+ 28 17f 1+ 2 1TSS |

We can now average over pg and ¢ to obtain similarly that

p ~
f 9o (@k, p.q (s, Po)ds
P

0

Sk

/ / a1+ 190 ] ¢)dsd¢‘

LZ]’

S2HIEf e+ |57

and that

¢ _

‘/ 9 (P, p.q ) (po, a)da
b0

<27k / f , Pepq 27771+ 195 £1] (5, p)dsdgp

S22t N Pl [ Popa T2 |-
lp—p'|+lg—q’'|<4
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T (po. )| < 2-+D) f / It oldsdg

—3k/2— -
SR N Py e
Ip—p'I+lg—q’'|<4

To conclude the proof it suffices to note that

H kaPv‘]Tf HL2 5 Z 22 “ Pk,pRép)f

L2
t+p=0
—B
< D0 2PEP I S flx
L+p=>0

A.4 An interpolation

Here we record two interpolation inequalities that should allow us to gain some
X norm or decay even for “many” vector fields. We define the operator

IS=* fllr := sup [IS” fllrr.

0<a<a

Using this, we can prove the following interpolation result:

Lemma A.6 Letr > 1,a,b > 0, K > 1 be integers. There holds that

1 1
<a+b <a 2 <a+2b 2
N Fliger Sp IS=fll; 2118 Fla A6)

1 1
<b =% ¢<Kb s\ %
IS=7 Fllzor Sk W 2 IS=27 £ s
uniformly ina > 0 and f.

Proof 1t suffices to assume that @ = 0. The first estimate follows from the
second one for» = 1 and K = 2. Given f # 0, and C > %log(2r + 1), we

claim that g(n) := log(||S=" f|;2-) + C n? is a discrete convex function. This
follows by integration by parts since

IS" L f 117 = [ pBo(8" ) - (" Pt prdp
— —3fSnf . (Sn+1f)2r—l . ,02d,0
—Qr — l)fSnf . (Sn+1f)2r72 . Sn+2f X ,Ozd,O
< 18" fllger - 18" F13572
[BIS™ fll 2 + @ = DS f 2]
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Since || S"TL £ 12 > 0, we can divide and we deduce that

IS= N F12, < 200+ 1) - IS Fll 2 IS5 42 £ o
L

The claimed inequality follows by convexity'?. O

To apply this when f = Py f is a dispersive unknown it suffices to note that
[S, ¢!"A] = 0, so that with (A.6) we have

-1 €1
itA N < | jita ¢N=3 K | c<N+3(K—=1) £ ¥
’e S f‘LZrN ¢S ! L2 ”S ! L2
. 1-Ha-1 L1
< eztASN—3fH( Hl=%) ‘SN—3f (=% (A7)
L L?
1
. H55N+3<K—1>f K o3
L2

Let us record that this gives us some decay also for the maximum number of
vector fields (in the X or B norms) on our unknowns.

Corollary A.7 Under the bootstrap assumptions (3.6), if f is a dispersive
unknown of (2.7) and the number of vector fields M > 0 in (3.5) is sufficiently
large, then we have that for some 0 < k < B there holds

i 3k _3p+
HPke”ASbeLoo§22 W=lheg 0 < b < N.

Proof For b < N — 3 the faster decay rate ! follows from Proposition 4.1,
whereas when N —2 < b < N this follows from (A.7) and choosing K > k!
and r > 1 sufficiently large. O

A.5 Symbol bounds

In this section we give the relevant symbol estimates for the multipliers we
need. We recall the notations (3.1) and for a multiplier m € L}O . (R3 x R3) we
let

Imlly = sup IF Oenm) [l 1 (3 <R3 »
h ( )
k,q, ki,qi,i=1,2

””l”W = sup ”“ (X”l)”Ll R3xR3) -
:7l7‘1’ l)ll?ql?l 1!

12 we say that the sequence a, = ||Sf"f|| Lo is convex if and only if the piecewise linear
function such that f(n) = a, is convex.
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We then have Holder’s inequality
| Qi (£ &)
| Qmx (/. &)

o S mllg 1 e g llze s

S llmll 1 lze lgl L] +
ml|vo , -—=—4 —,
Lr ~ w LP g L4 r p

and the algebra property
lm1 - mallg < lmillg llmally -

We have the following symbol bounds:
Lemma A.8 Let - :=1— . Then

||<I>—1W> (Q—Qmaxcb)”W <27 9max and ||<I>—1W>(<D) “Wh S L

Proof The first inequality was established in [29, Lemma A.15], while the
second one follows from a direct adaption of that proof. O
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