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Abstract The number of lattice points in d-dimensional hyperbolic or ellip-
tic shells {m : a < Q[m] < b}, which are restricted to rescaled and growing
domains r�, is approximated by the volume. An effective error bound of order
o(rd−2) for this approximation is proved based on Diophantine approximation
properties of the quadratic form Q. These results allow to show effective vari-
ants of previous non-effective results in the quantitative Oppenheim problem
and extend known effective results in dimension d ≥ 9 to dimension d ≥ 5.
They apply to wide shells when b−a is growing with r and to positive definite
forms Q. For indefinite forms they provide explicit bounds (depending on the
signature or Diophantine properties of Q) for the size of non-zero integral
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points m in dimension d ≥ 5 solving the Diophantine inequality |Q[m]| < ε
and provide error bounds comparable with those for positive forms up to pow-
ers of log r .
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1 Introduction

Let Q[x] denote an indefinite quadratic form in d variables. We say that the
form Q is rational, if it is proportional to a form with integer coefficients; other-
wise it is called irrational. The Oppenheim conjecture, proved by G. Margulis
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Distribution of values of quadratic forms 859

[40] in 1986, states that Q[Zd ] is dense in R if d ≥ 3 and Q is irrational.
Initially this was conjectured for d ≥ 5 by A. Oppenheim [47,48] in 1929
and in 1946 strengthened (for diagonal forms) to d ≥ 3 by H. Davenport
[18]. The proof given in 1986 uses a connection, noticed by M. S. Raghu-
nathan, between the Oppenheim conjecture and questions concerning closures
in SL(3,R)/SL(3,Z) of orbits of certain subgroups of SL(3,R). It is based
on the study of minimal invariant sets and the limits of orbits of sequences of
points tending to a minimal invariant set. Previous studies have mostly used
analytic number theory methods. In fact, B. J. Birch, H. Davenport and D. Rid-
out proved in a series of papers that Q[Zd ] is dense in R if d ≥ 21 provided
that Q is irrational, see [39,41] for a complete historical overview until 1997.

For a measurable set B ⊂ R
d let vol B denote the Lebesgue measure of B

and let vol Z B := #(B ∩ Z
d) denote the number of integer points in B. We

define for a, b ∈ R with a < b the hyperbolic shell

Ea,b
def= {x ∈ R

d : a < Q[x] < b}.

The Oppenheim conjecture is equivalent to the statement that if d ≥ 3 and Q
is irrational, then volZ Ea,b = ∞ whenever a < b. We would like to study
the distribution of values of Q at integer points, often referred to as “quantita-
tive Oppenheim conjecture” with an emphasis on establishing effective error
bounds for the approximation of the number of lattice points restricted to grow-
ing domains. Our methods rely mainly on Götze’s Fourier approach [28] via
Theta series, translating the lattice point counting problem into averages of
certain functions on the space of lattices, for which we extend the mean-value
estimates obtained by Eskin–Margulis–Mozes [23].

1.1 Related results

Let R be a continuous positive function on the sphere {v ∈ R
d : ‖v‖ = 1} and

let � = {v ∈ R
d : ‖v‖ ≤ 1/R(v/‖v‖)}. Note that the Minkowski functional

of �, that is M(v) = inf{r > 0 : v ∈ r�}, may be rewritten as M(v) =
‖v‖R(v/‖v‖) and therefore � = {v ∈ R

d : M(v) ≤ 1}. Without loss of
generality we may assume that � ⊂ [−1, 1]d . We denote by r� the dilate
of � by r > 1. In [20] S. G. Dani and G. Margulis obtained the following
asymptotic exact lower bound under the same assumptions that Q is irrational
and d ≥ 3:

lim inf
r→∞

volZ (Ea,b ∩ r�)

vol (Ea,b ∩ r�)
≥ 1. (1.1)
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860 P. Buterus et al.

Remark 1.1 It is not difficult to prove (see Lemma 3.8 in [23]) that as r → ∞,

vol (Ea,b ∩ r�) ∼ λQ,�(b − a)rd−2,

where

λQ,�
def=
∫
L∩�

dA

‖∇Q‖ , (1.2)

L is the light cone Q = 0 and dA is the area element on L .

The situation with asymptotics and upper bounds is more subtle. It was
proved in [23] that if Q is an irrational indefinite quadratic form of signature
(p, q) with p + q = d, p ≥ 3 and q ≥ 1, then for any a < b

lim
r→∞

volZ (Ea,b ∩ r�)

vol (Ea,b ∩ r�)
= 1 (1.3)

or, equivalently, as r → ∞

volZ (Ea,b ∩ r�) ∼ λQ,�(b − a)rd−2, (1.4)

where λQ,� is as in (1.2).
If the signature of Q is (2, 1) or (2, 2), then no universal formula like (1.4)

holds. In fact, one can show (see Theorem 2.2 in [23]) that if� is the unit ball
and q = 1 or q = 2, then for every ε > 0 and every a < b there exists an
irrational quadratic form Q of signature (2, q) and a constant c > 0 such that
for an infinite sequence r j → ∞

volZ (Ea,b ∩ r j�) > crd−2
j (log r j )

1−ε.

While the asymptotics as in (1.4) do not hold in the case of signatures (2, 1)
and (2, 2), one can show (see [23]) that in these cases there is an upper bound
of the form rd−2 log r . This upper bound is effective and it is uniform over
compact sets in the space of quadratic forms. In addition, there is an effective
uniform upper bound (see [23]) of the form crd−2 for the case p ≥ 3, q ≥ 1.

The examples in [23] for the cases of signatures (2, 1) and (2, 2) are obtained
by considering irrational forms which are very well approximated by split
rational forms. More precisely, a quadratic form Q is called extremely well
approximable by split rational forms (EWAS) if for any N > 0 there exists a
split integral form Q′ and a real number t ≥ 2 such that

‖t Q − Q′‖ ≤ t−N ,
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Distribution of values of quadratic forms 861

where || · || denotes a norm on the linear space of quadratic forms. It is shown
in [22] that if Q is an indefinite quadratic form of signature (2, 2), which is
not (EWAS), then for any interval (a, b), as r → ∞,

ÑQ,�(a, b, r) ∼ λQ,�(b − a)r2, (1.5)

where λQ,� is the same as in (1.2) and ÑQ,�(a, b, r) counts all the integral
points in Ea,b ∩ r� not contained in rational subspaces isotropic with respect
to Q. It should be noted that

(i) an irrational quadratic form of signature (2, 2) may have at most four
rational isotropic subspaces,

(ii) if 0 /∈ (a, b), then ÑQ,�(a, b, r) = volZ (Ea,b ∩ r�).

The above mentioned results have analogs for inhomogeneous quadratic forms

Qξ [x] = Q[x + ξ ], ξ ∈ R
d .

We define for a, b ∈ R with a < b the shifted hyperbolic shell

Ea,b,ξ
def= {x ∈ R

d : a < Qξ [x] < b}.

We say that Qξ is rational if there exists t > 0 such that the coefficients of t Q
and the coordinates of tξ are integers; otherwise Qξ is irrational. Then, under
the assumptions that Qξ is irrational and d ≥ 3, we have that (see [45])

lim inf
r→∞

volZ (Ea,b,ξ ∩ r�)

vol (Ea,b,ξ ∩ rω)
≥ 1. (1.6)

The proof of (1.6) is similar to the proof of (1.1).
Let (p, q) be the signature of Q. If p ≥ 3, q ≥ 1 and Qξ is irrational then

lim
r→∞

volZ (Ea,b,ξ ∩ r�)

vol (Ea,b,ξ ∩ r�)
= 1, (1.7)

or, equivalently, as r → ∞,

volZ (Ea,b,ξ ∩ r�) ∼ λQ,�(b − a)rd−2. (1.8)

The proof of (1.7) is similar to the proof of (1.3), see [45]. The latter paper
[45] also contains an analog of (1.5) for inhomogeneous forms in the case of
signature (2, 2). One should also mention related results of Marklof [42,43].

123



862 P. Buterus et al.

Remark 1.2 The proofs of the above mentioned results use such notions as a
minimal invariant set (in the case of the Oppenheim conjecture) and an ergodic
invariant measure. These notions do not have in general effective analogs.
Because of that it is very difficult to get ‘good’ estimates for the size of the
smallest non-trivial integral solution of the inequality |Q[m]| < ε and ‘good’
error terms in the quantitative Oppenheim conjecture by applying dynamical
and ergodic methods.

1.2 Diophantine inequalities

One of our main objective is to develop effective analogs of (1.8) and show
that all indefinite quadratic forms Q of rank at least 5 admit a non-trivial
integral solution to the Diophantine inequality |Q[m]| < ε whose size can
be bounded effectively in terms of ε−1. On the one hand, we will exploit
Schlickewei’s results [51] on small zeros of integral forms (see Sect. 8.1)
in order to establish effective bounds depending on the signature (r, s) of
Q. On the other hand we will introduce an appropriate Diophantine condi-
tion on the space of quadratic forms, which will enable us to significantly
improve our effective bounds due to the exponents appearing in the Dio-
phantine approximation of Q. To state these bounds we need to introduce
notation.

Denote by Q also the symmetric matrix in GL(d,R) associated with the
form Q[x] := 〈x, Q x〉, where 〈 · , · 〉 is the standard Euclidean scalar prod-
uct on R

d . Let Q+ denote the unique positive symmetric matrix such that
Q2+ = Q2 and let Q+[x] = 〈x, Q+ x〉 denote the associated positive form
with eigenvalues being the eigenvalues of Q in absolute value. Let q, resp.
q0, denote the largest, resp. smallest, of the absolute value of the eigen-
values of Q and assume q0 ≥ 1. In the first case, where we compare Q
with rational forms, we can replace the form Q by Q/ε and consider the
solubility of the inequality |Q[m]| < 1. Since this Diophantine inequality
includes the case of integral-valued indefinite forms, we shall appeal to Corol-
lary 8.4 (a variant of Folgerung 3 in [51]) on the size of non-trivial integral
solutions. Combining this result with our effective bounds we arrive at the
following size estimate for a non-trivial solution of this Diophantine inequal-
ity.
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Theorem 1.3 For all indefinite and non-degenerate quadratic forms Q of
dimension d ≥ 5 and signature (r, s) there exists for any δ > 0 a non-trivial
integral solution m ∈ Z

d\{0} to the Diophantine inequality |Q[m]| < 1 sat-
isfying

‖Q1/2
+ m‖ �δ,d (q/q0)

d+1
d−2 q

1
2 +max{ρd+2,d+1}/(d−4)+δ, (1.9)

where the dependency on the signature (r, s) is given by

ρ := ρ(r, s) :=

⎧⎪⎨
⎪⎩

1
2
r
s for r ≥ s + 3

1
2
s+2
s−1 for r = s + 2 or r = s + 1

1
2
s+1
s−2 for r = s.

(1.10)

In particular, for indefinite non-degenerate forms in d ≥ 5 variables of
signature (r, s) and eigenvalues in absolute value contained in a compact set
[1,C], i.e 1 ≤ q0 ≤ q ≤ C , Theorem 1.3 yields non-trivial solutions m ∈ Z

d

of |Q[m]| < ε of size bounded by

‖m‖ �C,δ ε
− max{ρd+2,d+1}/(d−4)−δ.

As an example, we obtain solutions of order �C,δ ε
−1− 5

(d−4)−δ for the special
case r = s + 3 and d ≥ 12. More generally, we may embed Z

d1 ⊂ Z
d for

dimensions d ≥ d1 ≥ 5, in such a way that the restricted form is indefinite
and of rank d1, and apply Theorem 1.3 to this form in d1 dimensions. As
a consequence, since (Q∗)2 ≤ Q2 in the ordering of positive forms we get
q ≥ q∗ ≥ q∗

0 ≥ q0 ≥ 1 and |det Q∗| ≤ |det Q|, we obtain the following
corollary.

Corollary 1.4 For all indefinite and non-degenerate quadratic forms Q in
d ≥ 5 variables there exists for any ε > 0 at least one non-trivial integral
solution m ∈ Z

d of

|Q[m]| < ε,
‖m‖ ≤ cC,δ ε

− fd−δ,
(1.11)

for any δ > 0, where fd = 12, 8 1
2 , 72

3 for d = 5, 6, 7 respectively and
fd = 7 1

2 for all d ≥ 8. The constant cC,δ depends only on δ and C > 0 for
forms Q satisfying 1 ≤ q0 ≤ q ≤ C.

Remark 1.5 (a) For the special case of diagonal indefinite forms Q[x] =∑5
j=1 q j x2

j with min|q j | ≥ 1 Birch and Davenport [3], obtained a sharper

bound. They showed for arbitrary small δ > 0 that there exists an m ∈ Z
5\{0}
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864 P. Buterus et al.

with |Q[m]| < 1 and Q+[m] �d,δ |det Q|1+δ . This implies (as above) for
a compact set of forms Q that there exists an integral vector m satisfying
|Q[m]| < ε and ‖m‖ ≤ cd,δ ε−2+δ for any fixed δ > 0. In [7] Buterus, Götze
and Hille extended the approach of Birch and Davenport to improve the size
of a solution by using Schlickewei’s result [51] on small zeros of integral
forms: Let Q[x] = ∑d

j=1 q j x2
j be an indefinite form of signature (r, s) in

d = r + s ≥ 5 variables. Then for any ε > 0 the Diophantine inequality
|Q[m]| < ε admits a non-trivial solution m ∈ Z

d , whose size is bounded by
� ε−ρ+δ for any fixed δ > 0.

(b) Recently, quantitative versions of the Oppenheim conjecture were stud-
ied by Bourgain [9], Athreya and Margulis [1], and Ghosh and Kelmer [26].
Bourgain [9] proves essentially optimal results for one-parameter families of
diagonal ternary indefinite quadratic forms under the Lindelöf hypothesis by
using also a Fourier approach, based on Epstein-Zeta functions. In contrast,
Ghosh and Kelmer [26] consider the space of all indefinite ternary quadratic
forms and use spectral methods (an effective mean ergodic theorem). Lastly,
Athreya and Margulis apply classical bounds of Rogers for L2-norm of Siegel
transforms in order to prove that for every δ > 0 and almost every Q (with
respect to the Lebesgue measure) with signature (r, s), there exists a non-trivial
integral solutionm ∈ Z

d to the Diophantine inequality |Q[m]| < εwhose size

is bounded by ‖m‖ �δ,Q ε
− 1

d−2 −δ if d ≥ 3.

As mentioned above let us introduce a class of Diophantine forms as follows.

Definition 1.6 We call Q Diophantine of type (κ, A), where κ, A > 0, if for
any m ∈ Z\{0} and M ∈ M(d,Z) we have

inf
t∈[1,2]‖M − m t Q‖ ≥ A |m|−κ , (1.12)

where ‖ · ‖ denotes the operator norm induced by the Euclidean norm on R
n .

We shall see in Sect. 4.3 that almost every form satisfies this property for
some κ and A. In particular, fixing an integer k such that 1 ≤ k ≤ d(d+1)

2 − 1,
we shall show that a form Q for which k + 1 non-zero entries y, x1, . . . , xk
exist such that x1/y, . . . , xk/y are algebraic and 1, x1/y, . . . , xk/y are linearly
independent over Q is Diophantine in this sense and admits a non-trivial solu-

tion to the Diophantine inequality |Q[m]| < ε of order �Q,d,δ ε
− d(3+2k)−4

2k(d−4) −δ

for any δ > 0. In particular, for k = d(d+1)
2 − 1 we can give a bound for the

size of the least solution of order �Q,d,δ ε
− d3+d2+d−4
(d2+d−2)(d−4)

−δ
and in this case for

d = 5 of order �Q,δ ε
−151/28−δ.
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Distribution of values of quadratic forms 865

Corollary 1.7 Let Q be an indefinite quadratic form in d ≥ 5 variables and
of Diophantine type (κ ,A) and fix δ > 0. Then for any ε > 0 there exists a
non-trivial lattice point m ∈ Z

d\0 satisfying

|Q[m]| < ε and ‖m‖ �Q,d,δ ε
− 2d+3κd−4κ

2d−8 −δ.

For irrational indefinite quadratic forms we may quantify the density of
values Q[m], m ∈ r� ∩ Z

d , where � denotes a (not necessarily admissible)
parallelepiped satisfying (7.1) (see Sect. 7.3) as follows: Consider the set

V (r)
def= {

Q[m] : m ∈ r� ∩ Z
d } ∩ [−c0 r

2, c0 r
2]

of values of Q[x], x ∈ r� ∩ Z
d lying in the interval [−c0 r2, c0 r2], where c0

denotes the constant introduced in Lemma 7.1. For each r ≥ 1 we arrange the
values V (r) in increasing order v0(r) < . . . < vk(r), k = k(r), and define the
maximal gap between successive values of V (r) as

d(r) := supi∈{1,...,k(r)}|vi (r)− vi−1(r)|. (1.13)

As a consequence of our technical quantitative bounds we obtain

Corollary 1.8 Let Q denote a non-degenerate indefinite form in d ≥ 5 vari-
ables and of Diophantine type (κ, A). For δ > 0 we obtain for the maximal
gap d(r) between successive values of the quadratic form in the set V (r)

d(r) ≤ r−ν0+δ, (1.14)

for sufficiently large r ≥ cδ,d,�,κ,A,Q, where ν0 := 2d−8
2d+3κd−4κ and

cδ,d,�,κ,A,Q > 0 denotes a constant depending on κ, A, Q, �, d and 0 <
δ < 1/10 (here we omit a description of the explicit dependence).

For positive definite quadratic forms Davenport and Lewis (see [19]) con-
jectured, that the distance between successive values vn of the quadratic form
Q[x] on Z

d converges to zero as n → ∞, provided that the dimension d is at
least five and Q is irrational. This conjecture was proved by Götze in [28]. It
also follows by the results of the present paper which provides error bounds
for the lattice point counting problem for the indefinite case as well as the
positive definite case.

The proof is similar as in the case of positive forms solved in [28]: For any
ε > 0 and any interval [b, b+ ε], we find at least two lattice points in the shell
Eb,b+ε (and the box of size r = √

2b) by Corollary 2.4, provided that b is
larger than a threshold b(ε). Here b(ε) and consequently the distance between
successive values (as a function of b) depends on the rate of convergence of
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the Diophantine characteristic ρell
Q (r) in the bound of Corollary 2.4 towards

zero. For quadratic forms of Diophantine type (κ, A) this dependency can be
stated explicitly.

1.3 Discussion of effective bounds and outline of the proofs

In order to prove an effective result like Theorem 1.3 we need an explicit bound
for the error, say R(IEa,b∩r�) (for a formal definition see (1.15) below) with
IB denoting the indicator of a set B, of approximating the number of integral
points m ∈ Ea,b in a bounded domain r � by the volume vol (Ea,b ∩ r�),
compare Remark 1.1. First, we simplify the problem by replacing the weights
Ir�(m) = 1 of integral pointsm ∈ r� by suitable smoothly changing weights
v(m/r) (for notational simplicity, we will writevr (m) := v(m/r)), which tend
to zero as m/r tends to infinity. This smoothing (together with a smoothing
of the indicator function of [a, b]) allows us to use techniques from Fourier
analysis, but we are forced to restrict the region � to parallelepipeds in order
to ensure that the corresponding error has logarithmic growth only.

1.3.1 Fourier analysis

Starting with smooth weight functions vr (which depend on the dilation param-
eter r ), we also construct a w-smoothing g of the indicator function of [a, b]
via convolution with an appropriate kernel k whose Fourier transform decays
like |̂k(t)| � exp{−√|wt |}. This allows us to replace the indicator function
of [a, b] in the lattice point counting problem by a smooth function, gaining
an error bounded in Corollary 3.2. After this smoothing procedure, writing
gQ(x) := g(Q[x]), our main objective will be to estimate the weighted lattice
remainder

R(gQ vr )
def=

∑
m∈Zd

g(Q[m])v(mr )−
∫

Rd
g(Q[x])v(mr )dx, (1.15)

where g and v are smooth functions whose Fourier transforms decay fast
enough as well. More precisely, we will assume that v satisfies (2.4). (At this
point we should note that the abbreviation introduced in (1.15) will frequently
be used to denote remainder terms.) Next we shall use inverse Fourier trans-
forms in order to express the weights as

g(Q[m])=
∫
R

ĝ(t) exp{2π i t Q[m]} dt, ζ(m)=
∫
Rd
ζ̂ (u) exp{2π i〈u,m〉} du,

where ζ(x) = v(x) exp{Q+[x]}. Combining the resulting factors exp{2π i t
Q[m]}, exp{2π i〈v,m〉} and exp{−Q+[ xr ]} in (1.15) into terms of the gener-
alized theta series
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Distribution of values of quadratic forms 867

θv(t)
def=

∑
m∈Zd

exp{−2π i〈v,m〉/r − 2π i t Q[m] − Q+[m]/r2}

one arrives at an expression for the sum Vr := ∑
m∈Zd v(mr )g(Q[m]) by the

following integral (in t and v) over θv(t):

Vr =
∫

Rd
ζ̂ (v)

∫
R

ĝ(t)θv(t) dt dv. (1.16)

The approximating integral Wr := ∫
Rd v(mr )g(Q[x]) dx to this sum Vr can

be rewritten in exactly the same way by means of the theta integral

ϑv(t)
def=
∫

Rd
exp{−2π i〈v, x〉/r − 2π i t Q[x] − Q+[x]/r2} dx,

replacing the theta sum θv(t). Thus, in order to estimate the error |R(gQ vr )| =
|Vr − Wr |, the integral over t and v of |θv(t) − ϑv(t)||̂g(t )̂ζ (v)| has to be
estimated.

For |t | ≤ q−1/2
0 r−1 and ‖x‖ � r the functions x �→ exp{2π i t Q[x]} are

sufficiently smooth, so that the sum θv(t) is well approximable by the first
term of its Fourier series, that is the corresponding integral ϑv(t), see (3.16)
and (3.33). The error of this approximation, after integration over v, yields
the second error term in (1.26), which does not depend on the Diophantine
properties of Q. Additionally, we may restrict the integration to |t | ≤ T+ for
an appropriate choice of T+ (depending on the width of the shell) by using the
decay rate of the kernel k. So we end up with the remaining error term

I =
∫
T+>|t |>q−1/2

0 r−1

∫
Rd

|θv(t) ĝ(t) ζ̂ (v)| dv dt, (1.17)

which we estimate as follows

I ≤ ‖̂ζ‖1 sup
v∈Rd

∫
T+≥|t |>q−1/2

0 r−1
|θv(t)| |̂g(t)| dt. (1.18)

The second factor in the bound of I in (1.18) encodes both the Diophantine
behavior of Q as described above as well as the growth rate with respect to r . We
shall describe in the next subsection our method to extract out of this factor the
correct rate of growth, while simultaneously avoiding the loss of information
on the Diophantine properties of Q, provided that d > 4. However, let us first
state that the resulting bound (the choice of T+ depending on the width of the
shell) is an error bound depending on characteristics of ζ̂ (v) of the form (see
Theorem 2.2)
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R(IEa,b vr ) �κ,d,Q, wr
d−2 + ‖̂ζ‖1ρ

w
Q,b−a(r)r

d−2+‖̂ζ‖1,∗ rd/2 log
(

1+ b−a

r

)
, (1.19)

which has to be optimized in the smoothing sizew (compare e.g. Corollary 2.4)
and ρwQ,b−a(r) depends on the Diophantine properties of Q and r (see Theo-
rem 2.2).

1.3.2 Mean-value estimates

In order to describe the second term in (1.19), we follow [28] (by using a
modified Weyl differencing argument) to show in Lemma 3.3 that uniformly
in v and pointwise in t

|θv(t)|2 � rd |det Q|−1/2
∑
v∈�t

exp{−‖v‖2}, (1.20)

where {�t }t∈R is a family of 2d-dimensional unimodular lattices generated by
orbits of one-parameter subgroups of SL(2,R) indexed by t and r , see (3.47)
for the precise definition. It is well-known that the expression ψ(r, t) :=∑
v∈�t

exp{−‖v‖2} can be bounded by the number of lattice points v ∈ �t
satisfying ‖v‖∞ � 1. Combining this estimate together with the symplectic
structure of �t (see Sect. 4.1) yields the estimate

ψ(r, t) � 1

M1(�t ) . . .Md(�t )
�d αd(�t ),

where Mi (�t ) denotes the i-th successive minima of �t and αd(�t ) the
d-th α-characteristic of �t , that is αd(�t ) = sup{|det(�′)|−1 : �′ is a
d−dimensional sublattice of �t }. After a local approximation of a certain one-
parameter unipotent subgroup by the compact group SO(2) (see Sect. 4.2), we
estimate the average of αd(�t )

β over t for 0 < β ≤ 1/2 in Lemmas 5.12, 6.1
and 6.2. This argument involves a recursion in the size of r and builds upon a
method developed in [23] on upper estimates of averages of certain functions
on the space of lattices along translates of orbits of compact subgroups.

Let us give a brief sketch of the main ideas involved in this argument. Let
G = SL(2,R), K = SO(2) endowed with the probability Haar measure dk
and denote by Ar the mean-value operator on K\G defined by

Ar ( f )(h) =
∫

K
f (gkh) dk,

where f is any continuous function on K\G, g ∈ G denotes any element for
which ‖g‖ = r and ‖ · ‖ denotes the operator norm induced by the standard
Euclidean norm. Fixing 2/d < β ≤ 1/2, we shall show that uniformly in v
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and for all intervals I of fixed bounded length there exists a positive function
f depending only on Q and β such that

∫
I
|θv(t)| dt � rd−βd |det Q|−1/4γI,β(r) Ar ( f )(1),

where γI,β(r) contains information on the Diophantine properties of Q and
tends to zero for irrational forms as r tends to infinity (see Corollary 4.11).

The function f does not appear isolated but emerges as the maximum of
a family of positive functions f1, . . . , f2d . For a positive number r0 > 0
and any g0 ∈ G such that ‖g0‖ = r0 we show that this family satisfies two
main properties. First, the value of each fi on any orbit of the form g0Kh is
bounded (up to a constant depending only on r0) by its value at fi (h). Second,
the mean-value Ar0( fi ) of any fi satisfies the following functional inequality
(see Lemma 5.11)

Ar0 fi � τλi (g0) fi + max
0< j≤ī

√
fi− j fi+ j ,

where we set ī = min{i, 2d − i}, λi := max{2, β ī} and τλi denotes the
spherical function

τλi (g) =
∫

K
‖gke1‖−λi dk,

where e1 = (1, 0) denotes the first standard unit vector on R
2.

The asymptotic growth of spherical functions is well-understood and in our
case τλ(g) � ‖g‖λ−2 whenever λ > 2 and g /∈ K. Here spherical functions
are crucial precisely because they are the eigenfunctions of the mean-value
operator. We show, in a first instance, that any positive function f satisfying
an inequality of the form

Ar0 f � τλ(g0) f + bτη, (1.21)

for λ > 2 and 0 < η < λ satisfies

Ar f (1) � τλ(g) f (1), (1.22)

for any r > 0, where g ∈ G is any element for which ‖g‖ = r . In other words,
the growth of the mean value at 1 grows at most as fast as the associated
spherical function. In a second instance we obtain, after radializing the family,
a preliminary estimate of the form
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Ar ( f )(1) �μ f (1)τμ(g), (1.23)

for any fixed μ > λd . We then show inductively, using repeatedly (1.21),
(1.22) and (1.23) that

Ar ( fi ) � f (1)τμi , for all i �= d (1.24)

for an appropriate sequence λd > μi > λi . Combining these estimates again
with (1.21) in the case i = d then yields the inequality Ar0 fd � τλd (g0) fd +
f (1)τη, for some η < λd , which implies together with (1.21) and (1.24) the
desired and expected estimate (see Theorem 5.12), namely that Ar ( f )(1) �
τλd (g) f (1) � rβd−2 f (1) for any r � 1 and any g ∈ G for which ‖g‖ = r .
In particular for any such interval I we obtain the following bound

∫
I
|θv(t)| dt � rd−2|det Q|−1/4γI,β(r) f (1).

At this point the current approach is fundamentally different to the approach
of previous effective bounds for R(IEa,b∩r�) by Bentkus and Götze [6] (see
also [5]) valid for d ≥ 9 and positive as well as indefinite forms. The reduction
to (1.20) and the Diophantine factor ρwQ,b−a(r) follows the approach used by
Götze in [28], where the average on the right-hand side of (1.20) was estimated
for d ≥ 5 by methods from the Geometry of Numbers and essentially required
positive definite forms. A variant of that method was applied to split indefinite
forms in a PhD thesis by G. Elsner [21].

1.3.3 Smooth weights on Z
d

For the Gaussian weights vr (x) = exp{−2Q+[x]/r2} our techniques yield
effective bounds for the approximation of a weighted count of lattice points
m ∈ Z

d with Q[m] ∈ [a, b] by a corresponding integral with an error

R(IEa,b vr ) =
∑

m∈Ea,b∩Zd

vr (m)−
∫
Ea,b

vr (x) dx . (1.25)

The following bounds for R(IEa,b vr ) are identical for the case of positive and
indefinite d-dimensional forms Q, provided that d ≥ 5. Using Vinogradov’s
notation A �B C , meaning that A < cB C with a constant cB > 0 depending
on B, we have
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Theorem 1.9 Let Q be a non-degenerate quadratic form in d ≥ 5 variables.
Chooseβ = 2

d + δ
d for some arbitrary small δ ∈ (0, 1

10 ). Then for any r ≥ q1/2,
where q denotes the maximal eigenvalue of Q, b > a and 0 < w < (b− a)/4
we have

R(IEa,b vr ) �Q,β,d rd−2 (w + ρwQ,b−a(r))+ rd/2−1(b − a), (1.26)

provided that b − a ≤ r . If r < b − a � r2 the second term in the bound has
to be replaced by rd/2 log r .

In Theorem 2.2 an explicit description of the Diophantine factor ρwQ,b−a(r)
will be provided. Depending on whether Q is definite or indefinite, this factor
will be further refined in Corollary 2.4, resp. Corollary 2.5. Moreover, the func-
tionρwQ,b−a(r) tends to zero as r tends to infinity if Q is irrational. Additionally,
if Q is Diophantine of type (κ, A), as we shall introduce in Definition 1.6, we
find a polynomial decay ρwQ,b−a(r) �Q,d,A r−ν for an appropriate choice of
0 < w < (b − a)/4, where ν ∈ (0,∞) depends on d, κ and A, see Corol-
lary 2.6. These results follow from Theorem 2.2 with parameters chosen for the
indefinite, positive and effective Diophantine cases in the proofs in Sect. 7.4.

1.3.4 The role of the region �

In order to estimate the lattice point deficiency R(IEa,b∩r�) we have to ε-
smooth the indicator function of � which yields weights ζ = ζε and an
additional error of order ε(b − a)rd−2 in case of indefinite forms due to the
intersection of Ea,b with the boundary ∂r�. For positive definite forms, r�
contains Ea,b, that is ε > 0 could be fixed independent of r , since this boundary
intersection term is not present here.

In the indefinite case one needs to match the actual size of the error by
choosing ε small enough in (1.19). This leads to a critical dependence on ε
through the Fourier transform of ζε and its characteristics (see (2.6)). Here
‖ζ̂ε‖1 moderately grows like (log 1/ε)d for arbitrary small ε in the case of
polyhedra only, see Lemma 7.2. The dependence of ‖̂ζε‖1,∗, see (2.6), is again
critically dependent on� and the width b−a of the hyperbolic shell Ea,b. For
b − a � r the boundary of r� ∩ Ea,b will contain a larger segment of ∂r�.
For a sequence of scalings r these segments of the (d−1)-polytope potentially
contain a large number of lattice points which induce large errors in the lattice
point approximation, for which the technical restriction to the region � is
solely responsible. In order to avoid this artefact which is reflected by a large
growth of ‖̂ζε‖1,∗ when ε is small, we restrict ourselves to special admissible
regions r�, where � = B−1[−1, 1]d , and B ∈ GL(d,R) is chosen such that
the lattice � = BZ

d is admissible in the sense of Sect. 7.3, i.e. both (7.1) and
(7.29) are satisfied. This ensures that the lattice point remainder of r� satisfies
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|volZ r� − vol r�| �� (log r)d−1 uniformly which is ‘abnormally’ small.
Likewise ‖̂ζε‖1,∗ grows of order (log 1/ε)d only. The resulting error bounds in
Corollary 2.5 for wide shells with max{|a|, |b|} �B r2 are then comparable
up to at most (log 1/ε)d factors to the case of positive forms in Corollary 2.4.

1.4 Organization of this paper

The paper is organized mostly in logical order. In Sect. 2 we describe the
explicit technical estimates on lattice point remainders for both positive definite
and indefinite forms. In the following Sect. 3 we transfer the problem to Fourier
transforms of the error starting with a first smoothing step and rewrite the
lattice remainder in terms of integrals over d-dimensional theta sums. Section 4
provides a reformulation of the problem via upper bounds in terms of integrals
over the absolute value of other theta sums with an underlying symplectic
structure on R

2d which, in turn, are estimated using basic arguments from
the Geometry of Numbers. Section 5 contains crucial estimates for averages
of functions on the space of lattices. Finally, in Sect. 6 all these results are
combined to prove Theorem 2.2. Starting with the applications, we collect
in Sect. 7 the geometric bounds related to parallelepiped regions � used in
this paper and afterwards conclude (in Sect. 7.4) the results of Sect. 2. In
the last Sect. 8 we focus on small values of indefinite quadratic forms: After
recollecting and refining some results due to Schlickewei [51] on the size of
small zeros of integral quadratic forms, we shall prove Theorem 1.3.
Compared to an earlier preprint [27] this version has been rewritten so that it
allows to separate the error contributions due to the Diophantine properties of
Q and the influence of weights for the lattice points in Theorem 2.2. The latter
has been developed for special choices of regions � which are particularly
relevant for wide shells Ea,b in Sect. 7. Moreover, the effective bounds for non-
trivial solutions of the Diophantine inequality |Q[m]| < ε have been improved
in terms of the signature (r, s) by using Schlickewei’s result [51] on small
zeros of quadratic forms. In addition, we included a number of corrections
concerning the explicit dependence on Q (resp. �) and the dimensions, and
corrected typos as well.

2 Effective estimates

We consider the quadratic form

Q[x ] def= 〈x, Qx 〉 for x ∈ R
d ,

where 〈·, ·〉 resp. ‖ · ‖ denote the standard Euclidean scalar product and norm,
Q : R

d → R
d denotes a symmetric linear operator in GL(d,R) with eigen-

values q1, . . . , qd . Write
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q0
def= min

1≤ j≤d
|q j |, q

def= max
1≤ j≤d

|q j |, dQ
def= |det Q|−1/2. (2.1)

In what follows we shall always assume that the form is non-degenerate, that
is q0 > 0. In order to describe the explicit bounds we need to introduce some
more notations. Let β > 2

d such that 0 < 1
2 −β < 1

2 − 2
d for d > 4. For a lattice

� ⊂ R
n , n ∈ N, with dim� = n we define for 1 ≤ l ≤ n its αl-characteristic

by

αl (�)
def= sup{|det(�′)|−1 : �′ ⊂ �, l-dimensional sublattice of�}. (2.2)

Here�′ = B Z
n is determined by a n×l-matrix B and det(�′)=det(BT B)1/2

is the volume of a fundamental domain.

Remark 2.1 Given �=gZ
n with g ∈ GL(n,R), then any l-dimensional sub-

lattice � ⊂ � is spanned by gn1, . . . , gnl , where ni ∈ Z
n and det(�) =

‖gn1 ∧ . . . ∧ gnl‖. If �′ ⊂ � is a sublattice distinct from � with basis
gn′

1, . . . , gn
′
l , n

′
i ∈ Z

n , then

‖(gn1 ∧ · · · ∧ gnl)− (gn′
1 ∧ . . . ∧ gn′

l)‖
�g ‖(n1 ∧ . . . ∧ nl)− (n′

1 ∧ · · · ∧ n′
l)‖ ≥ 1,

since the l-th exterior product of g is invertible. This argument shows that the
αl-characteristic is attained at some l-dimensional sublattice �′ ⊂ �.

In the special case n = 2d we also introduce

γ[T−,T ],β(r)
def= sup

{(
r−dαd(�t )

)1/2−β : T− ≤ |t | ≤ T
}
, (2.3)

where �t = drut�Q denotes a 2d-dimensional lattice obtained by an appro-
priate action of dr , ut ∈ SL(2,R) on R

2d (see (4.25)), where dr and ut
denote the usual diagonal and unipotent elements and �Q denotes a fixed
2d-dimensional lattice depending on Q (see (4.28)). Recall that Ea,b = {x ∈
R
d : a < Q[x] < b} and let v(x) denote a smooth weight function such that
ζ(x) := v(x) exp{Q+[x]} satisfies

supx∈Rd

(|ζ(x)| + |̂ζ (x)|)(1 + ‖x‖)d+1 < ∞. (2.4)

An explicit construction of weight functions for parallelepiped regions will be
given in Sect. 7. Nevertheless, as a simple example, one can take the Gaussian
weights v(x) = exp{−2Q+[x]}.
Theorem 2.2 Let Q be a non-degenerate quadratic form in d ≥ 5 variables
with q0 ≥ 1. Choose β = 2

d + δ
d for some arbitrary small δ ∈ (0, 1

10 ). Write
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(b − a)q := b − a if b − a ≤ q and (b − a)q := qβd−1/2 if b − a > q, and
(b − a)∗ := (b − a) if b − a ≤ 1 and (b − a)∗ := 1 if b − a > 1. Then for
any r ≥ q1/2, b > a and 0 < w < (b − a)/4 we have

∣∣∣ ∑
m∈Ea,b∩Zd

v(mr )−
∫
Ea,b

v( xr ) dx
∣∣∣�β,d

{
w‖v‖Q + ‖̂ζ‖1CQ ρ

w
Q,b−a(r)

}
rd−2

+ dQ rd/2‖ζ̂‖∗,r log
(
1 + |b−a|

q1/2
0 r

)
,

(2.5)

where CQ := q |det Q|−1/4−β/2 and ‖v‖Q is defined in Lemma 7.1 (the quan-
tity ‖v‖Q depends additionally on r, a, b and w, but we will suppress this
dependence),

ρwQ,b−a(r)
def= inf

{
(b−a)q

(
cQT

d
2 −2−δ

− + γ[T−,1],β (r)
)+ γ(1,T+],β (r)

(
1+ log((b−a)∗ T+)

)

+ c−1
Q (T+w)−1/2 e−(T+w)1/2 : T− ∈ [q−1/2

0 r−1, 1], T+ ≥ 1
}

and cQ := |det Q|1/4−β/2. Furthermore

‖̂ζ‖∗,r def= qd/4
(( q

q0

)d/2 ‖̂ζ‖1+
∫
‖v‖∞>r/2

|̂ζ (v)|
(q1/2r−1+‖vr−1‖Z)d/2

dv
)

(2.6)

and here ‖v‖Z := minm∈Zd‖v − m‖∞.

We use the notation A �d B for quantities of equivalent size up to constants
depending on d only, i.e. A �d B �d A.

Remark 2.3 Note that

a) Theorem 2.2 extends to affine quadratic forms Q[x + ξ ] uniformly in
|ξ |∞ ≤ 1.

b) Depending on the application, the lattice remainder (2.5) will be optimized
in the parameters w, ε and T+ differently: For thin shells the error should
also scale with the length b − a. This forces T+ to be large and requires
‘strong’ Diophantine assumptions. In the case of wide shells it is possible
to choose w relatively large.

c) If Q is irrational, then Corollary 4.11 implies that ρwQ,b−a(r) → 0 for
r → ∞, provided that w and (b − a) are fixed. The first factor in the
definition of ρwQ,b−a corresponds to small values of t on the Fourier side
and the last factor to the decay rate of thew-smoothing of the interval [a, b].

With these notations we state a result providing quantitative bounds for the
difference between the volume and the lattice point volume in Ea,b.
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2.1 Ellipsoids E0,b

Here Q is positive definite and we may assume that b tends to infinity. Let
r = √

2b in Theorem 2.2. Then the ellipsoid E0,b = {x ∈ R
d : Q[x] ≤ b}

is contained in r� = Q−1/2
+ [−r, r ]d . Choosing in Theorem 2.2 a smoothing

of I�, say vε of width ε = 1
15 , which equals 1 on E0,b, and the smoothing

parameter w in terms of T+, such that the right-hand side in (2.5) is minimal,
will lead to

Corollary 2.4 Let Q denote a non-degenerate d-dimensional positive definite
form with d ≥ 5 and q0 ≥ 1. For any r ≥ q1/2 and r = √

2b we have with
Hr := E0,b

|volZ Hr −vol Hr | �β,d dQ rd−2(ρell
Q (r)+qd/4 r−d/2+2 (q/q0)

d/2 log(r)
)
, (2.7)

where

ρell
Q (r)

def= inf
{
aQ
(
q

3
2 +δ
(cQ T

d
2 −2−δ

− + γ[T−,1],β (r))+ γ(1,T+],β (r) log(T++1)
)+ log(1+q T+)2

T+

}

and the infimum is taken over T− ∈ [q−1/2
0 r−1, 1] and T+ ≥ 1, where aQ =

q|det Q| 1
4 − β

2 , cQ = |det Q|1/4−β/2. Furthermore, limr→∞ ρell
Q (r) = 0 as r

tends to infinity, provided that Q is irrational.

Compared to the quantitative results in [5,6], this bound holds already for
d ≥ 5. Moreover, Corollary 2.4 refines the estimates obtained in [28].

2.2 Hyperboloid shells Ea,b

If Q is indefinite, we distinguish, depending on b − a, between ‘small’ and
‘wide’ shells Ea,b. Here we restrict ourselves to a special class of rescaled
admissible parallelepipeds r� for r > 0: We suppose that � = B−1[−1, 1]d
is determined by some B ∈ GL(d,R) such that the lattice � = BZ

d is
admissible in the sense of Sect. 7.3, i.e. both (7.29) and (7.1) should be satisfied
(for examples, see Remark 7.4 and Example 7.6). Note that the latter condition
(7.1), that is Q+ ≤ BT B ≤ cBQ+ with cB ≥ 1, ensures that the region � is
rescaled with respect to the quadratic form Q.

To estimate the lattice point remainder for this restriction of Ea,b given by
Hr := Ea,b ∩ r� we smooth the indicator function I� in an ε-neighborhood
with an error of orderO(ε(b−a)rd−2) using Lemma 7.1. This yields a smooth
function vε and a final weight function ζε, according to (2.4) in Theorem 2.2.
Since � is admissible, both ‖ζε‖1 and ‖ζε‖∗,r in (2.6) are growing with a
power of |log ε| only, see Lemmas 7.2 and 7.8.
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In the next step we calibrate both smoothing parametersw and ε in order to
get Corollary 2.5 below for ‘wide’ and ‘thin’ shells. The actual choice of ε is
then determined by calibrating the main terms εrd−2 and ‖ζε‖1ρ

w
Q,b−a(r)r

d−2

depending on the speed of convergence of limr→∞ ρwQ,b−a(r) = 0. The
resulting error bound for indefinite forms will then differ at most by some
|log ε|-factors from the positive definite case, and is thus dominantly influ-
enced by the Diophantine properties reflected in the decay of the γ[T−,T+],β ,
resp. the ρwQ,b−a-characteristic of irrationality. In particular we have uniformly
for ‘small’ and ‘wide’ shells Ea,b and admissible regions � the following
bound:

Corollary 2.5 Under the assumptions of Theorem 2.2we get for an admissible
region �, all max{|a|, |b|} ≤ c0r2, where c0 > 0 is chosen as in Lemma 7.1,
and b − a ≥ q

�r
def= |volZ Hr − vol Hr | �β,d dQ r

d−2(ρhyp+
Q,b−a(r)+ RQ,A(r)

)
, (2.8)

where

RQ,A(r)
def= q

d
4 r− d

2 +2 log(r+1)d
(( q

q0

) d
2 + cd/2B q

− d
4

0
Nm(�) log(2+ 1

Nm(�) )
)

log
(
1+ b−a

q1/2
0 r

)
, (2.9)

Nm(�) := infγ∈�\{0}|γ1 . . . γd | in standard coordinates γ = (γ1, . . . , γd)

and

ρ
hyp+
Q,b−a(r)

def= inf∗
T+,T−

{
log
(
(b − a)T

−( d2 −2−δ)
− +1

)d(
aQ q

3
2 +δ(cQT

d
2 −2−δ

− + γ[T−,1],β (r))

+ aQγ(1,T+],β (r) log(T+ + 1)+ log(qT++1)2

T+

)}
,

where the infimum is taken over all T− ∈ [q−1/2
0 r−1, 1] and T+ ≥ 1. If

b − a ≤ q, then (2.8) holds, too, whereby the Diophantine factor ρhyp+
Q,b−a(r)

has to be replaced by

ρ
hyp−
Q,b−a(r)

def= inf∗
T−,T+

{
aQ log

(
1+T

−( d−4
2 −δ)

−
)d(
(b − a)

(
cQ T

d
2 −2−δ

− + γ[T−,1],β(r)
)

+ γ(1,T+],β(r)(log((b − a)∗ T+)+ 1)
)}
.

In the last equation the infimum is taken over all T− ∈ [q−1/2
0 r−1, 1] and

T+ ≥ 1 with

T+ ≥ 4(b − a)−1T
−( d2 −2−δ)
− max

{
1, log

(
c2
Q(b − a)T

d
2 −2−δ

−
)2}
. (2.10)
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These bounds refine the results obtained in [6] providing explicit estimates
in terms of Q and are valid for d ≥ 5. Note that, due to the ‘uncertainty
principle’ for the Fourier transform, we need to choose T+ at least as large
as in (2.10) if Ea,b is ‘thin’ in order to control the factor exp{−|T+w|1/2}
(occurring in the definition of ρwQ,b−a) which scales with b − a. In Sect. 7.4
we prove a variant of Corollary 2.5 for thin shells and non-admissible regions
� as well, see Corollary 7.10.

2.3 Quadratic forms of diophantine type (κ, A)

For any fixed T+ > 1 > T− > 0 and irrational Q it is shown in Corollary 4.11
that

lim
r→∞ γ[T−,T+],β(r) = 0, (2.11)

with a speed depending on the Diophantine properties of Q. For indefinite
forms Q, this implies for fixed b − a > 0 that

lim
r→∞ ρ

hyp+
Q,b−a(r) = 0, lim

r→∞ ρ
hyp−
Q,b−a(r) = 0 (2.12)

and hence �r = o(rd−2) as r → ∞. This holds uniformly for all intervals
[a, b] with 0 < ur ≤ b − a ≤ vr ≤ c0r2 and sequences limr ur = 0,
limr vr = ∞, r → ∞ depending on Q. For the special class of quadratic
forms of Diophantine type (κ, A), as introduced in Definition 1.6, we may
apply Corollary 4.11 to obtain explicit bounds on the Diophantine factors in
the previous theorems as follows.

Corollary 2.6 Consider an indefinite quadratic form Q that is Diophantine
of type (κ, A). Moreover, let β = 2/d + δ/d for some sufficiently small 0 <
δ < 1

10 . Then for the case of wide shells b − a ≥ q in Corollary 2.5 we have

ρ
hyp+
Q,b−a(r) �β,d log(r+1)d hQ q

3
2+ν+δ(1+A−ν)(r− d−2(2+δ)

d(κ+1)+1 +r− 2ν
κν+1 log(q r+1)), (2.13)

where hQ = q |det Q|1/2−β , ν = (1 − 2β)/(2κ + 2) and σ = d(1/2 − β).
Thus for an admissible region � satisfying (7.1) we have for all r ≥ q1/2 and
max{|a|, |b|} ≤ c0r2

∣∣∣ volZ Hr

vol Hr
−1
∣∣∣�Q,�,β,d

log(r + 1)d

b − a

(
r
− (1−2β)d

1+(κ+1)d +r
− 2−4β

2+(3−2β)κ +r− d
2 +2 log

(
1+ b−a

r
))
, (2.14)
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where the implied constant in (2.14) can be explicitly determined. For thin
shells, i.e. b − a ≤ q, we have

ρ
hyp−
Q,b−a(r) �β,d inf∗

T−,T+

{
hQ log

(
1 + T

−( d2 −2−δ)
−

)d(
(b − a)(T

d
2 −2−δ

− + qν A−ν T−ν− r−2ν)

+ qν A−ν T κν+ r−2ν(log((b − a)∗T+)
)+ 1)

)}
,

where the infimum is taken over all T− ∈ [q−1/2
0 r−1, 1] and T+ ≥ 1 restricted

to

T+ ≥ 4(b − a)−1T
−( d2 −2−δ)
− max

{
1, log

(
c2
Q(b − a)T

−( d2 −2−δ)
−

)2}
.

3 Fourier analysis

3.1 Smoothing

The first step in the proof of Theorem 2.2 is to rewrite the lattice point count-
ing error (i.e. the left hand side of (2.5)) in terms of integrals over appropriate
smooth functions. To this end, we introduce smooth approximation of the indi-
cator functions of Ea,b and � constructed as follows. Denote by k = k(x)dx
a probability measure (symmetric around 0) with compact support satisfying
k([−1, 1]) = 1 and |̂k(t)| ≤ C exp{−|t |1/2} for all t ∈ R and a positive
constant C > 0, where k̂(t) := ∫

k(x) exp{−2π i t x} dx denotes the Fourier
transform of the measure k. For an example of k we refer to Corollary 10.4 in
[10]. More generally, by a result of Ingham [31] (see e.g. Theorem 10.2 in [10])
there is a probability density k such that |̂k(t)| ≤ C exp{−u(|t |)|t |}, where
u is a continuous, non-negative, non-increasing function on [0,∞) satisfying∫∞

1 u(t) t−1 dt < ∞ and this condition is also necessary. However, we will not
need this improved decay rate. For τ > 0 let kτ denote the rescaled measures
kτ (A) := k(τ−1A) for any A ∈ Bd , where Bd denotes the Borel σ -algebra.
Using the same notation, let kτ (x) = kτ (x1) . . . kτ (xd), x = (x1, . . . , xd),
denote its multivariate extension on R

d , d ≥ 1. Furthermore, let f ∗ kτ denote
the convolution of a function f on R

d and kτ . We need the following standard
estimate for smooth approximations.

Lemma 3.1 Letμ and ν be (positive) finitemeasures onR
d , let f and f ±

τ , τ >

0, denote bounded real-valued Borel-measurable functions on R
d such that

for any τ > 0

f −
τ (x)≤ inf{ f (y) : ‖y−x‖∞ < τ } and f +

τ (x)≥sup{ f (y) : ‖y−x‖∞<τ },
f −
2τ (x)≤ inf{ f −

τ (y) : ‖y−x‖∞<τ } and f +
2τ (x)≥sup{ f +

τ (y) : ‖y−x‖∞<τ }. (3.1)
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Then

∣∣∣
∫

f d(μ− ν)
∣∣∣≤max±

∣∣∣
∫

f ±
τ d(μ− ν) ∗ kτ

∣∣∣+
∫
( f +

2τ− f −
2τ ) dν. (3.2)

Proof Note that kτ is a probability measure with support contained in a ‖·‖∞-
ball of radius τ . Hence, (3.1) implies the following chain of inequalities

f −
2τ ≤ f −

τ ∗ kτ ≤ f ≤ f +
τ ∗ kτ ≤ f +

2τ , (3.3)

which leads to
∫

f d(μ− ν) ≤
∫

f +
τ ∗ kτ d(μ− ν)+

∫
( f +
τ ∗ kτ − f ) dν (3.4)

together with a similar lower bound. Since by (3.3) f ≤ f +
τ ∗ kτ ≤ f +

2τ and
f ≥ f −

τ ∗ kτ ≥ f −
2τ , the upper bound (3.4) together with the corresponding

lower bound proves the lemma.

First we shall investigate approximations to the sum under consideration,
counting the lattice points in Ea,b with weightsvr (x) := v(x/r). In accordance
with the notation introduced in (1.15) at the beginning of Sect. 1.3.1, we write

∑
m∈Zd

I[a,b](Q[m])vr (m) =
∫

Rd
I[a,b](Q[x])vr (x)dx + R(IEa,bvr ), (3.5)

where v(x) is a sufficiently fast decreasing smooth function such that the
function

ζ(x)
def= v(x) exp{Q+[x]} (3.6)

satisfies (2.4). For such weights both sides of (3.5) are well defined and
R(IEa,bvr )may be estimated by Poisson’s formula, see [8], §46. By means of
Lemma 3.1 we now replace the indicator I[a,b] by a smooth approximation.

Corollary 3.2 Let [a, b]τ := [a − τ, b + τ ] and write

g±w
def= I[a,b]±w ∗ kw and gQ±w(x)

def= g±w(Q[x]), x ∈ R
d ,

where 0 < w < (b − a)/4. Then

|R(IEa,bvr )| ≤ max± |R(gQ±w vr )| + cdw‖v‖Q rd−2, (3.7)
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where R(gQ±wvr ) is defined in accordance to (3.5), ‖v‖Q is defined in
Lemma 7.1 and cd is a positive constant depending on d only.

Proof In Lemma 3.1 we choose the measure μ, resp. ν, on R as the induced
measure under the map x �→ Q[x] of the counting measure with weights
vr (m), resp. the measure vr (x) dx . Let f (z) = I[a,b](z) and f ±

τ (z) =
I[a,b]±τ (z). Then (3.1) is satisfied and (3.2) applies with τ = w. In order
to bound the remainder term in (3.2) observe that

f +
2w − f −

2w ≤ I
({x ∈ R

d :Q[x] ∈ [a − 2w, a + 2w] ∪ [b − 2w, b + 2w]})

and apply the geometric estimate of Lemma 7.1; that is (7.10) of Sect. 7.1.

Thus we have reduced the determination of the lattice point remainder
R(IEa,b vr ) to the remainder R(gQ±wvr ) for smooth weights. In the next sub-
section we shall rewrite the latter by means of the corresponding Fourier
transforms.

3.2 Fourier transforms and theta-series

Rewrite the weight factor v in (3.5) as v(x) = exp{−Q+[x]}ζ(x). Since by
definition (see the previous Sect. 3.1)

|̂g±w(t)| � | Î[a,b]±w (t) k̂w(t)| � s[a,b]±w (t) exp{−|tw|1/2} and ζ̂ ∈ L1(dv), (3.8)

where

s[a,b]±w(t)
def= |(2π t)−1 sin(π t (b − a ± 2w))|, (3.9)

we may express the weight functions g±w and ζ by their Fourier transforms

ĝ±w(v) =
∫

R

g±w(x) exp{−2π i t x} dx and

ζ̂ (v) =
∫

Rd
ζ(x) exp{−2π i〈v, x〉} dx .

This yields

g±w(Q[x]) =
∫

R

ĝ±w(t) exp{2π i t Q[x]} dt, (3.10)

ζ(x) =
∫

Rd
ζ̂ (v) exp{2π i〈x, v〉} dv. (3.11)
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Using (3.10) we obtain by interchanging summation and integration in (3.5)

R(gQ±w vr ) =
∫

R

R(etQ vr ) ĝ±w(t) dt (3.12)

with etQ(x) := exp{2π i t Q[x]}. (Here R(etQ vr ) denotes the inner inte-
gral with respect to the variable v.) In the same way, writing ẽv,r (x) :=
exp{−Q+[x/r ] + 2π i〈x, vr−1〉}, we derive by (3.11) the remainder

R(etQ vr ) =
∫

Rd
R(etQ ẽv,r ) ζ̂ (v) dv. (3.13)

The sum R(etQ ẽv,r ) is the remainder between the generalized theta series and
its corresponding theta integral, that is R(etQ ẽv,r ) = θv(z)− ϑv(t), where

θv(t)
def=

∑
x∈Zd

exp
{
Qr,v(t, x)

}
and ϑv(t)

def=
∫
Rd

exp
{
Qr,v(t, x)

}
dx, (3.14)

Qr,v(t, x)
def= 2π i t Q[x] − r−2 Q+[x] + 2π i 〈x, v r−1〉. (3.15)

Let us note that both ϑt (v) as well as θt (v) depend on the dilating variable r .
However, we shall suppress this underlying dependency in order to reduce the
notational burden. For |t | ≤ q−1/2

0 r−1 we shall use following representations
of R(etQ ẽv,r ) = θv(z) − ϑv(t) in (3.12) by means of Poisson’s formula (see
[8], §46), which obviously applies here:

θv(t)− ϑv(t) =
∑

m∈Zd\{0}
ϑv−r m(t). (3.16)

Note that by definition (3.14) the Fourier transform of x �→ exp{Qr,v(t, x)}
at u ∈ R

d is given by ϑv−r u(t), where

exp{Qr,v(t, x)}=exp{−Q̃t [x]+2π i〈x, v r−1〉}, (3.17)

Q̃t
def= r−2Q+−2π i t Q.

In view of (3.13) and (3.16) we have

R(etQ vr ) =
∫

Rd

( ∑
m∈Zd\{0}

ϑv−r m(t)
)
ζ̂ (v)dv. (3.18)

From here we only consider the weight gw. The same inequalities hold also
for gw replaced with g−w. Next, we decompose the integral over t in (3.12)
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into the segments J0 := [−q−1/2
0 r−1, q−1/2

0 r−1] and J1 := R\J0 and obtain

|R(gQw vr )| �d I� + Iϑ + Iθ , (3.19)

where,

I�
def=
∣∣∣
∫
J0

R(etQ vr ) ĝw(t) dt
∣∣∣, (3.20)

Iϑ
def=
∣∣∣
∫
J1

ĝw(t)
∫

Rd
ϑv(t) ζ̂ (v)dv dt

∣∣∣, (3.21)

Iθ
def=
∣∣∣
∫
J1

ĝw(t)
∫

Rd
θv(t) ζ̂ (v)dv dt

∣∣∣. (3.22)

We start with the integral over the sections J1. In the term Iθ we separate the
t and v integrals via

Iθ �d ‖̂ζ‖1 sup
v∈Rd

∫
|t |>q−1/2

0 r−1
|̂gw(t)θv(t)| dt, (3.23)

where the estimation of the latter integral will be done in the Sects. 4–6. In
order to estimate the terms I� and Iϑ we need to estimate |ϑv(t)| first:

3.2.1 Estimates for |ϑv(t)|

For any symmetric complex d × d-matrix�, whose imaginary part is positive
definite, we have

∫
Rd

exp
{
π i�[x] + 2π i〈x, v〉} dx = (det (�/i))−1/2 exp{−π i�−1[v]}, (3.24)

where we choose the branch of the square root which takes positive values on
purely imaginary�, v ∈ R

d and�−1[x] denotes the quadratic form 〈�−1x, x〉,
defined by the inverse operator �−1 : C

d → C
d whose imaginary part is

negative definite (see [46], p. 195, Lemma 5.8 and (5.6)). We shall apply
(3.24) in the case �t := iπ−1 Q̃t = 2t Q + iπ−1r−2Q+ in order to obtain the
following expression for ϑv in (3.14) (see also (3.17))

ϑv(t)=
∫
Rd

exp
{
π i�t [x] + 2π i

〈
x, v/r〉}dx=(det(�t/i))

− 1
2 exp{−π i�−1

t [v/r ]}. (3.25)
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Hence, the Fourier transform of x �→ exp{Qr,v(t, x)]} takes the following
shape

det
(
π−1 Q̃t

)−1/2 exp{−π2 Q̃−1
t [u − v/r ]} = ϑv−r u(t) = ϑr u−v(t). (3.26)

A short calculation shows that Q̃−1
t = (4π2t2 +r−4)−1(2π it Q−1 +r−2Q−1+ )

and it follows immediately that

det Q̃−1
t = (4π2t2 + r−4)−d∏d

i=1(2π itq−1
i + r−2|qi |−1). (3.27)

Taking the absolute value of (3.25) and (3.27) we conclude that

|ϑu r (t)| �d dQ r
d/2rd/2t exp{−π2r2

t Q
−1+ [u]}, (3.28)

where rt := r(4π2t2r4 + 1)−1/2 and dQ := |det Q|−1/2 as already defined in
(2.1).1

3.2.2 Estimation of Iϑ

By (3.28) with v = ur we have |ϑv(t)| �d dQ rd/2 r
d/2
t and therefore we

obtain by using (3.8) after integrating over v in (3.21)

Iϑ �d dQ r
d/2 ‖̂ζ‖1

∫
|t |>q−1/2

0 r−1
s[a,b]ω(t) exp{−|w t |1/2}rd/2t dt. (3.29)

If |b − a|−1 ≤ q−1/2
0 r−1, then we use s[a,b]w(t) ≤ |t |−1 and rt ≤ (r t)−1 to

get the bound

∫ ∞

q−1/2
0 r−1

s[a,b]w(t)r
d/2
t dt ≤ r−d/2

∫ ∞

q−1/2
0 r−1

t−d/2−1 dt �d qd/40 .

In the case |b− a|−1 > q−1/2
0 r−1 we shall estimate the t-integral in (3.29) by

means of s[a,b]w(t) ≤ |b − a + 2w|/2. Using |w| < (b − a)/4 additionally
leads to

∫
|t |>q−1/2

0 r−1
s[a,b]ω (t)r

d/2
t dt ≤ r−d/2|b − a + 2w|

∫ ∞

q−1/2
0 r−1

t−d/2 dt �d
|b − a|
q1/2

0 r
qd/40 .

1 The first of these notations will be used throughout this section only and should not be confused
with the notation r∗ := rq−1/2 which will be introduced latter in Lemma 5.1.
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Summarizing, we have established the bound

Iϑ �d dQ ‖̂ζ‖1 min{|b − a|q−1/2
0 r−1, 1}rd/2qd/40 , (3.30)

provided that d > 2.

3.2.3 Estimation of I�

According to (3.20), (3.13) and (3.16) we may write

I� =
∣∣∣∣
∫
J0

ĝw(t)R(etQ vr ) dt

∣∣∣∣, where

R(etQ vr ) =
∫

Rd
St,v ζ̂ (v)dv, St,v

def=
∑

m∈Zd\{0}
ϑv−r m(t).

(3.31)

In order to use the estimate (3.28) let v ∈ R
d and write v = ru with u =

u0 + mu , where u0 ∈ [−1/2, 1/2]d and mu ∈ Z
d . Then

|St,v|≤
∑

m �=mu

|ϑr(u0+m)(t)| � dQr
d/2rd/2t

∑
m �=mu

exp{−π2r2
t Q

−1+ [u0+m]}. (3.32)

Note that ‖m + u0‖ ≥ ‖m + u0‖∞ ≥ 1
2 for any m ∈ Z

d\{0} and therefore
π2

2 Q−1+ [u0 + m] ≥ π2

8 q−1 ≥ q−1 which yields the bound

|St,v| � dQr
d/2|rt |d/2

(
e−π2r2

t Q
−1+ [u0] Ir (v)+ e−r2

t /q Ku0

)
, (3.33)

where Ir (v) := I[r/2,∞)(‖v‖∞) and Ku0 := ∑
m∈Zd exp{−π2

2 r2
t Q

−1+ [m +
u0]}. The sum Ku0 may be estimated by an integral as follows: Since the map
t �→ r2

t = r(4π2t2r4 + 1)−1/2 is strictly monotone increasing on t < 0 and

decreasing on t > 0, we find that r2
t ≥ q0/(4π2 + 1) for |t | ≤ q−1/2

0 r−1 as

r ≥ q
1
2 and thus exp{−π2r2

t Q
−1+ [u]} ≤ exp{−q0

5 Q−1+ [u]}. Let I := [−1
2 ,

1
2 ]d

and note that Q−1+ [x] ≤ d
4q0

for x ∈ I , from which we deduce that

ku
def=
∫
I

exp{− q0
5 Q−1+ [u + x]} dx �d exp{− q0

5 Q−1+ [u]}
∫
I

exp{− 2q0
5 〈Q−1+ u, x〉} dx,

where the integral on the right-hand side is at least one by Jensen’s inequality.
Hence

Ku0 ≤
∑
m∈Zd

e− q0
5 Q−1+ [m+u0] �d

∑
m∈Zd

km+u0 =
∫
Rd

e− q0
5 Q−1+ [x] dx �d

( q

q0

) d
2
. (3.34)
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Using (3.31) together with (3.33) and (3.34), we may now estimate I� by the
following integrals. Writing v0 = v − rm, ‖v0‖∞ ≤ r

2 , m ∈ Z
d , we have

I� �d dQ

∫
J0

|̂gw(t)|
(
�t,1 +�t,2

)
dt, (3.35)

where

�t,1
def=
( q

q0

)d/2
rd/2rd/2t e

− r2
t
q

∫
Rd

|̂ζ (v)| dv,

�t,2
def= rd/2rd/2t

∫
‖v‖∞>r/2

exp{−π2r2
t Q

−1+ [v0r
−1]} |̂ζ (v)|dv.

If we write h(s; x) := sd/4e−s x with s, x > 0, then the maximum of
s �→ h(s; x) is attained at s0 = d/(4x). Hence, maxt∈J0 h(r

2
t ; x) �d

min(x−d/4, rd/2) �d (x + 1
r2 )

−d/4. Thus, we obtain with x = 1/q

max
t∈J0

�t,1 �d (q/q0)
d/2 rd/2qd/4 ‖̂ζ‖1. (3.36)

Note that the value x = 1/q is within the range of t �→ r2
t , t ∈ J0, since its

maximum is r2
0 = r2 and its minimum is q0/(4π2 + 1) ≤ r2

t∗ ≤ q0, where

t∗ = ±q−1/2
0 r−1. In order to estimate�t,2, we choose x = Q−1+ [v0/r ]/4 and

get

sup
t∈J0

�t,2 �d rd/2
∫

‖v‖∞>r/2

|̂ζ (v)|
(r−2 + Q−1+ [v0/r ])d/4

dv. (3.37)

Now we integrate the bounds (3.36) and (3.37) in t ∈ J0 weighted with |̂gw(t)|:
In view of (3.8) we have

∫
J0

|̂gw(t)| dt � log(1 + |b − a|q−1/2
0 r−1) and thus

we finally get, using the quantity ‖̂ζ‖∗,r as defined in (2.6) for the weights
ζ(x), the estimate

I� �d dQ r
d/2 log(1 + |b − a|q−1/2

0 r−1) ‖̂ζ‖∗,r . (3.38)

Applying (3.7) of Corollary 3.2 with (3.19), (3.30) and (3.38) we may now
collect the results obtained so far as follows for the lattice point remainder of
(3.5). We have

∣∣∣ ∑
m∈Zd

I[a,b](Q[m])vr (m)−
∫

Rd
I[a,b](Q[x])vr (x) dx

∣∣∣

�d Iθ + dQ r
d/2 ‖̂ζ‖∗,r log(1 + |b − a|q−1/2

0 r−1)+ w‖v‖Q rd−2.

(3.39)
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3.2.4 Estimation of Iθ

We shall now estimate the crucial error term Iθ , see (3.22) and (3.23). At first
we shall bound the theta series θv(t) uniformly in v by another theta series in
dimension 2d in order to transform the problem to averages over functions on
the space of lattices subject to an appropriate action of SL(2,R). We have

Lemma 3.3 Let θv(t) denote the theta function in (3.14) depending on Q,
r ∈ R and v ∈ R

d . For r ≥ 1, t ∈ R the following bound holds uniformly in
v ∈ R

d

∣∣θv(t)∣∣�d (det Q+)−1/4rd/2ψ(r, t)1/2, where (3.40)

ψ(r, t)
def=

∑
m,n∈Zd

exp{−Ht (m, n)}, (3.41)

Ht (m, n)
def= r2 Q−1+ [m − 4 t Qn] + r−2 Q+[n ], (3.42)

and Ht (m, n) is a positive quadratic form on Z
2d . Note that Ht (m, n) depends

as well on the currently fixed dilating variable r which we suppress here.

Proof For any x, y ∈ R
d the equalities

2 (Q+[x ] + Q+[ y ]) = Q+[x + y ] + Q+[x − y ],
〈Q (x + y), x − y〉 = Q[x ] − Q[ y ] (3.43)

hold. Rearranging θv(z) θv(z) and using (3.43), we would like to use m + n
and m − n as new summation variables on a lattice. But both vectors have the
same parity, that is m + n ≡ m − n mod 2. Since they are dependent one
has to consider the 2d affine sublattices indexed by α = (α1, . . . , αd) with
α j ∈ {0, 1} for 1 ≤ j ≤ d:

Z
d
α

def= {m ∈ Z
d : m ≡ α mod 2},

where, for m = (m1, . . . ,md), m ≡ α mod 2 means m j ≡ α j mod 2 for
all 1 ≤ j ≤ d. Thus writing

θv,α(t)
def=

∑
m∈Zd

α

exp

[
− 1

r2 Q+[m] − 2π i t Q[m] + 2π i〈m, v
r
〉
]
,

we obtain θv(t) =∑α θv,α(t) and hence by the Cauchy-Schwarz inequality

∣∣θv(t)∣∣2 ≤ 2d
∑
α∈{0,1}d

∣∣θv,α(t)∣∣2. (3.44)
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Using (3.43) and the absolute convergence of θv,α(t), we can write

|θv,α(t)|2 =
∑

m,n∈Zd
α

exp

[
− 1

r2

(
Q+[m] + Q+[n])− 2π it

(
Q[m] − Q[n])− 2π i 〈m − n,

v

r
〉
]

=
∑

m,n∈Zd
α

exp

[
− 2

r2

(
Q+[m̄] + Q+[n̄])− 4π i

〈
2 t Qm̄ + v

r
, n̄
〉]

where m̄ = m+n
2 , n̄ = m−n

2 . Note that the map

⋃
α∈{0,1}d Z

d
α × Z

d
α −→ Z

d × Z
d , (m, n) �−→

(
m + n

2
,

m − n

2

)

is a bijection. Therefore we get by (3.44)

∣∣θv(t)∣∣2 �d

∑
α∈{0,1}d

∑
m,n∈Zd

α

exp

[
− 2

r2

(
Q+[m̄] + Q+[n̄])− 4iπ

〈
2t Qm̄ + v

r
, n̄
〉]

=
∑

m̄,n̄∈Zd

exp

[
− 2

r2

(
Q+[m̄] + Q+[n̄])− 4iπ

〈
2t Qm̄ + v

r
, n̄
〉]
.

(3.45)

In this double sum fix n̄ and sum over m̄ ∈ Z
d first, and call the inner sum

θv(t, n̄). Using (3.24) with � = 2iQ+r−2/π and v = −4 t Q n̄ + m, we get

for δ :=
(

det
(

2
πr2 Q+

))−1/2
by the symmetry of Q and Poisson’s formula

(see [8], §46)

θv(t, n̄)
def=

∑
m̄∈Zd

exp

[
− 2

r2

(
Q+[m̄] + Q+[n̄])− 4π i

〈
2t Qm̄ + v

r
, n̄
〉]

= δ
∑
m∈Zd

exp

[
−π

2 r2

2
Q−1+ [m − 4 t Q n̄ ] − 2

r2 Q+[n̄] − 4π i〈 v
r
, n̄ 〉
]
.

Thus, we have uniformly in v ∈ R
d

∣∣θv(t, n̄)∣∣ ≤ δ ∑
m∈Zd

exp
{
−π

2 r2

2
Q−1+ [m − 4 t Q n̄ ] − 2

r2 Q+[n̄]
}
. (3.46)

Hence we obtain by (3.45) and (3.46)

∣∣θv(t)∣∣2 �d (det Q+)−1/2 rd
∑

m,n∈Zd

exp{−Gt (m, n)},
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where Gt (m, n) := π2r2

2 Q−1+ [m − 4 t Qn ] + 2
r2 Q+[n]. Since π2/2 > 1 we

may bound Gt (m, n) from below as follows:

Gt (m, n) ≥ r2Q−1+ [m − 4t Qn] + r−2Q+[n] = Ht (m, n)

which proves the claimed estimate (3.40). Finally, observe that we can write

Ht (m, n) = ∥∥
(
r Q

− 1
2+ (m − 4t Qn)
r−1Q+n

)∥∥2
,

which shows that Ht (m, n) is a positive definite quadratic form on Z
2d .

In view of Lemma 3.3 we can introduce the 2d-dimensional lattice

�t
def= DrQU4t QZ

2d , (3.47)

where

DrQ =
⎛
⎝r Q− 1

2+
r−1Q

1
2+

⎞
⎠ and U4t Q =

(
1d −4t Q

1d

)
, (3.48)

in order to write ψ(r, t) = ∑
v∈�t

exp{−‖v‖2} as the Siegel transform of
exp{−‖x‖2} evaluated at the lattice �t . According to the Lipschitz princi-
ple in the Geometry of Numbers (see [50], Lemma 2, or [23], Lemma 3.1)
one can show that ψ(r, t) �d α(�t ), where α is the maximum over all αl -
characteristics (see (2.2)). However, we choose to follow a more direct and
transparent argument for the sake of clarity and motivate the relation between
theαi -characteristics and the successive minima of a lattice for the convenience
of the reader. The following Lemma 3.4 (with ε = 1) reduces the problem of
estimating the theta series (3.41) to the problem of counting lattice points as
follows

ψ(r, t) �d #{w ∈ �t : ‖w‖∞ ≤ 1} �d #{w ∈ �t : ‖w‖ ≤ d1/2}. (3.49)

Lemma 3.4 Let � be a lattice in R
d . Assume that 0 < ε ≤ 1, then

exp{−dε}#H ≤
∑
v∈�

exp
{−ε ‖v‖2}�d ε

−d/2 #H, (3.50)

whereH := {v ∈ � : ‖v‖∞ < 1
}
.
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Proof The lower bound for the sum is obvious by restricting summation to the
set of elements inH. As for the upper bound introduce for μ = (μ1, . . . , μd) ∈
Z
d the sets

Bμ
def=
[
μ1 − 1

2
, μ1 + 1

2

)
× · · · ×

[
μd − 1

2
, μd + 1

2

)

such that R
d = ⋃

μ∈Zd Bμ. For any fixed w∗ ∈ Hμ := � ∩ Bμ we have
w − w∗ ∈ H for all w ∈ Hμ. Hence we conclude for any μ ∈ Z

d

#Hμ ≤ #H.

Since x ∈ Bμ implies ‖x‖∞ ≥ ‖μ‖∞/2, we obtain

∑
v∈�

e−ε ‖v‖2 ≤
∑
v∈�

e−ε ‖v‖2∞ ≤
∑
μ∈Zd

∑
v∈�∩Bμ

e− ε
4 ‖μ‖2∞ ≤ #H

∑
μ∈Zd

e− ε
4 ‖μ‖2 �d ε

−d/2 #H.

This concludes the proof of Lemma 3.4.

4 Functions on the space of lattices and geometry of numbers

Let n ∈ N
+ be fixed (later to be chosen as n = 2d) and for every integer l

with 1 ≤ l ≤ n we fix a quasinorm | · |l on the exterior product ∧l
R
n . Let L

be a subspace of R
n and� a lattice in L (i.e.� is a free Z-module of full rank

dim L), then any two bases of � are related by a unimodular transformation,
that is, if u1, . . . , ul and v1, . . . , vl are two bases of�, where l = dim L , then
v1 ∧· · ·∧vl = ±u1 ∧· · ·∧ul , which implies that the expression |v1 ∧· · ·∧vl |l
is independent of the choice of basis.

Let � be a lattice in R
n , we say that a subspace L of R

n is �-rational if
L ∩� is a lattice in L . For any�-rational subspace L , we denote by d�(L), or
simply by d(L), the quasinorm |u1 ∧ . . .∧ul |l where {u1, . . . , ul}, l = dim L ,
is a basis of L ∩� over Z. For L = {0} we write d(L) := 1. If the quasinorms
| · |l are the norms on ∧l

R
n induced from the standard Euclidean norm on

R
n , then d(L) is equal to the determinant (or discriminant) det(L ∩�) of the

lattice L ∩�, that is the volume of L/(L ∩�). In particular, in this case the
lattice� is said to be unimodular if and only if d�(Rn) = 1. Also in this case
d(L)d(M) ≥ d(L ∩ M)d(L + M) for any two �-rational subspaces L and
M (see Lemma 5.6 in [23]), but any two quasinorms on ∧l

R
n are equivalent,

which proves

Lemma 4.1 There is a constant C ≥ 1 depending only on the quasinorm | · |l
and not on � such that

C2d(L)d(M) ≥ d(L ∩ M)d(L + M) (4.1)
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for any two �-rational subspaces L and M.

Let us introduce the following notations for 0 ≤ l ≤ n,

αl(�)
def= sup{d(L)−1 : L is a �-rational subspace of dimension l}, (4.2)

α(�)
def= max

0≤l≤n
αl(�). (4.3)

This extends the earlier definition (2.2) of αl(�) in the introduction of Sect. 2
to the case of general seminorms on ∧l

R
n . In this section the functionsαl andα

will be based on standard Euclidean norms, that is, we haved(L) = det(L∩�).
In the following we shall use some facts from the Geometry of Numbers

and the classical reduction theory for lattices in R
n , see Davenport [17], Siegel

[52], Cassels [14] and Einsiedler-Ward [24]. The successive minima of a lattice
� are the numbers M1(�) ≤ · · · ≤ Mn(�) defined as follows: Mj (�) is the
infimum of λ > 0 such that the set {v ∈ � : ‖v‖ < λ} contains j linearly
independent vectors and in particular M1(�) is the shortest non-zero vector
of the lattice �. It is easy to see that these infima are attained, that is, there
exist linearly independent vectors v1, . . . , vn ∈ � such that ‖v j‖ = Mj (�)

for all j = 1, . . . , n. Moreover, as a consequence of the reduction algorithm of
Korkine and Zolotareff (see [35–37]) the αl-characteristic and the successive
minima are related according to αl(�) �d (M1(�) . . .Ml(�))

−1 (see [24],
Chapter 1, Theorem 15).

Lemma 4.2 Let F be a norm in R
n and denote by M1 ≤ · · · ≤ Mn the

successive minima with respect to F. Let � be a lattice in R
n, then

αl(�) �n (M1(�) · · · Ml(�))
−1, l = 1, . . . , n. (4.4)

Moreover, for any μ > 0, if 1 ≤ j ≤ n is such that M j (�) ≤ μ < Mj+1(�),
where the right-hand side is omitted if j = n, then

#{v ∈ � : F(v) ≤ μ} �n μ
j α j (�). (4.5)

Proof First we prove the lower bound. We may assume that Mj (�) ≤ μ <

Mj+1(�), the right-hand side being omitted if j = n. Let v1, . . . , vn denote the
elements in � corresponding to the successive minima Mi (�), i = 1, . . . , n.
For m1, . . . ,m j ∈ Z with |mi | ≤ j−1μF(vi )−1 notice that v = m1v1 + . . .+
m j v j satisfies F(v) ≤ μ, thus

N (μ)
def= #{v ∈ � : F(v) ≤ μ} �m μ

j (M1(�) · · · Mj (�))
−1. (4.6)

The upper bound is also proven in Davenport [17] (see Lemma 1). We include
the short argument here for the sake of completeness: Let w1, . . . , wn be an
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integral basis of � such that vi is linearly dependent on w1, . . . , wi for any
i = 1, . . . , n. Consequently any lattice point v ∈ � with F(v) < Mj+1
is linearly dependent on w1, . . . , w j and hence any element v ∈ � with
F(v) ≤ μ can be written as v = m1w1 + . . .+ m jw j with mi ∈ Z. Suppose
v′ ∈ � is another element with F(v′) ≤ μ and write v′ = m′

1w1 + . . .m′
jw j

with m′
i ∈ Z. Now define positive integers ν1, . . . , ν j by

2νi−1 ≤ 2μ

Mi (�)
< 2νi , (4.7)

and observe that ν1 ≥ ν2 ≥ . . . ≥ ν j . Assuming for the moment that mi ≡ m′
i

mod 2νi for every i = 1, . . . , j and let i0 denote the largest index i0 such
that mi0 �= m′

i0
. Then x := 2−νi0 (v − v′) is an element of � and linearly

independent of w1, . . . , wi0−1. This implies F(x) ≥ Mi0(�). On the other
hand we have

F(x) = 2−νi0 F(v − v′) ≤ 2−νi0 (F(v)+ F(v′)) ≤ 2−νi0 2μ < Mi0(�)

by (4.7). This contradiction shows that there is at most one lattice point in
�, implying that the coordinates m1, . . . ,m j lie in the same residue classes
modulo 2ν1, 2ν2, . . . , 2ν j respectively. Hence, the number of lattice points
N (μ) in (4.6) is bounded from above by the number of all residue classes,
i.e. by 2ν1 2ν2 . . . 2ν j ≤ (4μ) j (M1(�) . . .Mj (�))

−1. This shows the upper
bound in (4.5).

Lemma 4.3 (Davenport [17]) Let � = gZ
n and �′ = (g−1)T Z

n denote
dual lattices of rank n, then for all j = 1, . . . , n we have

1 ≤ Mj (�)Mn+1− j (�
′) �n 1. (4.8)

This is a variant of Lemma 2 of Davenport [17] for the Euclidean norm.
Again, for the reader’s convenience, we include the short argument here.

Proof. Let v1, . . . , vn ∈ �, resp. v′
1, . . . , v

′
n ∈ �′, be linearly independent

such that ‖vi‖ = Mi (�), resp. ‖v′
i‖ = Mi (�

′). Then v1, . . . , v j cannot be
orthogonal to all lattice points v′

1, . . . , v
′
n+1− j , otherwise they would fail to

be independent. Thus, we have 〈vi , v′
k〉 �= 0 for some i = 1, . . . , j and k =

1, . . . , n + 1 − j , which implies that

Mj (�)Mn+1− j (�
′) ≥ Mi (�)Mk(�

′) = ‖vi‖‖v′
k‖ ≥ |〈vi , v′

k〉| ≥ 1

because of duality. The right-hand side of (4.8) follows from (4.4) with l = n,
which is known as Minkowski’s inequality. Indeed, det(�) = αn(�)

−1 �n
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M1(�) . . .Mn(�) and since det(�) det(�′) = 1 we conclude that

Mj (�)Mn+1− j (�
′) �n

∏n
h=1,h �= j (Mh(�)Mn+1−h(�

′))−1 �n 1.

4.1 Sympletic structure of �t

In the following we shall apply the previous results from the Geometry of
Numbers to the special 2d-dimensional lattice �t introduced in (3.47). The
symplectic structure of �t will allow us to establish a majorizing relation
between the theta series (3.41) and the αd -characteristic of �t , see (4.14). To
do this, we shall apply Lemma 4.2 combined with Lemma 4.3 as follows. (We
note that the results of this section remain valid regardless of whether r ≥ q1/2

or not.)

Lemma 4.4 Let�t be the lattice defined in (3.47). Then we have for any t ∈ R

Mj (�t )M2d+1− j (�t ) �d 1 ( j = 1, . . . , d), (4.9)

M1(�t ) ≤ · · · ≤ Md(�t ) �d 1 ≤ Md+1(�t ) ≤ · · · ≤ M2d(�t ), (4.10)

and the lower bound

M1(�t ) ≥ min{r−1q1/2
0 , rq−1/2}. (4.11)

Corollary 4.5 As a consequence, we find for μ ≥ 1

#{v ∈ �t : ‖v‖ ≤ μ} �d μ
2dαd(�t ), (4.12)

α(�t ) = max{α j (�t ) : j = 1, . . . , 2d} �d αd(�t ) (4.13)

and

ψ(r, t) �d αd(�t ). (4.14)

Proof of Lemma 4.4 First we prove (4.9). Let

J
def=
(

1d
−1d

)
,

and consider the lattice

�′
t = J DrQU4t Q J−1

Z
2d .

Then J DrQU4t Q J−1 = D−1
r QU

T−4t Q and hence �′
t is the lattice dual to �t in

the sense of Lemma 4.3. We claim that they have identical successive minima.
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To this end, note that for any N = (m, m̄)T ∈ Z
2d

‖DrQU4t QN‖ = ‖J−1 J DrQU4t Q J−1 J N‖ = ‖D−1
r QU

T−4t Q J N‖, (4.15)

where we use that J is an orthogonal matrix. Since JZ
2d = Z

2d , the Eq.
(4.15) implies that the successive minima of �t and �′

t are identical and by
Lemma 4.3 we conclude Mj (�t )M2d+1− j (�t ) �d 1 for j = 1, . . . , d.

To prove (4.10) we note that Md ≤ Md+1 and 1 ≤ Md(�t )Md+1(�t ) �d 1
implies

Mj (�t ) ≤ Md(�t ) �d 1 and 1 ≤ Md+1(�t ) ≤ Md+ j (�t )

for all j = 1, . . . , d. Thus, it remains to show the lower bound (4.11)
for M1(�t ): Take m, m̄ ∈ Z

d with M1(�t ) = ‖DrQU4t Q(m, m̄)‖ =
Ht (m, m̄)1/2, where Ht denotes the special norm (3.42) in the theta series
(3.41). If m̄ �= 0, then we have M1(�t ) ≥ r−1‖Q1/2

+ m̄‖ ≥ q1/2
0 r−1, but

otherwise M1(�t ) = r‖Q−1/2
+ m‖ ≥ rq−1/2.

Proof of Corollary 4.5 We begin with proving (4.12) as follows. Recall that
μ ≥ 1 and let 2d ≥ j ≥ 1 denote the maximal integer with Mj (�t ) ≤ μ.
Then Lemma 4.2 implies

#{v ∈ �t : ‖v‖ ≤ μ} �d μ
jα j (�t ) ≤ μ2dαd(�t ),

since we have Mj (�t ) ≥ . . . ≥ Md+1(�t ) � 1 if j > d and μ <

Mj+1(�t ) ≤ . . . ≤ Md(�t ) �d 1 if j < d. In the case μ < M1(�t )

the inequality in (4.12) holds trivially. Moreover, this argument also proves
(4.13). Finally, the estimate (4.14) follows from the relation (3.49) combined
with (4.12) for μ = d1/2.

For arbitrary t ∈ R the following bounds hold independently of the Dio-
phantine properties of Q.

Lemma 4.6 Denote by � the lattice Q1/2
+ Z

d , then

supt∈R αd(DsQU4t Q Z
2d) �d ϕQ(s), (4.16)

where DsQ and U4t Q are defined as in (3.48) and

ϕQ(s)
def= sd |det Q|−1/2 ∏

j : Mj (�)>s(s
−2Mj (�)

2), s > 0. (4.17)

In particular, it follows that

ϕQ(s) �d sd |det Q|−1/2, if |s| ≥ q1/2, (4.18)
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and for small t we get

αd (DsQ U4t Q Z
2d) �d |det Q|1/2 (s−1 + |t s|)d , if q1/2

0 |t s| ≥ 1, (4.19)

αd (DsQ U4t Q Z
2d) �d |det Q|−1/2 max{1, (√q/s)d }|t s|−d , if q1/2 |t s| ≤ 1. (4.20)

We emphasize that these estimates will be used for a wide range of s > 0
(depending on the blow-up parameter r ≥ q1/2), see e.g. the proof of
Lemma 6.2, and for small t as well (by which we mean r−1q−1/2

0 < t < T−
as stated in Theorem 2.2).

Proof In this proof we replace the definition of �t , see (3.47), by �t =
DsQU4t QZ

2d , i.e. r has to be replaced by s. If 1/8 < M1(�t ), then we
have

αd(�t ) �d (M1(�t ) . . .Md(�t ))
−1 �d #{v ∈ �t : ‖v‖ ≤ 1/8}. (4.21)

Otherwise, there exists an integer j = 1, . . . , d with Mj (�t ) ≤ 1/8 <

Mj+1(�t ), since 1 ≤ Md+1(�t ) holds by (4.10). Now, taking μ = 1/8 in
(4.5) of Lemma 4.2 shows that

αd (�t ) �d (M1(�t ) . . .Md(�t ))
−1

� (M1(�t ) . . .Mj (�t ))
−1 �d #{v ∈ �t : ‖v‖ ≤ 1/8},

i.e. (4.21) holds also in the second case. Recalling again (3.42), we see that the
right-hand side of (4.21) is the same as the number all lattice pointsm, m̄ ∈ Z

d

satisfying

Ht [m, m̄] = s2 Q−1+ [m − 4t Q m̄] + s−2 Q+[m̄] ≤ 1/64, (4.22)

where the positive form Ht [·, ·] is defined as in (3.42), but here again r has to
be replaced by s.

Proof of (4.16) If (4.22) holds, then ‖Q1/2
+ m̄‖ ≤ s/2, which has again by

Lemma 4.2 at most �d
∏

j : Mj (�)≤s(s M j (�)
−1) integral solutions. Similarly,

for fixed m̄ the triangle inequality combined with (4.22) implies

‖sQ−1/2
+ (m1 − m2)‖ ≤ √Ht [m1, m̄] +√Ht [m2, m̄] ≤ 1.

Thus, for fixed m̄, the number of pairs (m, m̄) for which (4.22) holds is bounded
by the number of elements v in the dual lattice�′ = Q−1/2

+ Z
d to� such that

‖v‖ ≤ s−1. Since the successive minima for this dual lattice are determined
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by Lemma 4.3, we may use Lemma 4.2, inequality (4.5), again to determine
the upper bound

�d
∏

j : Mj (�
′)≤s−1(sM j (�

′))−1 ≤∏ j : Mj (�)≥s(s
−1Mj (�))

for this number as well. The product of both numbers yields the bound

αd (�t ) �d #{v ∈ �t : ‖v‖ ≤ 1/2} �d sd
(∏d

j=1 Mj (�)
)−1(∏

j : Mj (�)≥s(s
−2Mj (�)

2)
)
.

Finally, using Lemma 4.2 in form of (
∏d

j=1 Mj (�))
−1 �d αd(�) =

|det Q|1/2 shows the claimed bound in (4.16). Also the inequality (4.18) fol-
lows immediately from (4.17).

Proof of (4.19) Assume q1/2
0 |t s| ≥ 1 and q0 ≥ 1. If m = 0 we conclude

that ‖m̄‖ ≤ |4t s|‖Q1/2
+ m̄‖ ≤ 1/8. Hence m̄ = 0. For any fixed m �= 0 the

triangle inequality implies that there is at most one element m̄ ∈ Z
d with

(4.22). Furthermore, we get (‖Q−1/2
+ m‖ − 1/(8s)) ≤ ‖4t Q1/2

+ m̄‖ for that
pair (m, m̄). This implies

1/8 ≥ √Ht (m, m̄) ≥ s−1‖Q1/2
+ m̄‖ ≥ (‖Q−1/2

+ m‖ − 1/(8s)
)
/|4t s|

and hence ‖Q−1/2
+ m‖ ≤ (s−1 + |4t s|)/8. Thus

#{v ∈ �t : ‖v‖2 ≤ 1/4} �d (s
−1 + |t s|)d |det Q|1/2.

Proof of (4.20) As in the previous case, (4.22) implies by the triangle
inequality that

∣∣‖Q−1/2
+ m‖ − ‖4t Q1/2

+ S m̄‖∣∣ ≤ (8s)−1 (4.23)

and together with q1/2 |t s| ≤ 1 also |4t s|s−1‖Q1/2
+ m̄‖ ≤ |4t s|/8 ≤ (2q)−1/2.

Moreover one of these inequalities is strict and therefore we have

q−1/2‖m‖ ≤ ‖Q−1/2
+ m‖ < (2s)−1 + (2q1/2)−1. (4.24)

If s ≥ q1/2, this leads to a contradiction unless m = 0. Hence, the possible
solutions for m̄ in (4.23) satisfy ‖Q1/2

+ m̄‖ ≤ |32t s|−1 which, as in the proof
of (4.16), has at most �d |det Q|−1/2|t s|−d solutions. In the second case, i.e.
if s < q1/2, the inequality (4.24) has at most �d (q1/2/s)d solutions for m.
Now any possible m̄ must satisfy

‖Q1/2
+ m̄‖ ≤ |32ts|−1 + |4t |−1‖Q−1/2

+ m‖ ≤ |2ts|−1
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again, which completes the proof of (4.20) in view of (4.21).

4.2 Approximation by compact subgroups

In Sect. 5 we shall develop mean-value estimates for fractional moments of
the αd -characteristic of the lattice �t introduced in (3.47). In order to apply
techniques from harmonic analysis, we will rewrite the family {�t }t∈R as an
orbit of a single lattice by means of elements of the one-parameter subgroups
D := {dr : r > 0} and U := {ut : t ∈ R} of SL(2,R), where

dr
def=
(
r 0
0 r−1

)
, ut

def=
(

1 −t
0 1

)
, (4.25)

and then approximate the subgroup U locally by the compact subgroup K =
SO(2) = {kθ : θ ∈ [0, 2π ]} parameterized, as usual, by elements

kθ
def=
(

cos θ − sin θ
sin θ cos θ

)
. (4.26)

Let S be an orthogonal matrix such that SQQ−1+ ST = Q0, where
Q0 denotes the signature matrix corresponding to Q, that is Q0 =
diag(1, . . . , 1,−1, . . . ,−1). A short computation shows that

DrQU4t Q =
(
ST

ST

)
dru4t

(
SQ−1/2

+
SQ1/2

+

)
,

where we embed SL(2,R) into SL(2d,R) according to the following action

(
a b
c d

)
�−→

(
a1d b Q0
c Q0 d1d

)
. (4.27)

Define the 2d-dimensional lattice

�Q
def=
(
SQ−1/2

+
SQ1/2

+

)
Z

2d , (4.28)

then as claimed,

�t =
(
ST

ST

)
dru4t �Q . (4.29)
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Moreover, since S is orthogonal and αi is invariant under left multiplication
by orthogonal matrices we observe for any i = 1, . . . , 2d that

αi (�t ) = αi (dru4t�Q). (4.30)

Lemma 4.7 With respect to the embedding of SL(2,R) defined in (4.27) we
have for t ∈ R, s ≥ 1 and any 2d-dimensional lattice � in R

2d

α j (ds ut�) �d (1 + t2)
j
2 α j (ds kθ�), j = 1, . . . , 2d, (4.31)

where θ = arctan t .

Proof Suppose the signature of Q is (p, q) and let (v,w) ∈ R
d ×R

d , thought
of as a column vector with coordinates v1, . . . , vd , w1, . . . , wd , then

‖dsut (v,w)‖2 =
p∑

i=1

‖dsut (vi , wi )‖2 +
d∑

i=p+1

‖dsu−t (vi , wi )‖2. (4.32)

Let x, y ∈ R. Note that y + t x = (1 + t2) y + t (x − t y), which implies that

(y + t x)2 ≤ 2(1 + t2)2 (y)2 + 2 t2 (x − t y)2,

and therefore we find

s2 (x − t y)2 + s−2 (y + t x)2 ≤ 2 (1 + t2)2
(
s2 (x − t y)2 + s−2 y2 ), (4.33)

provided that s ≥ 1. Taking θ = arctan t and noting that cos(θ) = (t2+1)−1/2,
resp. sin(θ) = t (t2 + 1)−1/2, we see that (4.33) can be written as

‖dskθ (x, y)‖2 ≤ 2(1 + t2)‖dsut (x, y)‖2,

and it is easy to see, along the same lines as before, that

‖dskTθ (x, y)‖2 ≤ 2(1 + t2)‖dsu−t (x, y)‖2.

Hence, we obtain in view of (4.32) that

‖dskθ (v, w)‖2 ≤ 2(1 + t2)‖dsut (v,w)‖2,

from which we deduce that (1 + t2)i/2Mi (dsut�) � Mi (dskθ�) for any
i = 1, . . . , 2d. The claim follows now from (4.4).
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4.3 Irrational and diophantine lattices

The purpose of this section is to relate the αd -characteristic of �t to the Dio-
phantine approximation of t Q by symmetric integral matrices. We begin by
motivating the Definition 1.6: Recall that Q is said to be Diophantine of type
(κ, A), where κ > 0 and A > 0, if

inf
t∈[1,2]‖M − mtQ‖ > Am−κ for all m ∈ Z\{0} and M ∈ Sym(d,Z)

or equivalently if we introduce the truncated rational approximation error

δt Q;R
def= min

{
‖M − m t Q‖ : m ∈ Z, 0 < |m|≤ R, M ∈ Sym(d,Z)

}
, R≥1, (4.34)

we require Q to satisfy

inf
t∈[1,2] δt Q;R > AR−κ for all R ≥ 1. (4.35)

Remark 4.8 As an aside, we remark that the property of Q being Diophantine
in the above sense is equivalent to the requirement that for some κ̃ > 0

‖M − t Q‖ > t−κ̃ , for all t ≥ 2 and M ∈ Sym(d,Z),

which was introduced in [23] in the context of forms that are (EWAS). How-
ever, this formulation is not optimal because κ̃ must be chosen larger than
κ depending on A. Moreover, in most applications the constant A cannot be
determined explicitly due to non-effective methods in Diophantine approxi-
mation.

The following lemma justifies calling such forms Diophantine:

Lemma 4.9 Let k be an integer in the range 1 ≤ k ≤ d(d+1)
2 − 1 and let Q be

a form such that k + 1 non-zero entries y, x1, . . . , xk satisfy the property that

max
i=1,...,k

|q xi/y + pi | > Aq−κ

for all k-tuples (p1/q, . . . , pk/q) of rationals. Then Q is Diophantine of type
(κ, A′), where A′ depends on A, κ, y, x1/y, . . . , xk/y only (see (4.36)).

Proof Let M ∈ Sym(d,Z), m ∈ Z\{0} and t ∈ [1, 2]. Denoting the entries
in M corresponding to the coordinates of Q in which y, x1, . . . , xk appear by
q, p1, . . . , pk , we find the inequality

‖M − m tQ‖ ≥ max
{

max
1≤i≤k

|pi − m txi |, |q − m ty|}.
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Suppose that the expression on the right-hand side is strictly less than A′m−κ ,
where

A′ = min{A (4y)−κ (1 + max
1≤i≤k

|xi/y|))−1, 1/2}. (4.36)

Note first that |m| ≥ |m ty|/(2y) > q/(4y) and hence

∣∣∣∣ xiy q − pi

∣∣∣∣ ≤
∣∣∣∣ xiy
∣∣∣∣ |q − m ty| + |mt xi − pi | < A′m−κ(1 + |xi/y|) < Aq−κ

for all i = 1, . . . , k, which yields a contradiction.

Recall that a number θ ∈ R is called Diophantine of type κ > 0 if there
exists cκ > 0 such that |qθ − a| ≥ cκ |q|−κ for every rational number a/q. In
particular any form Q for which one ratio of two of its entries is a Diophantine
number, is Diophantine in the sense of Definition 1.6 and hence almost all
forms are Diophantine in this sense. An example of Diophantine forms for
which we can control the exponent κ is the following: Suppose Q is a form
with k + 1 entries y, x1, . . . , xk such that x1/y, . . . , xk/y are algebraic and
1, x1/y, . . . , xk/y are linearly independent over Q, then Schmidt’s Subspace
Theorem together with Lemma 4.9 implies that for any η > 0 the form Q
is Diophantine of type (1/k + η, A′), where A′ is a constant depending only
on η, A, y, x1/y, . . . , xk/y. However, as is usually the case in Diophantine
approximation, the constant A and hence A′ is ineffective in the sense that
these constants cannot be determined explicitly.

After the previous motivation, we shall state the main result of this section.
In particular, we will see that larger values of βt;r (see (4.38)) enforce smaller
values of the truncated rational approximation error δ4t Q;R as follows

Lemma 4.10 Assume that q0 ≥ 1. Then we have for all t ∈ R and r ≥ q1/2

δ4 t Q;β−1
t;r

�d q r−2β−1
t;r , (4.37)

where

βt;r
def= αd(�t )r

−d |det Q|1/2. (4.38)

Note that this bound is non-trivial for βt;r > q r−2 only, due to the uniform
bound βt;r �d 1 for r ≥ q1/2 established in Lemma 4.6.

Before proving (4.37), we shall state some important consequences.

Corollary 4.11 Consider any interval [T−, T+]with T− ∈ (0, 1] and T+ ≥ 1.
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(i) If Q is irrational, then

lim
r→∞

(
sup

T−≤t≤T+
αd(�t )r

−d ) = 0. (4.39)

(ii) If Q is Diophantine of type (κ, A), then

sup
T−≤t≤T+

αd (�t )r
−d �d |det Q|−1/2(q A−1r−2)

1
κ+1 max

{
(T−)−

1
κ+1 , (T+)

κ
κ+1
}
. (4.40)

A variant of (i) in terms of the successive minima of�t can also be found in
[28], see Lemma 3.11, yielding an alternative proof of (4.39) when combined
with (4.4).

Proof (i) We show the contraposition: Assume that there exists an ε > 0 and
sequences (r j ) j , (t j ) j such that lim j→∞ r j = ∞ and βt j ;r j > ε. Passing to a
subsequence we may assume that lim j→∞ t j = t for some t ∈ [T−, T+]. Thus
(4.37) yields lim j→∞ δ4t j Q;R∗

j
= 0 with R∗

j := β−1
t j ;r j < ε

−1. By definition,
this means that lim j→∞‖Mj − 4t jm j Q‖ = 0 for some Mj ∈ Sym(d,Z)
and m j ∈ Z with |m j | ≤ ε−1. Obviously both, ‖Mj‖ and |m j |, are bounded.
Hence there exist integral elements M , m and an infinite subsequence j ′ of j
with Mj ′ = M , m j ′ = m and by construction lim j ′ t j ′ = t . These limit values
satisfy ‖M − 4m t Q‖ = 0, i.e. Q is a multiple of a rational form.
(ii) First we note that for any t ∈ [1, T+] we have by (4.35)

(δt Q;R)−1 ≤ supt ′∈[1,2](δt ′Q;4t R)−1 < A−1(4t R)κ ≤ A−1(T+)κ(4R)κ

and similarly for t ∈ [T−, 1]

(T−)−1δ4t Q;R � �t−1�δt Q;4R ≥ δ(�t−1�t)Q;4R > A(4R)−κ .

Thus, the relation (4.37), established in Lemma 4.10, implies for any t ∈
[T−, T+] that

βt;r �d qr−2(δ4t Q;β−1
t;r
)−1 �d 4κq r−2A−1 max{(T−)−1, (T+)κ}(βt;r )−κ ,

where we used (4.37). Therefore we conclude (4.40) as claimed.

Proof of Lemma 4.10 We begin by recalling that �t = DrQU4t Q Z
2d (see

(3.47)), where

DrQ =
(
r Q−1/2

+ 0
0 r−1 Q1/2

+

)
and U4t Q =

(
Id −4 t Q
0 Id

)
.
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As noted in Remark 2.1 the αd -characteristic of�t is attained at some sublat-
tice, that is we can write αd(�t ) = ‖w1 ∧ . . . ∧ wd‖−1 by means of vectors
w j := DrQU4t Ql j with linear independent points l1, . . . , ld ∈ Z

2d depending
on t . Here we use the standard Euclidean norm on the exterior product ∧d

R
2d .

Moreover, we write l j = (m j , n j ), where m j , n j ∈ Z
d and the coordinates

of (m j , n j ) are the coordinates of the vectors m j and n j in the corresponding
order. Additionally, we introduce the d × d integer matrices N and M with
columns n1, . . . , nd and m1, . . . ,md as well. Using this notation, we may
write

w1 ∧ . . . ∧ wd = (DrQU4t Q)

(
M
N

)
e1 ∧ . . . ∧ ed . (4.41)

First, we shall prove that

αd(�t ) > q dQ r
d−2 implies β−1

t;r > |det(N )| > 0. (4.42)

Note that the left-hand side of (4.42) can be rewritten as βt;r > q r−2 and
we may assume that this inequality holds, since otherwise the bound (4.37) is
trivial.

Let us show that rank(N ) = d. To this end, we write k = d − rank(N ).
According to elementary divisor theory (for matrices with entries in a principal
ideal domain) there exist P, P ′ ∈ GL(d,Z) such that P ′N P is a diagonal
matrix with positive entries of the form diag(0, . . . , 0, ak+1, . . . , ad)with ai |
ai+1, ai ∈ N. In particular N P is a matrix whose first k columns are zero.
Moreover, since det P = ±1, we conclude that

(
MP
N P

)
e1 ∧ . . . ∧ ed = ±

(
M
N

)
e1 ∧ . . . ∧ ed ,

and hence we can assume from now on that N = (0, . . . , 0, nk+1, . . . , nd)with
linearly independent vectors nk+1, . . . , nd ∈ Z

d . Since l1, . . . , ld constitute
a basis of a d-dimensional lattice, we note that m1, . . . ,mk are necessarily
linearly independent. Now we shall express w1 ∧ . . . ∧ wd in terms of the
standard basis eI ∧ eJ indexed by pairs of subsets I ⊂ {1, . . . , d} and J ⊂
{d + 1, . . . , 2d} with |I | + |J | = d, i.e. we write

w1 ∧ . . . ∧ wd =
∑
I,J

ωI,J eI ∧ eJ .
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Let I = {i1, . . . , im} and J = { j1, . . . , jd−m}, then the coefficients ωI,J are
given by

ωI,J
def= det

(
AI ∗
0 BJ

)
, (4.43)

where

AI
def=

⎛
⎜⎜⎝

〈r Q− 1
2+ m1, ei1〉 . . . 〈r Q− 1

2+ mk, ei1〉
...

...

〈r Q− 1
2+ m1, eim 〉 . . . 〈r Q− 1

2+ mk, eim 〉

⎞
⎟⎟⎠

BJ
def=

⎛
⎜⎜⎝

〈r−1Q
1
2+nk+1, e j1〉 . . . 〈r−1Q

1
2+nd , e j1〉

...
...

〈r−1Q
1
2+nk+1, e jd−m 〉 . . . 〈r−1Q

1
2+nd , e jd−m 〉

⎞
⎟⎟⎠ .

Since the matrix in (4.43) is of block-type, we find

αd (�t )
−2 = ‖w1 ∧ . . . ∧ wd‖2

≥
∑
|I |=k

∑
|J |=d−k

ω2
I,J =

( ∑
|I |=k

(det AI )
2
)( ∑

|J |=d−k

(det BJ )
2
)

= r4k−2d‖Q− 1
2+ (m1 ∧ . . . ∧ mk)‖2 ‖Q

1
2+(nk+1 ∧ . . . ∧ nd)‖2.

(4.44)

Without loss of generality assume that the eigenvalues of Q are indexed such
that |q1| ≤ · · · ≤ |qd |. Since q0 ≥ 1, note that the minimal eigenvalue of
the k-th exterior power of Q−1/2

+ is given by |qd−k+1 . . . qd |−1/2 and that of

the (d−k)-th exterior power of Q1/2
+ is precisely |q1 . . . qd−k |1/2. Hence, since

m1, . . . ,mk and nk+1, . . . , nd are linearly independent and integral, we obtain
the following lower bound

αd(�t )
−1 ≥ r2k−d

( |q1 . . . qd−k |
|qd−k+1 . . . qd |

)1/2

≥ q−1|det Q|1/2r2−d .

where we used that r ≥ q1/2. In view of (4.42), this strict inequality yields
a contradiction unless k = 0. Thus, we proved that k = 0, i.e. |det N | > 0.
Now (4.44) also implies β−1

t;r ≥ |det N |. Hence, the upper bound for |det N |
in (4.42) holds as well.
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Finally, we shall prove (4.37). Since N is invertible, we can rewrite w1 ∧
. . . ∧ wd by

(DrQ U4t Q)

(
MN−1

1d

)
N (e1∧. . . ∧ ed )=(det N )(DrQ U4t Q)

(
MN−1

1d

)
e1∧. . . ∧ ed , (4.45)

i.e. we parametrized the subspace spanned by l1, . . . , ld . Introduce also the
2d×d matrix

W
def= (DrQU4t Q)

(
MN−1

1d

)
=
⎛
⎝r Q− 1

2+ (MN−1 − 4t Q)

r−1Q
1
2+

⎞
⎠

and note that WTW is a positive definite symmetric d × d matrix. Thus, there
exists an orthogonal matrix V ∈ O(d) such that D := V TWTWV is diagonal
with positive entries. Since (det V )(e1 ∧ . . .∧ed) = V (e1 ∧ . . .∧ed) it follows
that

‖W (e1∧ . . . ∧ ed )‖2 = ‖WV (e1 ∧ . . . ∧ ed )‖2

= 〈D(e1 ∧ . . . ∧ ed), (e1 ∧ . . . ∧ ed )〉 =
d∏

i=1

‖Dei‖ =
d∏

i=1

‖Wvi‖2,
(4.46)

where v1, . . . , vd denote the columns of V . Next observe that

max
1≤i≤d

‖Wvi‖ ≥ max
1≤i≤d

‖r Q− 1
2+ (MN−1 − 4t Q)vi‖ �d rq− 1

2 ‖MN−1 − 4t Q‖. (4.47)

Now let i0 be a subscript for which ‖Wvi‖ is maximal. Similar to the proof of
(4.44) we may write W (∧i �=i0vi ) = ∑

ωI,J eI ∧ eJ , where the sum is taken
over subsets I ⊂ {1, . . . , d} and J ⊂ {d + 1, . . . , 2d} with |I | + |J | = d − 1,
and find that

‖W (∧i �=i0vi )‖2 ≥∑|I |=0,|J |=d−1 ω
2
I,J =‖r−1Q

1
2+(∧i �=i0vi )‖2 ≥r−2(d−1)q−1|det Q|. (4.48)

Combining (4.45) together with (4.46)–(4.48) yields

αd(�t )
−1 =|det(N )| ‖Wvi0‖

∏
i �=i0‖Wvi‖

=|det(N )| ‖Wvi0‖ ‖W (∧i �=i0vi )‖
�d r−(d−2)q−1|det Q| 1

2 |det N | ‖MN−1 − 4t Q‖.
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Since (det N )N−1 is an integral matrix, the last line together with (4.42)
implies

min{‖M̄ − 4m t Q‖ : 0 < |m| ≤ β−1
t;r , m, M̄ integral} �d q r−2β−1

t;r ,

and, since Q is symmetric, we may take M̄ symmetric as well, which proves
(4.37).

5 Averages along translates of orbits of SO(2)

5.1 Application of geometry of numbers

In view of the bound (3.39) we need to estimate the error term Iθ , that
is (3.22). Proceeding as in (3.23) combined with the estimates |θv(t)| �d
|det Q|−1/4rd/2ψ(r, t)1/2 and ψ(r, t) �d αd(�t ), obtained in Lemma 3.3
respectively (4.14) of Corollary 4.5, leads to

Iθ �d rd/2 |det Q|−1/4 ‖̂ζ‖1

∫
|t |>q−1/2

0 r−1
|̂gw(t)|αd(�t )

1/2 dt, (5.1)

where �t denotes the lattice defined in (3.47) and gw the smoothed indicator
function of [a, b] with 0 < w < (b−a)/4, see Corollary 3.2. Since Lemma 7.2
provides estimates for ‖̂ζ‖1 in the case of both admissible and non-admissible
regions �, it remains to estimate the integral in (5.1). We shall start with
bounding this integral over an interval I of length at most 1/q. For this, we
introduce the maximum value over I of the αd -characteristic for the lattice�t
via

γI,β(r)
def= sup

{(
r−d αd(�t )

) 1
2 −β : t ∈ I

}
(5.2)

and the following family of lattices

�Q,t := dq1/2 u4t�Q, (5.3)

where �Q is as defined in (4.29). Here γI,β(r) depends on the Diophantine
properties of Q and tends to zero for growing r → ∞ by Lemma 4.11 for
irrational Q.

Lemma 5.1 Let r ≥ q1/2, 0 < β ≤ 1/2 and fix an interval I = [τ1, τ2] of
length at most 1/q. Then we have

∫
I
αd (�t )

1/2 |̂gw(t)| dt �d ĝI r
d
2 −β d γI,β (r)

1

q

∫ π

−π
α(dr∗ kθ �Q,4τ1 )

β dθ

2π
, (5.4)

123



Distribution of values of quadratic forms 905

where r∗ := r q−1/2 and ĝI := max{|̂gw(t)| : t ∈ I }.
Proof Using the trivial bound αd(�t ) ≤ rd−2β dγI,β(r)2αd(�t )

2β and esti-
mating |̂gw| by its maximum ĝI on I yields

∫
I
αd(�t )

1/2 |̂gw(t)| dt ≤ ĝI r
d
2 −d βγI,β(r)

∫
I
αd(�t )

β dt. (5.5)

Since the group D normalizes U, a computation shows that dr u4t =
dr u4(t−τ1)u4τ1 = dr∗ uτ dq1/2 u4τ1 , where τ := 4(t − τ1)q. Changing vari-
ables from t to τ we obtain in terms of the lattices �Q,s , defined in (5.3),

∫
I
αd (�t )

βdt=
∫ τ2
τ1

αd (dr∗ uτ dq1/2u4τ1�Q)
βdt� 1

q

∫ 4

0
αd (dr∗ uτ �Q,4τ1)

βdτ. (5.6)

Finally, we estimate the last average with the help of Lemma 4.7 by the average
over the group K = SO(2). Changing variables θ(s) = arctan(τ ), τ ∈ [0, 4],
and noting that |θ | < π and dτ = (1 + τ 2) dθ , we get by (4.31) of Lemma 4.7
that

∫ 4

0
αd (dr∗ uτ �Q,4τ1)

β dτ �
∫ 4

0
αd (dr∗ kθ(τ )�Q,4τ1)

β dτ

�
∫ π
−π
αd (dr∗ kθ �Q,4τ1)

β dθ

2π
.

Now note that αd(�) ≤ α(�) holds for any lattice � in R
2d . Thus, the last

inequality together with (5.5) and (5.6) completes the proof.

In the following paragraphs we shall develop explicit bounds for averages
over the group K of type

∫
K αd(dr k�)

β dk.

5.2 Operators Ag and functions τλ on SL(2, R)

Let G = SL(2,R). We consider the following two subgroups of G:

K = SO(2) = {kθ : 0 ≤ θ < 2π} and T =
{(

a b
0 a−1

)
: a > 0, b ∈ R

}
,

where kθ is defined in (4.26). According to the Iwasawa decomposition, any
g ∈ G can be uniquely represented as a product of elements from K and T,
that is

g = k(g)t (g), k(g) ∈ K, t (g) ∈ T.
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Now let

da
def=
(
a 0
0 a−1

)
for a > 0 and D+ = {da : a ≥ 1}.

According to the Cartan decomposition, we have

G = KD+K, g = k1(g)d(g)k2(g), g ∈ G, k1(g), k2(g) ∈ K, d(g) ∈ D+.

In this decomposition d(g) is determined by g, and if g /∈ K then k1(g) and
k2(g) are also determined by g up to a factor of ±1 on k1 and k2. It is clear
that ‖g‖ = ‖d(g)‖, where ‖ · ‖ denotes the operator norm induced by the
standard Euclidean norm on R

2. Note that, in the simple case g = da , this
norm is given by ‖da‖ = a. Since da is the conjugate of da−1 by kπ/2, we see
that g−1 ∈ KgK or equivalently, d(g) = d(g−1) for any g ∈ G. Therefore,
‖g‖ = ‖g−1‖, g ∈ G.

We say that a function f on G is left K-invariant (resp. right K-invariant,
resp. bi-K-invariant) if f (Kg) = f (g) (resp. f (gK) = f (g), resp.
f (KgK) = f (g)). Any bi-K-invariant function on G is completely deter-
mined by its restriction to D+. Hence for any bi-K-invariant function f on G,
there is a function f ∗ on [1,∞) such that f (g) = f ∗(‖g‖), g ∈ G.

For any λ ∈ R we define a character χλ of T by

χλ

(
a b
0 a−1

)
= a−λ

and the function ϕλ : G → R
+ by

ϕλ(g) = χλ(t (g)), g ∈ G.

The function ϕλ has the property

ϕλ(kgt) = χλ(t)ϕλ(g), g ∈ G, k ∈ K, t ∈ T, (5.7)

and it is completely determined by this property and the condition ϕλ(1) = 1.
For g ∈ G and a continuous action of G on a topological space X , we define

the operator Ag on the space of continuous functions on X by

(Ag f )(x) =
∫

K
f (gkx) dσ(k), x ∈ X, (5.8)
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where σ is the normalized Haar measure on K, or, using the parametrization
of K, by

(Ag f )(x) = 1

2π

∫ 2π

0
f (gkθ x) dθ, x ∈ X.

The operator Ag is a linear map into the space of left K-invariant functions on
X . If X = G and G acts on itself by left translations, then Ag commutes with
right translations. From these two remarks, or using a direct computation, we
get that Agϕλ has the property (5.7). Hence ϕλ is an eigenfunction for Ag with
the eigenvalue

τλ(g)
def= (Agϕλ)(1) =

∫
K
ϕλ(gk) dσ(k) =

∫
K
χλ(t (gk)) dσ(k). (5.9)

We see from (5.9) that τλ is obtained from ϕλ by averaging over right transla-
tions by elements of K. But ϕλ is left K-invariant and Ag commutes with right
translations. Hence the function τλ is bi-K-invariant and it is an eigenfunction
for Ag with the eigenvalue τλ(g), that is

(Agτλ)(h) = τλ(g)τλ(h) for all h ∈ G. (5.10)

We have that

ϕλ(g) = ‖ge1‖−λ, g ∈ G, e1 = (1, 0), (5.11)

where ‖·‖ denotes the usual Euclidean norm on R
2. Indeed

ϕλ(g) = χλ(t (g)) = ‖t (g)e1‖−λ = ‖k(g)t (g)e1‖−λ = ‖ge1‖−λ.

From (5.9) and (5.11) we get

τλ(g) =
∫
K
‖gke1‖−λ dσ(k) = 1

2π

∫ 2π

0
‖gk(θ)e1‖−λ dθ

= 1

2π

∫ 2π

0
‖g(cos θ, sin θ)‖−λ dθ =

∫
S1

‖gu‖−λ d�(u),

(5.12)

where S1 is the unit circle in R
2 and � denotes the normalized rotation invariant

measure on S1. One can easily see that ‖gu‖−2, g ∈ G, u ∈ S1, is equal to
the Jacobian at u of the diffeomorphism v �→ gv/‖gv‖ of S1 onto S1. On the
other hand, it follows from the change of variables formula that

∫
M

Jλf =
∫
M

J 1−λ
f −1 , λ ∈ R,
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908 P. Buterus et al.

where f : M → M is a diffeomorphism of a compact differentiable manifold
M and J f (resp. J f −1) denotes the Jacobian of f (resp. f −1). Now using (5.12)
we get

τλ(g) = τ2−λ(g−1) = τ2−λ(g), g ∈ G, λ ∈ R. (5.13)

The second equality in (5.13) is true because τλ is bi-K-invariant and g−1 ∈
KgK. Since, obviously, τ0(g) = 1, it follows that

τ2(g) = τ0(g) = 1. (5.14)

Since t−λ is a strictly convex function of λ for any t > 0, t �= 1, it follows
from (5.12) that τλ(g) is a strictly convex function of λ for any g ∈ G. From
this, (5.13) and (5.14) we deduce that

τη(g) < τλ(g) for any g /∈ K and 1 ≤ η < λ ≤ 2,

τη(g) < 1 and τλ(g) > 1 for any g /∈ K, 0 < η < 2, λ > 2, and (5.15)

τη(g) < τλ(g) for any g /∈ K, λ ≥ 2, 0 < η < λ. (5.16)

Since the function τλ(g) is bi-K-invariant, it depends only on the norm ‖g‖ of
g. Thus, we can write

τλ(g) = τ ∗
λ (‖g‖), g ∈ G, (5.17)

where for a ≥ 1

τ ∗
λ (a)=τλ(da)=

∫
K
‖dake1‖−λ dσ(k)= 1

2π

∫ 2π

0

dθ

(a2 cos2 θ+a−2 sin2 θ)λ/2
. (5.18)

In view of (5.10) and the definition of Ag, we get

∫
K
τ ∗
λ (‖gkda‖) dσ(k) = τλ(g)τ

∗
λ (a), g ∈ G, a ≥ 1. (5.19)

Since ‖g‖ = ‖g−1‖ for all g ∈ G,

a

‖g‖ ≤ ‖gkda‖ ≤ a‖g‖

for all k ∈ K and g ∈ G. From this, (5.15) and (5.19) we deduce that, for any
λ > 2, the continuous function τ ∗

λ (a), a ≥ 1, does not have a local maximum.
Hence τ ∗

λ is strictly increasing for all λ > 2 or, equivalently,

τλ(g) < τλ(h) if ‖g‖ < ‖h‖, g, h ∈ G, λ > 2. (5.20)
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Using (5.13) and (5.18) yields

τ ∗
λ (a) = τ ∗

2−λ(a) = 1

2π

∫ 2π

0
(a2 cos2 θ + a−2 sin2 θ)

λ
2 −1 dθ. (5.21)

Since a2 cos2 θ ≤ a2 cos2 θ + a−2 sin2 θ ≤ a2, we deduce from (5.21) the
estimates

c(λ)aλ−2 ≤ τ̂λ(a) ≤ aλ−2, a ≥ 1, λ ≥ 2, (5.22)

where

c(λ)= 1

2π

∫ 2π

0
|cos θ |λ−2 dθ= 2

π

∫ π/2

0
cos(θ)λ−2 dθ= B

(
λ−1

2 , 1
2

)
π

= �(λ−1
2 )

�( λ2 )
√
π
, (5.23)

B denotes the beta function and we use the identity B(x, y) = �(x)�(y)/�(x+
y) as well as �(1/2) = √

π . From (5.21) we also conclude that for any λ > 2

the ratio
τ∗
λ (a)
aλ−2 is a strictly decreasing function of a ≥ 1 and

lim
a→∞

τ ∗
λ (a)

aλ−2 = c(λ). (5.24)

Remark 5.2 The function τλ can be viewed as a spherical function on the
upper-half plane H (see [29] Chapter IV Proposition 2.9) and all spherical
functions on H are of this form for some λ ∈ C. In particular, it is not difficult
to see that τλ can also be represented as

τλ(g) = 1

2π

∫ 2π

0

(
cosh(2 log‖g‖)+ sinh(2 log‖g‖) sin(θ)

)λ/2−1dθ.

Moreover, for Re(λ) > 1 it is well-known that c(λ), which is usually referred
to as Harish-Chandra’s c-function, as defined in (5.24) exists and its value is
given by (5.23) (see [29] Introduction Theorem 4.5 or [38] Chapter V §5).

Lemma 5.3 Let g ∈ G, g /∈ K, λ > 2, 0 < η < λ, b ≥ 0, B > 1, and let f
be a left K-invariant positive continuous function on G. Assume that

Ag f ≤ τλ(g) f + bτη (5.25)

and that

f (yh) ≤ B f (h) if h, y ∈ G and ‖y‖ ≤ ‖g‖. (5.26)
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Then for all h ∈ G

(Ah f )(1) =
∫

K
f (hk) dσ(k) ≤ sτλ(h),

where

s = B

(
f (1)+ b

τλ(g)− τη(g)
)
. (5.27)

Proof We define

fK(h)
def=
∫

K
f (hk) dσ(k), h ∈ G.

Since Ag commutes with right translations, and τη is right K-invariant, it
follows from (5.25) that Ag fK ≤ τλ(g) fK + bτη. If h and y are as in (5.26),
then f (yhk) ≤ B f (hk) for every k ∈ K and therefore fK(yh) ≤ B fK(h). On
the other hand, it is clear that

fK(h) = (Ah fK)(1) = (Ah f )(1).

Thus we can replace f by fK and assume that f is bi-K-invariant. Then we
have to prove that f ≤ sτλ. Assume the contrary, then f (h) > s′τλ(h) for
some h ∈ G and s′ > s. In view of (5.16) and (5.27), s′ > s ≥ B f (1). From
this, (5.20) and (5.26) we get that ‖h‖ > ‖g‖ and

f (yh) >
s′

B
τλ(yh) if ‖y‖ ≤ ‖g‖ and ‖yh‖ ≤ ‖h‖. (5.28)

Using the Cartan decomposition, we see that any x ∈ G with ‖h‖
‖g‖ ≤ ‖x‖ ≤ ‖h‖

can be written as x = k1yhk2, where k1, k2 ∈ K, ‖y‖ ≤ ‖g‖ and ‖yh‖ ≤ ‖h‖.
But the functions f and τλ are bi-K-invariant. Therefore it follows from (5.28)
that

f (x) >
s′

B
τλ(x) if

‖h‖
‖g‖ ≤ ‖x‖ ≤ ‖h‖. (5.29)

Let

a1
def= s′

B
> f (1)+ b

τλ(g)− τη(g) , a2
def= b

τλ(g)− τη(g) , and

ω
def= f − a1τλ + a2τη.
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In view of (5.10) and (5.25), we see that

Agω − τλ(g)ω = Ag( f − a1τλ + a2τη)− τλ(g)( f − a1τλ + a2τη)

= [Ag f −τλ(g) f ]−a1[Agτλ−τλ(g)τλ
]+ a2

[
Agτη−τλ(g)τη

]
≤ bτη + a2

[
τη(g)τη − τλ(g)τη

] = 0.

(5.30)

Since τλ(1) = τη(1) = 1, we have

ω(1) = f (1)− a1 + a2 < 0. (5.31)

It follows from (5.16) that a2 ≥ 0. Using additionally (5.27) and (5.29), we
get that

ω(x) = f (x)− a1τλ(x)+ a2τη(x) ≥ f (x)− a1τλ(x)

>

(
s′

B
− a1

)
τλ(x) = 0 if

‖h‖
‖g‖ ≤ ‖x‖ ≤ ‖h‖. (5.32)

Let v ∈ G, satisfying ‖v‖ ≤ ‖h‖, be a point where the continuous function ω
attains its minimum on the set {x ∈ G : ‖x‖ ≤ ‖h‖}. It follows from (5.31)
and (5.32) that

ω(v) < 0 and ‖v‖ ≤ ‖h‖
‖g‖ .

Because of τλ(g) > 1 and ‖gkv‖ ≤ ‖g‖‖v‖ for all k ∈ K we conclude

(Agω)(v) =
∫

K
ω(gkv) dσ(k) ≥ ω(v) > τλ(g)ω(v).

Thus, we get a contradiction with (5.30).

As a special case (η = 2 and b = 0) of Lemma 5.3, we have the following

Corollary 5.4 Let g ∈ G, g /∈ K, λ > 2, B > 1, and let f be a left K-
invariant positive continuous function on G satisfying the inequality (5.26).
Assume that

Ag f ≤ τλ(g) f.

Then for all h ∈ G

(Ah f )(1) =
∫

K
f (hk) dσ(k) ≤ B f (1)τλ(h).
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Lemma 5.5 Let g ∈ G, g /∈ K, 2 < λ < μ, B > 1, M > 1, n ∈ N
+ and

let fi , 0 ≤ i ≤ n, be left K-invariant positive continuous functions on G. We
denote min{i, n − i} by ī and∑0≤i≤n fi by f . Assume that

fi (yh) ≤ B fi (h) if 0 ≤ i ≤ n, h, y ∈ G and ‖y‖ ≤ ‖g‖,
Ag fi ≤ τλ(g) fi + M max

0< j≤ī

√
fi− j fi+ j , 0 ≤ i ≤ n, (5.33)

so in particular Ag f0 ≤ τλ(g) f0 and Ag fn ≤ τλ(g) fn. Then there is a
constant C = C(g, λ, μ, B,M, n) such that for all h ∈ G,

(Ah f )(1) =
∫

K
f (hk) dσ(k) ≤ C f (1)τμ(h). (5.34)

Proof For any 0 < ε ≤ 1 and 0 ≤ i ≤ n we define

fi,ε = εq(i) fi where q(i)
def= i(n − i).

Using the inequality (5.33) for all i , 0 ≤ i ≤ n, we see that

Ag fi,ε = εq(i)Ag fi ≤ εq(i)τλ(g) fi + εq(i)M max
0< j≤ī

√
ε−q(i− j) fi− j,εε−q(i+ j) fi+ j,ε

= τλ(g) fi,ε + M max
0< j≤ī

εq(i)−
1
2 [q(i− j)+q(i+ j)]√ fi− j,ε fi+ j,ε.

Direct computation shows that

q(i)− 1

2
[q(i − j)+ q(i + j)] = j2.

Hence for all i , 0 ≤ i ≤ n,

Ag fi,ε ≤ τλ(g) fi,ε + εM max
0< j≤ī

√
fi− j,ε fi+ j,ε. (5.35)

Let fε := ∑
0≤i≤n fi,ε. Summing (5.35) over all i , 0 ≤ i ≤ n, and using the

inequalities fε >
√

fi− j,ε fi+ j,ε, which are satisfied for any 1 ≤ i ≤ n − 1,
0 < j ≤ ī , we get

Ag fε=
∑

0≤i≤n

Ag fi,ε ≤ τλ(g) fε+εM(n − 1) fε = (τλ(g)+ εM(n − 1)) fε. (5.36)

Write

ε0 = min

{
1,
τμ(g)− τλ(g)
M(n − 1)

}
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in order to get from (5.36) that

Ag fε0 ≤ τμ(g) fε0 .

Since fε also satisfies (5.26), we can apply Corollary 5.4 to fε0 and get that

(Ah f )(1) < ε
−n2

0 (Ah fε0)(1) ≤ ε−n2

0 fε0(1)τμ(h) ≤ ε−n2

0 B f (1)τμ(h)

for all h ∈ G. Hence (5.34) is true with C = ε−n2

0 B.

Proposition 5.6 Let g ∈ G, g /∈ K, d ∈ N
+, B > 1, M > 1. For every

0 ≤ i ≤ 2d, let λi ≥ 2 and let fi be a left K-invariant positive continuous
function on G. We denote min{i, 2d − i} by ī and∑0≤i≤2d fi by f . Assume
that

λd > λi for any i �= d.

fi (yh) ≤ B fi (h) if 0≤ i ≤2d, h, y ∈ G and ‖y‖≤‖g‖, (5.37)

Ag fi ≤ τλi (g) fi + M max
0< j≤ī

√
fi− j fi+ j , 0 ≤ i ≤ 2d, (5.38)

in particular,

Ag f0 ≤ τλ0(g) f0 and Ag f2d ≤ τλ2d (g) f2d .

Then, using the notation� (which until the end of the proof of this proposition
means that the left hand side is bounded from above by the right-hand side
multiplied by a constant which depends on g, λ0, . . . , λ2d , B and M, and does
not depend on f0, . . . , f2d), we have that

(a) For all h ∈ G and 0 ≤ i ≤ 2d, i �= d,

(Ah fi )(1) =
∫

fi (hk) dσ(k) � f (1)τη(h),

where

η=λd − 3−(d+1)(λd−η′)<λd , η′ = max{λi : 0 ≤ i ≤ 2d, i �= d}. (5.39)

(b) For all h ∈ G

(Ah fd)(1) =
∫

K
fd(hk) dσ(k) � f (1)τλd (h).
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(c) For all h ∈ G

(Ah f )(1) =
∫

K
f (hk) dσ(k) � f (1)‖h‖λd−2.

Proof (a) Let

fi,K(h)
def=
∫

K
fi (hk) dσ(k), h ∈ G.

The Cauchy-Schwarz inequality implies

∫
K

√
fi− j (hk) fi+ j (hk) dσ(k) ≤

√∫
K

fi− j (hk) dσ(k)

√∫
K

fi+ j (hk) dσ(k)

=
√

fi− j,K(h) fi+ j,K(h).

Hence

∫
K

max
0< j≤ī

√
fi− j (hk) fi+ j (hk) dσ(k) ≤

∑
0< j≤ī

∫
K

√
fi− j (hk) fi+ j (hk) dσ(k)

≤
∑

0< j≤ī

√
fi− j,K(h) fi+ j,K(h)

≤ d max
0< j≤ī

√
fi− j,K(h) fi+ j,K(h).

On the other hand, we have

(Ag fi,K)(h) =
∫

K
(Ag fi )(hk) dσ(k)

and according to (5.38)

(Ag fi )(hk) ≤ τλi (g) fi (hk)+ M max
0< j≤ī

√
fi− j (hk) fi+ j (hk).

Therefore

Ag fi,K ≤ τλi (g) fi,K + dM max
0< j≤ī

√
fi− j,K fi+ j,K.

But fK(1) = f (1),

fi,K(h) = (Ah fi,K)(1) = (Ah fi )(1)
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and, as easily follows from (5.37), we have

fi,K(yh) ≤ B fi,K(h)

if h, y ∈ G, and ‖y‖ ≤ ‖g‖. Thus, replacing fi by fi,K and M by dM , we
can assume that the functions fi are bi-K-invariant. Then we have to prove
that

fi � f (1)τη for all 0 ≤ i ≤ 2d, i �= d. (5.40)

Let η′ = max{λi : 0 ≤ i ≤ 2d, i �= d}, as in (5.39). We define μi ,
0 ≤ i ≤ 2d, by

μd = λd + 3−(d+1)(λd − η′) and (5.41)

μi = μd − 3−ī (λd − η′), 0 ≤ i ≤ 2d, i �= d. (5.42)

Since (5.16) implies τλi (g) ≤ τμd (g), it follows from (5.16) and Lemma 5.5
that

fi � f (1)τμd , 0 ≤ i ≤ 2d. (5.43)

One can easily check that η > μi > λi ≥ 2 and therefore τη ≥ τμi for all
0 ≤ i ≤ 2d, i �= d. Thus, to prove (5.40), it is enough to show that

fi � f (1)τμi for all 0 ≤ i ≤ 2d, i �= d. (5.44)

We will prove (5.44) for i ≤ d − 1 by using induction in i ; the proof in the
case i ≥ d + 1 is similar. For i = 0 we have τμ0(g) > τλ0(g) because of
(5.16) and thus it is enough to use Corollary 5.4. Let 1 ≤ m ≤ d − 1 and
assume that (5.44) is proved for all i < m. Using (5.43) for all 0 < j ≤ m
we find that

√
fm− j fm+ j � f (1)

√
τμm− j τμd ≤ f (1)

√
τμm−1τμd � f (1)τ(μm−1+μd )/2. (5.45)

Note that the second inequality in (5.45) follows from (5.16) and (5.42),
and the third one follows from (5.17) and (5.22).
Combining (5.38) and (5.40) we get

Ag fm ≤ τλm (g) fm + C f (1)τ(μm−1+μd )/2,

whereC � 1. On the other hand, we have λm < μm and (μm−1+μd)/2 <
μm by (5.41) and (5.42). Now, to prove that fm � f (1)τμm , it remains to
apply Lemma 5.3 combined with (5.16).
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(b) As in the proof of (a), we can assume that the functions fi are bi-K -
invariant. Then we get from (5.38) and (5.40) that

Ag fd ≤ τλd fd + Df (1)τη,

where D � 1. Since η < λd , Lemma 5.3 implies that fd � f (1)τλd
which proves (b).
(c) Follows from (a), (b), (5.16), (5.17) and (5.22).

5.3 Quasinorms and representations of SL(2, R)

We say that a continuous function v �→ |v| on a real topological vector space
V is a quasinorm if it satisfies the following properties

(i) |v| ≥ 0 and |v| = 0 if and only if v = 0,
(ii) |λv| = |λ|·|v| for all λ ∈ R and v ∈ V .

If V is finite dimensional, then any two quasinorms on V are equivalent in the
sense that their ratio lies between two positive constants.

Lemma 5.7 Let ρ be a (continuous) representation of G = SL(2,R) in a real
topological vector space V , let | · | be a ρ(K)-invariant quasinorm on V and
let v ∈ V, v �= 0, be an eigenvector for ρ corresponding to the character
χ−r , r ∈ R, that is

ρ

(
a b
0 a−1

)
v = arv.

Then for any g ∈ G and β ∈ R

|ρ(g)v|−β = ϕβr (g)|v|−β (5.46)

and
∫

K

dσ(k)

|ρ(gk)v|β = τβr (g)|v|−β. (5.47)

Proof Using the K-invariance of | · | we get that

|ρ(g)v|−β = |ρ(k(g))ρ(t (g))v|−β = |ρ(t (g))v|−β = |χ−r (t (g))v|−β = χβr (t (g))|v|−β
= ϕβr (g)|v|−β .

The equality (5.47) follows from (5.46) and from the definition of τβr (g).
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Let ‖z‖ denote the norm of z ∈ C
2 corresponding to the standard Hermitian

inner product on C
2, that is

‖z‖2 = ‖x‖2 + ‖y‖2 where z = x + iy, x, y ∈ R
2.

Lemma 5.8 For any z ∈ C
2, z �= 0, g ∈ G and β > 0, we have

F(z) = Fg,β(z)
def= ‖z‖β

∫
K

dσ(k)

‖gkz‖β ≤ τβ(g). (5.48)

Proof Since the measure σ on K is translation invariant, we have

F(kz) = F(z) for any k ∈ K. (5.49)

Also for all λ ∈ C, λ �= 0, and z ∈ C
2, z �= 0,

F(λz) = F(z), (5.50)

because ‖λv‖ = |λ|·‖v‖, v ∈ C
2, and because G = SL(2,R) acts C-linearly

on C
2. Any non-zero vector x ∈ R

2 can be represented as x = λke1 with
λ ∈ R, k ∈ K, e1 = (1, 0). Then, using (5.12) from Sect. 5.2, we get from
(5.49) and (5.50) that

F(x) = F(e1) = τβ(g) for all x ∈ R
2, x �= 0. (5.51)

Let now z = x + iy, x, y ∈ R
2, z �= 0. We write eiθ z = xθ + iyθ , xθ , yθ ∈

R
2. Then ‖xθ‖‖yθ‖ is a continuous function of θ with values in R≥0 ∪ {∞}. But

eiπ/2z = i z = −y + i x and therefore ‖xπ/2‖
‖yπ/2‖ =

(‖x0‖‖y0‖
)−1

. Hence there exists

θ such that ‖xθ‖ = ‖yθ‖. Replacing then z by eiθ z and using (5.50) we can
assume that ‖xθ‖ = ‖yθ‖. Now using the convexity of the function t → t−β/2,
t > 0, and the identity (5.51) we get that

∫
K

dσ(k)

‖gkz‖β =
∫

K

dσ(k)

(‖gkx‖2 + ‖gky‖2)β/2

≤ 2−β/2

2

[∫
K

dσ(k)

‖gkx‖β +
∫

K

dσ(k)

‖gky‖β
]

= 2−β/2

2

[
τβ(g)

‖x‖β + τβ(g)

‖y‖β
]

= 2−β/2τβ(g)
1

‖x‖β = 2−β/2τβ(g) · 1

‖z‖β · 2−β/2 = τβ(g)

‖z‖β .

(5.52)

Clearly the last inequality (5.52) implies (5.48).

Let us recall some basic facts of the finite-dimensional representation the-
ory of G = SL(2,R). Let W be a finite-dimensional complex vector space,
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918 P. Buterus et al.

there is a correspondence between complex-linear representations of sl(2,C)
on W and representations of G on W , under which invariant subspaces and
equivalences are preserved (see [32] Proposition 2.1). It is well-known that
any finite-dimensional representation of sl(2,C) is fully reducible, that is, it
can be decomposed into the direct sum of irreducible representations (see [33]
Corollary 1.70). Moreover, for each m ≥ 1 there exists up to equivalence
a unique irreducible complex-linear representation of sl(2,C) on a complex
vector space of dimension m (see [33] Corollary 1.63). Hence, any finite-
dimensional representation of G is fully reducible and any two irreducible
finite-dimensional representations of the same degree must be isomorphic. Let
Pm denote the (m+1)-dimensional complex vector space of complex polyno-
mials in two variables homogeneous of degreem, and letψm denote the regular
representation of G = SL(2,R) on Pm defined by (ψm(g)P)(z) = P(g−1z),
for g ∈ G, z ∈ C

2 and P ∈ Pm . It is well-known that the representation
ψm is irreducible for any m (see [34] Example 2.7.11) and hence it is, up to
isomorphism, the unique irreducible finite-dimensional representation of G of
degree m. We define

I (ρ) = {m ∈ N
+ : ψm is isomorphic to a subrepresentation of ρ }.

Proposition 5.9 Let ρ be a representation of G = SL(2,R) on a finite-
dimensional space W. Then there exists a ρ(K)-invariant quasinorm | · | =
| · |ρ on W such that for any w ∈ W, w �= 0, g ∈ G and β > 0,

∫
K

dσ(k)

|ρ(gk)w|β ≤ max
m∈I (ρ){τβm(g)}

1

|w|β .

Proof Let W = ⊕n
i=1 Wi be the decomposition of W into the direct sum of

ρ(G)-irreducible subspaces, and let πi : W → Wi denote the natural projec-
tion. Suppose that we constructed for each i a K-invariant quasinorm |·|i = |·|ρi
on Wi such that for any w ∈ Wi , w �= 0, g ∈ G, and β > 0,

∫
K

dσ(k)

|ρi (gk)w|βi
≤ τβm(i)(g) 1

|w|βi
, (5.53)

where ρi denotes the restriction of ρ to Wi and m(i) ∈ I (ρ) is defined by the
condition that ψm(i) is isomorphic to ρi . Then we define |w| = |w|ρ by

|w| = max
1≤i≤n

|πi (w)|i , w ∈ W. (5.54)
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Clearly | · |ρ is a K-invariant quasinorm. Let us fix now w ∈ W, w �= 0. Then

∫
K

dσ(k)

|ρ(gk)w|β ≤ min
1≤i≤n

∫
K

dσ(k)

|πi (ρ(gk)w)|βi
= min

1≤i≤n

∫
K

dσ(k)

|ρi (gk)πi (w)|βi
≤ min

1≤i≤n
τβm(i)(g)

1

|πi (w)|βi
≤ max

m∈I (ρ){τβm(g)}
1

|w|β .

Thus, it is enough to prove the proposition for representations ψm . For this,
let P ∈ Pm, P �= 0. We consider P as a polynomial on C

2 and decompose P ,
using the fundamental theorem of algebra, into the product of m linear forms

P = �1 · . . . · �m, where �i (z1, z2) = ai z1 + bi z2, ai , bi , z1, z2 ∈ C.

There is a natural K-invariant norm on the space of linear forms on C
2:

‖�‖2 = |a|2 + |b|2, �(z1, z2) = az1 + bz2.

Now we define a quasinorm on Pm by the equation

|P| = ‖�1‖ · . . . · ‖�m‖. (5.55)

This definition is correct because the factorization (5.55) is unique up to the
order of factors and the multiplication of �i , 1 ≤ i ≤ n, by constants. We
denote by ψ̃1 the extension of ψ1 to the space of linear forms on G. It is
isomorphic to the standard representation of G on C

2. Then using Lemma 5.8
and the generalized Hölder inequality, we get that

∫
K

dσ(k)

|ψm(gk)P|β =
∫

K

dσ(k)∏m
i=1‖ψ̃1(gk)�i‖β

≤
m∏
i=1

(∫
K

dσ(k)

‖ψ̃1(gk)�i‖βm
)1/m

≤
m∏
i=1

(
τβm(g)

‖�i‖βm
)1/m

= τβm(g)

|P|β .

(5.56)

Since I (ψm) = {m}, (5.56) implies (5.53) for ρ = ψm .

We recall from Sect. 5.2, see (5.15) and (5.16), that τμ(g) < 1 and τη(g) <
τλ(g) for any g /∈ K, 0 < μ < 2, λ ≥ 2 and 0 < η < λ. Using this, we deduce
from the previous Proposition 5.9 the following corollary.

Corollary 5.10 Let ρ be a representation of G = SL(2,R) in a finite dimen-
sional space W, and let m be the largest number in I (ρ). Then there exists a
ρ(K)-invariant quasinorm | · | = | · |ρ on W such that
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(i) if β > 0 and βm ≥ 2 then for any w ∈ W, w �= 0, and g ∈ G

∫
K

dσ(k)

|ρ(gk)w|β ≤ τβm(g) 1

|w|β ,

(ii) if β > 0 and βm < 2 then for any w ∈ W, w �= 0, and g ∈ G, g /∈ K,

∫
K

dσ(k)

|ρ(gk)w|β <
1

|w|β .

5.4 Functions αi on the space of lattices and estimates for Ahαi

Let ρ be a representation of G = SL(2,R) on R
n and for each 1 ≤ i ≤ n

let | · |i be a (∧iρ)(K)-invariant quasinorm on the exterior product ∧i
R
n .

Throughout this section the underlying quasinorms in the definition of the
lattice functions αi and α are taken to be with respect to this particular choice
of quasinorms (see (4.2) and (4.3)). For every compact subset A ⊂ G note that

sup

{ |(∧iρ)(h)v|i
|v|i : h ∈ A, v ∈ ∧i

R
n, v �= 0

}

= sup{|(∧iρ)(h)v|i : h ∈ A, v ∈ ∧i
R
n, |v|i = 1}

is finite for every i , 1 ≤ i ≤ n. Hence, if we fix g ∈ G, g /∈ K, then there
exists some B > 1 such that for any i , 1 ≤ i ≤ n, and v ∈ ∧i

R
n , v �= 0,

B−1 <
|(∧iρ)(y)v|i

|v|i < B if y ∈ G and ‖y‖ ≤ ‖g‖, (5.57)

where ‖h‖ = ‖h−1‖ denotes the norm of h ∈ G = SL(2,R) with respect
to the standard Euclidean norm on R

2. Now, let � be a lattice in R
n and L a

�-rational subspace. For any h ∈ SL(2,R) observe that hL is an h�-rational
subspace and if v1, . . . , vi is a basis of � ∩ L then hv1, . . . , hvi is a basis of
h� ∩ hL . This observation together with (5.57) implies that

B−1 <
dy�(yL)

d�(L)
< B if y ∈ G and ‖y‖ ≤ ‖g‖. (5.58)

Hence, for any i ∈ {0, . . . , n} it follows that

αi (y�) < Bαi (�) if y ∈ G and ‖y‖ ≤ ‖g‖. (5.59)
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For any β > 0 and 1 ≤ i ≤ n we define the functions Fi,β on ∧i
R
n\{0} by

Fi,β(w)
def=
∫
K

|w|βi
|(∧iρ)(gk)w|βi

dσ(k), w ∈ ∧i
R
n, w �= 0.

It is clear that the functions Fi,β are continuous and that Fi,β(λw) = Fi,β(w)
for any λ ∈ R, λ �= 0. Let c0,β := 1 and for 1 ≤ i ≤ n

ci,β
def= sup{Fi,β (w) : w ∈ ∧i

R
n, w �= 0}=sup{Fi,β (w) : w ∈ ∧i

R
n, |w|i =1}. (5.60)

We note that cn,β = 1, since the image of any continuous homomorphism
SL(2,R) → GL(n,R) is contained in SL(n,R) and thus |(∧nρ)(gk)w|n =
|det(∧nρ(gk))||w|n = |w|n .

Lemma 5.11 For any i , 0 ≤ i ≤ n,

Agα
β
i ≤ ci,βα

β
i + CβB2β max

0< j≤ī

√
α
β
i− jα

β
i+ j , (5.61)

where ī = min{i, n − i}, the constant C ≥ 1 is from Lemma 4.1 and the
operator Ag is defined by (5.8) from Sect. 5.2.

Proof Let � be a lattice in R
n . We have to prove that

∫
K
αi (gk�)

β dσ(k) ≤ ci,βαi (�)
β + Cβ B2β max

0< j≤ī

√
αi− j (�)

βαi+ j (�)
β . (5.62)

According to Remark 2.1 there exists a�-rational subspace L of dimension i
such that

1

d�(L)
= αi (�). (5.63)

Let us denote the set of�-rational subspaces M of dimension i with d�(M) <
B2d�(L) by i . For a�-rational i-dimensional subspace M /∈  i we get from
(5.58) that

dgk�(gkM) > dgk�(gkL).

If  i = {L}, then it follows from this and the definitions of αi and ci,β that

∫
K
αi (gk�)

β dσ(k) ≤ ci,βαi (�)
β. (5.64)
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Assume now that i �= {L}. Let M ∈  i , M �= L . Then dim(M+L) = i+ j ,
0 < j ≤ ī . Now we obtain by (5.58), (5.63) and Lemma 4.1 for any k ∈ K
that

αi (gk�) < Bαi (�) = B

d�(L)
≤ B2

√
d�(L)d�(M)

≤ CB2

√
d�(L ∩ M)d�(L + M)

≤ CB2
√
αi− j (�)αi+ j (�).

Hence, if  i �= {L},
∫

K
αi (gk�)

β dσ(k) ≤ CβB2β max
0< j≤ī

√
αi− j (�)βαi+ j (�)β. (5.65)

Combining (5.64) and (5.65), we get (5.62).

Theorem 5.12 Let d ∈ N
+ and let ρd be a representation of G = SL(2,R)

isomorphic to the direct sum of d copies of the standard 2-dimensional rep-
resentation. Let β be a positive number such that βd > 2. Then there is a
constant R, depending only on β and the choice of the K-invariant quasi-
norms | · |i involved in the definition of αi , such that for any h ∈ G and any
lattice � in R

2d

(Ahα
β)(�) =

∫
K
α(hk�)β dσ(k) ≤ Rα(�)β‖h‖βd−2.

Proof As in Sect. 5.3, we define for a finite dimensional representation ρ of
G

I (ρ) = {m ∈ N
+ : ψm is isomorphic to a subrepresentation of ρ},

where ψm denotes the regular representation of G in the space of complex
homogeneous polynomials in two variables homogeneous of degree m. Let
mi be the largest number in I (∧iρd), 1 ≤ i ≤ 2d. It is well known that

mi = ī
def= min{i, 2d − i}. (5.66)

We fix g ∈ G, g /∈ K. It follows from (5.66) and from Corollary 5.10 that
we can choose quasinorms | · |i on ∧i

R
2d in such a way that for w ∈ ∧i

R
2d ,

w �= 0,

∫
K

|w|βi
|(∧iρd)(g)w|βi

dσ(k) ≤
{
τβ ī (g) if β ī ≥ 2

1 if β ī < 2.
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Hence

ci,β ≤ τβ ī (g) if β ī ≥ 2 and ci,β ≤ 1 if β ī < 2. (5.67)

where ci,β , 1 ≤ i ≤ 2d, is defined by (5.60) and c0,β = 1. As a remark, we
notice that ci,β = τβ ī (g) if β ī ≥ 2.

According to Lemma 5.11, the functions αβi , 0 ≤ i ≤ 2d, satisfy the
following system of inequalities

Agα
β
i ≤ ci,βα

β
i + CβB2β max

0< j≤ī

√
α
β
i− jα

β
i+ j . (5.68)

Let

λi
def= max{2, β ī}, 0 ≤ i ≤ 2d. (5.69)

Since τ2(g) = 1, see (5.14) in Sect. 5.2, it follows from (5.67)-(5.69) that

Agα
β
i ≤ τλi (g)αβi + CβB2β max

0< j≤ī

√
α
β
i− jα

β
i+ j , 0 ≤ i ≤ 2d. (5.70)

Now we fix a lattice � in R
2d and define functions fi , 0 ≤ i ≤ 2d, on G by

fi (h) = αi (h�)
β, h ∈ G.

Then it follows from (5.70) that

Ag fi ≤ τλi (g) fi + CβB2β max
0< j≤ī

√
fi− j fi+ j , 0 ≤ i ≤ 2d.

On the other hand, in view of (5.59),

fi (yh) ≤ Bβ fi (h), if 0 ≤ i ≤ 2d, h, y ∈ G and ‖y‖ ≤ ‖g‖.
Since βd > 2, we have that βd = λd > λi for any i �= d. Now we can apply
Proposition 5.6 (c) in order to get that

(Ahα
β)(�) < (Ah

∑
0≤i≤2d

α
β
i )(�) = (Ah

∑
0≤i≤2d

fi )(1) � (
∑

0≤i≤2d

fi (1))‖h‖λd−2

= (
∑

0≤i≤2d

αi (�)
β)‖h‖λd−2 ≤ 2dα(�)β ‖h‖βd−2.

(5.71)

The inequality (5.71) proves the theorem for our specific choice of the quasi-
norms | · |i . Now it remains to notice that any two quasinorms on ∧i

R
n are

equivalent.
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6 Proofs of Theorems 2.2 and 1.9

In this section we shall prove our main theorem, giving effective estimates on
the lattice remainder. But, before doing this, we have to establish mean-value
estimates for the αd -characeristics of�t by applying Theorem 5.12 combined
with Lemma 5.1.

Corollary 6.1 Let r ≥ q1/2, I = [t0, t0 + 1] with t0 ∈ R, 0 < β ≤ 1/2 with
βd > 2 and ĝI := max{|̂gw(t)| : t ∈ I }. Using the notation (5.2), we have

∫
I
αd(�t )

1/2 |̂gw(t)| dt �β,d q |det Q|−β/2 ĝI γI,β(r)r d
2 −2, (6.1)

where γI,β(r) = 1 if β = 1/2. Note that we need at least d ≥ 5.

Based on our variant of Weyl’s inequality (see Lemma 3.3 and Corollary 4.5)
the α-characteristic enters with a power 1/2 in (6.1). While saving a maximum
of the α-characeristic, it will enter still with an exponent 0 < β ≤ 1/2 for its
average (compare Lemma 5.1). Since the crucial averaging recursion (Theo-
rem 5.12) fails unless βd > 2, the proof essentially needs d > 4 and thus
d ≥ 5.

Proof In order to apply Lemma 5.1, we cover I by intervals I j = [s j , s j+1]
of length at most 1/q, where s j = t0 + j/q with j ∈ J := {0, . . . , �q�}. This
implies

∫
I
αd (�t )

1/2 |̂gw(t)| dt ≤ r
d
2 −βd ĝI γI,β (r)

1

q

∑
j∈J

∫ π

−π
α(dr∗ kθ �Q,s j )

β dθ

2π

� r
d
2 −βd ĝI γI,β (r)max

j∈J

∫ π

−π
α(dr∗ kθ �Q,s j )

β dθ

2π
.

(6.2)

Now, we shall apply Theorem 5.12 with h = dr∗ , r∗ = r/q1/2 and the lattices
�Q,s j = dq1/2 us j�Q , as defined in (5.3), and obtain

max
j∈J

∫ π

−π
α(dr∗ kθ �Q,s j )

β dθ

2π
�β,d max

j∈J
α(�Q,s j )

β‖dr∗‖βd−2

�d rβd−2 (q dβQ
)
,

where we have used ‖dr∗‖ = r∗ = r/q1/2 and (4.18) in form of

α(�Q,s j ) �d αd(�Q,s j ) �d |det Q|−1/2qd/2.

Note that we have applied Corollary 4.5 with r = q1/2 and t = s j in order
to get α(�Q,s j ) �d αd(�Q,s j ). Finally, in view of (6.2), this concludes the
proof of (6.1).
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In order to bound the lattice point remainder for ‘wide shells’, that is b−a >
q1/2, we need to extend the averaging result, established in Corollary 6.1, for
small values of t . To do this, we recall the bound

|̂gw(t)| � min{|b − a|, |t |−1} exp{−|tw|1/2} (6.3)

for the integrand ĝw(t) in (5.4), provided that 0 < w < (b − a)/4. Note that
it is of size b− a for |t | ≤ 1/(b− a) and changes rapidly if |b− a| > 1 grows
with r .

Lemma 6.2 If r ≥ q1/2, βd > 2 and 0 < w < |b − a|/4, then
∫ q−1/2

q−1/2
0 r−1

αd (�t )
1/2 |̂gw(t)| dt �β,d qβd+1/2 |det Q|−β/2 γI,β (r)r

d
2 −2, (6.4)

where I = [q−1/2
0 r−1, q−1/2].

Proof. Proceeding first as in the proof of Lemma 5.1 and changing variables
to s = t−1 it is plain to see that

∫ q−1/2

q−1/2
0 r−1

αd (�t )
1/2 |̂gw(t)| dt �d γI,β (r) r

d/2−βd
∫ rq1/2

0

q1/2
αd (dr u4s−1 �Q)

β |̂gw(s−1)| ds

s2 .

Let N = �r(q0/q)1/2�, then the integral on the right-hand side is bounded by∑N
j=2 I j , where

I j
def=
∫ q1/2 j

q1/2( j−1)
αd(dru4s−1�Q)

β |̂gw(s−1)| ds

s2 .

For 2 ≤ j ≤ N write t j = q−1/2 j−1, then using that

dru4s−1 = dr u4(s−1−t j )u4t j = d4r j−1 u4−1 j2(s−1−t j )d4−1 j u4t j

together with the change of variables v = 4−1 j2(s−1 − t j ) yields

I j ≤ 4

j2

∫ 1

0
αd(d4r j−1 uv d4−1 j u4t j�Q)

β |̂gw(4v j−2 + t j )| dv

�d
q1/2

j

∫ 1

0
αd(d4r j−1 uv d4−1 j u4t j�Q)

β dv,

where the last inequality is a consequence of |̂gw(t)| � |t |−1. Hence, since
4r j−1 ≥ 1 and q1/2 j t j = 1, we deduce from Lemma 4.7, Theorem 5.12 and
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(4.20) of Lemma 4.6 that

I j �d
q1/2

j

∫
K
αd(d4r j−1 k d4−1 j u4t j�Q)

β dσ(k)

�d rβd−2|det Q|−β/2qβd/2+1/2 j1−βd max{1, (4q1/2 j−1)βd}.

Summing the last inequality over 2 ≤ j ≤ N , we observe that it suffices to
show that the following estimate holds

∑N
j=2 j1−βd max{1, (4q1/2 j−1)βd} �β,d rβd−2|det Q|−β/2qβd+1/2.

Indeed, split the previous sum according to whether j ≤ 4q1/2 or j > 4q1/2.
The sum over j > 4q1/2 can be bounded by

rβd−2|det Q|−β/2qβd/2+1/2∑N
j=�4q1/2� j1−βd �β,d rβd−2|det Q|−β/2q3/2,

and the sum over 2 ≤ j ≤ 4q1/2 by

rβd−2|det Q|−β/2qβd+1/2∑�4q1/2�
j=2 j1−2βd �β,d rβd−2|det Q|−β/2qβd+1/2.

Proof of Theorem 2.2 In view of (3.39), it remains to estimate Iθ . By (5.1),
with K0 := [q−1/2

0 r−1, 1] and K j := ( j, j + 1], j ≥ 1, we have

Iθ �d |det Q|− 1
4 ‖̂ζ‖1

(
Iθ,0+

∞∑
j=1

Iθ, j
)
, where Iθ, j

def=
∫
K j

|̂gw(t)|αd (�t )
1
2 dt. (6.5)

For fixed r ≥ q1/2 we may choose

0<w< (b − a)/4, 1 ≥ T− ≥ q−1/2
0 r−1, T+ ≥ 1 and

d

2
> βd > 2. (6.6)

For notational simplicity, we write CQ := q |det Q|−1/4−β/2.

Step 1: Estimate of Iθ,0. We consider the case b − a ≤ q first. Here we
apply Corollary 6.1 to bound the integral over K0 combined with ĝK0 �
s[a,b]±w(t) � b − a, compare (3.8) and (3.9). Note that we didn’t use the
restriction b− a ≤ q at all. For wide shells, i.e. in the case b− a > q, we use
Lemma 6.2 for t ∈ K0, q−1/2

0 r−1 ≤ |t | ≤ q−1/2 and Corollary 6.1 for the other
t in K0 together with ĝ[q−1/2,1] � q1/2. Furthermore, for both cases of b − a,

split K0 = K00 ∪ K01, where K00 := [q−1/2
0 r−1, T−] and K01 := (T−, 1].

123



Distribution of values of quadratic forms 927

Then (4.19) of Lemma 4.6 yields

γK00,β(r) �d
(|det Q| 1

2 T d−
) 1

2 −β = T
d
2 −2−δ

− |det Q| 1
4 − β

2 , (6.7)

with the notation (5.2). Using CQq(2βd−1)/2 = C̄Q , we may bound Iθ,0 as

Iθ,0 �d CQ (b − a)q
(|det Q| 1

4 − β
2 T

d
2 −2−δ

− + γK01,β (r)
)
rd−2, where (6.8)

(b − a)q
def= (b − a)I (b − a ≤ q)+ q(2βd−1)/2 I (b − a > q). (6.9)

As a side remark, we note that the above splitting of the interval K0 =
[q−1/2

0 r−1, 1] is required for our later applications - especially, Corollary 4.11
is only valid for fixed intervals [T−, T+].
Step 2: Estimate of Iθ, j for j ≥ 1. Similar as before, applying Corollary 6.1
(with β = 1/2), while noting that γI,β(r) = 1 if β = 1/2, yields

Iθ, j �d ĝK j q |det Q|−1/2 rd−2. (6.10)

We recall the bound (6.3) for ĝw and the choices of T+ and w in (6.6) in order
to get

∞∑
j=T+

ĝK j �
∫ ∞

T+

exp{−|sw|1/2}
s

ds � 1√
T+w

exp{−|T+w|1/2}.

Thus, we obtain

∑∞
j=T+ Iθ, j �d rd−2q |det Q|−1/2 (T+w)−1/2 exp{−|T+w|1/2}. (6.11)

Furthermore, for b − a > 1 we can use |̂gK j | � j−1 to bound the remaining
sum. Whereas for b − a ≤ 1 we use |̂gK j | � b − a for 1 ≤ j ≤ S − 1 and
|̂gK j | � j−1 for S ≤ j ≤ T+ − 1 and minimize the resulting expression in S.
In both cases this leads to

∑T+−1
j=1 ĝK j � 1 + log((b − a)∗T+), (6.12)

where

(b − a)∗ def= (b − a)I (b − a ≤ 1)+ I (b − a > 1).
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928 P. Buterus et al.

Hence, using (6.5) combined with (6.8), (6.11) and (6.12) with (6.10), we get

Iθ �d ‖̂ζ‖1 r
d−2CQ

(
(b − a)q (cQT

d
2 −2−δ

− + γ[T−,1],β (r))

+ γ(1,T+],β (r) (1+log((b−a)∗ T+))+c−1
Q

exp(−(T+w)1/2)
(T+ w)1/2

)
,

(6.13)

where cQ = |det Q| 1
4 − β

2 . Together with the inequality (3.39) we obtain

�r (v)
def=

∣∣∣ ∑
m∈Zd

I[a,b](Q[m])vr (m)−
∫
Rd

I[a,b](Q[x])vr (x) dx
∣∣∣

�β,d rd−2( ‖̂ζ‖1CQ ρ
w
Q,b−a(r)+ w‖v‖Q

)+ dQ rd/2 ‖̂ζ‖∗,r log
(

1 + |b−a|
q1/2

0 r

)
,

(6.14)

where

ρwQ,b−a(r)
def= inf

{
(b − a)q (cQT

d
2 −2−δ

− + γ[T−,1],β (r))+ γ(1,T+],β (r) (1 + log((b − a)∗ T+))

+ c−1
Q (T+w)−1/2 e−(T+w)1/2 : T− ∈ [q−1/2

0 r−1, 1], T+ ≥ 1
}

under the condition 0 < w < (b − a)/4. This completes the proof of
Theorem 2.2.

Proof of Theorem 1.9 We have only to apply Theorem 2.2 to the Gaussian
weights v(x) = exp{−2Q+[x]} noting that ζ(x) = exp{−Q+[x]} satisfies
the integrability condition (2.4). This yields

R(vr IEa,b ) �Q,β,d
{
w‖v‖Q + ‖̂ζ‖1 ρ

w
Q,b−a(r)

}
rd−2rd/2‖ζ̂‖∗,r log

(
1 + |b−a|

q1/2
0 r

)
.

In view of (7.9) and (7.8), we see that ‖v‖Q � dQ . Here we used that
ϕv(v,

√
u2 − v) = exp{−2u2}, if Q is indefinite; and ϕv(v) = exp{−2v2}

if Q is positive definite. Moreover, a simple calculation shows that ‖̂ζ‖1 �d 1
and by following the arguments in the proof of (7.31) we get ‖ζ̂‖∗,r �d
qd/4((q/q0)

d/2 + dQqd/2) as well.

7 Lattice point deficiency for admissible regions and applications

Before we can apply Theorem 2.2, we have to construct smooth bump func-
tions, approximating the indicator function of special parallelepiped regions,
and also to control the additional error produced by this smoothing step: In the
following Lemma 7.1 we shall bound the volume of ε-boundaries of r�∩Ea,b
and in Lemma 7.2 we estimate integrals of the Fourier transform of the region
�. For wide shells the lattice point counting remainders will reflect the Dio-
phantine properties of Q more directly when using counting regions � which
are ‘admissible’ convex polyhedra.
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7.1 Smoothing of special parallelepiped regions

Here we confine ourselves to study a specially oriented parallelepiped � =
B−1[−1, 1]d with

Q+ ≤ BT B ≤ cBQ+ (7.1)

for a suitable B ∈ GL(d,R) and a positive constant cB ≥ 1 depending on B. In
this case, the Minkowski functional of� is given by M(x) = max(〈gi,±, x〉 :
i = 1, . . . , d ), where gi,± = ±BT ei are 2d outward normal vectors of the
faces of �. Note that the inequalities in (7.1) imply the norm equivalence

d−1/2 ‖Q1/2
+ x‖ ≤ M(x) ≤ (cB)1/2 ‖Q1/2

+ x‖. (7.2)

We now approximate I� by smooth weight functions. For this, introduce

�±ε def= (1 ± ε)�, (∂�)ε
def= �ε\�−ε and v±ε def= I�±ε ∗ kB,ε, (7.3)

where kB,ε(A) = kε(BA) for any A ∈ Bd and kε denotes the rescaled measure
on R

d introduced in the beginning of Sect. 3.1. Moreover, we need the technical
restriction 0 < ε ≤ ε0 with ε0 := 1/15. Since Lemma 3.1 can be adapted
to this situation, taking v±ε,r (x) := v±ε(x/r), we get for the lattice point
remainder (3.5)

|R(IEa,b∩r�)| ≤ max± |R(IEa,bv±ε,r )| + Rε,r , (7.4)

where, in view of (3.2), the remainder term is given by

Rε,r
def=
∫

Rd
I(∂�)2ε (x/r) I[a,b](Q[x]) dx . (7.5)

For hyperbolic shells the latter term (7.5) will be absent, but for elliptic shells
we shall find that

|R(IEa,b∩r�)| ≤ max± |R(IEa,b v±ε,r )| + dQ (b − a)εrd−2. (7.6)

This estimate will be proven in the following Lemma 7.1, but first we need
to introduce some notations: For a measurable, non-negative, bounded weight
function v on R

d we shall define the spherical mean by

ϕv(r1, r2)
def=
∫
S p−1×Sq−1

v(Q−1/2
+ U−1(r1 η1, r2 η2)) dσ(η1)dσ(η2), (7.7)
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where r1, r2 ≥ 0, σ denotes the unique normalized Haar measure on the sphere
S p−1 resp. Sq−1, (p, q) denotes the signature of Q (with p + q = d) and U a
rotation in R

d such that UQU−1 is diagonal matrix whose first p entries are
positive and the latter q are negative. Note that in the case of positive definite
forms Q (i.e. q = 0), the double integral must be replaced by a single one.

Lemma 7.1 Let ϕv be defined as in (7.7). If Q is indefinite, define also

‖v‖Q def= dQ sup
v∈r−2∂w [a,b]

∣∣∣∣
∫ ∞

0
I (u2 ≥ v)u p−1ϕv(u,

√
u2−v)(u2−v)(q−2)/2 du

∣∣∣∣ (7.8)

and suppose that the latter integral exists. Otherwise, if Q is positive definite,
define

‖v‖Q def= dQ sup
v∈r−2∂w[a,b]

|vd−1ϕv(v)| (7.9)

and assume that the latter supremum is bounded. Under these conditions,
writing ∂w[a, b] := [a − 2w, a + 2w] ∪ [b − 2w, b + 2w], we have for
0 < w < (b − a)/4

∫
I∂w[a,b](Q[x])v(x/r) dx �d w‖v‖Q rd−2. (7.10)

Assumingadditionallymax{|a|, |b|} ≤ c0r2 with c0 = (cB)−1/5, the estimates

Rε,r �d dQ (b − a)εrd−2 (7.11)

vol Hr �d dQ (
√
cB)

−(d−2) (b − a)rd−2 (7.12)

hold for indefinite forms Q, provided that ε ∈ (0, ε0]. Moreover, for the special
choice v = v±ε, as defined in (7.3), we have

‖v±ε‖Q �d |det Q|−1/2, (7.13)

whereby the condition max{|a|, |b|} ≤ c0r2 can be dropped if Q is positive
definite.

The lower bound (7.12) can be also found in [6], see Lemma 8.2. Moreover,
Lemma 3.8 in [23] provides an asymptotic formula for the volume of Hr .

Proof For a bounded measurable function g on R with compact support we
introduce

Rg
def=
∫

Rd
g(Q[x])v(x/r) dx .
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Let SQ = Q Q−1+ , LQ = Q1/2
+ and let U denote the rotation stated in the

lemma. In particular,UQU−1 andULQU−1 are diagonal. Changing variables
via x = r L−1

Q U−1 y in R
d with y ∈ R

p × R
q , d = p + q and using polar

coordinates, y = (r1η1, r2η2), where r1, r2 > 0 and η1 ∈ S p−1, η2 ∈ Sq−1,
that is ‖η1‖ = ‖η2‖ = 1, we may write Q[x] = r2(r2

1 − r2
2 ) and obtain by

Fubini’s theorem

Rg =rddQ

∫ ∞

0

∫ ∞

0
r p−1

1 rq−1
2 g(r2(r2

1 − r2
2 ))ϕv(r1, r2) dr1 dr2, (7.14)

where ϕv(r1, r2) is defined as in (7.7) for suitable weight functions v. (As
already noted, in the case of positive definite forms Q, the double integral
in (7.14) must be replaced by a single one.) Next, we change variables via
v := r2

1 − r2
2 and u := r1, so that r2

1 + r2
2 = 2u2 − v and r2 = √

u2 − v. Thus,
we get

Rg =rd
dQ
2

∫
R

g(r2 v)

∫ ∞

0
I (u2 ≥v)u p−1ϕv(u,

√
u2 − v)(u2 − v)(q−2)/2 du dv. (7.15)

In order to prove (7.10), we choose g = I∂w[a,b] in (7.15). Since the length of
r−2 supp g is at most � |w|r−2, we get Rg �d |w|rd−2‖v‖Q , where ‖v‖Q is
defined as in (7.8) if Q is indefinite, resp. as in (7.9) if Q is positive definite.

Next we prove (7.12): Taking g = I[a,b], v(x) = I�(x) = I (M(x) ≤ 1)
and using

‖y‖d−1/2 ≤ M(L−1
Q U−1y) ≤ ‖y‖(cB)1/2 (7.16)

gives the lower bound

ϕv(r1, r2) ≥
∫
S p−1×Sq−1

I (‖(r1η1, r2η2)‖ ≤ (cB)−1/2) dσ(η1) dσ(η2)

�d I (2u2 + |v| ≤ (cB)−1).

Thus, we find

vol Hr �d rddQ

∫ r−2b

r−2a

∫ ∞
0

I (u2 ≥ v) I (2u2 + |v| ≤ (cB)−1)u p−1(u2 − v) (q−2)
2 du dv

�d rddQ

∫ r−2b

r−2a
I (|v| ≤ c0)

∫ ∞
0

I ( 5
4 c0 ≤ u2 ≤ 2c0)u

p−1(u2 − v) q−2
2 du dv

�d rd−2(b − a)dQ(
√
c0)

d−2.

Proof of (7.11) In (7.15) we choose g = I[a,b] and v = I(∂�)2ε with 0 < ε ≤
ε0. By the properties of the polyhedron �, see (7.2), we have I(∂�)2ε (x) ≤
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I (M(x) ∈ J1,2ε), where J1,2ε := [1 − 2ε, 1 + 2ε]. Let g1, . . . , g2d denote the
2d-tuple of normal vectors defining� and let fm = UL−1

Q gm ,m = 1, . . . , 2d,
be the transformed vectors. Since

I (M(L−1
Q U−1 y) ∈ J1,2ε) ≤∑2d

m=1 I (〈y, fm〉 ∈ J1,2ε)

we may bound ϕv(r1, r2) in (7.15) as follows

ϕv(r1, r2) ≤∑2d
m=1 ϕv,m(r1, r2),

where

ϕv,m(r1, r2)
def=
∫
S p−1×Sq−1

I
[〈(r1η1, r2η2), fm〉 ∈ J1,2ε

]
dη1 dη2.

Recall |v| ≤ c0, v = r2
1 −r2

2 , u = r1 and r2 = √
u2 − v. The inequality (7.16)

implies

(1 + 2ε)2d ≥ r2
1 + r2

2 = 2u2 − v ≥ (1 − 2ε)2(cB)
−1.

Therefore ϕv(u,
√
u2 − v) = 0 if

0 ≤ u < 2− 1
2
√

5c0(1 − 2ε)2 − c0 or u > C�
def= (1 + 2ε)√

2

√
d + c0.

Because of

2− 1
2
√

5c0(1 − 2ε)2 − c0 ≥ c�
def=

√
310c0

15

and u2 − v ≥ 17c0/45 > 0, we get

Rg � rddQ

∫ r−2b

r−2a

(∫ C�

c�
u p−1(u2 − v) q−2

2 ϕv(u,
√
u2 − v) du

)
dv

≤ rddQ

2d∑
m=1

∫ r−2b

r−2a

(∫ C�

c�
u p−1(u2 − v) q−2

2 ϕv,m(u,
√
u2 − v) du

)
dv.

(7.17)

By interchanging the variables r1 and r2 we can suppose that q ≥ 2. Thus,
since u �d 1 and

√
u2 − v �d 1, we see that

∫ C�

c�
u p−1(u2−v) q−2

2 ϕv,m(u,
√
u2 − v) du �d

∫ C�

c�
ϕv,m(u,

√
u2−v) du. (7.18)
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We claim that

Rg �d dQ ε(b − a)rd−2 (7.19)

holds. In view of (7.17) and (7.18), the estimates

Rm
def=
∫ C�

c�
ϕv,m(u,

√
u2 − v) du �d εc�

for all m = 1, . . . , 2d will prove the bound (7.19).
Thus let Fm(u) := 〈(uη1, (u2 − v)1/2η2), fm〉 for fixed |v| ≤ c0 and

(η1, η2). If

∣∣∣ ∂
∂u

Fm(u)
∣∣∣ ≥ c1 > 0 (7.20)

for all c� ≤ u ≤ C� with Fm(u) ∈ [1 − 2ε, 1 + 2ε] uniformly in (η1, η2) and
v, then

∫ C�

c�
I (Fm(u) ∈ [1 − 2ε, 1 + 2ε]) du � ε

c1

and hence Rm �d c−1
1 ε for all m = 1, . . . , 2d. Note that

∂

∂u
Fm(u) = 1

u

(
Fm(u)+ v√

u2 − v 〈(0, η2), fm〉
)

and because of ‖L−1
Q BT ‖ = ‖B L−1

Q ‖ ≤ √
cB we see that

∣∣∣ ∂
∂u

Fm(u)
∣∣∣ ≥ 1

u

(
|Fm(u)| − c0√

17c0/45
‖ fm‖

)
≥ 1

u

(
1 − 2ε − 4

5

)
� c−1

� .

Note, that here it is important that ε > 0 is not too large, i.e. ε ∈ (0, ε0]. Thus,
(7.20) holds and the assertion (7.19) is proved. This yields the claimed bound
for Rε,r , compare (7.5).

Finally, we prove (7.13). Here we have v = v±ε and v±ε(x) ≤ I (M(x) ≤
1 + 2ε). In view of (7.16), we find that the u-integral in (7.8) can be restricted
to 2u2 ≤ 2d + v. Hence

‖v±ε‖Q �d dQ sup
v∈r−2∂w[a,b]

(1 + |v|)(d−3)/2
∫ ∞

0
I (v ≤ u2 ≤ d + v/2) du � dQ,
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because |v| ≤ r−2(|a| + |b|) ≤ 2c0 ≤ 1. Since ϕv is supported in ‖·‖-ball
of radius 2d1/2, we get also in the case of positive definite forms that (7.9) is
bounded by �d dQ .

7.2 Fourier transform of weights for polyhedra

Here we continue to estimate the remainder terms in (7.6). Since the bounds
for R(gQw v−ε,r ) are exactly the same as for R(gQw v+ε,r ) we shall consider the
latter only. We shall now modify the weight vε, defined in (7.3), as follows.
Define ϕ = I[−2,2] ∗k, where k is again the probability measure from Sect. 3.1.
Of course, ϕ is smooth and ϕ(u) = 1 if |u| ≤ 1 and ϕ(u) = 0 if |u| ≥ 3. Let
sd := d(1 + 2ε0)

2. Now, by construction ϕ(Q+[x]s−1
d ) is identical to 1 on the

support of the ε-smoothed indicator of�ε = B−1[−(1 + ε), (1 + ε)]d , that is
vε(x). Hence we may rewrite the weights ζ of (3.6) via

ζε(x) = vε(x) exp{Q+[x]} = vε(x)ψ(x) (7.21)

using the C∞ function ψ(x) := exp{Q+[x]}ϕ(Q+[x]s−1
d ) of bounded sup-

port, whose Fourier transform can easily be estimated, see (7.24). In particular,
the weights ζε satisfy the integrability condition (2.4), i.e. supx∈Rd

(|ζε(x)| +
|̂ζε(x)|

)
(1 + ‖x‖)d+1 < ∞.

Lemma 7.2 The following estimate holds

∫
Rd

|ζ̂ε(v)| dv �d

∫
| Î[−1,1]d |(v)

∏d
j=1 exp{−|εv j |1/2} dv �d (log ε−1)d . (7.22)

Remark 7.3 In the general case, when� has finite Minkowski surface measure
c� only, defined via meas(∂ε�) ≤ c�ε, we have

‖ Î�‖1,ε
def=
∫

Rd
| Î�(v)| exp{−‖εv‖1/2} dv �d c�ε

−d

as can be deduced from the bound in Theorem 2.9 of [2], that is

1

vol (u ≤ ‖v‖ ≤ 2u)

∫
{u≤‖v‖≤2u}

| Î�(v)| dv ≤ c�(2 + u)−(d+1)/2.

This estimate is sharp as shown by the explicit example of an unit ball, see [2]
for more details. That paper contains also bounds on the average η �→ | Î�(sη)|
over the unit sphere Sd−1 for polyhedra, which are usually of smaller order than
pointwise bounds. In fact, the pointwise decay of Î�(v)may depend crucially
on the direction of v. In our setting (finding L1-estimates for specially oriented
parallelepipeds �) more elementary arguments can be used.
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Proof Note that by definition

∫
Rd

|ζ̂ε(v)| dv=
∫
Rd

|̂vεψ(v)| dv=
∫
Rd

∣∣∣
∫
Rd

v̂ε(v − x)ψ̂(x) dx
∣∣∣dv≤‖v̂ε‖1 ‖ψ̂‖1. (7.23)

Since

ψ̂(x) = |det Q|−1/2
∫

Rd
exp[v2]ϕ(v2s−1

d )e−2π i〈v,Q−1/2
+ x〉 dv

we easily conclude that

|ψ̂(x)|≤|det Q|−1/2c(d, k)(1 + Q−1+ [x])−k , x ∈ R
d , and thus ‖ψ̂‖1 ≤ c(d). (7.24)

Defining Z := (B−1)T and changing variables shows also that

Î�ε (v)=(1+ε)d Î�((1 + ε)v)=(1+ε)d |det B|−1 Î[−1,1]d ((1 + ε)Zv) (7.25)

and

|̂kB,ε(v)| ≤ exp{−ε1/2∑d
j=1|(Zv) j |1/2}. (7.26)

Thus we get for vε = I�ε ∗ kB,ε

‖̂vε‖1 =‖ Î�ε k̂B,ε‖1 �d

∫
Rd

| Î[−1,1]d ((1 + ε)v)|∏d
j=1 exp{−|εv j |1/2} dv. (7.27)

Finally, using Î[−1,1]d (v) =∏d
j=1 sin(2πv j )/(πv j ) together with (7.27) gives

the estimate

‖̂vε‖1 �d

( ∫ ∞
0

1

u + ε e−√
u du

)d �d

(
1 +

∫ 1

0

1

u + ε du
)d �d log(ε−1)d . (7.28)

We now obtain the estimate (7.22) from (7.23) combined with (7.24) and
(7.28).

7.3 Lattice point remainders for admissible parallelepipeds

Now we restrict the parallelepiped� = B−1[−1, 1]d , as defined in (7.1), such
that its faces are in a general position relative to the standard lattice Z

d . This
ensures that the lattice point remainder for r� is of ‘abnormally’ small error
uniformly in r . To construct it, we may alternatively construct lattices BZ

d
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such that the faces of [−1, 1]d have this property. Following Skriganov [53],
we call a lattice � ⊂ R

d of full rank, and likewise �, ‘admissible’ if

Nm �
def= infγ∈�\{0} |Nm γ | > 0, (7.29)

where Nm γ = |γ1 · · · γd | in standard coordinates γ = (γ1, . . . , γd).

Remark 7.4 The set of all admissible lattices is dense in the space of lattices
(see [54]). Hence, for any η > 0, if Dη denotes the set of diagonal matrices
with entries in [1, 1+η), then O(d)DηO(d)� contains an admissible lattice. In

particular, if� = Q1/2
+ Z

d , then there exist orthogonal matrices k, l ∈ O(d) and

a diagonal matrix d ∈ Dη such that BZ
d is admissible, where B = kdl Q1/2

+
satisfies property (7.1) with a constant cB depending only on η.

Remark 7.5 This definition is a special case of ‘admissible lattices’ for star-
bodies, see Chapter IV.4 in [14]. Here, the star-body is given by {F < 1} with
the distance function F(x) = |x1 · · · xd |1/d .

As shown in Lemma 3.1 of [53], the dual lattice �∗ = ZZ
d of �, where

ZT B = Id, is admissible as well. Another property of admissible lattices is
that there exists a cube [−r0, r0]d containing a fundamental domain F of �
such that r0 > 0 depends only by means of the invariants det � and Nm �.

Example 7.6 Well known examples are provided by theMinkowski embedding
of a totally real algebraic number field F of degree d into R

d . Given all embed-
dings σ1, . . . , σd of F, the Minkowski embedding σ : F → R

d is defined by
σ = (σ1, . . . , σd). In this case Nm σ(α) = |NF/Q(α)| is the field norm of any
α ∈ F, where we interpret multiplication by α as a Q-linear map. Thus, the
image of the ring of integers OF is an admissible lattice � with Nm � ≥ 1.
For more information, see Chapter 2.3 in [11].

Remark 7.7 We also note that for any natural number n ∈ N we may choose
a real number field of degree n which is normal over the rational numbers. In
fact, let m ∈ N be chosen such that 2n | ϕ(m) and let ξm be a primitive m-th
root of unity. Then Q(ξm+ξ−1

m ) is a real number field of degree ϕ(m)/2, which
is also normal and its Galois group G is abelian. Since G contains a subgroup
H of order ϕ(m)/(2n), the fixed field of H is real, normal and of degree n.
Thus, there exists an admissible region � satisfying (7.1) with cB �d q/q0
and Nm(B) �d qd/2.

Lemma 7.8 Assume that the lattice � = BZ
d is admissible and B sat-

isfies (7.1). For 0 < ε ≤ ε0 and r ≥ 1 we get for the parallelepiped
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� = B−1[−1, 1]d and the corresponding weights ζε(x) = vε(x)ψ(x) intro-
duced in Sect. 7.2

Iζ
def=
∫

‖v‖∞>r/2

|̂ζε(v)|
(q1/2r−1+‖r−1 v‖Zd )d/2

dv �d q−d/4
0 dQ |det B|λd−1

r,ε
λ̄r,ε,�

Nm(�)
, (7.30)

where λr,ε := min{log(r + 1), log(ε−1)} and λ̄r,ε,� := max{λr,ε, log(2 +
1

Nm(�)rε )}. For any non-admissible parallelepiped � only the estimate

Iζ �d dQ qd/2 c(d+1)/2
B ε−d (7.31)

holds. Additionally, we also have dQ |det B| ≤ (cB)d/2.
Proof We start by making the change of variables w = r−1Z v in (7.30) and
then splitting Iζ into integrals over cells C∗ := Z [−1

2 ,
1
2 )

d , where �∗ := ZZ
d

denotes the dual lattice to �, that is Z = (BT )−1, in order to get

Iζ =
∑

γ ∗∈�∗\{0}
Iζ (γ

∗), where Iζ (m)
def= rd |det B|

∫
C∗

|̂ζε(Z−1r(γ ∗ + v))|
(q

1
2 r−1 + ‖Z−1v‖∞)

d
2

dv. (7.32)

Note that �∗ satisfies ‖Z‖ ≤ ‖Q−1/2
+ ‖ ≤ q−1/2

0 , since the first inequality in
(7.1) implies

1 ≥ ‖Q1/2
+ B−1‖ = ‖((BT )−1Q1/2

+ )T ‖ = ‖(BT )−1Q1/2
+ ‖ = ‖ZQ1/2

+ ‖. (7.33)

In particular, the fundamental domain C∗ is contained in q−1/2
0

√
d[−1

2 ,
1
2 ]d .

Next, we shall bound the Fourier transform of ζε. Recall that by definition

ζ̂ε(u) = (( Î�ε · k̂B,ε) ∗ ψ̂)(u). (7.34)

As verified in (7.25), we have in coordinates u = (u1, . . . , ud)

| Î�ε (Z−1u)| �d |det B|−1
d∏
j=1

∣∣∣ sin[2π(1 + ε)u j ]
(1 + ε)u j

∣∣∣�d |det B|−1
d∏
j=1

(1 + |u j |)−1. (7.35)

Since (7.33) also implies ‖Q−1/2
+ (Z−1u)‖ ≥ ‖u‖, we can rewrite (7.24) by

|ψ̂(Z−1u)| �d,k |det Q|−1/2(1 + ‖u‖2)−k �d,k |det Q|−1/2∏d
j=1(1 + u2

j )
−k/d , (7.36)

where we applied the AM-GM inequality. In view of (7.26) we have the bound

|̂kB,ε(Z−1u)| ≤ exp{−∑d
j=1|εu j |1/2} (7.37)
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938 P. Buterus et al.

as well. Combining these estimates yields

|̂ζε(Z−1rw)| �d,k dQ

∫
Rd

d∏
j=1

1

(1 + u2
j )
k/d

exp{−ε1/2|rw j − u j |1/2}
1 + |rw j − u j | du.

Thus, we get for a fixed lattice point γ ∗ = (γ ∗
1 , . . . , γ

∗
d ) ∈ �∗

Iζ (γ
∗) �d,k

∫
C∗

|det Q|−1/2 |det B|
(qr−1 + ‖Z−1v‖∞)d/2

∫
Rd

d∏
j=1

ω̄(u j )
ω(εr(γ ∗

j + v j − u j
r ))

r−1 + |γ ∗
j + v j − u j

r | du dv,

where ω̄(x) := (1+ x2)−k/d and ω(x) := exp{−|x |1/2}. We now estimate the
last double integral coordinatewise: Note that we have |vi | ≤ v̄ := √

d/2 and

(q1/2r−1 + ‖Z−1v‖∞)d/2 �d qd/40 (r−1 + ‖v‖∞)d/2 ≥ qd/40

d∏
j=1

(r−1 + |vi |)1/2,

since ‖Z−1v‖∞ �d ‖Z‖−1‖v‖∞ ≥ q1/2
0 ‖v‖∞. Hence, we find

Iζ (γ ∗) �d,k q
−d/4
0 dQ |det B|∏d

j=1 Jζ (γ ∗
j ; R),

where

Jζ (γ
∗
j ; D) def=

∫ v̄

−v̄
1

(r−1 + |v|)1/2
∫
D
ω̄(u)

ω(εr(γ ∗
j + v − u

r ))

r−1 + |γ ∗
j + v − u

r | du dv.

In order to estimate Jζ (γ ∗
j ; R), we decompose the integral into parts corre-

sponding to the extremal points of the integrands. Defining Dj := {|u| ≥
r |γ ∗

j + v|/2}, we get

Jζ (γ
∗
j ; Dj ) ≤

∫ v̄

−v̄
r

|v|1/2
∫
Dj

ω̄(u) du dv �k,d

∫ v̄

−v̄
1

|v|1/2
r

(1 + r |γ ∗
j + v|) kd −1

dv.

In the case |γ ∗
j | ≥ √

d, we have |γ ∗
j + v| ≥ |γ ∗

j |/2 and hence

Jζ (γ
∗
j ; Dj ) �d

r

(1 + |rγ ∗
j |)d+2

∫ v̄

−v̄
1

|v|1/2 dv �d
1

(1 + |rγ ∗
j |)d+1
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Distribution of values of quadratic forms 939

if we take k = d(d+3). In the other case |γ ∗
j | <

√
d/2, we split the v-integral

into two parts as follows in order to find the estimate

Jζ (γ
∗
j ; Dj ) �d

∫ v̄
−v̄

|γ ∗
j |−

1
2 r I (|v| ≥ |γ ∗

j |/2)
(1 + r |γ ∗

j + v|)d+2
dv +

∫ |γ ∗
j |/2

0

r

v
1
2 (1 + r(|γ ∗

j | − v))d+2
dv

�d |γ ∗
j |−

1
2 +

|γ ∗
j |

1
2 r

(r |γ ∗
j | + 1)d+2

∫ 1/2

0

1

v
1
2 (1 − v)d+2

dv �d |γ ∗
j |−

1
2 .

In the complement u ∈ Dc
j we have |γ ∗

j + v − u
r | ≥ |γ ∗

j + v|/2 and thus

Jζ (γ
∗
j ; Dc

j ) �d

∫ v̄

−v̄
|v|− 1

2
ω(εr(γ ∗

j + v)/2)
r−1 + |γ ∗

j + v| dv.

If |γ ∗
j | ≥ √

d, then we easily conclude that Jζ (γ ∗
j ; Dc

j ) �d ω(εrγ ∗
j /4)|γ ∗

j |−1.

At last, we consider the case |γ ∗
j | <

√
d. The v-integral over the region

{v̄ ≥ |v| ≥ |γ ∗
j |/2} can be bounded by

�d |γ ∗
j |−1/2

∫ v̄

−v̄

I (|v| ≥ |γ ∗
j |/2)

(r−1 + |γ ∗
j + v|)(1 + εr |γ ∗

j + v|) dv

�d |γ ∗
j |−1/2

∫ 3
√
d/2

0

1

r−1 + v
1

1 + εrv dv �d |γ ∗
j |−1/2 min{log(ε−1), log(r+1)}

and similar over the complement by

�d

∫ |γ ∗
j |/2

0

v−1/2

r−1 + |γ ∗
j | − v dv �d |γ ∗

j |−1/2.

Hence we conclude that

Iζ �d q−d/4
0 dQ |det B|

∑
(γ ∗

1 ,...,γ
∗
d )∈�∗\{0}

d∏
j=1

Hr,ε(γ
∗
j )

|γ ∗
j |

, (7.38)

where

Hr,ε(x) := λr,ε|x |1/2 I (|x | <
√
d)+ (1 + εr |x |)−d I (|x | ≥ √

d). (7.39)

In view of the following Lemma 7.9 this concludes the proof of the bound
(7.30).
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940 P. Buterus et al.

If the region � is not admissible, then we change variables to w = r−1v

split the left-hand side of (7.30) into integrals over unit cells E := [−1
2 ,

1
2 )

d

in order to find

Iζ =
∑

m∈Zd\{0}
Iζ (m), where Iζ (m)

def= rd
∫
E

|̂ζε(r(m + w)|
(q1/2r−1 + ‖w‖∞)d/2

dw.

Because of
∑d

j=1|u j |1/2 ≥ ‖u‖1/2 we can further estimate (7.37) by

|̂kB,ε(Z−1u)| ≤ exp{−‖εu‖1/2}.
Recalling the definition (7.34) and the estimates (7.35)–(7.36) for u = Zw
shows that

|̂ζε(rw)| �k dQ ε
−k+1(r‖Zw‖ + 1)−k � dQ ε

−k+1(q cB)
k/2(r‖w‖ + 1)−k .

Thus, taking k = d + 1 we find

Iζ �d dQ qd/2 c(d+1)/2
B ε−d .

The last remark easily follows by comparing the volume of the bodies
{‖Bx‖ ≤ 1} and {‖Q1/2

+ x‖ ≤ 1}: Using (7.1) leads to |det Q|1/2 ≤ |det B| ≤
(cB)d/2|det Q|1/2.

Lemma 7.9 For an admissible lattice � we have for any weight function
ω(x) > 0 on R, such that ω∞ := 1 + maxx ω(x)(1 + |x |)p < ∞, where
p ∈ N and ε > 0, the bound

S�,ε
def=

∑
(γ1,...,γd )∈�\{0}

∣∣∣ωr,ε(γ1) . . . ωr,ε(γd )

γ1 . . . γd

∣∣∣�d ω∞ λd−1
r,ε

λ̄r,ε,�

Nm(�)
, (7.40)

where ωr,ε(x) := λr,ε|x | 1
2 I (|x | < √

d)+ω(εr x)I (|x | ≥ √
d) and λr,ε, λ̄r,ε,�

are as introduced in Lemma 7.8.

Proof First, we make a decomposition of � as follows. For any (x1, . . . , xd) ∈
R
d with |x1 · · · xd | ≥ Nm(�) let m j ∈ Z be the unique integers satisfying 2 >

|2m j x j |d−1/2 ≥ 1 for j = 2, . . . , d. We have |x1| ≥ Nm(x)|x2 . . . xd |−1 ≥
Nm(�)d(1−d)/2∏d

j=2 2m j−1 and this implies that |2m1x1| ∈ [k c�, (k + 1)c�)
for a unique integer k ≥ 1, where m1 ∈ Z is determined by m1 + m2 + . . .+
md = 0 and c� = d(1−d)/22−d+1 Nm(�). Introducing the lattice

Ed := {m = (m1, . . . ,md) ∈ Z
d : m1 + . . .+ md = 0} ⊂ Z

d
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Distribution of values of quadratic forms 941

and the interval Bk := [k c�, (k + 1)c�), we can write

I (|x1 . . . xd | ≥ Nm(�)) =
∑
m∈Ed

∑
k∈N

IBk (|2m1 x1|)
d∏
j=2

I[√d,2
√
d)(|2m j x j |),

and hence

S�,ε =
∑
m∈Ed

∑
k∈N

∑
γ∈�

IBk (|2m1 γ1|)
d∏
j=2

I[√d,2
√
d)(|2m j γ j |)

∣∣∣ωr,ε(γ1) . . . ωr,ε(γd )

γ1 . . . γd

∣∣∣. (7.41)

We also introduce the obvious notations Nm(x) := |x1 · · · xd |, 2mx =
(2m1x1, . . . 2md xd),m ∈ Ed and 2m� for the rescaled lattice {2mγ : γ ∈ �}.
Note that Nm(2mγ ) = Nm(γ ) and hence Nm(�) = Nm(2m�). Defining
Ck := Bk × [√d, 2

√
d)d−1 and h(x) := (1 + |x |)−p (where p ∈ N is the

same as in the assumptions of the lemma), we may rewrite and bound (7.41)
by

S�,ε =
∑
m∈Ed

(∑
k∈N

∑
η∈2m�

ICk (η)

d∏
j=1

ωr,ε(2−m jη j )

|η j |
)

�d ω∞
∑
m∈Ed

∑
k∈N

(( ∑
η∈2m�

ICk (η)
)hr,ε(c�2−m1k)

c� k

) d∏
j=2

hr,ε(2
−m j ),

(7.42)

where hr,ε(x) := λr,ε|x | 1
2 I (|x | < 1)+ h(εr x)I (|x | ≥ 1). In order to perform

the summation in k and η in (7.42) we first observe that

∑
η∈2m�

ICk (η) ≤ 1. (7.43)

Proof of (7.43): Assume that two different lattice points η, η′ ∈ 2m� lie in Ck .
Then we have |η1 − η′

1| < c� and max2≤ j≤d |η j − η′
j | <

√
d. Since η− η′ ∈

2m�\{0} implies |η2 − η′
2| · · · |ηd − η′

d | ≥ (Nm �)/c� = d(d−1)/22(d−1) and
hence |(η2 − η′

2)| ≥ 2
√
d for some j ≥ 2, we get at a contradiction which

proves (7.43).
Estimating the following sum in k by an integral, we obtain

∞∑
k=1

hr,ε(αk)

k
� λr,ε I (α < 1)+ log

(
1 + 2

αrε

)
def= h̄r,ε(α). (7.44)
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942 P. Buterus et al.

Hence, making use of (7.43) and (7.44) in (7.42), shows that

S�,ε �d ω∞(c�)−1∑
m∈Ed

H(2−m), (7.45)

where 2m := (2m1, . . . , 2md ) and H(x) := h̄r,ε(c�x1)hr,ε(x2) · · · hr,ε(xd).
Let E ′

d denote the subset of Ed consisting of all lattice points (m1, . . . ,md)

∈ Ed with m1 ≤ 0. We claim that
∑
m∈E ′

d

H(2−m) �d
(
λr,ε + log(1 + 1

Nm(�)rε )
)
λd−1
r,ε . (7.46)

Proof of (7.46) Letm ∈ E ′
d\{0}. Assume for definiteness thatm1, . . . ,ml−1 ≤

0 andml, . . . ,md > 0. By definition of Ed we get 2
∑m

j=l m j =∑d
j=1|m j | ≥

‖m‖2. Since hr,ε(2−k) ≤ 1 for k ≤ 0 and otherwise hr,ε(2−k) = λr,ε2−k/2,
we obtain

H(2−m) �d
(
λr,ε + log(1 + 1

Nm(�)rε )
)
λd−l
r,ε
∏d

j=l2
−m j/2

�d
(
λr,ε + log(1 + 1

Nm(�)rε )
)
λd−l
r,ε 2−‖m‖/4.

Thus, splitting the sum according to the number of positive coordinates and
then summing over the (d − 1)-dimensional lattice Ed yields (7.46).

In order to bound the sum over the complement of E ′
d , we again split the sum

according to the number of positive coordinates. For simplicity, we may assume
that m1,m2, . . . ,ml > 0 and ml+1, . . . ,md ≤ 0. Similar to the previous case,
we find that

H(2−m) �d
(‖m‖ + λr,ε + log(1+ 1

Nm(�)rε )
)
λl−1
r,ε

(∏l
j=22− m j

2

)
min(1, (rε)−dp 2−p‖m‖/2).

If we parameterize the (d − 1)-dimensional lattice Ed by (m1, m̄), where
m1 = −(m2 + . . . + md) and m̄ = (m2, . . . ,md) ∈ Z

d−1, and split the
summation into a ball of radius ‖m̄‖2 ≤ Rε := 3d log(2 + (rε)−1) and its
complement, where (rε)−dp 2−p‖m‖2/2 ≤ (rε)−dp 2−p‖m̄‖2/2 ≤ 1, we can
bound the sum corresponding to a fixed l by

�d λ
l−1
r,ε

( ∑
‖m̄‖2≤Rε

(λ̄r,ε,�+‖m̄‖)
l∏

j=2

2−m j /2+
∑

‖m̄‖2>Rε

(λ̄r,ε,�+‖m̄‖)(rε)−dp 2−p‖m̄‖2/2
)

�d λ
l−1
r,ε

(
λ̄r,ε,� log(2 + 1

rε )
d−1−(l−1) + λ̄r,ε,�

)
�d λ

d−1
r,ε λ̄r,ε,�,

where we have estimated the sums by comparison with the corresponding
integrals. Using this estimate for each l = 1, . . . , d − 1 together with (7.46)
in (7.45) yields the bound (7.40).
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7.4 Applications of Theorem 2.2

We start by smoothing the indicator function of the region �. We choose
weights v = v±ε as defined in (7.3) with ε ∈ (0, ε0] and the related ζ = ζε,
see Sect. 7.2, corresponding to parallelepipeds � = B−1[−1, 1]d satisfying
Q+ ≤ BT B ≤ cBQ+, compare (7.1). Recalling (7.6), where we have used
Lemma 7.1 to estimate the ε-smoothing error, yields a total error

�r
def= |volZ (Ea,b ∩ r�)−vol (Ea,b ∩ r�)| �d dQ(b − a)εrd−2+max± |R(IEa,bv±ε,r )|. (7.47)

Now we can apply Theorem 2.2 in order to bound the latter remainder
|R(IEa,bv±ε,r )| as follows. In (6.14) we shall estimate ‖̂ζε‖∗,r by using
‖vε‖Q �d dQ of Lemma 7.1, ‖̂ζε‖1 �d (log ε−1)d of Lemma 7.2 and

‖̂ζε‖∗,r �d qd/4
(
(
q
q0
)d/2 log(ε−1)d + q−d/4

0 cd/2B λd−1
r,ε

λ̄r,ε,�
Nm(�)

)
(7.48)

of Lemma 7.8 for admissible regions �, i.e. (7.29) holds, to get

�r �β,d dQr
d−2
(
ε(b − a)+ w + aQ(log 1

ε
)dρwQ,b−a(r)

)

+ dQ qd/4rd/2
(
(
q
q0
)d/2 log(ε−1)d + q−d/4

0 cd/2B λd−1
r,ε

λ̄r,ε,�
Nm(�)

)
log
(
1 + b−a

q1/2
0 r

)
,
(7.49)

where aQ := q cQ = q|det Q|1/4−β/2 = CQ(dQ)−1, provided that 0 < w <
(b−a)/4. This bound holds for admissible parallelepipeds� only. If� is not
admissible, then we have to replace the smoothing error (7.48) by

‖̂ζε‖∗,r �d qd/4
(
(q/q0)

d/2 log(ε−1)d+dQ qd/2 (cB)
(d+1)/2 ε−d), (7.50)

that is (7.31) of Lemma 7.8. With these bounds we are ready to prove the main
statements on the lattice point remainder for hyperbolic shells.

Proof of Corollary 2.5 For wide shells, i.e. b − a > q, we optimize (7.49) in
the smoothing parameter w first by choosing w = W(qT+/2)2/T+, where W
denotes the upper branch, defined on the interval (−e−1,∞), of the inverse
function of x �→ xex . (The function W is also known as the Lambert-W -
function, see [15] for more details and some applications.)

Since x �→ W (x)2/x has a global maximum at x = e with value e−1, we
find w ≤ q/(2e) < (b − a)/4 as required in the restrictions (6.6). This leads
to the partial bound

dQw + CQc
−1
Q (T+w)−1/2 e−(T+w)1/2 � dQ

W(qT+/2)2
T+ � dQ

log(qT++1)2

T+ ,
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944 P. Buterus et al.

where we used that W (x) ≤ log(x + 1) and W (x)−1 exp(−W (x)) =
x−1. Next, we calibrate the ε-dependent terms in (7.49) by choosing ε =
T

d
2 −2−δ

− (b − a)−1/15. Again, this choice satisfies the required restrictions,
i.e. ε ≤ ε0 = 1/15. Because of

ε(b − a) ≤ aQ (b − a)q cQ T
d
2 −2−δ

− , log ε−1 � log(r+1) and

λ̄r,ε,�

log(r + 1)
� max

{
1,

log(2 + rd+1

Nm(�) )

log(r + 1)

}
�d log(2 + 1

Nm(�) ),

compare the definition in Lemma 7.8, we can simplify (7.49) to

�r �β,d dQ rd−2ρ
hyp+
Q,b−a(r) + dQ q

d
4 r

d
2 log(r + 1)d

× (( qq0
)
d
2 + cd/2B q−d/4

0
Nm(�) log(2 + 1

Nm(�) )
)

log
(

1 + b−a
q1/2

0 r

)
,

(7.51)

where

ρ
hyp+
Q,b−a(r)

def= inf∗T+,T−
{

log
(
(b−a)T

−( d2 −2−δ)
− + 1

)d(aQ q(2βd−1)/2(cQT
d
2 −2−δ

− +γ[T−,1],β (r))

+ aQγ(1,T+],β (r) log(T++1)+ log(qT++1)2

T+
)}

and the infimum is taken over all T− ∈ [q−1/2
0 r−1, 1], T+ ≥ 1. This proves

the first part of Corollary 2.5. Next, we consider the case of thin shells, i.e.

b−a ≤ q. Here we take ε = T
d
2 −2−δ

− /15 andw = T
d
2 −2−δ

− (b−a)/4 in (7.49),

noting that dQ(w + ε(b − a)) ≤ aQ(b − a)cQT
d
2 −2−δ

− , in order to get the

bound (7.51), whereby the factor ρhyp+
Q,b−a(r), depending on the Diophantine

properties of Q, has to be replaced by

ρ
hyp−
Q,b−a(r)

def= inf∗
T−,T+

{
aQ log

(
1 + T

−( d−4
2 −δ)

−
)d(
(b − a)(cQ T

d−4
2 −δ

− + γ[T−,1],β (r)
)

+ γ(1,T+],β (r)(log((b − a)∗ T+)+ 1))
}
.

In the last equation the infimum is taken over all T− ∈ [q−1/2
0 r−1, 1] and

T+ ≥ 1 with

T+ ≥ 4(b − a)−1T
−( d2 −2−δ)
− max{1, log

(
c2
Q(b − a)T

d
2 −2−δ

−
)2},

where the last condition ensures that

c−1
Q (T+w)−1/2 e−(T+w)1/2 ≤ cQ(b − a)T

d
2 −2−δ

− .
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Finally, we note that Corollary 4.11 implies that γ[T−,1],β(r) → 0 and also

γ[1,T+],β(r) → 0 for r → ∞ and any fixed T− ∈ [q−1/2
0 r−1, 1], T+ ≥ 1, when

Q is irrational. Thus, we conclude that ρhyp+
Q,b−a(r) → 0, resp. ρhyp−

Q,b−a(r) → 0,
for r → ∞ and fixed b − a.

Corollary 7.10 Consider an indefinite quadratic form Q in d ≥ 5 vari-
ables and a (not necessary admissible) parallelepiped � satisfying (7.1) and
max{|a|, |b|} ≤ c0r2, where c0 > 0 is chosen as in Lemma 7.1. Then for all
b − a ≤ 1

�r �β,d dQr
d−2(ρhyp∗

Q,b−a(r)+ (b − a)r1−d/2 q(d−2)/4 log(1 + r)d (q/q0)
(d+1)/2(cB )

(d+1)/2),

where ρhyp∗
Q,b−a is defined in (7.53). In particular, for irrational Q we have

ρ
hyp∗
Q,b−a(r) → 0 for r → ∞, provided that b − a is fixed.

Proof. We shall argue similar as in the previous proof of Corollary 2.5, but here
we can only use (7.50) to bound ‖̂ζε‖∗,r , since� is not necessarily admissible.
Thus, we have to replace the error bound (7.49) for the lattice remainder by

�r �β,d dQr
d−2
(
ε(b − a)+ w + aQ(log 1

ε
)dρwQ,b−a(r)

)
+ dQ qd/4rd/2

×
(
(
q
q0
)d/2(log 1

ε
)d + dQ qd/2 (cB)

(d+1)/2 ε−d
)

log
(
1 + b−a

q1/2
0 r

)
.

(7.52)

Now the right-hand side can be optimized by taking

ε = (15 log(1 + T
−( d2 −2−δ)
− ))−1 and w = T

d
2 −2−δ

− (b − a)/4

and this leads to the bound

�r �β,d dQr
d−2ρ

hyp∗
Q,b−a(r)+ dQq

d/4rd/2
(

log(1 + r)d (q/q0)
d/2

+ dQq
d/2(cB)

(d+1)/2 log(1+r)d
)

log
(

1 + |b−a|
q1/2

0 r

)
,

where

ρ
hyp∗
Q,b−a(r)

def= inf
{
aQ log(1+T

−( d2 −2−δ)
− )d

(
(b − a) (cQ T

( d2 −2−δ)
− + γ[T−,1],β (r))

+ γ(1,T+],β (r) log((b − a)T+)
)

+ b−a

log(1+T−( d2 −2−δ)
− )

}(7.53)

and the infimum is taken over all T− ∈ [q−1/2
0 r−1, 1] and

T+ ≥ 4(b − a)−1T
−( d2 −2−δ)
− max{1, log(c2

Q(b − a)T
d
2 −2−δ

− )2}.
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The next corollary provides a lower bound for the number of lattice points
and is useful for proving quantitative bounds in the Oppenheim conjecture.

Corollary 7.11 For the special choice B = Q1/2
+ , i.e. � = Q−1/2

+ [−1, 1]d
and cB = 1, and all max{|a|, |b|} ≤ r2/5 and b−a ≤ 1 there exists constants
bβ,d > 0 and b̃β,d > 0, depending on β and d only, such that for all r ≥
b̃β,d q1/2(q/q0)

(d+1)/(d−2)

�r ≤ vol Hr

5
+ bβ,d dQ r

d−2ρ
hyp∗∗
Q,b−a(r) (7.54)

where cQ = |det Q|1/4−β/2, aQ = q cQ and

ρ
hyp∗∗
Q,b−a(r)

def= inf{aQ
(
(b − a)(cQT

d
2 −2−δ

− (7.55)

+γ[T−,1],β(r))+γ(1,T+],β(r) log((b − a)T+)
)}

and the infimum is taken over all T− ∈ [q−1/2
0 r−1, 1] and T+ ≥ 1 with

T+ ≥ Cβ,d
1

(b − a)
max

{
log
( b − a

q cβ,d

)2
, 1
}

and Cβ,d , cβ,d ≥ 1 are constants depending on d and β only.

Proof Here we only consider the special region � = Q−1/2
+ [−1, 1]d , i.e.

B = Q1/2
+ and thus (7.1) is valid with cB = 1. Since � is not necessarily

admissible, we have to argue as in the previous proof (of Corollary 7.10):
Starting with the estimate (7.52), we can take ε = (30 ad bβ,d)−1 and w =
(b−a)ε in the optimization procedure, where ad ≥ 1, resp. bβ,d ≥ 1, denotes
the implicit constant in (7.12) (see Lemma 7.1), resp. (7.52). (Of course, we
have ε ∈ (0, ε0] and 0 < w < (b − a)/4 as required.) This yields

�r ≤ vol Hr

15
+ bβ,ddQr

d−2aQ(log 1
ε )

dρwQ,b−a(r)+ b̄β,d (b − a)dQ q
d−2

4 rd/2−1
( q

q0

) d+1
2
,

where b̄β,d := bβ,d(ε−d+log(ε−1)d) depends onβ and d only. Again referring
to Lemma 7.1, we also see that

b̄β,d(b − a)dQ q(d−2)/4rd/2−1
( q

q0

)(d+1)/2 ≤ vol Hr

15

if we choose r ≥ b̃β,d q1/2(q/q0)
(d+1)/(d−2) with b̃β,d = (15adb̄β,d)−1.

Finally, we make the restriction T+ ≥ w−1 max{log((15adb̄β,d)−1q−1(b −
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a))2, 1} to ensure that

bβ,d (log ε−1)d q rd−2dQ (T+w)−1/2 exp(−|T+w|1/2) ≤ vol Hr/15.

Collecting the remaining terms proves (7.54).

Now we consider elliptic shells as well and optimize the lattice remainder as
in the case of ‘wide shells’. In contrast to the previous cases, the error caused
by the smoothing of the region � is not present here.

Proof of Corollary 2.4 In the case of ellipsoids, i.e. Q is a positive defi-
nite form, we choose the (not necessary admissible) parallelepiped � :=
B−1[−1, 1]d with B = Q1/2

+ and r = √
2b ≥ q1/2, resp. 2b = r2, a = 0

and ε = 1/15. Then (7.1) is satisfied with cB = 1 and E0,b ⊂ r�, i.e.
Hr := Ea,b ∩ r� = Ea,b. Moreover, since E0,b does not intersect r(∂�)2ε
(the 2εr -boundary of r� as defined in (7.3)), we get an error Rε,r = 0 for
smoothing the indicator function of r�. Hence, we may remove the term
proportional to (b− a)ε in (7.47). Note that apart from Lemma 7.1 the indefi-
niteness of Q has not been used in all arguments so far. In contrast to the case
of hyperbolic shells, we optimize (6.14) in w first. Again including the bound
‖vε‖Q �d dQ of Lemma 7.1 and here taking w = W(qT+/4)2/T+, where
W denotes the upper branch of the Lambert-W -function (for more details on
the Lambert-W -function see the proof of Corollary 2.5 on p. 71), and noting
that w ≤ q/(4e) < (b − a)/4, leads (as in the proof of Corollary 2.5) to the
bound

�r �β,d rd−2
(
CQ
(
q(2βd−1)/2(cQ T

d
2 −2−δ

− + γ[T−,1],β (r))+ γ(1,T+],β (r) log(T++1)
)

+ dQ
log(1+q T+)2

T+

)
+ dQq

d/4rd/2((q/q0)
d/2+dQq

d/2) log
(

1+ r
q1/2

0

)
,

(7.56)

where T− ∈ [q−1/2
0 r−1, 1] and T+ ≥ 1. This can be rewritten as

�r �β,d dQ r
d−2ρQ(r)+ dQ qd/4 rd/2(q/q0)

d/2 log(1 + r/q1/2
0 )

with

ρell
Q (r)

def= inf
{
aQ
(
qβd− 1

2 (cQ T
d
2 −2−δ

− + γ[T−,1],β (r))+ γ(1,T+],β (r) log(T++1)
)+ log(1+qT+)2

T+

}
,

where the infimum is taken over all T− ∈ [q−1/2
0 r−1, 1] and T+ ≥ 1. Note that

as in the indefinite case limr→∞ ρell
Q (r) = 0 if Q is irrational by Corollary 4.11.

This proves Corollary 2.4. Furthermore, we remark that vol Hr = vol(r� ∩
E0,b) = dQωd rd , where ωd denotes the volume of the unit d-ball.
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Similar arguments can be used in order to obtain related bounds for both
wide (b−a > r ) and narrow (b−a < r ) shells in the case of ellipsoidal shells
Ea,b.
Given a quadratic form Q of Diophantine type (κ, A), i.e. Q satisfies (1.12),
we shall apply Corollary 4.11 in order to estimate the Diophantine factors
explicitly. Hereby, we prove quantitative bounds in the Oppenheim conjecture
(for indefinite quadratic forms Q of Diophantine type (κ, A)) by comparing
the volume with the corresponding lattice sum.

Proof of Corollary 1.7 We begin by applying Corollary 7.11 with b = −a =
ε and β = 2/d + δ′/d for an appropriate δ′ > 0: Taking T− �β,d
q−1/(d(1/2−β)) |det Q|−1/d , so that bβ,d(b − a)dQ rd−2aQ cQ T d(1/2−β)

− ≤
(vol Hr )/5 holds, yields the lattice remainder bound

�r ≤ 2 vol Hr

5
+ rd−2CQ bβ,d (2εγ[T−,1],β(r)+ γ(1,T+],β(r) log(2εT+)).

This estimate is valid provided that r �β,d (q/q0)
(d+1)/(d−2)q1/2+2/(d−4)+δ.

Note that we have T− ∈ [q−1/2
0 r−1, 1] as required and that the assumptions

of Corollary 7.11 are satisfied as well. Next we calibrate the parameter T+ by
taking

T+ �β,d ε−1 max{1, log(2ε(qcβ,d)
−1)2}.

Since Q is of Diophantine type (κ, A), we can use Corollary 4.11 in order to
find that

γ[T−,1],β(r) �Q,β,d A− 1−2β
2(κ+1) r− 1−2β

κ+1

and also that

γ(1,T+],β(r) �Q,β,d A− 1−2β
2(κ+1) r− 1−2β

κ+1 (ε−1 log(ε−1))
κ
κ+1 (

1
2 −β).

In view of (7.12), we may increase r �Q,β,d max{A−1, 1} to get

2bβ,d CQ r
d−2γ[T−,1],β(r) ≤ (vol Hr )/5.

Now, we choose r �A,Q,δ,d ε
−(2d+3κd−4κ)/(2d−8)−δ in order to obtain

bβ,d CQ r
d−2 log(2εT+)γ(1,T+],β(r) ≤ (vol Hr )/5.

All in all, we have

5volZ Hr ≥ vol Hr �d dQ εr
d−2.
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Since (2d + 3κd − 4κ)/(2d − 8) ≥ 1/(d − 2) holds if d ≥ 5, we find that
volZ Hr > 1. This means that there exists at least one non-zero lattice point
m ∈ Z

d satisfying both |Q[m]| < ε and also ‖Q1/2
+ m‖ �d r .

We can argue similarly to investigate the density of values of a quadratic
form:

Proof of Corollary 1.8 It is sufficient to prove that volZd (r� ∩ Ea,b) > 0 for
any max{|a|, |b|} ≤ c0r2/2, where c0 is as in Lemma 7.1, with r−ν0+δ = b−a
for r ≥ cδ,d,�,Q,A,κ and a sufficiently large constant cδ,d,�,Q,A,κ > 1. In
particular, we consider small shells, i.e. b − a ≤ 1. Repeating the proof of
Corollary 7.11, we see that Corollary 7.11 is also valid for arbitrary paral-
lelepipeds satisfying (7.1), but then the constants depend additionally on the
scaling parameter cB ≥ 1. Also repeating the previous proof (of Corollary 1.7)
in this situation shows that we can take r = cδ,d,�,Q,A,κ (b − a)−1/ν0 , where
ν0 := 2(d−4)

2d+3κd−4κ , to ensure that volZd (r� ∩ Ea,b) > 0.

Using the Diophantine estimates for quadratic forms Q of Diophantine type
(κ, A), we can estimate ρhyp+

Q,b−a(r) and ρhyp−
Q,b−a(r) in Corollary 2.5 explicitly

as follows.

Proof of Corollary 2.6 First, we consider ‘wide shells’, i.e. b − a ≥ q. By
applying Corollary 4.11, we can bound the Diophantine factor from Corol-
lary 2.5 by

ρ
hyp+
Q,b−a(r) �d inf∗

T−,T+
{

log
(
(b − a)T

−( d−4
2 −δ)

− +1
)d(

q
(
q

3
2 +δ(a2

QT
d−4

2 −δ
− +qν A−ν T−ν− r−2ν)

+ qν A−ν T κν+ r−2ν log(T+ + 1)
)+ cQ

log(q T++1)
T+

)}
,

where ν := (1 − 2β)/(2κ + 2) and the infimum is taken over all T− ∈
[q−1/2

0 r−1, 1] and T+ ≥ 1. Next we optimize this expression by taking T− =
r−2ν/(ν+σ) and T+ = r (2ν)/(κν+1), where σ := d(1/2 − β): This parameter
choice is permissible, since T− ∈ [q−1/2

0 r−1, 1] holds (because of σ ≥ ν),
and thus we obtain

ρ
hyp+
Q,b−a(r) �β,d log(r + 1)d hQ q

3
2 +δ+ν(1 + A−ν)(r− 2νσ

ν+σ + r− 2ν
κν+1 log(q r + 1)),

where hQ := q |det Q|1/2−β (here we avoided to give an optimal estimate in
terms of |det Q| to reduce the notational burden). In view of the bound from
Corollary 2.5 and (7.12) we get the relative lattice error

∣∣∣volZ Hr

vol Hr
− 1
∣∣∣�Q,�,β,d (b − a)−1 log(r + 1)d

(
r− 2νσ

ν+σ + r− 2ν
κν+1 log(r + 1)

+ r− d
2 +2 log

(
1+ b−a

r
))
.
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For ‘thin shells’, i.e. b − a ≤ q, we have

ρ
hyp−
Q,b−a(r) �β,d inf∗

T−,T+
{
hQ log

(
1+T

− d−4
2 +δ)

−
)d(
(b−a)(T

d
2 −2−δ

− +qν A−ν T−ν− r−2ν)

+ qν A−ν T κν+ r−2ν(log((b − a)∗T+)
)+ 1)

)}
,

where the infimum is taken over all T− ∈ [r−1, 1] and T+ ≥ 1 satisfying

T+ ≥ 4(b − a)−1T
−( d2 −2−δ)
− max

{
1, log(c2

Q(b − a)T
−( d2 −2−δ)
− )2

}
. �

8 Small values of quadratic forms at integer points

Finally we shall prove Theorem 1.3 by using our effective equidistribution
results (in form of Corollary 7.11) together with bounds on small zeros of
indefinite integral quadratic forms. Our proof is based on the following strat-
egy: If Q has ‘good’ Diophantine properties, we can compare the volume with
the number of lattice points to establish bounds for non-trivial lattice points
m ∈ Z

d\{0} satisfying the Diophantine inequality |Q[m]| < ε. Otherwise Q
is near a rational form and here we shall use Schlickewei’s bound [51] for
small zeros of integral quadratic forms.

8.1 Integer-valued quadratic forms

In this section we summarize some essential results on small zeros of integer-
valued quadratic forms. Here A[m] denotes an integer-valued indefinite
quadratic form on a lattice� in R

d of full rank. Meyer [44] proved in 1884 that
such a form represents zero non-trivially on� if d ≥ 5. Nowadays, this result is
usually deduced from the Hasse-Minkowski theorem, which is a local-global
principle (see [25], Theorem 5.7, Corollary 5.10).

Similarly to the result of Birch and Davenport [3] on diagonal forms in
five variables, our quantitative bounds in Theorem 1.3 depend essentially on
explicit bounds for small zeros of integral forms (see Corollary 8.4). First
bounds of this kind were proved by Cassels [12], based on a geometric argu-
ment. Birch and Davenport improved Cassels’ result as follows: If d ≥ 3 and
A[m] admits a non-trivial zero on the lattice �, then there exists an isotropic
lattice point m ∈ �\{0} with Euclidean norm

0 < ‖m‖2 ≤ γ d−1
d−1 (2 Tr A2)(d−1)/2 (det�)2, (8.1)

where γd denotes the Hermite constant in dimension d (see [4,16]). This
bound is essentially best possible in view of an example by M. Kneser, see
[13], if A has signature (d−1, 1). In 1985 Schlickewei [51] extended Cassels’
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Distribution of values of quadratic forms 951

argument non-trivially by showing that the dimension, say d0, of a maximal
rational isotropic subspace has an essential impact on the size of small zeros,
rather than mere indefiniteness (i.e. d0 ≥ 1). He established the following
relation between small zeros of integral forms and the dimension d0.

Theorem 8.1 (Schlickewei [51]) Let � be a d-dimensional lattice and A a
non-trivial quadratic form in d variables taking integral values on �. Also
let d0 ≥ 1 be maximal such that there exists a d0-dimensional sublattice of
� on which A vanishes. Then there exist linearly independent lattice points
m1, . . . ,md0 ∈ �, spanning an isotropic subspace, of size

(‖m1‖ . . . ‖md0‖)2 �d (Tr A2)(d−d0)/2(det�)2. (8.2)

In the same way as Birch and Davenport [4] deduce their Theorem B from
their Theorem A, we may conclude

Theorem 8.2 (Schlickewei [51]) Let F,G �= 0 be quadratic forms in d
variables and suppose in addition that G is positive definite. Let d0 bemaximal
such that F vanishes on a rational subspace of dimension d0. Then there exist
d0 linearly independent lattice points m1, . . . ,md0 ∈ Z

d such that F vanishes
on the corresponding subspace and

G[m1] · · ·G[md0] �d (Tr(FG−1)2)(d−d0)/2 det G,

where the implicit constant depends on d only.

Using an induction argument combined with Meyer’s theorem, Schlickewei
derived also the following lower bound (8.3) - which we only state for non-
singular forms - for the dimension of a maximal rational isotropic subspace in
terms of the signature (r, s). For notational convenience, we may suppose that
r ≥ s. Then Hilfsatz of Section 4 in [51] reads

d0 ≥

⎧⎪⎨
⎪⎩
s if r ≥ s + 3

s − 1 if r = s + 2 or r = s + 1

s − 2 if r = s.

(8.3)

Remark 8.3 One can complement Schlickewei’s lower bound (8.3) with the
upper bound d0 ≤ min{r, s}, which follows immediately by a dimension argu-
ment: If we decompose R

d = V+ ⊕ V− into subspaces V+, V−, on which Q
is positive or negative definite, and if Viso denotes an isotropic subspace, then
Viso ∩ V± = {0} and thus

dim(Viso) = dim(Viso + V±)− dim(V±) ≤ d − dim(V±).
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In particular, the lower bound (8.3) is essentially optimal.

Obviously, a straightforward combination of the upper bound (8.3) together
with Theorem 8.1 yields explicit bounds on the smallest non-trivial isotropic
vector. However this application can be improved in the cases r = s + 2 and
r = s by reducing the problem to dimension d − 1 as done by Schlickewei
in Folgerung 3 of [51], were he proved that for any integral quadratic form A
of signature (r, s) there exists an isotropic lattice point m ∈ Z

d\{0} such that
‖m‖2 �d (Tr A2)ρ , where

ρ := ρ(r, s) :=

⎧⎪⎨
⎪⎩

1
2
r
s for r ≥ s + 3

1
2
s+2
s−1 for r = s + 2 or r = s + 1

1
2
s+1
s−2 for r = s

as defined in (1.10) (see Sect. 1.2). We shall extend this result to general lattices
leading to the following strengthening of (8.1).

Corollary 8.4 Suppose that A is a non-singular quadratic form of signature
(r, s) in r+s = d ≥ 5 variables,which takes integral values on�. Additionally
suppose that |det(�)| ≥ 1, then the smallest non-trivial isotropic vectorm ∈ �
of A satisfies

0 < ‖m‖2 �d max{(Tr A2)
1
2 , (Tr A2)ρ}|det�| 4ρ+2

d (8.4)

where ρ is as defined in (1.10).

Compared to (8.1), the exponent in (8.4) is considerably smaller for a wide
range of signatures (r, s). Especially, if r ∼ s, then ρ ∼ 1/2 and therefore
(2ρ + 1)/d ∼ 2/d.

Proof As can be checked easily, in the cases r ≥ s + 3 and r = s + 1 the
bound (8.4) follows immediately from Theorem 8.1 together with (8.3), since
d/d0 ≤ 2ρ+1 and 2 ≤ d/d0 (by Remark 8.3) in both cases. (Here we estimate
(Tr A2)(d−d0)/2 by (Tr A2)1/2 if Tr A2 < 1 and by (Tr A2)ρ if Tr A2 ≥ 1.) If
r = s or r = s + 2, then the first relation does not hold. Here we fix a reduced
basis v1, . . . , vd of � with

‖v1‖ ≤ . . . ≤ ‖vd‖ and |det(�)| �d ‖v1‖ . . . ‖vd‖.
Let�0 := Zv1+. . .+Zvd−1, which is a d−1 dimensional sublattice of�, and
note that Hadamard’s inequality shows that det(�0) = ‖v1 ∧ . . . ∧ vd−1‖ ≤
‖v1‖ . . . ‖vd−1‖. Thus

det(�0) �d det(�)(d−1)/d .
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Now denote by A0 the restriction of A to the subspace generated by
v1, . . . , vd−1. It follows that A0 has signature either (r, s−1) or (r−1, s) and,
since (Tr A2)1/2 = ‖A‖HS, also that Tr A2

0 ≤ Tr A2. Applying Theorem 8.1
(resp. Theorem 8.2 after a coordinate change) to A0 and �0 shows that there
exists an isotropic lattice point m ∈ �0\{0} such that

‖m‖2 �d (Tr A2
0)

d−1−d0
2d0 |det�0|

2
d0 �d (Tr A2)

d−1−d0
2d0 |det�| d−1

d
2
d0 ,

where d0 denotes the dimension of a maximal isotropic subspace of A0 (instead
of A). Completing the proof, we note that in both cases r = s + 2 and r = s
one has

2 ≤ (d − 1)/d0 ≤ 2ρ + 1,

as can be readily seen.

Remark 8.5 In 1988 Schlickewei and Schmidt [56] complemented their work
[55] on isotropic subspaces of quadratic forms showing that Schlickewei’s
bound in terms of d0 is best possible. Additionally, one can also ask if Schlick-
ewei’s bound (8.3) in terms of (r, s) is best possible, as was already conjectured
by Schlickewei himself in [51]. At least for the cases r ≥ s + 3 and (3,2) this
is known and due to Schmidt, see [49].

Remark 8.6 As a final remark we note that in the Geometry of Numbers it
is often the case that one can use the existence of a lattice points satisfying
some inequality in order to get several independent points satisfying a joint
inequality. This argument was used by Schlickewei and Schmidt [55,57] to
prove an extension of Theorem 8.1, in which they considered several isotropic
subspaces and their relative position.

8.2 Proof of Theorem 1.3

Now we are in position to prove the second main theorem of this paper. To
simplify the notation we may replace Q by Q/ε and consider the solubility
of the Diophantine inequality |Q[m]| < 1. Notice that this rescaling does not
change the constant cB = 1 occuring in Corollary 7.11.

Proof of Theorem 1.3 Let d ≥ 5, q0 ≥ 1 and

r ≥ b̃β,dq
1/2(q/q0)

(d+1)/(d−2) (8.5)

as in Corollary 7.11 and β = 2/d + δ′/d with fixed δ′ > 0 depending on
δ > 0. Applying Corollary 7.11 with b = −a = 1/5 (note that both conditions
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max{|a|, |b|} ≤ r2/5 and b − a ≤ 1 are satisfied) gives the bound

�r ≤ vol Hr

5
+ bβ,d dQ rd−2 qcQ

(
cQ T d(1/2−β)

− + γ[T−,1],β (r)+ γ(1,T+],β (r) log(T+)
)

for any T− ∈ [q−1/2
0 r−1, 1] and

T+ �β,d max{1, log(10cβ,dq))
2} �β,d log(q + 1)2.

Hence, we can take T+ �β,d log(q+1)2. Additionally, by taking

T− �β,d q−2/(d−4)−δ/4|det Q|−1/d

we can also ensure that

bβ,d dQ r
d−2q|det Q|1/2−βT d(1/2−β)

− ≤ (vol Hr )/10,

compare the lower bound (7.12) of Lemma 7.1. At this step we have to choose

r �β,d (q/q0)
1/2q1/2+2/(d−4)+δ/4 ≥ q−1/2

0 |det Q|1/dq2/(d−4)+δ/4 (8.6)

in order to guarantee that T− ∈ [q−1/2
0 r−1, 1] is satisfied.

First Case: We consider first classes of quadratic forms Q for which the lat-
tice remainder is ’small’: Corresponding to Diophantine properties of Q, we
assume that

bβ,d q |det Q|1/4−β/2γ[T−,1],β(r) ≤ hβ,d and

bβ,d q |det Q|1/4−β/2γ[1,T+],β(r) log(T+) ≤ hβ,d
(8.7)

with some constant hβ,d > 0 depending on d and β only (compare again
with (7.12)) such that 5volZ Hr ≥ vol Hr . Note that r ≥ q1/2 is fixed here.
According to Corollary 7.11 and (8.6) we shall take a priori

r �β,d (q/q0)
(d+1)/(d−2)q1/2+2/(d−4)+δ. (8.8)

Increasing the implict constant guarantees that volZ Hr ≥ 2, i.e. there exists
at least one non-zero lattice point m ∈ Z

d\{0} satisfying both |Q[m]| ≤ 1 and
‖Q1/2

+ m‖ ≤ r . Because of ρ ≥ 1/2, it is easy to see that the right-hand side
of (8.8) is bounded, up to absolute constants, by the right-hand side of (1.9).

Second Case: Now we assume that one of the inequalities in (8.7) fails. Then
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there exists a t0 ∈ [T−, T+] such that the reciprocal αd -characteristic satisfies
at least

β−1
t0;r =dQ rdαd (�t0 )

−1 �β,d E(t0)
def= (q log log(q + exp(1)))

2d
d−4+δ/4 (8.9)

Following the proof of Lemma 4.10, we see that there exists a d-dimensional
sublattice�′ ⊂ �t0 with αd(�t0) = |det�′|−1 = ‖w1 ∧ . . .∧wn‖−1, where

w j =
(
r Q−1/2

+ (m j − 4t0Qn j )

r−1Q1/2
+ n j

)

is a basis of�′ determined by integral vectors m j , n j ∈ Z
d , j = 1, . . . , d. We

have also proven, writing N = (n1, . . . , nd),M = (m1, . . . ,md) ∈ M(d,Z),
that N is invertible with β−1

t0;r > |det N | and that the estimate

αd(�t0)
−1 �d r−(d−2)q−1|det Q|1/2|det N |‖MN−1 − 4t0Q‖

holds, provided that αd(�t0) > qdQrd−2. In view of (8.9) the last condition
is satisfied if we take a priori

r �β,d (E(t0)q)
1/2. (8.10)

Now we are in position to apply Corollary 8.4 with the rescaled lattice
� = r�′, noting that det(�) = rd det(�′) ≥ |det Q|1/2|det N | ≥ 1, and
the quadratic form A[x] = 〈x, Ax〉 induced by the symmetric matrix

A
def=
(

0 r−21d

r−21d 8t0S

)

with 〈wi , Aw j 〉 = 〈mi , n j 〉 + 〈m j , ni 〉. In other words, the quadratic form
A is represented by the symmetric matrix A0 := NT M + MT N in coordi-
nates w1, . . . , wd . In particular, A is integer-valued on �. Since A1[n] :=
A0[N−1n], i.e. A1 = MN−1 + (MN−1)T , has the same signature as A0, we
need to check that the signature of A1 is (r, s). Because of

‖A1 − 8t0Q‖ �β,d |det N |−1r−2qE(t0)

we may choose a priori r �β,d (q/q0)
1/2 max{1, t−1/2

0 }qd/(d−4)+δ , i.e.

r �β,d (q/q0)
1/2q1/2+(d+1)/(d−4)+δ (8.11)
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to ensure that A1 and t0Q have the same number of eigenvalues with the same
sign, i.e. the same signature (e.g. apply the Hoffman-Wielandt inequality, see
Theorem 6.3.5 in [30]). Thus, there exists a non-trivial lattice point w =
a1rw1 + . . . + adrwd ∈ �, where (a1, . . . , ad) ∈ Z

d\{0}, which satisfies
A[w] = 0 and, writing n0 = a1n1 + . . .+ adnd ∈ Z

d\{0}, is of size

‖Q1/2
+ n0‖2 ≤ ‖w‖2 �d max{(Tr A2)

1
2 , (Tr A2)ρ}|det�| 4ρ+2

d

�β,d log(q + 1)4ρ(|det Q|1/2E(t0)) 4ρ+2
d

�β,d qδ+
8ρ+4
d−4 |det Q| 2ρ+1

d

(8.12)

where we used Tr A2 �d (r−2 + t0)2 � t2
0 �β,d log(q + 1)4 and (8.9).

Writingw = (w1, w2) ∈ R
d×R

d we also see that 0 = A[w] = r−2〈w1, w2〉+
8t0Q[n0] and thus

|Q[n0]| � (r2t0)
−1‖w1‖·‖w2‖ ≤ (r2t0)

−1‖w‖2

�d max{1, t2ρ−1
0 }|det�| 4ρ+2

d r−2 �β,d qδ+
8ρ+4
d−4 |det Q| 2ρ+1

d r−2.
(8.13)

Hence, requiring in addition

r �β,d q
1
2 + dρ+2

d−4 +δ ≥ qδ+
4ρ+2
d−4 |det Q| 2ρ+1

2d , (8.14)

it follows from (8.13) that |Q[n0]| �β,d 1, which in turn guarantees |Q[n0]| <
1 as long as r is taken large enough in terms of β and d. Combining this choice
with the lower bounds on r already required in (8.5), (8.6), (8.10) (8.11) and
(8.14), we observe that an appropriate choice for r is given by

r �β,d (q/q0)
d+1
d−2 q

1
2 + max{ρd+2,d+1}

d−4 +δ, (8.15)

where the implicit constant is chosen large enough depending on β and d only.
This concludes the proof of Theorem 1.3.
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Index

(b − a)∗ def= (b − a)I (b − a ≤ 1)+ I (b − a > 1) 871, 914
(b − a)q := (b − a)I (b − a ≤ q)+ q(2βd−1)/2 I (b − a > q) 871, 913
〈 · , · 〉, ‖ · ‖, Euclidean inner product and associated norm 861, 870
φr (x) = φ(x/r), for a function φ on R

m , 875
A �B C, A �B C , Vinogradov’s notation 868, 871
f ∗, radial realization of a bi-K-invariant function on G, 897
α, αl -characteristic of a lattice, 870, 884
Ag, mean-value operator on G, 897
aQ := q cQ , 927
β, exponent in the range ( 2

d ,
1
2 ), 870

βt;r := αd(�t )r−d |det Q|1/2, 891
cQ := |det Q|1/4−β/2, 871
CQ := q |det Q|−1/4−β/2, 871
Cartan decomposition of g ∈ SL(2,R): g = k1(g)d(g)k2(g), 896
�r := |volZ Hr − vol Hr |, lattice point deficiency, 872, 926
δt Q;R , rational approximation error of t Q truncated at R, 890
D := {dr : r > 0}, diagonal subgroup of SL(2,R), 888
d�(L) = d(L), covolume of the �-rational subspace L , 883
dQ : |detQ|−1/2, 870
DrQ , diagonalizable matrix on R

2d , 882, 889
Diophantine quadratic form of type (κ, A) 863
Ea,b := {x ∈R

d : a<Q[x]<b}, hyperbolic or ellipsoidal shell, 859, 871
γ[a,b],β(r), Diophantine factor for Q on [a, b] with exponent β, 870, 896
G = SL(2,R), 896
ĝI := max{|̂gw(t)| : t ∈ I }, maximum of |̂gw(t)| on an interval I , 896
gQ±w(x) := g±w(Q[x]), x ∈ R

d , 875
g±w := I[a,b]±w ∗ kw, 875
H := {v ∈ � : ‖v‖∞ < 1

}
, 883

Hr := Ea,b ∩ r�, if Q is indefinite, 872
Hr := E0,b, with r = √

2b, if Q is positive definite, 872
Ht (m, n) := r2 Q−1+ [m − 4 t Qn] + r−2 Q+[n ], 880
‖ Î�‖1,ε := ∫

Rd | Î�(v)| exp{−‖εv‖1/2} dv �� ε
−(d+1)/2 919

I� := |∫J0
R(etQ vr ) ĝw(t) dt | 877

Iθ := |∫J1
ĝw(t)

∫
Rd θv(t) ζ̂ (v)dv dt | 877

Iϑ := |∫J1
ĝw(t)

∫
Rd ϑv(t) ζ̂ (v)dv dt | 877

IB , indicator function of a set B, 864
Iwasawa decomposition of g∈SL(2,R): g=k(g)t (g), k(g) ∈ K,
t (g) ∈ T, 896
J0 := [−q−1/2

0 r−1, q−1/2
0 r−1], 877
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J1 := R\J0, 877
K := SO(2) = {kθ : θ ∈ [0, 2π ]}, orthogonal subgroup of SL(2,R), 889
k, compactly supported kernel with sufficiently fast decaying Fourier trans-
form, 864, 874
�Q , lattice in R

2d depending on Q only, 889
�t := DrQU4t QZ

2d , lattice on R
2d , 882, 889

�Q,t := dq1/2 u4t�Q , lattice on R
2d , 896

Mj (�), j-th successive minimum of a lattice �, 884
(∂�)ε := �ε\�−ε, ε-thickened boundary of �, 915
�±ε := (1 ± ε)�, ε-thickening resp. thinning of �, 915
ψ(r, t) :=∑m,n∈Zd exp{−Ht (m, n)}, 880
ϕλ : G → R

+, corresponding to the character χλ, 897
Q, as quadratic form and the corresponding symmetric matrix, 861, 870
q, largest eigenvalue of Q in absolute value, 861, 870
Q[x] = 〈Qx, x〉, Siegel’s notation, 861, 870
Q+, positive definite square root of Q2, 861
Q0 signature matrix corresponding to Q, 889
q0, smallest eigenvalue of Q in absolute value, q0 ≥ 1, 861, 870
Qr,v(t, x) := 2π i t Q[x] − r−2 Q+[x] + 2π i〈x, vr−1〉, 877
ρ = ρ(r, s), Schlickewei exponent, 861, 934
ρell
Q (r), 872, 930

ρ
hyp∗∗
Q,b−a(r), 929

ρ
hyp∗
Q,b−a(r), 929

ρ
hyp+
Q,b−a(r), 873, 928

ρ
hyp−
Q,b−a(r), 873, 928

ρwQ,b−a(r), 871, 874
R(IEa,b vr ), R(gvr ), R(IEa,b∩r�), lattice point remainder, 864, 875, 915
r∗ := r q−1/2 896
rt := r(4π2t2r4 + 1)−1/2, 878
S, orthogonal matrix such that SQQ−1+ ST = Q0, 889
s[a,b]±w(t) := |(2π t)−1 sin(π t (b − a ± 2w))|, 877
T, Borel subgroup of SL(2,R), 896
τλ, spherical function on G, 897
θv(t), Theta series for Q, 865, 877
ϑv(t), Theta integral for Q, 865, 877
U := {ut : t ∈ R}, standard unipotent subgroup of SL(2,R), 888
U4t Q , unipotent matrix on R

2d , 882, 889
v, weight function on R

d of sufficiently fast decay, 870
v±ε := I�±ε ∗ kB,ε, ε-smoothing of �, 915
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vol (B), Lebesgue measure on R
d , 859

vol Z(B) = #(B ∩ Z
d), counting measure on Z

d , 859
χλ, character of T, 897

‖̂ζ‖∗,r := qd/4
(
(
q
q0
)d/2‖̂ζ‖1+∫‖v‖∞>r/2

|̂ζ (v)|
(q1/2r−1+‖vr−1‖Z)d/2 dv

)
, 871, 880

ζ(x) := v(x) exp{Q+[x]}, 875
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