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Abstract The number of lattice points in d-dimensional hyperbolic or ellip-
tic shells {m : a < Q[m] < b}, which are restricted to rescaled and growing
domains r €2, is approximated by the volume. An effective error bound of order
o(r?=?) for this approximation is proved based on Diophantine approximation
properties of the quadratic form Q. These results allow to show effective vari-
ants of previous non-effective results in the quantitative Oppenheim problem
and extend known effective results in dimension d > 9 to dimension d > 5.
They apply to wide shells when b —a is growing with r and to positive definite
forms Q. For indefinite forms they provide explicit bounds (depending on the
signature or Diophantine properties of Q) for the size of non-zero integral
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points m in dimension d > 5 solving the Diophantine inequality |Q[m]| < &
and provide error bounds comparable with those for positive forms up to pow-
ers of logr.
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1 Introduction
Let Q[x] denote an indefinite quadratic form in d variables. We say that the

form Q is rational, if it is proportional to a form with integer coefficients; other-
wise it is called irrational. The Oppenheim conjecture, proved by G. Margulis
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Distribution of values of quadratic forms 859

[40] in 1986, states that Q[Zd] is dense in R if d > 3 and Q is irrational.
Initially this was conjectured for d > 5 by A. Oppenheim [47,48] in 1929
and in 1946 strengthened (for diagonal forms) to d > 3 by H. Davenport
[18]. The proof given in 1986 uses a connection, noticed by M. S. Raghu-
nathan, between the Oppenheim conjecture and questions concerning closures
in SL(3, R)/SL(3, Z) of orbits of certain subgroups of SL(3, R). It is based
on the study of minimal invariant sets and the limits of orbits of sequences of
points tending to a minimal invariant set. Previous studies have mostly used
analytic number theory methods. In fact, B. J. Birch, H. Davenport and D. Rid-
out proved in a series of papers that Q[Z¢] is dense in R if d > 21 provided
that Q is irrational, see [39,41] for a complete historical overview until 1997.

For a measurable set B C R? let vol B denote the Lebesgue measure of B
and let vol z B := #(B N Z¢) denote the number of integer points in B. We
define for a, b € R with a < b the hyperbolic shell

Eqp def {x eRY: a< Olx] < b}.

The Oppenheim conjecture is equivalent to the statement that if d > 3 and QO
is irrational, then voly, E,; , = oo whenever a < b. We would like to study
the distribution of values of Q at integer points, often referred to as “quantita-
tive Oppenheim conjecture” with an emphasis on establishing effective error
bounds for the approximation of the number of lattice points restricted to grow-
ing domains. Our methods rely mainly on Gétze’s Fourier approach [28] via
Theta series, translating the lattice point counting problem into averages of
certain functions on the space of lattices, for which we extend the mean-value
estimates obtained by Eskin—Margulis—Mozes [23].

1.1 Related results

Let R be a continuous positive function on the sphere {v € R¢: |v|| = 1} and
let @ = {v e R: |v|| < 1/R(v/|lv|))}. Note that the Minkowski functional
of @, that is M(v) = inf{r > 0: v € rQ}, may be rewritten as M(v) =
vl R(v/|lv]]) and therefore Q@ = {v € RY: M(v) < 1}. Without loss of
generality we may assume that Q C [—1, 11¢. We denote by rQ the dilate
of @ by r > 1. In [20] S. G. Dani and G. Margulis obtained the following
asymptotic exact lower bound under the same assumptions that Q is irrational
andd > 3:

.. .volz (Eqp NrS2)
lim inf : >
r—oo  vol (E4p N12)

(1.1)
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860 P. Buterus et al.

Remark 1.1 Itisnot difficult to prove (see Lemma 3.8 in [23]) thatas r — o0,
vol (Eqp N 1) ~ Ag.a(b —a)ri ™2,

where

dA
0.0 déf/ — (1.2)
g IVOI

L is the light cone Q = 0 and dA is the area element on L.

The situation with asymptotics and upper bounds is more subtle. It was
proved in [23] that if Q is an irrational indefinite quadratic form of signature
(p,q)withp+qg=d,p>3andg > 1, thenforanya < b

voly (Eqp NrQ)

im = (1.3)
r—oo vol (E4 p Nr2)
or, equivalently, as r — o0
volz, (Eqp Nr2) ~ hg.ab —a)r?™2, (1.4)

where Ag o is asin (1.2).

If the signature of Q is (2, 1) or (2, 2), then no universal formula like (1.4)
holds. In fact, one can show (see Theorem 2.2 in [23]) that if 2 is the unit ball
and g = 1 or ¢ = 2, then for every ¢ > 0 and every a < b there exists an
irrational quadratic form Q of signature (2, ¢) and a constant ¢ > 0 such that
for an infinite sequence r; — o0

volz, (Eqp N1rjS2) > cr‘?_z(log rj)l_g-

While the asymptotics as in (1.4) do not hold in the case of signatures (2, 1)
and (2, 2), one can show (see [23]) that in these cases there is an upper bound
of the form r?~2logr. This upper bound is effective and it is uniform over
compact sets in the space of quadratic forms. In addition, there is an effective
uniform upper bound (see [23]) of the form cr?=2 for the case p>3,q>1.

The examples in [23] for the cases of signatures (2, 1) and (2, 2) are obtained
by considering irrational forms which are very well approximated by split
rational forms. More precisely, a quadratic form Q is called extremely well
approximable by split rational forms (EWAS) if for any N > 0 there exists a
split integral form Q’ and a real number 7 > 2 such that

-N
ltQ - Q' <177,
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Distribution of values of quadratic forms 861

where || - || denotes a norm on the linear space of quadratic forms. It is shown
in [22] that if Q is an indefinite quadratic form of signature (2, 2), which is
not (EWAS), then for any interval (a, b), as r — 00,

No.a(a,b,r) ~ rg.ab —a)r?, (1.5)

where A q is the same as in (1.2) and ﬁQ’Q(Cl, b, r) counts all the integral
points in £, , N r$2 not contained in rational subspaces isotropic with respect
to Q. It should be noted that

(i) an irrational quadratic form of signature (2, 2) may have at most four
rational isotropic subspaces,
(i1) if O ¢ (a, b), then Ng q(a, b,r) = volz (Esp Nr2).

The above mentioned results have analogs for inhomogeneous quadratic forms
Q:clx] = Qlx +§], §eR”

We define for a, b € R with a < b the shifted hyperbolic shell

Eape € (x eR?: a < Qclx] < b).

We say that Q¢ is rational if there exists ¢ > 0 such that the coefficients of 7 Q
and the coordinates of t§ are integers; otherwise Q¢ is irrational. Then, under
the assumptions that Q¢ is irrational and d > 3, we have that (see [45])

volz (Eqpe Nr2) o1 (1.6)

lim inf
r—00 Vol (Eq4pe Nrw)

The proof of (1.6) is similar to the proof of (1.1).
Let (p, g) be the signature of Q. If p > 3, > 1 and Q¢ is irrational then

volz, (Eqpe N1r$2) _

im =1, (1.7)
r—>o0 vol (Eq pe Nr2)
or, equivalently, as r — oo,
volz, (Eq.pe Nr) ~ ro.ab —ayr®=2. (1.8)

The proof of (1.7) is similar to the proof of (1.3), see [45]. The latter paper
[45] also contains an analog of (1.5) for inhomogeneous forms in the case of
signature (2, 2). One should also mention related results of Marklof [42,43].
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862 P. Buterus et al.

Remark 1.2 The proofs of the above mentioned results use such notions as a
minimal invariant set (in the case of the Oppenheim conjecture) and an ergodic
invariant measure. These notions do not have in general effective analogs.
Because of that it is very difficult to get ‘good’ estimates for the size of the
smallest non-trivial integral solution of the inequality |Q[m]| < € and ‘good’
error terms in the quantitative Oppenheim conjecture by applying dynamical
and ergodic methods.

1.2 Diophantine inequalities

One of our main objective is to develop effective analogs of (1.8) and show
that all indefinite quadratic forms Q of rank at least 5 admit a non-trivial
integral solution to the Diophantine inequality |Q[m]| < ¢ whose size can
be bounded effectively in terms of ¢~'. On the one hand, we will exploit
Schlickewei’s results [51] on small zeros of integral forms (see Sect. 8.1)
in order to establish effective bounds depending on the signature (r, s) of
Q. On the other hand we will introduce an appropriate Diophantine condi-
tion on the space of quadratic forms, which will enable us to significantly
improve our effective bounds due to the exponents appearing in the Dio-
phantine approximation of Q. To state these bounds we need to introduce
notation.

Denote by Q also the symmetric matrix in GL(d, R) associated with the
form Q[x] := (x, Q x), where (-, -) is the standard Euclidean scalar prod-
uct on R¢. Let Q. denote the unique positive symmetric matrix such that
02 = 0? and let O4[x] = (x, O+ x) denote the associated positive form
with eigenvalues being the eigenvalues of Q in absolute value. Let ¢, resp.
qo, denote the largest, resp. smallest, of the absolute value of the eigen-
values of O and assume go > 1. In the first case, where we compare Q
with rational forms, we can replace the form Q by Q/e and consider the
solubility of the inequality |Q[m]| < 1. Since this Diophantine inequality
includes the case of integral-valued indefinite forms, we shall appeal to Corol-
lary 8.4 (a variant of Folgerung 3 in [51]) on the size of non-trivial integral
solutions. Combining this result with our effective bounds we arrive at the
following size estimate for a non-trivial solution of this Diophantine inequal-

ity.
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Distribution of values of quadratic forms 863

Theorem 1.3 For all indefinite and non-degenerate quadratic forms Q of
dimension d > 5 and signature (r, s) there exists for any § > 0 a non-trivial
integral solution m € Z4\{0} to the Diophantine inequality |Q[m]| < 1 sat-

isfying
10Y?mll <s.a (q/qo) T2 gz Hmaxlpd+2.d+1)/(d=4)145 (1.9)

where the dependency on the signature (r, s) is given by

%g forr >s+3
p = p(rs) = %2%2 forr =s+2o0rr=s5+1 (1.10)
%% forr =s.

In particular, for indefinite non-degenerate forms in d > 5 variables of
signature (r, s) and eigenvalues in absolute value contained in a compact set
[1,C]l,i.e 1 < ¢go < g < C, Theorem 1.3 yields non-trivial solutions m € 74
of |Q[m]| < ¢ of size bounded by

m| <cs e~ maxlpd+2.d+1)/d—4)=3

As an example, we obtain solutions of order <c s e_l_ﬁ_’s for the special
case r = s + 3 and d > 12. More generally, we may embed Z% < Z? for
dimensions d > d; > 5, in such a way that the restricted form is indefinite
and of rank d;, and apply Theorem 1.3 to this form in d; dimensions. As
a consequence, since (Q*)?> < Q2 in the ordering of positive forms we get
g >q" >qy > qo > 1and |det Q*| < |det Q|, we obtain the following
corollary.

Corollary 1.4 For all indefinite and non-degenerate quadratic forms Q in
d > 5 variables there exists for any ¢ > 0 at least one non-trivial integral
solution m € 7% of

|Q[m]| < e,

s (1.11)

lml < ccse™ /70,

for any § > 0, where f; = 12, 8%, 7% for d = 5,6, 7 respectively and

fa = 71 for all d = 8. The constant cc s depends only on 6 and C > 0 for
2 ,

Sforms Q satisfying 1 < qg <q <C.

Remark 1.5 (a) For the special case of diagonal indefinite forms Q[x] =
Z?: 19 jx]z with min|g;| > 1 Birch and Davenport [3], obtained a sharper
bound. They showed for arbitrary small § > 0 that there exists an m € Z>\{0}
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864 P. Buterus et al.

with |Q[m]| < 1 and Q4 [m] g4, |det Q|'*+?. This implies (as above) for
a compact set of forms Q that there exists an integral vector m satisfying
|Q[m]| < & and ||m| < cq.s >+ for any fixed § > 0. In [7] Buterus, Gétze
and Hille extended the approach of Birch and Davenport to improve the size
of a solution by using Schlickewei’s result [51] on small zeros of integral
forms: Let Q[x] = 2?21 q jsz. be an indefinite form of signature (7, s) in
d = r + s > 5 variables. Then for any ¢ > 0 the Diophantine inequality
|Q[m]| < & admits a non-trivial solution m € Z¢, whose size is bounded by
&« £7PT3 for any fixed § > 0.

(b) Recently, quantitative versions of the Oppenheim conjecture were stud-
ied by Bourgain [9], Athreya and Margulis [1], and Ghosh and Kelmer [26].
Bourgain [9] proves essentially optimal results for one-parameter families of
diagonal ternary indefinite quadratic forms under the Lindelof hypothesis by
using also a Fourier approach, based on Epstein-Zeta functions. In contrast,
Ghosh and Kelmer [26] consider the space of all indefinite ternary quadratic
forms and use spectral methods (an effective mean ergodic theorem). Lastly,
Athreya and Margulis apply classical bounds of Rogers for L?-norm of Siegel
transforms in order to prove that for every § > 0 and almost every Q (with
respect to the Lebesgue measure) with signature (r, s), there exists a non-trivial
integral solution m € Z to the Diophantine inequality | Q[m]| < & whose size

1
is bounded by [|m| <s,0 g7 2% ifd > 3.
As mentioned above let us introduce a class of Diophantine forms as follows.

Definition 1.6 We call Q Diophantine of type (x, A), where «, A > 0, if for
any m € Z\{0} and M € M(d, 7Z) we have

inf ||M —mtQ| > Alm|™", (1.12)
te[1,2]

where | - || denotes the operator norm induced by the Euclidean norm on R”.

We shall see in Sect. 4.3 that almost every form satisfies this property for
some k and A. In particular, fixing an integer k such that 1 < k < W —1
we shall show that a form Q for which £ + 1 non-zero entries y, x1, ..., Xk
existsuchthatx/y, ..., xx/yarealgebraicand 1, x{/y, ..., xx/y are linearly

independent over Q is Diophantine in this sense and admits a non-trivial solu-
_d3+2k)—4
tion to the Diophantine inequality |Q[m]| < € of order K g 45 € *@9 5
d(d+1)
2

2

for any § > 0. In particular, for k = — 1 we can give a bound for the
_ _d+d?+d-4
size of the least solution of order < 4.5 € @+d-2@-4 = and in this case for

d = 5of order « g 5 € 131/28-5,
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Distribution of values of quadratic forms 865

Corollary 1.7 Let Q be an indefinite quadratic form in d > 5 variables and
of Diophantine type (k,A) and fix 6 > 0. Then for any ¢ > 0 there exists a
non-trivial lattice point m € 74\0 satisfying

2d+3kd—4x -5

|Q[m]| <& and |m| Kg,as& 28

For irrational indefinite quadratic forms we may quantify the density of
values Q[m], m € rQ2nN 74, where Q denotes a (not necessarily admissible)
parallelepiped satisfying (7.1) (see Sect. 7.3) as follows: Consider the set

V(r) def {Q[m] tmEerQ ﬂZd} N [—corz, corz]

of values of Q[x], x € rQ N Z< lying in the interval [—cor?, cor?], where g
denotes the constant introduced in Lemma 7.1. For each r > 1 we arrange the
values V (r) in increasing order vo(r) < ... < vk (r), k = k(r), and define the
maximal gap between successive values of V (r) as

d(r) = Supie{l k(r)}|vi(r)—v,'_1(r)|. (113)

.....

As a consequence of our technical quantitative bounds we obtain

Corollary 1.8 Ler Q denote a non-degenerate indefinite form in d > 5 vari-
ables and of Diophantine type (k, A). For § > 0 we obtain for the maximal
gap d(r) between successive values of the quadratic form in the set V (r)

d(ry < r ", (1.14)

for sufficiently large r > c¢5.4.Q.,4,0, Where vy = —2d+23d,c_dg_4,< and
cs.d,Qx,A,0 > 0 denotes a constant depending on k, A, Q,2,d and 0 <

8 < 1/10 (here we omit a description of the explicit dependence).

For positive definite quadratic forms Davenport and Lewis (see [19]) con-
jectured, that the distance between successive values v,, of the quadratic form
Qlx]on 74 converges to zero as n — 00, provided that the dimension d is at
least five and Q is irrational. This conjecture was proved by Gotze in [28]. It
also follows by the results of the present paper which provides error bounds
for the lattice point counting problem for the indefinite case as well as the
positive definite case.

The proof is similar as in the case of positive forms solved in [28]: For any
& > 0 and any interval [b, b + ¢], we find at least two lattice points in the shell
Ep p+e (and the box of size r = V/2b) by Corollary 2.4, provided that b is
larger than a threshold b(¢). Here b(¢) and consequently the distance between
successive values (as a function of b) depends on the rate of convergence of
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866 P. Buterus et al.

the Diophantine characteristic p¢!(r) in the bound of Corollary 2.4 towards
zero. For quadratic forms of Diophantine type («, A) this dependency can be
stated explicitly.

1.3 Discussion of effective bounds and outline of the proofs

In order to prove an effective result like Theorem 1.3 we need an explicit bound
for the error, say R(Ig, ,nrq) (for a formal definition see (1.15) below) with
Ip denoting the indicator of a set B, of approximating the number of integral
points m € E,p in a bounded domain r 2 by the volume vol (E, , N r<),
compare Remark 1.1. First, we simplify the problem by replacing the weights
I,o(m) = 1 of integral points m € r 2 by suitable smoothly changing weights
v(m/r) (for notational simplicity, we will write v, (m) := v(m/r)), which tend
to zero as m/r tends to infinity. This smoothing (together with a smoothing
of the indicator function of [a, b]) allows us to use techniques from Fourier
analysis, but we are forced to restrict the region €2 to parallelepipeds in order
to ensure that the corresponding error has logarithmic growth only.

1.3.1 Fourier analysis

Starting with smooth weight functions v, (which depend on the dilation param-
eter r), we also construct a w-smoothing g of the indicator function of [a, b]
via convolution with an appropriate kernel k whose Fourier transform decays
like k()| < exp{—+/|wt]|}. This allows us to replace the indicator function
of [a, b] in the lattice point counting problem by a smooth function, gaining
an error bounded in Corollary 3.2. After this smoothing procedure, writing
g Q(x) := g(Q[x]), our main objective will be to estimate the weighted lattice
remainder

def

Rg%v) = > g(Q[m])v(%)—/dg(Q[x])v(%)dx, (1.15)

meZd R

where g and v are smooth functions whose Fourier transforms decay fast
enough as well. More precisely, we will assume that v satisfies (2.4). (At this
point we should note that the abbreviation introduced in (1.15) will frequently
be used to denote remainder terms.) Next we shall use inverse Fourier trans-
forms in order to express the weights as

g(Q[m])Z/R?Z\(t) exp{2mir Q[m]}dt, §(m)=/Rd?(u)eXP{2ﬂi<M,m)}du,
where ¢(x) = v(x)exp{Q4+[x]}. Combining the resulting factors exp{2mit
Q[ml}, exp{27i(v, m)} and exp{—Q+[§]} in (1.15) into terms of the gener-

alized theta series
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Distribution of values of quadratic forms 867

0,0) =Y expl—2mi(v, m)/r = 2mit Qlm] — Q+[m1/r?)
meZ4
one arrives at an expression for the sum V, := > -4 v() g(Q[m]) by the

following integral (in ¢ and v) over 6,(¢):
V, = / E(v)/ 2(1)0, (1) dr dv. (1.16)
R4 R

The approximating integral W, := fRd v(%)g(Q[x]) dx to this sum V, can
be rewritten in exactly the same way by means of the theta integral

9,(1) & / expl—27i (v, x)/r — 2mit Q[x] — Q4 [x]/r) dx,
Rd

replacing the theta sum 6, (). Thus, in order to estimate the error | R( g%v,)| =
|V, — W,|, the integral over ¢ and v of |0,(¢) — ¥,(¢)||g(¢)¢ (v)| has to be
estimated.

For |f| < qo_l/zr_1 and ||x|| < r the functions x +— exp{2rir Q[x]} are
sufficiently smooth, so that the sum 6,(¢) is well approximable by the first
term of its Fourier series, that is the corresponding integral 9, (¢), see (3.16)
and (3.33). The error of this approximation, after integration over v, yields
the second error term in (1.26), which does not depend on the Diophantine
properties of Q. Additionally, we may restrict the integration to |t| < T} for
an appropriate choice of 7 (depending on the width of the shell) by using the
decay rate of the kernel k. So we end up with the remaining error term

I= f L / 160 (HZ (1) T ()| dvder, (1.17)
Ty >|t|>qq *r=1 JRI

which we estimate as follows

veRd

I <2l sup f a B OB, (118)
Ty >[t]>qy !

The second factor in the bound of 7 in (1.18) encodes both the Diophantine
behavior of Q as described above as well as the growth rate with respectto r. We
shall describe in the next subsection our method to extract out of this factor the
correct rate of growth, while simultaneously avoiding the loss of information
on the Diophantine properties of Q, provided that d > 4. However, let us first
state that the resulting bound (the choice of 7 depending on the width of the
shell) is an error bound depending on characteristics of ’E(v) of the form (see
Theorem 2.2)
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868 P. Buterus et al.

_ ~ EDSEIPN b—a
RUE,, 1) <0, W'+ 181108 g2+ 1T log (145, (1.19)

which has to be optimized in the smoothing size w (compare e.g. Corollary 2.4)
and ,05’ »—a () depends on the Diophantine properties of Q and r (see Theo-
rem 2.2).

1.3.2 Mean-value estimates

In order to describe the second term in (1.19), we follow [28] (by using a
modified Weyl differencing argument) to show in Lemma 3.3 that uniformly
in v and pointwise in ¢

10,0 < r?|det Q|2 Y~ exp{—v]*}, (1.20)

UEA[

where {A;};cr is a family of 2d-dimensional unimodular lattices generated by
orbits of one-parameter subgroups of SL(2, R) indexed by ¢ and r, see (3.47)
for the precise definition. It is well-known that the expression ¥ (r,t) =
D v A, exp{—||v[|?} can be bounded by the number of lattice points v € A,
satisfying ||v|lcc < 1. Combining this estimate together with the symplectic
structure of A; (see Sect. 4.1) yields the estimate

1
) = Al )
vt < M M) d &g (Ay)

where M;(A;) denotes the i-th successive minima of A; and ay(A;) the
d-th a-characteristic of A,, that is ay(A;) = supf{|det(A")]™' : A’isa
d—dimensional sublattice of A,}. After alocal approximation of a certain one-
parameter unipotent subgroup by the compact group SO(2) (see Sect. 4.2), we
estimate the average of ag(A)P overt for0 < B < 1/2 in Lemmas 5.12, 6.1
and 6.2. This argument involves a recursion in the size of r and builds upon a
method developed in [23] on upper estimates of averages of certain functions
on the space of lattices along translates of orbits of compact subgroups.

Let us give a brief sketch of the main ideas involved in this argument. Let
G = SL(2,R), K = SO(2) endowed with the probability Haar measure dk
and denote by A, the mean-value operator on K\G defined by

A (h) = fK F(gkh) dk.

where f is any continuous function on K\G, g € G denotes any element for
which ||g|| = r and || - || denotes the operator norm induced by the standard
Euclidean norm. Fixing 2/d < B < 1/2, we shall show that uniformly in v
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Distribution of values of quadratic forms 869

and for all intervals I of fixed bounded length there exists a positive function
f depending only on Q and 8 such that

/ 10, (1) dr < r?=P|det Q|7 V4y; 5(r) A (F)(D),
1

where y; g(r) contains information on the Diophantine properties of Q and
tends to zero for irrational forms as r tends to infinity (see Corollary 4.11).

The function f does not appear isolated but emerges as the maximum of
a family of positive functions fi, ..., fog. For a positive number rog > 0
and any gg € G such that ||gg|| = ro we show that this family satisfies two
main properties. First, the value of each f; on any orbit of the form goK# is
bounded (up to a constant depending only on rg) by its value at f; (/). Second,
the mean-value A, (f;) of any f; satisfies the following functional inequality
(see Lemma 5.11)

An fi € 13,(80) fi + Om?lXT VSi—jfitjs

<J=<i

where we set i = min{i,2d — i}, A; := max{2, Bi} and T3, denotes the
spherical function

T, (8) = / Lgken ]l dk,
K

where ¢; = (1, 0) denotes the first standard unit vector on R2.

The asymptotic growth of spherical functions is well-understood and in our
case 7;(g) = |lg|*~% whenever A > 2 and g ¢ K. Here spherical functions
are crucial precisely because they are the eigenfunctions of the mean-value
operator. We show, in a first instance, that any positive function f satisfying
an inequality of the form

An f L 1(go) f + by, (1.21)

for . > 2 and 0 < n < A satisfies

A f(1) < (g) f(D), (1.22)

for any r > 0, where g € G is any element for which ||g|| = r. In other words,
the growth of the mean value at 1 grows at most as fast as the associated
spherical function. In a second instance we obtain, after radializing the family,
a preliminary estimate of the form
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Ar(HD) L F(D)T(8), (1.23)

for any fixed u© > X;. We then show inductively, using repeatedly (1.21),
(1.22) and (1.23) that

A(f) € f()1y,, foralli #d (1.24)

for an appropriate sequence Ay > u; > ;. Combining these estimates again
with (1.21) in the case i = d then yields the inequality A, fy < T4,(80) fa +
f (1)1, for some n < Ay, which implies together with (1.21) and (1.24) the
desired and expected estimate (see Theorem 5.12), namely that A, (f)(1) <
T, () f(1) < rﬂd—zf(]l) for any » > 1 and any g € G for which || g|| = r.
In particular for any such interval / we obtain the following bound

/ 18o(0)] dt < r421det Q1 y15(r) £ (1),
1

At this point the current approach is fundamentally different to the approach
of previous effective bounds for R(/g, ,n-q) by Bentkus and Gotze [6] (see
also [5]) valid for d > 9 and positive as well as indefinite forms. The reduction
to (1.20) and the Diophantine factor ,05’ p_q (1) follows the approach used by
Gotze in [28], where the average on the right-hand side of (1.20) was estimated
for d > 5 by methods from the Geometry of Numbers and essentially required
positive definite forms. A variant of that method was applied to split indefinite
forms in a PhD thesis by G. Elsner [21].

1.3.3 Smooth weights on 7.4

For the Gaussian weights v, (x) = exp{—2 Q4[x]/ r?} our techniques yield
effective bounds for the approximation of a weighted count of lattice points
m € Z4 with Q[m] € [a, b] by a corresponding integral with an error

RUEg,,vi)= Y v,(m)—f v, (x) dx. (1.25)
Ea,h

mGEa.bﬂZd

The following bounds for R(/g, , v,) are identical for the case of positive and
indefinite d-dimensional forms Q, provided that d > 5. Using Vinogradov’s
notation A < p C, meaning that A < cp C with a constant cg > 0 depending
on B, we have
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Theorem 1.9 Let Q be a non-degenerate quadratic form in d > 5 variables.
Choose B = %—l—%forsome arbitrary small 5 € (0, %). Then foranyr > q'/?,
where q denotes the maximal eigenvalue of Q, b > aand0 < w < (b—a)/4
we have

R(Ig,,vr) Ko.pa > (w=+phy o)+ 'b—a), (1.26)

provided thatb —a < r. If r < b —a < r? the second term in the bound has
to be replaced by r*/?logr.

In Theorem 2.2 an explicit description of the Diophantine factor pg’ pa )
will be provided. Depending on whether Q is definite or indefinite, this factor
will be further refined in Corollary 2.4, resp. Corollary 2.5. Moreover, the func-
tion pg, »_a () tends to zero as r tends to infinity if Q is irrational. Additionally,
if Q is Diophantine of type (k, A), as we shall introduce in Definition 1.6, we
find a polynomial decay pg’ p—a() K0,a,4 r~" for an appropriate choice of
0<w < (b—a)/4, where v € (0, 00) depends on d, ¥ and A, see Corol-
lary 2.6. These results follow from Theorem 2.2 with parameters chosen for the
indefinite, positive and effective Diophantine cases in the proofs in Sect. 7.4.

1.3.4 The role of the region Q2

In order to estimate the lattice point deficiency R(/g, ,nre) we have to e-
smooth the indicator function of © which yields weights { = ¢, and an
additional error of order e(b — a)r?=?2 in case of indefinite forms due to the
intersection of E, ; with the boundary dr 2. For positive definite forms, r Q2
contains E, ;, thatis ¢ > 0 could be fixed independent of r, since this boundary
intersection term is not present here.

In the indefinite case one needs to match the actual size of the error by
choosing ¢ small enough in (1.19). This leads to a critical dependence on ¢
th/r\ough the Fourier transform of ¢, and its characteristics (see (2.6)). Here
1z¢|l1 moderately grows like (log1/¢)? for arbitrary small ¢ in the case of
polyhedra only, see Lemma 7.2. The dependence of ||¢¢ || 1.+, see (2.6), is again
critically dependent on €2 and the width & — a of the hyperbolic shell E, ;. For
b —a > r the boundary of rQ2 N E,; ;, will contain a larger segment of dr Q.
For a sequence of scalings r these segments of the (d — 1)-polytope potentially
contain a large number of lattice points which induce large errors in the lattice
point approximation, for which the technical restriction to the region 2 is
solely responsible. In order to avoid this artefact which is reflected by a large
growth of ||Z¢|l1,» when ¢ is small, we restrict ourselves to special admissible
regions r <2, where Q = B! [—1, l]d, and B € GL(d, R) is chosen such that
the lattice I' = BZ is admissible in the sense of Sect. 7.3, i.e. both (7.1) and
(7.29) are satisfied. This ensures that the lattice point remainder of r €2 satisfies
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[volz rQ2 — vol rQ| <o (logr)?~! uniformly which is ‘abnormally’ small.
Likewise ||/§\g |l1,+ grows of order (log 1/ ¢)? only. The resulting error bounds in
Corollary 2.5 for wide shells with max{|a|, |b|} <p r? are then comparable
up to at most (log 1/¢)¢ factors to the case of positive forms in Corollary 2.4.

1.4 Organization of this paper

The paper is organized mostly in logical order. In Sect. 2 we describe the
explicit technical estimates on lattice point remainders for both positive definite
and indefinite forms. In the following Sect. 3 we transfer the problem to Fourier
transforms of the error starting with a first smoothing step and rewrite the
lattice remainder in terms of integrals over d-dimensional theta sums. Section 4
provides a reformulation of the problem via upper bounds in terms of integrals
over the absolute value of other theta sums with an underlying symplectic
structure on R2? which, in turn, are estimated using basic arguments from
the Geometry of Numbers. Section 5 contains crucial estimates for averages
of functions on the space of lattices. Finally, in Sect. 6 all these results are
combined to prove Theorem 2.2. Starting with the applications, we collect
in Sect. 7 the geometric bounds related to parallelepiped regions 2 used in
this paper and afterwards conclude (in Sect. 7.4) the results of Sect. 2. In
the last Sect. 8 we focus on small values of indefinite quadratic forms: After
recollecting and refining some results due to Schlickewei [51] on the size of
small zeros of integral quadratic forms, we shall prove Theorem 1.3.
Compared to an earlier preprint [27] this version has been rewritten so that it
allows to separate the error contributions due to the Diophantine properties of
0 and the influence of weights for the lattice points in Theorem 2.2. The latter
has been developed for special choices of regions €2 which are particularly
relevant for wide shells E, ;, in Sect. 7. Moreover, the effective bounds for non-
trivial solutions of the Diophantine inequality | Q[m]| < ¢ have been improved
in terms of the signature (r, s) by using Schlickewei’s result [51] on small
zeros of quadratic forms. In addition, we included a number of corrections
concerning the explicit dependence on Q (resp. €2) and the dimensions, and
corrected typos as well.

2 Effective estimates
We consider the quadratic form

Ox1% (x, Ox) for x e RY,

where (-, -) resp. || - || denote the standard Euclidean scalar product and norm,
Q: RY — RY denotes a symmetric linear operator in GL(d, R) with eigen-

values g1, ..., g4. Write
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def . , def . def -1/2
q0 = 1rsnjnsldlqjl, q—]rglgdlqjl, dg = |det Q] . (2.1

In what follows we shall always assume that the form is non-degenerate, that
is go > 0. In order to describe the explicit bounds we need to introduce some
more notations. Let 8 > % such that 0 < % —-B < % - % ford > 4. For alattice
A C R",n € N, with dim A = n we define for 1 <[ < n its «;-characteristic
by

ar(A) & sup{ldet(A’)| " : A’ C A, I-dimensional sublattice ofA}. (2.2)

Here A’ = B 7" is determined by a n x [-matrix B and det(A’) =det(BT B)!/?
is the volume of a fundamental domain.

Remark 2.1 Given A =gZ" with g € GL(n, R), then any /-dimensional sub-
lattice A C A is spanned by gny, ..., gn;, where n; € Z" and det(A) =
lgnt A ... A gng|l. If A’ C A is a sublattice distinct from A with basis
gn'y, ..., gny,n. € Z", then

(gni A=+ Agnp) —(gny A...Agn)ll
e i AccoAn) — @) A Al > 1,

since the /-th exterior product of g is invertible. This argument shows that the
oy-characteristic is attained at some [-dimensional sublattice A’ C A.

In the special case n = 2d we also introduce

def _ 1/2—
yir 1) S sup { (rlaa(A)) PP To <1< T, (23)

where A; = d,u; A o denotes a 2d-dimensional lattice obtained by an appro-
priate action of d,,u; € SL(2,R) on R?4 (see (4.25)), where d, and u,
denote the usual diagonal and unipotent elements and Ay denotes a fixed
2d-dimensional lattice depending on Q (see (4.28)). Recall that E, , = {x €
R? : a < Q[x] < b} and let v(x) denote a smooth weight function such that

C(x) :=v(x)exp{Q[x]} satisfies
supyegd (12CO] + £ (1 + [x )+ < oo, 2.4)

An explicit construction of weight functions for parallelepiped regions will be
given in Sect. 7. Nevertheless, as a simple example, one can take the Gaussian
weights v(x) = exp{—204[x]}.

Theorem 2.2 Let Q be a non-degenerate quadratic form in d > 5 variables
with qo > 1. Choose B = % + %for some arbitrary small § € (0, %). Write
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(b—a)g:=b—aifb—a =<qand(b—a), = gP12ifb—a > q, and
b—a)=0b—-a)ifb—a <1land (b—a)* :=1ifb—a > 1. Then for
anyr > g2, b>aand0 < w < (b — a)/4 we have

Y v [ e <pa fwivig + 1T Co e g}
meEq ynZd Fab (2.5)

+dor |l log (1 4 Uzl),
0

where Co := q |det Q|7 VA4=BIZ and ||v| o is defined in Lemma 7.1 (the quan-
tity |vllo depends additionally on r,a,b and w, but we will suppress this
dependence),

def . d_p_s
00 .5-a) = inf {(b—a)q (coT? + 7 11.8M) + va.r.8() (14 log((b—a)* T))

_"_Cél (T+w)—1/ze—(T+w)l/2 T € [qo_l/zr_l, 1]’ T+ > 1}

and cg = |det OV/4=P/2. Furthermore

1eler = ¢ ((qo) e llsesr/2 (@Y 2r= 4 |ur=1]12)d/2 v) 26)

and here ||v||z := min,, 74|V — m||co.

We use the notation A <; B for quantities of equivalent size up to constants
depending on d only, i.e. A <4 B K4 A.

Remark 2.3 Note that

a) Theorem 2.2 extends to affine quadratic forms Q[x + &] uniformly in
§loo = 1.

b) Depending on the application, the lattice remainder (2.5) will be optimized
in the parameters w, ¢ and 775 differently: For thin shells the error should
also scale with the length b — a. This forces 7 to be large and requires
‘strong’ Diophantine assumptions. In the case of wide shells it is possible
to choose w relatively large.

c) If Q is irrational, then Corollary 4.11 implies that pz’b_ .(r) — 0 for
r — 00, provided that w and (b — a) are fixed. The first factor in the
definition of ,05’ p_q Corresponds to small values of ¢ on the Fourier side
and the last factor to the decay rate of the w-smoothing of the interval [a, b].

With these notations we state a result providing quantitative bounds for the
difference between the volume and the lattice point volume in E, 5.
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2.1 Ellipsoids Ey,p

Here Q is positive definite and we may assume that b tends to infinity. Let
r = /2b in Theorem 2.2. Then the ellipsoid Eg, = {x € R? : Q[x] < b}

is contained in r2 = Q;l/ 2[—r, r1¢. Choosing in Theorem 2.2 a smoothing

of I, say v, of width ¢ = %, which equals 1 on Ey j, and the smoothing

parameter w in terms of 77, such that the right-hand side in (2.5) is minimal,
will lead to

Corollary 2.4 Let Q denote a non-degenerate d-dimensional positive definite
form withd > 5 and qo > 1. For any r > q'/* and r = ~/2b we have with
H, .= Eyp

Vol Hy —vol Hy| <p.a dor?=2(pg () +q*r=4122 (q/g0)"/* log(r)),  (2.7)

where
def . 3 L 2
PeQ”(V) = inf {aQ(qurs(CQ T? + - n.)+ va,r,.(r) 10g(T++l))+log(l+Tifm}

and the infimum is taken over T_ € [qo_l/Zr_l, 1land Ty > 1, where ag =

B .
q|det Qli_f, co = |det Q|Y4=B/2, Furthermore, lim,_, o ,er“(r) =0asr
tends to infinity, provided that Q is irrational.

Compared to the quantitative results in [5,6], this bound holds already for
d > 5. Moreover, Corollary 2.4 refines the estimates obtained in [28].

2.2 Hyperboloid shells E, ;

If Q is indefinite, we distinguish, depending on b — a, between ‘small’ and
‘wide’ shells E, ;. Here we restrict ourselves to a special class of rescaled
admissible parallelepipeds r$2 for r > 0: We suppose that Q = B~![—1, 1]¢
is determined by some B € GL(d, R) such that the lattice ' = BZ4 is
admissible in the sense of Sect. 7.3, 1.e. both (7.29) and (7.1) should be satisfied
(for examples, see Remark 7.4 and Example 7.6). Note that the latter condition
(7.1), thatis Q. < BT B < cpQ with cg > 1, ensures that the region 2 is
rescaled with respect to the quadratic form Q.

To estimate the lattice point remainder for this restriction of E, ;, given by
H, := E,  NrQ2 we smooth the indicator function /g in an e-neighborhood
with an error of order O(s(b—a)r?—2) using Lemma 7.1. This yields a smooth
function v, and a final weight function ¢, according to (2.4) in Theorem 2.2.
Since 2 is admissible, both ||¢¢|/; and ||{e|l+,, in (2.6) are growing with a
power of [log ¢| only, see Lemmas 7.2 and 7.8.
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In the next step we calibrate both smoothing parameters w and ¢ in order to
get Corollary 2.5 below for ‘wide’ and ‘thin’ shells. The actual choice of ¢ is
then determined by calibrating the main terms er¢~2 and ||, || 1p5 bea (r)rd=2
depending on the speed of convergence of lim,_, ,057 b—a (r) = 0. The
resulting error bound for indefinite forms will then differ at most by some
|log e|-factors from the positive definite case, and is thus dominantly influ-
enced by the Diophantine properties reflected in the decay of the yj7_ 7, g,
resp. the pg’ »_q-Characteristic of irrationality. In particular we have uniformly
for ‘small’ and ‘wide’ shells E, ; and admissible regions €2 the following
bound:

Corollary 2.5 Under the assumptions of Theorem 2.2 we get for an admissible
region €2, all max{|a|, |b|} < cor?, where ¢y > 0 is chosen as in Lemma 7.1,
andb —a > q

def h
Ay S |volg Hy —vol Hy| <p.a dor®(pph ,(r) + Ro,a(r), (2.8)

where

). (2.9)

d
d
Ro.a() & g% r s+ 10g(r+ D)7 (£ ) T Gt Tog 2+ k) Tog (1
@ ) IT)

Nm(I") := infy,er\o}|¥1 ... val in standard coordinates y = (y1, ..., Ya)
and

d

. —(d-2-8) \d 3 d2-5
Poha) < it g {log (0= 072" 41 (aga i eo 2 4 mr g
2
+agy(1,1p(r) log(T + 1) + LT |

where the infimum is taken over all T_ € [qo_l/zr_l, 1] and Ty > 1. If

b —a < q, then (2.8) holds, too, whereby the Diophantine factor pr};r o)

has to be replaced by

hyp— —(452 =)

def . d d_2-s
Po.b—a) = 1nf§ﬂT+[anog (1+T7 ) ((b—a)(cQ T? +y[T7,1],ﬁ(r))

+ 0,70, (og((b = @) T4) + D ).

In the last equation the infimum is taken over all T_ € [q, 1/ 2r_l, 1] and
T+ > 1 with

T, >4(b—a)"'T (2 - )max{l log (¢ Q(b—a)T2 2 8)2}. (2.10)
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These bounds refine the results obtained in [6] providing explicit estimates
in terms of Q and are valid for d > 5. Note that, due to the ‘uncertainty
principle’ for the Fourier transform, we need to choose T at least as large
as in (2.10) if E, ; is ‘thin’ in order to control the factor exp{—|T w|'/?}
(occurring in the definition of ,oQ ) Which scales with b — a. In Sect. 7.4
we prove a variant of Corollary 2.5 for thin shells and non-admissible regions
Q as well, see Corollary 7.10.

2.3 Quadratic forms of diophantine type (x, A)

For any fixed 74 > 1 > T_ > 0 and irrational Q itis shown in Corollary 4.11
that

rlinolo nr_,t1.8(r) =0, (2.11)

with a speed depending on the Diophantine properties of Q. For indefinite
forms Q, this implies for fixed » — a > 0 that

lim bt () =0, Tim P, () =0 (2.12)

r—0o0

and hence A, = o(r?=?) as r — oo. This holds uniformly for all intervals
[a,b] with 0 < u, < b—a < v, < cor? and sequences lim, u, = 0,
lim, v, = oo, r — oo depending on Q. For the special class of quadratic
forms of Diophantine type («, A), as introduced in Definition 1.6, we may
apply Corollary 4.11 to obtain explicit bounds on the Diophantine factors in
the previous theorems as follows.

Corollary 2.6 Consider an indefinite quadratic form Q that is Diophantine
of type (k, A). Moreover, let B = 2/d + 8/d for some sufficiently small 0 <
s < %. Then for the case of wide shells b — a > q in Corollary 2.5 we have

- d=2(2+5) v
PV (1) Kpa log(r+ 1) hg g P (L4 A7) T 4w log(gr41)), (2.13)

where hg = q|det Q|'>7F, v = (1 —28)/(2« +2) and o = d(1/2 — B).
Thus for an admissible region 2 satisfying (7.1) we have for all r > q'/* and
max{|al, |b[} < cor?

voly H, log(r + 1) (1-2p)d 4B _
L 1| g SEED (I I 4§ 10 (1452, (2.14)
2 _
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where the implied constant in (2.14) can be explicitly determined. For thin
shells, i.e. b — a < q, we have

—($-2-9)

— . d d_o_
e () <painy g, {holog (1477 ) (b —a)(T?

8 +qUA7U T_—vr72V)

+q" AT T (log(b — @) T4) + D) |,

2

where the infimum is taken over all T_ € [q, 1/ r~Y 11and Ty > 1 restricted

to

_(d_H_
T, >4(b—a) 72777

_(d_o_
max{l,log(czQ(b—a)T_(2 2 6))2}.

3 Fourier analysis
3.1 Smoothing

The first step in the proof of Theorem 2.2 is to rewrite the lattice point count-
ing error (i.e. the left hand side of (2.5)) in terms of integrals over appropriate
smooth functions. To this end, we introduce smooth approximation of the indi-
cator functions of E, ; and Q2 constructed as follows. Denote by k = k(x)dx
a probability measure (symmetric around 0) with compact support satisfying
k([—1,1]) = 1 and |?(£)| < Cexp{—|t|'/?} for all + € R and a positive
constant C > 0, where k(t) := f k(x) exp{—2mitx}dx denotes the Fourier
transform of the measure k. For an example of k we refer to Corollary 10.4 in
[10]. More generally, by a result of Ingham [/3\ 1] (seee.g. Theorem 10.2 in [10])
there is a probability density k such that |k(r)| < Cexp{—u(|t])|¢|}, where
u is a continuous, non-negative, non-increasing function on [0, oo) satisfying
/; loo u(t)t~! dt < oo and this condition is also necessary. However, we will not
need this improved decay rate. For 7 > 0 let k; denote the rescaled measures
ke (A) := k(tA) for any A € B4, where B? denotes the Borel o -algebra.
Using the same notation, let k; (x) = k:(x1) ...kt (xq), x = (x1,..., Xq),
denote its multivariate extension on R?, d > 1. Furthermore, let f *k; denote
the convolution of a function f on R? and k.. We need the following standard
estimate for smooth approximations.

Lemma 3.1 Let i and v be (positive) finite measures on R?, let f and fri, T >
0, denote bounded real-valued Borel-measurable functions on RY such that
foranyt >0

[ ) =inf{f () : ly—xlloo <1} and fHx)=sup{f(y): ly—xlloo <7},
For @) <inf{f7 ()t ly—xlloo <7} and £ (x)>sup{f; (y) : ly—x]loo <7}.

3.1
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Then

[ rate=v|smax| [ £EaG- ks [ - 62)

Proof Note that k is a probability measure with support contained in a ||| o-
ball of radius 7. Hence, (3.1) implies the following chain of inequalities

foe S f7 %k < f < i xke < f3, (3.3)

which leads to
/fd(u < / £ ke d - v) +/(ff+ ke — f)dv  (3.4)

together with a similar lower bound. Since by (3.3) f < f;7 *k; < f; and
f = f; *xkc = f,,, the upper bound (3.4) together with the corresponding
lower bound proves the lemma. O

First we shall investigate approximations to the sum under consideration,
counting the lattice pointsin E, ; with weights v, (x) := v(x/r).Inaccordance
with the notation introduced in (1.15) at the beginning of Sect. 1.3.1, we write

3 Hean(@unbyv,n) = [ T (QUxyve(x)dx + Rl %), G5)
meZ4

where v(x) is a sufficiently fast decreasing smooth function such that the
function

def

¢(x) = v(x) exp{Q+[x]} (3.6)
satisfies (2.4). For such weights both sides of (3.5) are well defined and

R(IE,,vr) may be estimated by Poisson’s formula, see [8], §46. By means of
Lemma 3.1 we now replace the indicator /|, 5| by a smooth approximation.

Corollary 3.2 Let [a, b]; := [a — t, b + 1] and write

def def
gtw = lapley *ko and g2,(00) = gew(Olx]), x € RY,

where 0 < w < (b — a)/4. Then

RUE, v < max|R(e2, vl + cawlvligr'™, (3.7)
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where R(gngr) is defined in accordance to (3.5), ||v|lg is defined in
Lemma 7.1 and cq is a positive constant depending on d only.

Proof In Lemma 3.1 we choose the measure p, resp. v, on R as the induced
measure under the map x +— Q[x] of the counting measure with weights
vr(m), resp. the measure v,(x)dx. Let f(z) = Ij4p)(z) and fri(z) =
Iia,p)y, (2). Then (3.1) is satisfied and (3.2) applies with T = w. In order
to bound the remainder term in (3.2) observe that

o = fo < 1({x e R?: Q[x] € [a — 2w, a + 2w U [b — 2w, b + 2w]})
and apply the geometric estimate of Lemma 7.1; that is (7.10) of Sect. 7.1. O

Thus we have reduced the determination of the lattice point remainder

R(Ig,, vr) to the remainder R(gng,) for smooth weights. In the next sub-
section we shall rewrite the latter by means of the corresponding Fourier
transforms.

3.2 Fourier transforms and theta-series

Rewrite the weight factor v in (3.5) as v(x) = exp{—Q4[x]}¢(x). Since by
definition (see the previous Sect. 3.1)

8w (D] < bl (O o ()] K Sa bl () exp{—ltw]?} and T € L'(dv), (3.8)
where
def -1 ..
Stable, (1) = |Qrt) " sin(rs (b — a £ 2w))|, (3.9)

we may express the weight functions g4, and ¢ by their Fourier transforms

?iw(v)=/giw(x)exp{—ZJTitx}dx and
R

T(v) = ¢(x) exp{—2mi(v, x)}dx.
Rd

This yields
g+w (Q[x]) =/R§iw(t)e><p{2ﬂitQ[X]}dt, (3.10)
L(x) = /d?(v) exp{2mi(x, v)}dv. (3.11)
R
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Using (3.10) we obtain by interchanging summation and integration in (3.5)

R(gfwvr)szR(eszr)é}w(t)dt (3.12)
with e;g(x) := exp{2mir Q[x]}. (Here R(e;pv,) denotes the inner inte-

gral with respect to the variable v.) In the same way, writing ¢, ,(x) =
exp{—Q.[x/r]+ 2mi(x, vr~1)}, we derive by (3.11) the remainder

R(ergvy) = /R R(erg@u,)T(v) dv. (3.13)

The sum R (e; g éy,,) is the remainder between the generalized theta series and
its corresponding theta integral, that is R(e;g é,,,) = 0,(z) — Uy (t), where

out) €Y exp{Qrut. )} and 9y() € fRdexp{Qr,vu,x)}dx, (3.14)

xeZd

0rot.0) & 27ir QLx] — =2 Q] + 27i (x, vr ™). (3.15)

Let us note that both 9 (v) as well as 6;(v) depend on the dilating variable r.
However, we shall suppress this underlying dependency in order to reduce the
notational burden. For |7| < ¢, /2, =1 we shall use following representations
of R(e;géy,r) = 0y(2) — Uy(¢) in (3.12) by means of Poisson’s formula (see

[8], §46), which obviously applies here:

0y (1) — 0y (1) = Z Dy—rm (). (3.16)

meZd\ {0}

Note that by definition (3.14) the Fourier transform of x — exp{Q, , (¢, x)}
atu € R% s given by ¥, (t), where

exp{Qrv (1, x)} =exp{— O/ [x]+2mi(x, vr 1)}, (3.17)

0, 20, 2zt 0.

In view of (3.13) and (3.16) we have

Reipvy) = /R (X tem0) T, (3.18)

meZd\ {0}

From here we only consider the weight g,,. The same inequalities hold also
for gy, replaced with g_,,. Next, we decompose the integral over ¢ in (3.12)
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into the segments Jy := [—qo_l/zr_l, qo_l/zr_l] and J; := R\ Jp and obtain

IR(82v,)| <a In+ 1y + Iy, (3.19)
where,
def -~
Iy & /J R(ergve) (1) dil. (3.20)
0
I, /gw(t)/ ﬁ,,(z)?(v)dvdr(, (3.21)
Ji R4
I / 0 / ev(t)E(v)dvdz’. (3.22)
Ji R4

We start with the integral over the sections Ji. In the term Iy we separate the
t and v integrals via

L B8] dr, (3.23)
-1
11>qq " *r

Ip <a T sup /

veRd

where the estimation of the latter integral will be done in the Sects. 4-6. In
order to estimate the terms /A and Iy we need to estimate |t} ()] first:

3.2.1 Estimates for |9,(t)]

For any symmetric complex d x d-matrix &, whose imaginary part is positive
definite, we have

fd exp{7i E[x] + 27i(x, v) } dx = (det (E/i))"V/? exp{—miE~[v]},  (3.24)
R

where we choose the branch of the square root which takes positive values on
purely imaginary E,v € R? and 2~ [x] denotes the quadratic form (8~ ' x, x),
defined by the inverse operator 2~': C? — C¢ whose imaginary part is
negative definite (see [46], p. 195, Lemma 5.8 and (5.6)). We shall apply
(3.24) in the case E; := iz ! Q, =2t0 + iﬂ_lr_2Q+ in order to obtain the
following expression for ¢, in (3.14) (see also (3.17))

ﬁv(r)=/1exp{ma,[x]+2ni(x,v/r)}dx:(det(a,/i))—%exp{—ma,—‘[v/r]}. (3.25)
R(
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Hence, the Fourier transform of x — exp{Q, (¢, x)]} takes the following
shape

det (7' 0,) ™" exp{—7? 0w — v/r1} = Py ru () = Druu(0). (3.26)

A short calculation shows that Q,_l = (471212 + 1’_4)_1 (2it Q_1 +r2 erl)
and it follows immediately that

det ;' = @n2 +rH 1L, @uitg” +r21gi17 . (3.27)
Taking the absolute value of (3.25) and (3.27) we conclude that
19, (1)) < dor??r!’* expl—n2r? 07 [ul), (3.28)

where r; := r(472t2r* + 1)~ 1/2 and dg = |det Q|~!/? as already defined in
2.1).!

3.2.2 Estimation of Iy

By (3.28) with v = ur we have [9,(1)| <4 dg rd/zr,d/2 and therefore we
obtain by using (3.8) after integrating over v in (3.21)

dJ2

Iy <4 erd/ZHE“l/ 2 ls[a,b]w(t)exp{—|wt|1/2}rt dr. (3.29)

t1>qq "7
If b — al_1 < qo_l/zr_l, then we use sj4,p1, (1) < |t|_1 andr; < (rt)" ! to
get the bound

0 00
dj2 - —d/2— d/4
/ s[asb]w (t)rl‘/ dt S r d/2 /—1/2 4 a2 ldt <<d CIO/ :
q 1 a5 P

O—I/Zr_

In the case |b —a| ™! > 90 1/2,=1 we shall estimate the t-integral in (3.29) by
means of si4 51, (t) < |b —a + 2w|/2. Using |w| < (b — a)/4 additionally
leads to

o0
d/2 _ _ b —al 44
/ i Stapl, (O P de <7 d/2|b—a+2w|/ 42 dr <y s qo/.
[11>qq =1 qo T

—1/2 _
qo/rl

1 The first of these notations will be used throughout this section only and should not be confused
with the notation ry. := rqil/ 2 which will be introduced latter in Lemma 5.1.
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Summarizing, we have established the bound
-~ . —1/2 — d/4
Iy <q dolIZll min{b —algy *r~", 13r*2g5™,  (330)
provided that d > 2.
3.2.3 Estimation of Ia

According to (3.20), (3.13) and (3.16) we may write

, where

In = ‘f :g\w(t)R(etQVr)dt
Jo

R » (3.31)
R(etQVr) = /]Rd St,vg(v)dv, St,v = Z Bo—rm(t).

meZd\{0}

In order to use the estimate (3.28) let v € R? and write v = ru with u =
uo + my, where ug € [—1/2,1/21¢ and m,, € Z¢. Then

1St0l1= Y Wrtuoemy O] < dor®?r? 37 exp{—n2r2 07 wo+m1).  (3.32)

m#my m#my

Note that ||m + ugll > ||m + uollco > % for any m € Zd\{O} and therefore
= 07 uo +m] > Zg~' > g~ which yields the bound

1Sy 0l < dgrt/21r, 2 (e RO W, ) e K,,), (3.33)

2 _
where () = ;2,00 ([Vlloc) and Koy := 3, cza exp{=5r2 07 [m +
uol}. The sum K,, may be estimated by an integral as follows: Since the map
t — rt2 = r(4m2t*r* + 1)71/2 is strictly monotone increasing on ¢ < 0 and
decreasing on ¢ > 0, we find that rt2 > qo/(47r2 + 1) for |7| < qo_l/zr_1 as
r> q% and thus exp{—nzrtzQ;l[u]} < exp{—qs—onrl[u]}. Let] := [—%, %]d

and note that erl [x] < % for x € I, from which we deduce that

def

k /exp{—%gf[wx]}dx S exp(—2 07 ) /exp{—%ﬂ(gfu,xndx,
1 1

where the integral on the right-hand side is at least one by Jensen’s inequality.
Hence

[N

q -1 [l -1
K< 3 e 05 mnl ) 3™ g = / P o (:T)> . (3.34)
R

meZd meZd
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Using (3.31) together with (3.33) and (3.34), we may now estimate /x by the

following integrals. Writing vg = v — rm, ||vg|lco < % m € 749, we have

In <adg | [8w®1(Or1 + Or2)drt, (3.35)
Jo

where

2

/2 i -

o & (L) [ Ewan,
q0 R4

O & 22 / exp{—72r2 Q7 Tvor ™' 1} [T (v)] dv.

vlloo>r/2

If we write h(s; x) := s9/%¢=5% with s,x > 0, then the maximum of

s > h(s;x) is attained at s9 = d/(4x). Hence, max,ejoh(rtz;x) Y
min(x /4, r4/%) &g (x + &)~%/*. Thus, we obtain with x = 1/¢

max 01 <4 (q/q0)"*rd> g% 121 (3.36)
0

Note that the value x = 1/qg is within the range of ¢t — r,z, t € Jo, since its

maximum 1is rg = r2 and its minimum is qo/(47‘r2 +1) < rtz* < qo, where

t* = j:qo_l/zr_l. In order to estimate ®, 5, we choose x = Q:Ll[vo/r]/4 and
get

R v
sup ®; 2 <y rd/z/ 5 |§_(1 ) m dv. (3.37)
tedo lloo>r/2 (r=2 + O [vo/rD?/

Now we integrate the bounds (3.36) and (3.37)int € Jy weighted with gy, (£)|:
In view of (3.8) we have [, [2,(1)|dr < log(1 + |b — algy /*r~") and thus

we finally get, using the quantity ||/§\||*,, as defined in (2.6) for the weights
¢ (x), the estimate

In <a dor®log(1 + b —algy *r=Y ). (3.38)

Applying (3.7) of Corollary 3.2 with (3.19), (3.30) and (3.38) we may now
collect the results obtained so far as follows for the lattice point remainder of
(3.5). We have

‘ Z I[a,b](Q[m])Vr(m)—/ I1a,p1 (Q[x v, (x) dx
mezd R (3.39)

o 1/2 — _
Za g +dor@ [Tl log(1 + b —algy *r~) + wivlgri=2.
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3.2.4 Estimation of Iy

We shall now estimate the crucial error term Iy, see (3.22) and (3.23). At first
we shall bound the theta series 6, (¢) uniformly in v by another theta series in
dimension 2d in order to transform the problem to averages over functions on
the space of lattices subject to an appropriate action of SL(2, R). We have

Lemma 3.3 Let 6,(t) denote the theta function in (3.14) depending on Q,
reRandv € R Forr > 1, t € R the following bound holds uniformly in
v e R4

16, (1)| <a (det Q) 4ra 2y (r, )12, where (3.40)

Y0 = Y exp(—H(m.n), (3.41)
m,neZd

Him,n) € 1207 m — 41 0n] +r~204[n], (3.42)

and H;(m, n) is a positive quadratic form on 7Z*?. Note that H;(m, n) depends
as well on the currently fixed dilating variable r which we suppress here.

Proof For any x, y € R? the equalities

2 Q4[x1+ 04[yD) = O4lx+yl+ O4[x—yl,

(3.43)
(Q(x+y), x—y) = Qlx]—0ly]

hold. Rearranging 6,(z) 0,(z) and using (3.43), we would like to use m + n
and m — n as new summation variables on a lattice. But both vectors have the
same parity, that is m +n = m —n mod 2. Since they are dependent one
has to consider the 2¢ affine sublattices indexed by o = (a1, ..., ag) with
aj €{0,1}forl < j <d:

78 Y imezd  m=a mod 2},

where, for m = (my,...,mg), m = o mod 2 means m; = a; mod 2 for
all 1 < j <d. Thus writing

def

1 ) ) v
Ooa(t) = Y exp |:—r—2Q+[m]—2711tQ[m]+2n1(m, ;>],

d
meZs,

we obtain 6, (1) = ), 0y« () and hence by the Cauchy-Schwarz inequality
2 2
0,)]" = 293 yeqo.1yt |Ova @] (3.44)
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Using (3.43) and the absolute convergence of 6, ,(f), we can write

2 1 . . v
O, (D7 = Z exp _ﬁ(Q+[m] + Q+[n]) — 27t (Q[m] — Qln]) — 27i(m —n, ;)
m,neZg

2 _ _ . _ v
— Z CXP|:_7(Q+[m] + Q+[n]) — 4n1(2[ om + e n>:|
m,neZg "
m+n

where m = "%, 1 = 5. Note that the map

Uacto.ye Za x Zg — 24 x 2%, (m,n) —> <m+n m—")

2 72

is a bijection. Therefore we get by (3.44)

2
60 <a Y. Y exp [—ﬁ(Q+[m1 + Q.[i]) — 4ix (21 Qi + ; ﬁ)}
ae{0,1}4 m,neZd (3 45)
) .
= > oo [—;(QM] + Q4 li) — 4im 2 Qi + = ﬁ}] :

m,neZd
In this double sum fix 7 and sum over m € Z¢ first, and call the inner sum
0,(t, ). Using (3.24) with & = 2iQr~2/m and v = —41 Qi + m, we get

-1/2
for § := (det (ﬁ Q+>) by the symmetry of Q and Poisson’s formula
(see [8], §46)

e 2 - _ . _ _
0y (t, ) def Z exp |:——2(Q+[m] + Q+[n]) - 4n1<2t Om + ;, n>]

’
meZd

N

2.2 2
=5 exp [—% 07'[m—41Qii]— 5 Q1] — 4

meZd

]
Thus, we have uniformly in v € R4

7T2l"2 -1 2
IR exp[—TQ+ [m—41 Q7] — r—2Q+[fz]}. (3.46)

meZd

Hence we obtain by (3.45) and (3.46)

6.0)]* <a (et Q)72 3" exp{~G,(m. n)),

m,neZd
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where G, (m, n) := 7> 07 '[m — 41 Qn] + 2 Q4[n]. Since 72/2 > 1 we

may bound G;(m, n) from below as follows:

Gi(m,n) > r* Q7' [m — 4tQn] + r~*Q4[n] = H,(m, n)

which proves the claimed estimate (3.40). Finally, observe that we can write

_1
Hy(m,n) = | [7@+ (m = 41Qm) ) 2
r~'Q4n
which shows that H, (m, n) is a positive definite quadratic form on Z>¢. O

In view of Lemma 3.3 we can introduce the 2d-dimensional lattice

A Do UL 7™, (3.47)

where

2 —
Do=|"%" | ana U4tQ=<ld jl”Q>, (3.48)
r*lQi d

in order to write ¥ (r,t) = Zuez\, exp{—||v||2} as the Siegel transform of
exp{—||x ||} evaluated at the lattice A;. According to the Lipschitz princi-
ple in the Geometry of Numbers (see [50], Lemma 2, or [23], Lemma 3.1)
one can show that ¢ (r, t) <4z a(A;), where « is the maximum over all o;-
characteristics (see (2.2)). However, we choose to follow a more direct and
transparent argument for the sake of clarity and motivate the relation between
the o;-characteristics and the successive minima of a lattice for the convenience
of the reader. The following Lemma 3.4 (with ¢ = 1) reduces the problem of
estimating the theta series (3.41) to the problem of counting lattice points as
follows

Y, 1) =g #w € A, |wlleo < 1} g #{w € A, : |w]| < d'/?). (3.49)

Lemma 3.4 Let A be a lattice in RY. Assume that 0 < & < 1, then

exp{—de}#H < Y exp{—e |v]*} <a e™ Y #H, (3.50)

veA

where H:={v e A : |v]oo < 1}.
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Proof The lower bound for the sum is obvious by restricting summation to the
setof elements in . As for the upper bound introduce for . = (@1, ..., wq) €
74 the sets

1 1 1 1
B, = [Ml—?u1+3)><-~><[ud—5,ud+3>

such that RY = U,ezd Bu- For any fixed w* € ‘H,, := A N B, we have
w — w* € H for all w € H,. Hence we conclude for any u € 74

#H, < #H.

Ze_g I? < Ze—s W% < Z Z e 3l < 4 Z e T Il ) g2 g

veEA veEA nezZd veANBy, nezd

Since x € B, implies [ x|lcoc > ||it|loc/2, We obtain

This concludes the proof of Lemma 3.4. O

4 Functions on the space of lattices and geometry of numbers

Let n € NT be fixed (later to be chosen as n = 2d) and for every integer [
with 1 <[ < n we fix a quasinorm | - |; on the exterior product A/R”. Let L
be a subspace of R” and A alattice in L (i.e. A is a free Z-module of full rank
dim L), then any two bases of A are related by a unimodular transformation,
thatis, if uy,...,u;and vy, ..., v; are two bases of A, where /[ = dim L, then
VI A Av = Z£ug A- - - Aug, which implies that the expression [vy A- - - Avy|;
is independent of the choice of basis.

Let A be a lattice in R”, we say that a subspace L of R" is A-rational if
LN Aisalattice in L. For any A-rational subspace L, we denote by da (L), or
simply by d(L), the quasinorm |u1 A ... Auy|; where {uy, ..., u;},l = dim L,
is a basis of L N A over Z. For L = {0} we write d(L) := 1. If the quasinorms
| - |; are the norms on A'R” induced from the standard Euclidean norm on
R”", then d(L) is equal to the determinant (or discriminant) det(L N A) of the
lattice L N A, that is the volume of L/(L N A). In particular, in this case the
lattice A is said to be unimodular if and only if da (R") = 1. Also in this case
d(L)Yd(M) > d(L N M)d(L + M) for any two A-rational subspaces L and
M (see Lemma 5.6 in [23]), but any two quasinorms on A'R” are equivalent,
which proves

Lemma 4.1 There is a constant C > 1 depending only on the quasinorm | -
and not on A such that

l

C?d(Lyd(M) > d(L N M)d(L + M) 4.1

@ Springer



890 P. Buterus et al.

for any two A-rational subspaces L and M.

Let us introduce the following notations for 0 </ < n,

a(A) def sup{d (L)_1 : L is a A-rational subspace of dimension [}, (4.2)
a(A) € max a(A). (4.3)
0<l<n

This extends the earlier definition (2.2) of ; (A) in the introduction of Sect. 2
to the case of general seminorms on A'R”. In this section the functions o; and o
will be based on standard Euclidean norms, thatis, we have d (L) = det(LNA).

In the following we shall use some facts from the Geometry of Numbers
and the classical reduction theory for lattices in R", see Davenport [17], Siegel
[52], Cassels [14] and Einsiedler-Ward [24]. The successive minima of a lattice
A are the numbers M (A) < --- < M, (A) defined as follows: M;(A) is the
infimum of A > 0 such that the set {v € A : ||v|| < A} contains j linearly
independent vectors and in particular M1 (A) is the shortest non-zero vector
of the lattice A. It is easy to see that these infima are attained, that is, there
exist linearly independent vectors vy, ..., v, € A such that ||v;|| = M;(A)
forall j =1, ..., n. Moreover, as a consequence of the reduction algorithm of
Korkine and Zolotareff (see [35-37]) the a;-characteristic and the successive
minima are related according to o;(A) <q (M1(A). .. Mp(A)7! (see [24],
Chapter 1, Theorem 15).

Lemma 4.2 Let F be a norm in R" and denote by My < --- < M, the
successive minima with respect to F. Let A be a lattice in R", then

a(A) =, (Mi(A)---MyA) Y, 1=1,...,n. (4.4)

Moreover, for any > 0, if 1 < j < nis such that Mj(A) < u < Mj1(A),
where the right-hand side is omitted if j = n, then

#ve A Fv) <u} =,/ aj(A). (4.5)

Proof First we prove the lower bound. We may assume that M;(A) < u <
M 1 (A), theright-hand side being omitted if j = n.Letvy, ..., v, denote the
elements in A corresponding to the successive minima M;(A),i = 1,...,n.
Formy,...,m; € Zwith|m;| < j_l,uF(v,-)_l noticethatv = mjv;+...+
mjv; satisfies F(v) < u, thus

NG & #o e At F@) < u) m 1/ (Mi(A)--- Mi(A) ™" (46)

The upper bound is also proven in Davenport [17] (see Lemma 1). We include
the short argument here for the sake of completeness: Let wy, ..., w, be an
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1ntegral basis of A such that v; is linearly dependent on wy, ..., w; for any
i = 1,...,n. Consequently any lattice point v € A with F (v) < M
is 11near1y dependent on wi, ..., w; and hence any element v € A with
F(v) < p canbe written as v = mywy + ... +m;w; withm; € Z. Suppose
v € A is another element with F (v') < u and write v/ = m}w; + .. m/J w;
with m; € Z. Now define positive integers vy, ..., v; by

-l < _2H v 4.7)
M;(A)

and observe that vy > vy > ... > v;. Assuming for the moment that m; = m;

mod 2% for every i = 1,..., j and let iy denote the largest index ig such

that m;, # mgo. Then x := 27 %0 (v — V') is an element of A and linearly

independent of wr, ..., w;j,—1. This implies F'(x) > M;,(A). On the other

hand we have

F(x) =2""0F(v—v") <27" (F(v) + F(v')) <27"02u < M;,(A)

by (4.7). This contradiction shows that there is at most one lattice point in
A, implying that the coordinates my, ..., m; lie in the same residue classes
modulo 2", 2V2 ... 2V respectively. Hence, the number of lattice points
N () in (4.6) is bounded from above by the number of all residue classes,
ie. by 2¥12v2 2V < @A)l (My(A) .. .Mj(A))_l. This shows the upper

bound in (4.5). O
Lemma 4.3 (Davenport [17]) Let A = gZ" and A' = (g~)T Z" denote
dual lattices of rank n, then forall j =1, ..., n we have

1< Mj(MMyy1—j(A) < 1. (4.8)

This is a variant of Lemma 2 of Davenport [17] for the Euclidean norm.
Again, for the reader’s convenience, we include the short argument here.

Proof. Let vi,...,v, € A, resp. v},...,v, € A, be linearly independent
such that |lv;[| = M;(A), resp. ||vi]| = M;(A"). Then vy, ..., v; cannot be
orthogonal to all lattice points v}, ..., v, _ i otherwise they would fail to

be independent. Thus, we have (v;, v,’{) #0forsomei =1,...,jand k =
1,...,n+1— j, which implies that

M (M) My1—j(A) = Mi(MM(A') = Nvillllogll = [{vi, v)| > 1

because of duality. The right-hand side of (4.8) follows from (4.4) with ! = n,
which is known as Minkowski’s inequality. Indeed, det(A) = «;, N
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Mi(A)...M,(A) and since det(A) det(A’) = 1 we conclude that

M (N Mis1—j(A') o Tzt e (M (D) M1 (A) ™" < 1. 0

4.1 Sympletic structure of A,

In the following we shall apply the previous results from the Geometry of
Numbers to the special 2d-dimensional lattice A; introduced in (3.47). The
symplectic structure of A; will allow us to establish a majorizing relation
between the theta series (3.41) and the «4-characteristic of A;, see (4.14). To
do this, we shall apply Lemma 4.2 combined with Lemma 4.3 as follows. (We
note that the results of this section remain valid regardless of whether r > ¢'!/?
or not.)

Lemma 4.4 Let A; be the lattice defined in (3.47). Then we have foranyt € R

Mj(A) Mag1—j(A) =qg 1 (j=1,...,d), (4.9)
Mi(Ay) - = Mg(Ay) a1 < Mgy1(Ay) <--- < Myg(Ay), (4.10)

and the lower bound
My (A;) = min{r—'qy/*, rg= "}, (4.11)
Corollary 4.5 As a consequence, we find for u > 1

#ue A vl < p) <a p2laq(A)), (4.12)
a(Ay) = max{aj(At) cj=1,...,2d} =xq aq(Ay) (4.13)

and
Y, t) Lg ag(Ay). 4.14)

Proof of Lemma 4.4 First we prove (4.9). Let
def 1,
(M)

A; = JDrQU4tQJ_1Z2d.

and consider the lattice

Then JD,QU4,QJ_1 = Dr_Q1 U_T4tQ and hence A; is the lattice dual to A; in
the sense of Lemma 4.3. We claim that they have identical successive minima.
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To this end, note that for any N = (m, m)T e 7%

1Dy @UaroNIl = 177" I DyoUasgd N IN| = 1D, U4 o INII,  (4.15)

where we use that J is an orthogonal matrix. Since JZ*? = Z??, the Eq.
(4.15) implies that the successive minima of A; and A} are identical and by
Lemma 4.3 we conclude M (A;)Magy1—j(Ar) <q 1for j=1,...,d.

Toprove (4.10) wenotethat My < Myp1and 1 < My(A) Mgr1(Ay) <Lq 1
implies

Mj(A) < Ma(A) <q 1 and 1< Myy1(Ar) < Masj(Ay)

for all j = 1,...,d. Thus, it remains to show the lower bound (4.11)
for Mi(A,): Take m,m € Z¢ with Mi{(A;) = ||DroUso(m,m)| =
H,(m,m)'/?, where H, denotes the special norm (3.42) in the theta series
(3.41). If m # 0, then we have Mi(A;) > r=' QY m| > ¢,/*r", but
otherwise My (A,) = r|| Q5" *m|| > rg="/2. 0

Proof of Corollary 4.5 We begin with proving (4.12) as follows. Recall that
n > 1 and let 2d > j > 1 denote the maximal integer with M;(A;) < .
Then Lemma 4.2 implies

#Hoe A, vl < p) <a oA < p>ag(A),

since we have M;(A;) > ... > Mgy1(A) > 1if j > d and p <
Mj1(A) < ... < Mg(Ay) <q 1if j < d. In the case u < Mi(A;)
the inequality in (4.12) holds trivially. Moreover, this argument also proves
(4.13). Finally, the estimate (4.14) follows from the relation (3.49) combined
with (4.12) for u = d'/2. O

For arbitrary ¢ € R the following bounds hold independently of the Dio-
phantine properties of Q.

Lemma 4.6 Denote by A the lattice QEF/ZZd, then
sup,cp @a(Dso U0 727 <a 9o (s), (4.16)

where Dy and Uy g are defined as in (3.48) and

def _ _
0o(s) = s1det Q17 TT; . py,(a)=s (T2 M (A)P), s > 0. (4.17)
In particular, it follows that

0o(s) <q s¥|det Q1712 if |s| > ¢'/?, (4.18)
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and for small t we get

@a(Dso Usro 72%) <q 1det Q1'% (s! + [t5])?, if q)*lesl =1, (4.19)
aq(Dso Uso %) <y |det Q172 max(1, (/g /) YesI™4,  if ¢"*|ts| < 1. (4.20)

We emphasize that these estimates will be used for a wide range of s > 0
(depending on the blow-up parameter r > ¢'/?), see e.g. the proof of

Lemma 6.2, and for small ¢ as well (by which we mean r_lqo_ 172 _ t < T_
as stated in Theorem 2.2).

Proof In this proof we replace the definition of A;, see (3.47), by A; =
Do U4,QZ2d, i.e. r has to be replaced by s. If 1/8 < M;(A;), then we
have

ag(A) =g (Mi(Ay) ... Mg(A) T g #lve A, o v <1/8).  (4.21)

Otherwise, there exists an integer j = 1,...,d with M;(A;) < 1/8 <
M 1(Ay), since 1 < Mgy1(A;) holds by (4.10). Now, taking u = 1/8 in
(4.5) of Lemma 4.2 shows that

ad(Ag) =a (Mi(A) ... Mg(Ag))~!
< (Mi(Ag) ... Mj(A)) " =g #{v e A o]l < 1/8),

i.e. (4.21) holds also in the second case. Recalling again (3.42), we see that the
right-hand side of (4.21) is the same as the number all lattice points m, m € Z¢
satisfying

Hylm, ] = s> Q' [m — 4t Q] + s> Q4[] < 1/64, (4.22)

where the positive form H;[-, -] is defined as in (3.42), but here again r has to
be replaced by s. O

Proof of (4.16) 1f (4.22) holds, then [|Q}/*m|| < s/2, which has again by

Lemma4.2atmost g [}y, ()= (s M;(A)~") integral solutions. Similarly,
for fixed m the triangle inequality combined with (4.22) implies

s Q"2 (my — ma)|| < /Hilmy, m]+ v/ Hilmy, m] < 1.

Thus, for fixed 12, the number of pairs (m, m) for which (4.22) holds is bounded
by the number of elements v in the dual lattice A" = Q;l/ 274 to A such that
lv]l < s~!. Since the successive minima for this dual lattice are determined
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by Lemma 4.3, we may use Lemma 4.2, inequality (4.5), again to determine
the upper bound

<a [T pyan=s—1 GMGANT =TT a2 (7' M;(A))
for this number as well. The product of both numbers yields the bound
ag(Ay) g #Hv e Ay : v < 1/2) <4 sd(l‘[j?:l Mj(A))_l(]_[j:Mj(A)zs(s_zMj(A)z)).

Finally, using Lemma 4.2 in form of (]_[jfl:l Mj(A))_1 =4 aq(A) =
|det Q|!/? shows the claimed bound in (4.16). Also the inequality (4.18) fol-
lows immediately from (4.17). O

Proof of (4.19) Assume qé/zltsl > land g9 > 1. If m = 0 we conclude
that ||| < |4¢s][|QY/*m| < 1/8. Hence i = 0. For any fixed m # 0 the
triangle inequality implies that there is at most one element m € Z¢ with

(4.22). Furthermore, we get (|Q*m| — 1/(8s)) < |14t Q}/* m| for that
pair (m, m). This implies

1/8 > /Hi(m,m) = s~ 102 m| = (107" *m| — 1/(8s)) /141 s]
and hence || Q5 '*m| < (s~' + |415])/8. Thus
#oe A, : |vll> <1/4) <g (s + |es)? |det Q1'%

Proof of (4.20) As in the previous case, (4.22) implies by the triangle
inequality that

—1/2 1/2 - _
105 *mll — 140 QY S| < 8s)~! (4.23)

and together with ¢1/2 |1 5| < 1also [4rs|s~ | QY *m| < |41s5]/8 < (29)~ /2.
Moreover one of these inequalities is strict and therefore we have

_ —1/2 _ _
g PIml <107 P mll < @97t + gD (4.24)

Ifs > ql/ 2 this leads to a contradiction unless m = 0. Hence, the possible
solutions for m in (4.23) satisfy || Qi_ 2n'1|| < |32¢5|~" which, as in the proof
of (4.16), has at most <4 |det Q|~1/2|¢s|~¢ solutions. In the second case, i.e.
if s < ¢'/2, the inequality (4.24) has at most <4 (¢'/%/s)? solutions for m.
Now any possible m must satisfy

1/2 -

_ _ —1/2
1Y 2m| < 132ts 7" + 141171105

m| < [2ts| !
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again, which completes the proof of (4.20) in view of (4.21). O

4.2 Approximation by compact subgroups

In Sect. 5 we shall develop mean-value estimates for fractional moments of
the ay-characteristic of the lattice A; introduced in (3.47). In order to apply
techniques from harmonic analysis, we will rewrite the family {A;};cr as an
orbit of a single lattice by means of elements of the one-parameter subgroups
D:={d, :r >0}and U := {u, : t € R} of SL(2, R), where

def (r O def (1 —t
dr — (Or—l>7 ur = (0 1)7 (425)

and then approximate the subgroup U locally by the compact subgroup K =
SOQ2) = {ky : 0 € [0, 2]} parameterized, as usual, by elements

def (cosf —sin6
ko = <sin0 cosf ) (4.26)
Let S be an orthogonal matrix such that § QQI_IST = (o, where
Qo denotes the signature matrix corresponding to @, that is Q¢ =
diag(1,...,1,—1,..., —1). A short computation shows that

T s\
DyoUyp = ( ST) dyug, < + SQ1/2 )
+

where we embed SL(2, R) into SL(2d, R) according to the following action

ab aly b Qo
() (1220 .

Define the 2d-dimensional lattice

—1/2
SO
then as claimed,
ST
At = ( ST) d,u4t AQ (429)
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Moreover, since S is orthogonal and «; is invariant under left multiplication
by orthogonal matrices we observe for anyi =1, ..., 2d that

a;i(Ay) = i (druar Ag). (4.30)

Lemma 4.7 With respect to the embedding of SL(2, R) defined in (4.27) we
have fort € R, s > 1 and any 2d-dimensional lattice A in R*?

aj(dsu A) <q (1 +1)2aj(dgko), j=1,...,2d, 4.31)
where § = arctant.

Proof Suppose the signature of Q is (p, g) and let (v, w) € R? x R?, thought
of as a column vector with coordinates vy, ..., vz, Wi, ..., Wy, then

p d
dsues (0, wIP =Y " ldsur (v, w) I + D dsu— (v, wi) 1%, (4.32)
i=1 i=p+1
Letx,y € R.Note that y +¢x = (1 +2) y 4+t (x — ¢ y), which implies that
(y+1x0)7 <21+ () +217 (x —ty)%,
and therefore we find
P a1y 52 +10? <200+ (P — 1) +572y%),  (4.33)

provided thats > 1. Taking @ = arctan ¢ and noting that cos(0) = (2 4+1)"12,
resp. sin(0) = 1(t2 + 1)~ Y2, we see that (4.33) can be written as

ldsko O, WP < 2(1+ 1) dsuer (x, )|,
and it is easy to see, along the same lines as before, that

ldskg (e, I < 201+ 1) ldgu—i (x, )]
Hence, we obtain in view of (4.32) that

ldsko (v, w)|* < 2(1 + 1) lldsur (v, )P,

from which we deduce that (1 + 12)/2M;(dsu; A) > M;(dskgA) for any
i =1,...,2d. The claim follows now from (4.4). O
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4.3 Irrational and diophantine lattices

The purpose of this section is to relate the «s-characteristic of A; to the Dio-
phantine approximation of rQ by symmetric integral matrices. We begin by
motivating the Definition 1.6: Recall that Q is said to be Diophantine of type
(k, A), where k > 0and A > 0, if

i[r}fz]llM —mtQ| > Am™* forallm € Z\{0} and M € Sym(d, 7Z)
tell,

or equivalently if we introduce the truncated rational approximation error
Si0:x % min [||M —mitQl :meZ0<|m<R, Mec Sym(d,Z)], R>1, (4.34)

we require Q to satisfy

inf 8,0.g > AR™" forall R > 1. (4.35)
tell,2]

Remark 4.8 As an aside, we remark that the property of Q being Diophantine
in the above sense is equivalent to the requirement that for some ¥ > 0

IM—tQ| >t %, forallt >2and M € Sym(d, Z),

which was introduced in [23] in the context of forms that are (EWAS). How-
ever, this formulation is not optimal because ¥ must be chosen larger than
k depending on A. Moreover, in most applications the constant A cannot be
determined explicitly due to non-effective methods in Diophantine approxi-
mation.

The following lemma justifies calling such forms Diophantine:

Lemma 4.9 Let k be an integer in the range 1 < k < @ — 1 and let Q be
a form such that k + 1 non-zero entries y, x1, . . ., xXi satisfy the property that

K

i_nllaxqu xi/y + pil > Aq™

for all k-tuples (p1/q, ..., px/q) of rationals. Then Q is Diophantine of type
(k, A"), where A" depends on A, k,y,x1/y, ..., xx/]y only (see (4.36)).

Proof Let M € Sym(d, Z), m € Z\{0} and t € [1, 2]. Denoting the entries
in M corresponding to the coordinates of Q in which y, x1, ..., xx appear by
q, P1, - - - Pk, we find the inequality

IM —m Q|| = max { max |p; —mixi|, g —miyl}.
1<i<k
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Suppose that the expression on the right-hand side is strictly less than A'm =%,

where

A’ = min{A (4y)™* (1 + max [x; /y))~ L 1/2). (4.36)

Note first that [m| > |mty|/(2y) > q/(4y) and hence

Xi Xi /. —K —K
;q—m < N lg —mty|+|mtx; — pil < Am "1+ |x;i/y]) < Aq
foralli =1, ..., k, which yields a contradiction. O

Recall that a number 6 € R is called Diophantine of type ¥ > 0 if there
exists ¢, > 0 such that |g6 — a| > ¢, |g|™* for every rational number a/q. In
particular any form Q for which one ratio of two of its entries is a Diophantine
number, is Diophantine in the sense of Definition 1.6 and hence almost all
forms are Diophantine in this sense. An example of Diophantine forms for
which we can control the exponent « is the following: Suppose Q is a form
with k + 1 entries y, x1, ..., x; such that x1/y, ..., x;/y are algebraic and
1,x1/y,...,x;/y are linearly independent over (Q, then Schmidt’s Subspace
Theorem together with Lemma 4.9 implies that for any n > 0 the form Q
is Diophantine of type (1/k + n, A”), where A’ is a constant depending only
onn, A,y x1/y,...,xr/y. However, as is usually the case in Diophantine
approximation, the constant A and hence A’ is ineffective in the sense that
these constants cannot be determined explicitly.

After the previous motivation, we shall state the main result of this section.
In particular, we will see that larger values of B;., (see (4.38)) enforce smaller
values of the truncated rational approximation error 84, ¢. g as follows

Lemma 4.10 Assume that qo > 1. Then we have for allt € R and r > ¢'/*

S gipt <aqr B, (4.37)
where
def _
Brr = aa(A)r~?|det Q"2 (4.38)

Note that this bound is non-trivial for B;., > gr=2 only, due to the uniform
bound B;., <4 1 forr > q'/? established in Lemma 4.6.

Before proving (4.37), we shall state some important consequences.

Corollary 4.11 Consider any interval [T—, T1]withT_ € (0, 1]and Ty > 1.
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(1) If Q is irrational, then

lim ( sup  aq(A)r~?) =0. (4.39)

r—00 ‘1 4 <T,
(1) If Q is Diophantine of type (k, A), then

sup (A r &g Idet 07 (q A ) max {(T2) ", (TR ). (4.40)

T_<t<Ty

A variant of (i) in terms of the successive minima of A; can also be found in
[28], see Lemma 3.11, yielding an alternative proof of (4.39) when combined
with (4.4).

Proof (i) We show the contraposition: Assume that there exists an ¢ > 0 and
sequences (r;);, (¢;); such that lim; . r; = 00 and ,B,j;,j > ¢. Passing to a
subsequence we may assume thatlim; . 7; = ¢ forsomer € [T_, T, |. Thus
(4.37) yields lim; o0 84, 0,81 = O with R} := ﬁ,;jrj < ¢~!. By definition,
this means that lim_,-_>oo||Mj' —4tjm; Q| = 0 for some M; € Sym(d, Z)
and m; € Z with |m ;| < ¢~!. Obviously both, | M| and |m |, are bounded.
Hence there exist integral elements M, m and an infinite subsequence ;' of j
with Mj» = M, m j = m and by construction lim/ ¢;; = ¢. These limit values
satisfy |[M —4mt Q| = 0, i.e. Q is a multiple of a rational form.

(i1) First we note that for any ¢ € [1, 7] we have by (4.35)

r0:r) " < supyer o Gro:ar) Tt < ATN AR < AT (T (4R)"
and similarly for ¢ € [T_, 1]
(T_)_l84tQ§R > rt_1-|‘stQ;4R = 6([l_1'|t)Q;4R > AM4R)™".

Thus, the relation (4.37), established in Lemma 4.10, implies for any ¢ €
[T, T4] that

Brir €a qr @y p.5-0)7" Ka 4qr2 A7 max{(T2) ™1 (T} (Brr) ™"

where we used (4.37). Therefore we conclude (4.40) as claimed. O

Proof of Lemma 4.10 We begin by recalling that A; = D, Ui 7% (see
(3.47)), where

-1/2
rQ 0 I -4t 0
O A R G )
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As noted in Remark 2.1 the «;-characteristic of A; is attained at some sublat-
tice, that is we can write ag(A;) = |wi A ... A wg| ™! by means of vectors
w; = D,oUs ol; with linear independent points /1, ..., l; € 7% depending
on ¢. Here we use the standard Euclidean norm on the exterior product AYR??.
Moreover, we write [; = (mj,nj), where mj,n; € 74 and the coordinates
of (m, n;) are the coordinates of the vectors m ; and n; in the corresponding
order. Additionally, we introduce the d x d integer matrices N and M with
columns ny,...,ng and my, ..., mg as well. Using this notation, we may
write

M
wi AL Awg = (DrgUsg) <N) e1N...Neq. 4.41)

First, we shall prove that

ag(A) > qdor?™  implies B! > |det(N)| > 0.  (4.42)

tr

Note that the left-hand side of (4.42) can be rewritten as f;., > qr*2 and
we may assume that this inequality holds, since otherwise the bound (4.37) is
trivial.

Let us show that rank(N) = d. To this end, we write k = d — rank(N).
According to elementary divisor theory (for matrices with entries in a principal
ideal domain) there exist P, P’ € GL(d, Z) such that P’'N P is a diagonal
matrix with positive entries of the form diag(0, ..., 0, axt1, ..., aqg) with a; |
ai+1, a; € N. In particular N P is a matrix whose first k columns are zero.
Moreover, since det P = +1, we conclude that

Mp A\ N\ =4 M A\ A\
Np N nea= N e Aed,

and hence we can assume fromnow onthat N = (0, ..., 0, ng41, ..., ng) with
linearly independent vectors ngy1,...,10q € Z¢. Since 11, . .., Iy constitute
a basis of a d-dimensional lattice, we note that m, ..., m; are necessarily
linearly independent. Now we shall express w; A ... A wy in terms of the
standard basis e; A ey indexed by pairs of subsets I/ C {1,...,d} and J C
{d+1,...,2d} with [I| + |J| = d, i.e. we write

wl/\.../\wd:ZwLJe]/\ej.
1,J
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LetI = {i1,...,in}and J = {j1, ..., ja—m}, then the coefficients w; ; are
given by
def A[ *
w = det , 4.43
1J <0 Bj> (4.43)
where

1 1

(rQ *my,e;) ... (rQ " my,e;)
def . .
A = : :
_1 _1
<rQ+2m1seim> s <rQ+2mk,eim>
1 % 1 %
(r/"Qink+1,ej) ... (r/"Qing,ej)
def . .
B) = : :
1 1

<r_1 Q?f‘nk+1 ’ ejd—m> e <r_l Q‘jf'nd’ ejd—m>
Since the matrix in (4.43) is of block-type, we find

) 2
ag(A)" " = lwi AL Awgll

=3 > opy= (X @ean’)( X @etBn?) g

[|=k |J|=d—k |I|=k ] |=d—k

1 1
ak—2d\( =% 2102 2
=r 102 (mi Ao Am)IITIIQF (i1 A Ana) ™

Without loss of generality assume that the eigenvalues of Q are indexed such
that |q1| < --- < |qq]|. Since go > 1, note that the minimal eigenvalue of

the k-th exterior power of Q:rl/z is given by |gg—i+1 . ..qa|~"/* and that of
the (d—k)-th exterior power of er/z is precisely |q1 . . . ga—k]| 172 Hence, since
mi, ...,mgandngy1, ..., ng are linearly independent and integral, we obtain
the following lower bound

1/2
da(h)~ > 2k (—"“'“‘”—k' ) "L et g2
B |9a—k+1- - - qal -

where we used that r > ¢!/2. In view of (4.42), this strict inequality yields
a contradiction unless £k = 0. Thus, we proved that k = 0, i.e. |[det N| > 0.
Now (4.44) also implies ,8[_; rl > |det N|. Hence, the upper bound for |det V|
in (4.42) holds as well.
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Finally, we shall prove (4.37). Since N is invertible, we can rewrite w; A
... AN wg by

—1 -1
(Do Ustg) (M]]l\; )N(el/\.‘.Aed)Z(detN)(D,~QU4tQ)(M]]l\; )elA.‘.Aed, (445)

i.e. we parametrized the subspace spanned by /1, ..., ;. Introduce also the
2d xd matrix

1
def MN-! I(MNTY — 4
W= (DrQU4tQ)( 1 )Z r+ 1 Q)
d r_lQ-2|-

and note that WT W is a positive definite symmetric d x d matrix. Thus, there
exists an orthogonal matrix V € O (d) such that D := VIWTWYV is diagonal
with positive entries. Since (det V)(ej A...Aeg) = V(ei A...Aeg) it follows
that

IWein...Ae) > = [WV(el A...Aed)l?

2 d (4.46)
= (D(er Ao hea) (e A Aea) = [ [IDel = [ TIWwil,
i=1 i=1

where vy, ..., vgy denote the columns of V. Next observe that
_1 1
max |Wu;|| > max ||rQ > (MN~" —4tQ)v;l| >4 rq 2 |MN~" = 410|. (4.47)
1<i<d 1<i<d

Now let io be a subscript for which || Wv;|| is maximal. Similar to the proof of
(4.44) we may write W(A;+i,v;) = > wr.jer A ey, where the sum is taken
oversubsets I C {1,...,d}andJ C {d+1,...,2d}with ||+ |J|=d —1,
and find that

IW (Aistig DI = 3 120,17 1=d -1 w%,,=||r*‘Qém#iovi)nzzr*z“’*”q*‘|detQl. (4.43)
Combining (4.45) together with (4.46)—(4.48) yields

g (M)~ =1det(N)| | Wig | TT; i, | Wi ]
= |det(N)| Wi, | [ W (Aiigv) |
a0~ @2g" 1 det 0|2 |det N| [MN~! — 410].
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Since (det N)N~! is an integral matrix, the last line together with (4.42)
implies
min{|M —4mt Q| : 0 < |m| < ,Bt_r] m, M integral} <y qr_z,Bt_;r],

and, since Q is symmetric, we may take M symmetric as well, which proves
(4.37). O

5 Averages along translates of orbits of SO(2)
5.1 Application of geometry of numbers

In view of the bound (3.39) we need to estimate the error term Iy, that
is (3.22). Proceeding as in (3.23) combined with the estimates |0, (¢)| <4
|det Q=412 (r, 1)!/2 and W (r, 1) <4 oq(A;), obtained in Lemma 3.3
respectively (4.14) of Corollary 4.5, leads to

o< rPidet O R [

lt1>qy ""r

l|§w<r>|ad(At)1/2dr, (5.1)

where A; denotes the lattice defined in (3.47) and g,, the smoothed indicator
function of [a, b] with0 < w < (b—a)/4, see Corollary 3.2. Since Lemma 7.2
provides estimates for ||E|| 1 in the case of both admissible and non-admissible
regions €2, it remains to estimate the integral in (5.1). We shall start with
bounding this integral over an interval I of length at most 1/g. For this, we
introduce the maximum value over I of the «;-characteristic for the lattice A,
via

—_

def — 5=
yip(r) € sup{(rlag(An) P 1 et} (5.2)
and the following family of lattices
Ao, = dq1/2 uy Ao, (5.3)

where A g is as defined in (4.29). Here y; g(r) depends on the Diophantine
properties of Q and tends to zero for growing r — oo by Lemma 4.11 for
irrational Q.

Lemma 5.1 Letr > ¢'/%, 0 < B < 1/2 and fix an interval I = [11, 1] of
length at most 1/q. Then we have

b4

- o d_ 1 de
/ a8 P Bt <o BP0 [ adkonow) 57 (54)
I

-7
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1

where ry = rq~"? and g; := max{|gu,(1)| : t € I}.

Proof Using the trivial bound ag(A;) < r?=2P4y; 5(r)?ay(A,)?P and esti-
mating gy, | by its maximum g; on [ yields

~ o~ d_
/ 0a (A2 G dt < 3175 Py, 4(r) / wa(A)Pdi. (55)
1 1

Since the group D normalizes U, a computation shows that d,us4 =
drUs(t—z) U4z, = dr*uqul/z U4, Where T := 4(t — 71)g. Changing vari-
ables from ¢ to T we obtain in terms of the lattices A g g, defined in (5.3),

T 4
/ad(At)ﬂdtzf  ay(dr, wr dgipuge Ag)Pdr< é / ag(dr, uz Mg ar)Pde. (5.6)
1 T] 0

Finally, we estimate the last average with the help of Lemma 4.7 by the average
over the group K = SO(2). Changing variables 6(s) = arctan(t), T € [0, 4],

and noting that |#| < 7 anddt = (14 t2) d@, we get by (4.31) of Lemma 4.7
that

4 4
/0 g (dr, ur A ag)P dt <</0 o (dr, ko) Ag,ar)P de

T B de
< nad(dr* ko Ao ar)) o

Now note that oy (A) < a(A) holds for any lattice A in R24_ Thus, the last
inequality together with (5.5) and (5.6) completes the proof. O

In the following paragraphs we shall develop explicit bounds for averages
over the group K of type [y aq(d,k A)P dk.

5.2 Operators A, and functions 7, on SL(2, R)

Let G = SL(2, R). We consider the following two subgroups of G:

K=S0Q2)=1{ky: 0<0 <27} and Tz{(Saél>:a>0,beR},

where kg is defined in (4.26). According to the Iwasawa decomposition, any
g € G can be uniquely represented as a product of elements from K and T,
that is

g =k(®t(g), k(g)eK,1(g)eT.
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906 P. Buterus et al.

Now let

%a = (g a(—)1) fora >0and D" ={d, :a > 1}.

According to the Cartan decomposition, we have
G =KD'K, g =ki(9)d(g)k(g), g € G, ki(g), k2(g) €K, d(g) eD.

In this decomposition d(g) is determined by g, and if g ¢ K then k;(g) and
ko(g) are also determined by g up to a factor of =1 on k; and k. It is clear
that ||g|| = ||ld(g)|, where || - || denotes the operator norm induced by the
standard Euclidean norm on RZ. Note that, in the simple case g = d,, this
norm is given by ||d,|| = a. Since d,, is the conjugate of d,-1 by k2, we see
that g~! € KgK or equivalently, d(g) = d(g~") for any g € G. Therefore,
Igh=1lg™ "l g €G.

We say that a function f on G is left K-invariant (resp. right K-invariant,
resp. bi-K-invariant) if f(Kg) = f(g) (resp. f(gK) = f(g), resp.
f(KgK) = f(g)). Any bi-K-invariant function on G is completely deter-
mined by its restriction to D™, Hence for any bi-K-invariant function f on G,
there is a function f* on [1, co) such that f(g) = f*(llgl), g € G.

For any A € R we define a character x; of T by

a b -
X2 (0 a_l) =4

and the function ¢; : G — R™ by
¢.(8) = xn(t(g), g€G.
The function ¢; has the property

@r.(kgt) = 0.(DPr(8), g€G, keK, 1eT, (5.7)

and it is completely determined by this property and the condition ¢; (1) = 1.
For g € G and a continuous action of G on a topological space X, we define
the operator A, on the space of continuous functions on X by

(Ag Hx) = /Kf(gkx) do(k), xeX, (5.9)
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where o is the normalized Haar measure on K, or, using the parametrization
of K, by

1 2
(Ag fHx) = o f(gkox)do, x e X.
7T Jo

The operator Ay is a linear map into the space of left K-invariant functions on
X.If X = G and G acts on itself by left translations, then A, commutes with
right translations. From these two remarks, or using a direct computation, we
get that Agg; has the property (5.7). Hence ¢, is an eigenfunction for A, with
the eigenvalue

5.(9) € (Agp)(1) = fK 0.(gk) do (k) = fK x:(t(gh)) do (k). (5.9)

We see from (5.9) that 7, is obtained from ¢, by averaging over right transla-
tions by elements of K. But ¢, is left K-invariant and A, commutes with right
translations. Hence the function 7, is bi-K-invariant and it is an eigenfunction
for A, with the eigenvalue 7, (g), that is

(Agt)(h) = 1a(g)Ta(h) forall heG. (5.10)
We have that
¢i(8) = llgerl ™, g€ G, er=(1,0). (5.11)
where ||-|| denotes the usual Euclidean norm on R2. Indeed
9i(8) = 1.1 () = llt(®erl| ™ = k() (®)erl| ™ = llger | ™
From (5.9) and (5.11) we get

1 2
T(g) = / Igker | do () = - / lgk(@)er || do
K 0 (5.12)

1 27
=2—/ ||g<cos9,sine>||—kde=/ hgull ™ deGu),
T 0 Sl

where S is the unit circle in R? and £ denotes the normalized rotation invariant
measure on S'. One can easily see that ||gu| =2, g € G, u € S!, is equal to
the Jacobian at u of the diffeomorphism v — gv/|gv| of S! onto S'. On the
other hand, it follows from the change of variables formula that

/Jf—f J7h LeR,
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where f: M — M is a diffeomorphism of a compact differentiable manifold
M and J (resp. J y-1) denotes the Jacobian of f (resp. f ~1). Now using (5.12)
we get

n(e) =1 ) =112, g€G, LR (5.13)

The second equality in (5.13) is true because 7;, is bi-K-invariant and g~! €
KgK. Since, obviously, t9(g) = 1, it follows that

n(g) = 10(g) = 1. (5.14)

Since t ™ is a strictly convex function of A for any ¢t > 0,7 # 1, it follows
from (5.12) that 7, (g) is a strictly convex function of A for any g € G. From
this, (5.13) and (5.14) we deduce that

7,(g) <Tn(g) forany g ¢ Kand 1 <n <A <2,
7,(g) <land 7)(g) > 1 forany g ¢ K, 0 <np <2,A>2, and (5.15)
7,(g) <T(g) forany g ¢ K, 1 >2,0<n<A. (5.16)

Since the function 7, (g) is bi-K-invariant, it depends only on the norm || g|| of
g. Thus, we can write

n.(8) =7 (Igl), g€G, (5.17)

where fora > 1

1 (¥ de
* _ _ -\ _
H@=nd)= [ kel doto=o- [ G rargn G109
In view of (5.10) and the definition of A, we get
/ 75 (llgkda ) do (k) = 11 (g)T5 (@), g€ G,a>1. (5.19)
K

Since || g|| = ||g*1 | forall g € G,

a
— = llgkdq|l < algll
gl

for all k € K and g € G. From this, (5.15) and (5.19) we deduce that, for any
A > 2, the continuous function rk* (a), a > 1, does not have a local maximum.
Hence ;" is strictly increasing for all > 2 or, equivalently,

w(g) < m(h) ifflgll < [z, g.h € G, A > 2. (5.20)
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Using (5.13) and (5.18) yields
2

1
' (a) = 5, (a) = P (@cos? 0 +a~2sin0)271dh.  (5.21)
0

Since a%cos?0 < a?cos?6 + a~%sin?0 < a?, we deduce from (5.21) the
estimates

A=2

cMa* <t < a>1, A>2, (5.22)
where
27 /2 B(A=l 1) izl
c(A):i/ |cos9|**2de=3/ cos(0) "2 do = (5 ’2)= (Az ), (5.23)
27 Jo 7 Jo b4 r(vm

B denotes the beta function and we use the identity B(x, y) = '(x)I'(y)/ I'(x+
y) as well as I'(1/2) = /7. From (5.21) we also conclude that for any A > 2

the ratio Zﬁ(_az) is a strictly decreasing function of @ > 1 and

im 29 . (5.24)

a—oo g2

Remark 5.2 The function 7, can be viewed as a spherical function on the
upper-half plane H (see [29] Chapter IV Proposition 2.9) and all spherical
functions on H are of this form for some A € C. In particular, it is not difficult
to see that 7, can also be represented as

1 [ . . 2/2—1
T(g) = gfo (cosh(2 log|igll) + sinh(2 log]|gll) sm(@)) / do.

Moreover, for Re(A) > 1 it is well-known that c¢()), which is usually referred
to as Harish-Chandra’s c-function, as defined in (5.24) exists and its value is
given by (5.23) (see [29] Introduction Theorem 4.5 or [38] Chapter V §5).

LemmaS3 Letge G, g ¢ K, A>2,0<n<Ab>0,B>1,andlet f
be a left K-invariant positive continuous function on G. Assume that

Agf =n(g)f +bTy (5.25)
and that

fOh) < Bf(h) if h,yeG and |ly| < llgl. (5.26)
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Then forallh € G

(Anf)(1) = /K FOhk) dor (k) < 575, (h),
where

s=B8 (f(l) + (5.27)

b )

def

ey & /f(hk)do(k), heG.
K

Since Ay commutes with right translations, and 7, is right K-invariant, it
follows from (5.25) that A, fx < 7,.(g) fk + bty. If h and y are as in (5.26),
then f(yhk) < Bf(hk) forevery k € K and therefore fx(yh) < Bfx(h).On
the other hand, it is clear that

Jr(h) = (Ap fr)(D) = (Ap (D).

Thus we can replace f by fx and assume that f is bi-K-invariant. Then we
have to prove that f < sT7,. Assume the contrary, then f(h) > s't,(h) for
some h € G and s’ > s. In view of (5.16) and (5.27), s' > s > Bf(1). From
this, (5.20) and (5.26) we get that ||4| > ||g]| and

/

s :
fOR) > Zulh) it iyl < ligll and fiyall < 7] (5.28)

Using the Cartan decomposition, we see thatany x € G with ”Zf” < x| < &
can be written as x = k1 yhky, where k1, ko € K, ||y|| < llgll and ||yk| < ||A].
But the functions f and 7 are bi-K-invariant. Therefore it follows from (5.28)

that

! h
f@ > S n i ::?:: < Ixll < 1Al (5.29)

Let
def 8 b def b

= 5> O+ s e = s and
“CT RN e e T ae e "

def
o = f—aT +arr,.
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In view of (5.10) and (5.25), we see that

Ao = (9o = Ag(f — a1t + am) — 1@ —aim + @)
= [4¢f 0@ fl-alAgn — 5. )5] + &[4~ 1.@)5] (5.30)
< bty + a2 [5y() 1y — 11 (8)y] = 0.

Since 1, (1) = 7,;(1) = 1, we have
o(l)=f(1)—a +a <0. (5.31)

It follows from (5.16) that a; > 0. Using additionally (5.27) and (5.29), we
get that

o) = f(x) —arti(x) + aaty(x) = f(x) —ar1ta(x)

s/ A (5.32)
- (__al)u(x) —0 if e < Al
B T

Let v € G, satistying ||v]| < ||&]|, be a point where the continuous function
attains its minimum on the set {x € G : ||x|| < ||&]||}. It follows from (5.31)
and (5.32) that

Al
w@) <0 and |v|| < —.
lgll

Because of 7, (g) > 1 and ||gkv| < ||gll||v]| for all kK € K we conclude

(Agw)(v) = /Ka)(gkv) do (k) = w(v) > Ta(gw(v).

Thus, we get a contradiction with (5.30). O
As a special case (n = 2 and b = 0) of Lemma 5.3, we have the following

Corollary 5.4 Let g € G, g ¢ K, A > 2, B > 1, and let [ be a left K-
invariant positive continuous function on G satisfying the inequality (5.26).
Assume that

Agf <19 f.

Then forallh € G

(Apf)) = /Kf(hk) do (k) < Bf (D)7 (h).

@ Springer



912 P. Buterus et al.

LemmaS5 Letg € G g ¢ K 2<Ai<u B>1,M > 1, n € Nt and
let fi, 0 <i <n, be left_ K-invariant positive continuous functions on G. We
denote min{i,n — i} by i and ZOSiSn fi by f. Assume that

fiph) < Bfi(h) if O<i<n, h,yeG and |yl < llgl.
Afi <T@ fi+M max \/fi;firj. 0<i=<n, (5.33)

0<j<i

constant C = C(g, ., u, B, M, n) such that for all h € G,

so in particular Ag fo < T,(g) fo and Agfy < 7,.(8) fu- Then there is a

(Ap fH(D) =/K f(hk)do (k) < Cf(1)T,(h). (5.34)
Proof Forany 0 < ¢ < 1and 0 <i < n we define
fie =D £ where (i) & i(n —i).

Using the inequality (5.33) for all i, 0 < i < n, we see that

Agfie = 1D Ay fi < 105, (g) fi + 69O M max. \/g—q(i—j)fi_j,sg—ll(i-kj)fi_‘_j’g

O<j<i

. 1 P P
= 1,(8) fi.e + M max_ 9= 2lgG=+q+))] fijefitje-

O<j<i

Direct computation shows that
R P . 2
q(0) = ZlgG = j) +qG +)l=J"
Hence foralli,0 <i <n,

Agfie < T0(8) fie + €M max_\/Fisj o firje- (5.35)

O<j<i

Let f. := ZOfifn fi.e. Summing (5.35) over all i, 0 < i < n, and using the

inequalities fe > /fi—j¢ fi+je, which are satisfied forany 1 <i <n — 1,
0<j<i,weget

Agfe=Y" Agfie T feteMn — 1) fo = (1u(g) + eM(n — 1) fo. (5.36)
0<i<n

Write

7,(8) — Ta(g) }

&y =min {1,
M(n—1)
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in order to get from (5.36) that

Ango = Tu(g)fso-

Since f; also satisfies (5.26), we can apply Corollary 5.4 to fg, and get that
_n2 2 2
(An ) < eg" (Anfe)(D) < 65" feo(DTu(h) < 65" Bf (DT(h)

for all € G. Hence (5.34) is true with C = &5"" B. 0

Proposition 5.6 Let g € G, g ¢ K, d €e N", B > 1, M > 1. For every
0 <i <2d,letri >2andlet f; be a left _K-invariant positive continuous
function on G. We denote min{i, 2d — i} by i and ) y_; >, fi by f. Assume
that o

Ag > Ai foranyi #d.
filyh) < Bfi(h) if 0<i<2d, h,y € Gand |lyl|<llgll, (5.37)
Agfi <o, @@ fi +M mgle,/ﬁ,jﬁH, 0<i<2d, (5.38)

O<j<i

in particular,

Agfo < t(8) fo and Agfra < Toyy(8) f2d-

Then, using the notation < (which until the end of the proof of this proposition
means that the left hand side is bounded from above by the right-hand side
multiplied by a constant which depends on g, Lo, . .., Ag, B and M, and does
not depend on fo, ..., fq), we have that

(a) Forallh e Gand 0 <i <2d, i #d,

(Anfi)(1) = / Fi (k) do (k) < F (D (),
where

n=hg =3 9tV —n)y<ry, 7 =max{r;:0<i<2d,i#d}. (5.39)

(b) Forallh € G
(Anfa)(1) = /K fa(hk) do (k) < f(1)75,(h).
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(c) Forallh € G
(Ahf)(1)=fo(hk)da(k) < F)|A)*2,
Proof (a) Let
fixh) € /Kfi(hk)da(k), heG.

The Cauchy-Schwarz inequality implies

/K fi—j(hk) fis j(hk) do (k) < \//K fi—j(hk) do (k) \//K fitj(hk) do (k)

= Fi k) fisjx(B).

Hence
/K max iy k) f (k) do () < 3 /K  fimj (k) fig j(K) dos (k)
<Jj<i LT

O<j<i

<= 3 Jhoik O fr i)
0<j<i

<d max_\[fij () fiyjx(h).

O<j<i

On the other hand, we have
(Ag fix)(h) = fK (Ag f:) (hk) dos (k)

and according to (5.38)

(Ag ) hK) < 13,(9) fi(WR) + M max i) fig k).

<J=<i

Therefore

Agfik <11, (9) fix +dM max_\/fijk firjx.

O<j<i
But fx (1) = f(1),
fix(h) = (Ap fix)(D) = (Ap fi)(D)
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and, as easily follows from (5.37), we have

fix(yh) < Bf; x(h)

ifh,y € G,and ||y|| < ||gll. Thus, replacing f; by f; x and M by dM, we
can assume that the functions f; are bi-K-invariant. Then we have to prove
that

fi < f)r, forall0<i<2d, i#d. (5.40)

Let n = max{A; : 0 < i < 2d,i # d}, as in (5.39). We define u;,
0<i<2dby

g =rq +3" Y0y — 7)) and (5.41)
i=pa—3"0a—n), 0<i<2d, i#d (5.42)

Since (5.16) implies 75, (g) < 7,,(g),itfollowsfrom (5.16) and Lemma 5.5
that

fi< fMr,,, 0<i<2d. (5.43)

One can easily check that n > u; > A; > 2 and therefore 1, > 7, for all
0 <i <2d,i # d. Thus, to prove (5.40), it is enough to show that

fi < f(Or,, forall0 <i <2d,i+#d. (5.44)

We will prove (5.44) for i < d — 1 by using induction in i; the proof in the
case i > d + 1 is similar. For i = 0 we have 7,,(g) > 13,(g) because of
(5.16) and thus it is enough to use Corollary 5.4. Let ] <m <d — 1 and
assume that (5.44) is proved for alli < m. Using (5.43) forall0 < j <m
we find that

vV fm—jfm—&-j < f(l)\/fum_j Ty = f(])\/ Tt Tug K f(])f(/!-m—l-i-lid)/% (545)

Note that the second inequality in (5.45) follows from (5.16) and (5.42),
and the third one follows from (5.17) and (5.22).
Combining (5.38) and (5.40) we get

Ag fin < 10, (&) fn + CF (DT +10)/25
where C < 1. On the other hand, we have A,, < p, and (u,—1+u©q)/2 <

im by (5.41) and (5.42). Now, to prove that f,, < f(1)7,,,, it remains to
apply Lemma 5.3 combined with (5.16).
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(b) As in the proof of (a), we can assume that the functions f; are bi-K-
invariant. Then we get from (5.38) and (5.40) that

where D « 1. Since n < A4, Lemma 5.3 implies that f; < f(1)7;,
which proves (b).
(c) Follows from (a), (b), (5.16), (5.17) and (5.22). O

5.3 Quasinorms and representations of SL(2, R)

We say that a continuous function v — |v| on a real topological vector space
V is a quasinorm if it satisfies the following properties

(1) |v] = 0and |v| = 0if and only if v = 0,
@ii) |Av| = |Al-|v|forall L e Rand v € V.

If V is finite dimensional, then any two quasinorms on V are equivalent in the
sense that their ratio lies between two positive constants.

Lemma 5.7 Let p be a (continuous) representation of G = SL(2, R) in a real
topological vector space V, let | - | be a p(K)-invariant quasinorm on 'V and
let v e V,v # 0, be an eigenvector for p corresponding to the character
X—r, 7 € R, that is

Then forany g € Gand B € R

lp(@)vl™F = ppr(g)v| 7P (5.46)
and
do (k) 5
AL , 5.47
/K pGgup — e G40

Proof Using the K-invariance of | - | we get that

lp()v™P = 1ptk(2)p (@) ™F = pt(@)vI™F = Ix—r ()P = xp,(t(2)Iv|7F
= o ()| 7P,

The equality (5.47) follows from (5.46) and from the definition of 74,(g). O
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Let ||z|| denote the norm of z € C? corresponding to the standard Hermitian
inner product on C2, that is

Iz = Ilx> + [IyI* where z = x +iy, x, y € R®.
Lemma 5.8 Foranyz € C?, 7 #0, g € G and B > 0, we have

def

F(z) = Fep(2) = |z?

do (k)
< . 5.48
o Tekztp = @ (545)

Proof Since the measure o on K is translation invariant, we have
F(kz) = F(z) for any k € K. (5.49)
Alsoforall A € C, A # 0,and z € C?,z # 0,

F(Az) = F(2), (5.50)
because ||Av]| = |A|-|lv]l, v € C?, and because G = SL(2, R) acts C-linearly
on C2. Any non-zero vector x € R? can be represented as x = Ake; with
A e R,k € K,er = (1,0). Then, using (5.12) from Sect. 5.2, we get from
(5.49) and (5.50) that

F(x) = F(e1) = t3(g) forall x € Rz,x # 0. (5.51)

Letnow z = x + iy, x,y € R?, z # 0. We write ¢!z = xg 4+ iyg, x5, yo €
R2. Then % is a continuous function of 6 with values in R>o U {oo}. But

) -1
e!™?7 = iz = —y + ix and therefore ”i;ﬁ” = (“;‘8”) . Hence there exists
6 such that ||xg|| = ||y |l. Replacing then z by ¢z and using (5.50) we can
assume that ||xg || = || vo||. Now using the convexity of the function t — =P/,

t > 0, and the identity (5.51) we get that

/ do(k) / do (k)
K llgkz||# K (lgkx|1? + llgkyl*)p/2

/2 e
_2 [/ do (k) +/ do (k) ]: 2 [rﬁ(g) N fﬂ(g)] (5.52)
K K

2 lgkxll? llgkyll? 2 lxl? = lyl#
_ 1 _ 75(8)
—2—B/2 L _ B2 ) _p
=2 =2 e =
Clearly the last inequality (5.52) implies (5.48). O

Let us recall some basic facts of the finite-dimensional representation the-
ory of G = SL(2, R). Let W be a finite-dimensional complex vector space,
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there is a correspondence between complex-linear representations of s{(2, C)
on W and representations of G on W, under which invariant subspaces and
equivalences are preserved (see [32] Proposition 2.1). It is well-known that
any finite-dimensional representation of s[(2, C) is fully reducible, that is, it
can be decomposed into the direct sum of irreducible representations (see [33]
Corollary 1.70). Moreover, for each m > 1 there exists up to equivalence
a unique irreducible complex-linear representation of s[(2, C) on a complex
vector space of dimension m (see [33] Corollary 1.63). Hence, any finite-
dimensional representation of G is fully reducible and any two irreducible
finite-dimensional representations of the same degree must be isomorphic. Let
P denote the (m + 1)-dimensional complex vector space of complex polyno-
mials in two variables homogeneous of degree m, and let v, denote the regular
representation of G = SL(2, R) on P, defined by (¥,,(g) P)(z) = P(g_lz),
for g € G,z € C?> and P € P,,. It is well-known that the representation
Yy, 1s irreducible for any m (see [34] Example 2.7.11) and hence it is, up to
isomorphism, the unique irreducible finite-dimensional representation of G of
degree m. We define

I(p) = {m e Nt : 4, is isomorphic to a subrepresentation of p }.

Proposition 5.9 Let p be a representation of G = SL(2,R) on a finite-
dimensional space W. Then there exists a p(K)-invariant quasinorm | - | =
| - 1, on W such that forany w € W, w #0, g € Gand 8 > 0,

/ﬂ< max {t ()}L
K 1p(ghowlf = meiip) P8 B

Proof Let W = @7_, W; be the decomposition of W into the direct sum of
p(G)-irreducible subspaces, and let r; : W — W, denote the natural projec-
tion. Suppose that we constructed for eachi a K-invariant quasinorm |-|; = [-|,
on W; such that forany w € W;, w #0,g € G,and 8 > 0,

do (k) 1
| =220 < () — . (5.53)
K loi (ghyw]. w]

where p; denotes the restriction of p to W; and m(i) € I(p) is defined by the
condition that ¥,,(; is isomorphic to p;. Then we define |w| = |w|, by

|lw| = max |m;(w)|;, weW. (5.54)
1<i<n
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Clearly | - |, is a K-invariant quasinorm. Let us fix now w € W, w # 0. Then

f do (k) . / do (k) . do (k)
——— < min ————————— = min _
k lp(@wlP ~isizn Jx |m;(p(gbow)l! 1=i=n JK (o (k)i (w)]]

< min Ty i) (8) ——7 = max {1 (g)}—07p
zin PO P ety P Tl

Thus, it is enough to prove the proposition for representations ,,. For this,
let P € Py, P # 0. We consider P as a polynomial on C? and decompose P,
using the fundamental theorem of algebra, into the product of m linear forms
P=4¢y-...- 4y, where {;(z1,22) =aijz1 +biz2, a;, b;i, 71,22 € C.
There is a natural K-invariant norm on the space of linear forms on C?:
1€1? = lal® + 1612, £(z1, 22) = az1 + bza.

Now we define a quasinorm on P, by the equation

[Pl =€l [1emll- (5.55)
This definition is correct because the factorization (5.55) is unique up to the
order of factors and the multiplication of ¢;, 1 < i < n, by constants. We
denote by | the extension of | to the space of linear forms on G. It is

isomorphic to the standard representation of G on C2. Then using Lemma 5.8
and the generalized Holder inequality, we get that

m

/ do (k) / do (k) - l_[ (/ do (k) )l/m
K Wm0 PP~ S [T 191 ghellf ~ 3 \Jk 1 gkl

rﬂm(g>)‘/”’ _ Tpn(g)

Sg(neinﬁm BT

Since I (V) = {m}, (5.56) implies (5.53) for p = V. O

(5.56)

We recall from Sect. 5.2, see (5.15) and (5.16), that 7,(g) < 1 and 7,,(g) <
T (g)forany g ¢ K,0 < u < 2,A > 2and 0 < n < A. Using this, we deduce
from the previous Proposition 5.9 the following corollary.

Corollary 5.10 Let p be a representation of G = SL(2, R) in a finite dimen-
sional space W, and let m be the largest number in I (p). Then there exists a
p(K)-invariant quasinorm | - | = | - |, on W such that
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(1) if B > 0 and Bm > 2 then forany w € W, w # 0, and g € G

[y < o
K 1p(ghwB = P8 8

@) if B > 0and Bm < 2 then forany w € W, w 20, and g € G, g ¢ K,
/ do (k) 1
< .
K lo(ghywlf — |wlf

5.4 Functions «; on the space of lattices and estimates for Ajo;

Let p be a representation of G = SL(2, R) on R"” and foreach 1 <i <n
let | - |; be a (A!p)(K)-invariant quasinorm on the exterior product A‘R”.
Throughout this section the underlying quasinorms in the definition of the
lattice functions «; and « are taken to be with respect to this particular choice
of quasinorms (see (4.2) and (4.3)). For every compact subset A C G note that

{ [(A"p) (m)vli
upy—m—

o :heA,veAiR”,vyéO}
Vi

= sup{|(A'p)(h)v]; :h € A, v e AR, |v|; = 1}

is finite for every i, 1 < i < n. Hence, if we fix g € G, g ¢ K, then there
exists some B > 1 such that forany i, 1 <i <n,andv € A'R", v # 0,

Al ;
< O b ity eGandlyl <lgl. (557
Ul
where ||h]| = ||k~ denotes the norm of 4 € G = SL(2, R) with respect

to the standard Euclidean norm on RZ. Now, let A be a lattice in R” and L a
A-rational subspace. For any & € SL(2, R) observe that 4L is an & A-rational
subspace and if vy, ..., v; is a basis of A N L then Avy, ..., hv; is a basis of
hA N kL. This observation together with (5.57) implies that

d L
gt < DaOD) g ify e Gand |y| < llgll. (5.58)
da(L)
Hence, for any i € {0, ..., n} it follows that
ai(yA) < Bai(A) ify € Gand [ly]| < [|g]l- (5.59)
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Forany B > 0 and 1 <i < n we define the functions F; g on AR™\ {0} by

B
wl-
Fipw) < f L —
K

. zdo(k), we ATR™ w # 0.
(A p)(gk)wl;

It is clear that the functions F; g are continuous and that F; g(Aw) = F; g(w)
forany A € R, A # 0. Letcp,g :=1landforl <i <n

cip def sup{F; g(w) : w € AR w # 0} =sup{F; g(w) : w € AR" jw]; =1}. (5.60)

We note that ¢, g = 1, since the image of any continuous homomorphism
SL(2, R) — GL(n, R) is contained in SL(n, R) and thus |(A"p)(gk)w|, =
[det(A" p(gkNwln = [wly.

Lemma 5.11 Foranyi, 0 <i <n,

Agal < ¢ pal +CPB max af of . (5.61)
J=t

where i = min{i,n — i}, the constant C > 1 is from Lemma 4.1 and the
operator Ag is defined by (5.8) from Sect. 5.2.

Proof Let A be a lattice in R”. We have to prove that

f i (gkA)YP do (k) < ¢; pa; ()P + CPB?P max_\/oei,j(A)ﬂai+j(A)ﬁ. (5.62)
K

O<j<i

According to Remark 2.1 there exists a A-rational subspace L of dimension i
such that

dr(l) = o (A). (5.63)

Let us denote the set of A-rational subspaces M of dimension i with da (M) <
B?da (L) by W;. For a A-rational i-dimensional subspace M ¢ W; we get from
(5.58) that

dgkA(ng) > dgkA(gkL)~

If W; = {L}, then it follows from this and the definitions of «; and ¢; g that
f a;i(gkA)P do (k) < c; pai(A)P. (5.64)
K
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Assume now that W; # {L}.LetM € ¥;, M # L. Thendim(M +L) =i+,
0 < j < i.Now we obtain by (5.58), (5.63) and Lemma 4.1 for any k € K
that

B _ B2 _ CB?
da(L) = JdA(LYda(M) — daA(LOM)da(L + M)

< CB? Jai j(M)aitj(A).

oi(gkA) < Bai(A) =

Hence, if ¥; # {L},

/a,-(gkA)ﬁ do (k) < cP B max_\/ai_j(A)ﬂoz,-H(A)ﬂ. (5.65)
K

O<j<i
Combining (5.64) and (5.65), we get (5.62). O

Theorem 5.12 Let d € N and let py be a representation of G = SL(2, R)
isomorphic to the direct sum of d copies of the standard 2-dimensional rep-
resentation. Let 8 be a positive number such that Bd > 2. Then there is a
constant R, depending only on B and the choice of the K-invariant quasi-
norms | - |; involved in the definition of «;, such that for any h € G and any
lattice A in R*?

(Apaf)(A) = / a(hkA)YP do (k) < Ra(A)P||h|PI=2,
K

Proof As in Sect. 5.3, we define for a finite dimensional representation p of
G

I[(p) = {m e NT : 9, is isomorphic to a subrepresentation of p},
where ¥, denotes the regular representation of G in the space of complex

homogeneous polynomials in two variables homogeneous of degree m. Let
m; be the largest number in I (A'pg), 1 <i < 2d. Itis well known that

o

m; =i € min{i,2d — i). (5.66)

We fix ¢ € G, g ¢ K. It follows from (5.66) and from Corollary 5.10 that
we can choose quasinorms | - |; on A‘R?? in such a way that for w € AR

w # 0,
B B e AT
f | lwl; do (k) < 74 (8) ?fﬁl_.z2
K (A pa) (9)wl! 1 if Bi < 2.
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Hence
cip <Tg(g) if i =2 and cip <1 if i <2. (5.67)

where ¢; g, 1 < i < 2d, is defined by (5.60) and cp g = 1. As a remark, we
notice that ¢; g = rﬁ;(g) if Bi > 2.
B

According to Lemma 5.11, the functions o;

following system of inequalities

Agal < cipal +CP B max m (5.68)

O<j<i

,0 < i < 2d, satisfy the

Let

v max(2, Bi), 0<i <2d. (5.69)

Since 172(g) = 1, see (5.14) in Sect. 5.2, it follows from (5.67)-(5.69) that

Agal <, (9l +CPB* max. of of . 0<i<2d. (570)
<J=t

Now we fix a lattice A in R?¢ and define functions fi,0<i <2d,onGby
fith) = aj(hAP, heG.
Then it follows from (5.70) that

Agfi <0, (@) fi + CPB*P max /fi_ifiv;, 0<i<2d.
oax.

<J=i

On the other hand, in view of (5.59),
fi(yh) < BPfi(h), if 0<i<2d, h,yeG and |y| < llgll.

Since fd > 2, we have that Bd = Ly > A; for any i # d. Now we can apply
Proposition 5.6 (c¢) in order to get that

Anef)(8) < (A Y ey =@ Y O <Y fi)late?

0<i<2d 0<i<2d 0<i<2d 1)
=( Y ai@HhIP? < 2da(A) |n]F42
0<i<2d

The inequality (5.71) proves the theorem for our specific choice of the quasi-
norms | - |;. Now it remains to notice that any two quasinorms on A‘R” are
equivalent. L
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6 Proofs of Theorems 2.2 and 1.9

In this section we shall prove our main theorem, giving effective estimates on
the lattice remainder. But, before doing this, we have to establish mean-value
estimates for the oy-characeristics of A, by applying Theorem 5.12 combined
with Lemma 5.1.

Corollary 6.1 Letr > q'/2, I = [to, 1o + 11 withto € R, 0 < B < 1/2 with
Bd > 2 and g; := max{|g, (t)| : t € I}. Using the notation (5.2), we have

~ _ ~ d__
/admt)”ﬂgw(zndr pa qldet O PP Ty s P82 (6.1)
1

where vy g(r) = 1if B = 1/2. Note that we need at least d > 5.

Based on our variant of Weyl’s inequality (see Lemma 3.3 and Corollary 4.5)
the «-characteristic enters with a power 1/2 in (6.1). While saving a maximum
of the a-characeristic, it will enter still with an exponent 0 < 8 < 1/2 for its
average (compare Lemma 5.1). Since the crucial averaging recursion (Theo-
rem 5.12) fails unless fd > 2, the proof essentially needs d > 4 and thus
d>5.

Proof In order to apply Lemma 5.1, we cover I by intervals I; = [s;, sj41]
of length at most 1/g, where s; = 19+ j/q with j € J := {0, ..., [¢]}. This
implies

~ d_gg~ 1 T do
/ad(A[>1/2|gw(z>|dz <ri-pig m(r)—zf aldr, ko No.s) 5
’ e’ 6.2)

< r%*‘gd’\ (r)max/n a(dy, kg A )’3%
81VLp el r KO N Qs oy

1/2

Now, we shall apply Theorem 5.12 with h = d,_, r,. = r/q '/~ and the lattices

Aos; = dq1/2 us;Ag, as defined in (5.3), and obtain

max /_Za(dr* ko AQ,S,)ﬁj—i <Lp.d r}ﬂg}(Ot(AQ,s,-)‘3IIa’r*IIW_2
&g P2 (ng),
where we have used ||d,, || = ry = r/q"/* and (4.18) in form of
a(Ag.s;) <d da(Ag.s,) <Ka |det Q|72 g2,
Note that we have applied Corollary 4.5 with r = ¢'/?> and 1 = s j in order

to get (x(AQ,sj) =4 ozd(AQ,sj). Finally, in view of (6.2), this concludes the
proof of (6.1). O
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In order to bound the lattice point remainder for ‘wide shells’, thatisb—a >
g'/?, we need to extend the averaging result, established in Corollary 6.1, for
small values of 7. To do this, we recall the bound

18w ()| < min{|b —al, 7|} exp{—|tw|'/?} (6.3)

for the integrand g, (7) in (5.4), provided that 0 < w < (b — a)/4. Note that
itis of size b —a for |¢t| < 1/(b — a) and changes rapidly if |b —a| > 1 grows
with r.

Lemma 6.2 Ifr > ¢'/?, Bd > 2 and 0 < w < |b — al|/4, then

—1/2

4 ~ _ d_

f,l/z (M) 2w (] dt <p.a P2 1det Q17 y (2T (6.4)
qg T

where I = [qo_l/zr_l, g~ '71.
Proof. Proceeding first as in the proof of Lemma 5.1 and changing variables
to s = ¢~ ! itis plain to see that

_ 1/2
g 1/2 /

rq,
f o 2a(AD g dr <4 yz,,s(r)r"/z‘ﬁd/
a5 12

. ds
aa(dy ugg1 A )P 18w (s™hI =
q

Let N = [r(go/q)"/*], then the integral on the right-hand side is bounded by
Z?’:Z I;, where

def q'%j B~ 1 ds
I, = o (drigg-1AQ)" [guw(s™ )| =
q'2(j=1) §
For2 < j < N write t; = q_l/zj_l, then using that

drl/t4s—1 = dr u4—(s—1—l‘j) lft4tj = d4rj_1 ”4—1j2(s—1—zj)d4—1j I/l4tj

together with the change of variables v = 47! j2(s~! —¢ ) yields

4 ! ~ .
I < 1_2 ozd(d4rj71uvd471ju4,jAQ)’3|gw(4vJ 24 tj)|dv
0
12,1

<4 T ad(d4rj71uvd471ju4,jAQ)ﬂdv,
0

where the last inequality is a consequence of |g, (1) < |7|~ 1. Hence, since
4rj_1 > 1 and ql/zjtj = 1, we deduce from Lemma 4.7, Theorem 5.12 and
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(4.20) of Lemma 4.6 that

12
I; <4 qT 0 (dgyj1 kdyor ;uag; A )P dor (k)
K

&g B2 det QBB j1=Bd a1 (4g /2~ 1yP4y,

Summing the last inequality over 2 < j < N, we observe that it suffices to
show that the following estimate holds

YN, TP max (1, (4¢P} < g rPI2 det Q|TP2q P12,

Indeed, split the previous sum according to whether j < 4¢'/? or j > 4¢'/2.
The sum over j > 4¢'/? can be bounded by
rﬂd—2|det Ql_ﬂ/zqﬂd/zﬂ/2 Zyzmqlﬂ" jl_ﬁd <LB.d rﬂd_zldet Ql_ﬁ/2q3/2,

and the sum over 2 < j < 4¢'/? by
_ _ PRV B B
rBa=2|det Q|~P/2¢Pd+1/2 Z]L:qz le 28d Lpd rBa=2|det Q|~P/2gPd+1/2.

Proof of Theorem 2.2 In view of (3.39), it remains to estimate Iy. By (5.1),
with Ky := [qo_l/zrfl, l]and K; := (j, j + 1], j > 1, we have

o]
1~ def —~ 1
to < 0et Q1 BN (1o + 3 ). where 1oy [ @ulastantar (65)
j=1 Ki

For fixed r > ¢'/? we may choose
—1/2 1 d
O<w<((®b-—a)4, 1=2T->¢q, ""r, T4+ >1 and 5>ﬂd>2. (6.6)

For notational simplicity, we write Cg := ¢ |det Q|42

Step 1: Estimate of Iy . We consider the case b — a < ¢ first. Here we
apply Corollary 6.1 to bound the integral over Ko combined with gx, <
Sla,bley (1) K b — a, compare (3.8) and (3.9). Note that we didn’t use the
restriction b — a < g at all. For wide shells, i.e. in the case b —a > g, we use
Lemma6.2fort € Ko,qo_l/zr_1 < |t| < ¢~/ and Corollary 6.1 for the other
t in K together with fg\[q_l/z” < ql/z. Furthermore, for both cases of b — a,

V2,=1 7 Jand Koy := (T_, 1].

split Ko = Koo U Ko1, where Koo := [g,,
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Then (4.19) of Lemma 4.6 yields

1

d_~H__
V(1) <a (Idet Q12 TP = T2 P laer 0135, (6.7)

with the notation (5.2). Using C Qq(zﬂd D2 = ¢ 0, we may bound /y ¢ as

1_p 425
Ip0 <4 Co (b —a)g (|det Q|37 2 T2 + VKo p ()72, where  (6.8)

b-a)y  b-ayib—a<q) +g®PID21b—a>qg). (6.9)

As a side remark, we note that the above splitting of the interval Ko =

[q0 12, —1, 1]is required for our later applications - especially, Corollary 4.11
is only Valid for fixed intervals [T—, T ].

Step 2: Estimate of Iy, ; for j > 1. Similar as before, applying Corollary 6.1
(with B = 1/2), while noting that y; g(r) = 1if B = 1/2, yields

Ip,; <a 8k, q|det Q712472 (6.10)

We recall the bound (6.3) for g,, and the choices of T’y and w in (6.6) in order
to get

o [ee] _ 1/2
~ €X sw
E ng <</ Mds <
yn S

J=Ty

: exp{—|T} w|'/?}.
vTiw

Thus, we obtain
Y0ir, do.j <a r?7?qldet Q712 (T w) ™2 exp{— Ty w|'/?). (6.11)

Furthermore, for b — a > 1 we can use |gx i | < j_1 to bound the remaining
sum. Whereas for b —a < 1 we use |§Kj| LKb—-—aforl <j<S§S—1and

gk << ~l'for § < j < T, — 1 and minimize the resulting expression in S.
In both cases this leads to

Y Bk, < 1 log((b — a)* T, 6.12)

where

* def

b — a) b-—a)[b—a<D)+1(b—a>1).
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Hence, using (6.5) combined with (6.8), (6.11) and (6.12) with (6.10), we get

A2 §-2-8
Iy <a 517> Cg <(b —a)g (T " "+ yr1p() (6.13)

_ — 1/2
+0,7,18() (1+Hlog(h—a)* T)) +g! SECLE D),

where cg = |det Q| %7% Together with the inequality (3.39) we obtain

890 & | S i @Umbvim) — [ Hean(QExv, ) |
meZd R (614)

<pa (I Cop o) +wIVl0) +dor? [T log (14 Lt ).
0

where

) def . d_o_s
Ppp—ar) Zinf {(b—a)g (coT> " "+ yir_ 0D+ v.1,0.6() (1 +log((b — a)* Ty))
g (Tew) ™ 2e T e g2t 1, Ty 2 1)

under the condition 0 < w < (b — a)/4. This completes the proof of
Theorem 2.2. O

Proof of Theorem 1.9 We have only to apply Theorem 2.2 to the Gaussian
weights v(x) = exp{—2 Q+[x]} noting that {(x) = exp{—Q[x]} satisfies
the integrability condition (2.4). This yields

).

In view of (7.9) and (7.8), we see that ||v||g < dp. Here we used that
ov(v, Vu?r —v) = exp{—2u2}, if Q is indefinite; and ¢ (v) = e,)ip{—2v2}
if Q is positive definite. Moreover, a simple calculation shows that [[¢[[1 <4 1
and by following the arguments in the proof of (7.31) we get |||+, <4
q"*((q/q0)"* + dq?/?) as well. O

RO 1r,,) <o pa {wlvlio + €11 PG 5o} r 21 E e log (1 + !
0

7 Lattice point deficiency for admissible regions and applications

Before we can apply Theorem 2.2, we have to construct smooth bump func-
tions, approximating the indicator function of special parallelepiped regions,
and also to control the additional error produced by this smoothing step: In the
following Lemma 7.1 we shall bound the volume of e-boundaries of rQNE, j
and in Lemma 7.2 we estimate integrals of the Fourier transform of the region
Q2. For wide shells the lattice point counting remainders will reflect the Dio-
phantine properties of Q more directly when using counting regions €2 which
are ‘admissible’ convex polyhedra.
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7.1 Smoothing of special parallelepiped regions

Here we confine ourselves to study a specially oriented parallelepiped 2 =
B7'[—1, 11? with

Q. <B"B<cpQ, (7.1)

for a suitable B € GL(d, R) and a positive constantcg > 1 depending on B. In
this case, the Minkowski functional of €2 is given by M (x) = max({g; +, x) :
i=1,...,d), where g; + = +BTe; are 2d outward normal vectors of the
faces of €2. Note that the inequalities in (7.1) imply the norm equivalence

d=12110 x|l < M(x) < (ep)'? 1101 (7.2)

We now approximate I by smooth weight functions. For this, introduce

. ¥ azxoe, 02 ¥ oo, ad vie €I, kg (73)

where kp . (A) = k.(BA) forany A € B4 and k, denotes the rescaled measure
on R4 introduced in the beginning of Sect. 3.1. Moreover, we need the technical
restriction 0 < ¢ < gg with g9 := 1/15. Since Lemma 3.1 can be adapted
to this situation, taking vi. ,(x) := vi(x/r), we get for the lattice point
remainder (3.5)

IR(E, prre)] < Max|R(Eg, ,Vae,r)| + Re,rs (7.4)

where, in view of (3.2), the remainder term is given by

Ry & /R T2, (6/r) T (QLx)) dx. (1)

For hyperbolic shells the latter term (7.5) will be absent, but for elliptic shells
we shall find that

[RUE, yrv)l < max|R(UE, , Vi) +do (b —a)er®™. (7.6)

This estimate will be proven in the following Lemma 7.1, but first we need
to introduce some notations: For a measurable, non-negative, bounded weight
function v on R? we shall define the spherical mean by

oorir) % / v U oy ) dodo (). (7.7)
N
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where ry, ro > 0, o denotes the unique normalized Haar measure on the sphere
P~ resp. §971, (p, q) denotes the signature of Q (with p+¢ =d)and U a
rotation in R such that U QU ™! is diagonal matrix whose first p entries are
positive and the latter ¢ are negative. Note that in the case of positive definite
forms Q (i.e. ¢ = 0), the double integral must be replaced by a single one.

Lemma 7.1 Let ¢, be defined as in (7.7). If Q is indefinite, define also

def
Ivilg = do  sup

ver—29,[a,b]

/Oo 1w? > v)u? oy (u, V2 —v) > —v) @2 4y (7.8)

0

and suppose that the latter integral exists. Otherwise, if Q is positive definite,
define

def _
Ivllp = dg  sup  [v¢7!

ver—29y,la,b]

v (V)] (7.9)

and assume that the latter supremum is bounded. Under these conditions,
writing dyla, b] = [a — 2w,a + 2w] U [b — 2w, b + 2w], we have for
O<w<®—a)/4

/Iaw[a,b](Q[x])V(x/”) dx <4 wllvllgri=. (7.10)

Assuming additionallymax{|a|, |b|} < cor® withco = (cg)~"/5, the estimates

Re, <q do(b—a)er?™? (7.11)
Vol Hy >4 dg(/cg) "™ (b —a)r?™? (7.12)

hold for indefinite forms Q, provided that ¢ € (0, go]. Moreover, for the special
choice v = vig, as defined in (7.3), we have

Iviello < |det Q712 (7.13)

whereby the condition max({|al, |b|} < cor? can be dropped if Q is positive
definite.

The lower bound (7.12) can be also found in [6], see Lemma 8.2. Moreover,
Lemma 3.8 in [23] provides an asymptotic formula for the volume of H,.

Proof For a bounded measurable function g on R with compact support we
introduce

Ry = /Rdg(Q[X])V(x/r)dx.
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Let So = Q erl, Lo = Qi/z and let U denote the rotation stated in the
lemma. In particular, U QU ' and U L oU ~! are diagonal. Changing variables
viax = rLélUfly in R? with y € R? x R?, d = p + ¢ and using polar
coordinates, y = (r1n1, ran2), where ri,rp > 0 and n; € sr—1 n € S,
thatis [n1]| = [n2ll = 1, we may write Q[x] = r?(r} — r3) and obtain by
Fubini’s theorem

e¢]) (e¢}
1 g1
Rg=rddQ/0 /0 T (R = ) gy(r r) dridry, (7.14)

where ¢y (r1, r2) is defined as in (7.7) for suitable weight functions v. (As
already noted, in the case of positive definite forms Q, the double integral
in (7.14) must be replaced by a single one.) Next, we change variables via
V= r12 —;"22 and u :=ry, so th21tr12—|—r22 =2u? —vandr, = Vu? — v. Thus,
we get

RgzrddTQ g(? v)/ T2 =) u? Loy (u, V2 — v)@? — )4 22 dudv. (7.15)
R 0

In order to prove (7.10), we choose g = Iy, [4,p] in (7.15). Since the length of

r~2 supp g is at most < |w|r 2, we get R, <4 lw|rd=2||v|| 0, where || v][g is

defined as in (7.8) if Q is indefinite, resp. as in (7.9) if Q is positive definite.
Next we prove (7.12): Taking g = Ij4,p), v(x) = Io(x) = I(M(x) < 1)
and using

Iylld=""2 < ML U™ y) < lIylien)'/? (7.16)

gives the lower bound

ou(r1,m) > / L1y, ram) || < (ep) ™ *) do (1) do ()
Sp—1x8§q-1
>q 1Qu? + v] < (cp)™h.

Thus, we find

d oo 2 2 —1y,p—1,2 =2
vol Hy >4 r%dg , Tw=>v)IQu"+v| < (cp) HuP™ (w” —v) z dudv
r~a JO

r2b
> rldg / X
g

““a

>4 r172 (b — a)dg (eg) 2.

o0 -2
1(v| gco)/ 1Gco < u? < 2eu” ' w? = v)'T dudv
0

Proof of (7.11) In (7.15) we choose g = I14,p) and v = I(30),, With0 < ¢

<
0. By the properties of the polyhedron €2, see (7.2), we have /(3q),. (x) <
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932 P. Buterus et al.

I(M(x) € J1,2¢), where Jq 2¢ :=[1—2¢, 1 +2¢]. Let gy, ..., g2q4 denote the
2d-tuple of normal vectors defining 2 and let f;,, = U Lél gm-m=1,...,2d,
be the transformed vectors. Since

IM(LG U™ y) € J126) < Tnl ) Ty, fn) € J126)
we may bound ¢ (1, r2) in (7.15) as follows
O (r1, 1) < 32 0y (1, 12),

where

def
Pom(ri, 1) = / I[((rin1. ram2), f) € J12¢] dnidna.

Sp—lxga—1

Recall |v| < ¢cg, v = rl2 —r22, u = ry and rp = ~/u? — v. The inequality (7.16)
implies

(1428)%d > ri +r3 =2u* —v > (1 —2¢)*(cp)~".

Therefore ¢, (u, vu? —v) = 0if

142
0<u<2"25c0(1—26)2 —cog or u>Cq = (+—f28)\/d T 0.

Because of

310
275 /5c0(1 —26)% —co > cq & ~ <0

and u? —v > 17¢9/45 > 0, we get

Cq _
(/ u”1(u2—v)422g0v(u,\/u2—v)du)dv
cQ
R | (7.17)
<rldg Z / (/ T (T v)qT(pv,m(u, Vu? —v) du)dv.
)
m—] /T %a cQ

r=2b

-2

R, € rddQ/
S

a

By interchanging the variables r; and r, we can suppose that ¢ > 2. Thus,
since u <4 1 and vVu? — v <4 1, we see that

C

C g—
f w102 )T g, Vi — ) du <<d/ ® v m Vi —v)du. (1.18)
cQ ¢

Q

@ Springer



Distribution of values of quadratic forms 933

We claim that
Ry g dge(b—ayri™ (7.19)

holds. In view of (7.17) and (7.18), the estimates

Co
def
R, = / Oy.m (U, Vu? —v)du <4 ecq
cQ

forallm =1, ..., 2d will prove the bound (7.19).
Thus let Fy,,(u) = {((uni, u? — v)l/znz), fm) for fixed |v| < co and
(1, m2). If

‘a F (u)‘ > ¢ >0 (7.20)

forall cg < u < Cq with F,,,(u) € [1 —2¢, 1 + 2¢] uniformly in (11, 172) and
v, then

Cq e
/ I(Fp(u) e[l —2¢e,142e])du < —
c €1

Q

and hence R, <4 cl_le forallm =1, ..., 2d. Note that

0

—Fn(u) = %(Fm(”) +

L (0
Ju —<( 5772)sfm>>

uz —v

-1 -1
and because of ||, BT| = IBL, |l < \/cp we see that

[ F)| = = (1F] -

4
— 26— —) > el
!l 2 = ) >
Note, that here it is important that ¢ > 0 is not too large, i.e. ¢ € (0, gg]. Thus,
(7.20) holds and the assertion (7.19) is proved. This yields the claimed bound
for R, ,, compare (7.5). O

Finally, we prove (7.13). Here we have v = vy, and v (x) < I(M(x) <
1 4 2¢). In view of (7.16), we find that the u-integral in (7.8) can be restricted
to 2u® < 2d + v. Hence

o0
Iviello €adg  sup  (1+ |v|)(d_3)/2/ I(v<u?<d+v/2)du < dg,
0

ver—2dy[a,b]
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because |v| < r~2(Ja| + |b]) < 2co < 1. Since ¢y is supported in [|-|-ball
of radius 2d /%, we get also in the case of positive definite forms that (7.9) is
bounded by <4 do. O

7.2 Fourier transform of weights for polyhedra

Here we continue to estimate the remainder terms in (7.6). Since the bounds
for R(g,g V_¢ ) are exactly the same as for R(qu, V4¢,r) we shall consider the
latter only. We shall now modify the weight v,, defined in (7.3), as follows.
Define ¢ = Ij_2 2)*k, where k is again the probability measure from Sect. 3.1.
Of course, ¢ is smooth and (1) = 1 if |u| < 1 and p(u) = O if |u| > 3. Let
sq = d(1+2g)%. Now, by construction <p(Q+[x]s;1) is identical to 1 on the
support of the e-smoothed indicator of 2, = B~ —=(1+¢), (1+¢)]9, thatis
ve (x). Hence we may rewrite the weights ¢ of (3.6) via

Ge(x) = ve(x) exp{Q+[x]} = ve () ¥ (x) (7.21)

using the C* function ¥ (x) := exp{Q+[x]}<p(Q+[x]s;1) of bounded sup-
port, whose Fourier transform can easily be estimated, see (7.24). In particular,
the weights ¢ satisfy the integrability condition (2.4), i.e. sup, cgd (|§8 )|+

1Z:(O1) (1 + [lxD4H! < oo

Lemma 7.2 The following estimate holds

/Rd 12 (0) | dv <y /|T[_1’1]d|(v)1‘[§=1 exp{—lev; |/} dv <4 (loge™Hd.  (7.22)

Remark 7.3 Inthe general case, when 2 has finite Minkowski surface measure
cq only, defined via meas(9,€2) < cqée, we have

-~ def ~ _
ol = /d|19<v>|exp{—||ev||‘/2}dv Lqcoe?
R

as can be deduced from the bound in Theorem 2.9 of [2], that is

1

To(W)| dv < cq(2 + u)~@+D/2,
vol (u < ||vll < 2u) Jiu<juj<2u)

This estimate is sharp as shown by the explicit example of an unit ball, see [2]
for more details. That paper contains also bounds on the average n — |Iq(sn)|
over the unit sphere S¢~! for polyhedra, which are usually of smaller order than
pointwise bounds. In fact, the pointwise decay of f}z(v) may depend crucially
on the direction of v. In our setting (finding L '-estimates for specially oriented
parallelepipeds €2) more elementary arguments can be used.
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Proof Note that by definition

[jaena=[ mvoia=[ | [ Gw-niwe|wsidniin. 7.23)
R4 R4 Rd I JRd

Since
— . ~12
Y(x) = |detQ|1/2/ exp[vz]go(vzscjl)e*Z”‘(”’Q+ ) dy
R4

we easily conclude that
[ ()| <|det Q| 2ed. k)1 + Q7' IxD X, x e RY, and thus [[¥])1 < c(d). (7.24)
Defining Z := (B~")” and changing variables shows also that
I, () =(1+&)To((1 + e)v)=(1+e)!|det B[ T|_; ju((1 +&)Zv)  (7.25)
and
[kp.e(v)] < exp{—e!/2 Y 9_,1(Zv),1'2). (7.26)

Thus we get for v, = I, *kp ¢

Relli =1Tg, k.l <a fR g e @+ TSy expi—lev;l'/?)dv. (7.27)

d

Finally, using E—l,l]d ) =TT

the estimate

sin(2rv;)/(mwv;) together with (7.27) gives

- * 1 d L
el <o ([ eV an) < (14 [
0 ute 0o u

+ ¢

au)’ <4105y (7.28)

We now obtain the estimate (7.22) from (7.23) combined with (7.24) and
(7.28). O

7.3 Lattice point remainders for admissible parallelepipeds

Now we restrict the parallelepiped Q@ = B~'[—1, 1]¢, as defined in (7.1), such
that its faces are in a general position relative to the standard lattice Z¢. This
ensures that the lattice point remainder for r<2 is of ‘abnormally’ small error
uniformly in r. To construct it, we may alternatively construct lattices B Z¢
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such that the faces of [—1, 1]¢ have this property. Following Skriganov [53],
we call a lattice I' C R of full rank, and likewise 2, ‘admissible’ if

NmT € inf,cr o INmy| > 0, (7.29)

where Nm y = |y - - - y4] in standard coordinates y = (yy, ..., V4).

Remark 7.4 The set of all admissible lattices is dense in the space of lattices
(see [54]). Hence, for any n > 0, if D, denotes the set of diagonal matrices
witheentriesin [1, 1+n), then O(d) D,;O(d)I" contains an admissible lattice. In
particular, if ' = Qlfzd , then there exist orthogonal matrices k, [ € O(d) and
a diagonal matrix d € D, such that BZ? is admissible, where B = kd! er/z
satisfies property (7.1) with a constant cp depending only on 7.

Remark 7.5 This definition is a special case of ‘admissible lattices’ for star-
bodies, see Chapter IV.4 in [14]. Here, the star-body is given by {F' < 1} with
the distance function F(x) = |x1 - - -xdll/d.

As shown in Lemma 3.1 of [53], the dual lattice T* = ZZ4 of I", where
ZT B = 1d, is admissible as well. Another property of admissible lattices is
that there exists a cube [—rg, ro]? containing a fundamental domain F of I
such that ro > 0 depends only by means of the invariants det ' and Nm I".

Example 7.6 Well known examples are provided by the Minkowski embedding
of a totally real algebraic number field F of degree d into R?. Given all embed-
dings o1, ..., o4 of F, the Minkowski embedding o : F — R is defined by
o = (01, ...,0q).Inthis case Nm o (a) = |[Np ()| is the field norm of any
a € F, where we interpret multiplication by « as a QQ-linear map. Thus, the
image of the ring of integers O is an admissible lattice I' with NmI" > 1.
For more information, see Chapter 2.3 in [11].

Remark 7.7 We also note that for any natural number n € N we may choose
a real number field of degree n which is normal over the rational numbers. In
fact, let m € N be chosen such that 2n | ¢(m) and let &, be a primitive m-th
root of unity. Then Q(&,, +&,, 1Y is a real number field of degree ¢ (m)/2, which
is also normal and its Galois group G is abelian. Since G contains a subgroup
H of order ¢(m)/(2n), the fixed field of H is real, normal and of degree .
Thus, there exists an admissible region €2 satisfying (7.1) with cp =<4 q/qo0
and Nm(B) =y qd/z.

Lemma 7.8 Assume that the lattice T = BZ¢ is admissible and B sat-
isfies (7.1). For 0 < ¢ < gy and r > 1 we get for the parallelepiped
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Q = B [=1, 11 and the corresponding weights s (x) = v¢(x)Y (x) intro-
duced in Sect. 7.2

def AO] —d/4 d—1 *rel
I =/ dv <4 qy "' dg|det B|A 2 (7.30)
‘ Iollee>r/2 (@ 2r =1 lr=t vl za)4/2 o e "¢ Nm(I)

where A, := min{log(r + 1), log(s_l)} and )_»,,g,r = max{A, ¢, log(2 +

N s (lF)rs)}' For any non-admissible parallelepiped 2 only the estimate

Iy g doq??cth2e—d (7.31)

holds. Additionally, we also have dg|det B| < (c B)d/ 2,

Proof We start by making the change of variables w = r~!Zv in (7.30) and
then splitting /; into integrals over cells C* := Z [—%, %)d , where ' := ZZ¢
denotes the dual lattice to T, that is Z = (BT)~!, in order to get

™ Zfl *
I, = Z I (y*), where Ir(m) def rd|detB\/ l?‘?( rly +U))|d dv. (7.32)
y*erM\(0) “(g2r 127l 2

Note that I'* satisfies | Z|| < Q"] < gy

(7.1) implies

1/ 2, since the first inequality in

1= 1028 = 1« BDH DT =18 el P = 1zel 1. (7.33)

In particular, the fundamental domain C* is contained in g, 1/ 2\/57 [—%, %]d.
Next, we shall bound the Fourier transform of ¢.. Recall that by definition

Ce(w) = (o, ~kp.o) * V)W) (7.34)
As verified in (7.25), we have in coordinates u = (u1, ..., ug)

sin[2 (1 + &)u ] . d -
W‘ <q |det B| 1_[(1 +Ju;hL (735)

e, (27" )| <4 |det B|™! ]i[ |
j=1 j=1
Since (7.33) also implies | Q7 "/*(Z~'u)|| = ||ul, we can rewrite (7.24) by
V(Z7 )] ax 1det Q21+ [lul®)™* < ldet Q712 TT9_, (1 +ub)~44, (7.36)
where we applied the AM-GM inequality. In view of (7.26) we have the bound
[kp.e(Z7 u)| < exp{— Y 9_ leu;|'/?) (7.37)
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as well. Combining these estimates yields

d 1/2 . 1172

~ 1 exp{—e ' /“lrw; —u;|'/"}
z~! d [ du.
e ( rw)| Lax do A;d i1 (1+ u?)k/d L+ |rw; —ujl !

Thus, we get for a fixed lattice point y* = (", ..., y)) € I'*

du dv,

_ d * uj
|det Q|~V/2|det B| _ w(er(y; +vj—35)

I (v™) <<d.k/ / [Tawn .
‘ o @r T+ 1Z70le) 2 Jpa 3y =

where @(x) := (1+x2) %4 and w (x) := exp{—|x|1/2}. We now estimate the
last double integral coordinatewise: Note that we have |v;| < ¥ := +/d/2 and

d
— — /4, — d/4 —
@ P 12700 >0 gt e F 1l = g8 TT 07! + D2,
j=1

. _ _ 1/2
since [ Z 7 lloo > 1ZII 7 vllos > g*0]loo- Hence, we find

—d/4
Ie(vy*) <ax qq " *doldet BITT4_, Je (v} R),

where

u

def [ 1 /J) w(er(y; +v—17))
D

Jr(y¥ D) = S — u udv.
¢(rj: D) s T+ 2 r—1+|y]’}<+v_%|

In order to estimate Ji (y ;‘; R), we decompose the integral into parts corre-
sponding to the extremal points of the integrands. Defining D; := {lu| >
rl)/]’.k + v|/2}, we get

v

r | r
J-(y¥; D)) 5/ 7/ @(u) du dv <<k,d/ — dv.
AR — [vI'2 Jp, —5 2 (g +r|yf+u|)§*1

In the case |y;‘| > \/d, we have Iy;‘ +v| > |y;‘|/2 and hence

r v 1
Je(yF: D, d —_—
(07 B < G /_,; 72 & S Ty
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if we take k = d(d + 3). In the other case |y j’."l < \/d /2, we split the v-integral
into two parts as follows in order to find the estimate

_1
. Oy IT2r (vl = 1vf1/2) V12 r
J;(Vj?Dj) <<d/ /
0

dv
-5 A +r|y}k+v|)d+2 U%(1+r(|]/;|_v))d+2

1
<4 v+ vjler /1/2 ! dv < lyF72
T e D o g g S

In the complement u € D; we have |yJ’." +v—2]> |y + v|/2 and thus

. v lw(sr(y +v)/2)
J{(Y;;Dj) <4 lv[~2 _1+|)/ Tl
iy f

Ifly}| = V/d, then we easily conclude that Je(yjs DY) Ka wleryi /Dyi1™ L
At last, we consider the case |y Jf"| < 4/d. The v-integral over the region
{v>|v] > |)/J’.“|/2} can be bounded by

<t [ Tl = /) y
—5 Ty F oD +erlyf + o)
*—1/2 War 1 w=1/2 . -1
<Ld IVj | /O mm dv ¢ |)/, | minflog(e™ "), log(r+1)}

and similar over the complement by

W2 -2
<4 / [, [V 1Y
o rlHlyfl-v /

Hence we conclude that

_ Hy o (y7)
I <a g5 dg|det B 3 ]_[ ™ *IJ , (7.38)
Vi sesy)EA\(0) =1
where

Hyo(x) := hrelx|PI(Ix] < Vd) + A +erlx) ™1 (|x| = Vd). (7.39)

In view of the following Lemma 7.9 this concludes the proof of the bound
(7.30).
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If the region 2 is not admissible, then we change variables to w = r~ly

split the left-hand side of (7.30) into integrals over unit cells E := [—%, %)d
in order to find

gt 2. (r(m + w)|
Ir= > I;(m), where I;(m) = d/ 1/2 - a7
: E@2r=1 4+ wlleo)
meZa\{0}

Because of Z ujl |1/2 > ||u||'/? we can further estimate (7.37) by

kp.o(Z7'u)| < exp{—Illeul'/?}.

Recalling the definition (7.34) and the estimates (7.35)—(7.36) for u = Zw
shows that

:(rw)| <k doe T rl|Zw] + D7* < dge*  (gep) *(rllw) + 17K

Thus, taking k = d + 1 we find

Iy <a qud/2 (d+1)/2 —d

The last remark easily follows by comparing the volume of the bodies
{I1Bx]| < 1} and {||Q}/*x|| < 1}: Using (7.1) leads to |det Q|'/? < |det B| <
(cp)?/?|det Q|'/2. O

Lemma 7.9 For an admissible lattice I' we have for any weight function
w(x) > 0on R, such that ws := 1 + max, w(x)(1 + |x|)? < oo, where
p € Nand e > 0, the bound

. X
S]"’g d;f Z a)r,S(yl) a)r,é‘(yd) ‘ <<d oo X;{;] r,e, I’ , (740)
Y1---Yd Nm(T")
1, va)€T\{0}

where wy.¢(x) i= Arelx |21 (|x] < v/d)+w(erx) (x| = v/d) and Av.g, Aro.r
are as introduced in Lemma 7.8.

Proof First, we make a decomposition of I" as follows. For any (x1, ..., xg) €
R? with |x - - - xg| = Nm(T") let m j € Zbe the unique integers satisfying 2 >
12Mix;|d=1/? > 1 for j = 2,...,d. We have |x;| > Nm(x)|x2...xq|"' >

Nm(I)d1=9/2 1‘[;?:2 2"i=1 and this implies that [2"'x{| € [kcr, (k+ D)er)
for a unique integer k > 1, where m; € Z is determined by m| +my + ... +
mg = 0and cr = d1 /22741 Nm(I"). Introducing the lattice

Egj:={m=(my,....mg)€Z m+...+my=0)cz!
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and the interval By := [kcr, (kK + 1)cr), we can write

d
I(x1 ... xal = Nm(D) = Y Y " 15,(2" x1) [ | fivaova (127 X)),

meEg keN j=2

and hence

Se= 3 % |z"”y1|)1'[1[mf> 27 ;1) ”(V‘). “’”(”d)\ (7.41)

meEy keNyell Jj=2

We also introduce the obvious notations Nm(x) := |x1---xg4], 2""x =
2™ xq,...2Mdx5),m € Eg and 2T for the rescaled lattice {2y : y € I'}.
Note that Nm(2”y) = Nm(y) and hence Nm(I') = Nm(2™"T). Defining
Cr = Bi x [Vd,2/d)4 " and h(x) := (1 + |x|)~? (where p € N is the
same as in the assumptions of the lemma), we may rewrite and bound (7.41)
by

ste= 2 (20 zckm)]_[“’”(2 ) )

E; keNne2ml’
merLy eNne (742)

&4 On Z Z(( Z Ie, (1 )> ra(CFZ mlk))l_[hrg(z myy.

meEyg keN ne2mr

where h, o (x) 1= kr,8|x|%1(|x| < 1)+ h(erx)I(Jx| = 1). In order to perform
the summation in k and 7 in (7.42) we first observe that

> I <1 (7.43)

ne2mr

Proof of (7.43): Assume that two different lattice points n, n’ € 2T lie in Ck.
Then we have | — | < cr and maxo<j<q4|n; — n;-l < +/d.Sincen —n' €
2"T\{0} implies [n2 — nb| -+ [na — 0l = NmT)/cp = d@=1/22@=D and
hence |(n; — 77/2)| > 2./d for some Jj = 2, we get at a contradiction which
proves (7.43).

Estimating the following sum in k by an integral, we obtain

def

> hy e (k) 2
3 el (@ < 1) + log (1 n —) o e(@).  (7.44)
arée

k=1 k
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Hence, making use of (7.43) and (7.44) in (7.42), shows that
Sre Kd wooler) 'Y, cp, HQ™™), (7.45)
where 2™ = (2™, ...,2"d) and H (x) := Er,g(crxl)hr,g(xg) cohy e (Xg).

Let E él denote the subset of E; consisting of all lattice points (m1, ..., mg)
€ E; with m; < 0. We claim that

Y HQ™) <La (Are +log(l + i) Me (7.46)
mekE),
Proof of (7.46) Letm € E}\{0}. Assume for definiteness thatm, ..., m;_1 <
Oandmy, ..., mg > 0.By definition of Eqg we get2} " m; = Z?lemﬂ >

|m||2. Since h,(27%) < 1 for k < 0 and otherwise &, .(27%) = A, .27/,
we obtain

O < (b gt + sy T2
L (hre +10g(1 + i) g 27114,

Thus, splitting the sum according to the number of positive coordinates and
then summing over the (d — 1)-dimensional lattice £; yields (7.46). O

In order to bound the sum over the complement of E/,, we again split the sum
according to the number of positive coordinates. For simplicity, we may assume
thatmy, mo, ..., m; > Qandmy41, ..., myg < 0. Similar to the previous case,
we find that

HQ™) &g (Ilmll + Are + 1og(1+m))x§;1 (1‘[’]&2277’) min(1, (re) 4P 2-PIml/2).

If we parameterize the (d — 1)-dimensional lattice E; by (m1, m), where
my = —(ma+ ...+ mg) and m = (ma,...,my) € Z%', and split the
summation into a ball of radius ||/|> < R := 3d log(2 + (re)~!) and its
complement, where (re)_d” 2-plmll2/2 < (rs)_df’ 2-plml2/2 < 1 we can
bound the sum corresponding to a fixed / by

1
<M (X Grer+lmh [T+ 3 Grer+lmlee=ra-riil/2)
[lmll2<Re Jj=2 lmll2>Re

<a i (Rrertog@+ 210D 4 3, p) < m e
where we have estimated the sums by comparison with the corresponding

integrals. Using this estimate for each/ = 1,...,d — 1 together with (7.46)
in (7.45) yields the bound (7.40). O
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7.4 Applications of Theorem 2.2

We start by smoothing the indicator function of the region 2. We choose
weights v = v, as defined in (7.3) with ¢ € (0, g9] and the related { = ¢,
see Sect. 7.2, corresponding to parallelepipeds = B~![—1, 1]¢ satisfying
Q. < BTB < ¢pQ., compare (7.1). Recalling (7.6), where we have used
Lemma 7.1 to estimate the e-smoothing error, yields a total error

Ay & volg (Eqp 0 rQ)—vol (Eqp N r)| < do(b — a)er"*z+m£x|R(1En_bvig,)|. (7.47)
Now we can apply Theorem 2.2 in order to bound the latter remainder

|IR(Ig, ,Vie,r)| as follows. In (6.14) we shall estimate ||/§\8||*,r by using
Ivello <4 dg of Lemma 7.1, ||Ea||1 <q (loge™1)? of Lemma 7.2 and

- — —d/4 d)2,d—1 hre
Bl <0 ()2 1086 gy " el 1 et} (7.48)
of Lemma 7.8 for admissible regions €2, i.e. (7.29) holds, to get

Ar <pa dor'™ (e — @)+ w+agllog s, ()

. (7.49)
d/4.d/2 dj2 —1\d —d/4 d/2,d—1 hre, —

+dog 4pd] ((%)/ log(e™h +q, / cB/ A,’gle(F))log(l+7(Z§/fr),

where ap := gcp = gldet Q|48 = CQ(dQ)_l, provided that 0 < w <
(b — a) /4. This bound holds for admissible parallelepipeds €2 only. If €2 is not
admissible, then we have to replace the smoothing error (7.48) by

IZeller <a %74 ((q/q0)"* log(e ™) +dg q¥* (c) 2 e=1),  (7.50)

thatis (7.31) of Lemma 7.8. With these bounds we are ready to prove the main
statements on the lattice point remainder for hyperbolic shells.

Proof of Corollary 2.5 For wide shells, i.e. b — a > g, we optimize (7.49) in
the smoothing parameter w first by choosing w = W (g Ty /2)?/ Ty, where W
denotes the upper branch, defined on the interval (—e_l, 00), of the inverse
function of x +— xe*. (The function W is also known as the Lambert-W -
function, see [15] for more details and some applications.)

Since x — W (x)>2 /x has a global maximum at x = e with value e !, we
find w < g/(2e) < (b — a)/4 as required in the restrictions (6.6). This leads
to the partial bound

— _ _ 1/2 2 2
dow -+ Coeg! (Tyw) ™ 2e T ™ 1o WAL g, Il
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where we used that W(x) < log(x + 1) and W(x)_lexp(—W(x)) =

—I. Next, we calibrate the e-dependent terms in (7.49) by choosing ¢ =

—2-6 . . . . . ..
T2 (b — a)~'/15. Again, this choice satisfies the required restrictions,

i.e. & < g9 = 1/15. Because of

d_o_
elb—a)<ag—a)coT? 2 8, loge™! « log(r+1) and

)_\r el 10g(2 I\Irrjltfl‘)) 1
_ el ,—ml)7 log(2 + <L),
log(r +1) <« max { log(r +1) } K log(2+ wy)

compare the definition in Lemma 7.8, we can simplify (7.49) to

d d
Ay Lpa dor? Zp‘gf,’fa(r) +dgqfr?log(r + 1)

e (7.51)
x (5 )+ 2 N 103(2 + o) IOg( + :ﬁza,)’
0

where

h —~(§-2-8 _ \d - §-2-s
pohra) € ity g {log (=772 7T +1) (ag g P2 T ey p )

2
+agv.r,1,5() log(Ti+1)+ %)}

and the infimum is taken over all 7_ € [q, 1 2r_l, 1], T+ > 1. This proves
the first part of Corollary 2.5. Next, we consider the case of thin shells, i.e.

d_n_ d_n_
b—a < q.Here wetakee = T 2 5/15 andw =T? 2 5(b—a)/4in(7.49),

d_o_
noting that dp(w + e (b — a)) < ag(b — a)coT” 2 5, in order to get the
bound (7.51), whereby the factor p Qy?;ra(r), depending on the Diophantine
properties of Q, has to be replaced by

d-4_s
2

h def . (F-9)\d
g L infy p faglog (1472 ) (0= e 77 7 4y 1500)

+ 0.7.1,5() (og((b — @) T) + 1) .

1/2 —1 ]

In the last equation the infimum is taken over all 7_ € [g, and

T4 > 1 with

(2 _)

d_o_
T, >4(b—a) 'T_ max (1, log (¢35 — )72 ")),

where the last condition ensures that

—2— 8
o (Tpw) 12T < colb—a)Tt
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Finally, we note that Corollary 4.11 implies that y;7_ 17,4(r) — 0 and also

Y1, 7,1,8(r) — Oforr — ooandany fixed 7_ € [qo_l/2 -1, T+ > 1, when

Q isirrational. Thus, we conclude that ,ohypJr (r) — 0, resp. pQ b—a() — 0,

for r — oo and fixed b — a. O

Corollary 7.10 Consider an indefinite quadratic form Q in d > 5 vari-
ables and a (not necessary admissible) parallelepiped 2 satisfying (7.1) and

max{|al, |b|} < cor?, where co > 0 is chosen as in Lemma 7.1. Then for all
b—a<l1

Ar <pa dort™ (ol () + (b — a)r! =2 gD  log(1 + 1) (g /q0) @V 2 () @D,

where pQ b _, s defined in (7.53). In particular, for irrational Q we have

féﬂ;* ,(r) = 0 forr — oo, provided that b — a is fixed.

Proof. We shall argue similar as in the previous proof of Corollary 2.5, but here
we can only use (7.50) to bound ||, ||+, since 2 is not necessarily admissible.
Thus, we have to replace the error bound (7.49) for the lattice remainder by

Ay Lpa dori™? (s(b —a)+w+aglog Hiph, (,)) +dg gt
(7.52)
(( )d/z(log )d + dQ qd/2 (CB)(C]+1)/2 —d) IOg (1 + 1/2 )

Now the right-hand side can be optimized by taking

d d_n_
TN and w=T2 b —a) /4

e=(15log(1 4+ T_
and this leads to the bound

Ar Lpa dori™2pghe (1) + dog*r (log(1 + ) (q/q0)""?

+dog"e) VP 0g(1r)) log (1-+ Lt

where

def (4-2-9) (§-2-8)
P a(r) & inflaglog1+7- I (b = @) (o T 7Y 5 00)

(7.53)
+ Yo a0 log((b — @) T4 ) + —L2e—— |
log(HT_ 2 = )
and the infimum is taken over all 7_ e [qo_ 1/ 2r_l, 1] and
_ (2 -8) d-2-5,
Ty > 4(b — a) max{1, log(cQ(b —a)T~ ) }. O
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The next corollary provides a lower bound for the number of lattice points
and is useful for proving quantitative bounds in the Oppenheim conjecture.

Corollary 7.11 For the special choice B = Qi/z, ie. 2 = Q;l/z[—l, 114

and cp = 1, and all max{|al, |b|} < r2/5 and b —a < 1 there exists constants
bg.a > 0 and bgq > 0, depending on B and d only, such that for all r >

bp.aq"*(q/qo) /@2

vol H,
Ar < — "t bpadoriTpgh () (7.54)

where cg = |det Q|\/4-812 ag =qcg and
d_y_
P, () & inflag (b — a)eoT? " (7.55)
0,8+ v, 11,81 log((b — a) Ty)) }

and the infimum is taken over all T_ € [qo_l/Zr_l, 1] and Ty > 1 with

o i > max{IOg (2;}3)2’ 1}

and Cg 4, cp.qa > 1 are constants depending on d and B only.

Ty = Cpa

Proof Here we only consider the special region Q2 = Q;l/ 2[—1, 114, ie.

B = Qi/z and thus (7.1) is valid with cp = 1. Since 2 is not necessarily

admissible, we have to argue as in the previous proof (of Corollary 7.10):
Starting with the estimate (7.52), we can take ¢ = (30ay b,g,d)_1 and w =
(b — a)e in the optimization procedure, where ag > 1, resp. bg 4 > 1, denotes
the implicit constant in (7.12) (see Lemma 7.1), resp. (7.52). (Of course, we
have ¢ € (0,g9] and 0 < w < (b —a)/4 as requiredl.)) This yields

d+1

- d-2 —
+bpador'aglog )l o)+ bga® —ardgq T r P (2)

vol H,
15

Ay <

where I5ﬂ,d = bﬂ,d(e_d—i-log(e_l)d

to Lemma 7.1, we also see that

) depends on B and d only. Again referring

d+1)/2
1) / < vol H,

ba (b — aVde g2/ d/2—1(
g.d(b—a)dpq r " G

if we choose r > bp.aq'/*(q/q0) V=2 with bgy = (15a4bpqa)~".
Finally, we make the restriction 7y > w! max{log((lSadb/g;,d)_1q_1 b —
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a))?, 1} to ensure that
bg.a (loge ™) qri=2dg (T1w)™"? exp(—|TLw|"/?) < vol H,/15.

Collecting the remaining terms proves (7.54). O

Now we consider elliptic shells as well and optimize the lattice remainder as
in the case of ‘wide shells’. In contrast to the previous cases, the error caused
by the smoothing of the region €2 is not present here.

Proof of Corollary 2.4 In the case of ellipsoids, i.e. Q is a positive defi-
nite form, we choose the (not necessary admissible) parallelepiped 2 :=
B~'[—1,1]? with B = QY% and r = +/2b > ¢"/%, resp. 2b = %, a = 0
and ¢ = 1/15. Then (7.1) is satisfied with cpg = 1 and Ep ), C rS, ie.
H, := E,, NrQ2 = E, . Moreover, since Ey ; does not intersect r(9£2)2,
(the 2er-boundary of r2 as defined in (7.3)), we get an error R, , = 0 for
smoothing the indicator function of 2. Hence, we may remove the term
proportional to (b — a)e in (7.47). Note that apart from Lemma 7.1 the indefi-
niteness of Q has not been used in all arguments so far. In contrast to the case
of hyperbolic shells, we optimize (6.14) in w first. Again including the bound
Ivello <a dg of Lemma 7.1 and here taking w = W(gTy/4)?/ Ty, where
W denotes the upper branch of the Lambert- W -function (for more details on
the Lambert- W-function see the proof of Corollary 2.5 on p. 71), and noting
that w < g/(4e) < (b — a)/4, leads (as in the proof of Corollary 2.5) to the
bound

_ _ d-2-5
A Lpar? Z(CQ(q@ﬂd D200 T2 4y )+ Yo .6 () log(Ty +1)) 756
. )
g TR ) gl (g qo) P+ dog o (14 ).
0

where T_ € [q, 1 2r_l, 1] and T+ > 1. This can be rewritten as

_ 2
Ay <pgador®™?po(r) +doq?*r'*(q/q0)* log(1 + "/6]5/ )

with

def . _1 425 2
P ) Einf {ag (™2 (co T2 7" 4 M 11,5 )+ Y70 () Tog(T 1) - PERTE,

where the infimum is taken over all 7_ € [qO_ 1/ 2r_l, 1]and 74 > 1. Note that
as in the indefinite case lim, _, peQ“ (r) = 0if Qisirrational by Corollary 4.11.
This proves Corollary 2.4. Furthermore, we remark that vol H, = vol(r2 N
Eop) =dowy r¢, where wy denotes the volume of the unit d-ball. O
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Similar arguments can be used in order to obtain related bounds for both

wide (b —a > r) and narrow (b —a < r) shells in the case of ellipsoidal shells
Eqp.
Given a quadratic form Q of Diophantine type (k, A), i.e. Q satisfies (1.12),
we shall apply Corollary 4.11 in order to estimate the Diophantine factors
explicitly. Hereby, we prove quantitative bounds in the Oppenheim conjecture
(for indefinite quadratic forms Q of Diophantine type (x, A)) by comparing
the volume with the corresponding lattice sum.

Proof of Corollary 1.7 We begin by applying Corollary 7.11 with b = —a =
e and B = 2/d + §8'/d for an appropriate 8" > 0: Taking 7_ =<gg4

g~V @A2=B) det Q|74 o that bgg(b — a)dgri—2agcoT'*7P <
(vol H;)/5 holds, yields the lattice remainder bound

2vol H,
<

r=—= +r772Cobga Reyir_ 11.5(r) + va,1,0.(r) log(2e T4)).

This estimate is valid provided that r >>g 4 (q/qo) ¢+ D/(@=2)g1/2+2/(d=4+3

Note that we have T_ € [q,, 1/ 2r‘l, 1] as required and that the assumptions
of Corollary 7.11 are satisfied as well. Next we calibrate the parameter 7.y by
taking

Ty =g.q ¢ max{l,loge(gep.a) ).

Since Q is of Diophantine type («x, A), we can use Corollary 4.11 in order to
find that

1-28

_ =28 1-28
nr_11.8(r) Lg.pa A WD wHl
and also that
=2 128 —1\\ - (A=p)
Ya.1.p(r) Lg.pa A 2D (67 log(e ™)) kT2
In view of (7.12), we may increase r >>¢ g 4 max{A~!, 1} to get

2bg.aCor® iz 11.5(r) < (vol H,)/5.

o~ Qd+3kd—4)/(2d—8)—§

Now, we choose r <4 0,54 in order to obtain

bp.aCor? ?logQeTy) y,1,1.5(r) < (Vol H,)/5.
All in all, we have

Svoly H, > vol H, >4 dgerd_z.
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Since (2d + 3kd — 4k)/(2d — 8) > 1/(d — 2) holds if d > 5, we find that
volz H, > 1. This means that there exists at least one non-zero lattice point

m e 74 satisfying both |Q[m]| < ¢ and also || er/zmll L4r. O

We can argue similarly to investigate the density of values of a quadratic
form:

Proof of Corollary 1.8 1t is sufficient to prove that voly.(rQ N E, p) > 0 for
any max{|a|, |b|} < c0r2/2, where cp is as in Lemma 7.1, with r —0H = p—gq
for r > c¢s,4,0,0,4,« and a sufficiently large constant ¢s 4,0.0,4« > 1. 1In
particular, we consider small shells, i.e. » —a < 1. Repeating the proof of
Corollary 7.11, we see that Corollary 7.11 is also valid for arbitrary paral-
lelepipeds satisfying (7.1), but then the constants depend additionally on the
scaling parameter cg > 1. Also repeating the previous proof (of Corollary 1.7)
in this situation shows that we can take r = ¢5.4,0,0,4,«(b — a)_l/”o, where

vy = Mﬁ(ﬁ, to ensure that volz (r2 N E,; ) > 0. |

Using the Diophantine estirnates for quadratic forms Q of Diophantine type

(k, A), we can estimate pQ b a(r) and ,oQ b a(r) in Corollary 2.5 explicitly
as follows.

Proof of Corollary 2.6 First, we consider ‘wide shells’, i.e. b —a > g. By
applying Corollary 4.11, we can bound the Diophantine factor from Corol-
lary 2.5 by

hyp+ —(454-5)

) 3 a4 _5 oy —
P () <q inf g {log ((b—a)T" +1) (g3 P @17 g AT T

+q AT T2 log(Ty + 1) + co =)

where v := (1 — 28)/(2« + 2) and the infimum is taken over all 7_ €
lqo 12, ~! 1]and T} > 1. Next we optimize this expression by taking 7_ =

_2”/(”+") and Ty = r@/6+D where o := d(1/2 — B): This parameter
choice is permissible, since T_ € [qo l/ 2 -1 1] holds (because of o > v),

and thus we obtain
3 2vo. __2v
P}éyita(r) <p,q log(r + D¥hoq2 (1 + A7) (r ite +r 0 log(gr + 1),

where hg = g |det Q|2 (here we avoided to give an optimal estimate in
terms of |det Q| to reduce the notational burden). In view of the bound from
Corollary 2.5 and (7.12) we get the relative lattice error

voly, H;
vol H,

-1 d _ 2vo __2v_
—1}<<Q,Q,M b —a)og(r + 1) (r e B log(r + 1)

+ r5+2 log (1+b%“)>
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For ‘thin shells’, i.e. b —a < g, we have

d—4 d_o_
2 +6))d((b—a)(Tf 2 ‘S+qUA—V T:V,,—QU)

+q" AT T (log((b — )" T4)) + D)},

h _ . —
pr};’,_a (r) Kp.a inff 7 {holog (1+7-

where the infimum is taken over all 7_ € [r~!, 1] and T, > 1 satisfying

_(d_H_
T, >4 —a)y 727"

_(d_o_
max{l,log(czQ(b—a)T_(2 2 8))2}. U

8 Small values of quadratic forms at integer points

Finally we shall prove Theorem 1.3 by using our effective equidistribution
results (in form of Corollary 7.11) together with bounds on small zeros of
indefinite integral quadratic forms. Our proof is based on the following strat-
egy: If O has ‘good’ Diophantine properties, we can compare the volume with
the number of lattice points to establish bounds for non-trivial lattice points
me 74 \{0} satisfying the Diophantine inequality |Q[m]| < ¢. Otherwise Q
is near a rational form and here we shall use Schlickewei’s bound [51] for
small zeros of integral quadratic forms.

8.1 Integer-valued quadratic forms

In this section we summarize some essential results on small zeros of integer-
valued quadratic forms. Here A[m] denotes an integer-valued indefinite
quadratic form on a lattice A in R? of full rank. Meyer [44] proved in 1884 that
such a form represents zero non-trivially on A ifd > 5. Nowadays, this resultis
usually deduced from the Hasse-Minkowski theorem, which is a local-global
principle (see [25], Theorem 5.7, Corollary 5.10).

Similarly to the result of Birch and Davenport [3] on diagonal forms in
five variables, our quantitative bounds in Theorem 1.3 depend essentially on
explicit bounds for small zeros of integral forms (see Corollary 8.4). First
bounds of this kind were proved by Cassels [12], based on a geometric argu-
ment. Birch and Davenport improved Cassels’ result as follows: If d > 3 and
A[m] admits a non-trivial zero on the lattice A, then there exists an isotropic
lattice point m € A\{0} with Euclidean norm

0 < [lm|* < yi= @Tr AH“=D/2 (det A)?, 8.1)
where y,; denotes the Hermite constant in dimension d (see [4,16]). This

bound is essentially best possible in view of an example by M. Kneser, see
[13], if A has signature (d — 1, 1). In 1985 Schlickewei [51] extended Cassels’
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argument non-trivially by showing that the dimension, say dp, of a maximal
rational isotropic subspace has an essential impact on the size of small zeros,
rather than mere indefiniteness (i.e. dg > 1). He established the following
relation between small zeros of integral forms and the dimension dj.

Theorem 8.1 (Schlickewei [51]) Let A be a d-dimensional lattice and A a
non-trivial quadratic form in d variables taking integral values on A. Also
let dy > 1 be maximal such that there exists a do-dimensional sublattice of
A on which A vanishes. Then there exist linearly independent lattice points
miy, ..., mq, € A, spanning an isotropic subspace, of size

(il - .. lmayl)* <a (Tr A2)@=90)/2 (det A2 (8.2)

In the same way as Birch and Davenport [4] deduce their Theorem B from
their Theorem A, we may conclude

Theorem 8.2 (Schlickewei [51]) Let F, G # 0 be quadratic forms in d
variables and suppose in addition that G is positive definite. Let dy be maximal
such that F vanishes on a rational subspace of dimension dy. Then there exist
do linearly independent lattice pointsmy, . .., my, € 74 such that F vanishes
on the corresponding subspace and

Glmi]--- Glmg,) Kq (Tr(FG~1)%H)d=d0)/2 get G,

where the implicit constant depends on d only.

Using an induction argument combined with Meyer’s theorem, Schlickewei
derived also the following lower bound (8.3) - which we only state for non-
singular forms - for the dimension of a maximal rational isotropic subspace in
terms of the signature (r, s). For notational convenience, we may suppose that
r > s. Then Hilfsatz of Section 4 in [51] reads

s ifr>s+43
dy>1{s—-1 ifr=s+2orr=s+1 (8.3)
s—2 ifr =s.

Remark 8.3 One can complement Schlickewei’s lower bound (8.3) with the
upper bound dyp < min{r, s}, which follows immediately by a dimension argu-
ment: If we decompose RY = V, @ V_ into subspaces V, V_, on which Q
is positive or negative definite, and if Vi, denotes an isotropic subspace, then
Viso N V& = {0} and thus

dim(Viso) = dim(Viso + V1) —dim(Vy) < d — dim(Vy).
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In particular, the lower bound (8.3) is essentially optimal.

Obviously, a straightforward combination of the upper bound (8.3) together
with Theorem 8.1 yields explicit bounds on the smallest non-trivial isotropic
vector. However this application can be improved in the cases r = s + 2 and
r = s by reducing the problem to dimension d — 1 as done by Schlickewei
in Folgerung 3 of [51], were he proved that for any integral quadratic form A
of signature (r, s) there exists an isotropic lattice point m € Z4\{0} such that
Im|* <a (Tr A>)?, where

%f forr >s+3
p = p(r,s):= %% forr =s+2orr =5+ 1
%% forr =5

asdefined in (1.10) (see Sect. 1.2). We shall extend this result to general lattices
leading to the following strengthening of (8.1).

Corollary 8.4 Suppose that A is a non-singular quadratic form of signature
(r,s)inr+s = d > Svariables, which takes integral values on A. Additionally
suppose that |det(A)| > 1, then the smallest non-trivial isotropic vectorm € A
of A satisfies

2 N 2 4p+2
0 < [Im|? <4 max{(Tr A%)2, (Tr A%)*}|det A| 7 (8.4)

where p is as defined in (1.10).

Compared to (8.1), the exponent in (8.4) is considerably smaller for a wide
range of signatures (r, s). Especially, if r ~ s, then p ~ 1/2 and therefore
Qp+1)/d ~2/d.

Proof As can be checked easily, in the cases r > s +3 and r = 5 4 1 the
bound (8.4) follows immediately from Theorem 8.1 together with (8.3), since
d/dy <2p+1and?2 < d/dy (by Remark 8.3) in both cases. (Here we estimate
(Tr A?)@=d0)/2 by (Tr A2)!/2 if Tr A% < 1 and by (Tr A%)? if Tr A> > 1.) If
r = s orr = s+ 2, then the first relation does not hold. Here we fix a reduced
basis vy, ..., vg of A with

[vill < ... < llvgll and [det(A)] =g [lv1ll...[val-
Let Ag := Zvi+...+Zv,s_1,whichis ad—1 dimensional sublattice of A, and
note that Hadamard’s inequality shows that det(Ag) = |[vi A ... Avg—1|| <

[lvtll - .. llva—1|l- Thus

det(Ag) g det(A)@1/d,
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Now denote by Ag the restriction of A to the subspace generated by
V1, ..., vg—1. It follows that Ag has signature either (r, s — 1) or (r — 1, s) and,
since (Tr A%)!/2 = ||A||us, also that Tr A% < Tr A2. Applying Theorem 8.1
(resp. Theorem 8.2 after a coordinate change) to Ag and A shows that there
exists an isotropic lattice point m € Ag\{O} such that

d—1-dy d—1—dy

lm|* <a (Tr Ag) 2% IdetAol"O &a (Tr A*) 2% |det Al

d-12
d dy

where dy denotes the dimension of a maximal isotropic subspace of A (instead
of A). Completing the proof, we note that in both cases r = s +2andr = s
one has

2<(d—1)/dy<2p+1,
as can be readily seen. O

Remark 8.5 In 1988 Schlickewei and Schmidt [56] complemented their work
[55] on isotropic subspaces of quadratic forms showing that Schlickewei’s
bound in terms of dy is best possible. Additionally, one can also ask if Schlick-
ewei’s bound (8.3) in terms of (r, s) is best possible, as was already conjectured
by Schlickewei himself in [51]. At least for the cases r > s + 3 and (3,2) this
is known and due to Schmidt, see [49].

Remark 8.6 As a final remark we note that in the Geometry of Numbers it
is often the case that one can use the existence of a lattice points satisfying
some inequality in order to get several independent points satisfying a joint
inequality. This argument was used by Schlickewei and Schmidt [55,57] to
prove an extension of Theorem 8.1, in which they considered several isotropic
subspaces and their relative position.

8.2 Proof of Theorem 1.3

Now we are in position to prove the second main theorem of this paper. To
simplify the notation we may replace Q by Q/¢ and consider the solubility
of the Diophantine inequality |Q[m]| < 1. Notice that this rescaling does not
change the constant cg = 1 occuring in Corollary 7.11.

Proof of Theorem 1.3 Letd > 5, gp > 1 and
r > bgaq'*(q/qo) V=2 (8.5)

as in Corollary 7.11 and 8 = 2/d + §'/d with fixed §' > 0 depending on
8 > 0. Applying Corollary 7.11 with b = —a = 1/5 (note that both conditions
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max{|al, |b|} < r?/5and b — a < | are satisfied) gives the bound

vol H, _ d(1/2—
Ap < 5 4 +bgado rd 2616’Q<CQ r4(/2=h + v .80 + va, 1. () 10g(T+))

forany 7_ € [qo_l/zr_l, 1] and

Ty >p.a max{1, log(10cs.49))*} > p.q log(q + 1)°.
Hence, we can take Ty =g 4 log(q+ 1). Additionally, by taking

T =g.d q—Z/(d—4)—6/4|det Q|—1/d

we can also ensure that
bgadori2qldet Q"> FTV/*F) < (vol H,) /10,
compare the lower bound (7.12) of Lemma 7.1. At this step we have to choose

_ —-1/2 —
r>p.d (q/q0)1/2q1/2+2/(d 4)+5/4 > 4, / |detQ|l/dq2/(d 4H+5/4 (8.6)

in order to guarantee that 7_ € [g,, 1/ 2r‘l, 1] is satisfied.

First Case: We consider first classes of quadratic forms Q for which the lat-
tice remainder is *small’: Corresponding to Diophantine properties of Q, we
assume that

bg.aqldet Q|4 PPy 115(0r) <hgg and

_ (8.7)
bp.aqldet Q1P Py 1.9 5(r) log(Ty) < hp.a

with some constant g 4 > 0 depending on d and B only (compare again
with (7.12)) such that 5volz H, > vol H,. Note that r > ¢'/? is fixed here.
According to Corollary 7.11 and (8.6) we shall take a priori

r=g.d (q/qo)(dH)/(d_z)q1/2+2/(d_4)+5. (8.8)

Increasing the implict constant guarantees that volyz H, > 2, i.e. there exists
at least one non-zero lattice point m € 74\{0} satisfying both |Q[m]| < 1 and
| Qi/zmH < r. Because of p > 1/2, it is easy to see that the right-hand side

of (8.8) is bounded, up to absolute constants, by the right-hand side of (1.9).

Second Case: Now we assume that one of the inequalities in (8.7) fails. Then
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there exists a tg € [T—, T4] such that the reciprocal agz-characteristic satisfies
at least

2d
Bl =dgrdeg(hy) ™! <pa o) € (gloglog(g +exp(1)a-5/*  (8.9)

Following the proof of Lemma 4.10, we see that there exists a d-dimensional
sublattice A’ C Ay, with ag(Agy) = |det A'|7" = lwy A... Aw,| ™!, where

w; = (rQ+”2<mj - 4tanj>)

_1 172

r ]Q+/ n;j
is a basis of A’ determined by integral vectors m janj € 74, j=1,...,d.- We
have also proven, writing N = (n1,...,ng), M = (my,...,mg) € M(d, Z),

that NV is invertible with 'Br; lr > |det N| and that the estimate

ai(A) "t >a 17927 det Q|2 det N||MN T — 41y Q|

holds, provided that oz (A4,) > qurd_z. In view of (8.9) the last condition
is satisfied if we take a priori

r>p.a (E1)q)">. (8.10)

Now we are in position to apply Corollary 8.4 with the rescaled lattice
A = rA’, noting that det(A) = r?det(A’) > |det Q|'/?|det N| > 1, and
the quadratic form A[x] = (x, Ax) induced by the symmetric matrix

def 0 r 21y,
A = )
r—<1g 8tS

with (w;, Aw;) = (m;,n;) + (mj, n;). In other words, the quadratic form
A is represented by the symmetric matrix Ag := N' M + M N in coordi-
nates wi, ..., wy. In particular, A is integer-valued on A. Since A([n] =
Ao[N~'n],ie. Ay = MN~ ' + (MN*I)T, has the same signature as Ag, we
need to check that the signature of A is (r, s). Because of

IA1 — 8100 <p.a |det N|~'r2g E(1o)

—1/2

172 max{1, ty "l

/=45 o

we may choose a priori r >>g 4 (q9/q0)
r >>[ﬁ,d (q/qo)l/zq1/2+(d+1)/(d—4)+5 (811)
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to ensure that A and 79 Q have the same number of eigenvalues with the same
sign, i.e. the same signature (e.g. apply the Hoffman-Wielandt inequality, see
Theorem 6.3.5 in [30]). Thus, there exists a non-trivial lattice point w =
airwy + ...+ aqrwg € A, where (aj,...,aq) € Zd\{O}, which satisfies
A[w] = 0 and, writing no = ayn + ... + agng € Z4\{0}, is of size

1 4p+2
||Q1+/2no||2 < |w|* < max{(Tr A%z, (Tr A%)P}|det A| 7
4p+2

<p.q1og(q + D*(|det Q|'PE(tp)) 7 (8.12)

8p+4 2p+1
<p.a "t |det Q|7

where we used Tr A2 <4 (r™2 + 19)? < tg <Lp.a log(g + 1)* and (8.9).
Writingw = (wy, wp) € R xR9 we also see that0 = A[w] = 2wy, wa)+
819 Q[no] and thus

10[noll < (1) " wi I-lwall < (+*10) ™ Hw])?
(8.13)

— 4p+2 Sp+4
<a max{1, (2P |det AT 12 &g gt T |det Q7T 2,

Hence, requiring in addition
1, dp+2 4p+2 241
r>paqit i T > g T det Q) (8.14)

it follows from (8.13) that | Q[ng]| <4 1, whichin turn guarantees |Q[no]| <
1 as long as r is taken large enough in terms of B and d. Combining this choice
with the lower bounds on r already required in (8.5), (8.6), (8.10) (8.11) and
(8.14), we observe that an appropriate choice for r is given by

d+l 1 maxipd+2.d+l) g

r=<g.d (q/q0)72q? — , (8.15)

where the implicit constant is chosen large enough depending on 8 and d only.
This concludes the proof of Theorem 1.3. O
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Index

b—a)* o b—-—a)ylb—a<l)+1(b—-a>1)871,914

b—a)y:=b-a)(b—a<q)+q*=D2[(b—-a>q)871,913
(-, ), I - I, Euclidean inner product and associated norm 861, 870
¢r(x) = ¢(x/r), for a function ¢ on R™, 875

A Lp C, A xp C, Vinogradov’s notation 868, 871

f*, radial realization of a bi-K-invariant function on G, 8§97

o, oj-characteristic of a lattice, 870, 884

A, mean-value operator on G, 897

ag :=qcp,927

B, exponent in the range (%, %), 870

Bror i= ag(A)r~¢|det Q|'/2, 891

co = |det Q|'/4=P/2 871

Co = q|det Q|71/4=F/2 871

Cartan decomposition of g € SL(2, R): g = k1(g)d(g)k2(g), 896

A, := |volz H, — vol H,|, lattice point deficiency, 872, 926

;0 R, rational approximation error of 7 Q truncated at R, 890

D :={d, : r > 0}, diagonal subgroup of SL(2, R), 888

da(L) = d(L), covolume of the A-rational subspace L, 883

do : |det Q712,870

D, ¢, diagonalizable matrix on R??, 882, 889

Diophantine quadratic form of type (k, A) 863

E,p:=1{xe RY: g < Q[x] < b}, hyperbolic or ellipsoidal shell, 859, 871
Yla,b1,(r), Diophantine factor for Q on [a, b] with exponent 8, 870, 896
G =SL(2,R), 896

g7 = max{|g,(t)| : t € I}, maximum of [g,,(z)| on an interval I, 896
g2, (x) = g+ (Qlx]), x € RY, 875

8+w = lla,b]y, * ky, 875

H:={veA: |vlo <1} 883

H, := E; , Nr<,if Q is indefinite, 872

H, := E ., with r = +/2b, if Q is positive definite, 872

Hy(m,n) :=r> Q7' [m — 41 Qnl +r=2 Q4 [n], 880

Il = fpalTo @) exp{—llev]| '/} dv <gq e~@TD/2 919

Ip = |,/:]0 R(elQVr)gw(t) dr| 877

Iy = |fJ1 2w () fRd 0,(1) Qv)d” dr| 877

Ly := | [}, 8u(®) Jpa Du(1) ¢ (v)dv dt| 877

I, indicator function of a set B, 864

Iwasawa decomposition of g € SL(2, R): g=k(g)t(g), k(g) € K,

t(g) €T, 896

Jo:=I—qy *r=, g5 *r 11,877
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J] = R\J(), 877

K :=S0(2) = {kg : 6 € [0, 21]}, orthogonal subgroup of SL(2, R), 889
k, compactly supported kernel with sufficiently fast decaying Fourier trans-
form, 864, 874

A g, lattice in R?¢ depending on Q only, 889

A; := Dy Us 7%, lattice on R?¢, 882, 889

Ao :=d1puy Ag, lattice on R*, 896

M (A), j-th successive minimum of a lattice A, 884

(0R2)¢ := Q¢ \Q2_g, e-thickened boundary of €2, 915

Qie := (1 £ ¢)2, e-thickening resp. thinning of €2, 915

U(r, 1) =), nezd €xpi—H;(m, n)}, 880

¢ : G — R, corresponding to the character x;, 897

0, as quadratic form and the corresponding symmetric matrix, 861, 870
q, largest eigenvalue of Q in absolute value, 861, 870

Q[x] = (Qx, x), Siegel’s notation, 861, 870

Q., positive definite square root of 02, 861

Qo signature matrix corresponding to Q, 889

qo, smallest eigenvalue of Q in absolute value, go > 1, 861, 870

Qro(t, x) :=2mit Q[x] — r 2 Qy[x] + 2mi(x,vr 1), 877

p = p(r, s), Schlickewei exponent, 861, 934

peQH(r), 872, 930

pon (), 929
o (). 929
Pt (), 873,928

b (). 873,928

pg’b_a(r), 871, 874

R(Ig,,Vvr), R(gvy), R(IEg, ,nre), lattice point remainder, 864, 875, 915
ry :=rq /2 896

rei=r@&r?rt + 1)71/2, 878

S, orthogonal matrix such that SQ er] ST = 0o, 889

S[a, by, (1) = |271) ! sin(re (b — a £+ 2w))|, 877

T, Borel subgroup of SL(2, R), 896

T,, spherical function on G, 897

0, (1), Theta series for Q, 865, 877

Dy (), Theta integral for Q, 865, 877

U := {u; : t € R}, standard unipotent subgroup of SL(2, R), 888
Uu: 0, unipotent matrix on R4, 882, 889

v, weight function on R? of sufficiently fast decay, 870

Vie := Iq,, * kp ¢, e-smoothing of €2, 915
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vol (B), Lebesgue measure on R4, 859
vol z(B) = #(B N Z9), counting measure on 74, 859
X, character of T, 897 ~
= . d/4 d/2 = L)
181 = g (NN + oy mrs2 G T V). 871,880
¢(x) :==v(x) exp{ Q+[x]}, 875
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