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Abstract We describe the lamination limits of sequences of compact disks
Mn embedded in R

3 with constant mean curvature Hn , when the boundaries
of these disks tend to infinity. This theorem generalizes to the non-zero con-
stant mean curvature case Theorem 0.1 by Colding and Minicozzi (Ann Math
160:573–615, 2004) for minimal disks. We apply this theorem to prove the
existence of a chord arc result for compact disks embedded inR3 with constant
mean curvature; this chord arc result generalizes Theorem 0.5 by Colding and
Minicozzi (Ann Math 167:211–243, 2008) for minimal disks.
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394 W. H. Meeks III, G. Tinaglia

1 Introduction

In this paper we apply results in [22–24] to obtain (after passing to a sub-
sequence) minimal lamination limits for any sequence of compact disks Mn
embedded in R

3 with constant mean curvature Hn , when the boundaries of
these disks tend to infinity; see Theorem1.1 below. This theorem is inspired by,
and generalizes to the non-zero constant mean curvature setting, Theorem 0.1
by Colding and Minicozzi [7] and it is related to work in [3,14,15,26]. As an
application of Theorem 1.1, we obtain a chord arc result for compact disks
embedded in R

3 with constant mean curvature that does not depend on the
value of the mean curvature; this chord arc result is stated below in Theo-
rem 1.2. Theorem 1.2 is inspired by and generalizes the chord arc result by
Colding andMinicozzi for embeddedminimal disks appearing in Theorem 0.5
of [9].

For clarity of exposition, we will call an oriented surface M immersed in
R
3 an H -surface if it is embedded, connected and it has non-negative constant

mean curvature H . We will call an H -surface an H -disk if the H -surface is
homeomorphic to a closed unit disk in the Euclidean plane. HereB(R) denotes
the open ball in R3 centered at the origin 0 of radius R and for a point p on a
surface � ⊂ R

3, |A�|(p) denotes the norm of the second fundamental form
of � at p.

Theorem 1.1 (Limit lamination theorem for H -disks)Fix ε > 0 and let {Mn}n
be a sequence of Hn-disks in R

3 containing the origin and such that ∂Mn ⊂
[R3 \ B(n)] and |AMn |(0) ≥ ε. Then, after replacing by some subsequence,
exactly one of the following two statements hold.

A. The surfaces Mn converge smoothlywithmultiplicity one or twoon compact
subsets of R3 to a helicoid M∞ containing the origin. Furthermore, every
component � of Mn ∩ B(1) is an open disk whose closure � in Mn is
a compact disk with piecewise smooth boundary, and where the intrinsic
distance in Mn between any two points in � is less than 10.

B. There are points pn ∈ Mn such that

lim
n→∞ pn = 0 and lim

n→∞ |AMn |(pn) = ∞,

and the following hold:
(a) The surfaces Mn converge to a foliation of R3 by planes and the con-

vergence is Cα , for any α ∈ (0, 1), away from the line containing the
origin and orthogonal to the planes in the foliation.

(b) There exists compact subdomains Cn of Mn, [Mn ∩B(1)] ⊂ Cn ⊂ B(2)
and ∂Cn ⊂ B(2) \ B(1), each Cn consisting of one or two disjoint
disks, where each disk component has intrinsic diameter less than 3 and
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Limit lamination theorem for H-disks 395

intersects B(1/n). Moreover, each connected component of Mn ∩B(1)
is an open disk whose closure in Mn is a compact disk with piecewise
smooth boundary.

As an application of Theorem 1.1 and its proof, we prove in Theorem 4.3 a
sharp chord arc result for H -disks (also see Remark 4.4); the following chord
arc result for H -disks is a restatement of Eq. (10) in Theorem 4.3.

Theorem 1.2 (Chord arc property for H -disks) There exists a C > 1 so that
the following holds. Suppose that � is an H-disk, 0 ∈ � and R > r0 > 0. If
the open intrinsic ball B�(0,CR) of radius CR centered at 0 is contained in
� \ ∂� and sup

B�(0,(1−
√
2
2 )r0)

|A�| > r−1
0 , then

1

3
dist�(x, 0) ≤ |x |/2 + r0, forx ∈ B�(0, R).

The proofs of the results described in this paper depend in an essential
manner on the existence of extrinsic curvature estimates for disks embedded
in R

3 of non-zero constant mean curvature that appear in [23], as well as on
a key extrinsic one-sided curvature estimate obtained in [24] and a weak cord
arc result derived in [22]; these results from [22–24] are described in Sect. 2.

2 Preliminaries

Throughout this paper, we use the following notation. Given a, b, R > 0,
p ∈ R

3 and � a surface in R3:

• B(p, R) is the open ball of radius R centered at p.
• B(R) = B(0, R), where 0 = (0, 0, 0).
• For p ∈ �, B�(p, R) denotes the open intrinsic ball in � of radius R.
• C(a, b) = {(x1, x2, x3) | x21 + x22 ≤ a2, |x3| ≤ b}.
• A(r1, r2) = {(x1, x2, 0) | r22 ≤ x21 + x22 ≤ r21 }.
We first introduce the notion of multi-valued graph, see [6] for further discus-
sion. Intuitively, an N -valued graph is a simply-connected embedded surface
covering an annulus such that over a neighborhood of each point of the annu-
lus, the surface consists of N graphs. The stereotypical infinite multi-valued
graph is half of the helicoid, i.e., half of an infinite double-spiral staircase
(Fig. 1).

Definition 2.1 (Multi-valued graph) Let P denote the universal cover of the
punctured (x1, x2)-plane, {(x1, x2, 0) | (x1, x2) 
= (0, 0)}, with global coordi-
nates (ρ, θ).
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396 W. H. Meeks III, G. Tinaglia
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Fig. 1 A right-handed 3-valued graph

1. An N -valued graph over the annulus A(r1, r2) is a single valued graph
u(ρ, θ) over {(ρ, θ) | r2 ≤ ρ ≤ r1, |θ | ≤ Nπ} ⊂ P , if N is odd, or over
{(ρ, θ) | r2 ≤ ρ ≤ r1, (−N + 1)π ≤ θ ≤ π(N + 1)} ⊂ P , if N is even.

2. An N -valued graph u(ρ, θ)over the annulus A(r1, r2) is called righthanded
[lefthanded] if whenever it makes sense, u(ρ, θ) < u(ρ, θ + 2π)

[u(ρ, θ) > u(ρ, θ + 2π)]
3. The set {(r2, θ, u(r2, θ)), θ ∈ [−Nπ, Nπ ]} when N is odd (or {(r2, θ,

u(r2, θ)), θ ∈ [(−N + 1)π, (N + 1)π ]} when N is even) is the inner
boundary of the N -valued graph.

From Theorem 2.23 in [23] one obtains the following, detailed geometric
description of an H -disk with large norm of the second fundamental form at
the origin. The precise meaning of certain statements below are made clear in
[23] and we refer the reader to that paper for further details.

Theorem 2.2 Given ε, τ > 0 and ε ∈ (0, ε/4) there exist constants �τ :=
�(τ), ωτ := ω(τ) and Gτ := G(ε, τ, ε) such that if M is an H-disk, H ∈
(0, 1

2ε ), ∂M ⊂ ∂B(ε), 0 ∈ M and |AM |(0) > 1
η
Gτ , for η ∈ (0, 1], then for

any p ∈ B(0, ηε) that is a maximum of the function |AM |(·)(ηε̄ − | · |), after
translating M by −p, the following geometric description of M holds:

On the scale of the norm of the second fundamental form M looks like
one or two helicoids nearby the origin and, after a rotation that turns these
helicoids into vertical helicoids, M contains a 3-valued graph u over A(ε/

�τ ,
ωτ|AM |(0) )with the norm of its gradient less than τ and with its inner bound-

ary in B(10 ωτ|AM |(0) ).

Theorem 2.2 was inspired by the pioneering work of Colding andMinicozzi
in the minimal case [5–8]; however in the constant positive mean curvature
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Limit lamination theorem for H-disks 397

setting this description has led to a different conclusion, that is the existence
of radius and curvature estimates stated below.

Theorem 2.3 (Extrinsic radius estimates, Theorem 3.4 in [23]) There exists
an R0 ≥ π such that for any H-disk D,

supp∈D{dR3(p, ∂D)} ≤ R0

H
.

Theorem 2.4 (Extrinsic curvature estimates, Theorem 3.5 in [23]) Given
δ,H > 0, there exists a constant K0(δ,H) such that for any H-disk D with
H ≥ H,

sup{p∈D | d
R3 (p,∂D)≥δ}|AD| ≤ K0(δ,H).

Indeed since the plane and the helicoid are complete simply-connectedmin-
imal surfaces properly embedded in R3, a radius estimate does not hold in the
minimal case. Moreover rescalings of a helicoid give a sequence of embedded
minimal disks with arbitrarily large norm of the second fundamental form at
points arbitrarily far from its boundary; therefore in the minimal setting, the
curvature estimates also do not hold.

The next two results from [24] will be essential tools in the proof of Theo-
rem 1.1.

Theorem 2.5 (Extrinsic one-sided curvature estimates for H -disks) There
exist ε ∈ (0, 1

2 ) and C ≥ 2
√
2 such that for any R > 0, the following holds.

Let D be an H-disk such that

D ∩ B(R) ∩ {x3 = 0} = Ø and ∂D ∩ B(R) ∩ {x3 > 0} = Ø.

Then:

sup
x∈D∩B(εR)∩{x3>0}

|AD|(x) ≤ C

R
. (1)

In particular, if D ∩ B(εR) ∩ {x3 > 0} 
= Ø, then H ≤ C
R .

The next corollary follows immediately from Theorem 2.5 by a simple
rescaling argument. It roughly states that we can replace the (x1, x2)-plane
by any surface that has a fixed uniform estimate on the norm of its second
fundamental form.

Corollary 2.6 Given an a ≥ 0, there exist ε ∈ (0, 1
2 ) and Ca > 0 such that

for any R > 0, the following holds. Let � be a compact immersed surface
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398 W. H. Meeks III, G. Tinaglia

in B(R) with ∂� ⊂ ∂B(R), 0 ∈ � and satisfying |A�| ≤ a/R. Let D be an
H-disk such that

D ∩ B(R) ∩ � = Ø and ∂D ∩ B(R) = Ø.

Then:

sup
x∈D∩B(εR)

|AD|(x) ≤ Ca

R
. (2)

In particular, if D ∩ B(εR) 
= Ø, then H ≤ Ca
R .

Next, we recall the notion of flux of an H -surface; see for instance [11,12,
25] for further discussions of this invariant.

Definition 2.7 Let γ be a 1-cycle in an H -surfaceM . The flux of γ is
∫
γ
(Hγ +

ξ) × γ̇ , where ξ is the unit normal to M along γ .

The flux of a 1-cycle in an H -surface M is a homological invariant and we
say that M has zero flux if the flux of any 1-cycle in M is zero; in particular,
since the first homology group of a disk is zero, an H -disk has zero flux.
Finally, we also recall the following definition.

Definition 2.8 LetU be an open set inR3. We say that a sequence of surfaces
{�(n)}n∈N ⊂ U , has locally bounded norm of the second fundamental form
in U if for every compact subset B inU , the norms of the second fundamental
forms of the surfaces �(n) ∩ B are uniformly bounded.

3 Proof of the limit lamination theorem for H-disks

Proof of Theorem 1.1 Let {Mn}n∈N be a sequence of constant mean curvature
disks that satisfy the hypotheses of Theorem 1.1. The extrinsic radius estimates
given in Theorem 2.3 imply limn→∞ Hn = 0. We will break the proof into
the following two cases.

Case A: {Mn}n∈N has locally bounded norm of the second fundamental
form in R

3.
Case B: There is a compact set B and the sequence {Mn}n∈N has unbounded

norm of the second fundamental form in B.

Note that if Case A holds, we will prove item A of Theorem 1.1 holds and
if Case B holds, we will prove that item B of Theorem 1.1 holds.

Some of the arguments in the proofs of Cases A and B listed above are
borrowed from arguments appearing in the proofs of similar Cases A and
B in the proof of Proposition 3.1 in [24], where all the details are given.
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Limit lamination theorem for H-disks 399

Consequently, the reader may wish to consult the proof of Proposition 3.1 in
[24] before continuing to read what follows.

We will first prove that item A the theorem under the hypothesis that Case
A holds.

Claim 3.1 A subsequence of {Mn}n∈N converges with multiplicity one or two
to a helicoidH = M∞ containing 0.

Proof The proof of this claim follows the arguments in the beginning of the
proof of Case A of Proposition 3.1 in [24]. Note that in Proposition 3.1 in [24]
Mn is denoted by �(n). For the sake of completeness we outline the main
arguments in the proof of this fact. First a standard compactness argument
using the fact that the surfacesMn have uniformly bounded norm of the second
fundamental form in balls ofR3 implies that after replacing by a subsequence,
the surfaces converge C1,α , for any α ∈ (0, 1), to a minimal lamination L
of R3, and since |AMn |(0) ≥ δ, then the leaf M∞ of L passing through the
origin 0 has the norm of its second fundamental form bounded from below by
δ at 0. By Theorem 1.6 in [20], the limit leaves of the minimal lamination L
form a closed set C of parallel planes and every non-flat leaf of L, including
M∞, is properly embedded in a component of the collection of open slabs and
half-spaces that form the components of R3 \ C. For any non-planar leaf L
of L certain subdomains of the surfaces Mn converge to it with multiplicity
one or two, as n tends to infinity; otherwise a higher order convergence would
imply that L is stable and hence planar, which is a contradiction. From the
multiplicity one or two convergence of the {Mn}n∈N to the non-flat leaf L ,
a curve lifting argument implies that L has genus zero. By the properness
of finite genus leaves of a minimal lamination of R3 (Theorem 7 in [16]), L
must be properly embedded in R

3. Hence, all of the leaves of L are properly
embedded. Since the leaf M∞ is not flat, then the strong halfspace theorem in
[10] implies that M∞ is the only leaf in L. As the surfaces Mn converge (on
compact subsets of R3) with multiplicity one or two to M∞, a standard lifting
argument of curves on M∞ to the surfaces Mn for n large implies that M∞
has zero flux, since the Hn-disks Mn have zero flux. Since properly embedded
minimal surfaces in R

3 with zero flux have one end [4], M∞ must have one
end; hence M∞ is simply-connected. By the uniqueness of the helicoid [21],
M∞ must be a helicoid (see also [2] for a proof). Therefore, we conclude that
a subsequence of the original sequence {Mn}n∈N converges with multiplicity
one or two to a helicoidH = M∞ containing 0. ��

Note that, without loss of generality, we may assume that the surfaces Mn
are transverse to the sphere ∂B(1). The reason for this is given by the following
argument. By Sard’s theorem, we may replace the original sequence by the
homothetic surfaces M ′

n = (1 + εn)Mn with limn→∞ εn = 0 such that each
M ′

n is transverse to ∂B(1). Then the proof that a subsequence of the surfaces
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400 W. H. Meeks III, G. Tinaglia

M ′
n has the desired convergence implies that the original related subsequence

has the same type of convergence. Henceforth, wewill assume that the surfaces
Mn are transverse to the sphere ∂B(1).
We now check that for n large every component of Mn ∩B(1) is a compact

disk Mn with boundary in ∂B(1). Otherwise, after replacing by a subsequence,
for n sufficiently large there exists a component �n of Mn ∩ B(1) that is a
planar domain with more than one boundary component and let �n be one
of its boundary components. Let Dn denote the compact subdisk of Mn with
boundary �(n) ⊂ Mn ∩ ∂B(1) and notice that Dn 
⊂ B(1). Hence, there is a
point pn ∈ Dn that has maximal distance Rn > 1 from the origin. Since the
boundary of Dn lies in ∂B(1) and Dn lies in R

3 \ B(1) near ∂Dn , then pn is
an interior point of Dn not contained in B(1) and Dn lies inside the closed
ball B(Rn) and intersects ∂B(Rn) at the point pn . By the mean curvature
comparison principle applied at the point pn , the constant mean curvature
of Mn is at least 1/Rn and so, since the constant mean curvature values of
the surfaces Mn are tending to zero as n goes to infinity, the interior points
pn ∈ Dn are diverging to infinity in R

3 as n goes to infinity. Let p be a point
on the axis of H that is closest to the origin. Let r0 = |p| be the distance
from p to the origin and let E be the smooth compact diskH ∩ B(p, r0 + 2).
Then because of the multiplicity one or two convergence of the surfaces Mn
to H, for n large, Mn contains a unique smooth disk subdomain ME (n) that
contains the origin and that is a normal graph of smallC0-norm over E , and in
the case the multiplicity of convergence is two, Mn contains another smooth
disk subdomain M ′

E (n) that does not contain the origin and that is a normal
graph of small C0-norm over E ; furthermore, for n sufficiently large, every
point of Mn ∩B(1) is contained in ME (n) ∪ M ′

E (n). In particular, for n large,
�n ⊂ (ME (n) ∪ M ′

E (n)) ⊂ B(p, r0 + 3), and so �(n) ⊂ ME (n) or �(n) ⊂
M ′

E (n). If �(n) ⊂ ME (n) then it bounds in ME (n) a disk D′
n , which must

be the disk Dn; if �(n) ⊂ M ′
E (n) then it bounds in M ′

E (n) a disk D′
n , which

again must be the disk Dn . This is a contradiction since Dn 
⊂ B(p, r0 + 3)
for n large, but D′

n ⊂ (ME (n) ∪ M ′
E (n)) ⊂ B(p, r0 + 3). This proves that

every component �n of Mn ∩B(1) is an open subdisk of the disk Mn and �n
is a compact disk with boundary in ∂B(1).

To complete the proof of Theorem 1.1 when Case A holds, it remains to
prove the upper bound of 10 on the intrinsic distances on Mn between any two
points on a fixed disk�n component of Mn ∩B(1) (and then by the continuity
of the intrinsic distance function on Mn , the same property holds for points
in �n). This property follows easily because it holds for the helicoid H; this
completes the proof of the theorem when Case A holds.

Assume now that Case B holds, i.e., the sequence {Mn}n∈N does not have
bounded norm of the second fundamental form in some compact subset B ⊂
R
3. We will prove that item (B) of Theorem 1.1 holds in this case. After
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Limit lamination theorem for H-disks 401

replacing {Mn}n∈N by a subsequence, there is a point x ∈ R
3 closest to 0 such

that there exist points xn ∈ Mn with |AMn |(xn) > n and limn→∞ xn = x .
After another replacement by a subsequence, a straightforward application of
Theorem 2.2 produces a sequence of 3-valued graphs Gn ⊂ Mn with inner
boundaries near xn that converge to a plane Px passing through x (see the proof
of Claim 3.5 in [24] for additional details on the construction of the graphs
Gn ⊂ Mn that converge to Px ). Next choose a rotation T : R3 → R

3 such that
T (x) = 0 and such that the plane T (Px ) is the (x1, x2)-plane, and replace the
surfaces Mn by the rotated surfaces T (Mn). With an abuse of notation we will
let Mn denote the rotated surfaces T (Mn) and note that these new surfaces
may possibly not pass through the origin. Note that in Claim 3.3 we will prove
that x = 0.

After this replacement of Mn by T (Mn), P0 is the (x1, x2)-plane. By having
the three-valued graphs Gn converging to P0 play the role of � in Corol-
lary 2.6, we obtain that the sequence of surfaces {Mn}n∈N has locally bounded
norm of the second fundamental form outside some closed solid vertical cone
C0 based at 0 of a certain fixed aperture determined only by Corollary 2.6.
After replacing {Mn}n∈N by a subsequence, we may assume that the sequence
{Mn}n∈N converges to a minimal laminationL ofR3 \S, where S is a smallest
closed set such that the sequence Mn has locally bounded norm of the second
fundamental form inR3\S, and no subsequence of these surfaces has a smaller
singular set of convergence; see for example, the proof of Claim 3.4 in [24] for
the diagonal type argument leading to this statement, where Mn is denoted by
�(n). By the previous discussion in this paragraph, through each point y ∈ S
there passes a horizontal plane Py and S ∩ [R3 \ Cy] = Ø, where Cy is the
vertical cone previously described but based at y instead of at 0. As already
observed, the one-sided curvature estimates given in Corollary 2.6 imply that
S ∩ Py = {y}.

Fix p ∈ S. We claim that there exist points pn ∈ Mn , with vertical tangent
planes and such that limn→∞ pn = p. Otherwise in some small neighborhood
of p, Mn admits a non-zero Jacobi function induced by the parallel Killing
field E3 = (0, 0, 1). This would give estimates for the norm of the second
fundamental form of Mn near p which is a contradiction. We note that this
geometric argument also implies that if pn ∈ Mn is a sequence of points with
vertical tangent planes that is converging to a point q ∈ R

3, then there exists a
sequence of points qn ∈ Mn with limn→∞ dMn (pn, qn) = 0 (that is arbitrarily
close to pn) and with limn→∞ |AMn |(qn) = ∞. Otherwise, after replacing
by a subsequence, the norm of the second fundamental form of Mn would
be bounded in a geodesic ball of fixed radius centered at pn and thus a small
but fixed neighborhood Un of pn would be graphical over the vertical tangent
plane Tpn Mn . On the one hand, the sequence Un clearly can’t converge to a
horizontal plane. On the other hand, it cannot converge to S either since by
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402 W. H. Meeks III, G. Tinaglia

playing the role of � in Corollary 2.6, it would imply a bound for the norm of
the second fundamental form of Mn at points nearby Un . This contradiction
implies that q ∈ S. In other words, if Z denotes the set of points in R

3 that
are limits of points pn ∈ Mn with vertical tangent planes, then this discussion
implies that Z = S.

Fix p ∈ S. We claim that there exist points pn ∈ Mn , with vertical tangent
planes and such that limn→∞ pn = p. Otherwise in some small neighborhood
of p, Mn admits a non-zero Jacobi function induced by the parallel Killing
field E3 = (0, 0, 1), whichwould give curvature estimates ofMn near pwhich
is a contradiction. Also this geometric description gives that if pn ∈ Mn ,
pn is a sequence of points with vertical tangent planes that is converging
to a point q ∈ R

3, then there exists a sequence of points qn ∈ Mn with
limn→∞ dMn (pn, qn) = 0 and with limn→∞ |AMn |(qn) = ∞. Otherwise,
after replacing by a subsequence, a geodesic ball of fixed radius centered at
pn would satisfy curvature estimates and thus be a graph over a vertical plane.
By Corollary 2.6, the existence of this graph would lead to a contradiction
because such a graph cannot be contained in either S or in a horizontal plane.
In particular, this implies that q ∈ S. In other words, if Z denotes the set of
points in R

3 that are limits of points pn ∈ Mn with vertical tangent planes,
then this discussion implies that Z = S.

The following claim is analogous to the statement of Corollary 3.8 in [24]
and indeed the proof is the same by using the above observation that intrin-
sically close to a point where the tangent plane is vertical, there exist points
where the norm of the second fundamental form is arbitrarily large. We refer
the reader to the proof of Corollary 3.8 in [24] for details in the proof of the
next result.

Claim 3.2 Given �, R, ε, k > 0, there exists N = N (�, R, ε, k) ∈ N such
that the following holds. LetH denote a vertical helicoid containing the origin
with maximal absolute Gaussian curvature 1

2 at the origin and let pn ∈ Mn ∩
B(R) be a sequence of points where the tangent planes are vertical. For any
n > N, |AMn |(pn) > k and there exists a rotation Tn about the x3-axis such
that the intersection set (|AMn |(pn)[Mn − pn]) ∩B(�) consists of one or two
connected components and each component consists of a normal graph u over
its projection to Tn(H) or −Tn(H) and ‖u‖C2 ≤ ε.

Since S is a closed set in C0 and the mapping x3|C0 → R is proper, it
follows that x3(S) is a closed subset ofR and soR\ x3(S) is a possibly empty
collection of pairwise disjoint open intervals together with perhaps one or two
half-lines.

Claim 3.3 The intersection {x3 = t} ∩ S is a single point for every t ∈ R. In
fact, the set S is a vertical line passing through the origin and x = 0.
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Limit lamination theorem for H-disks 403

Proof Wefirst prove that the intersection {x3 = t}∩S is a single point for every
t ∈ R. Since |{x3 = t} ∩ S| ≤ 1, it suffices to show that {x3 = t} ∩ S 
= Ø.
Arguing by contradiction, suppose that for some t0 ∈ R, {x3 = t0} ∩ S = Ø.
The point t0 is contained in a component, I = (a, b) ⊂ [R \ x3(S)], where
perhaps a or b is equal to ±∞ but not both. Without loss of generality, we
may assume that a 
= −∞ and b ∈ (a, ∞] and define W = x−1

3 ((a, b)); the
set W is either an open slab or an open half-space. Let � be the set of points
in ∂W ∩ S. By the previous discussion, � contains exactly one point of S in
each component of ∂W . Since the sequence {Mn ∩W }n has uniformly locally
bounded norm of the second fundamental form in W and limn→∞ Hn = 0,
the sequence converges to the minimal lamination LW = L∩W of W . Again
the one-sided curvature estimates in Theorem 2.5 and Corollary 2.6 give that
[LW ∪ ∂W ] \ � is a minimal lamination of R3 \ �. Note that LW 
= Ø,
otherwise after placing a horizontal plane inW disjoint from L and arbitrarily
close to �, one could apply the one-sided curvature estimate in Theorem 2.5
to show that� = Ø. As already observed, the closureLW ofLW inR3 \� has
the structure of a minimal lamination of R3 \ �, and it is obtained by adding
the leaves ∂W \ � to the lamination LW .

Following the arguments at the end of the proof of Proposition 3.1 in [24],
it is straightforward to check that the leaves of the lamination LW have genus
zero. Briefly, to see this property holds one first shows that none of the leaves
in this lamination contained in W are stable, which by the Stable Limit Leaf
Theorem in [17,18] implies every leaf L ofLW is nonflat and proper inW and
the convergence of the surfaces Mn to L has multiplicity one or two. Finally,
a curve lifting argument shows that L has genus zero.

Let L be a proper nonflat genus-zero leaf in LW . Since we can view LW
to be a minimal lamination of R3 with a countable number of singularities
(the singularities being in the finite set �), then item 6 in Theorem 1.8 of [19]
implies that the closure L of L in R3 is a properly embedded minimal surface
in R

3 which lies on one side of one of the boundary planes of W . (In fact, to
apply item 6 in Theorem 1.8 of [19] it suffices that the genus of L is finite.)
But L is contained in a half-space, which contradicts the half-space theorem
in [10]. This contradiction implies that for any t ∈ R, {x3 = t} ∩ S 
= Ø, and,
as previously observed, then {x3 = t} ∩ S is a single point.

Recall again that by the one-sided curvature estimates given in Theorem 2.5,
for any y ∈ S, S ∩ [R3 \ Cy] = Ø where Cy is the vertical cone based at y
previously described. Therefore S is a Lipschitz curve parameterized by its
x3-coordinate and the sequence {Mn}n∈N converges to a minimal foliation
L of R3 \ S by punctured horizontal planes. Since before the replacement
of Mn by the rotated surfaces T (Mn) the norms of the second fundamental
forms of the surfaces were bounded away from zero at 0, the nature of the Cα

convergence of the surfaces T (Mn) to the flat planes in L outside of S implies
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that T (0) ∈ S; hence, the originally chosen singular point x of convergence
“closest” to 0 must be 0 itself and therefore T (0) = 0.

We next check that the curve S is a vertical line passing through the origin.
Let

�R
n = N−1

n ({x21 + x22 = 1}) ∩ B(R)

where Nn denotes the Gauss map of Mn . By the discussion before Claim 3.2,
the set �R

n is nonempty and converges to S ∩ B(R) as n goes to infinity.
Therefore, it suffices to show that�R

n convergesC1, possibly withmultiplicity,
to the line segment {(0, 0, t) | t ∈ (−R, R)}. This follows by Claim 3.2
because for n large, �R

n is an analytic curve with tangent lines converging
uniformly to the x3-axis in balls centered at the origin of any fixed radius. ��

The previous claims complete the proof of part (a) of item B in the theorem.
It remains to prove the last statement in the theorem.

Claim 3.4 Let �n = N−1
n ({x21 + x22 = 1}) ∩B(3). Then �n consists of one or

two analytic curves for n large.

Proof ByClaim 3.3 and its proof, the set�n is a possibly disconnected analytic
curve that converges C1 to the line segment obtained by intersecting the x3-
axis with B(3). Hence, it suffices to prove that �n ∩ {x3 = 0} consists of
one or two points for n large. Suppose that, after replacing by a subsequence,
p1(n), p2(n), p3(n) ∈ �n ∩ {x3 = 0} are three distinct points converging
to 0 and let �n(i) be the connected component of �n containing pi (n), i =
1, 2, 3. Without loss of generality, after applying small horizontal translations
and rotations around the x3-axis, we may assume that p1(n) = 0, p3(n) =
(tn, 0, 0) and |p2(n)| ≤ tn satisfying limn→∞ tn = 0.

Consider the subsequence of rescaled disks �n = 1
tn
Mn that contain the

points 0 and (1, 0, 0) and let q(n) = 1
tn
p2(n). Note that 0, (1, 0, 0), q(n) ∈

�n ∩ {x3 = 0}, the tangent planes to �n at 0, qn and (1, 0, 0) are vertical and
|q(n)| ≤ 1. Claim 3.2 implies that a subsequence of the homothetically scaled
surfaces |AMn |(0)Mn converges to a vertical helicoidH containing the x3-axis.
We are going to use what we have proven so far to analyze three exhaustive
cases that would occur after replacing by a subsequence.

1. limn→∞ |A�n |(0) = 0;
2. limn→∞ |A�n |(0) = C ∈ (0, ∞);
3. limn→∞ |A�n |(0) = ∞.

If limn→∞ |A�n |(0) = limn→∞ tn|AMn |(0) = 0, then |AMn |(0)Mn con-
verges to H with multiplicity greater than two. This is because |p2(n)| ≤ tn
implies there are at least three points in |AMn |(0)Mn ∩{x3 = 0} converging to
the origin and having vertical tangent planes. However, a multiplicity greater
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than two convergence implies stability. Since the helicoid is not stable, we
have obtained a contradiction when case 1 holds.

Next, assume that limn→∞ |A�n |(0) = limn→∞ tn|AMn |(0) = C ∈
(0, ∞). Again, by Claim 3.2 we have that a subsequence of |AMn |(0)Mn
converges to a vertical helicoidH containing the origin and

�n = 1

tn
Mn = 1

tn|AMn |(0)
|AMn |(0)Mn

must converge to the vertical helicoid 1
CH. However, this leads to a contradic-

tion because (1, 0, 0) is a point in �n with vertical tangent plane. This proves
the claim when case 2 holds.

Finally, assume that limn→∞ |A�n |(0) = limn→∞ tn|AMn |(0) = ∞. By
our previous discussion, there exists a foliation F of R3 by planes and a line
S orthogonal to the planes in F such that 0 ∈ S and after replacing by a
subsequence, the new sequence of surfaces �n converges Cα , for α ∈ (0, 1),
to the foliationF \S inR3 \S. We claim thatF must be a foliation by vertical
planes. If (1, 0, 0) /∈ S, then the claim is true because the tangent plane to �n
at (1, 0, 0) is vertical. If (1, 0, 0) ∈ S then, since 0 ∈ S and S is a straight line
orthogonal to the planes in the foliation, S is the x1-axis and F is a foliation
by vertical planes.

Recall that as n goes to infinity, the boundary curves of the disks Mn are
converging to infinity and the constant values of their mean curvatures are
going to zero. For n sufficiently large, let M̃n ⊂ Mn be the Hn-subdisk con-
taining the origin with ∂ M̃n ⊂ ∂B(1). Without loss of generality we can
assume Hn ∈ (0, 1

2 ). LetG1, ω1, �1 be the values of the functionsGτ , ωτ , �τ

given by Theorem 2.2, after fixing ε = τ = 1, ε = 1
2 . Note that since

limn→∞ tn|AM̃n
|(0) = ∞, for n sufficiently large, |AM̃n

|(0) ≥ 1
tn
G1. Thus,

when n is sufficiently large, Theorem 2.2 and the fact that Mn converges to a
foliation of R3 minus the x3-axis by horizontal planes, imply that there exist
points pn ∈ M̃n ∩ B( tn2 ) such that the following holds: M̃n − pn , and thus
Mn − pn , contains a 3-valued graph un over A(1/�1,

ω1|AMn |(0) ) with the norm
of its gradient less than 1 and with its inner boundary in B(10 ω1|AMn |(0) ).

Note that since pn ∈ B( tn2 ), a subsequence of the translated and scaled
surfaces �′

n = 1
tn

[Mn − pn] must converge to the translated foliation F ′ =
F−v away from the translated singular setS ′ = S−v, where v = limn→∞ pn

tn
,

|v| ≤ 1
2 . In particular, the leaves of F ′ are vertical planes and the singular set

S ′ is a horizontal line perpendicular to the leaves of F ′. However, for n large,
�′

n contains a 3-valued graph u′
n = 1

tn
un over A(1/tn�1,

ω1
tn |AMn |(0) ) with the

norm of its gradient less than 1 and with its inner boundary in B(10 ω1
tn |AMn |(0) ).

Since limn→∞ tn = 0 and limn→∞ tn|AM̃n
|(0) = ∞, this contradicts the fact
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that the leaves of F ′ are punctured vertical planes. This contradiction finishes
the proof of the claim. ��

The next claim follows from arguments similar to those in the proof of the
last claim and by Claim 3.2, after taking � = 4 and ε sufficiently small.

Claim 3.5 After replacing by a subsequence, assume that the number of com-
ponents in �n does not change. For any fixed θ0 ∈ [0, 1), there exists an
N (θ0) ∈ N such that, after replacing by a subsequence, the following holds
for n ≥ N (θ0). For any θ ∈ [−θ0, θ0], let

γ θ
n := Mn ∩ N−1

n ({x21 + x22 + x23 = 1} ∩ {x3 = θ}) ∩ B(3),

then γ θ
n consists of one or two disjoint analytic curves, the number of these

curves does not depend upon the choice of θ (and so this number is the same
as the number of components in �n), the curves γ θ

n can be parameterized
smoothly by their x3-coordinates and as n goes to infinity the curves γ θ

n and
the sets ∪τ∈[−θ0,θ0]γ τ

n converge to the interval {(0, 0, t) | t ∈ (−3, 3)}.
We next explain how to construct the set Cn consisting of one or two disk

components described in part (b) of item B of Theorem 1.1. This explanation
will complete the proof of the theorem.

Fix a number β ∈ (0, 1/3). Let us first suppose that, after choosing a
subsequence, for all n ∈ N, �n is a single curve, which we denote by γ (n).
The curve γ (n) can be parameterized by its x3-coordinates that lie in some
interval (−3 + ε1n, 3 − ε2n), where, as n goes to infinity, the sequences of
numbers ε1n, ε

2
n ∈ [0, β) converge to zero and γ (n) is β-close to the x3-axis.

Then, by Claim 3.2 and by Claim 3.5 with � chosen sufficiently large and ε

chosen sufficiently small, there exists an N (β) ∈ N such that for n ≥ N (β)

the following holds:
For each t ∈ (−1−β, 1+β), the vertical tangent plane Tγ (n)(t)Mn intersects

(Mn \ γ (n)(t)) ∩ B(1 + 2β) transversely, in a set containing two compo-
nents that are arcs such that the closure of their union is an analytic curve
αn
t with γ (n)(t) ∈ αn

t and αn
t is β-close to a line segment contained in

τ nt = Tγ (n)(t)Mn ∩ {x3 = t} ∩ B(1 + 3β) in the C1-norm.
For n ≥ N (β), define the following piecewise smooth disks:

Cβ
n =

⋃

t∈(−1−β,1+β)

αn
t , Fβ

n =
⋃

t∈(−1−2β,1+2β)

τ nt ,

F̂β
n =

⋃

t∈(−1−2β,1+2β)

[τ nt − (x1(γ (n)(t)), x2(γ (n)(t)), 0)]. (3)

Let In : Fβ
n → F̂β

n be the associated diffeomorphism induced by trans-
lating the horizontal line segment τ nt to the horizontal line segment τ nt −
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(x1(γ (n))(t), x2(γ (n)(t)), 0) at the same height. Note that In(γ (n)(t)) =
(0, 0, t) for all t ∈ (−1 − 2β, 1 + 2β). Claim 3.2 and the proof of Claim 3.3
imply that N (β) can be chosen large enough so that the following condition
also holds:

For all unit length tangent vectors v to τ nt ⊂ Fβ
n or to the arc γ (n) ∩ Fβ

n ,

1

|(In)∗(v)| ∈ [1, 1 + β], (4)

where (In)∗(v) denotes the tangent vector of the related image smooth arcs.
Claim 3.2 implies that N (β) can also be chosen large enough so that the

following condition also holds:
For n ≥ N (β), there is a unique injective map �n : Cβ

n → Fβ
n defined at a

point (x, y, z) ∈ αn
t by

�n((x, y, z)) = (x, y, t).

The map �n is smooth at points in Cβ
n \ γ (n), �n restricted to γ (n) ∩ Cβ

n
is the identity function and for all unit tangent vectors v to the pair of arcs
αn
t \ {γ (n)(t)} or to γ (n) ∩ Cβ

n ,

1

|(�n)∗(v)| ∈ [1, 1 + β], (5)

where (�n)∗(v) denotes the tangent vector of the related image smooth arcs.
We next define a distance function D on R

3 that makes it into a metric
space and that is useful for estimating distances D between pairs of points in
the disks Cβ

n , see Fig. 2.

Definition 3.6 Let x = (x1, x2, x3), y = (y1, y2, y3) be points in R
3.

1. If x3 = y3, then

D(x, y) =
√

(y1 − x1)2 + (y2 − x2)2.

2. Otherwise,

D(x, y) =
√
x21 + x22 + |x3 − y3| +

√
y21 + y22 .

Given a point p ∈ R
3, we let BD(p, R) denote the open ball center at p of

radius R.
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r r+t 3r+tr+t

r+t

r+t

x3

P

Fig. 2 The point P is at distance r from the x3-axis. Given t > 0, the thick line represents a
vertical section of the topological boundary of BD(P, 2r + t) containing P and the x3-axis. For
s ∈ (0, r + t], the intersection BD(P, 2r + t) ∩ {x3 = x3(P) ± s} consists of an open disk of
radius r + t − s centered at (0, 0, x3(P) ± s). The intersection BD(P, 2r + t) ∩ {x3 = x3(P)}
consists of the open disk centered at P of radius 2r+t . It is easy to see that if Q /∈ BD(P, 2r+t)

then |Q − P| ≥
√
2
2 t

Geometrically speaking, this distance function is defined at a pair of points
p1, p2 ∈ R

3 that lie on a horizontal line that intersects the x3-axis to be equal
to the length of the line segment between them. Otherwise it is equal to the
length of the piecewise polygonal arc formed by the horizontal line segment
joining p1 to the x3-axis, the horizontal line segment joining p2 to the x3-
axis and the line segment in the x3-axis that joins the end points of these two
horizontal line segments. Note that D induces a metric space structure with
distance function D

F̂β
n
on F̂β

n that is greater than or equal to the Riemannian

distance function on the surface F̂β
n .

Let x, y ∈ Cβ
n be distinct points. If x, y lie on the same αn

t arc in Cβ
n , then

let cβ,n
x,y be the subarc with end points x, y. Otherwise, consider the embedded

piecewise smooth path cβ,n
x,y in Cβ

n formed by the unique two subarcs in the
αn
t -type curves joining, respectively, the points x, y to points in γ (n) together

with the subarc in γ (n) that joins the respective end points of these arcs in
γ (n); the reader should note the similarity of the construction of this piecewise
smooth path joining x and y with the construction of the piecewise polygonal
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arc in the previous paragraph that joins points p1, p2 in R
3 and where now

γ (n) plays the role of the x3-axis. Let

Gβ
n : Cβ

n → F̂β
n , where Gβ

n := I β
n ◦ �β

n , (6)

and given x, y ∈ Cβ
n , let C

β,n
x,y denote the embedded piecewise smooth path

Gβ
n (cβ,n

x,y ) that has end pointsG
β
n (x),Gβ

n (y) ∈ B(1+4β). By Eqs. (4) and (5),

Length(cβ,n
x,y ) ∈ [Length(Cβ,n

x,y ), (1 + β)2Length(Cβ,n
x,y )]. (7)

Note that Length(Cβ,n
x,y ) = D(Gβ

n (x),Gβ
n (y)). An elementary calculation

shows that for any points X, Y ∈ B(R), D(X, Y ) ≤ 2
√
2R. Hence, by Eq. (7),

we have the estimate

Length(cβ,n
x,y ) ≤ (1 + β)2Length(Cβ,n

x,y ) ≤ (1 + β)22(1 + 4β)
√
2. (8)

Since as n goes to infinity, β can be chosen arbitrarily small, then for n suffi-
ciently large, we can assume that (1+β)22(1+ 4β)

√
2 < 3. With this choice

of β,

Length(cβ,n
x,y ) < 3

and thus, the intrinsic diameter of Cβ
n is less than 3 for n sufficiently large.

Henceforth, we will assume that β is chosen sufficiently small and n is chosen
sufficiently large so that this inequality holds.

In the case being considered where �n is a single curve, after replacing by
a sequence, define Cn := Cβ

n and note that since 0 ∈ Cn , Cn ∩ B(1/n) 
= Ø.
By construction, ∂Cn ⊂ [B(1 + 2β) \ B(1 + 2

3β)] ⊂ [R3 \ B(1 + 2
3β)].

It remains to prove that for n sufficiently large, every component �n of
Mn ∩ B(1), and its closure �n , is a disk that is contained in Cn . We first
prove that �n is contained in Cn . Once this is proved, the fact that �n and its
closure are disks with piecewise smooth boundary follows by using the same
arguments as in the proof of item A of the theorem.

Arguing by contradiction, suppose that after choosing a subsequence, for
all n ∈ N, there is a component �n of Mn ∩ B(1) that is not contained in Cn .
Let �̂n be the connected component of Mn ∩ B(1 + 1

2β) containing �n . By
elementary separation property, using that Cn is a disk disjoint from �n and
with ∂Cn ⊂ [R3\B(1+ 2

3β)], it follows that �̂n is also disjoint from Cn . By the
construction of Cn , Claim 3.5 implies that given θ0 ∈ [0, 1), if n is sufficiently
large then the set (

⋃
θ∈[−θ0,θ0] γ

θ
n ) ∩ B(1 + 1

2β) is contained in Cn . Since �̂n
is disjoint from Cn , we conclude that given ε > 0 there exists N (ε) ∈ N such
that if n ≥ N (ε), for any point p ∈ �̂n , |〈N (p), (0, 0, 1)〉| ≥ 1 − ε. Since
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�̂n contains points in B(1) and has its boundary contained in ∂B(1 + 1
2β), if

ε is chosen sufficiently small depending on β, then �̂n must intersect γ (n)

when n is sufficiently large, contradicting embeddedness. This contradiction
proves that the disk �n must be contained in Cn , and completes the proof of
the theorem in the special case that �n has one component.

Suppose now that �n has exactly two components for all n. Let �n ∩B(1+
β) = γ1(n)∪γ2(n), with 0 ∈ γ1(n). Since the arcs γ2(n) converge to the inter-
section of the x3-axis with the ballB(1+β), after replacing by a subsequence,
γ2(n)∩B( 1n ) 
= Ø.As in the just considered case,we can construct a diskCβ

n (1)
passing through the origin and that contains the “axis” γ1(n) and the intrinsic
diameter of Cβ

n (1) is less than 3. After choosing a possibly smaller value of
β, one can also construct a similarly defined “ruled” disk Cβ

n (2) ⊂ B(1+ 2β)

with “axis” γ2(n) and the intrinsic diameter of Cβ
n (2) is also less than 3. Note

that in this second case the disks Cβ
n (1), Cβ

n (2) are also pairwise disjoint. The
proof that every component of Mn ∩ B(1) is a disk whose closure in Mn is a
piecewise smooth compact disk contained in Cn = Cβ

n (1) ∪ Cβ
n (2) is the same

as the proof when �n is a single curve. This last observation completes the
proof of Theorem 1.1 ��

4 Applications of the main theorem

4.1 Chord-arc property

In this section we prove the chord arc result stated in Theorem 1.2. Before
doing so, we need to recall a result from [22]. In [22], we applied the one-
sided curvature estimate in Theorem 2.5 to prove a relation between intrinsic
and extrinsic distances in an H -disk, which can be viewed as a weak chord
arc property. This result was motivated by and generalizes a previous result,
Proposition 1.1 in [9], by Colding-Minicozzi for 0-disks. We begin by making
the following definition.

Definition 4.1 Given a point p on a surface � ⊂ R
3, �(p, R) denotes the

closure of the component of � ∩ B(p, R) passing through p.

Theorem 4.2 (Weak chord arc property, Theorem 1.2 in [22]) There exists a
δ1 ∈ (0, 1

2 ) such that the following holds.
Let � be an H-disk in R

3. Then for all intrinsic closed balls B�(x, R) in
� \ ∂�:

1. �(x, δ1R) is a disk with piecewise smooth boundary ∂�(0, δ1R) ⊂
∂B(δ1R).

2. �(x, δ1R) ⊂ B�(x, R
2 ).
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Theorem 1.2 is Eq. (10) of this result.

Theorem 4.3 Given ε > 0, there exists a Cε > 1 so that the following holds.
Suppose that� is an H-disk, 0 ∈ � and R > r0 > 0. If B�(0,CεR) ⊂ �\∂�

and sup
B�(0,(1−

√
2
2 )r0)

|A�| ≥ r−1
0 , then

dist�(x, 0) < (1 + ε)(
√
2 |x | + 2r0), forx ∈ B�(0, R). (9)

In particular, for ε chosen sufficiently small, there exists a Cε so that

1

3
dist�(x, 0) < |x |/2 + r0, forx ∈ B�(0, R). (10)

Remark 4.4 The constants in Eq. (9) are sharp in the following sense. For
every k ∈ N, there exists a helicoid � with 0 ∈ � satisfying the following
properties:

• sup
B�(0,1−

√
2
2 )

|A�| = 1,

• there exists points x, y ∈ �, such that

dist�(x, 0) > (
√
2 − 1

k
)|x |,

dist�(y, 0) > 2 − 1

k
.

Proof Arguing by contradiction, suppose there exists δ > 0 such that for any
n ∈ N the following holds. There exist an Hn-disk �n with 0 ∈ �n , and Rn >

rn > 0, such that B�n (0, n
2Rn) ⊂ �n \ ∂�n , supB�n (0,(1−

√
2
2 )rn)

|A�n | ≥ r−1
n ,

and

dist�n (xn, 0) ≥ (1 + δ)(
√
2 |xn| + 2rn)

for some xn ∈ B�n (0, Rn).

Abusing the notation, let �n denote the rescaled surfaces 1
nRn

�n and let rn
denote rn

nRn
. Then for the new sequence of disks �n the following holds. The

intrinsic ball B�n (0, n) is contained in �n \ ∂�n , 0 ∈ �n ,

sup
B�n (0,(1−

√
2
2 )rn)

|A�n | ≥ r−1
n , (11)

where rn < 1
n and

dist�n (yn, 0) ≥ (1 + δ)(
√
2 |yn| + 2rn) (12)
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for some yn ∈ B�n (0, 1/n).

Theorem 4.2 implies that the surfaces �̃n = �n(0, δ1n) are disks with
piecewise smooth boundary ∂�̃n ⊂ ∂B(δ1n) and therefore, after choosing a
subsequence, we can assume that ∂�̃n ⊂ [R3 \ B(n)].

Since by Eq. (11), sup
B�̃n (0,(1−

√
2
2 )rn)

|A�̃n
| ≥ r−1

n ≥ n, we can apply the

arguments in the proof of Case B of Theorem 1.1 to the sequence of constant
mean curvature disks �̃n . Once again, abusing the notation, we let �n denote
�̃n . Theorem 1.1 implies that, after choosing a subsequence, there exists a
straight line S going through the origin, such that the sequence of surfaces �n
converges to aminimal foliation ofR3\S by planes.Without loss of generality,
we will assume these planes are horizontal and S is the x3-axis.

By the proof of part B of Theorem 1.1, there is a set �n ⊂ �n ∩ B(3)
that consists of one or two analytic arcs along which the disk �n has vertical
tangent planes. These curves converge C1 to the intersection of the x3-axis
with B(3). Finally there exists a disk Dβ

n component of a set Cβ
n (see Eq. (3))

that contains the intrinsic ball B�n (0, 1/n) and contains a component γ (n) of
�n ∩ Cβ

n ⊂ B(1 + 2β), β ∈ (1, 1
3). Recall that by taking n sufficiently large,

β can be taken arbitrarily small.
In order for it to be easier to apply the arguments in the proof of part B of

Theorem 1.1, we will soon translate the surfaces �n so that the translations of
the curves γ (n) contain the origin.

First recall from the proof of part B of Theorem 1.1 that we can view Dβ
n

to be ruled by curves αn
t , each of which intersects γ (n) in a single point with

x3-coordinate equal to t . Let pn ∈ γ (n) be the point such that 0 ∈ αn
x3(pn)

and

consider the translated surfaces �̃n = �n − pn so that pn is sent to the origin,
the origin is sent to qn := −pn and yn is sent to zn := yn − pn . Abusing
the notation, we use the same notation for the translation of γ (n) andDβ

n . Let
Gβ

n be the map as defined in Eq. (6) of the previous section, but restricted to
Dβ

n ∩B(12 ). Note that since qn ∈ αn
0 , x3(G

β
n (qn)) = 0. Let Qn = Gβ

n (qn) and

Zn = Gβ
n (zn). In this new setting, Eq. (12) becomes

dist�̃n
(zn, qn) ≥ (1 + δ)(

√
2|zn − qn| + 2rn). (13)

We will obtain a contradiction by estimating dist�̃n
(zn, qn) from above.

Recall from the previous section the definitions of cβ,n
zn,qn and C

β,n
zn,qn , that

dist�̃n
(zn, qn) ≤ Length(cβ,n

zn,qn ) ≤ (1 + β)2Length(Cβ,n
zn,qn ),
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and that by taking n sufficiently large, β can be taken arbitrarily small. This,
together with Eq. (13) gives that

(1 + δ)(
√
2|zn − qn | + 2rn) ≤ (1 + β)2Length(Cβ,n

zn ,qn ) ≤ (1 + δ)
1
2 Length(Cβ,n

zn ,qn ),

if (1 + β)2 ≤ (1 + δ)
1
2 . In other words,

(1 + δ)
1
2 (

√
2|zn − qn | + 2rn) ≤ Length(Cβ,n

zn ,qn ), (14)

Byworkingwith the distance D inDefinition 3.6, it can be shown that if there

exists t > 0 such that Length(Cβ,n
zn,qn ) = t + 2|Qn|, then |Qn − Zn| ≥

√
2
2 t ,

see Fig. 2. Note that since x3(Qn) = 0, then |Qn| is equal to the distance from
Qn to the x3-axis. In order to prove that such a positive t exists, it will suffice
to show that for n large, Length(Cβ,n

zn,qn ) − 2|Qn| > 0. For the time being,
let us assume that such a positive t exists. Then, by the previous discussion,
t ≤ √

2|Qn − Zn| and thus
Length(Cβ,n

zn,qn ) = t + 2|Qn| ≤ √
2|Qn − Zn| + 2|Qn|.

This, together with inequality (14), implies that

(1 + δ)
1
2 (

√
2 |zn − qn| + 2rn) ≤ √

2|Qn − Zn| + 2|Qn|.
Claim 4.5 Given μ > 0 there exists N (μ) > 0 such that for any n ≥ N (μ),
|Qn| ≤ (1 + μ)rn.

Proof Arguing by contradiction, assume that there exists μ > 0 such that
|Qn| ≥ (1 + μ)rn . By the arguments in Sect. 3,

dist�̃n
(0, qn) ≤ (1 + β)|Qn | ≤ 2|Qn | and sup

B�̃n (qn ,(1−
√
2
2 )rn)

|A�̃n
| ≥ r−1

n . (15)

Consider the sequence of rescaled surfaces �′
n given by 1

|Qn |�̃n and let

q ′
n = 1

|Qn |qn , Q
′
n = 1

|Qn |Qn . Note that dist�′
n
(0, q ′

n) ≤ 2. Since Q′
n is the

projection of q ′
n to the (x1, x2)-plane, the Euclidean distance from q ′

n to the
x3-axis is equal to 1while the distance from q ′

n to the (x1, x2)-plane is bounded.
Note also that

sup
B�′

n
(q ′

n,(1−
√
2
2 )

rn|Qn | )
|A�′

n
| ≥ |Qn|

rn
≥ 1 + μ

and the tangent plane to �′
n at 0 is vertical.
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By Theorem 1.1, see also the arguments in Claim 3.4, after going to a
subsequence, �′

n converges either to a vertical helicoid containing the x3-
axis or to a foliation of R3 minus the x3-axis by horizontal planes. Since
sup

B�′
n
(q ′

n,(1−
√
2
2 )

rn|Qn | )
|A�′

n
| ≥ 1 + μ, rn|Qn | ≤ 1

1+μ
< 1, and the Euclidean

distance from q ′
n to the x3-axis is equal to 1, �′

n must converge to a vertical
helicoidH containing the x3-axis. Let

lim
n→∞

|Qn|
rn

=: T ∈ [1 + μ, ∞).

By the previous discussion and the definitions of q ′
n and Q′

n , limn→∞ q ′
n

exists and it is equal to Q := limn→∞ Q′
n . Note that

sup
BH(Q,(1−

√
2
2 )/T )

|AH| ≥ T ≥ 1 + μ,

|Q| = 1 and x3(Q) = 0. Thus there exists a point P ∈ BH(Q, (1 −
√
2
2 )/T )

with |AH|(P) ≥ T > 1with its distance from the x3-axis at least 1−(1−
√
2
2 )/

T >
√
2
2 . This contradicts the geometric property that on a vertical helicoid

containing the x3-axis, points of distance greater than
√
2
2 from the x3-axis

must have norm of the second fundamental form less than 1. This finishes the
proof of the claim. ��

By takingμ such that 1+μ ≤ (1+δ)
1
2 −ρ, for a fixed ρ ∈ (0, (1+δ)

1
2 −1)

we have obtained that for n sufficiently large

(1 + δ)
1
2 (

√
2 |zn − qn| + 2rn) ≤ √

2|Qn − Zn| + 2|Qn|
≤ √

2|Qn − Zn| + 2((1 + δ)
1
2 − ρ)rn.

In other words,

(1 + δ)
1
2
√
2 |zn − qn| ≤ √

2|Qn − Zn| − 2ρrn. (16)

Next we use Claim 4.5 to prove that Length(Cβ,n
zn,qn ) − 2|Qn| > 0. By

Eq. (14),

(1 + δ)
1
2 2rn ≤ Length(Cβ,n

zn,qn ).
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Therefore, using this, Claim 4.5 and our choice of μ we have that if n is
sufficiently large,

Length(Cβ,n
zn,qn ) − 2|Qn| ≥ (1 + δ)

1
2 2rn − (1 + μ)2rn ≥ 2ρrn > 0.

In order to finish the proof, we argue similarly to the proof of Claim 4.5.
After passing to a subsequence, we can assume that one of the following three
cases holds.

1. limn→∞ rn|zn | = L ∈ (0, ∞);
2. limn→∞ rn|zn | = 0;
3. limn→∞ rn|zn | = ∞.

First consider the case where limn→∞ rn|zn | = L ∈ (0, ∞). Consider the

sequence of rescaled surfaces �′
n given by 1

|zn |�̃n and let q ′
n = 1

|zn |qn , Q
′
n =

1
|zn |Qn , z′n = 1

|zn | zn , Z
′
n = 1

|zn | Zn .
By Eqs. (15), (16) and Claim 4.5, we then have

d�′
n
(q ′

n, 0) ≤ (1 + β)|Q′
n| ≤ (1 + β)(1 + μ)

rn
|zn| ,

sup
B�′

n
(q ′

n,(1−
√
2
2 )

rn|zn | )
|A�′

n
| ≥ |zn|

rn
,

(1 + δ)
1
2
√
2 |z′n − q ′

n| ≤ √
2|Q′

n − Z ′
n| − 2ρ

rn
|zn| .

Notice that after replacing by a subsequence, the sequence of points z′n con-
verges to a point on the unit sphere.

By Theorem 1.1, see also the arguments in Claim 3.4, and the fact that
limn→∞ |zn |

rn
= 1

L > 0, a subsequence of �′
n converges either to a verti-

cal helicoid containing the x3-axis or to a foliation of R3 minus the x3-axis
by horizontal planes. (Note that when limn→∞ rn|zn | = 0, in which case

limn→∞ |zn |
rn

= ∞, the surfaces �′
n converge to a foliation of R3 minus the

x3-axis by horizontal planes.)
In either case, limn→∞ z′n exists and it is equal to limn→∞ Z ′

n . Similarly,
limn→∞ q ′

n exists and it is equal to limn→∞ Q′
n . In particular, limn→∞ |z′n−q ′

n|
exists and it is equal to limn→∞ |Z ′

n − Q′
n|. Thus, since

lim
n→∞ 2ρ

rn
|zn| = 2ρL > 0,
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by choosing n sufficiently large, one contradicts the inequality

(1 + δ)
1
2
√
2 |z′n − q ′

n| ≤ √
2|Q′

n − Z ′
n| − 2ρ

rn
|zn| .

Suppose that limn→∞ rn|zn | = 0. This being the case, in order to obtain
a contradiction, we argue exactly as in the previous case and note that
limn→∞ |z′n − q ′

n| = 1 
= 0 since limn→∞ q ′
n = 0 and z′n converges to a

point on the unit sphere. Thus, by choosing n sufficiently large, one again
contradicts the inequality

(1 + δ)
1
2
√
2 |z′n − q ′

n| ≤ √
2|Q′

n − Z ′
n| − 2ρ

rn
|zn| .

It remains to obtain a contradiction when limn→∞ rn|zn | = ∞. In this case,

consider the sequence of rescaled surfaces 1
rn

�̃n . Abusing the notation, let �′
n

denote this sequence and let q ′
n = 1

rn
qn , Q′

n = 1
rn
Qn , z′n = 1

rn
zn , Z ′

n = 1
rn
Zn .

By Eqs. (15), (16) and Claim 4.5, we then have

d�′
n
(q ′

n, 0) ≤ (1 + β)|Q′
n| ≤ (1 + β)(1 + μ),

sup
B�′

n
(q ′

n,1−
√
2
2 )

|A�′
n
| ≥ 1,

(1 + δ)
1
2
√
2 |z′n − q ′

n| ≤ √
2|Q′

n − Z ′
n| − 2ρ.

Arguing like in the previous case, by Theorem 1.1 a subsequence of the
surfaces �′

n converges either to a vertical helicoid containing the x3-axis or to
a foliation of R3 minus the x3-axis by horizontal planes. In either case, since
limn→∞ rn|zn | = ∞, then |z′n| = |zn |

rn
is bounded from above, and it follows that

limn→∞ z′n exists and it is equal to limn→∞ Z ′
n . Similarly, limn→∞ q ′

n exists
and it is equal to limn→∞ Q′

n . In particular limn→∞ |z′n − q ′
n| exists and it is

equal to limn→∞ |Z ′
n − Q′

n|. Therefore, similarly to the previous two cases,
by choosing n sufficiently large, one contradicts the inequality

(1 + δ)
1
2
√
2 |z′n − q ′

n| ≤ √
2|Q′

n − Z ′
n| − 2ρ.

This finishes the proof of the theorem. ��

4.2 Curvature estimates

In this section we prove three other useful corollaries of Theorem 2.5 and
Corollary 2.6. The next corollary essentially states that if three H -disks are
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sufficiently close to a point that is away from their boundaries, then nearby
that point, the surfaces satisfy a curvature estimate.

Corollary 4.6 There exist constants ε ∈ (0, 1), C > 1 such that the following
holds. Let �1, �2, �3 be three pairwise disjoint Hi -disks with ∂�i ⊂ [R3 \
B(1)] for i = 1, 2, 3. If B(ε) ∩ �i 
= Ø for i = 1, 2, 3, then

sup
B(ε)∩�i , i=1,2,3

|A�i | ≤ C.

Proof Arguing by contradiction, suppose that the corollary fails. In this case,
for i = 1, 2, 3, there exist sequences of Hi (n)-disks �i (n) with ∂�i (n) ⊂
∂B(1) such that B( 1

n2
) ∩ �i 
= Ø but

sup
B( 1

n2
)∩[∪3

i=1�i (n)]
|A∪3

i=1�i (n)| > n2.

Consider the sequence of rescaled surfaces Mi (n) = n�i (n), i = 1, 2, 3,
and note that Mi (n) ∩ B(1/n) 
= Ø for each i . Without loss of generality, we
can assume that

sup
B(1/n)∩M1(n)

|AM1(n)| > n.

After replacing by a subsequence, Theorem 1.1 implies that the sequence
M1(n) convergesCα , α ∈ (0, 1), to a foliationF ofR3 \S1 by parallel planes,
where S1 is a line orthogonal to the planes; without loss of generality we will
henceforth assume that the parallel planes are horizontal.

Since for i = 2, 3, Mi (n) ∩ B(1/n) 
= Ø, Theorem 1.1, Corollary 2.6 and
the embeddedness of the disconnected surface ∪3

i=1Mi (n) imply that, after
replacing by new subsequences, each of the sequences Mi (n) converges Cα ,
for α ∈ (0, 1), to the foliation F of R3 \ S1 by horizontal planes. It follows
that for n large, each of the surfaces Mi , i = 1, 2, 3, yields at least one related
analytic arc component in the set �n where ∪3

i=1Mi (n) has vertical tangent
planes in B(3). But the total number of such components in �n must be at
most two by adapting the arguments in the proof of Claim 3.4. This gives a
contradiction which completes the proof of the claim. ��

From Corollary 4.6 one easily obtains the result below.

Corollary 4.7 There exists ε ∈ (0, 1) such that the following holds. Let �1,
�2, �3 be Hi -disks with ∂�i ⊂ ∂B(1) for i = 1, 2, 3. If B(ε) ∩ �i 
= Ø for
i = 1, 2, 3, then, after a rotation, each component of �i ∩ B(2ε) intersecting
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B(ε) is a graph with norm of its gradient bounded by 1 over its projection into
the plane {x3 = 0}.
Remark 4.8 In Corollary 0.4 of [8], Colding andMinicozzi gave an analogous
result to the statement of Corollary 4.6. In their case, it suffices to have two
embeddedminimal disks to obtain a curvature estimate. This is because one can
insert a stable minimal disk, satisfying curvature estimates, in between the two
minimal disks and apply a result analogous to Corollary 2.6 for minimal disks.
In our case this approach does not work and indeed the curvature estimate is
not true for just two H -disks.

In the next proposition,weuse the approachdescribed in the previous remark
to obtain a curvature estimatewhen certain topological conditions are satisfied.

Corollary 4.9 There exist constants ε ∈ (0, 1/2), C > 1 such that the follow-
ing holds. Let�1,�2 be two pairwise disjoint Hi -disks with ∂�i ⊂ [R3\B(1)]
for i = 1, 2, and 0 ≤ H1 ≤ H2. Let W denote a component ofB(1)\[�1∪�2]
such that the mean curvature vector of�2 points into W. If W ∩B(ε) contains
a component W ′ such that �i ∩ ∂W ′ 
= Ø for i = 1, 2, then

sup
B(ε)∩�i , i=1,2

|A�i | ≤ C.

Proof By Corollary 2.6, there exists ε > 0 such that the following holds: if
M ⊂ W is a surface such that M ∩B(ε) 
= Ø, ∂M ⊂ ∂B(1) and M satisfies a
uniform estimate on the norm of its second fundamental form in B(1/2) that
does not depend on �1 or �2, then the corollary holds. Therefore, it suffice to
construct such an M . If H2 ≥ 1, then by the extrinsic curvature estimates in
Theorem 2.4, �2 can be chosen to be such M . Therefore, we can assume that
H2 < 1.
Under our hypothesis, there exists a compact, oriented, weakly stable H1-

surface M1 ⊂ W such that ∂M1 = ∂�1 ∩ ∂W and M1 is homologous to
�1 ∩ ∂W in W , see for instance [1] for this construction. By the results in
[13] and standard rescaling arguments, M1 satisfies a uniform estimate on the
norm of the second fundamental form in B(1/2). Since M1 is homologous to
�1∩∂W inW andW∩B(ε) contains a componentW ′ such that�i ∩∂W ′ 
= Ø
for i = 1, 2, then M1 ∩ B(ε) 
= Ø. This finishes the proof of the corollary. ��
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