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Abstract Given V a polarizable variation of Z-Hodge structures on a smooth
connected complex quasi-projective variety S, the Hodge locus for V

⊗ is the
set of closed points s of S where the fiber Vs has more Hodge tensors than the
very general one. A classical result of Cattani, Deligne and Kaplan states that
the Hodge locus for V

⊗ is a countable union of closed irreducible algebraic
subvarieties of S, called the special subvarieties of S for V. Under the assump-
tion that the adjoint group of the generic Mumford–Tate group of V is simple
we prove that the union of the special subvarieties for V whose image under
the period map is not a point is either a closed algebraic subvariety of S or is
Zariski-dense in S. This implies for instance the following typical intersection
statement: given a Hodge-generic closed irreducible algebraic subvariety S of
the moduli spaceAg of principally polarized Abelian varieties of dimension g,
the union of the positive dimensional irreducible components of the intersec-
tion of S with the strict special subvarieties of Ag is either a closed algebraic
subvariety of S or is Zariski-dense in S.
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1 Introduction

1.1 Motivation: Hodge loci

Let (VZ,V, F•, ∇) be a polarizable variation of Z-Hodge structure (ZVHS)
of arbitrary weight on a smooth connected complex quasi-projective variety S.
ThusVZ is a finite rank locally freeZSan-local system on the complexmanifold
San associated to S; and (V, F•, ∇) is the unique algebraic regular filtered flat
connection on S whose analytification isV⊗ZSan OSan endowedwith its Hodge
filtration F• and the holomorphic flat connection ∇an defined by V, see [23,
(4.13)]). From now on we will abbreviate the ZVHS (VZ,V, F•, ∇) simply
by V. A typical example is the weight zero polarizable ZVHS “of geometric
origin”

(VZ := R2k f an∗ Z(k)/(torsion),V := R2k f∗�•
X/S, F•, ∇)

associated to a smooth projective morphism of smooth irreducible complex
quasi-projective varieties f : X → S. In this case the Hodge filtration F• is
induced by the stupid filtration on the algebraic De Rham complex �•

X/S and
∇ is the Gauß-Manin connection.

The Hodge locus HL(S, V) is the set of points s ∈ San for which the
Hodge structure Vs admits more Hodge classes than the very general fiber
Vs′ (for us a Hodge class of a pure Z-Hodge structure H = (HZ, F•) is a
class in HZ whose image in HC lies in F0HC, or equivalently a morphism of
Hodge structures Z(0) → H ). It is empty if V contains no non-trivial weight
zero factor. More generally let V

⊗ be the countable direct sum of polarizable
ZVHSs

⊕
a,b∈N

V
⊗a ⊗ (V∨)⊗b (whereV

∨ denotes theZVHS dual ofV). The
Hodge locus HL(S, V

⊗) is the subset of points s ∈ San for which the Hodge
structure Vs admits more Hodge tensors than the very general fiber Vs′ . It
contains HL(S, V), usually strictly.

In the geometric case Weil [28] asked whether HL(S, V) is a countable
union of closed algebraic subvarieties of S (he noticed that a positive answer
follows easily from the rational Hodge conjecture). In [4] Cattani, Deligne and
Kaplan proved the following unconditional celebrated result (see [5], we also
refer to [3] for an alternative proof):

Theorem 1.1 (Cattani–Deligne–Kaplan) Let S be a smooth connected com-
plex quasi-projective algebraic variety and V be a polarizable ZVHS over S.
Then HL(S, V) (thus also HL(S, V

⊗)) is a countable union of closed irre-
ducible algebraic subvarieties of S.

The locusHL(S, V
⊗) is easier to understand thanHL(S, V) as it has a group-

theoretical interpretation. Recall that the Mumford–Tate group MT(H) ⊂
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On the closure of the Hodge locus 859

GL(H) of a Q-Hodge structure H is the Tannakian group of the Tannakian
category 〈H⊗〉 of Q-Hodge structures tensorially generated by H and its dual
H∨. Equivalently, the group MT(H) is the fixator in GL(H) of the Hodge
tensors for H . Given a polarized ZVHS V on S as above and Y ↪→ S a closed
irreducible algebraic subvariety, a point s of Y an is said to be Hodge-generic
in Y for V if MT(Vs,Q) has maximal dimension when s ranges through Y an.
Two Hodge-generic points in Y an for V have the same Mumford–Tate group,
called the generic Mumford–Tate group MT(Y, V|Y ) of Y for V. The Hodge
locus HL(S, V

⊗) is also the subset of points of S which are not Hodge-generic
in S for V.

Definition 1.2 A special subvariety of S forV is a closed irreducible algebraic
subvarietyY ⊂ S maximal among the closed irreducible algebraic subvarieties
Z of S such thatMT(Z , V|Z ) = MT(Y, V|Y ).

In particular S is always special for V. Theorem 1.1 for HL(S, V
⊗) can be

rephrased by saying that the set of special subvarieties of S for V is countable
and that HL(S, V

⊗) is the (countable) union of the strict special subvarieties
of S for V.

1.2 Main result

In this paper we investigate the geometry of the Zariski-closure of the Hodge
locusHL(S, V

⊗).Ourmethods are variational, henceweonlydetect the special
subvarieties of S forVwhich are of positive period dimension in the following
sense:

Definition 1.3 A closed irreducible subvariety Y of S is said to be of positive
period dimension for V if the local system V|Y is not isotrivial.

Equivalently, Y is of positive period dimension forV if and only if its algebraic
monodromy group HY for V (see Definition 2.1) is not equal to {1}; or equiv-
alently if the period map �S : San → �\D+ describing V

⊗ (see Sect. 4) does
not contract Y an to a point in the connected Hodge variety �\D+. When V

satisfies the infinitesimal Torelli condition (i.e. the periodmap�S is an immer-
sion), a closed irreducible subvariety Y of S is of positive period dimension
for V if and only if it is positive dimensional.

Definition 1.4 We define the Hodge locus of positive period dimension
HL(S, V

⊗)pos ⊂ HL(S, V
⊗) as the union of the strict special subvarieties

of S for V which are of positive period dimension for V.

Our main result describes the Zariski-closure of HL(S, V
⊗)pos:
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860 B. Klingler, A. Otwinowska

Theorem 1.5 Let V be a polarizable ZVHS on a smooth connected com-
plex quasi-projective variety S. Suppose that the adjoint group of the generic
Mumford–Tate group MT(S, V) is simple (we will say that MT(S, V) is
non-product). Then either HL(S, V

⊗)pos is a finite union of strict special sub-
varieties of S; or it is Zariski-dense in S.

In other words: either the set of strict special subvarieties of S for V which
are of positive period dimension for V has finitely many maximal elements
(for the inclusion); or the union of such special subvarieties is Zariski-dense
in S.

1.3 Examples

Theorem 1.5 is new even in the much-studied case where the ZVHS V has
weight 1 or 2. Let us warn the reader that these cases, which are simpler to
describe, are not representative: in higher weight we expect HL(S, V

⊗)pos to
be algebraic in general.

1.3.1 Example 1: subvarieties of Shimura varieties

Let Sh0K (G, X) be a connected Shimura variety associated to a Shimura datum
(G, X), with G non-product, and a level K chosen to be neat (we refer to
[18] for a nice survey on Shimura varieties). For (G, X) = (GSp(2g),Hg),
g ≥ 1, the Shimura variety Sh0K (G, X) is the moduli space Ag of prin-
cipally polarized Abelian varieties of dimension g (endowed with some
additional level structure). Let V be the ZVHS on Sh0K (G, X) associated
to a faithful rational representation of G (see [12, 3.2]). The Hodge locus
HL(Sh0K (G, X)) := HL(Sh0K (G, X), V

⊗) is well-known to be independent
of the choice of the faithful representation and is completely described in terms
of Shimura subdata of (G, X), see [19]. The special points of Sh0K (G, X), i.e.
the special subvarieties of dimension zero, are the CM-points, i.e. the points
of Sh0K (G, X) whose Mumford–Tate group is commutative. In the case ofAg
the CM-points correspond to abelian varieties with complex multiplication.
Any connected Shimura variety contains an analytically dense set of special
points (see [18, Lemma 3.3 and 3.5]), in particular HL(Sh0K (G, X)) is ana-
lytically dense in Sh0K (G, X). The same proof shows that HL(Sh0K (G, X))pos

is analytically dense in Sh0K (G, X) as soon as it is not empty. For instance
HL(Ag)pos is analytically dense in Ag.

Remark 1.6 There exist Shimura varieties whose positive dimensional Hodge
locus is empty, for instance the Kottwitz unitary Shimura varieties (see [8])
obtained by taking forG the group of invertible elements of a division algebra
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On the closure of the Hodge locus 861

of prime degree endowed with an involution of the second kind. Ball quotients
of Kottwitz type are the simplest examples.

If S ⊂ Sh0K (G, X) is a closed irreducible subvariety the special subvari-
eties of S for V|S are precisely the irreducible components of the intersection
of S with the special subvarieties of Sh0K (G, X). Theorem 1.5 thus implies
immediately:

Corollary 1.7 Let Sh0K (G, X) be a smooth connected Shimura variety associ-
ated to a Shimura datum (G, X) withG non-product. Let S ⊂ Sh0K (G, X) be a
closed irreducible subvariety which is Hodge generic (i.e.MT(S, V|S) = G)).
Either the positive dimensional irreducible components of the intersection of
S with the strict special subvarieties of Sh0K (G, X) form a set with finitely
many maximal elements (for the inclusion), or their union is Zariski-dense in
S.

In the case of Sh0K (G, X) = Ag this reads:

Corollary 1.8 Let S ⊂ Ag be a Hodge-generic closed irreducible subvariety.
Either the set of positive dimensional closed irreducible subvarieties of S which
are not Hodge generic has finitely many maximal elements (for the inclusion),
or their union is Zariski-dense in S.

Corollary 1.7, which describes the distribution of all positive dimen-
sional intersections of the Hodge generic S with the special subvarieties of
Sh0K (G, X), should be compared with the classical André–Oort conjecture,
which predicts under the same hypotheses that there are only finitely many
special subvarieties of Sh0K (G, X) contained in S and maximal for these prop-
erties. The André–Oort conjecture has been proven when Sh0K (G, X) is of
abelian type, for instance for Sh0K (G, X) = Ag. We refer to [17] for a survey
on the André–Oort conjecture. While the André–Oort conjecture is an “atypi-
cal intersection” statement in the sense of [29], Corollary 1.7 may be thought
of as a “typical intersection” statement. In particular both statements seem
completely independent.

More generally Theorem 1.5 is the “typical intersection” counterpart to the
“atypical intersection” conjecture forZVHSproposed in [15,Conj. 1.9] (which
generalizes the Zilber–Pink conjectures for Shimura varieties). It provides an
answer to the geometric part of the naïve [15, Question 1.2] (we warn the
reader that our HL(S, V

⊗) is denoted HL(S, V) in [15]).
Even in the setting of Corollary 1.7 or Corollary 1.8, we don’t know of

any simple criterion for deciding whether HL(S, V
⊗
|S)pos is a strict closed

algebraic subvariety of S or Zariski-dense in S. For Sh0K (G, X) = Ag, Izadi
[14], following ideas of [9], proved that HL(S, V

⊗
|S) is analytically (hence

Zariski-) dense in S for any irreducible S ⊂ Ag of codimension at most g. Her
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862 B. Klingler, A. Otwinowska

proof adapts immediately to show that HL(S, V
⊗
|S)pos is analytically dense in S

if S has codimension at most g−1. Generalizing the results of [14] to a general
connected Shimura variety Sh0K (G, X), Chai (see [6]) showed the following.
Let H ⊂ G be a Hodge subgroup. Let HL(S, V

⊗,H) ⊂ HL(S, V
⊗) denote

the subset of points s ∈ S whose Mumford–Tate group MTs(V) is G(Q)-
conjugated toH. Then there exists an explicit constant c(G, X,H) ∈ N, whose
value is g in the example above, which has the property that HL(S, V

⊗,H),
hence also HL(S, V

⊗) is analytically dense in S as soon as S has codimension
at most c(G, X,H) in ShK (G, X). Once more it follows from the analysis of
the proof of [6] that HL(S, V

⊗)pos is analytically dense in S as soon as S has
codimension at most c(G, X,H) − 1.

1.3.2 Example 2: classical Noether–Lefschetz locus

Let B ⊂ PH0(P3
C
,O(d)) be the open subvariety parametrizing the smooth

surfaces of degree d in P
3
C
. From now on we suppose d > 3. The classical

Noether theorem states that any surface Y ⊂ P
3
C
corresponding to a very

general point [Y ] ∈ B has Picard group Z: every curve on Y is a complete
intersection of Y with another surface in P

3
C
. The countable union NL(B)

of closed algebraic subvarieties of B corresponding to surfaces with bigger
Picard group is called the Noether-Lefchetz locus of B. Let V → B be the
ZVHS R2 f∗Z, where f : Y → B denotes the universal family of surfaces of
degree d. Clearly NL(B) ⊂ HL(B, V

⊗). Green (see [26, Prop.5.20]) proved
that NL(B) is analytically dense in B (see also [7] for a weaker result). In
particular HL(B, V

⊗) is dense in B. Once more the analysis of Green’s proof
shows that in fact HL(B, V

⊗)pos is dense in B. Now Theorem 1.5 implies the
following:

Corollary 1.9 Let S ⊂ B be a Hodge-generic closed irreducible subvariety.
Either S ∩HL(B, V

⊗)pos contains only finitely many maximal positive dimen-
sional closed irreducible subvarieties of S, or the union of such subvarieties
is Zariski-dense in S.

Remark 1.10 We don’t know if Corollary 1.9 remains true if we replace
HL(B, V

⊗)pos with NL(B).

1.4 Organization of the paper

The next Sect. 2 introduce the basic notation concerning local systems and
ZVHS we will need. Section 3 then describes the main ingredients and the
general strategy for proving Theorem 1.5. The reader will find at the end of
Sect. 3 the organization of the rest of the paper.
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On the closure of the Hodge locus 863

2 Some notation

2.1 Notation for local systems

Let S be a smooth connected complex quasi-projective variety. Let VZ be a
finite rank locally free Z-local system on S and (V, ∇) the regular algebraic
connection on S [11, Theor. 5.9] associated to VZ.

The local system VZ can be uniquely written as S̃ ×ρ VZ, where π : S̃ → S
denotes the complex analytic universal cover of S associated to the choice of
a point s0 in S, VZ := H0(S̃, π−1

VZ) � Vs0,Z is a free Z-module of finite
rank and ρ : π1(S, s0) → GL(VZ) denotes the monodromy representation
of the local system VZ. This corresponds to a complex analytic trivialization
of Ṽ := V ×S S̃ as a product S̃ × V , where V := VZ ⊗Z C. We still let
π : S̃ × V → V denote the natural projection. Recall the following classical
definition:

Definition 2.1 Given a closed irreducible algebraic subvariety i : Y ↪→ S, let
n : Y nor → Y be its normalisation. The algebraic monodromy group HY of Y
forVZ is the (conjugacy class of the) identity component of the Zariski-closure
in GL(VQ) of the monodromy of the restriction to Y nor of the local system
n∗

VZ.

Definition 2.2 Given λ = π(s̃, λ0) ∈ V we define V(λ) := π(S̃ × {λ0}) ⊂ V
the flat leaf of λ for ∇.

The set V(λ) is naturally a connected closed complex analytic subspace
of the étalé space of the complex local system VC := VZ ⊗Z C. We will
always endow V(λ) with its reduced analytic structure. When λ = π(s̃, λ0)
is not a complex multiple of an element of VZ, the orbit of λ0 in V under the
monodromy group ρ(π1(S, s0)) ⊂ GL(V ) has usually accumulation points,
in which case V(λ) is not an analytic subvariety of V .

2.2 Notation for ZVHS

Suppose now that V := (VZ,V, F•, ∇) is a ZVHS on S. All ZVHS are
assumed to be polarizable. In particular the algebraic monodromy group HS
is semi-simple.

Definition 2.3 Let λ ∈ V and i ∈ Z. The locus of classes of Fi -type V
i (λ)

for λ is the intersection of the flat leaf V(λ) with FiV:

V
i (λ) := V(λ) ∩ FiV ⊂ FiV .
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864 B. Klingler, A. Otwinowska

The locus of Fi -type for λ is the projection

Si (λ) := p(Vi (λ)) ⊂ S .

Again, V
i (λ) is naturally a complex analytic subspace (possibly with

infinitely many connected components) of the étalé space of the complex local
system VC := VZ ⊗Z C. When λ is not a complex multiple of an element of
VC the complex space V

i (λ) is in general not an analytic subspace of V; a
fortiori its projection Si (λ) ⊂ S is a priori not a complex analytic subvariety
of S.

Remark 2.4 For i = 0 and λ ∈ VQ the locus V
0(λ) is also called the locus of

Hodge classes for λ, usually denoted Hdg(λ); and S0(λ) is the Hodge locus of
λ considered by Weil, namely the locus HL(S, λ) of points of S where some
determination of the flat transport of λ becomes a Hodge class.

Definition 2.5 Let λ ∈ V .
(a) A component ofV

i (λ) is an irreducible component of the complex analytic
subvariety V

i (λ) of the étalé space of the complex local system V.
(b) A component of Si (λ) is the image under p : V → S of a component of

V
i (λ).

(c) For λ ∈ V − {0}, i ∈ Z and d ∈ N let V
i (λ)≥d ⊂ FiV , respectively

Si (λ)≥d ⊂ S, be the union of components of V
i (λ), resp. Si (λ), of dimen-

sion at least d.

Remark 2.6 Notice that for λ ∈ V and z ∈ C
∗,Vi (zλ) = zV

i (λ) and Si (zλ) =
Si (λ) for any z ∈ C

∗. Hence, for λ ∈ V not in the zero section, Si (λ) depends
only on [λ] ∈ PV .

For λ = π(s̃, λ0) ∈ V it follows from the theorem of the fixed part (see [23,
Cor. 7.23]) that Si (λ) �= S if and only if theHS-orbit of λ0 in V is not reduced
to a point, equivalently if and only if the orbit of λ0 under ρ(π1(S, s0)) ⊂
GL(V ) is infinite. We denote by V

nt
Q
the direct factor of the local system VQ

corresponding to the sum of non-trivial irreducible HS-factors of VQ (it is
naturally a sub-QVHS of VQ). By abuse of notation we write V

nt
Q

− {0} for
V
nt
Q
with the zero-section removed.

Definition 2.7 We define the locus of non-trivial Fi -classes

V
i
≥d :=

⋃

λ∈V
nt
C

−{0}
V

i (λ)≥d ⊂ FiV and Si (V)≥d := p(Vi
≥d) ⊂ S .

Thus the locus of non-trivial (rational) Hodge classes for V is Hdg(V) :=
VQ ∩ V

0≥0 and the Hodge locus HL(S, V) is p(VQ ∩ V
0≥0).
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On the closure of the Hodge locus 865

3 Ingredients and strategy for Theorem 1.5

Let us now describe the main ingredients and the strategy for the proof of
Theorem 1.5. From now onwe do not differentiate a complex algebraic variety
X from its associated complex analytic space X an, the meaning being clear
from the context.

3.1 On the Zariski-closure of the Fi -loci

Given λ ∈ V and i ∈ Z letVi (λ) ⊂ V be the locus of V where the flat transport
of λ belongs to FiV; and let Si (λ) := p(Vi (λ)) ⊂ S be the locus of points of
S where some determination of the flat transport of λ at s belongs to FiV , as
defined in Sect. 2.

When i = 0 and λ ∈ VQ is rational, V
0(λ) is the locus where the flat

transport of λ is a rational Hodge class. The precise version of Theorem 1.1 is
that for λ rational, V

0(λ) is a closed algebraic subvariety of V , finite over the
finite union of special subvarieties S0(λ).

To study theZariski-closure ofHL(S, V
⊗) the first idea of this paper consists

in studying the geometry of Si (λ) for a general, not necessarily rational,
λ ∈ VC. In this generality the subsets Si (λ) are usually not even complex
analytic subvarieties of S, see Sect. 2. However we manage to describe the
Zariski-closure of any of their components (see Definition 2.5 for the notion
of component of Si (λ)):

Theorem 3.1 For any i ∈ Z and any λ ∈ VC, the Zariski-closure of any of the
(possibly infinitely many) components of Si (λ) is a weakly special subvariety
of S for V.

Here the weakly special subvarieties of S for V are a generalisation, intro-
duced in [15], of the special subvarieties of S for V. See Definition 4.1 for
the original definition and Corollary 4.14 for a more geometric description.
Theorem 3.1 provides a strong information on components of Si (λ)which are
of positive period dimension.

Theorem 3.1 is a result in functional transcendence. It follows mainly from
the Ax-Lindemann Theorem 4.21 for ZVHS conjectured in [15, Conj.7.6] as
a special case of [15, Conj.7.5], proven by Bakker-Tsimerman [2, Theor. 1.1].

3.2 A global algebraicity result for the locus of classes of Fi -type

The second ingredient in the proof of Theorem 1.5 is a global algebraicity
statement for the union of the Fi -loci of dimension bounded below. Precisely,
for any integer d ≥ 0, let V

i
≥d ⊂ FiV be the locus of classes λ ∈ FiV whose
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orbit under monodromy is infinite and such thatVi (λ) is “of dimension at least
d at λ”, see Definition 2.5. Let Si

≥d(V) = p(Vi
≥d) be its projection in S.

Theorem 3.2 Let V be a polarized ZVHS on a smooth quasi-projective variety
S. For any i ∈ Z and any d ∈ N

∗, the subset V
i
≥d ⊂ FiV is a closed algebraic

subvariety of V . Its projection Si (V)≥d is a closed algebraic subvariety of S.

In words: the property of a point λ ∈ V of having a flat leaf intersecting FiV
in dimension at least d > 0 is closed in the Zariski-topology. Theorem 3.2 is
in fact a special case of a more general result on algebraic flat connections,
see Theorem 7.1. It uses in a crucial way the properties of parallel transport.

3.3 Strategy for the proof of Theorem 1.5

Let us indicate how Theorem 1.5 follows from Theorem 3.1 and Theorem 3.2.
First, using a finiteness result of Deligne, we are reduced to showing that

forV a polarizableZVHSwith non-product genericMumford–Tate group, the
Hodge locus of positive period dimension HL(S, V)pos is either a finite union
of strict special subvarieties of S for V or is Zariski-dense in S.

Let us assume for simplicity that the period map �S for V is an immersion.
In that case the locus of exceptional rational Hodge classes inV isVQ∩V

0≥0 =
VQ ∩ F0V; the Hodge locus HL(S, V) is the projection p(VQ ∩ V

0≥0); and
the Hodge locus of positive period dimension HL(S, V)pos is the projection

p(VQ ∩ V
0≥1) ⊂ S0≥1(V). The Zariski-closure HL(S, V)pos

Zar
coincides with

p(V0≥1 ∩ VQ

Zar
).

In Proposition 7.4 we refine Theorem 3.2 to show that there exists a non-

empty Zariski open subset U of V
0≥1 ∩ VQ

Zar ⊂ V such that for every point
λ ∈ U there exists a component of V

0(λ) of dimension at least 1 contained in

V
0≥1 ∩ VQ

Zar
. Projecting to S, there exists a non-empty Zariski open subset U

of HL(S, V)pos
Zar

such that for every point x ∈ U there exists a class λ ∈ V
and a component of S0(λ) of dimension at least 1 contained in HL(S, V)pos

Zar

and passing through x .
By Theorem 3.1 the Zariski-closure of such a component of S0(λ) is a

weakly special subvariety of S of positive period dimension for V. We thus

obtain that there exists a non-empty Zariski open subset U of HL(S, V)pos
Zar

such that for every point x ∈ U there exists a weakly special subvariety Yx of

S for V contained in HL(S, V)pos
Zar

and passing through x .

Either one of these Yx equals S, hence HL(S, V)pos
Zar = S. Otherwise the

structure of weakly special subvarieties and the assumption that MT(S, V)
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is non-product imply that each Yx is contained in a strict special subvariety
Sx of S for V. As such an Sx is contained in HL(S, V)pos it follows that

HL(S, V)pos
Zar = HL(S, V)pos. But then HL(S, V)pos is a finite union of

special subvarieties.
The general case where�S is not a submersion is dealt with similarly using

stratifications and the geometry of S0
d(V) for all d ≥ 1.

3.4 A converse to Theorem 1.1

Recall that for λ ∈ VQ the precise version of Theorem 1.1 states that V
0(λ)

is a closed algebraic subvariety of V , finite over the finite union of special
subvarieties S0(λ). As a preliminary to Theorem 3.1, Theorem 3.2 and Theo-
rem 1.5, we also provide for the convenience of the reader the following kind
of converse to Theorem 1.1, which might be well-known to experts but which
does not seem to have appeared before.

Proposition 3.3 Let λ ∈ V and i ∈ Z be such that V
i (λ) is a closed algebraic

subvariety of V . Then the projection Si (λ) of V
i (λ) is a finite union of special

subvarieties of S. Moreover, V
i (λ) is finite over Si (λ).

3.5 Organization of the remaining sections

Section 4 studies the geometric properties of the weakly special subvarieties
of S for V. In particular we prove that they are closed algebraic subvarieties,
obtain a key geometric description (Corollary 4.14), prove that they coincide in
fact with the bi-algebraic subvarieties of S for the natural bi-algebraic structure
on S defined byV (see Proposition 4.20, a result stated in [15, Prop.7.4]without
proof), and state the Ax-Lindemann Theorem 4.21 for them. The following
sections provide the proofs of Proposition 3.3, Theorem 3.1, Theorem 3.2 and
Theorem 1.5 successively.

4 Weakly special subvarieties and bi-algebraic geometry for (S,V)

In this section we recall the definition of the weakly special subvarieties of S
for V given in [15], study their geometry and prove their bi-algebraic char-
acterisation (stated in [15] without proof). We recall below the definitions of
Hodge theory we need and introduced in [15] (inspired by [21] and [22]), and
refer to [15] for more details.

Let G be the generic Mumford–Tate group of S for V. Any Hodge generic
point s ∈ S defines a morphism of real algebraic groups hs : C

∗ → GR.
All such morphisms belong to the same connected component of a G(R)-
conjugacy classD in Hom(C∗,GR), which has a natural structure of complex
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analytic space (see [15, Prop.3.1]). The space D+ is a so-called Mumford–
Tate domain, a refinement of the classical period domain for V defined by
Griffiths. The pair (G,D+) is a connected (pure) Hodge datum in the sense
of [15, Section 3.1], called the generic Hodge datum of V. The ZVHS V is
entirely described by its period map

�S : S → Hod0(S, V) := �\D+ ,

where � ⊂ G(Z) is a finite index subgroup and Hod0(S, V) := �\D+ is
the associated connected Hodge variety (see [15, Def. 3.18 and below]). We
denote by �̃S : S̃ → D+ the lift of �S .

4.1 Weakly special subvarieties

The weakly special subvarieties of S for V are defined in terms of the weakly
special subvarieties of the connected Hodge variety Hod0(S, V), which we
first recall.

4.1.1 Weakly special subvarieties of Hodge varieties

Let (G,D+) be a connected Hodge datum and Y = �\D+ an associated
connected Hodge variety. Hence Y is an arithmetic quotient in the sense of
[3, Section 1] endowed with a natural complex analytic structure (which is
not algebraic in general). Recall that a Hodge morphism between connected
Hodge varieties is the complex analytic map deduced from a morphism of
the corresponding Hodge data (see [15, Lemma 3.9]). The special and weakly
special subvarieties of Y are irreducible analytic subvarieties of Y defined as
follows (see [15, Def.7.1]):

Definition 4.1 Let Y be a connected Hodge variety.

(1) The image of any Hodge morphism T → Y between connected Hodge
varieties is called a special subvariety of Y .

(2) Consider any Hodge morphism ϕ : T1 × T2 → Y between connected
Hodge varieties and any point t2 ∈ T2. Then the image ϕ(T1 × {t2}) is
called a weakly special subvariety of Y . It is said to be strict if it is distinct
from Y .

Remark 4.2 [15, Def.7.1], valid more generally for Y a mixed Hodge variety
and generalizing [22, Def.4.1] to this context, gives the following apparently
more general definition of a weakly special subvariety. Consider any Hodge

morphisms R
π← T

i→ Y between (possibly mixed) connected Hodge vari-
eties and any point r ∈ R. Then any irreducible component of i(π−1(r)) is
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called a weakly special subvariety of Y . When Y is pure, i.e. G is a reductive
group, one easily checks that this definition reduces to Definition 4.1(2) above.

Remark 4.3 Considering the connected Hodge variety T2 = {t2} associated
to the trivial algebraic group, any special subvariety of Y is a weakly special
subvariety of Y .

Remark 4.4 As noticed in [22, Rem. 4.8] in the case of Shimura varieties, any
irreducible component of an intersection of special (resp. weakly special) sub-
varieties of the Hodge variety Y is a special (resp. a weakly special) subvariety
of Y . The proof is easy and the details are left to the reader.

4.1.2 Weakly special subvarieties for V

As in [15, Prop. 3.20 and Def. 7.1] we define:

Definition 4.5 Let p : V → S be a ZVHS over a quasi-projective complex
manifold S with associated period map �S : S → Hod0(S, V).

Any irreducible complex analytic component of �−1
S (Y ), where Y is a

special (resp. weakly special) subvariety of the connectedmixedHodge variety
Hod0(S, V), is called a special (resp. weekly special) subvariety of S for V. It
is said to be strict if it is distinct from S.

Notice that an irreducible component of an intersection of special (resp.
weakly special) subvarieties of S for V is not anymore necessarily a special
(resp. a weakly special) subvariety of S for V: it might happen that for Y ⊂
Hod0(S, V) a special (resp. weakly special) subvariety the preimage �−1

S (Y )

decomposes as a union Z1∪ Z2 with Zi , i = 1, 2 irreducible; in which case Z1
and Z2 are special (resp. weakly special) subvarieties in S but an irreducible
component of Z1 ∩ Z2 is not. To take this minor inconvenience into account
we define more generally:

Definition 4.6 Let Y ⊂ Hod0(S, V) be a special (resp. weakly special) sub-
variety. An irreducible component of the intersection of some irreducible
components of �−1

S (Y ) is called a special (resp. weakly special) intersection
in S for V.

The following follows immediately from Remark 4.4:

Lemma 4.7 An irreducible component of an intersection of special (resp.
weakly special) intersections for V is a special (resp. weakly special) inter-
section for V.
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4.1.3 Algebraicity of weakly special subvarieties of S

The very definition of the Hodge locus HL(S, V
⊗) implies that special subva-

rieties of S for V in the sense of Definition 4.5 coincide with the ones defined
in Definition 1.2. In particular, in view of Theorem 1.1, any special subvariety
of S (hence any special intersection in S) is a closed irreducible algebraic sub-
variety of S. An alternative proof of Theorem 1.1 using o-minimal geometry
was provided in [3, Theor. 1.6]. The approach of [3] gives immediately the
following more general algebraicity result, which is implicit in the discussion
of [15, Section 7]:

Proposition 4.8 Any weakly special subvariety Z for V (hence also any
weakly special intersection for V) is an algebraic subvariety of S.

Proof The proof is strictly analogous to the proof of [3, Theor. 1.6]. By [3,
Theor. 1.1(1)] the Hodge variety Hod0(S, V) = �\D+ is an arithmetic quo-
tient endowed with a natural structure of Ralg-definable manifold. By [3,
Theor. 1.3] the period map �S is Ran,exp-definable with respect to the nat-
ural Ralg-structures on S and Hod0(S, V). Let Y be the unique weakly special
subvariety of Hod0(S, V) such that Z is an irreducible component of �−1

S (Y ).
By [3, Theor. 1.1(2)] Y is an Ralg-definable subvariety of Hod0(S, V); hence
its preimage �−1

S (Y ) is an Ran,exp-definable subvariety of S. By the definable
Chow theorem of Peterzil and Starchenko [20, Theor. 4.4 and Corollary 4.5],
the complex analytic Ran,exp-definable subvariety of the complex algebraic
variety S is necessarily an algebraic subvariety of S. Hence its irreducible
complex analytic component Z too. ��

4.1.4 Special and weakly special closure

One deduces immediately from Lemma 4.7 the following

Corollary 4.9 Any irreducible algebraic subvariety i : W ↪→ S is contained
in a smallest weakly special (resp. special) intersection 〈W 〉ws (resp. 〈W 〉s) of
S for V, called the weakly special (resp. special) closure of W in S for V.

Remark 4.10 Obviously W ⊂ 〈W 〉ws ⊂ 〈W 〉s .

The geometric description of 〈W 〉s is easy. Let (GW ,DW ) ⊂ (G,D) be the
generic Hodge datum of the restriction of V to the smooth locus of W . This
induces a Hodge morphism of connected Hodge varieties ϕ : �W \D+

W →
�\D+, where �W := � ∩ GW (Q). The restriction of the period map �S to
the smooth locus of W factorizes through the special subvariety ϕ(�W \D+

W )

of �\D+ and we obtain:
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Lemma 4.11 The special closure 〈W 〉s is the unique irreducible component
of intersections of components of �−1

S (ϕ(�W \D+
W )) containing W .

The description of the weakly special closure 〈W 〉ws is a bit more involved
but similar to the one obtained by Moonen [19, Section 3] in the case of
Shimura varieties. Let n : W nor → W be the normalisation of W . Let

�W nor : W nor → �W \D+
W

be the period map for n∗
V. Hence we have a commutative diagram

W nor

n

�Wnor
�W \D+

W

ϕ

W
�S |W

�\D+ .

Let HW be the algebraic monodromy group of W for V. Thus HW is the
identity component of the Zariski-closure of (�S ◦ n)∗(π1(W nor)) ⊂ � in
GL(V ). As W nor is normal the open immersion j : W nor,0 ↪→ W nor of the
smooth locus W nor,0 of W nor defines a surjection j∗ : π1(W nor,0) → π1(W ).
In particular HW is also the algebraic monodromy group of the restriction of
n∗

VZ to W nor,0. It thus follows from [1, Theor.1] thatHW is a normal subgroup
of the derived group Gder

W . As GW is reductive there exists a normal subgroup
G′

W ⊂ GW such that GW is an almost direct product of HW and G′
W . In this

way we obtain a decomposition of the adjoint Hodge datum (Gad
W ,D+

W ) into a
product

(Gad
W ,D+

W ) = (Had
W ,D+

HW
) × (G′ad

W ,D+
G′

W
) ,

inducing a decomposition of connected Hodge varieties

�W \D+
W = �HW \D+

HW
× �G′

W
\D+

G′
W

.

Lemma 4.12 The projection of �W nor(W nor) ⊂ �W \D+
W on �G′

W
\D+

G′
W

is a

single point {t ′}.
Proof When �\D+ is a connected Shimura variety this is proven in [19, Prop.
3.7]. Moonen’s argument does not extend to our more general situation: he
uses that D+ is a bounded domain in some C

N in the Shimura case, which is
not true for a general flag domain D+. Instead we argue as follows. Choose
any faithful linear representation ρ : G′ad

W → GL(H) and a Z-structure HZ
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on the Q-vector space H such that ρ(�G′
W

) ⊂ GL(HZ). The Z-local system
on W nor with monodromy representation

λ : π1(W nor)
(�Wnor )∗−→ �W

p2∗−→ �G′
W

ρ−→ GL(HZ)

is a ZVHS with period map

W nor �Wnor,0−→ �W \D+
W

p2−→ �G′ad\D+
G′ .

By the very definition of the algebraic monodromy group HW the group
λ(π1(W nor)) ⊂ GL(HZ) is finite. Applying the theorem of the fixed part
(see [23, Cor. 7.23]) to the corresponding étale cover of W nor we deduce that
the period map p2 ◦ �W nor is constant. ��

Lemma 4.12 implies that W is contained in �−1
S (ϕ((�HW \D+

HW
) × {t ′})).

Conversely, as any irreducible component of an intersection of weakly spe-
cial subvarieties of �W \D+

W is still weakly special, one easily checks that
any weakly special subvariety Y := ψ(T1 × {t2}) ⊂ �W \D+

W containing
�W nor,0(W nor,0) has to contain (�HW \D+

HW
) × {t ′}. Thus:

Proposition 4.13 The weakly special closure 〈W 〉ws of W is the unique irre-
ducible component of the intersection of components of �−1

S (ϕ((�HW \D+
HW

)×
{t ′})) containing W .

It then follows immediately:

Corollary 4.14 The weakly special subvarieties of S for V (see Definition 4.5)
are precisely the closed irreducible algebraic subvarieties Y ⊂ S maximal
among the closed irreducible algebraic subvarieties Z of S whose algebraic
monodromy group HZ with respect to V equals HY .

Remark 4.15 The reader will notice that the characterisation of the weakly
special subvarieties given above is strictly analogous to the characterisation
Definition 1.2 of the special subvarieties, replacing the generic Mumford–Tate
group by the algebraic monodromy group.

4.2 Bi-algebraic geometry for (S,V)

Let us start by recalling the general functional transcendence context of “bi-
algebraic geometry” (see [17], [15, Section 7]):
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Definition 4.16 A bi-algebraic structure on a connected complex algebraic
variety S is a pair

(D : S̃ → X, ρ : π1(S) → Aut(X))

where π : S̃ → S denotes the universal cover of S, X is a complex algebraic
variety, Aut(X) its group of algebraic automorphisms, ρ : π1(S) → Aut(X)

is a group morphism (called the holonomy representation) and D is a ρ-
equivariant holomorphic map (called the developing map).

The datum of a bi-algebraic structure on S tries to emulate an algebraic
structure on the universal cover S̃ of S:

Definition 4.17 Let S be a connected complex algebraic variety endowedwith
a bi-algebraic structure (D, ρ).

(i) An irreducible analytic subvariety Z ⊂ S̃ is said to be a closed irreducible
algebraic subvariety of S̃ if Z is an analytic irreducible component of

D−1(D(Z)
Zar

) (where D(Z)
Zar

denotes the Zariski-closure of D(Z) in
X ).

(ii) A closed irreducible algebraic subvariety Z ⊂ S̃, resp. W ⊂ S, is said
to be bi-algebraic if π(Z) is a closed algebraic subvariety of S, resp. any
(equivalently one) analytic irreducible component of π−1(W ) is a closed
irreducible algebraic subvariety of S̃.

As in Sect. 4.1.2 an irreducible component of an intersection of closed
algebraic subvarieties of S̃ is not necessarily algebraic in the sense above, as
the map D is not assumed to be injective.

Definition 4.18 An algebraic intersection in S̃ is an irreducible analytic com-
ponent of an intersection of closed algebraic subvarieties of S̃.

An algebraic intersection Z ⊂ S̃, resp. a closed irreducible algebraic subva-
riety W ⊂ S, is called a bi-algebraic intersection if π(Z) is a closed algebraic
subvariety of S, resp. any (equivalently one) analytic irreducible component
of π−1(W ) is an algebraic intersection in S̃.

Let V be a polarized ZVHS on S. It canonically defines a bi-algebraic
structure on S as follows. Let

�̂S : S̃ → D̂

be the composite j ◦ �̃S where j : D ↪→ D̂ denotes the open embedding of
the Mumford–Tate domainD in its compact dual D̂, which is an algebraic flag
variety for G(C) (see [15, Section 3.1]).
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Definition 4.19 Let p : V → S be a polarized ZVHS on a quasi-projective
complex manifold S. The bi-algebraic structure on S defined by V is the pair
(�̂S : S̃ → D̂, ρS := (�S)∗ : π1(S) → � ⊂ G(C)).

The following proposition, stated in [15, Prop. 7.4] without proof, charac-
terizes the weekly special subvarieties of S for V in bi-algebraic terms. It was
proven by Ullmo-Yafaev [24] in the case where S is a Shimura variety, and in
some special cases by Friedman and Laza [13].

Proposition 4.20 Let (S, V) be a ZVHS. The weakly special subvarieties
(resp. the weakly special intersections) of S for V are the bi-algebraic subva-
rieties (resp. the bi-algebraic intersections) of S for the bi-algebraic structure
on S defined by V.

Proof The proof is similar to the proof of [24, Theor.4.1], we provide it for
completeness.

Notice that the statement for the weakly special intersections follows imme-
diately from the statement for the weakly special subvarieties. Hence we are
reduced to prove that the weakly special subvarieties of S coincide with the
bi-algebraic subvarieties of S.

That a weakly special subvariety of S is bi-algebraic follows from the fact
that a Hodge morphism of Hodge varieties ϕ : T → Y is defined at the level
of the universal cover by a closed analytic embedding D+

T ↪→ D+
Y restriction

of a closed algebraic immersion D̂T ↪→ D̂Y .
Conversely let W be a bi-algebraic subvariety of S. With the notations of

Proposition 4.13 the period map �S |W : W → Hod0(S, V) factorises trough
the weakly special subvariety ϕ((�HW \D+

HW
)×{t ′}) of Hod0(S, V). Let Z be

an irreducible component of the preimage of W in S̃ and consider the lifting
�̃|Z : Z → D+

HW
of �S |W to Z . As W is bi-algebraic the Zariski-closure of

�̃|Z (Z) in D̂HW has to be stable under the monodromy group HW (C), hence
equal to D̂HW . Thus Z = (�̃|Z )−1(D+

HW
) and W is weakly special. ��

We will need the following result, proven for Shimura varieties in [16],
conjectured in general in [15, Conj.7.6] as a special case of [15, Conj.7.5], and
proven by Bakker-Tsimerman [2, Theor. 1.1]:

Theorem 4.21 (Ax-Lindemann for ZVMHS) Let (S, V) be a ZVMHS. Let
Y ⊂ S̃ be a closed algebraic subvariety for the bi-algebraic structure defined

by V. Then π(Y )
Zar

is a bi-algebraic subvariety of S, i.e. a weakly special
subvariety of S for V.
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5 A converse to Theorem 1.1: proof of Proposition 3.3

Let f : S′ → S be a finite étale cover and letV′ := f ∗
V. By abuse of notation

let f still denote the natural map V ′ → V . The reader will immediately check
the following (where, with the notations of Sect. 1, we naturally identify V ′
with V ):

Lemma 5.1 (a)

∀ λ ∈ V, ∀ i ∈ Z, V
′i (λ) = f −1

V
i (λ) and f (V′i (λ)) = V

i (λ) .

(b) the f -image of a special subvariety of S′ for V
′ is a special subvariety of

S for V; conversely the f -preimage of a special subvariety of S for V is a
finite union of special subvarieties of S′ for V

′.

Hence proving Proposition 3.3 for V is equivalent to proving it for V
′. As

any finitely generated linear group admits a torsion-free finite index subgroup
(Selberg’s lemma) we can thus assume without loss of generality by replacing
S by a finite étale cover if necessary that the monodromy ρ(π1(S, s0)) ⊂
GL(VZ) is torsion-free.

Let λ ∈ V − {0} be such that V
i (λ) is an algebraic subvariety of V . Hence

V
i ([λ]) ⊂ PV is also algebraic. As the projection p : PV → S is a proper

morphism, it follows that the set Si (λ) := p(Vi ([λ]) is an algebraic subvariety
of S.

Let n : S′ → Si (λ) be the smooth locus of the normalisation of one irre-
ducible component of Si (λ). Hence S′ is connected. Let π ′ : S̃′ → S′ be
its universal cover and let ρ′ : π1(S′, s′

0) → GL(V ) be the monodromy of

the local system V
′ := i−1

V on S′. Let ˜
V′i (λ) := π ′−1(V′i (λ)) ⊂ Ṽ′(λ) :=

π ′−1(V′(λ)) � S̃′ × {λ} ⊂ Ṽ ′ � S̃′ × V .

As ˜
V′i (λ) ⊂ S̃′ × {λ} and p : ˜

V′i (λ) → S̃′ is surjective, it follows that
˜
V′i (λ) = S̃′ × {λ}, hence V

′i (λ) = V
′(λ).

In particular V
′i (λ) ∩ V = V

′(λ) ∩ V = ρ(π1(S′, s′
0)) · λ ⊂ V , where V is

identifiedwithV ′
s′
0
. AsV

′i (λ) ⊂ V ′ is an algebraic subvariety, its fiberV
′i (λ)∩

V is an algebraic subvariety of V . On the other hand the set ρ(π1(S′, s′
0)) ·λ is

countable. ThusV
′i (λ)∩V is a finite set of points, in particular p : V

′i (λ) → S′
is finite étale.

It follows that the smallest Q-sub-local system W
′
Q

⊂ V
′
Q
whose complex-

ification W
′ ⊂ V

′ contains V
′i (λ) has finite monodromy. As the monodromy

ρ(π1(S′)) is a subgroup of ρ(π1(S) which is assumed to be torsion-free, it
follows that the local system W

′
Q
is trivial. By the theorem of the fixed part

(see [23, Cor. 7.23]) W
′
Q
is a constant sub-QVHS of V

′. It follows easily that
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n(S′) is the smooth locus of an irreducible component of the Hodge locus in
S defined by the fiber WQ ⊂ VQ of W

′.
This finishes the proof that Si (λ) is a union of special subvarieties of S and

that p : V
i (λ) → Si (λ) is finite. ��

6 Proof of Theorem 3.1

Theorem 3.1 follows from Theorem 4.21 and the following

Proposition 6.1 Any component of Si (λ) is the image under π of an algebraic
subvariety of S̃ (for the bi-algebraic structure on S defined by V).

Proof of Proposition 6.1 The quadruple (VZ,V, ∇, F•) defining the ZVHS
V is the pullback under �S of a similar quadruple (VZ,�\D+,V�\D+, ∇�\D+,

F•
�\D+)on the connectedHodge variety�\D+, which however does not satisfy

Griffiths transversality. This quadruple itself comes, by restriction to D+ and
descent to �\D+, from a G(C)-equivariant quadruple (V

Z,D̂,VD̂, ∇D̂, F•
D̂)

on D̂, see [10, 5.9]. As D̂ is simply connected the algebraic flat connection
∇D̂ induces a canonical algebraic trivialization VD̂ � D̂ × V . Hence we have
a commutative diagram

V
p

Ṽ � S̃ × Vπ �̂S×I d

p

D̂S × V � VD̂
p1

S S̃
π

�̂S

D̂S .

(6.1)

Let N be a component of Si (λ). Hence N = π(Y ), where Y = p(W ) for
W ⊂ Ṽ = S̃ × V an analytic irreducible component of the complex analytic
subvariety

Ṽ(λ) := (�̂S × I d)−1((D̂ × {λ}) ∩ FiVD̂)

of Ṽ . Let us define D̂(λ) ⊂ D̂ as the projection p1((D̂ × {λ}) ∩ FiVD̂). In
particular, corresponding to the diagram (6.1),we have a commutative diagram

π(W )

p

Wπ �̂S×I d

p

(D̂ × {λ}) ∩ FiVD̂
p1

N Y
π

�̂S

D̂(λ)

. (6.2)
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Notice that both (D̂ × {λ}) and FiVD̂, hence also their intersection (D̂ ×
{λ}) ∩ FiVD̂, are algebraic subvarieties of D̂ × V . Thus their projection D̂(λ)

is an algebraic subvariety of D̂. It follows that the irreducible component Y of
�̂−1

S (D̂(λ)) is an algebraic subvariety of S̃ for the bi-algebraic structure on S
for (S, V). ��

7 Algebraicity of the Fi -locus of positive period dimension and relation
with the Q-structure

7.1 An algebraicity result for flat complex connections

Theorem 7.1 Let d be a positive integer. Let p : (V, ∇) → S be an algebraic
flat connection on a smooth quasi-projective complex variety S and V ⊂ V
the associated complex local system. Let F ⊂ V be an algebraic subvariety.
For x ∈ F let NF,x denote the union of irreducible components containing x
of the complex analytic subvariety (V(x) ∩ F)red of the étalé space of V.

The locus AF,≥d of closed points x ∈ F such that NF,x has dimension at
least d at x, is an algebraic subvariety of V .

Proof We write for simplicity A≥d := AF,≥d and Nx := NF,x .
Let ThV ⊂ TV denote the horizontal algebraic subbundle of the tangent

bundle TV defined by the flat connection ∇. We write q : P(TV) → V for the
(proper) natural projection. Let Th F := ThV ×TV T F . We define inductively
reduced algebraic varieties (A≥d,n)n∈N ⊂ V by

– A≥d,0 := F ,
– A≥d,n+1 := {x ∈ A≥d,n | dim((Th A≥d,n)x ) ≥ d} .

Let A≥d,∞ := ⋂
n∈N

A≥d,n . As the A≥d,n are algebraic subvarieties of V , so
is A≥d,∞.

The result then follows from Lemma 7.2 below. ��
Lemma 7.2 The equality A≥d = A≥d,∞ holds.

Proof The inclusion A≥d ⊂ A≥d,∞ is equivalent to the inclusions A≥d ⊂
A≥d,n for all n ∈ N, which we show by induction on n. By definition A≥d ⊂
F = A≥d,0. Assume that A≥d ⊂ A≥d,n for some n ∈ N. By definition of
A≥d , for any x ∈ A≥d the variety A≥d contains an irreducible component N
of NF,x through x of dimension at least d. Hence

d ≤ dim(N ) ≤ dim(Tx N ) ≤ dim((Th A≥d,n)x ) ,

hence x ∈ A≥d,n+1. This shows A≥d ⊂ A≥d,n+1 and finishes the proof that
A≥d ⊂ A≥d,∞.
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Conversely let us prove that A≥d,∞ ⊂ A≥d . Let h : Ṽ → V denote the
composition

h : Ṽ � S̃ × V
p2→ V

(where the first isomorphism is provided by the flat trivialisation). For x ∈ V
and x̃ ∈ π−1(x) ⊂ Ṽ � S̃ × V let Nx̃ be the union of the irreducible
components passing through x̃ of the complex analytic subvariety h−1(h(x̃))∩
π−1(F) of Ṽ . Thus the local biholomorphismπ : Ṽ → V identifies Nx̃ locally
at x̃ with Nx locally at x .

By noetherianity there exists an n ∈ N such that A≥d,n = A≥d,n+1 =
A≥d,∞. Hence for any x ∈ A≥d,∞ we have dim((Th A≥d,∞)x ) ≥ d. Let us
consider the restriction

h| Ã≥d,∞ : Ã≥d,∞ → V

of h to Ã≥d,∞ := A≥d,∞ ×S S̃. Let U≥d,∞ ⊂ A≥d,∞ be the Zariski-dense
open subset of smooth points x of A≥d,∞ such that the complex analytic map
h| Ã≥d,∞ is smooth and locally submersive onto its image at any x̃ ∈ {x} ×S S̃.
Hence, for x ∈ U≥d,∞,

dimx̃ ( Ã≥d,∞ ×V h(x̃)) = dim((Th A≥d,∞)x ) ≥ d . (7.1)

Since U≥d,∞ is Zariski-dense in A≥d,∞ the inequality dimx̃ ( Ã≥d,∞ ×V

h(x̃)) ≥ d holds for any x̃ in the preimage Ã≥d,∞ of A≥d,∞ in Ṽ . As
A≥d,∞ ⊂ F , any analytic irreducible component of Ã≥d,∞ ×V h(x̃) contain-
ing x is contained in Nx̃ . Thus Equation (7.1) implies that for any x ∈ A≥d,∞
we have dimx (Nx ) ≥ d, i.e. x ∈ A≥d . ��

7.2 Applications to Q-local systems

The following saturation result will be crucial in the proof of Theorem 1.5:

Proposition 7.3 In the situation of Theorem 7.1 suppose moreover that the
local system V = VQ ⊗Q C is defined over Q. Let AF,≥d,Q := AF,≥d ∩VQ be
the locus of rational classes x whose flat transport meets F at x in dimension

≥ d and let A′
F,≥d := AF,≥d,Q

Zar
be its Zariski-closure in V . There exist a

Zariski-open dense subset U of A′
F,≥d and, for each x ∈ U, a component

N 0
F,x of NF,x of dimension at least d such that U ⊂ ⋃

x∈U N 0
F,x ⊂ A′

F,≥d .

Proof As in the proof of Theorem 7.1 we remove from now on the reference
to F in our notations.
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First notice that A≥d,Q ⊂ A≥d , hence A′≥d ⊂ A≥d , as A≥d is algebraic by
Theorem 7.1.

Let W be an irreducible component of A′≥d . Since A′≥d+1 ⊂ A′≥d , pro-
ceeding by decreasing induction on d, we may and shall assume that d is
the largest integer such that W ⊂ A≥d . Hence W ∩ A≥d+1 is a strict closed
algebraic subvariety of W . Let U ⊂ W be the Zariski-open dense subset of
all x ∈ W − (W ∩ A≥d+1) such that the variety A′≥d is smooth at x and
the morphism h|W̃ : W̃ → V is locally submersive onto its image at any

x̃ ∈ {x} ×S S̃. The fibers of the morphism h|Ũ : Ũ → V are smooth, let us
call D their common dimension.

As U is Zariski-open dense in W and W ∩ A≥d,Q is Zariski-dense in W ,
there exists a point x0 ∈ U ∩ A≥d,Q. The fiber of h|Ũ at x̃0 coincides near x̃0
with a component of Nx̃0 of dimension d, hence d = D.

For any x̃ ∈ Ũ we have on the other hand

D = dimx̃

(
W̃ ×Hs x̃

)
= dimx̃ (Nx̃ ∩ W̃ ) ≤ dimx̃ (Nx̃ ) = d = D .

Hence for any x ∈ U , dimx̃ (Nx̃ ∩ W̃ ) = dimx̃ (Nx̃ ). Hence there exists a
component N 0

x of Nx of dimension d such that N 0
x ∩U is open and dense in N 0

x .
Hence U is dense in

⋃
x∈U N 0

x (for the usual topology) and
⋃

x∈U N 0
x ⊂ W .

As this holds for any irreducible component W of A′≥d , the result follows.��

7.3 Application to ZVHS: proof of Theorem 3.2 and corollary for
Hodge loci

Suppose now that V is a ZVHS and F = FiV . Then AF,≥d = V
i≥d and

Theorem 7.1 in this case is Theorem 3.2.
Moreover AF,≥d,Q = V

i
≥d ∩ VQ and Proposition 7.3 reads:

Proposition 7.4 Let S be a smooth complex quasi-projective algebraic variety
and V be a polarized ZVHS over S. Let i ∈ Z and d ∈ N. There exist a Zariski-

open dense subset U of Vi
≥d ∩ VQ

Zar
and, for eachλ ∈ U, a component Vi,0(λ)

of V
i (λ) of dimension at least d such that U ⊂ ⋃

λ∈U V
i,0(λ) ⊂ V

i
≥d .

Consider now the Zariski-closure p(VQ ∩ V
0≥d)

Zar
. It coincides with the

projection p(Vi
≥d ∩ VQ

Zar
). For λ ∈ FiV the projection p(Vi,0(λ)) is a com-

ponent of dimension at least d of Si (p(λ)). ByTheorem3.1 the Zariski-closure
of any such components is a weakly special subvariety of S of dimension at
least d. We thus obtain
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Corollary 7.5 Let S be a smooth complex quasi-projective algebraic variety

and V be a polarized ZVHS over S. Let d ∈ N. Then p(VQ ∩ V
0≥d)

Zar
contains

a Zariski-open dense set U with the following property: for each point x ∈ U

there exists a weakly special subvariety Yx ⊂ p(VQ ∩ V
0≥d)

Zar
of dimension

at least d passing through x.

8 Proof of Theorem 1.5

Following Deligne (see [27, Theor. 4.14] and the comment above it), there
exists a bound on the tensors one has to consider for defining HL(S, V

⊗).
Thus HL(S, V

⊗) = ⋃n
i=1 HL(S, Vi ) for finitely many irreducible weight

zero ZVHS Vi ⊂ V
⊗. It follows that HL(S, V

⊗)pos = ⋃n
i=1 HL(S, Vi )pos.

Hence, replacing V by V ⊕ ⊕n
i=1 Vi if necessary (this does not change the

generic Mumford–Tate group, the period map, or the special subvarieties),
we are reduced without loss of generality to showing that for V a polarizable
ZVHS the Hodge locus of positive period dimension HL(S, V)pos is either a
finite union of special subvarieties of S for V or Zariski-dense in S.

Tomake the proof of Theorem1.5more transparentwe deal firstwith special
cases.
Case 1: the period map �S is an immersion. In that case

HL(S, V)pos = p((VQ ∩ (V)0≥1) .

Applying Corollary 7.5 for d = 1 to V it follows that HL(S, V)pos
Zar

con-
tains a Zariski-open dense subset U with the following property: for each
point x ∈ U there exists a weakly special subvariety Wx of positive period

dimension for V passing through x and contained in HL(S, V)pos
Zar

.

Either there exists x ∈ U such thatWx = S, inwhich caseHL(S, V)pos
Zar =

S. Or for all x ∈ U the weakly special subvariety Wx of S is strict. In this
case the assumption that MT(S, V) is non-product and the description of
weakly special subvarieties given in Sect. 4.1 implies that each Wx is con-
tained in a unique strict special subvariety Sx of positive period dimension
for V. As Sx belongs by definition to HL(S, V)pos, it follows in this case that

HL(S, V)pos
Zar = HL(S, V)pos is a finite union of strict special subvarieties

of S, hence the result.
Case 2: the period map �S has constant relative dimension d . The proof is the
same as in the first case, replacing (Vi )

0≥1 and “of positive period dimension”
by (Vi )

0≥d and “of period dimension at least (d + 1)”.
General case: As the period map �S is definable in the o-minimal struc-
ture Ran,exp (see [3]), it follows from the trivialization theorem [25, Theor.
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(1.2) p.142] that the locus Sd ⊂ S where the fibers of �S are of complex
dimension at least d is an Ran,exp-definable subset of S. As Sd is also a
closed complex analytic subset of S, if follows from the o-minimal Chow
theorem [20, Theor.4.4 and Cor. 4.5] of Peterzil-Starchenko that Sd is a
closed algebraic subvariety of S. Finally we obtain an algebraic filtration
S = Sd0 � Sd1 � · · · � Sdk � Sdk+1 = ∅.
Suppose thatHL(S, V)pos is not algebraic. Let i ∈ {0, · · · , k}be the smallest

integer such that (Sdi −Sdi+1)∩HL(S, V)pos is not a closed algebraic subvariety
of Sdi − Sdi+1 . As HL(S − Sdi+1, V

⊗
|S−Sdi+1

)pos = HL(S, V)pos∩(S − Sdi+1), to

prove that HL(S, V)pos is Zariski-dense in S we can and will assume without
loss of generality that i = k (replacing S by S − Sdi+1 if necessary).

Without loss of generality we can assume that HL(S, V)pos is contained in
Sdi : this is clear if i = 0, as S = Sd0 in this case; if i > 0 there are only finitely
many maximal special subvarieties of positive period dimension Z1, . . . , Zm
of S forV intersecting Sdi−1 −Sdi andwe canwithout loss of generality replace
S by S − (Z1 ∪ · · · ∪ Zm).
ThusHL(S, V)pos coincidewith p((V)0≥di +1∩VQ). Applying Corollary 7.5

with d = di + 1, it follows that the union Z of irreducible components of

HL(S, V)pos
Zar

contains a Zariski-open dense set U such that for every point
x ∈ U there exists a weakly special subvariety Wx of S for V of dimension at
least di + 1 passing through x and contained in Z .

If i > 0 the weakly special subvariety Wx ⊂ Z ⊂ Sdi is strict, and we
conclude as above: each Wx is contained in a unique strict special subvariety Sx
of positive period dimension for V, thus Z = HL(S, V)pos, which contradicts
the assumption that HL(S, V)pos is not an algebraic subvariety of S.

Thus i = 0.Hencewe are inCase 2 above andwe conclude thatHL(S, V)pos
is Zariski-dense in Sd0 = S. This finishes the proof of Theorem 1.5. ��
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