
Invent. math. (2020) 221:505–596
https://doi.org/10.1007/s00222-020-00957-8

Mirror symmetry for moduli spaces of Higgs
bundles via p-adic integration

Michael Groechenig1 · Dimitri Wyss2 ·
Paul Ziegler3

Received: 20 July 2017 / Accepted: 6 February 2020 / Published online: 1 April 2020
© The Author(s) 2020

Abstract We prove the Topological Mirror Symmetry Conjecture by Hausel–
Thaddeus for smooth moduli spaces of Higgs bundles of type SLn and PGLn .
More precisely, we establish an equality of stringy Hodge numbers for certain
pairs of algebraic orbifolds generically fibred into dual abelian varieties. Our
proof utilises p-adic integration relative to the fibres, and interprets canonical
gerbes present on these moduli spaces as characters on the Hitchin fibres using
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Tate duality. Furthermore, we prove for d prime to n, that the number of rank
n Higgs bundles of degree d over a fixed curve defined over a finite field, is
independent of d. This proves a conjecture by Mozgovoy–Schiffmann in the
coprime case.
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1 Introduction

Moduli spaces ofHiggs bundles are known for their rich and intricate geometry.
Asmanifolds they are distinguished by the presence of a hyperkähler structure;
moreover, they admit a completely integrable system. The latter is in fact
defined as a morphism of complex algebraic varieties and is referred to as the
Hitchin map. It yields a fibration of the moduli space whose generic fibres
are abelian varieties. Furthermore, even though these complex varieties are
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not projective, the cohomology of smooth moduli spaces of Higgs bundles is
pure.

In [45] Ngô exploited these properties to prove the Fundamental Lemma
in the Langlands Programme. His proof utilises the aforementioned purity of
cohomology, and foremost natural symmetries of Hitchin fibres, and connects
them to the arithmetic phenomena of stabilisation and endoscopy. Our article
reverses the flow of these ideas. We use the arithmetic of abelian varieties
to compare topological and complex-analytic invariants of moduli spaces of
Higgs bundles for different structure groups.

Higgs bundles on a smooth complete curve X (or compact Riemann sur-
face) are given by a pair (E, θ), where E is a principal G-bundle and θ is
an additional structure known as Higgs field. The geometric features of the
moduli spaces mentioned above are intimately connected with representation
theory and arithmetic. For G and GL two Langlands dual reductive groups,
the Hitchin fibrations share the same base, and the generic fibres are dual in
the sense of abelian varieties. This was observed by Hausel–Thaddeus [31]
in the case of SLn and PGLn , and for general pairs of Langlands dual reduc-
tive groups this is a theorem by Donagi–Pantev [16]. Inspired by the SYZ
philosophy, Hausel–Thaddeus conjectured that the moduli spaces of SLn and
PGLn-Higgs bundles aremirror partners, and predicted an agreement of appro-
priately defined Hodge numbers. We prove this conjecture.

Let n be a positive integer, and d, e two integers prime to n. We choose a
line bundle L ∈ Pic(X) of degree d, and denote byML

SLn
the moduli space of

Higgs bundles (E, θ), where E is a vector bundle of rank n together with an
isomorphism det(E) � L , and θ is trace-free. We let Me

PGLn
be the moduli

space of families of PGLn-Higgs bundles, which admit over geometric points
a reduction of structure group to a GLn-Higgs bundle of degree e. Moreover,
there exists a natural unitary gerbe on Me

PGLn
, which we denote by αL [31,

Section 3].

Theorem 1.1 (Topological Mirror Symmetry Conjecture of [31])We have an
equality of (stringy) Hodge numbers h p,q(ML

SLn
) = h p,q

st (Me
PGLn

, αL).

The coprimality assumption on d and e with respect to n ensures that the
notion of stability and semi-stability coincide. The resulting SLn-moduli space
ML

SLn
is smooth, while Me

PGLn
has finite quotient singularities. We use h p,q

st
to denote stringy Hodge numbers. These are numerical invariants introduced
by Batyrev [5], which include appropriate correction terms to compensate for
the presence of singularities. In addition, the gerbe α living on these spaces
needs to be taken into account. This is natural from the point of view of duality
of the Hitchin fibres. The proof of this result proceeds by proving an equality
for stringy point-counts over finite fields first, by means of p-adic integration.
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We then use p-adic Hodge theory to deduce the topological assertion from the
arithmetic one. The details will be given in 7.4.

Our methods are general enough to be applicable beyond the SLn/PGLn-
case. In fact we prove an equality of appropriately defined Hodge numbers for
any “dual pair of abstract Hitchin systems” (see Theorem 6.11). We refer the
reader to Definition 6.9 for a detailed account of what this means. At the heart
of the concept lies a pair of maps (M1

π1−→ A π2←− M2) of complex algebraic
orbifolds, where the base A is assumed to be smooth, and contains an open
dense subsetA♦, such that over this open subset there exist families of abelian
varieties P♦

1 → A♦ ← P♦
2 , which act faithfully and transitively on the fibres

ofMi . Moreover, we assume that P♦
1 and P♦

2 are dual in the sense of abelian
varieties. There are further technical conditions that are omitted for the sake
of brevity. They guarantee thatM1 andM2 areminimal, and hence enable us
to compare topological invariants. These conditions are modelled on the same
structural properties of the Hitchin map fundamental to [45].

Finally, inspired by the set-up of [31, Section 3], we consider gerbes αi ∈
H2
ét(Mi , μr ) satisfying the following condition, which extends the fibrewise

duality of the abelian varieties P♦,∨
1 � P♦

2 to the torsors M♦
i .

Definition 1.2 We say that the pair (M1, α1) is dual to (M2, α2), if we
have canonical equivalences M♦

1 � Split′(M♦
2 /A♦, α2), and M♦

2 �
Split′(M♦

1 /A♦, α2), whereSplit′ denotes the principal component of the stack
of fibrewise splittings of a gerbe, as defined in Definition 6.4.

It is for systems satisfying these conditions that we prove our main mirror
symmetry result. At first we need to recall the definition of the E-polynomial
(or Serre characteristic). For a smooth complex projective variety X this is
defined to be the polynomial

E(X; x, y) =
∑

p,q∈N
(−1)p+qh p,q(X)x p yq .

There exists a unique extension of the E-polynomial to arbitrary complex
varieties, such that

E(X; x, y) = E(X\Z; x, y) + E(Z; x, y)
for every closed subvariety Z ⊂ X (see [30, Definition 2.1.4]).
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Suppose that � is a finite group acting generically fixed point free on a
complex quasi-projective variety X , such that for every γ ∈ � the fixpoint set
Xγ is connected (for simplicity). We define the stringy E-polynomial as

Est([X/�]; x, y) =
∑

γ∈�/conj

E(Xγ /C(γ ); x, y)(xy)F(γ ),

where C(γ ) denotes the centraliser of γ , and F(γ ) denotes the so-called
fermionic shift. We refer the reader to Definition 2.2 for more details.

Furthermore, a μr -gerbe α on [X/�] gives rise to a modified invariant
Est([X/�], α; x, y). We refer the reader to Definition 2.12.

Theorem 1.3 (Topological Mirror Symmetry, c.f. Theorem 6.11) Let (Mi →
A, αi ) be a dual pair of abstract Hitchin systems in the sense of Definition 6.9
over a ring of finite type over Z. Then we have the equality of stringy E-
polynomials Est(M1, α1; x, y) = Est(M2, α2; x, y).

By a “stringy version” of theWeil conjectures, the dimensions of the stringy
cohomology groups appearing here are governed by “stringy point-counts”
over finite fields (c.f. 2.4). As mentioned above we will prove our mirror
symmetry result by a comparison of stringy point-counts of similar varieties
over finite fields.

Strategy: Our approach to Theorem 1.1 is strongly inspired by Batyrev’s proof
of the following result (see [4]):

Theorem 1.4 (Batyrev) Let X and Y be smooth projective birational Calabi-
Yau varieties over the field of complex numbers. Then X and Y have equal
Betti numbers.

Batyrev’s proof uses the fact that it suffices to compare the point-counts of
two such varieties over finite fields by virtue of the Weil Conjectures. Using
standard reduction steps one is led to the following set-up: Let F/Qp be a
local field with ring of integersOF and residue field Fq . We have smooth and
projective Calabi-Yau schemes X and Y over OF together with a birational
transformation X ��� Y over OF . Batyrev then invokes a result of Weil [54,
Theorem 2.2.5], which asserts that the set of OF -integral points of X has a
canonical measure satisfying

vol (X (OF )) = #X (Fq)

qdim X
. (1)

It is therefore sufficient to prove that X (OF) andY (OF ) have the same volume.
Since the canonical measure can be described in terms of a non-vanishing top
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degree form on X , and the two varieties are isomorphic up to codimension 2,
the equality of the volumes is remarkably easy to prove.

The first piece of evidence that a similar strategy can be applied to the
Hausel–Thaddeus conjecture is provided by the fact that the p-adic volume of
an orbifold over OF is related to the stringy point-count.

Theorem 1.5 (Theorem 4.16) Let X be a smooth scheme over the ring of
integers OF of a local field F with residue field Fq . Assume that an abstract
finite abelian group � acts generically fixed point-free on X preserving the
canonical line bundle and that F contains all roots of unity of order |�|. Then
we have

vol ((X/�)(OF )) = #st[X/�](Fq)

qdim X
,

with respect to the canonical orbifold measure on X/�.

This is well-known to experts, and various versions exist in the literature
[14,56].Howeverwewere unable tofind a reference that canbe applieddirectly
in our context, particularly concerning the calculation of the fermionic shift in
measure-theoretic terms. For this reason we have included a proof in Sect. 4.3.

The stringy point-count of X/� twisted by a gerbe α can also be computed
in this manner: As we explain in Definition 5.28, the gerbe α induces ameasur-
able function fα on (X/�)(OF ) (defined almost everywhere) whose integral
determines the stringy point-count twisted by α. Analogously to Batyrev’s
proof of Theorem 1.4, one deduces Theorem 1.1 from the following equality:

Theorem 1.6 (TMS for p-adic integrals, c.f. Theorem 6.17) Let F be a local
field and (Mi → A, αi ) a dual pair of abstract Hitchin systems over F. Then
we have the equality

∫

M1(OF )

fα1dμorb =
∫

M2(OF )

fα2dμorb.

The proof proceeds by evaluating both sides fibre-by-fibre alongMi → A
using relativemeasures. After discarding a subset ofmeasure zerowemay only
work with the fibres above those rational points a ∈ A(OF ), which belong
to A♦(F) as well. That is we only have to analyse the fibrewise version of
the identity above over torsors of abelian varieties defined over F . Using a
reinterpretation of the functions fαi in terms of Tate Duality one can show
that on a single fibre these functions are either constant of value 1 or exhibit
character-like behaviour, depending on whether the dual fibre has a rational
point or not. This guarantees that only a contribution of those fibres, which
can be matched by an equal contribution on the other side, survives.
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A similar idea applies to a conjecture ofMozgovoy–Schiffmann on the num-
ber of points of Md

GLn
, the moduli space of semi-stable GLn-Higgs bundles

of fixed degree d.

Theorem 1.7 (Theorem 7.15) Let d, e be positive integers prime to n and
X/Fq a smooth proper curve. Then we have

#Md
GLn

(X)(Fq) = #Me
GLn

(X)(Fq).

There are independent proofs of this theorem by Yu [57], and byMellit [38]
without the coprimality assumption.

Previously known cases of TMS: Theorem 1.1 was conjectured by Hausel–
Thaddeus [31]. They provided ample evidence for their prediction, particularly
a full proof for the cases n = 2 and n = 3.

In [29] Hausel–Pauly analysed the group of connected components of Prym
varieties. They show that the finite group � = J [n] acts trivially on the coho-
mology up to the degree predicted by Theorem 1.1.

In [25, Section 5.3] Hausel observes that Ngô’s [45, Theorem 6.4.1] should
imply a fibrewise version of Theorem 1.1, over an open dense subset of the
Hitchin base.

Finally we remark that there is also an analogue of the Topological Mirror
Symmetry Conjecture for parabolic Higgs bundles. The paper [7] by Biswas–
Dey verified that also in the parabolic case the moduli spaces for the SLn and
PGLn-case are generically fibred into dual abelian varieties. This motivates
study of the stringy cohomology of moduli spaces of parabolic Higgs bundles.
There is a certain family of examples of such spaces, which can be described in
termsofHilbert schemesof the cotangent bundles of an elliptic curve (see [20]).
Using Göttsche’s formula for the cohomology of Hilbert schemes one can
verify the conjecture for these cases, as has been explained to us by Boccalini–
Grandi [8]. Recently, the rank 2 and 3 case of the topological mirror symmetry
conjecture for strongly parabolic Higgs bundles was established by Gothen–
Oliveira in [21].

In [28] by Hausel–Mereb–Rodriguez-Villegas the authors will show the
analogue of the Topological Mirror Symmetry Conjecture for E-polynomials
of character varieties.

Conventions: For a commutative ring R wewill sometimes use the terminol-
ogy R-variety to refer to a reduced and separated scheme of finite presentation
over Spec(R).

Some aspects of our work require a choice primitive roots of unity. We
therefore assume for the sake of convenience that for every field F appearing
in this article, and every positive integer r , such that μr (F) has order r , we
have chosen a primitive root of unity ζr of order r . Furthermore, we assume
that these choices are compatible, that is, satisfy ζ rrr ′ = ζr ′ . If there is no risk
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of confusion, we will drop the subscript and simply write ζ = ζr for a fixed
positive integer r .

2 Stringy cohomology and gerbes

2.1 Stringy invariants

We will mostly consider stringy invariants of varieties, which admit a presen-
tation as a global quotient Y/�, where Y is a smooth variety, and � a finite
abstract group. A priori, the invariants will depend on this presentation, but
can be shown to be a well-defined invariant of the quotient stack [Y/�]. For
more details on this, as well as a treatment of stringy Hodge numbers for more
general classes of singular varieties, we refer the reader to Batyrev’s [6].

Definition 2.1 Let X be a Deligne–Mumford stack. We say that X
(a) is a finite quotient stack, if there exists an algebraic space Y with a

generically fixed-point free action of an abstract finite group � such that
X � [Y/�].

(b) is a finite abelian quotient stack, if (a) holds, and the group � can further-
more be assumed to be abelian.

Definition 2.2 Let X = [Y/�] be a smooth finite quotient stack over a field
k as in Definition 2.1, such that |�| is invertible in k. Fix an algebraic closure
k̄ of k. Let x ∈ Y be a closed point fixed by an element γ ∈ �. The tangent
space TxY inherits therefore a representation by the finite cyclic group I = 〈γ 〉
generated by γ . Over k we choose a basis of eigenvectors (v1, . . . , vk) and
denote by (ζ1, . . . , ζk) the corresponding list of eigenvalues.

Let ζ be our fixed primitive root of order r = ord(γ ) in k̄. For each eigen-
value ζi there exists a unique expression ζi = ζ ci with 0 ≤ ci < r . With
respect to this choice we define the fermionic shift of γ at x to be the sum of
fractions

F(γ, x) =
k∑

i=1

ci
r

.

This number is locally constant on Y γ , and therefore defines a function on
π0(Y γ ). Furthermore F(γ, ·) is constant on C(γ )-orbits in π0(Y γ ) , where
C(γ ) ⊂ � denotes the centraliser of γ . Hence we obtain a function

F(γ, ·) : π0([Y γ /C(γ )]) → Q.
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There is also a version of the fermionic shift in the literature, where the
numbers c1, . . . , ck are chosen to satisfy 0 < ci ≤ r (c.f. e.g. [14,37,55]). We
write

w(γ, ·) : π0([Y γ /C(γ )]) → Q,

for the corresponding locally constant function. For any connected compo-
nent Z ∈ π0([Y γ /C(γ )]) the two functions F, w are related by the formulas
F(γ,Z) = w(γ,Z) − dimZ and w(γ,Z) = dimX − F(γ −1,Z).

We reiterate that the definition of the fermionic shift depends on the choice
of a primitive root of unity ζ of order r . Over the field of complex numbers it

is standard to choose ζ = e
2π i
r , but for all other fields this choice is a recurring

aspect of our work.

Remark 2.3 For a groupoid A (typically the k-points of X ), we will denote
by Aiso the set of isomorphism classes of A. If Aiso is finite we write #A for
the mass of A, that is

#A =
∑

a∈Aiso

1

|Aut(x)| .

Definition 2.4 Let X be a smooth finite quotient stack over a field k. Choose
a presentation X = [Y/�] as in Definition 2.1 with Y smooth, as well as a
primitive root of unity ξ ∈ k̄ of order |�|.
(a) If k = C is the field of complex numbers, we denote by Est(X ; x, y) the

polynomial

Est(X ; x, y) =
∑

γ∈�/conj

⎛

⎝
∑

Z∈π0(Y γ /C(γ ))

E(Z; x, y)(xy)F(γ,Z)

⎞

⎠ ,

where we define for Z = [W/C(γ )]

E(Z; x, y) =
∑

p,q,k

(−1)k dim(H p,q;k
c (W )C(γ ))x p yq .

Here H p,q;k
c (W ) denotes the space grWp+q Hk

c (W )p,q given by the mixed
Hodge structure on the compactly supported cohomology of W .

(b) If k = Fq is a finite field, we denote by #st(X ) the sum

#st(X ) =
∑

γ∈�/conj

⎛

⎝
∑

Z∈π0(Y γ /C(γ ))

qF(γ,Z)#Z(k)

⎞

⎠ ∈ R.
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The fermionic shift F(γ, Z) depends on the choice of ζ . These stringy invari-
ants are however independent of it: Let ζ ′ be another choice, and F ′(γ, Z)

the resulting shift. There exists an integer k, prime to |�|, such that ζ ′ = ζ k .
Elementary group theory shows that γ k is also a generator of the finite cyclic
group I generated by γ . Therefore we have F(γ, Z) = F ′(γ k, Z) and the
above sums remain the same. One can also check that these definitions do not
depend on the choice of presentation of X .

Remark 2.5 (Inertia stacks) Recall that for any stack X the inertia stack IX
is defined to be X ×X×X X . Concretely, for any scheme S the groupoid of
S-points IX (S) equals the groupoid of pairs (x, α) where x ∈ X (S) is an
S-point of X and α ∈ AutX (x). One can check that for a finite quotient stack
X = [Y/�] one has an equivalence

IX ∼=
⊔

[γ ]∈�/conj

[Y γ /C(γ )].

In particular the Fermionic shift and the weight from Definition 2.4 can be
considered as locally constant functions

F, w : IX (k)iso → Q.

Over a finite field k one then has

#st(X ) =
∑

x∈IX (k)iso

qF(x)

|AutIX (k)(x)| .

In the next subsection we will introduce a variant of this definition, which
also depends on a gerbe α ∈ H2([Y/�], μr ) on the quotient stack.

2.2 Gerbes and transgression

We begin this subsection by recalling terminology from the theory of gerbes.
Only gerbes banded by A = μr and A = Gm will appear in this article.

Definition 2.6 LetS be aDeligne–Mumford stack and A a commutative group
scheme over S.
(i) A gerbe α over S is a morphism of algebraic stacks α → S satisfying the

following two conditions:
• For any scheme S ′ over S and any two objects x, x ′ ∈ α(S ′) there
exists an étale covering S ′′ of S ′ such that x and x ′ become isomorphic
in α(S ′′).

123



Mirror symmetry for moduli spaces of Higgs bundles 515

• There exists an étale covering S ′ of S such that α(S ′) is not empty.
(ii) A banding of a gerbe α over S by A consists of isomorphisms AS ′ ∼=

AutS ′(x) of étale group sheaves over S ′ for every S-stack S ′ and every
object x ∈ α(S ′), which are compatible with pullbacks. A gerbe together
with an A-banding is called an A-gerbe.

Descent data for A-gerbes are given by 2-cocycles with values in A. For
this reason, the set of isomorphism classes of A-gerbes is equal to H2

ét(S, A).
The reason we care about gerbes is that for X a Deligne–Mumford stack

and α an A-gerbe onX , by the so-called transgression construction, the inertia
stack IX inherits an A-torsor Pα . The formal definition of this torsor uses
the functoriality of the inertia stack construction. In the remainder of this
subsection we describe three equivalent descriptions of Pα , hoping that at
least one of them will appeal to the reader.

2.2.1 An explicit picture for quotient stacks

We give the first construction of Pα: For X = [Y/�] a quotient of a variety
by an abstract group � we have

IX =
⊔

γ∈�/conj

[Y γ /C(γ )].

Let A be a commutative group scheme. An A-gerbeα onX corresponds to a�-
equivariant A-gerbe α on Y . We will summarise the discussion of [31], where
a C(γ )-equivariant A-torsor is defined on every stratum Y γ . By descending
this torsor one obtains an A-torsor Pα on IX .

The �-equivariant structure of α is given by equivalences of gerbes

ηγ : γ ∗α �−→ α for every γ ∈ �, which satisfy various compatibility and
coherence conditions (most of which are not relevant to us). Restricting this
equivalence for a given γ ∈ � to the fixed point locus Y γ one obtains an
automorphism of α|Y γ :

ηγ |Y γ : α|Y γ = (idY γ )∗α|Y γ = (γ |Y γ )∗α|Y γ

ηγ−→ α|Y γ . (2)

The groupoid of automorphisms of an A-gerbe on Y γ is equivalent to the
groupoid of A-torsors on Y γ . This construction therefore yields an A-torsor
P ′

α on Y γ , which is C(γ )-equivariant by virtue of the �-equivariance of α.
Descent theory yields an A-torsor Pα on the component [Y γ /C(γ )] of IX .

Below we record a technical lemma relating central extension and equivari-
ant structures on gerbes. The proof can be skipped when reading this article
for the first time.
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Lemma 2.7 In the following we assume that Y is a scheme endowed with the
action of an abstract finite group, and that A → Y is a smooth group scheme.

(a) The set of isomorphism classes of �-equivariant structures on a trivial
A-gerbe α on Y is isomorphic to H2

sm. grp. Y -sch.(�, A), that is, the set of
isomorphism classes of central extensions

1 → A → �̂ → � → 1, (3)

where A, �̂, and � are viewed as smooth group schemes on Y . We denote
the corresponding Ext-group by Ext1sm. grp. Y -sch.(�, A).

(b) If the group� is cyclic, then a central extension �̂ as in (a) is automatically
abelian. Hence in this case isomorphism classes of central extensions of
� by A correspond to elements of Ext1sm. ab. grp. Y -sch.(�, A).

(c) In case Y = Speck for k a field with H2
ét(Speck, A) = 0, and � a cyclic

group, there is a short exact sequence

H1
ét(k,Homsm. ab. grp. k-sch.(�, A)) ↪→ H2

ét([Y/�], A) � Ext1sm. ab. grp. k-sch.(�, Ak ). (4)

Furthermore, if A is a constant étale group scheme, then this sequence
splits.

Proof Since α is assumed to be trivial on Y , an equivariant structure on an
A-gerbe α corresponds to a choice of equivalences of A-gerbes

ηγ : α � α(� γ ∗α)

for every S-valued point γ ∈ Y (S) for S a Y -scheme, such that ηγ is the
identity for γ = e the neutral element, ηγ is compatible with pullbacks, and
for γ1, γ2 ∈ �(S) we have a commutative diagram

α
ηγ1

ηγ2γ1

α

ηγ2

α.

Furthermore, there is a compatibility condition, which is needed to be satisfied
for every triple γ1, γ2, γ3 ∈ �(S) (see the commutative diagram below). An
equivalence α � α of A-gerbes corresponds to an A-torsor. We therefore see
that a �-equivariant structure on α assigns to every γ ∈ �(S) an A-torsor Lγ

on S, such that for the neutral element e ∈ � we have that Le � A is the trivial
torsor, and furthermore we have isomorphisms indexed by pairs (γ1, γ2) ∈ �2

φγ1,γ2 : Lγ1 ⊗ Lγ2 � Lγ1γ2,
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such that for the neutral element e ∈ � one has that

φγ,e : Lγ ⊗ Le � Lγ

is compatible with the chosen trivialisation of Le (and similarly for φe,γ ), and
for every triple γ1, γ2, γ3 ∈ �(S) we have a commutative diagram

(Lγ1 ⊗ Lγ2) ⊗ Lγ3

φγ1,γ2⊗id

assoc. constraint

Lγ1γ2 ⊗ Lγ3
φγ1γ2,γ3

Lγ1 ⊗ (Lγ2 ⊗ Lγ3)
id⊗φγ2,γ3Lγ1 ⊗ Lγ2γ3

φγ1,γ2γ3 Lγ1γ2γ3 .

This amounts to a monoidal map of stacks in groups

φ : � → BY A.

Given such a map, we associate to it the central extension

1 → A → � ×φ,BY A Y → � → 1,

where Y → BY A is the canonical map to the quotient stack. Vice versa, given
a central extension (3), it is clear that �̂ → � is an A-torsor, and hence we
obtain a map of stacks � → BY A. The central extension property yields that
this is a monoidal map of stacks in groups.

It suffices to prove the analogue of Claim (b) for abstract groups, since
commutativity of smooth group schemes is a local property. The corresponding
statement for extensions of abstract groups can be deduced from the short exact
sequence (*) in [49].

Claim (c): to see why (4) is true we argue as follows. By the assumption
on k, a A-gerbe on [Speck/�] is the same as a �-equivariant structure on the
trivial A-gerbe on Speck. By (a) and (b) such data correspond to elements of
Ext1sm. ab. grp. sch.(�, A). This Ext-group maps to Ext1(�, Ak̄) by base change.
The kernel of this homomorphismcan be identifiedwith the set of isomorphism
classes of extensions �̂, which split when pulled back to the algebraic closure.
Since the set of splitting is a torsor under Hom(�, A) we obtain a short exact
sequence

H1(k,Hom(�, A)) ↪→ Ext1sm. ab. grp. sch.(�, A) � Ext1(�, Ak̄).

If A is a constant étale group scheme, then the sequence splits by sending
an extension of abstract abelian groups to the constant extension of abelian
group schemes. ��
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2.2.2 A purist’s approach to transgression: central extensions of inertia
groups

Recall that the inertia stack of a Deligne–Mumford stack X is defined to be
IX = X ×X×X X . A more direct definition can be given as follows: Let
us denote by S a test scheme. An S-point of X is (by definition) the same
as a morphism S → X . There exists a group Autx (X ), which is equal to
the automorphism group of x in the groupoid X (S). The assignment S �→
{(x, α)|x ∈ X (S) and α ∈ Autx (X )} is represented by IX .

The second viewpoint shows that there exists a morphism IX → X , such
that the fibre over a given S-point x equals the group S-scheme denoted by
Autx (X ). Vice versa, one can use the abstract definition of IX as the self-
intersection of the diagonal of X to deduce the existence of a relative group
scheme structure on the morphism IX → X .

We give the second construction of Pα: Let A be a commutative group
scheme and fix an A-gerbe α over a Deligne–Mumford stack X . An S-point
y ∈ α(S) induces an S-point x ∈ X (S). Moreover we obtain a surjective
morphism of automorphism groups Auty(α) � Autx (X ). The kernel of this
morphism is equal to the group scheme A and is central inAuty(α). Therefore,
we obtain a central extension

A ↪→ Auty(α) � Autx (X ).

The inertia stack of X is fibred in these group schemes over X , and the total
spaces of these central extensions can be assembled into an A-torsor on IX .
The technical details are summarised below.

Construction 2.8 A morphism of stacks α → X induces a morphism of
inertia stacks Iα → IX . For α an A-gerbe (where A is assumed to be a flat
commutative group scheme), we obtain a canonical morphism Iα → IX . For
example, the trivial A-gerbe BX A yields the stack I(BX A) = α ×X A. Since
every A-gerbe is étale locally equivalent to the trivial A-gerbe we conclude
that Iα is étale locally equivalent to α ×X A. This shows that Iα is a stack. As
above there exists for every S-point Z ∈ Iα(S) a central embedding A(S) ↪→
Autz(Iα). We can therefore apply the rigidification process of [1, Theorem
5.1.5] to obtain a stack ÎX = Iα//A, which gives a central extension of X -
group schemes

1 → A → ÎX → IX → 1.

Then, Pα = ÎX is an A-torsor on the Deligne–Mumford stack IX .
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2.2.3 A modern viewpoint on transgression

We give a construction of Pα (which we learned fromB. Antieau). An A-gerbe
on X corresponds to a morphism of 2-stacks X → B2A = B(BA). Since
the inertia stack I(B2A) is equivalent to BA × B2A we obtain the morphism
IX → IB2A → BA, which is the classifying morphism of the A-torsor Pα

on IX .

2.3 Transgression for torsion Gm-gerbes

As before we letX be a Deligne–Mumford stack, and let r be a positive integer
invertible on X . The Kummer sequence

· · · → H1
ét(X , Gm )

[r ]−→ H1
ét(X , Gm ) → H2

ét(X , μr ) → H2
ét(X , Gm )

[r ]−→ H2
ét(X , Gm ) → · · · (5)

implies that H2
ét(X , μr ) surjects onto the r -torsion subgroup H2

ét(X , Gm)[r ].
That is, for every Gm-gerbe β, such that βr is a neutral gerbe, there exists a
μr -gerbe α, which induces β via the embedding μr ↪→ Gm .

Lemma 2.9 Let Y be an irreducible Noetherian scheme endowed with the
action of an abstract finite group�, such that Y admits a Zariski-open covering
by �-equivariant affine subsets. Let r be a positive integer, such that μr ·|�| is
a constant étale group scheme on Y . Then, there exist a map

τ : H2
ét([Y/�], Gm)[r ] → H1

ét(I[Y/�], μr ),

such that the diagram

H2
ét([Y/�], μr )

α �→Pα H1
ét(I[Y/�], μr )

H2
ét([Y/�], Gm)[r ] β �→Pβ

H1
ét(I[Y/�], Gm)

commutes.

Proof As we have seen above, it follows from the Kummer sequence that
H2
ét([Y/�], μr ) surjects onto H2

ét([Y/�], Gm)[r ]. It is therefore sufficient to
prove that for

α ∈ ker(H2
ét([Y/�], μr ) → H2

ét([Y/�], Gm)[r ])
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the associated μr -torsor on the inertia stack

Pα ∈ H1
ét(I[Y/�], μr )

is trivial.
Let Y = ⋃

i∈I Ui be a covering by �-equivariant Zariski-open affine sub-
sets. Since Y is Noetherian, we may assume that I is finite. Furthermore, by
further refining this covering, we achieve that the open subsetsUi do not carry
non-trivial line bundles. Below, we will prove triviality of Pα|IUi . The general
case follows from the following claim. ��
Claim 2.10 A Zariski locally trivial μr -torsor on Y is trivial.

Proof At first we observe that μr is by assumption a constant étale group
scheme. In hisTohokupaper,Grothendieck proved a vanishing result for higher
cohomology groups Hi

Zar(Y, A) of a constant abelian group valued sheaf on an
irreducible Noetherian space Y (see [22, p. 168] and also [52, Tag 02UW]). In
particular we have H1

Zar(Y, μr ) = 0, which implies triviality of Zariski locally
trivial μr -torsors. ��

Henceforth we may assume without loss of generality that Y is affine and
irreducible. By assumption, α induces the trivial Gm-gerbe on [Y/�]. It fol-
lows from the Kummer sequence that α = δ(L), where L ∈ Pic([Y/�]) =
H1
ét([Y/�], Gm) and

δ : H1
ét([Y/�], Gm) → H2

ét([Y/�], μr )

denotes the boundary map of the Kummer sequence (5). The μr -gerbe δ(L)

measures the obstruction to the existence of an r th root of L . As a groupoid-
valued functor, it assigns to a test scheme S → Y the groupoid of pairs (M, φ),
where M is a line bundle on S and φ : M⊗r � L .

After replacing Y by a Zariski open subset on which L is trivialisable, we
see that the gerbe α = δ(L) splits when pulled back along Y → [Y/�], since
L|Y � OY � O⊗r

Y . It follows from Lemma 2.7 that α corresponds to a central
extension of Y -group schemes

1 → μr,Y → �̂α → � → 1. (6)

Claim 2.11 The central extension (6) is Zariski locally induced by a central
extension of abstract groups.

Proof By assumption, μr is a constant étale group scheme on Y , and � is the
constant group scheme. These facts together with connectivity of Y , imply that
it suffices to prove that �̂α is constant.
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Recall that α = δ(L) where L ∈ Pic([Y/�]). Since we replaced Y by an
affine open on which (the pullback of) L is trivial, we see that L corresponds
to the choice of a �-equivariant structure on OY . That is, L corresponds to a
character λ : � → Gm .

We claim that the central extension (6) can be constructed explicitly as a
fibre product of λ : � → Gm,Y by the r th power map [r ] : Gm → Gm :

1 → μr,Y → �̂α = � ×λ,Gm,Y ,[r ] Gm,Y
pr1−−→ � → 1.

Indeed, projection to the second component gives rise to a character

μ : �̂α → Gm,Y ,

such that μr = λ ◦ pr1. That is, the central extension �̂α agrees with the
obstruction for λ to have an r th root.

The character λ : � → Gm,Y factors through μ|�|,Y , which we assumed to
be a constant group scheme. Therefore, �̂α is obtained by pulling back the
central extension

1 → μr,Y → μr ·|�|,Y
[r ]−→ μ|�|,Y → 1

along λ : � → μr,Y . The assumption that μr ·|�| is a constant étale group
scheme on Y yields that the latter central extension is induced by an extension
of abstract groups. ��
By definition of the transgression map, the μr -torsor Pα is given by pulling
back the μr -torsor �̂α along the map I[Y/�] → � × Y . Since �̂α → � is a
trivial μr -torsor by the claim above, we deduce that Pα is trivial. This proves
what we wanted. ��

2.4 Twisted stringy invariants

The μr -torsor Pα associated to a μr -gerbe α by the transgression construction
from the previous subsection enables us to define a variant of stringy coho-
mology of a quotient stack X = [Y/�], which takes a given μr -gerbe on X
into account:

Definition 2.12 Let X = [Y/�] be a complex quotient stack of a smooth
complex variety Y by a finite group �. For a positive integer r and a gerbe
α ∈ H2

ét(X , μr ) we define the α-twisted stringy E-polynomial of X as

Est(X , α; x, y) =
∑

γ∈�/conj

⎛

⎝
∑

Z∈π0([Y γ /C(γ )])
E(Z, Lγ ; x, y)(xy)F(γ,Z)

⎞

⎠ ,
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where Lγ denotes the μr -torsor Pα|[Y γ /C(γ )] on [Y γ /C(γ )] given by trans-
gression and

E(Z, Lγ ; x, y) = Eχ(Lγ ; x, y),
where χ : μr (C) ↪→ C

× denotes the standard character, and Eχ denotes the
part of the E-polynomial corresponding to the χ -isotypic component of the
cohomology of the total space H∗

c (Lγ ).

Similarly we can define α-twisted versions of stringy points counts for quo-
tient stacks over a finite field k. The definition passes via �-adic cohomology,
and hence requires us to choose an embedding μr (k) ⊂ Q�, in order to extract
an �-adic local system Lγ from the μr -torsor Pα .

Definition 2.13 Let Y be a variety over a finite field k = Fq with an action
of a finite abstract group �. Let X = [Y/�] be the associated quotient stack.
For a positive integer r prime to the characteristic of k, and α ∈ H2

ét(X , μr )

we define

#α
st(X ) =

∑

γ∈�/conj

⎛

⎝
∑

Z∈π0([Y γ /C(γ )])
qF(γ,Z)#Lγ Z(k)

⎞

⎠ ,

where Lγ denotes the induced �-adic local system on Y γ obtained from the
μr -torsor Pα|[Y γ /C(γ )] and

#Lγ Z(k) =
∑

x∈Z(k)iso

Tr(Frx , Lγ,x )

|Aut(x)| ,

where Frx denotes the Frobenius at x .

2.5 From point-counts to E-polynomials

Let XC be a complex variety. For a subring R ⊂ C we refer to an R-scheme
XR together with an isomorphism XR ×R C ∼= XC as an R-model of XC.
Using a finite presentation argument it is easy to show that for every complex
variety XC there exists a ring R ⊂ C of finite type over Z such that XC has an
R-model.
In this section we recall an argument, which allows one to deduce from an

agreement of all possible stringy point counts for given R-models of two com-
plex varieties XC, YC an agreement of stringy E-polynomials Est(XC; x, y) =
Est(YC; x, y).
We begin by proving an equivariant analogue of Katz’s Theorem 6.1.2 in the

appendix of [30] (which is a generalisation of Ito’s [33]). This will be obvious
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to experts, but we are including the details for the sake of completeness. We
recommend to readers who are new to this application of p-adic Hodge theory
to take a look at Katz’s explanations in loc. cit.

In the followingwewill alwaysworkwith compactly supported cohomology
when dealing with non-projective varieties.

Definition 2.14 Let G be a finite abstract group. We understand G-schemes
over a base scheme S to be schemes over S with a G-action over S, and G-
varieties to be separated G-schemes of finite type over a base field, such that
everyG-orbit is contained in an affine open subscheme. For aG-representation
V over a field k and a character χ : G → k×, we denote by V χ the χ -isotypic
component of V .

(a) For a complex G-variety X and a complex-valued character χ of G we
let Eχ

G(X; x, y) ∈ Z[x, y] be the polynomial

Eχ
G(X; x, y) =

∑

p,q∈Z

∑

i∈Z

(−1)i dim[grp,qW Hi
c (X)χ ]x p yq .

(b) For a G-variety X over a finite field Fq , and a Q�-valued character χ of
G, we define the χ -twisted point count #χ

G(X) ∈ Q� to be the alternating
sum of traces

#χ
G(X) =

∑

i∈Z

(−1)iTr[Fr, Hi
c,ét(X, Q�)

χ ] =
∑

x∈[X/G](Fq )iso

Tr[FrX , (Lχ)x ],

where Lχ denotes the �-adic local system on the quotient [X/G] induced
by χ .

We can now state an equivariant analogue of Katz’s [30, Theorem 6.1.2].
We repeat once more that our proof follows closely the one given in loc. cit.,
and refer the reader to the original source for a less terse account.

Theorem 2.15 Let G be a finite group and R ⊂ C a subalgebra of finite type
over Z. We fix an abstract isomorphism of C and Q� and let χ be a complex-
valued character of G. Assume that X and Y are separated G-schemes of finite
type over R, such that for every ring homomorphism R → Fq to a finite field
Fq we have #χ

G(X ×R Fq) = #χ
G(Y ×R Fq). Then, we also have

Eχ
G(X ×R C; x, y) = Eχ

G(Y ×R C; x, y).
Proof As in loc. cit. we may assume that X and Y are smooth and projective
over R. This is possible by virtue of Bittner’s [9, Lemma 7.1], which we use
to replace [30, Lemma 6.1.1] in Katz’s proof.
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Furthermore, we can achieve regularity of SpecR by inverting a single
element in R (since R ⊂ C is integral, it is generically smooth). We let
f : X → SpecR and g : Y → SpecR denote the structural morphisms. As in
loc. cit. we choose a prime �, such that � is larger than dim X and dim Y and
such that we have a finite extension E ofQ� together with an embedding R into
the valuation ringO of E (in fact, by virtue of Cassels’s Embedding Theorem
[11] there are infinitely many prime numbers �, such that E can be chosen to
be Q�). For every integer i we then consider the lisse sheaves (Ri f∗Q�)

χ and
(Ri g∗Q�)

χ on SpecR[1
�
]. Smoothness and projectivity of X and Y guarantee

purity of these sheaves. Hence the equality #χ
G(XFqr ) = #χ

G(YFqr ) for all finite
overfields Fqr of Fq implies the identity

det(1 − tFrq , (Ri f∗Q�)
χ ) = det(1 − tFrq , (Ri g∗Q�)

χ )

for all integers i . Chebotarev’s Density Theorem yields an isomorphism of
semi-simplifications

((Ri f∗Q�)
χ )ss ∼= ((Ri g∗Q�)

χ )ss

of lisse sheaves of SpecR[1
�
].

Using the embedding R ↪→ O we can pull back our constructions and
insights obtained so far to this finite extension of Z�. We obtain two smooth
projective E-varieties XE and YE of good reduction for which we have an
equivalence of lisse sheaves over SpecE

((Ri ( fE )∗Q�)
χ )ss � ((Ri (gE )∗Q�)

χ )ss .

Fontaine–Messing’s [19] or Faltings’s [17] shows that Ri (( fE )∗Q�) =
Hi (XĒ , Q�) is a Hodge-Tate representation of Gal(E) and that there is a
natural isomorphism

⊕

p+q=i

Hq(XE , �p) ⊗ C�(−p) � Hi (XĒ , Q�) ⊗ C�.

The naturality of this isomorphism implies that this isomorphism respects the
G-action on both sides.We infer that theHodge Tate numbers of Hi(XĒ , Q�)

χ

recover the dimension of the χ -isotypic component of Hq(XE , �q). We con-
clude the proof by applying the same reasoning toYE and using the equivalence
of the semi-simplifications of the Gal(E)-representations Hi (XĒ , Q�)

χ and
Hi (YĒ , Q�)

χ . ��
We will use a slightly more general result. In order to apply Theorem

2.15 to compare stringy E-polynomials, we have to adjoin formal r th roots
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of the Lefschetz motive L = [A1] to the Grothendieck ring of G-varieties

K0(VarG/R)[(L 1
r )r≥2].

Definition 2.16 (a) For q ∈ Z a prime power, a compatible system of roots
of q is a sequence s = (sr )r≥2 in C with s1 = q and srrr ′ = sr ′ for all
r, r ′ ≥ 1.

(b) Given a ring homomorphism R → Fq , every compatible system s of roots
of q induces a well-defined equivariant point-count homomorphism

#s,χ
Fq

: K0(VarG/R)[(L 1
r )r≥2] → C

extending the usual point count homomorphism

#χ

Fq
: K0(VarG/R) → C

by stipulating #s,χ
Fq

(L
1
r ) = sr for the trivial character χ and 0 otherwise.

(c) Since two choices s and s′ of roots of p differ by an element σ of

Gal(Q̄/Q), we see that for X, Y ∈ K0(VarG/R)[(L 1
r )r≥2] we have

#s,χ
Fq

(X) = #s,χ
Fq

(Y ) if and only if #s
′,χ

Fq
(X) = #s

′,χ
Fq

(Y ). Hence we obtain

a well-defined relation #χ

Fq
(X) = #χ

Fq
(Y ) on K0(VarG/R)[(L 1

r )r≥2].
(d) Similarly, the equivariant E-polynomial extends to a function

Eχ : K0(VarG/C)[(L 1
r )r≥2] → Z[(x 1

r , y
1
r )r≥2]

by stipulating Eχ(L
1
r ) = (xy)

1
r for the trivial character, and 0 otherwise.

The most natural choice of a compatible system of roots of q is the
sequence of positive real roots. However we will also consider the sequence
(Tr(FrFq , Q�(

1
r )))r≥1 given by a homomorphism R → Fq and a compatible

system of roots of the Tate twist Q�(1) on SpecR in the following sense:

Lemma 2.17 After replacing R by a finite étale extension R′ there exist r th
roots Q�(

1
r ) of the Tate twist Q�(1) as lisse �-adic sheaves on SpecR for all

r ≥ 1 satisfying Q�(
1
rr ′ )⊗r ′ ∼= Q�(

1
r ) for all r, r

′ ≥ 1.

Proof This is amild generalisation of Ito’s [33, 5.3].We consider the Tate twist
Q�(1) as a representation of the étale fundamental groupρ : π ét

1 (SpecR, C) →
Q

×
� . Since it is a continuous �-adic presentation of a profinite group it factors

through Z
×
� . We choose an open subgroupU ⊂ Z

×
� and V ⊂ Z�, such that we

have a logarithm log : U → V and exp : V → U . There exists a pointed finite
étale covering SpecR′ → SpecR, such that ρ|

π ét
1 (SpecR′,C)

factors through U .
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For r ≥ 1 we define another continuous �-adic representation of
π ét
1 (SpecR′, C) by the formula

exp(
1

r
log(ρ|

π ét
1 (SpecR′,C)

)).

By construction the corresponding lisse étale sheaves are r th roots of the Tate
twist satisfying the required compatibility condition. ��
Theorem 2.18 Let G be a finite group and R ⊂ C a subalgebra of finite type
over Z. We fix an abstract isomorphism of C and Q� and let χ be a complex-

valued character of G. We assume that X, Y ∈ K0(VarG/R)[(L 1
r )r≥2], such

that for every ring homomorphism R → Fq to a finite field Fq we have
#χ

Fq
(X) = #χ

Fq
(Y ). Then, we also have

Eχ(X ×R C; x, y) = Eχ(Y ×R C; x, y).
Proof After replacing R by afinite étale extensionwemay choose a compatible
system Q�(

1
r ) as in Lemma 2.17.

We fix a character χ of G. The assertion is reduced to the following: Let
X0, . . . , Xm and Y0, . . . , Ym′ be smooth projective G-varieties over R ⊂ C

(which is smooth over Z), and

α0, . . . , αm, β0, . . . , βm′ ∈ Q ∩ [0, 1),
such that we have for every R → Fq an equality

m∑

i=0

qαi#s,χ
Fq

(Xi ) =
m′∑

i=0

qβi#s,χ
Fq

(Yi ),

where s = (Tr(FrFq , Q�(
1
r )))r≥1 is the induced systemof roots of q.We denote

by X = ∑m
i=0[Xi ] · L

αi and Y = ∑m′
j=0[Yi ]Lβ j the corresponding elements

of K0(VarG/R)[(L 1
r )r≥2].

We choose a prime �, such that � > dim Xi , dim Y j for all i, j , and, such
that we have a finite extension E of Q� together with an embedding R into the
valuation ring O of E .

We denote by fi : Xi → SpecR and gi : Yi → SpecR the structural mor-
phisms. For a rational number c ∈ Q\N we define (Rc fi,∗Q�)

χ = 0. We can
now consider for every rational number c > 0 the lisse �-adic sheaves

(Rc f∗Q�)
χ =

m⊕

i=0

(Rc−2αi fi,∗Q�(αi ))
χ ,
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and similarly,

(Rcg∗Q�)
χ =

m′⊕

i=0

(Rc−2βi gi,∗Q�(βi ))
χ .

By Chebotarev Density we have an isomorphism of semi-simplifications
(Rc f∗Q�)

χ,ss � (Rcg∗Q�)
χ,ss of lisse sheaves over SpecR[�−1]. We now use

the morphism R → E , and consider the Galois representations of Gal(Ē/E)

induced by these lisse sheaves by pullback to E .
By applying p-adic Hodge theory (that is, Fontaine–Messing’s [19] or Falt-

ings’s [17], as in the proof of Theorem 2.15) to the smooth projective varieties
Xi (and Y j ), we see that the Hodge-Tate weights of these Galois representation
are given by the formal expressions:

h p,q
χ (XC) =

m∑

i=0

h p−αi ,q−αi
χ (Xi ),

respectively h p,q
χ (YC) = ∑m′

i=0 h
p−αi ,q−αi
χ (Y j ) where p, q ∈ Q, and we use

the convention that for non-integral rational number c, d we have hc,dχ (Xi ) =
0. We therefore conclude that Eχ(XC) = Eχ(YC). ��
Theorem 2.19 Let R ⊂ C subalgebra of finite type over Z. We fix an abstract
isomorphism of C and Q�. Let Xi be smooth �i -varieties for two abstract
finite abelian groups �1 and �2. Let Xi = [Xi/�i ] be the resulting quotient
R-stacks and αi be a μr -gerbe on Xi for i = 1, 2. We suppose that for every
ring homomorphism R → Fq to a finite field Fq we have #α1

st (X1 ×R Fq) =
#α2
st (X2 ×R Fq). Then, we also have

Est(X1 ×R C, α1; x, y) = Est(X2 ×R C, α2; x, y).
Proof We may assume �1 = �2, since we can replace �1 and �2 by � =
�1 × �2 in the following way:

X1 = [(X1 × �2)/�],
and similarly for X2. Moreover after enlarging R ⊂ C we may assume that
these presentations as quotient stacks are also defined over R. We shall assume
that R contains μr (C); this can always be achieved by suitably modifying R.

For each prime power q let sq = (q
1
r )r≥1 be the compatible system of

positive real roots. Then for every homomorphism R → Fq , the stringy point-
count of Xi twisted by αi is given by #

sq ,χ
Fq

applied to
∑

[γ ]∈�i
L
F(γ )Li,γ ,

where Li,γ is the �-equivariant local system on Xγ

i induced by the gerbe αi .
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The local system Li,γ is induced by a μr -torsor (with respect to a chosen
embedding χ : μr ↪→ Q�). Let Yi,γ be the total space of this torsor. It is acted
on by � × μr , and E�(Xγ

i , Lγ ; x, y) is equal to Eχ
�×μr

(Yi,γ ; x, y), where χ

denotes the character induced by the chosen embedding μr ↪→ Q� and the
projection�×μr � μr .We can therefore apply Theorem 2.18 toG = �×μr
and

∑
γ∈�[Yi,γ ] · L

αi to deduce the assertion. ��

3 Arithmetic of local fields

3.1 Galois theory of local fields

We fix a prime p > 0. First we recall some general facts about non-
archimedean local fields of residue characteristic p, that is, finite extensions
of Qp or Fp((T )).

For such a field F equipped with a valuation v : F× → Z we denote byOF
the ring of integers of F , bymF themaximal ideal ofOF and by kF = OF/mF
its residue field.Wewill be interested in local fields F as well as their algebraic
extensions, which we equip with the unique prolongation of the valuation on
F .
Now we fix a local field F and a separable closure F s of F . We also fix a

uniformiser π ∈ F .

Definition 3.1 For an algebraic overfield L of F we let the inertia group
IL be the kernel of the canonical surjective homomorphism Gal(L/F) →
Gal(kL/kF ) and, in case IL is finite, we let the ramification index eL/F of L
over F be the order of IL .

(i) An algebraic field extension F ⊂ L is called totally ramified if the induced
extension of residue fields kF ⊂ kL is the trivial one.

(ii) An algebraic field extension F ⊂ L is called unramified if for every
intermediary field F ⊂ L ′ ⊂ L , which is finitely generated over F we
have eL ′/F = 1.

(iii) An algebraic field extension F ⊂ L is called tamely ramified if for every
intermediary field F ⊂ L ′ ⊂ L , which is finitely generated over F the
ramification index eL ′/F is prime to p.

We will be mainly interested in abelian algebraic extensions of F . A fixed
separable closure Fs of F contains the following tower of extensions:

F ⊂ Fur ⊂ F tr ⊂ Fab ⊂ F s

Here Fab is the maximal abelian extension of F , Fur is the maximal abelian
unramified extension and F tr is themaximal tamely ramified abelian extension
of F .
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By local class field theory there is a canonical homomorphism r : F× →
Gal(Fab/F), which is injective and has dense image. It fits into a diagram of
split short exact sequences

0 O×
F F× v

r

Z 0

0 Gal(Fab/Fur) Gal(Fab/F) Gal(kF/kF ) 0

(7)

where each vertical homomorphism is injective with dense image and the
right vertical homomorphism sends 1 ∈ Z to the Frobenius automorphism
x �→ x |kF | of kF .

Brauer groups play an important role in local class field theory. We refer
the reader to [50, Proposition XIII.6] for a proof of the following result, which
summarises the main properties of Brauer groups of local fields.

Theorem 3.2 TheBrauer groupBr(F) of a local field is isomorphic toQ/Z by
means of the Hasse invariant inv : Br(F) → Q/Z. For a finite field extension
of local fields L/F we have a commutative diagram

Br(F)
�

Q/Z

·[L:F]

Br(L)
�

Q/Z.

For M a finite étale abelian group scheme over F , we denote by
Hi
ét(F, M) the degree i Galois cohomology group of M , that is, the group

Hi (Gal(F sep/F), M). Alternatively, we can view it as the i th étale cohomol-
ogy group ofM over SpecF . For i = 0 we obtain the finite group of F-rational
points ofM and for i = 1 the group ofM-torsors defined over SpecF . In higher
degrees one can give similar geometric interpretations, but we will not need
this. The cohomology groups are known to vanish in degrees i ≥ 3 (see [41,
Section I.2]).

We denote by Hi
ur(F, M) the Galois cohomology group Hi

ét(Gal(F
ur/F),

M). Since Gal(Fur/F) = Gal(ksepF /kF ), we see that Hi
ur(F, M) �

Hi
et(OF , M) � Hi

ét(kF , MkF ).
For a finite abelian group G, we denote by G∗ the group of characters

G → Q/Z. This construction is a special case of the Pontryagin dual defined
below. For a finite commutative group schemeM over F , we denote byM∨ :=
Hom(M, Gm) its Cartier dual.
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Theorem 3.3 [41, Corollary I.2.3] Let M be a commutative finite group
scheme over F of order prime to p. For every i ∈ Z there exists a canon-
ical perfect pairing Hi

ét(F, M) × H2−i
ét (F, M∨) → Q/Z. Furthermore, the

annihilator of Hi
ur(F, M) is equal to H2−i

ur (F, M∨).

As we remarked above the cohomology groups Hi
ét(F, M) are finite. Their

cardinalities are subject to the following constraint.

Theorem 3.4 Let M be a commutative finite étale group scheme over F of
order prime to p. Then we have

|H1
ét(F, M)| = |M(F)||M∨(F)|.

Proof This is a combination of [41, I.2.9] and the identity |H2
ét(F, M)| =

|M∨(F)| implied by Theorem 3.3. ��
Now let � be a finite abelian group of order n prime to p. We denote by �

the constant group schemes over Spec(F) or Spec(OF ) with value group �

and by μ(F) the finite group of roots of unity in F .

Construction 3.5 Consider the homomorphisms

Z × μ(F)
i−→ F∗ r−→ Gal(Fab/F),

where i sends 1 ∈ Z to the chosen uniformiser π ∈ F∗ and is the inclusion
μ(F) ↪→ F∗ on the second factor and r is the reciprocity homomorphism
from (7).

Since � is a constant abelian group scheme, there are canonical isomor-
phisms

H1
ét(F, �) ∼= Hom(Gal(F s/F), �) ∼= Hom(Gal(Fab/F), �),

where Hom denotes continuous group homomorphisms. Hence composition
with i gives a homomorphism

H1
ét(F, �) → � ⊕ Hom(μ(F), �).

Proposition 3.6 The homomorphism

H1
ét(F, �) → � ⊕ Hom(μ(F), �) (8)

from Construction 3.5 is an isomorphism. With respect to this isomorphism
the inclusion of � corresponds to Hi

ur(F, �) ⊂ H1
ét(F, �).
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Proof As noted above the reciprocity homomorphism r : F× → Gal(Fab/F)

is injective with dense image. Hence it induces an isomorphism

Hom(Gal(Fab/F), �) ∼= Hom(F×, �).

Now the choice of uniformiserπ ∈ F gives an isomorphism F× ∼= Z×O×
F .

The Z-module structure on O×
F extends uniquely to a continuous Zp-module

structure. Because of the existence of the logarithm the Zp-module O×
F is

isomorphic to the direct sum of a free Zp-module (which has finite rank if F
has characteristic zero and countably infinite rank otherwise) and its torsion
subgroup μ(F) (see [44, Satz II.5.7]). Since the order of � is prime to p we
finally obtain an isomorphism

Hom(F×, �) ∼= Hom(Z × μ(F), �) ∼= � ⊕ Hom(μ(F), �).

The second claim follows from the above and the diagram (7). ��
Lemma 3.7 Assume that F contains all roots of unity of order |�|. Then (�)∨
is the constant group scheme with value Hom(�, μ(F)). Under the isomor-
phisms (8)

H1
ét(F, �) ∼= � ⊕ Hom(μ(F), �)

and

H1
ét(F, �∨) ∼= Hom(�, μ(F)) ⊕ Hom(μ(F),Hom(�, μ(F)))

the Tate duality pairing H1(F, �) × H1(F, (�)∨) → Q/Z from Theorem 3.3
can be described as follows: The first factors of H1(F, �) and H1(F, (�)∨)

jointly pair to zero, and analogously for the second factors. The remaining
part of the pairing is given by the canonical evaluation pairings

� × Hom(μ(F),Hom(�, μ(F))) → Hom(μ(F), μ(F)) ∼= Z/|μ(F)|Z

and

Hom(μ(F), �) × Hom(�, μ(F)) → Hom(μ(F), μ(F)) ∼= Z/|μ(F)|Z.

Proof The claim about the first (respectively second) factors pairing to zero
follows from the last part of Theorem 3.3. For the remaining part of the claim,
using functoriality in � one can reduce to the case � = Z/nZ. In this case the
claim can be verified using [41, Remark I.2.5(b)]. ��
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3.2 Tate duality

Following [41], we call an abelian torsion group M of cofinite type if for
each n ∈ Z the n-torsion subgroup of M is finite. In the following we will
deal with various abelian groups M , which are either profinite or torsion of
cofinite type. We will always equip the profinite groups with the profinite
topology and the torsion groups with the discrete topology. On the intersection
of these two classes, namely finite abelian groups, these topologies agree.
For such an M we denote by M∗ := Homcts(M, Q/Z) its Pontryagin dual.
The functor M �→ M∗ is a contravariant equivalence from the category of
profinite groups to the category of torsion groups of cofinite type and vice
versa. For a finite group M we have |M | = |M∗|. For a profinite group M and
a torsion group N of cofinite type (or vice versa) a continuous bilinear pairing
M × N → Q/Z is called non-degenerate if the induced homomorphism
M → N∗ is an isomorphism.
Let F be a local field as above. For an abelian variety A over F we recall

the Tate duality pairings on the étale cohomology groups Hi
ét(F, A) of A:

Lemma 3.8 ([41, I.3.1]) For any abelian variety A over F and any r ≥ 0
there is a canonical isomorphism

Hr
ét(F, A∨)

�−→ Extr+1
F (A, Gm).

These isomorphisms are functorial in A.

Construction 3.9 For each r ≥ 0 there is a natural pairing

Hr
ét(F, A) × Ext2−r (A, Gm) → H2

ét(F, Gm). (9)

From the construction of these pairings one sees that they are functorial in A
(see [41, I.0.16]).

By combining these pairings with the Hasse invariant

H2
ét(F, Gm) ∼= Q/Z

(c.f. Theorem 3.2) we obtain functorial pairings

Hr
ét(F, A) × H1−r

ét (F, A∨) → Q/Z.

Theorem 3.10 (Tate, see [41, I.3.4]) Let A be an abelian variety over F. The
cohomology groups Hr (F, A) are zero for r ≥ 2. The group A(F) is profinite
and the group H1

ét(F, A) is torsion of cofinite type. For r = 0, 1 the pairing

Hr
ét(F, A) × H1−r

ét (F, A∨) → Q/Z
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defined above is continuous and non-degenerate.

Remark 3.11 Let D be derived category of the abelian category of étale
sheaves of abelian groups over F . We denote by S : D → D the shift
functor X �→ X [1]. Then by [41, Section I.0], the Tate duality pairing
A(F) × H1

ét(F, A∨) → Q/Z from Theorem 3.10 can be described as fol-
lows:

Let a ∈ A(F) and T ∈ H1
ét(F, A∨). Under the isomorphism H1

ét(F, A∨) ∼=
Ext2(A, Gm) ∼= HomD(A, S2(Gm)), the torsor T corresponds to aGm-gerbe
on A. Pulling this gerbe back along

a : Spec(F) → A

gives a Gm-gerbe on Spec(F), which corresponds to an element of the Brauer
group Br(F) = H2

ét(F, Gm). This element is the image of a and t under the
pairing.

Let Z be the constant étale sheaf over F with value group Z. Then for some
r ≥ 0 there are canonical isomorphisms

Hr
ét(F, A) ∼= HomD(Z, Sr (A)),

Ext2−r (A, Gm) ∼= HomD(A, S2−r (Gm)),

and H2
ét(F, Gm) ∼= HomD(Z, S2(Gm))

under which the pairing (9) coincides with the pairing

HomD(Z, Sr (A)) × HomD(A, S2−r (Gm))

∼= HomD(Z, Sr (A)) × HomD(Sr (A), S2(Gm)) → HomD(Z, S2(Gm))

given by composition of morphisms in D.

The forgetful morphism Ext2(A, Gm) → H2
ét(A, Gm) is of central impor-

tance. The elements of the abelian group Ext2(A, Gm) are isomorphism
classes of Gm-gerbes on A endowed with a group structure (see for instance
[53, 3.1], or [48, 5.5] for an exposition using the language of Azumaya alge-
bras). Informally they can be thought of as central extensions

1 → BGm → Â → A → 1

of abelian group stacks. The canonical map Ext2(A, Gm) → H2
ét(A, Gm)

retains only the isomorphism class of the Gm-gerbe and forgets the group
structure. The next lemma shows that after replacing Gm by μr , the analogous
morphism is actually an injection, and its image can be described explicitly.
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Lemma 3.12 Let F be a local field and r a positive integer invertible in F.
We denote by A/F an abelian variety, and by P/F an A-torsor. Then the
natural map Ext2(A, μr ) → H2

ét(A, μr ) is injective. Its image corresponds
to those μr -gerbes α on A, which become trivial when pulled back along the
morphisms AFs = A ×F SpecFs → A and SpecF

e−→ A.
Similarly, we have a canonical equivalence

ker(Br(P) → Br(PFs ))[r ]
Br(F)[r ] � Ext2(A, μr ).

Proof According to Lemma 3.8 and Kummer theory we can identify
Ext2(A, μr ) with H1

ét(F, A∨[r ]). Similarly, the subset of H2
ét(A, μr ) cor-

responding to gerbes which are trivial on AFs can be naturally identified with
H1
ét(F, A∨[r ]). To see this one observes that a descent datum of μr -gerbes

on the trivial μr -gerbe on AFs yields a Gal(F)-cocycle taking values in the
group of isomorphism classes ofμr -torsors on A, which can be identified with
H1
ét(F, A∨[r ]). Vice versa, one can recover α from the corresponding element

H1
ét(F, A∨[r ]) up to an element of Br(F). Since we assume in addition that

e∗α is trivial, this establishes the correspondence.
The second assertion is established with the same argument. Since P is an

A-torsor, there exists an equivalence PFs � AFs . As before we can therefore
describe descent data on the trivial μr -gerbe as 1-cocycles in μr -torsors. This
allows one to recover a gerbe in ker(Br(P) → Br(PFs ))[r ] up to an element
of Br(F)[r ]. ��
Corollary 3.13 Let F be a local field and r a positive integer, such that r is
invertible in F. Let A/F be an abelian variety, and P/F an A-torsor. Then
there exists a canonical isomorphism

ker(Br(A) → Br(AFs ))[r ]
Br(F)[r ] � ker(Br(P) → Br(PFs ))[r ]

Br(F)[r ] .

Construction 3.14 Using Theorem 3.10 one sees that given an isogeny
φ : A → B of abelian varieties over F , the exact sequence 0 → ker(φ) →
A → B → 0 induces the following exact sequence of cohomology groups:

0 → ker(φ)(F) → A(F)
φ−→ B(F) → H1

ét(F, ker(φ)) → H1
ét(F, A)

→ H1
ét(F, B) → H2

ét(F, ker(φ)) → 0 (10)

Lemma 3.15 Consider an isogeny φ : A → B of abelian varieties over F as
well as its dual isogeny φ∨ : B∨ → A∨ with kernel ker(φ∨) ∼= ker(φ)∨. The
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associated long exact sequences (10) are dual to each other under Tate duality
in the sense that they fit into a commutative diagram

ker(φ)(F)

∼=

A(F)
φ

∼=

B(F)

∼=

H1
ét(F, ker(φ))

∼=

H1
ét(F, A)

∼=

H1
ét(F, B)

∼=

H2
ét(F, ker(φ))

∼=

H1(F, ker(φ)∨)∗ H1
ét(F, B∨)∗ H1

ét(F, A∨)∗ H1
ét(F, ker(φ)∨)∗ B∨(F)∗ A∨(F)∗ ker(φ)∨(F)∗,

in which the vertical isomorphisms are given by Tate duality.

Proof The commutativity of the squares not involving boundary maps is an
instance of the naturality of the Tate duality pairings. That these pairings are
also compatible with boundary maps follows from their construction. This can
be seen as follows: All the pairings appearing arise from the natural pairing

Exti (C, Gm) × H2−i
ét (F,C) → H2

ét(F, Gm) ∼= Q/Z, (11)

which exists for an étale sheaf C of abelian groups on F , and is given by com-
position in the derived category of such sheaves as in Remark 3.11. These
induce the Tate duality pairings via natural isomorphisms Hi

ét(F, A∨) ∼=
Exti+1(A, Gm) for an abelian variety A (c.f. [41, Lemma I.3.1]) and
Hi
ét(F, M∨) ∼= Exti (M, Gm) for an étale commutative finite group scheme

M over F (c.f. the proof of [41, Cor. I.2.3]). Thus is suffices to check the com-
patibility of (11) with boundary maps. This follows from a direct verification
using the description as composition in the derived category. ��

An isogeny φ : A → B of abelian varieties A and B is said to be self-dual,
if there exists an isomorphism ψ : A ∼= B∨ such that the diagram

A
φ

ψ �
B

ψ∨�

B∨ φ∨
A∨

commutes. Such φ and ψ induce canonical isomorphisms

ker(φ)∨ ∼= ker(φ∨) ∼= ker(φ). (12)

The proposition below plays a key role in the proof of our main result.

Proposition 3.16 Let A
φ−→ B be a self-dual isogeny of abelian varieties over

F whose kernel has order prime to p. Then |B(F)/φ(A(F))| = | ker(φ)(F)|.

123



536 M. Groechenig et al.

Proof Let K := B(F)/φ(A(F)) ⊂ H1
ét(F, ker(φ)) and Q := H1

ét(F, ker(φ))

/K . By the sequence (10) there is an isomorphism

Q ∼= ker(H1
ét(F, A) → H1

ét(F, B)).

Using Lemma 3.15 we get an isomorphism

K ∼= coker(H1
ét(F, B)∗ → H1

ét(F, A)∗) ∼= Q∗.

Since Q is finite we thus get |Q| = |Q∗| = |K |. Hence the exact sequence
0 → K → H1

ét(F, ker(φ)) → Q → 0

implies |H1
ét(F, ker(φ))| = |K |2.

On the other hand, by (12) we have ker(φ) ∼= ker(φ)∨. Hence Theorem 3.4
implies |H1

ét(F, ker(φ))| = | ker(φ)(F)|2 and thus |K | = | ker(φ)(F)|, which
is what we wanted. ��

4 p-adic integration

4.1 Basic p-adic integration

As before we fix a local field F . Wewrite |·| for its non-archimedean norm and
μn
F for the Haar measure on Fn with the usual normalisationμn

F (On
F ) = 1. An

F-analytic manifold (or F-manifold) is essentially defined the same way as
over the real numbers, as explained in [32]: it is a second countable Hausdorff
space with an atlas consisting of charts homeomorphic to open subsets of
Fn , such that the change of coordinate functions are locally expressible by
convergent power series. Similarly one defines F-analytic differential forms
on F-analytic manifolds.

The main example we are interested in comes from algebraic geometry:
for a smooth algebraic variety X over F the set of F-rational points X (F)

admits the structure of an F-manifold and any algebraic n-form on X induces
an F-analytic differential form on X (F).

Given an n-dimensional F-manifold X and a global section ω of (�n
X )⊗r

we can define a measure dμω on X as follows: Given a compact open chart
U ↪→ Fn of X and an analytic function f : U → F such that ω|U =
f (x)(dx1 ∧ dx2 ∧ · · · ∧ dxn )

⊗r we set

μω(U ) =
∫

U
| f |1/r dμn

F .

This extends to a measure on X as in [56, 3.2].
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For an F-manifold X we will denote�
dim(X)
X by�

top
X . For an integer r ≥ 1,

we call a nowhere vanishing section of (�
top
X )⊗r an r -gauge form. As in the

real case they can be divided in a relative setting. Indeed, for a submersion
f : X → Y there is a sheaf of relative top degree forms �

top
f = ∧top

�1
f . The

short exact sequence

f ∗�1
Y ↪→ �1

X � �1
f

yields a canonical isomorphism of line bundles

f ∗�top
Y ⊗ �

top
f � �

top
X . (13)

It allows us to assign to a section θ of �
top
f and ω of �

top
Y a top degree form

θ ∧ f ∗ω.

Proposition 4.1 Let f : X → Y be a submersion of F-manifolds andωX and
ωY two r-gauge forms on X and Y . Then there exists a unique analytic section
θ of the sheaf (�top

f )⊗r on Y , such that

θ ∧ f ∗ωY = ωX

with respect to (13), and for an integrable function α : X → C we have

∫

X
α dμωX =

∫

Y

(∫

f −1(y)
α dμθy

)
dμωY ,

where θy denotes the restriction of θ to the fibre f −1(y). Furthermore, if X, Y
are the F-rational points of smooth varieties, the submersion f is induced by
a smooth morphism and ωX , ωY algebraic r-gauge forms, then θ stems from
an algebraic section of (�top

f )⊗r .

Proof In the algebraic case we abuse notation and write also X and Y for the
underlying varieties over SpecF .We consider the isomorphism of line bundles

(�
top
X/F )⊗r ∼= ( f ∗�top

Y/F )⊗r ⊗ (�
top
X/Y )⊗r ,

which are understood to be sheaves of either algebraic or analytic forms
according to the situation. Let θ be the unique section of (�

top
X/Y )⊗r such that

ωX = ωY ⊗ θ . For each y ∈ Y the section θ restricts to an r -gauge form θy
on f −1(y) and we claim that these sections have the required property. Since
the above isomorphism of line bundles is compatible with analytification it
suffices to show this in the analytic case.
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The analytic case for r = 1 follows from [32, Theorem 7.6.1] by inspecting
the proof of loc.cit. and verifying that the gauge forms θy constructed there
coincide with the ones constructed above. For r > 1 we note that it suffices to
prove that the r -gauge forms θy have the required property locally on X and
Y for the analytic topology. The following claim shows that once we restrict
to suitable analytically open subsets we may assume that ωX and ωY have r th
roots. ��
Claim 4.2 Let ω be an r-gauge form on an F-analytic manifold X. For every
x ∈ X there exists an F-analytic 1-gauge form η defined on an open neigh-
bourhood of x, such that |η⊗r | = qm · |ω| with m ∈ Q.

Proof By choosing a chart containing x we may assume that X is an open
subset U of Fn and represent ω as g · (dx1 ∧ · · · ∧ dxn)⊗r , where g is locally
expressible by an analytic power series. We define m by |g(x)| = q−m . Since
g : U → F is continuous, there exists an open neighbourhood V of x , such
that for all y ∈ V one has

|g(y)| = |g(x)| = q−m .

We conclude that for all y ∈ V one has 1 = |(dx1 ∧ · · · ∧ dxn)⊗r | = qm ·
|g(dx1 ∧ · · · ∧ dxn)⊗r |. So we can take η to be (dx1 ∧ · · · ∧ dxn)⊗r . ��

This reduces the assertion to the case r = 1 proven in loc. cit. ��
Lemma 4.3 Let f : X → Y be an isomorphism of F-manifolds and ωY an
r-gauge form on Y . For any integrable function α : Y → C we have

∫

X
α ◦ f dμ f ∗ωY =

∫

Y
α dμωY .

Proof For r = 1 this is proven in [32, Section 7.4]. For r > 1 by working
locally on X we may assume that ωY has an r th root on Y , see Claim 4.2. This
allows us to reduce the lemma to the case r = 1. ��

We will briefly recall p-adic integration on (not necessarily smooth) OF -
varieties, where we essentially follow [56, Section 4]. For aOF -variety X we
write XF = X ×Spec(OF )Spec(F) and XkF = X ×Spec(OF )Spec(kF ). Let X sm

F
be the smooth locus of XF and set

X◦ = X (OF ) ∩ X sm
F (F),

where we think of X (OF ) as a subset of X (F) = XF (F). Then X◦ has
naturally the structure of an F-manifold. Thus we can integrate any section
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ω ∈ H0(X sm
F , (�

top
X sm
F /F )⊗r ) on X◦. This way we obtain a measure μω on X◦,

which we extend by zero to all of X (OF ).
The following facts will be essential for manipulating p-adic integrals:

Proposition 4.4 [56, Lemma 4.3, Theorem 4.8]

(1) For any subscheme Y ⊂ X of strictly positive codimension we have
μω(Y (OF )) = 0.

(2) Let f : Y → X be a morphism of OF-varieties. Assume that Y admits a
generically stabiliser-free action by a finite group �, that the morphism
f is �-invariant and that Y/� → X is birational. Then for any open
�-invariant subset A ⊂ Y (OF ) and any r-gauge form ω on X◦ we have

1

|�|
∫

A
| f ∗ω|1/r =

∫

f (A)

|ω|1/r .

4.2 Twisting by torsors

This subsection is independent of p-adic integration, but will be used in the
proof of Theorem 4.16 below and also later in Sect. 7.5.

We fix a scheme S and a commutative étale group S-scheme �. In our
applications, the scheme S will be either SpecF or SpecOF , and � a constant
group scheme over S.

Definition 4.5 Let N be an S-scheme endowed with a �-action. For a
torsor T ∈ H1

ét(S, �) we define the T -twist of N to be the S-space
NT = [(N×ST )/�], where� acts on thefibre product N×ST anti-diagonally.
The group scheme � acts on NT through its action on T .

We emphasise that NT is an S-space, since it is stabiliser-free. It is an
algebraic S-space, since � is assumed to be étale (see [52, Tag 06DC]).

In general, several S-schemes N ′ with �-action may yield isomorphic quo-
tient stacks [N ′/�]. Twisting is a way to produce such examples, as the next
lemma shows.

Lemma 4.6 There exists a natural equivalence of S-stacks [N/�] � [NT /�].
Proof We have [NT /�] � [[(N ×S T )/1�]/2�], where the first � acts anti-
diagonally, and the second � acts only on the first component. Lemma 4.7
below allows us to exchange the two quotients and we obtain

[[(N ×S T )/2�]/1�] � [[N/�] ×S T ]/� � [N/�],
where we have used that � acts trivially on [N/�], and through the standard
action on T . Since T is a �-torsor, we have [T/�] � S. ��
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Lemma 4.7 Let N be an S-scheme endowed with commuting actions of fppf
group S-schemes�1 and�2. Then there exists an equivalence [[N/�1]/�2] �
[[N/�2]/�1].
Proof Let T be an S-scheme. By definition, a morphism T → [[N/�1]/�2]
relative to the base S is given by a �2-equivariant morphism

P → [N/�1],
where P → T is a �2-torsor. Unravelling this further, we see that this corre-
sponds to a �1-equivariant morphism Q → N , where Q → P is a �1-torsor
endowed with a �2-equivariant structure on P . Faithfully flat descent theory
implies that Q is the pullback of a �1-torsor P ′ → S, and that we have a
�1-equivariant morphism P ′ → N .

This shows that morphisms T → [[N/�1]/�2] are equivalent to the
groupoid of triples (P, P ′, φ), where P is a �2-torsor on S, P ′ a �1-torsor
on S, and φ a (�2 × �1)-equivariant morphism P × P ′ → N .

The same argument as above relates this to the groupoid of morphisms
T → [[N/�2]/�1]. This shows that [[N/�2]/�1] and [[N/�1]/�2] are
equivalent. ��

We record the following assertion for later use.

Proposition 4.8 Let U be a variety over a finite field k with an action of a
finite abelian group �. Let T ∈ H1(k, �) = � be a �-torsor corresponding
to an element γ ∈ �. Then, there is an isomorphism of Q�-vector spaces

Hi
ét(U, Q�) � Hi

ét(UT , Q�)

between the étale cohomology groups of U and UT with respect to which the
Frobenius operators are related by the formula

FrUT = (γ ∗)−1 · FrU .

Proof This follows directly from the definition of twists: Over the algebraic
closure k a section of T induces an isomorphism between the schemes Uk
and (UT )k , and with respect to this isomorphism the Frobenius morphisms are
related by multiplication with γ . ��
Corollary 4.9 For a smooth variety Y over a finite field k with an action of a
finite abelian group � we have

#[Y/�](k) = 1

|�|
∑

T∈H1(k,�)

|YT (k)|.
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4.3 The orbifold measure

We start with some basic terminology for finite quotient stacks (c.f. Definition
2.1).

Definition 4.10 (i) For a ring R and an integer m, we say that R contains
all roots of unity of order m if for every homomorphism from R to an
algebraically closed field k̄, the group μm(R) surjects onto μm(k̄).

(ii) Let R be a ring. A finite abelian quotient stack M over R is admissible
if it admits a presentation M ∼= [Y/�] by a smooth quasi-projective
R-variety Y with a generically fixed-point free action by a finite abelian
group � whose order is invertible in R and such that R contains all roots
of unity of order |�|. In this case we write M for the geometric quotient
Y/� and also call such a presentationM = [M/�] admissible.

Lemma 4.11 LetM be an admissible finite abelian quotient stack over a ring
R. Then M is Q-Gorenstein.

Proof We have to show that M is normal and that its canonical divisor KM
is Q-Cartier. By [39, 0.2 (2)] the scheme M is normal. Lemma 5.16 in [34]
yields that every Weil divisor on M is a Q-Cartier divisor. ��

LetM be an admissible finite abelian quotient stack over Spec(OF ) and fix
an admissible presentation M = [Y/�]. We write pr : Y → M = Y/� for
the quotient morphism, � ⊂ Y for the locus on which � does not act freely,
and U = Y\� for the complement of �. The F-manifold

M(OF )� = M(OF ) ∩ pr(U )(F)

admits a measure through the following construction.

Construction 4.12 (Orbifold measure) By Lemma 4.11 the quotient M is
normal and hence we have canonical Q-Weil divisors KY and KM . By [56,
Lemma 7.2] there exists a uniqueQ-Weil divisor D on M such that KM +D is
Q-Cartier and such that the pullback pr∗(KM + D) is equal to KY . In fact the
proof of loc.cit. shows that D can be expressed in terms of the pushforward of
the ramification divisor in Y . We letμorb be the measure on M(OF ) associated
to the pair (M, D) by [56, Definition 4.7]. It is defined as follows: Pick r ≥ 1
such that r(KM + D) is a Cartier divisor. Then r(KM + D) gives rise to a line
bundle I on M .

Over pr(U ) the line bundle I is a subsheaf of (�
top
pr(U ))

⊗r and locally on

M(OF )� the measureμorb is given by integrating a generating section of I . As
in [56, 4.1] one sees that this gives rise to a well-defined measure on M(OF )�,
which can then by extended by zero to all of M(OF ). One can check that the
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divisor D, and hence the measure μorb, are independent of the choice of the
presentation of M.

We now discuss two special cases, in which μorb can be described more
explicitly.

Remark 4.13 If the canonical bundle�
top
Y is trivial one has a global formωorb

on M(OF )� that computes μorb. Namely if ω ∈ H0(Y, �
top
Y ) is a nowhere

vanishing global section, its norm

Nm(ω) =
⊗

γ∈�

γ ∗ω ∈ H0
(
Y, (�

top
Y )⊗|�|) ,

is �-invariant. ThusNm(ω) descends to a global section ωorb of (�
top
pr(U ))

⊗|�|,
which extends to a section of the line bundle I appearing in Construction 4.12.
In particular one has pr∗ωorb = Nm(ω).

Remark 4.14 Assume that codimY� ≥ 2 and that �
top
pr(U ) is trivialised by

some volume form ω. Then the orbifold measure μorb is given by integrating
|ω| over M(OF )� ⊂ U (F).

Indeed codimY� ≥ 2 implies that D = 0 (since � cannot contain the
support of a non-zero divisor) in Construction 4.12 and thus ωr is a local non-
zero section of the line bundle I which restricts to �

top
pr(U ) in the complement

of �. Hence for every measurable set A ⊂ M(OF )� we get

μorb(A) =
∫

A
|ωr |1/r =

∫

A
|ω|.

We now study the volume of M(OF ) with respect to μorb. Here the inertia
stack IMkF of the special fibre MkF = M ×Spec(OF ) Spec(kF ) naturally
appears. Namely one has a specialisation map

e : M(OF )� → IM(kF )iso,

where as before IM(kF )iso denotes the set of isomorphism classes of the
groupoid IM(kF ).

Construction 4.15 (Specialisation map) To any φ ∈ X (OF )� we associate
the �-torsor Tφ over Spec(F) given by the fibre of Y → M = Y/� over φ|F .
Consider the commutative diagram
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Tφ Spec(OTφ )
φ̃

Y

pr

Spec(F) Spec(OF )
φ

M,

constructed as follows: the ring OTφ is the normalisation of OF inside the
ring of global sections �(Tφ) of Tφ . More concretely, expressing the étale
F-algebra �(Tφ) as a product of fields L×i , where L/F is a finite Galois
extension, and therefore itself a local field, we define OTφ to be the product

O×i
L . The �-action on Tφ extends uniquely to a �-action on Spec(OTφ ).

The morphism φ̃ is the unique one extending the inclusion Tφ → Y . Here
the fact that pr is finite and hence in particular proper allows one to deduce
the existence of φ̃ by applying the evaluative criterion of properness to each
discrete valuation ring factorOL ofOTφ . Uniqueness follows from separated-

ness of Y . The uniqueness of φ̃ implies that it is �-equivariant, which gives a
morphism of quotient stacks

[Spec(OTφ )/�] → M.

The stabiliser group of the unique closed point x of this stack satisfies

Autx ([Spec(OTφ )/�]) = IL/F , (14)

where IL/F denotes the inertia group of the extension L/F .We refer the reader
to Lemma 5.7 where we give a detailed proof of a closely related statement.

By local class field theory (see (7)), the inertia group IL/F is cyclic and
receives a canonical surjective map μ(F) � IL/F . Hence our choice of a
primitive |�|th root of unity ζ yields a generator γ of IL/F . The morphism
Autx → IMkF togetherwith the generator γ of IL/F define a point in IM(kF).
This yields a map

e : M(OF )� → IM(kF )iso.

The following theorem explains how the orbifold volume is related to the
stringy point count.

Theorem 4.16 Let M = [Y/�] be an admissible finite abelian quotient
stack over OF with an admissible presentation. For any γ ∈ � and any
x ∈ [Y γ /�](kF ) ⊂ IM(kF ) we have

μorb(e
−1(x)) = q−w(γ,x)

|Aut(x)| .
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The proof of Theorem 4.16 will take up the rest of this section. We will first
consider two special cases:

4.3.1 The affine case

Assume first that M = A
n , that � = 〈γ 〉 is cyclic of order d and

that γ acts on A
n diagonally and non-trivial by γ · (x1, x2, . . . , xn) =

(ζ c1x1, ζ c2x2, . . . , ζ cn xn), where we choose 1 ≤ ci ≤ d (see Remark 2.2).

Proposition 4.17 Let 0 denote the image of the origin in [(An)γ /�](kF ). Then
we have

μorb(e
−1(0)) = q−w(γ,0)

d
.

Proof The proof is similar to [14, Section 2]. Let π ∈ F be a uniformiser and
define λ : A

n → A
n/� on the level of coordinate rings as

f (x1, . . . , xn) �→ f (π
c1
d x1, . . . , π

cn
d xn).

Then by [14, (2.3.4)] one has λ(An(OF ))∩(An/�)(OF )� = e−1(0) and hence
by Proposition 4.4

μorb(e
−1(0)) =

∫

e−1(0)
|ωorb| 1d = 1

d

∫

An(OF )

|λ∗ωorb| 1d ,

withωorb the form satisfying pr∗ωorb = (dx1∧· · ·∧dxn)⊗d given by Remark
4.13. Now a direct verification shows λ∗ωorb = π

∑
i ci (dx1 ∧ · · · ∧ dxn)⊗d

and hence

1

d

∫

An(OF )

|λ∗ωorb| 1d = 1

d

∫

On
F

|π
∑

i ci | 1d dx1 . . . dxn = q−w(γ,0)

d
.

��
4.3.2 The cyclic case

Now we assume that as before � = 〈γ 〉 is cyclic of order d, but Y is now any
smooth OF -variety as in Theorem 4.16.

Proposition 4.18 For any x ∈ [Y γ /�](kF ) ⊂ IM(kF ) we have

μorb(e
−1(x)) = q−w(γ,x)

d
.
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This follows from Proposition 4.17 by linearising the �-action around
x . More precisely we have the following well-known lemma (even without
assuming that � is cyclic).

Lemma 4.19 Let x ∈ Y (kF ) be a closed point fixed by �. There exists a �-
invariant open neighbourhood U ⊂ Y of x and an étale morphism f : U →
A
n
OF

such that the following holds:

(i) There exists a diagonal action of � on A
n
OF

with respect to which the
morphism f is �-equivariant.

(ii) The morphism f induces a F-analytic diffeomorphism

f̄ : {φ ∈ (Y/�)(OF ) | φ|kF = x} → {φ ∈ (An/�)(OF ) | φ|kF = 0}.

Proof Proposition 3.24 in [40] implies the existence of an open neighbourhood
U ′ ⊂ Y of x together with an étale morphism f ′ : U ′ → A

n
OF

(we implicitly
use that the only non-empty open subsets of SpecOF are given by the singleton
SpecF or SpecOF itself). Without loss of generality we may assume that
f ′(x) = 0.
We define U ′′ = ⋂

γ∈� γ ·U ′, which is a �-invariant open neighbourhood
of x . The étale morphism f ′ induces an isomorphism of tangent spaces TxY �
T0(An). In particular we obtain a basis for TxY . For γ ∈ � we denote by Aγ

the matrix of the linear map dγ : TxY → TxY computed with respect to the
aforementioned basis of TxY . We define

f =
∑

γ∈�

A−1
γ ◦ f ′ ◦ γ : U ′′ → A

n
OF

.

The assumption (p, |�|) = 1 implies that the Jacobi matrix d f of f at x is still
invertible (it is equal to |�| ·d f ′). We conclude that there exists an �-invariant
open neighbourhood U ⊂ U ′′ of x on which the morphism f is étale. We let
� act on A

n via γ �→ Aγ . The following computation for γ ′ ∈ � and y ∈ U
shows that f is �-equivariant:

f (γ ′y) =
∑

γ∈�

A−1
γ ◦ f ◦ γ (γ ′y) = Aγ ′

⎛

⎝
∑

γ∈�

A−1
γ γ ′ ◦ f ◦ (γ γ ′)(y)

⎞

⎠

This concludes the proof of (i).
To see (i i), note that as U contains x , the quotient U/� contains {φ ∈

(Y/�)(OF ) | φ|kF = x}. Using this, (i i) follows from standard properties of
Henselian rings (see [40, Theorem 4.2]) and étale maps. ��
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Proof of Proposition 4.18 If x ∈ [Y γ /�](kF ) lies in the image of the quotient
map Y γ (kF ) → [Y γ /�](kF ) we can directly apply Lemma 4.19 to a lift of
x . In this case the proposition follows from Lemma 4.3 and Proposition 4.17,
since the orbifold measures in question are compatible with f .

In general x will be in the image ofY γ

T (kF ) → [Y γ

T /�](kF ) = [Y γ /�](kF )

(see Lemma 4.6) for some �-torsor T on OF . The same argument as before
now applies with Y replaced by YT .

After this preparation we are now ready for the

Proof of Theorem 4.16 Let I ⊂ � denote the cyclic group generated by γ . As
in the proof of Proposition 4.18we can assume that x is in the image of the quo-
tient morphism Y γ (kF ) → [Y γ /�](kF ) (otherwise we twist by an unramified
�-torsor). This implies that every φ ∈ e−1(x) fits into a commutative diagram

Spec(OL)
φ̃

Y

Spec(OF )
φ

Y/�,

where L/F is a totally tamely ramified Galois extension with Galois group I
and φ̃ is I -equivariant. In particular we see that φ lies in the image of the map
(Y/I )(OF ) → (Y/�)(OF ) induced by the quotient morphism s : Y/I →
Y/�.

Now let μorb,I and eI denote the orbifold measure and specialisation mor-
phism for [Y/I ]. Then Proposition 4.4 implies

μorb(e
−1(x)) = 1

|�/I |μorb,I (s
−1e−1(x)).

Now let sγ be the quotient morphism Y γ /I → Y γ /�. Then one can check
that there is a decomposition

s−1e−1(x) =
⊔

x̃∈s−1
γ (x)

e−1
I (x̃),

and thus Proposition 4.18 implies

μorb(e
−1(x)) = |s−1

γ (x)|q−w(γ,x)

|�| .

Essentially from the definition of the quotient stack [Y γ /�] it follows that
|Aut(x)| = |�|

|s−1
γ (x)| , which finishes the proof.
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5 A stack-theoretic approach to Brauer groups of local fields

The Brauer group of a non-archimedean local field F is isomorphic to Q/Z

(see Theorem 3.2 and the references given there). We refer to the map
inv : Br(F) → Q/Z specified in loc. cit. as theHasse invariant. In Subsection
6.3, devoted to the proof of Main Theorem 6.12, we will consider integrals

∫

Y (F)

exp(−2π i inv(α))|ω|,

where is Y a proper F-scheme (a Hitchin fibre) endowed with a top degree
form ω and α ∈ Br(Y ) is a gerbe. The integrand above is to be understood to
be the function which associates to an F-point y ∈ Y (F) the complex number
exp(−2π i inv(y∗α)), where y∗α ∈ Br(F) denotes the pullback of α along the
morphism y : SpecF → Y .

The F-scheme Y itself embeds into an ambient finite abelian quotient OF -
stackM (the total space of the Hitchin fibration), and the gerbe α on Y extends
to M. It will be crucial to understand the aforementioned function y →
inv(y∗α) in terms of the inertia stack IM and the transgression construction
discussed in Sect. 2.2.

This section provides the backbone for such a comparison and devel-
ops a stack-theoretic interpretation of the Hasse invariant of an element
α ∈ Br(F)[e], where e is positive integer prime to the residue characteris-
tic p of F , for which F contains all eth roots of unity. Our approach can be
summarised as follows.

(a) For every tame field extension L/F of ramification degree dividing e, we
construct a Deligne–MumfordOF -stack XL/F , such that one has an open
immersion iF : SpecF ↪→ XL/F and a closed immersion jσ : BkF I ↪→
XL/F , where I ⊂ Gal(L/F) denotes the inertia group (Subsection 5.1).

SpecF
iF XL/F BkF I

jσ
(15)

(b) Pullback along the open immersion SpecF ↪→ XL/F induces an isomor-
phism Br(XL/F )[e] � Br(F)[e] (Sect. 5.3).

(c) The transgression construction (2.2) gives rise to a map Br(XL/F ) →
Z/eZ = Q/Z (Sect. 5.4).

(d) We prove that the composition of the maps Br(F)[e] b−→ Br(XL/F )
c−→

(Q/Z)[e] agrees with the Hasse invariant (Theorem 5.20).
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Furthermore, for y ∈ Y (F) as above, we will see in Sect. 5.5 that there
exists a field extension L/F as above, for which y : SpecF → Y factors as

SpecF Y

XL/F M.

This factorisation, together with (d) above, accomplishes our goal to compare
inv(αy) to the transgression construction with respect to the stackM.

5.1 The construction of the stack XL/F

Henceforth we fix a non-archimedean local field F of residue characteristic p
and finite Galois extension L/F of degree d and inertia degree e. The latter
divides the former: e|d. Furthermore, we assume that (p, e) = 1, that is, that
the extension L/F is tame, and that F contains all eth roots of unity. We use
the notation q for the cardinality of the residue field kF and refer to the inertia
group by I = IL/F . Section 3.1 contains a brief overview of the terminology
of local field theory.

At first we observe that the assumptions above impose strong restrictions
on the structure of the Galois group � = Gal(L/F).

Lemma 5.1 (a) For a uniformiser πL of L, the subfield F(πL) of L is totally
ramified, Galois and of degree e over F. The Galois group Gal(L/F(πL))

is a normal subgroup of �, which maps isomorphically to �/I .
(b) Given πL as in (a), there are natural isomorphisms �/I ∼= Z/d

eZ and
I ∼= μe(F).

(c) The Galois group � is a finite abelian group, which is a split extension of
a cyclic group of order d/e by a cyclic group of order e.

0 I � �/I 0

0 Z/eZ Z/eZ ⊕ Z/d
eZ Z/d

eZ 0

Hence the choice of F(πL) induces an isomorphism � ∼= (�/I ) × I .
(d) Every splitting of � → �/I arises from a uniformiser of L in the above

way.

Proof (a) By [36, Proposition II.5.11] the field F(πL) is totally ramified and of
degree e over F . Hence by [36, Proposition II.5.12] there exists a uniformiser
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π ′
L of F(πL) for which (π ′

L)e is in F . Since by assumption F contains all
eth roots of unity, the field F(πL) is then the splitting field of the polynomial
Xe−(π ′

L)e ∈ F[X ]. Thus it is Galois over F and consequently Gal(L/F(πL))

is normal in �.
Let L ′ ⊂ L be the unique subfield, which is unramified over F and has

residue field kL . Since F(πL) is totally tamely ramified over F wefind F(πL)∩
L ′ = F . The fields F(πL) and L ′ together generate L . By Galois theory this
implies that restriction gives an isomorphism Gal(L/F(πL)) ∼= Gal(L ′/F) ∼=
�/I .

(b) The Frobenius generator of Gal(kL/kF ) gives an isomorphism
Gal(L/F(πL)) ∼= Gal(kL/kF ) ∼= Z/d

eZ. By the above, there is a natural
isomorphism μe(F) ∼= Gal(F(πL)/F), ξ �→ (πL �→ ξπL).

(c) follows from the previous claims.
(d) Let �/I → � be a splitting. Then the field L�/I has degree e over F

and residue field kF . Thus we may apply the above considerations to this field
to get (d). ��

We now turn to defining the principal object of study of this section. It is
reminiscent of a root stack and provides a partial compactification of SpecF
measuring tame ramification.

Definition 5.2 We define XL/F to be the Deligne–Mumford stack
[Spec(OL)/�].
Lemma 5.3 Let X → Y be a finite étale Galois morphism of schemes with
Galois group G. The morphism X → Y induces an equivalence

[X/G] ∼= Y

between the quotient stack [X/G] and Y .
Proof First we claim that X is a G-torsor over Y . For this we need to verify
that a certain morphism X × G → X ×Y X is an isomorphism. Choosing a
geometric point y of Y , we use the equivalence between finite étale schemes
over Y and finite sets with a continuous π ét

1 (Y, y)-action. It follows from the
definition of an étale Galois covering that the image of X × G → X ×Y X
under this equivalence is an isomorphism. Thus X is a G-torsor over Y .

By descent, it suffices to prove the claim that [X/G] → Y is an isomorphism
étale-locally on X . Thus it follows from the above. ��

The following describes the generic fibre of XL/F :

Lemma 5.4 There is an open immersion

Spec(F)
jF XL/F .
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Proof By the construction of XL/F as a quotient stack, the morphism
SpecOL → XL/F is an atlas. We have a �-invariant open immersion
SpecL ↪→ SpecOL , which descends to an open immersion

[SpecL/�] ↪→ XL/F .

Since [SpecL/�] ∼= SpecF by Lemma 5.3, this proves the claim. ��
In the definition of XL/F we allowed L/F to be an arbitrary finite Galois

extension, satisfying the assumptions stated at the beginning of the subsection.
For two non-isomorphic field extensions L1, L2/F the associated Deligne–
Mumford stacks XL1/F and XL2/F can be isomorphic. In fact, as shown by
the following lemma, it suffices to work with totally ramified field extensions
(that is, field extensions satisfying I = �).

Lemma 5.5 For every uniformiserπL of L, the inclusion F(πL) ↪→ L induces
an equivalence

XF(πL )/F
∼= XL/F .

Proof Since L is unramified over F(πL) by Lemma 5.1, the morphism
Spec(OL) → Spec(OF(πL )) is a finite étale Galois cover with Galois group
Gal(L/F(πL)) ∼= �/I . Hence by Lemma 5.3 there is a natural isomorphism
[Spec(OL)/(�/I )] ∼= Spec(OF(πL )). Using the isomorphism � ∼= �/I × I
from Lemma 5.1 we get isomorphisms

[Spec(OL)/�] ∼= [[Spec(OL)/(�/I )]/I ] ∼= [Spec(OF(πL ))/I ] ∼= XF(πL )/F .

(16)
This proves the lemma. ��
The lemma below describes the special fibre of XL/F defined in the following
definition.

Definition 5.6 The closed reduced complement of the open immersion
iF : SpecF ↪→ XL/F of Lemma 5.4 is denoted by X •

L/F .

Lemma 5.7 For every splitting σ : � → I of the inclusion I ↪→ �, we obtain
an equivalence of stacks X •

L/F = [SpeckL/�] � BkF I , and thus a closed
immersion

jσ : BkF I = X •
L/F ↪→ XL/F .

Proof At first we remark that a splitting σ exists by virtue of Lemma 5.1.
Furthermore, it is shown there that σ is induced by the choice of a subfield
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F(πL) ⊂ L . Such a field has residue field kF andGalois groupGal(F(πL)/F)

isomorphic to I . By virtue of Lemma 5.5 we have an equivalence of stacks

XL/F
∼= XF(πL )/F

and thus may assume L = F(πL) and � = I without loss of generality. The
open inclusion iF is given by the quotient of

SpecL ↪→ SpecOL

by the I -action. The reduced closed complement of this open immersion is
given by

SpeckL ↪→ SpecOL .

Since L = F(πL) is a totally ramified extension of F we obtain kL = kF .
After quotienting by I we obtain a closed immersion

BkF I = [SpeckF/I ] ↪→ XL/F .

This concludes the proof. ��

5.2 Étale cohomology groups of XL/F

In this subsection we compute several étale cohomology groups of the stacks
XL/F . These computations play a role in our determination of the Brauer group
Br(XL/F ).

Lemma 5.8 The Picard group of XL/F is isomorphic to Z/eZ.

Proof As we saw in Lemma 5.5, there is an isomorphism XL/F
∼= XF(πL )/F ,

where F(πF )/F is a Galois extension with Galois group equal to the inertia
group I . Henceforth we assume without loss of generality that L is a totally
ramified field extension of F , that is, that it satisfies � = I .

By virtue of the definition of XF(πL )/F as a quotient stack, the group
Pic(XF(πL )/F ) is isomorphic to the set of equivalence classes of I -equivariant
line bundles on SpecOF(πL ). As OF(πL ) is a local ring, every line bundle on
SpecOF(πL ) is trivial. An I -equivariant structure on the trivial line bundle cor-
responds to an element of the Galois cohomology group H1(I,O×

F(πL )). This
yields an isomorphism of abstract groups

Pic(XF(πL )/F ) � H1(I,O×
F(πL )).
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The short exact sequence of I -modules

1 → 1 + mF(πL ) → O×
F(πL ) → k×

F → 1

yields the exact sequence

H0(I, k×
F(πL )) = k×

F → H1(I, 1 + mF(πL )) → H1(I,O×
F(πL ))

→ H1(I, k×
F(πL )) → H2(I, 1 + mF(πL )).

A priori, the groups Hi (I, 1 + mF(πL )) for i = 1, 2 are pro-p-groups as
1 + mF(πL ) is a pro-p-group. Since I is a cyclic group of order e, which is
prime to p, the cohomology groups Hi (I, M) for i > 0 vanish for every
finite I -module on which multiplication by e is invertible. This shows that
Hi (I, 1 + mF(πL )) = 0 for i = 1, 2. ��
Claim 5.9 H1(I, k×

F ) � Z/eZ

Proof We have H1(I, k×
F ) = Pic([SpeckF/I ]), that is, the group of isomor-

phism classes of I -equivariant line bundles on SpeckF . Since line bundles on
SpeckF are trivial, we obtain

Pic([SpeckF/I ]) � Hom(I, Gm) = Hom(μe, Gm) = Z/eZ

and this concludes the proof of the claim. ��
We therefore obtain an exact sequence

0 = H1(I, 1 + mF(πL )) → H1(I,O×
F(πL )) → H1(I, k×

F ) → H2(I, 1 + mF(πL )) = 0,

concluding the proof of the lemma. ��
The conclusion of the following lemma holds for arbitrary non-negative

integers i . We opted for the inclusion of a conceptual argument for degrees
i = 0, 1, 2 which avoids computations with spectral sequences.

Lemma 5.10 Let F be a finite étale sheaf of groups on X of order prime to
p. For every splitting σ of the embedding I ↪→ �, pullback along the map
jσ : BkF I → XL/F induces isomorphisms

Hi
ét(XL/F ,F) � Hi

ét(BkF I,F) for i = 0, 1, 2.

Proof Pullback along the inclusion ι : SpeckL ↪→ SpecOL induces an equiv-
alence of finite étale sites [40, Proposition 3.4.4]. In particular, since F is a
finite étale group scheme, pullback along ι induces equivalences between the
respective groupoids of �-equivariant F-torsors.
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The group H1
ét is isomorphic to the group of isomorphism classes of étale

F-torsors, and H0
ét is isomorphic to the group of sections of the finite étale

group space F , that is, to the group of isomorphisms of F with the trivial
F-torsor. Thus for i = 0, 1 we obtain an isomorphism

Hi
ét(XL/F ,F) � Hi

ét(BkF I,F).

The case of degree 2 cohomology is dealt with similarly using the language
of gerbes: ��
Claim 5.11 Pullback along the closed immersion ι : SpeckL ↪→ SpecOL
induces an equivalence of the 2-groupoids of F-gerbes

ι∗ : Gerbe(SpeckL ,F) � Gerbe(SpecOL ,F). (17)

Proof For a 2-groupoid C we denote by π0 the set of isomorphism classes,
and for X ∈ C we write π1(C, X) for the set of 1-automorphisms of X up to 2-
isomorphisms, and π2(C, X) for the set of 2-automorphisms of idX . A functor
F : C → D of 2-groupoids is an equivalence if and only if π0(F) : π0(C) →
π0(D) is an isomorphism, and for every X ∈ C and i = 1, 2 the induced map
πi (C, X) → πi (D, F(X)) is an isomorphism.

For the 2-groupoids above, one has

π0(Gerbe(U,F)) � H2
ét(U,F),

and for every G ∈ Gerbe(U,F) we have

πi (Gerbe(U,F),G) � H2−i
ét (U,F)

(note that the right hand side does not depend on G).
Pullback along ι induces isomorphisms Hi

ét(SpecOL ,F) � Hi
ét(SpeckF ,F)

of étale cohomology groups (see [40, Remark III.3.11]). We therefore deduce
that the functor ι∗ from (17) is an equivalence as asserted. ��
The equivalence of 2-groupoids of gerbes asserted by the lemma above yields
that ι∗ also induces an equivalence of 2-groupoids of �-equivariant F-gerbes
on SpecOL and SpeckL . We deduce that H2

ét(XL/F ,F) � H2
ét(BkF I,F). ��

Lemma 5.12 There is a split short exact sequence

Z/eZ ↪→ H2
ét(BkF I, μe) � Z/eZ.
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Proof The set of isomorphism classes of μe-gerbes on [SpeckF/I ] =
[SpeckL/�] are in correspondencewith central extensions of finite étale group
schemes

1 → μe → �̂ → � → 1

up to isomorphism (see Lemma 2.7). By part (c) of loc. cit. we have a split
short exact sequence

Hom(μe, μe) ↪→ H2
ét(BkF I, μe) � Ext (μe, μe),

where the Hom and Ext-groups are meant for abstract abelian groups, since
μe is a constant group scheme over kF by virtue of our standing assumptions.
Since μe is a cyclic group of order e, we may identify Hom(μe, μe) and
Ext (μe, μe) with Z/eZ. This concludes the proof of the lemma. ��
Lemma 5.13 A choice of a splitting σ : � → I of the inclusion I ↪→ �

induces a split short exact sequence

Z/eZ ↪→ H2
ét(XL/F , μe) � Z/eZ. (18)

Proof Every choice of a splitting σ : � → I of the inclusion I ↪→ � yields
an isomorphism

j∗σ : H2
ét(XL/F , μe) � H2

ét(BkF I, μe)

(see Lemma5.10 forF = μe).We applyLemma5.12 to conclude the assertion
above. ��

5.3 On the Brauer group of XL/F

In this subsection we relate the Brauer group ofXL/F toBr(F). A Brauer class
α ∈ Br(XL/F ) can be pulled back along the inclusion iF : SpecF ↪→ XL/F .
We claim that the resulting Brauer class i∗Fα on F has order dividing d. Indeed,
its pullback to L extends to SpecOL . This follows from the commutative
diagram

SpecL SpecOL

SpecF XL/F .
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Since Br(OL) = 0 we have (i∗Fα)L = 0. The commutative diagram of Theo-
rem 3.2

Br(F)
inv
� Q/Z

[d]

Br(L)
inv
� Q/Z,

where [d] denotes multiplication by d, yields that i∗Fα has order dividing d.

Lemma 5.14 Restriction along iF induces an injectivemap i∗F : Br(XL/F ) ↪→
Br(F)[d].
Proof We have already seen above that i∗F factors throughBr(F)[d] ⊂ Br(F).
It remains to show that it is injective.Wewill show this using the Brauer-Severi
construction. For this purpose we let α ∈ Br(XL/F ) be a Brauer class onXL/F
for which i∗Fα = 0. Let B be an Azumaya algebra on XL/F representing the
Brauer class α.

To an Azumaya algebra B of rank r2 on a Deligne–Mumford stack X , one

can naturally associate a P
r -bundle, called the Brauer-Severi variety YB

pB−→
X . The Azumaya algebra p∗

B B splits on X if and only if YB → X has a
section. This is discussed in [40] in case X is a scheme. The generalisation to
Azumaya algebras on Deligne–Mumford stacks is an application of faithfully
flat descent theory.

Let B be an Azumaya algebra on XL/F , which splits when restricted
to Spec(F) ↪→ XL/F . We see that we have a �-equivariant section of
YB ×XL/F SpecOL over SpecL . By faithfully flat descent the morphism pB is
proper and smooth. The valuative criterion of properness therefore yields an
extension of this section to SpecOL , and uniqueness implies that this section
is �-equivariant. We conclude that we have a section of YB → XL/F and thus
a splitting of the Azumaya algebra B on XL/F . ��

Our next goal is to prove that Br(XL/F ) has order e. This implies
Br(XL/F ) � Br(F)[e] = Z/eZ. This is the content of the following proposi-
tion. Its proof relies on our computation of étale cohomology groups of XL/F
given earlier.

Proposition 5.15 Pullback along iF induces an isomorphism i∗F : Br(XF ) �
Br(F)[e]. In particular, sinceBr(F) � Q/Z, we have thatBr(XL/F ) has order
e.

Proof Let [e] : Gm → Gm be the eth power map. The Kummer sequence

1 → μe → Gm
[e]−→ Gm → 1
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yields a long exact sequence of étale cohomology groups

· · · → H1
ét(XL/F , Gm)

[e]−→ H1
ét(XL/F , Gm)

→ H2
ét(XL/F , μe) → H2

ét(XL/F , Gm)
[e]−→ H2

ét(XL/F , Gm) → · · · .

According to Lemma 5.8 we have that H1
ét(XL/F , Gm) is isomorphic to

Z/eZ. Thus, the cokernel of H1
ét(XL/F , Gm)

[e]−→ H1
ét(XL/F , Gm) is isomor-

phic to Z/eZ. In Lemma 5.13 we established a non-canonical isomorphism
H2
ét(XL/F , μe) � Z/eZ ⊕ Z/eZ. We therefore have the following exact

sequence

Z/eZ
0−→ Z/eZ → Z/eZ ⊕ Z/eZ → H2

ét(XL/F , Gm)
[e]−→ H2

ét(XL/F , Gm).

Thus, we obtain |H2
ét(XL/F , Gm)[e]| = e.

Lemma 5.16 below shows that H2
ét(XL/F , Gm) = Br(XL/F ), and we

have seen in Lemma 5.14 that Br(XL/F ) ↪→ Br(F)[d], and therefore
Br(XL/F )[e] ↪→ Br(F)[e] = Z/eZ. Hence the above shows

Br(XL/F )[e] � Z/eZ.

We have seen in Lemma 5.5 that we may assume without loss of generality
that L/F is totally tamely ramified. We then have d = [L : F] = e, and
therefore by virtue of 5.14 an embedding Br(XL/F ) ↪→ (Q/Z)[e]. Since the
right hand side has order e, we see that the order of every element inBr(XL/F )

divides e. This impliesBr(XL/F )[e] = Br(XL/F ) and thus finishes the proof.��
Lemma 5.16 Let � be a finite abstract group acting on a scheme U, which
admits an ample invertible sheaf. Then, the quotient stack [U/�] satisfies

Br([U/�]) � H2
ét([U/�], Gm)tors .

We explain the proof of the lemma below. It relies on a geometric strategy
to decide whether a given cohomology class α ∈ H2

ét(X , Gm) on an algebraic
stack X lies in the image of Br(X ) ↪→ H2

ét(X , Gm).

Definition 5.17 Let (Ui → X )i∈I be a smooth cover of X by schemes and
let (αi j ) ∈ Z2

ét(X , Gm) be a Čech cocycle for X , representing an element
α ∈ H2

ét(X , Gm). An α-twisted coherent sheaf on X is given by coherent
sheaves Fi ∈ Coh(Ui ) and isomorphisms

φi j : F j |Ui j → F j |Ui j ,
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such that on Ui jk the twisted cocycle identity φi j ◦ φ jk = αi jk · φik holds.

Let α be a Gm-gerbe onX . Such an α comes from an Azumaya algebra B if
and only if there exists a locally free α-twisted sheaf of finite rank: indeed, an
Azumaya algebra B is a B-module and thus gives rise to a twisted sheaf, vice
versa, if F is an α-twisted sheaf we have an Azumaya algebra B = End(F),
which represents α.

Proof of Lemma 5.16 We recall that according to a theorem of Gabber [13],
the Brauer group Br(U ) of a scheme U which admits an ample invertible
sheaf can be identified with the torsion part H2

ét(U, Gm)tors of degree 2 étale
cohomology of Gm . This proves the assertion above for � being the trivial
group.

For the proof of the general case we observe that we have a finite and
étale quotient map q : U → [U/�]. Let α ∈ H2

ét([U/�], Gm)tors be a coho-
mological Brauer class. The pullback q∗α ∈ H2

ét(U, Gm)tors corresponds by
virtue of Gabber’s theorem to an element of Br(U ). Equivalently, there exists
a locally free q∗α-twisted sheaf E on U . The pushforward q∗E is a locally
free α-twisted sheaf on [U/�]. This shows that α ∈ Br([X/�]).

In Lemma 5.7 we saw that a splitting σ : � → I of the inclusion I ↪→ �

induces an equivalence of stacks [SpeckF/I ] ∼= [SpeckL/�].
Proposition 5.18 For every splitting σ of the embedding I ↪→ �, pullback
along the map jσ : BkF I → XL/F induces an isomorphism

j∗σ : Br(XL/F )[e] � Br(BkF I )[e]. (19)

Proof The Kummer sequence

1 → μe → Gm
[e]−→ Gm → 1

yields an exact sequence

H2
ét(U, μe) → ker(H2

ét(U, Gm)
[e]−→ H2

ét(U, Gm)) = Br(U )[e] → 0,

where U denotes a Deligne–Mumford stack on which e is invertible. In par-
ticular, we see that H2

ét(U, μe) � Br(U )[e] is surjective. Applying this to
U = [SpeckL/�] and U = XL/F we obtain the following commutative dia-
gram
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H2
ét(XL/F , μe)

� H2
ét([SpeckL/�], μe)

Br(XL/F )[e] j∗σ Br([SpeckF/I ])[e].

Here the top morphism is an isomorphism by Lemma 5.10. We deduce
that j∗σ : Br(XL/F )[e] � Br([SpeckF/I ])[e] is a surjection. Proposition
5.15 guarantees that Br(XL/F )[e] is a finite group of order e. Therefore
j∗σ : Br(XL/F )[e] � Br([SpeckF/I ])[e] is an isomorphism. ��
Lemma 5.19 The isomorphism (19) is independent of the choice of σ .

Proof Let σ1, σ2 : � → I be two splittings, and let αi : BkF I
�−→ [kL/�]

be the corresponding equivalences. Then, we obtain an autoequivalence
α−1
2 α1 : BkF I → BkF I . It remains to show that the diagram

Br(BkF I )
(α−1

2 α1)
∗

Br(BkF I )

H1(kF , μe) ⊕ H0(kF , Z/eZ)

commutes.
To see thiswe argue as follows:maps from [SpeckF/I ] to itself are classified

by I -equivariant I -torsors on the point SpeckF . That is, the set of such self-
maps up to isomorphism is in bijection with H1(kF , I ) ⊕ Hom(I, I ). Let
[SpeckF/I ] → [SpeckF/I ] be a map inducing the identity idI : I → I . Then
the induced map H1(kF , I∨) � Br([kF/I ]) → Br([kF/I ]) → H1(kF , I∨)

is the identity. Since α−2
2 α1 satisfies this property, this concludes the proof.��

5.4 Transgression and Hasse’s invariant

In the following we assume that μe2 is contained in k. We denote by
τ : Br(BkF I )[e] → H1

ét(IBkF I, μe) the transgression morphism of Lemma
2.9. Recall that the inertia stack IBkF I is equivalent to I × BkF I (see Remark
2.5). Let

SpeckF × I → IBkF I (20)

be themap induced from the equivalence above and the naturalmapSpeckF →
BkF I . Furthermore, we have an isomorphism I � μe. Pullback along (20)
induces a map

Tr : H1
ét(IBkFμe, μe) → Hom(μe, H

1
ét(kF , μe)) � Z/eZ, (21)
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where the isomorphism is given by evaluating an element of H1
ét(kF , μe) =

Hom(Gal(kF/kF ), μe) at theFrobenius elementFr, andusingHom(μe, μe) �
Z/eZ. The composition

τ̃ = Tr ◦ τ ◦ j∗σ : Br(XL/F ) → Hom(μe, μe) = Z/eZ

is independent of σ (according to Lemma 5.19). The result below asserts that
for elements of Br(F)[e], the value of the transgression map τ̃ agrees with the
Hasse invariant. Amore general result can be found in the authors’ recent [24].
In loc. cit.we extend this comparison to arbitrary Brauer classes of order prime
to p. The proof given below is similar to the one in loc. cit. and is included for
the sake of keeping the paper self-contained.

Theorem 5.20 Let (i∗F )−1 : Br(F)[e] → Br(XL/F ) be the inverse to the iso-
morphism of Proposition 5.15, and τ̃ : Br(XL/F ) → Z/eZ the morphism
defined above. Then the diagram

Br(F)[e] (i∗F )−1

inv

Br(XL/F )[e]
τ̃

(Q/Z)[e]

commutes.

Proof According to Lemma 5.5 we may assume that L/F is totally ramified.
There exists a unformizer π of F such that there exists a uniformizer π1/e of
L satisfying (π1/e)e = π .
We begin the proof by recalling the definition of the Hasse invariant. The

Brauer group of F is isomorphic to H2(Gal(F̄/F), F̄×). However, a gerbe on
F splits on an unramified cover, which means that it belongs to the image of
the cohomology group H2(Gal(Fun/F), (Fun)×) = H2(Ẑ , (Fun)×).

Recall that the Hasse invariant is defined by the composition

H2(Gal(Fun/F), (Fun)×) � H2(Gal(k/k), Z)) � H1
ét(Ẑ, Q/Z) � Q/Z.

The first map is induced by the valuation ν : (Fun)× → Z which sends the
uniformiser π to 1. This map ν has a section Z → (Fun)×, given by 1 �→ π .

For a fixed Brauer class α ∈ Br(F)[e], we denote by φ = (φi jk) the Z-
valued 2-cocycle on the site of unramified coverings of F (the site equivalent
to the small étale site of OF ) which corresponds to α under the isomorphism
of the paragraph above. That is, the gerbe α is represented by (πφi jk ).
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By assumption, the order ord(α) of α is a divisor of e, and is prime to
p. This implies that (e · φi jk) is a coboundary. We denote by ψ = (ψi j ) a
1-cochain which satisfies d(ψ) = e · φ.

We define an L×-valued 1-cochain (π
ψi j
e ), such that

d(π
ψi j
e ) = πφi j . (22)

Next we define a 2-cochain taking values in Z/eZ = Hom(μn, Gm). It is
given by

ci j : ξ �→ ξψi j

for ξ ∈ μe.We claim that this 1-cochain is a coycle, that is, satisfies d(ci j ) = 1.
Indeed, an element ξ ∈ μe gives rise to a field automorphism σξ of L/F (and

all unramified base changes thereof) sending π
1
e �→ ξ · π

1
e . We apply σξ to

(22) and obtain

d(ξψi jπ
ψi j
e ) = πφi j .

This shows d(ξψi j ) = 1 as asserted above. ��
Claim 5.21 The cohomology class induced by the 1-cocycle (ci j ) agrees with
τ̃ (α) ∈ Z/eZ � H1(k, Z/eZ).

Proof By definition, the 2-cocycle (πφi jk ) represents α on the small site of
unramified étale schemes over F (equivalently, the small étale site ofOF ). We
pull back α to the �-torsor SpecL → SpecF where we have chosen an eth

root π , denoted by π
1
e . The gerbe αL obtained thereby is also represented by

the cocycle (πφi jk ), now seen as an L×-valued cocycle. It is a coboundary, as
shown by the following computation:

(πφi jk ) =
(
(π

1
e )e·φi jk

)
=

(
(π

1
e )d(ψi j )

)
.

The 1-cochain
(
(π

1
e )(ψi j )

)
represents a splitting of the pulled back gerbe αL .

As above there is an action of ξ ∈ μe on L/F , given by π
1
e �→ ξ · π

1
e . The

splitting of αL , given by
(
(π

1
e )(ψi j )

)
, is sent to

(
ξ �→ (ξψi jπ

1
e )(ψi j )

)
= (

ci j (ξ) · πψi j
)

by the action of ξ ∈ μe. Therefore, the 2-cocyle (ci j ) represents τ̃ (α). ��
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By our identification of Z/eZ with μ∨
e = Hom(μe, Gm), we obtain a 1-

cocycle (ψi j ) in Z/eZ. The boundary map of the Bockstein sequence

Z ↪→ Z � Z/eZ

sends (φi jk) to the cocycle (ψi j ) in Z/eZ. The commutative diagram (with
exact rows)

Z Z Z/eZ

Z Q Q/Z

together with the definition of the Hasse invariant as the image of (ψi jk) ∈
H2(k, Z) � H1(k, Q/Z), shows that τ̃ (α) = inv(α). This concludes the
proof. ��

5.5 Hasse invariants for gerbes on Deligne–Mumford stacks

We now turn to a description of the typical set-up to which we will apply the
results of this section. For the applications we have in mind, the scheme Y
will be a Hitchin fibre andM the moduli stack of stable Higgs bundles for the
groups SLn or PGLn of degree prime to n (see Sect. 7).

The following axiomatizes the conditions of Lemma 2.9:

Definition 5.22 Let M be an admissible finite abelian quotient stack over a
ring R.

(1) An integer r ≥ 1 is admissible with respect to M if r is invertible in R
and if there exists an admissible presentation M = [Y/�] of M such
that R contains all r · |�|th roots of unity.

(2) A Gm-gerbe on M is admissible if it has finite order and its order is
admissible with respect to M.

(3) For r ≥ 1, a μr -gerbe is admissible if r is admissible with respect toM.

Then we will be interested in the following set-up:

Situation 5.23 (1) LetM be an admissible finite abelian quotient stack over
OF . We denote by M the coarse moduli space of M, it is an algebraic
OF -space. We let U ⊂ M be the maximal open subspace over which
M → M is an isomorphism.

(2) We suppose that we have a proper algebraic OF -scheme Y/OF with a
morphism i : Y → M which sends the generic fibre Y ×SpecOF F to U .
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(3) Furthermore, we fix an admissible Gm-gerbe α on M. We denote by
invα : M(OF )� → Q/Z the map sending y : SpecF → M to inv(y∗α).
Recall from Sect. 4.3 that M(OF )� consists of certain OF -points of M ,
for which the induced F-rational point lifts toM.

Definition 5.24 Let M be an admissible finite abelian quotient stack over
OF and r ≥ 1 admissible with respect to M. Let τ : Br(MkF )[r ] →
H1
ét(IMkF , μr ) be the transgression morphism of Lemma 2.9. For α ∈

Br(MkF )[r ] we denote by

τ ′
α : IM(kF )iso → H1(kF , μr ) = μr .

the induced function sending y ∈ IM(kF )iso to the restriction of theμr -torsor
τ(α) on IMkF along y : SpeckF → IMkF .We let τα(y) ∈ Z/rZ be the unique
element, such that ζ τα(y) = τ ′

α(y), where we recall that ζ ∈ μr denotes the
fixed primitive root of unity of order r .

Under the assumptions of Situation 5.23 we will show in Corollary 5.26
that the function invα on Y (F) factors through eM : Y (F) → IM(kF )iso, and
the resulting function on IM(kF ) agrees with the function τα . We will deduce
this from the following more general assertion.

Proposition 5.25 Let M be an admissible finite abelian quotient stack over
OF and α an admissible Gm-gerbe onM. There is a commutative diagram of
sets

M(OF )�

invαeM

IM(kF )iso
τα

Q/Z.

Proof In Construction 4.15 it is shown that the restriction of y ∈ M(OF )� to
SpecF extends to a morphism

y′ : [SpecOL/Gal(L/F)] → M

for an appropriately chosen finite tamefield extension L/F with abelianGalois
group. By definition, the quotient stack [SpecOL/Gal(L/F)] is XL/F . By
virtue of Theorem 5.20 we have

inv(y∗α) = τ̃ (y′∗α).

By definition, the right hand side agrees with τα(y). ��
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Corollary 5.26 Assume that the assumptions of Situation 5.23 are satisfied.
Then, there is a commutative diagram of sets

Y (F)

invα
eM◦i

IM(kF )iso
τα

Q/Z.

Proof Let y ∈ Y (F). According to assumption (2) of Situation 5.23 the
scheme Y is proper over OF . Therefore, the F-point y extends uniquely to
an OF -point ỹ ∈ Y (OF ). Since i(y) ∈ U (F) by assumption (2) we see that
i(ỹ) ∈ M(OF )�. Thus, the value of the specialisation map eM : M(OF )� →
IM(kF )iso at i(ỹ) is well-defined. We can now apply Proposition 5.25 to con-
clude the proof. ��

5.6 p-adic integrals of the Hasse invariant

Let r ≥ 1 be an integer prime to p such that F contains all r th roots of
unity. Recall that we fix a generator ζ ∈ μr (F). This choice gives rise to
an embedding μr (F) ↪→ C

×. We also fix an isomorphism Q� � C. By
combining these choices we obtain an embedding ι : μr (F) ↪→ Q

×
� .

Definition 5.27 LetM be an admissible finite abelian quotient stack overOF
and α an admissible μr -gerbe on M. By Sect. 2.2, the gerbe α induces a μr -
torsor Pα on IM. We denote by Lα the �-adic local system on I(M ×OF k)
induced from Pα via the embedding ι.

Construction 5.28 LetM be an admissible finite abelian quotient stack over
OF and α an admissible μr -gerbe on M. We obtain a function

IM(k)iso → μr (F) ⊂ C, x �→ TrFrx (Lα|x ).
By composing this with the specialisation map eM : M(OF )� → IM(k)iso
we obtain a function

fα : M(OF )� → C, x �→ TrFre(x) (Lα|e(x)). (23)

Note that by definition fα agrees with τα ◦ eM under the exponential.

On the other hand there is a natural functionM(OF )� → C associated with
α, namely
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M(OF )� → C

x �→ exp(2π i · inv(x∗α)),

where inv : Br(F) → Q/Z denotes the Hasse invariant. It follows from
Proposition 5.25, that this function agrees with fα .

Corollary 5.29 LetM be an admissible finite abelian quotient stack overOF
andα an admissibleμr -gerbe onM. The associated function fα : M(OF )� →
C satisfies

#α
st(MkF )

qdimM =
∫

M(OF )�
f̄αμorb =

∫

M(OF )�
exp(−2π i · invα)μorb,

where #α
st(MkF ) is defined in 2.13 and f̄α denotes the complex conjugate of

fα .

Proof We choose an admissible presentation M = [Y/�] as in Definition
5.22 with respect to r . By Theorem 4.16 we have

∫

M(OF )�
fαμorb = q− dimM ∑

γ∈�

∑

Z∈π0([Y γ /�])
qF(γ −1,Z)

∑

x∈Z(kF )iso

TrFrx (Lα|x )
|Aut(x)| ,

wherewe also used the relation−w(γ,Z) = F(γ −1,Z)−dimM. Nowunder
the identification [Y γ /�] = [Y γ −1

/�] we have Lα|[Y γ /�] = L−1
α |[Y γ−1

/�],
see (2), and thus

∑

Z∈π0([Y γ /�])
qF(γ −1,Z)

∑

x∈Z(kF )iso

TrFrx (Lα|x )
|Aut(x)|

=
∑

Z∈π0([Y γ−1
/�])

qF(γ −1,Z)
∑

x∈Z(kF )iso

TrFrx (Lα|x )
|Aut(x)| ,

which implies the first equality. The second equality follows directly from
Proposition 5.25. ��

6 Mirror symmetry

In this section we formulate various comparison theorems for dual abstract
Hitchin systems. The definition of dual abstract Hitchin systems is motivated
by the theory of G-Higgs bundles, notably the SLn and PGLn cases, which
appear in Hausel–Thaddeus’s conjecture.
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6.1 Relative splittings of gerbes

Let U → V be a proper morphism of algebraic spaces with geometrically
connected fibres and r ≥ 1 a positive integer which is invertible on V .
According to [3] there exists an algebraic stack of line bundles P̃ic(U/V ).
Its Gm-rigidification (see [1, Section 5]) will be denoted by Pic(U/V ). We
denote byPicτ (U/V ) the open substack of line bundles onU of torsion degree,
that is, those line bundles inducing a torsion element in the geometric fibres
of π0(Pic(U/V )).

Definition 6.1 Let A be a smooth group scheme over V . We say that an A-
gerbe α ∈ H2

ét(U, A) is V -arithmetic, if there exists an étale covering family
{Vi → V }i∈I such that α splits when pulled back to U ×V Vi for all i ∈ I .

These definitions are already interesting to us when V is the spectrum of
a field. Let K be a field and X a projective and geometrically connected K -
scheme. A Gm-gerbe β on X is K -arithmetic, if and only if βK sep ∈ Br(XK sep)

is trivial. We denote the corresponding subgroup of Br(X) by Br(X)K . There
is a short exact sequence

0 → Br(K ) → Br(X)K → H1(K sep,Pic(XK sep)) → 0, (24)

which expresses the difference between Br(K ) and Br(X)K .
If α is a Gm-gerbe on U , then one defines the V -stack of relative split-

tings S̃plit(U/V, α) as follows: for every affine scheme W with a morphism
f : W → V one associates the groupoid of splittings of f ∗α on U ×V W .
Since we can tensor splittings of f ∗α with line bundles on U ×V W , we see
that P̃ic(U/V ) acts on S̃plit(U/V, α). Furthermore, any pair of f ∗α-splittings
differs by a line bundle onU ×V W unique up to isomorphism. In other words,
S̃plit(U/V, α) is a P̃ic(U/V )-quasitorsor.

Lemma 6.2 If α is a V -arithmetic Gm-gerbe on U, then S̃plit(U/V, α) is a
P̃ic(U/V )-torsor.

Proof We already observed that S̃plit(U/V, α) is a P̃ic(U/V )-quasitorsor.
The V -arithmeticity assumption onα implies the existence of an étale covering
{Vi → V }i∈I , such that α splits when pulled back to U ×V Vi . In particular,
S̃plit(U/V, α) has a Vi -rational point. This implies the torsor property. ��

Since the stack S̃plit(U/V, α) is a torsor under P̃ic(U/V ), its fibres contain
infinitely many connected components. For instance, for U → V a relative
family of smooth proper curves, this sheaf of sets of connected components
would be a Z-torsor. The following two definitions will be used to single out
a much smaller subset of S̃plit(U/V, α).
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Definition 6.3 For α ∈ H2
ét(U, μr ) a μr -gerbe on U we denote by

S̃plitμr
(U/V, α) the V -stack sending a test scheme S → V to the groupoid

of splittings of the pullback of α toU ×V S. The μr -rigidification of this stack
in the sense of [1, Section 5] will be denoted by Splitμr

(U/V, α).

We now make use of the embedding of smooth group schemes μr ↪→ Gm .
It gives rise to a natural map from the stack T̃orsμr (U/V ) of μr -torsors,
to P̃ic(U/V ). The Kummer sequence implies that after rigidification of the
stacks, one obtains an isomorphism Torsμr � P̃ic(U/V )[r ].
Definition 6.4 For a V -arithmetic gerbe α ∈ H2

ét(U, μr ) we denote the
induced Picτ (U/V )-torsor

Splitμr
(U/V, α) ×Pic(U/V )[r ] Picτ (U/V )

by Split′(U/V, α). This torsor will be referred to as the principal component
of the space of relative splittings of α.

It is clear that the existence of a splitting of α on X/K as above implies
that Split′(X) has a K -rational point. The converse is not true, as shown by
the case where α is the pullback of a non-split gerbe β on SpecK and we
assume X to have a K -rational point x . In this situation, the gerbe α cannot be
split, as x∗α = β. On the other hand, the space Split′(X, α) � Picτ (X) has a
K -rational point. This is essentially the only thing that can happen as the next
lemma proves.

Lemma 6.5 Let K be a field, X a geometrically connected proper K -scheme,
andα on X be a K -arithmeticμr -gerbe.We denote by β the inducedGm-gerbe
on X. If Split′(X, α) has a K -rational point, then β agrees with the pullback
of a Gm-gerbe on SpecK.

Proof It follows from the assumption that β is sent to zero in
H1(K sep,Picτ (XK sep)), andhence also induces zero in H1(K sep,Pic(XK sep)).
We infer from exactness of (24) that β lies in the image of the map
Br(K ) → Br(XK ) and thus that β is isomorphic to the pullback of an element
of Br(K ). ��

Our main motivation to work with arithmetic gerbes comes from geometry.
The principal component of splittings provides an algebraic analogue of the
manifold of unitary splittings of a torsion gerbe. We record this observation
in the following remark. It will not be needed in any of the arguments, but
it provides the key to translate our algebraic viewpoints on gerbes into the
analytic language of flat unitary gerbes used in Section 3 of [31].
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Recall that we denote by Picτ (U/V ) the torsion component of the relative
Picard variety (if it exists), that is, Picτ (U/V ) is the preimage of the maximal
torsion subgroup of π0(Pic(U/V )).

Remark 6.6 Let U → V be a smooth projective morphism of complex vari-
eties, and α a V -arithmeticμr -gerbe onU . IfPicτ (U/V ) = Pic0(U/V ), then
the complex spaceSplit′(U/V, α) is isomorphic to the manifold of flat unitary
splittings of the unitary gerbe induced by α.

Lemma 6.7 Assume we are in Situation 5.23 and that the F-fibre YF is a
torsor under an abelian variety A. Assume in addition that the μr -gerbe α

is OF-arithmetic. Consider the space T = Split′(Y/OF , α) whose generic
fibre is canonically an A∨-torsor over Spec(F). If YF (F) �= ∅, then for any
trivialisation h : YF

∼= A there exists a root of unity ξ , such that the function

fα ◦ h−1 : A(F) → M(OF )� → C

is equal to

a �→ ξ · exp(2π i(a, [TF ])),

where fα is as in (23) and (a, [TF ]) is given by the Tate duality pairing

( , ) : A(F) × H1
ét(F, A∨) → Q/Z.

Proof Let us assume first that YF is the trivial A-torsor A together with the
trivialisation given by the identity map. The claim then follows fromCorollary
5.26 and the definition of the Tate Duality pairing for an abelian variety A/F :
Given a rational point x ∈ A(F) and a torsor T ∈ H1(F, A∨), we use the
isomorphism H1(F, A∨) � Ext2(A, Gm) to produce a gerbe αT ∈ Br(A).
By virtue of Remark 3.11 we have that (x, T ) equals the Hasse invariant of
the gerbe x∗αT ∈ Br(F) obtained by pulling back αT along x : SpecF → A.
By Lemma 3.12 there exists such a T such that α = αT . We have shown in
Corollary 5.26 that fα is equal to inv(x∗α) under the embedding Q/Z → C

given by the exponential, thus we obtain fα = exp(2π i(−, T )).
In the general case, where we choose an arbitrary trivialisation of Y , we

apply Corollary 3.13. It follows from the statement of loc. cit that the choice
of trivialisation leads to fα = ξ · exp(2π i(−, T )), and the scalar ξ is a root
of unity. ��
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6.2 The setting for mirror symmetry of abstract Hitchin systems

In this subsection we denote by R a Noetherian commutative ring. The reader
is invited to think of it as a subring of the field of complex numbers C or as
the valuation ring OF of a non-archimedean local field F .

Definition 6.8 Consider a smooth R-varietyA/R, a smooth admissible finite
abelian quotient stack M over R in the sense of Definition 4.10, a morphism
π : M → A, and P an A-group scheme acting on M relative to A. We say
that (M,P,A) is an abstract Hitchin system over R, if there exists an open
dense subschemeA♦ ⊂ A with respect to which the following conditions are
satisfied:

(a) We denote the coarse moduli space ofM by M . We assume that the map
M → A is proper.

(b) The base change P♦ = P ×A A♦ is an abelian A♦-scheme.
(c) There exists an open dense subsetM′ ⊂ M, which is a P-torsor relative

to A (not necessarily surjective over the base). Furthermore we assume
thatM♦ := M×AA♦ is contained inM′, and that codim(M\M′) ≥ 2.

The definition above is directly modelled on the properties of theG-Hitchin
system studied in [45, Section 4].

Condition (c) above implies that the stackM is generically a scheme, since
a torsor over P/A is at least an algebraic space, and algebraic spaces of finite
type are generically schematic ([52, Tag 06NH]). The generic fibre of P/A is
connected (as is implied by (b)), but special fibres may have several connected
components.

Definition 6.9 A dual pair of abstract Hitchin systems over R consists of
two abstract Hitchin systems (Mi ,Pi ,A) over R for i = 1, 2 together with
admissible A-arithmetic μr -gerbes αi on Mi for i = 1, 2 for some integer
r ≥ 1 such that there exists an open dense subset A♦ ⊂ A satisfying the
conditions of Definition 6.8 for i = 1, 2 with respect to which the following
conditions hold:

(a) We require there to be an étale isogeny φ : P1 → P2 of groupA-schemes.
In positive or mixed characteristic we assume that over A♦ the orders of
the geometric fibres of the group scheme ker φ are invertible in R.

(b) Over A♦ there exists an isomorphism ψ : (P♦
1 )∨ �−→ P♦

2 , with respect to
which the isogeny φ is self-dual. That is, the diagram

(P♦
2 )∨ φ∨

ψ∨

(P♦
1 )∨

ψ

P♦
1

φ P♦
2
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commutes.
(c) For i = 1, 2 we denote by i ′ the unique element in the set {1, 2}\{i}.

By definition we have that Split′(M♦
i /A♦, αi ) is an (P♦

i )∨-torsor. The
isomorphism of (b) defines a P♦

i ′ -torsor structure on the same space. We

stipulate that for i = 1, 2 we have isomorphisms of P♦
i -torsors

Split′(M♦
i /A♦, αi ) � M♦

i ′ .

(d) For every local field F , every homomorphism R → OF and every element
a ∈ A(OF ) ∩ A♦(F) with image aF ∈ A(F), both fibres π−1

1 (aF ) and
π−1
2 (aF ) have an F-rational point if and only if both gerbes α1|π−1

1 (aF )

and α2|π−1
2 (aF )

split.

Note that condition (c) implies the “if” direction of condition (d), but not
the “only if” direction by Lemma 6.5.

Remark 6.10 For a ring homomorphism R → R′ by base change change
every dual pair of abstract Hitchin systems over R induces such a pair over R′.

We can now state ourmain result, an abstract version of the TopologicalMirror
Symmetry Conjecture by Hausel–Thaddeus.

Theorem 6.11 (Topological Mirror Symmetry) Let R be a subalgebra of C

of finite type over Z. Let (Mi ,Pi ,A, αi ) be a pair of dual abstract Hitchin
systems over R. Then we have an identity of stringy E-polynomials

Est(M1 ×R C, α1) = Est(M2 ×R C, α2).

As stated in the introduction wewill deduce this result in complex geometry
from an analogue over non-archimedean local fields.

For a dual pair of abstract Hitchin system we denote by π I
i : IMi → A the

inertia stacks ofMi together with the induced morphisms to the base A.

Theorem 6.12 (Arithmetic Mirror Symmetry) Let k be a finite field. Let
(Mi ,Pi ,A, αi ) a pair of dual abstract Hitchin systems over k. Then

#α1
st (M1) = #α2

st (M2).

In fact the identity holds fibrewise i.e. for every a ∈ A(k) we have

Tr(Fr, (Rπ I
1,∗Nα1(F1))a) = Tr(Fr, (Rπ I

2,∗Nα2(F2))a),

where Nαi denotes the �-adic local system on IMi induced by the μr -gerbe
αi and some embedding μr (k) ↪→ Q̄

×
� as in Definition 5.27, Fi : IMi → Q
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denotes the locally constant functions given by the fermionic shift (see 2.2),
and Nαi (Fi ) indicates Tate twist by the fermionic shift.

Reduction of Theorem 6.11 to 6.12 This is an application of Theorem 2.19.
��

6.3 Proof of arithmetic mirror symmetry

In this subsection we prove Theorem 6.12 by means of p-adic integration. Let
F be the local field k((t)). By pulling back the pair of dual abstract Hitchin
systems (Mi ,Pi ,A, αi )i∈{1,2} along Spec(OF ) → Spec(k) one obtains a pair
of dual abstract Hitchin systems overOF , whichwe denote by the same letters.

We start by describing the orbifold measures on Mi (OF )� in terms of
volume forms. As it is enough to prove the fibrewise assertion of Theorem 6.12
we fix an a ∈ A(k). By replacing A with a neighbourhood of a if necessary
we may assume that �top

A/OF
is trivial and we fix a global volume form ωA on

A.
We also fix a global, translation-invariant, trivialising section ω̃2 of �

top
P2/A,

which exists since P2 → A is an A-group scheme. As the kernel of the
isogeny φ from Definition 6.9 is prime to the characteristic of k, the pull-back
ω̃1 = φ∗ω̃2 is a global, translation-invariant, trivialising section of �

top
P1/A.

Through the isomorphism

�
top
Pi/OF

∼= π∗
i �

top
A/OF

⊗ �
top
Pi/A,

we thus obtain a global volume form

ωi = π∗
i ωA ∧ ω̃i

on Pi . A similar definition will be given forM′
i below, but at first we need the

following lemma.

Lemma 6.13 Let V be a scheme, and A
p−→ V a smooth group V -scheme. We

denote its zero section by s : V → A. For every A-torsor T
q−→ V there exists

a canonical isomorphism of sheaves

q∗s∗�m
A/V → �m

T/V .

Proof For (T → V ) = (A → V ), one obtains a canonical isomorphism
q∗s∗�m

A/V → �m
A/V by extending sections of s∗�m

A/V to sections of �m
A/V

invariant under left translation (c.f. [10, Proposition 4.2.2]).
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For an arbitrary torsor T and a trivialisation TV ′ ∼= AV ′ over some covering
V ′ of V one obtains an isomorphism

(q∗s∗�m
A/V )V ′ ∼= (�m

A/V )V ′ ∼= (�m
T/V )V ′ (25)

by composition. The left invariance noted above implies that the isomor-
phism (25) remains unchanged if one changes the trivialisation by the action
of an element of A(V ′). Hence (25) descends to a canonical isomorphism
q∗s∗�m

A/V
∼= �m

T/V . ��

By Lemma 6.13, the relative forms ω̃i induce a section of�
top
M′

i/A
on thePi -

torsorM′
i ⊂ Mi denoted by the same symbol. As before, we obtain a nowhere

vanishing top degree form π∗ωA ∧ ω̃i on M′
i . By condition (c) of Definition

6.8 and Hartogs’s extension theorem, there exists a nowhere vanishing global
section ωi of �

top
Mi/OF

which satisfies

ωi |M′
i
= π∗ωA ∧ ω̃i .

FromRemark4.14weconclude that the orbifoldmeasureμorb,i onMi (OF )�

is given by integrating |ωi |, since the intersection � ∩ M′
i = ∅ is empty, as

M′
i cannot contain orbifold points as a relative Pi -torsor.

Remark 6.14 This use of condition (c) of Definition 6.8 is analogous to the
use of the Calabi-Yau condition in the argument of Batyrev. We note that
condition (c) is necessary for Theorem 6.12. Indeed, by blowing up a point on
one of theMi outside ofM′

i , one could obtain a situation as in Theorem 6.12
which satisfies all the assumptions except for condition (c). For such blowups
the conclusion of Theorem 6.12 will not hold in general. The reason is that
our construction above of the top degree form ωi relies on Hartogs’s extension
theorem.

Definition 6.15 Let A(OF )� be the set

A(OF )� = A(OF ) ∩ A♦(F).

For every b ∈ A(OF )� we write ω̃i,b for the volume form on the fibres of
Mi → A and Pi → A over b.

The following lemma allows us to compare the volumes of fibres of dual
Hitchin systems. An alternative argument, based on the behaviour of Néron
modelswith respect to duality of abelian varieties, can be found in the authors’
[24].

123



572 M. Groechenig et al.

Lemma 6.16 (Key Lemma) Let b ∈ A(OF )� be a rational point such that
π−1
i (b)(F) is non-empty for i ∈ {1, 2}. Then we have

∫

π−1
1 (b)(F)

|ω̃1,b| =
∫

π−1
2 (b)(F)

|ω̃2,b|.

Proof LetPi,b denote the fibre ofPi → A over b. Asπ−1
i (b)(F) is non-empty,

there is an isomorphism π−1
i (b) ∼= Pi,b over F and hence

∫

π−1
i (b)(F)

|ω̃i,b| =
∫

Pi,b(F)

|ω̃i,b|.

By Proposition 4.4 we have

1

| ker φ(F)|
∫

P1,b(F)

|ω̃1,b| =
∫

φ(P1,b(F))

|ω̃2,b|.

The right hand side can be equated to

1

|P2,b(F)/φ(P1,b(F))|
∫

P2,b(F)

|ω̃2,b|,

since by translation invariance of ω̃2 we have

∫

P2,b(F)

|ω̃2,b| =
∑

[y]∈P2,b(F)/φ(P1,b(F))

∫

yφ(P1,b(F))

|ω̃2,b|

= |P2,b(F)/φ(P1,b(F))| ·
∫

φ(P1,b(F))

|ω̃2,b|

By condition (b) of Definition 6.9, the isogeny φ is a self-dual isogeny and
therefore we can apply Proposition 3.16 to deduce |(P2)b(F)/φ(P1)b(F)| =
| ker φ(F)|. This concludes the proof. ��

Recall from Construction 5.28, that the μr -gerbe αi onMi induces a func-
tion

fαi : Mi (OF )� → C.

The presence of these functions allows us to generalise the previous Lemma
6.16 to arbitrary fibres.
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Theorem 6.17 For every b ∈ A(OF )� we have an equality of integrals

∫

π−1
1 (b)(F)

fα1 |ω̃1,b| =
∫

π−1
2 (b)(F)

fα2 |ω̃2,b|.

Proof There are four cases to consider.

(1) If π−1
1 (b)(F) = π−1

2 (b)(F) = ∅, then both integrals are 0.
(2) If π−1

1 (b)(F) = ∅, but π−1
2 (b)(F) �= ∅ the left hand side will be 0, so we

have to prove that the integral on the right vanishes. By Definition 6.9 (b)
the fibres P1,b and P2,b are dual abelian varieties and we denote the Tate
duality pairing by

(−, −) : P2,b(F) × H1(F,P1,b) → Q/Z ⊂ C.

By virtue of Lemma 6.7 for an isomorphism of P2,b-torsors π−1
2 (b)

h−→
P2,b, the function fα2◦h−1 is equal to ξb exp(2π i(−, t1))onP2,b(F).Here
ξb ∈ μ(C) is a constant and t1 ∈ H1(F,P1,b) denotes the isomorphism
class of π−1

1 (b) ∼= Split′(π−1
2 (b), α2). Since the Tate duality pairing is

non-degenerate we deduce that up to the constant ξh , the function

fα2 ◦ h−1 : P2,b(F) → C,

is a non-trivial character onP2,b(F), as by assumption t1 �= 0.Translation-
invariance of ω̃2,b therefore implies

∫

π−1
2 (b)(F)

fα2 |ω̃2,b| =
∫

P2,b(F)

fα2 ◦ h−1|ω̃2,b| = 0.

(3) The case that π−1
2 (b)(F) = ∅, but π−1

1 (b)(F) �= ∅ is treated analogously
to case (2).

(4) If π−1
i (b)(F) �= ∅ for both i = 1, 2, then by Definition 6.9 (d) the gerbe

αi |π−1
i (b) splits for i = 1, 2. From Proposition 5.25 we thus see

f
αi |π−1

i (b)(F)
≡ 1.

The proposition now follows from our Key Lemma 6.16, which shows
that P1,b(F) and P2,b have the same volume.

These four cases cover all possibilities and therefore establish the formula
claimed in the proposition. ��

Finally we are ready for the
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Proof of Theorem 6.12 It is enough to prove for every a ∈ A(k) the fibrewise
assertion

Tr(Fr, (Rπ I
1,∗L1(F1))a) = Tr(Fr, (Rπ I

2,∗L2(F2))a),

as the global equality

#α1
st (M1) = #α2

st (M2)

follows from summing over all a ∈ A(k).
LetMi,a be the fibre ofMi → A overa. Using theGrothendieck-Lefschetz

trace formula (see [35, Theorem 12.1(iv)]) we can write

Tr(Fr, (Rπ I
i,∗Li (Fi ))a) =

∑

x∈IMi,a(k)iso

qFi (x)Tr(Fr, (Lαi )x )

|Aut(x)| .

Now let ι : IMi,a(k) → IMi,a(k) denote the involution sending a pair
(m, φ) ∈ IMi,a(k) to (m, φ−1). Then one has for every x ∈ IMi,a(k) the
relations Fi (x) = −wi (ι(x)) + dimMi and

Tr(Fr, (Lαi )x ) = Tr(Fr, (Lαi )ι(x)),

see (2) and the proof of Corollary 5.29 for a similar argument. Thus we get

Tr(Fr, (Rπ I
i,∗Li (Fi ))a) = qdimMi

∑

x∈IMi,a(k)iso

q−wi (x)Tr(Fr, (Lαi )x )

|Aut(x)| .

ByTheorem4.16 the right hand side can bewritten as a p-adic integral, namely

∑

x∈IMi,a (k)iso

q−wi (x)
Tr(Fr, (Lαi )x )

|Aut(x)| =
∫

e−1(IMi,a (k)iso)
f̄αi μorb,i =

∫

e−1(IMi,a (k)iso)
f̄αi |ωi |.

Next let A(OF )
�
a = {b ∈ A(OF )� | b|Spec(kF ) = a}. We have

e−1(IMi,a(k)iso) = {b ∈ M(OF )� | πi (b)|Spec(kF ) = a},

and the complement ofA(OF )
�
a insideA(OF )a = {b ∈ A(OF ) | b|Spec(kF ) =

a} has measure zero with respect to ωA by Proposition 4.4. Furthermore, the
resulting map of analytic F-manifolds

e−1(IMi,a(k)iso → A(OF )�a
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is a submersion, since it is induced by the smooth morphismM♦
i → A♦ (and

taking F-rational points). Thus we can apply Proposition 4.1 and get

∫

e−1(IMi,a(k)iso)
fαi |ωi | =

∫

b∈A(OF )
�
a

|ωA|
∫

π−1(b)(F)

fαi |ω̃i,b|.

Theorem 6.12 now follows from Theorem 6.17. ��

7 The topological mirror symmetry conjecture by Hausel–Thaddeus

In this section we explain how our main theorem implies the Topological
Mirror Symmetry conjecture byHausel–Thaddeus [31]. This ismostly amatter
of recalling that the assumptions in 6.9 are satisfied. The reader is referred to
the original sources by Hitchin [27] and Simpson [51] for an introduction to
Higgs bundles.

7.1 Moduli spaces of Higgs bundles

Our strategy requires us to consider moduli spaces of Higgs bundles over
various base schemes. For the sake of avoiding awkward language we fix a
Noetherian scheme S, and consider a smooth and proper morphism X →
S whose geometric fibres are connected curves of a fixed genus g. Below
we will recall the definition and basic properties of moduli spaces of Higgs
bundles over X/S. We assure theminimalists amongst the readers that only the
following down-to-earth cases are relevant to us: S = SpecC, S = SpecFq ,
S = SpecOF , S = SpecF , S = SpecR, where F is a local field and R ⊂ C is
a finite type subalgebra of C.

Definition 7.1 (a) Let D be a line bundle on X . A D-Higgs bundle is a pair
(E, θ), where E is a vector bundle on S, and θ : E → E⊗D anOX -linear
morphism.

(b) For integers n and d we denote by Md
GLn

(X) the moduli space of stable
D-Higgs bundles of rank n and degree d.

(c) For a line bundle L of degree d on X , a line bundle D of arbitrary degree
and an integer n we denote by ML

SLn
(X) the moduli space of stable

D-Higgs bundles (E, θ) together with an isomorphism det(E) � L sat-
isfying Tr θ = 0.

For the rest of this section we fix a line bundle L on X of degree d as well as
a line bundle D and an integer n. Traditionally one chooses D to be equal to
the canonical line bundle �1

X/S . However we do not need this restriction, and
the general case is of independent interest. We denote by JX the Jacobian of X
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over S and by � = JX [n] the associated finite flat group scheme of n-torsion
points.

Remark 7.2 Existence of the moduli space in this generality can be deduced
easily from algebraicity of the stack of vector bundles Bunn(X/S) on X
(Olsson’s algebraicity result for mapping stacks [47, Theorem 1.1] implies
algebraicity of Bunn(X/S)). For this dévissage argument one considers
the stack of all D-Higgs bundles and the forgetful map HiggsD(X/S) →
Bunn(X/S). It follows from [23,Théorème7.7.6] that thismap is representable
and affine. Therefore the stack HiggsD(X/S) is itself algebraic. Since stable
D-Higgs bundle form an open substack, we obtain algebraicity of the stack of
stable D-Higgs bundles. The corresponding moduli space can be obtained by
rigidifying this stack with respect to the group Gm . Rigidification preserves
algebraicity (see [1]), and hence we deduce thatML

SLn
(X) is representable by

an algebraic space.

Henceforth we will leave D implicit, and simply refer to D-Higgs bundles
as Higgs bundles. However, we emphasise that according to our conventions,
ML

SLn
(X) is the space of stable SLn-Higgs bundles. Nonetheless, the case of

principal interest is when n and d are coprime integers (see Theorem 7.6). It
is well-known that in this case ML

SLn
(X) is a smooth variety, which is acted

on by the finite group scheme of n-torsion points �. As we work in a more
general setting than usual we provide a proof of smoothness:

Lemma 7.3 Assume that D ⊗ (�1
X/S)

−1 is a line bundle, which is either of

strictly positive degree or equal toOX/S. Then the moduli spaceML
SLn

(X/S)

is smooth over S.

Proof Without loss of generality we may assume that S is affine. The defor-
mation theory of (twisted) SLn-Higgs bundles (E, θ) (over an arbitrary base)
is governed by the (relative) hypercohomology of the complex (here End0(E)

denotes the sheaf of trace-free endomorphisms of E)

C•(E, φ) = [End0(E) → End0(E) ⊗ D]
sitting in degrees −1 and 0. We refer the reader to [45, 4.14] for deriva-
tion of this fact in a general context. We have natural isomorphisms
H

0(X,C•(E, φ)) � End(E, φ), H
1(X,C•(E, φ)) � T(E,φ)ML

SLn
, and

H
2(X,C•(E, φ)) equals the space of obstructions. In order to show that

ML
SLn

(X/S) is smooth, we have to show vanishing of H
2(X,C•(E, φ)) for a

stable Higgs bundle (E, φ). Since stable SLn-Higgs bundles have a discrete
group of automorphisms the group End(E, φ) � H

0(X,C•(E, φ)) vanishes.
Serre duality applied to the family of curves X/S implies

H
2(X,C•(E, φ))∨ � H

0(X,C•(E, φ)∨ ⊗ �1
X/S).
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The complex C•(E, φ)∨ ⊗ �1
X/S is given by

[End0(E) ⊗ D−1 ⊗ �1
X → End0(E) ⊗ �1

X ]
� [Hom(E, E ⊗ D−1 ⊗ �1

X ) → Hom(E, E ⊗ D−1 ⊗ �1
X ) ⊗ D].

Therefore, H
0 of this complex describes the space of trace-free homomor-

phisms of Higgs bundles

Hom0((E, φ), (E ⊗ D−1 ⊗ �1
X , φ).

Let us assume that the degree of D ⊗ (�1
X/S)

−1 is strictly positive. Since

(E, φ) and (E ⊗ D−1 ⊗ �1
X , φ) are stable and the second Higgs bundle is

of strictly smaller degree than the first, we have that this space of homo-
morphisms is 0. Similarly, if D ⊗ (�1

X/S)
−1 is equal to OX/S , then we have

End0((E, φ), (E, φ)) = 0 as noted above. ��
Definition 7.4 We denote by MPGLn (X/S) the moduli stack of families of
PGLn-Higgs bundles, which admit a presentation as a stable Higgs bundle
over each geometric point. The notation Md

PGLn
(X/S) refers to the moduli

stack of stable PGLn-Higgs bundles, which admit a presentation by a vector
bundle of degree congruent to d modulo n over each geometric point.

Wewill sometimes denoteML
SLn

(X/S) andMd
PGLn

(X/S) simply byML
SLn

and Md
PGLn

.

Remark 7.5 (a) The connected components of the moduli stack of stable
PGLn-bundles are parametrised by congruence classes of integers modulo
n. That is, we haveMPGLn = ⊔

d̄∈Z/nZ
Md

PGLn
.

(b) The stack Md
PGLn

is equivalent to the quotient stack [ML
SLn

(X)/�]. In
particular, we see that the resulting quotient stack only depends on the
degree d (modulo n) of the line bundle L .

The Hitchin baseA is defined to be the affine S-space corresponding to the
locally free sheaf

⊕n
i=2H

0(X, D⊗i ).

It receives a morphisms χSLn and χPGLn (called the Hitchin map) from the
moduli spaces ML

SLn
(X/S) and Md

PGLn
(X/S). These maps are given by the

familiar construction of characteristic polynomials, applied to the Higgs field
θ itself.

Theorem 7.6 (Hitchin, Nitsure, Faltings) If d and n are coprime, then the
morphisms χSLn , χPGLn are proper.
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See Nitsure’s [46] for a proof of properness in the case of GLn-Higgs bun-
dles, which implies the assertion for SLn , or Faltings’s [18] for a proof of the
case of G-Higgs bundles for reductive G.

We conclude this subsection bymentioning a connection between the notion
of twisting (see Sect. 4.2) and the moduli spacesML

SLn
(X) for varying L . The

proof of Theorem 7.16 is based on this property. We let F be a local field and
take S = Spec(OF ). We let M be a line bundle of degree 0 on X and assume
that n is an integer prime to the residue characteristic of F . We associate to
M a torsor under � = JX [n] as follows: the multiplication by n map is an
isogeny

0 → � → JX
[n]−→ JX → 0.

This sequence induces a long exact sequence of (unramified) Galois cohomol-
ogy groups as part of which we get a boundary map

δ : JX (OF ) → H1
ur(F, �).

The torsor associated to M is δ(M). It can also be understood as the fibre
[n]−1(M) with its natural �-action.

Lemma 7.7 There is an isomorphism

MLM
SLn

(X) � (ML
SLn

(X))δ(M),

where ()δ(M) denotes the twist by the torsor δ(M) (as in Definition 4.5).

Proof We denote by Fur the unramified closure of F , and by OFur its ring
of integers. The latter is a discrete valuation ring with algebraically closed

residue field kF . Hence there exists a line bundle M
1
n ∈ Pic(XOFur ) for which

(M
1
n )n � M . There is a morphism

MLM
SLn

(X)OFur → ML
SLn

(X)OFur

given by tensoring a family of Higgs bundles withM
1
n . The obstruction for this

isomorphism to descend to an isomorphism defined overOF is precisely given
by δ(M) ∈ H1

ur(F, �). This shows that we have an isomorphismMLM
SLn

(X) �
(ML

SLn
(X))δ(M). ��

7.2 The Prym variety and its properties

We denote by π : Y → X × A the universal family of spectral curves. The
moduli stacksML

SLn
(X) andMd

PGLn
(X) are acted on by smooth commutative
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group schemes PSLn/A and PPGLn/A: First we consider the SLn side, where
PSLn is given by the relative Prym variety of the universal family of spectral
curves Y → X × A.

LetA♦ ⊂ A be the open dense subscheme corresponding to smooth spectral
curves. Over this open subset, the fibres of the Hitchin map χ : ML

SLn
→ A

admit the followingwell-known description. For a finite morphismC → C ′ of
relative curves over S we refer the reader to Hausel–Pauly’s [29, Section 3] for
the definition of the norm map NmC/C ′ : Pic(C/S) → Pic(C ′/S). Although
the authors of loc. cit.work undermore restrictive assumptions, their treatment
of the norm map is easily generalised to our more general situation. For a line
bundle L on C ′ we denote by Nm−1

C/C ′(L) the Gm-rigidification of the stack
obtained by taking the preimage of L under the morphism NmC/C ′ . We will
sometimes abbreviate PSLn as P .

Lemma 7.8 Let a ∈ A♦(S) be an S-valued point.

(a) The fibre χ−1(a) = ML
SLn

×A S is naturally equivalent to the stack

Nm−1
Y×AS/X (L ⊗ det(π∗OY×AS)).

(b) The equivalence of (a) is an equivalence of Pa-torsors.
(c) For line bundles M1 and M2 on X we have the following identity in

H1
ét(S,P):

[Nm−1
Y×AS/X (M1)][Nm−1

Y×AS/X (M2)] = [Nm−1
Y×AS/X (M1M2)],

where [ ] denotes the class of the P-torsor in H1
ét(S,P).

(d) For a line bundle M ∈ Pic(X) we have an identity of torsors
[Nm−1

Y×AS/X (Mn)] = 0 in H1
ét(S,P).

Proof The first part is a consequence of the formula

NmY×AS/X (L ′) = det(π∗L ′) · det(π∗OY×AS)
−1

for a line bundle L ′ on Y ×A S (see [29, Corollary 3.12]). The second and
third parts follow from the multiplicativity of the normmap: Indeed, the tensor
product of line bundles on Y induces a map

Nm−1
Y×AS/X (M1) × Nm−1

Y×AS/X (M2) → Nm−1
Y×AS/X (M1M2).

This map has the property of being a bilinear map of Pa-torsors, and therefore
induces a morphism of Pa-torsors

Nm−1
Y×AS/X (M1) ⊗ Nm−1

Y×AS/X (M2) → Nm−1
Y×AS/X (M1M2).
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As a morphism of Pa-torsors this is automatically an isomorphism.
The fourth assertion is a consequence of the identity NmY×AS/X (π∗M) =

M⊗n and multiplicativity: Multiplication with π∗M induces a morphism of
torsors Nm−1

Y×AS/X (OX ) → Nm−1
Y×AS/X (π∗M), which is automatically an

isomorphism. ��
We will now turn to a description of the PGLn-counterpart of the Prym-

variety PSLn/A. At first we recall its definition, which renders the description
of the action on Me

PGLn
relative to A tautological. We then turn to the veri-

fication of the properties demanded in Definition 6.9. Recall that we denote
Pic(X)[n] by �.

Definition 7.9 We define PPGLn = PSLn/�.

We include the proof of the assertion below for the convenience of the reader
since the original reference does not comment on the self-duality property of
the isogeny. In the following, for an A-scheme Z we denote by Z♦ the base
change Z ×A A♦.

Proposition 7.10 (c.f. [29, Lemma 2.2 and 2.3]) There is an isomorphism of
abelian A♦-schemes (P♦

SLn
)∨ and P♦

PGLn
. With respect to this isomorphism

the quotient map P♦
SLn

→ P♦
PGLn

is a self-dual isogeny. Furthermore, the
identification � ∼= �∨ associated to this self-dual isogeny via (12) is the same

as the one associated to the self-dual isogeny JX
[n]−→ JX .

Proof Webegin the proof by fixing notation. The relative Jacobian of the trivial
family of curves X ×S A/A will be denoted by J . The relative Jacobian of
the universal spectral curve Y/A will be denoted by J̃ . Similarly we denote
by J 1 and J̃ 1 the relative moduli spaces of degree 1 line bundles.

Henceforth we restrict every A-scheme to the open subset A♦. To avoid
awkward notation we will omit the corresponding superscript.

The relative normmap induces amorphism of abelianA-schemes J̃
Nm−−→ J .

Similarly, pullback of line bundles yieldsπ∗ : J → J̃ .We claim that these two
morphisms are dual to each other with respect to the canonical isomorphism
J∨ � J induced by the Poincaré bundle (and similarly for J̃ ). To see this we
observe that we have a commutative diagram (the horizontal arrows represent
the Abel-Jacobi map)

Y
AJY

π

J̃ 1

Nm

X
AJX J
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to which we can apply the contravariant Pic0(?/A♦) functor to obtain the
commutative diagram of abelian schemes

J̃ J̃id

J

π∗

J.id

Nm∨

We will now show that the dual of the isogeny

� → PSLn → PPGLn (26)

is equivalent to itself. A convenient framework for the argument is provided
by the theory of abelian group stacks, as explained in [2]. Equivalently, one
could employ a derived category of commutative group sheaves. For (nice)
abelian group stacks there exists a duality functor given by Hom(−, BGm). It
sends an abelian scheme to its dual, and a finite étale group scheme � to B�∨,
the classifying stack of its Cartier dual. The sequence of maps in (26) is sent
to the fibre sequence

P∨
PGLn

→ P∨
SLn

→ B�∨, (27)

where the first map is the sought-for dual isogeny. It is sufficient to show that
P∨
SLn

→ B�∨ is equivalent to the map PPGLn → B�. This amounts to the
following three claims: That the dual of PSLn is PPGLn , that �∨ � �, and
that the isogeny (26) is self-dual. We will obtain these assertions by analysing
the two commutative diagrams below, which are related by the duality functor
Hom(−, BGm).

� PSLn B�∨ P∨
SLn

J π∗

n

J̃

Nm

J J̃Nm

J id J J

n

J.

π∗

Furthermore, the top row of the first diagram is the fibre of the vertical arrows
and hence the top row of the second diagram is the corresponding cofibre. By
explicitly computing the fibres in the second diagram we obtain a commuting
square
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B�∨ P∨
SLn

B�

�

PPGLn ,

�

where we have observed that B� is the cofibre of J
n−→ J and PPGLn is by

definition the cofibre of J
π∗−→ J̃ . This concludes the proof of the first assertion.

The last part of the claim follows from the construction above. ��
The following verifies condition (c) of Definition 6.8.

Proposition 7.11 (Ngô, [45, Proposition 4.3.3], [42, Theorem 2.1]) There
exist natural open and dense open subspaces ML

SLn
(X)′ of ML

SLn
(X) and

Md
PGLn

(X)′ of Md
PGLn

(X) on which the Prym varieties PSLn and PPGLn act
faithfully and transitively. Their complements are of codimension ≥ 2.

Altogether we have shown:

Proposition 7.12 Assume that � is constant over S. Then, ML
SLn

(X) → A
and Md

PGLn
(X) → A are abstract Hitchin systems over R.

Proof It follows from the assumption thatMd
PGLn

(X) is the quotient ofML
SLn

with respect to the abstract finite abelian group �. Since ML
SLn

is smooth
(Lemma 7.3), we deduce that is a finite abelian quotient stack. The Hitchin
system χ and the action of the Prym varieties PSLn and PPGLn was shown
above (Proposition 7.11) to satisfy the requirements of the definition of abstract
Hitchin systems. ��
We conclude this subsection with two technical lemmas that will be needed
later.

Lemma 7.13 For a ∈ A♦(S) we denote by P0
a the fibre (PSLn )a, and by PL

a
the fibre (ML

SLn
)a. Moreover, for the finite flat morphism π : Y → X ×A, we

write M = det(π∗OY ).

(a) We have an abstract isomorphism of P0
a -torsors P

L
a · PL ′

a � PLL ′M−1

a .
(b) For an integer d we have an abstract isomorphism of P0

a -torsors between

(PL
a )d and PLdM−d+1

a .
(c) A line bundle N ∈ Pic(X) induces an abstract isomorphism of P0

a -torsors
PL
a � PLNn

a .

Proof According to Lemma 7.8 we identify the torsor PL
a with (rigidifica-

tion of) the fibre Nm−1
Y×AS/X (LM). Multiplication of line bundles Pic(Y ) ×
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Pic(Y ) → Pic(Y ) yields a P0
a -bilinear map PL

a × PL ′
a → PLL ′M

a . This
induces a morphism of torsors PL

a · PL ′
a → PLL ′M

a . Since a morphism of
torsors is automatically an isomorphism, we conclude that assertion (a) must
hold. Statement (b) follows by induction.

Assertion (c) is based on the fact that multiplication by π∗N induces an
isomorphismof torsors PL

a → N ·PL
a . UsingLemma7.8 again, in combination

with the formula NmY×AS/X (L · π∗N ) = NmY×AS/X (L) · Nn (see [29,
Proposition 3.10]), we obtain an isomorphism of P0

a -torsors P
L
a � PLNn

a . ��
Over a local field every torsor over an abelian variety is of finite order. In our

particular situation, we can show that the order of the P0
a -torsor P

L
a divides n.

Lemma 7.14 Let F be a local field whose residue characteristic satisfies p >

n, and X a curve over SpecOF . We assume that a ∈ A♦(F) is an F-point,
which extends to an OF-point of A. We denote by dL ,a the order of the Pa-
torsor PL

a . Then we have dL ,a|n.
Proof This follows from Lemma 7.8. To see this, observe that there is a line
bundle M ′ on X , such that PL

a � Nm−1
Y×AS/X (M ′). By virtue of 7.8(b-d) we

have n · [PL
a ] = [Nm−1

Y×AS/X ((M ′)n)] = 0 in H1
ét(S,P). ��

7.3 On a conjecture by Mozgovoy–Schiffmann

In this subsection we use p-adic integration to show independence of the point
counts of moduli spaces of Higgs bundles from the degree d as long as it is
prime to n. This is the independence of d part of [43, Conjecture 1.1] for d
and n coprime. These arguments are independent from Sect. 6.

There is an alternative proof of this fact by Yu [57] using automorphic
methods. A full proof of the conjecture, without the coprimality assumption
on (d, n), has been obtained by Mellit [38] by combinatorial means.

Theorem 7.15 Let n and d be positive coprime integers, let k be a finite
field of characteristic p prime to n and d, let X/k be smooth proper curve
of genus g, and let D be a line bundle on X such that D ⊗ (�1

X )−1 is of
strictly positive even degree or equal to OX . We assume that k contains a
primitive n2gth root of unity. Then, for any integer e prime to n and p we have
#Md

GLn
(X)(k) = #Me

GLn
(X)(k).

Proof We choose a local field F with kF = k and lift X and D to OF . Note
that there are no obstructions to lifting, since X is a curve.

We will show that the p-adic volume of the moduli space Md
GLn

(X)(OF )

is independent of d. Since for d and n coprime, the moduli space Md
GLn

is
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smooth,we obtain the asserted comparison of point-counts over kF , by evoking
Weil’s equation (1)

vol
(
Md

GLn
(X)(OF )

)
= #Md

GLn
(X)(kF )

qdimMd
GLn

(X)
.

For the purpose of this proofwewill introduce the finer notationπd : Md
GLn

→
A for the Hitchin map. It follows from Lemma 7.14 that the order of thePGLn -
torsor πd,−1(a) divides n. If e denotes an integer prime to d one therefore has
that [πd,−1(a)]e has the same order. We conclude that πd,−1(a) is the trivial
F-torsor if and only if πe,−1(a) is trivial, whenever d and e are prime to n.
Arguing as in Sect. 6.3, we choose a gauge form η on AGLn and a relative

gauge form ω over A (that is, a translation-invariant generators of the sheaf
�

top
P◦/A) and obtain

∫

Md
GLn

(OF )

dμorb =
∫

a∈AGLn (OF )�

(∫

π−1(a)(F)

|ωa|
)

|η|

=
∫

a∈A(OF )�

(∫

Me
GLn

(OF )

|ωa|
)

|η|.

The last equality holds, since by the discussion above πd,−1(a) has an F-
rational point if and only if πe,−1(a) has an F-rational point. This implies the
independence of d of the right hand side. ��

There exists a variant of the above results for SLn-Higgs bundles:

Theorem 7.16 Let n and d be positive coprime integers and k be a finite field
of characteristic p > n. We consider a smooth proper curve X/k of genus g
endowed with a line bundle D, such that D ⊗ (�1

X )−1 is of strictly positive
even degree or equal to OX . Let L be a line bundle on X of degree d. We
assume that k contains a primitive n2gth root of unity. Then, there exists a
degree 0 line bundle N on X, such that for any e and n coprime we have
#ML

SLn
(X)(k) = #MLeNe−1

SLn
(X)(k).

Proof We choose a local field F with kF = k, and lift X , D and L toOF . This
is possible since X is a curve.

Let a ∈ A♦(F). We write P0
a to denote the Prym variety acting faithfully

and transitively on the Hitchin fibre χ−1(a) ⊂ ML
SLn

(X). Recall that this

action is induced by base change of the relative action of P on ML
SLn

(X),

which endows the latter with a torsor structure over A♦.
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We will now compute the p-adic volume of ML
SLn

. According to 4.4 we
have

vol
(
ML

SLn
(X)(OF )

)
= vol

(
ML

SLn
(X)(OF ) ∩ ML ,♦

SLn
(X)(F)

)
.

The right hand side can be computed as a double integral by applying 4.1 (and
a second time 4.4):

vol
(
ML

SLn
(X)(OF ) ∩ ML ,♦

SLn
(X)(F)

)
=

∫

A(OF )∩A♦(F)

(∫

PL
a (F)

|ωa |
)

|η|

=
∫

A(OF )∩A♦(F)

(∫

P0
a (F)

δPL
a
|ωa |

)
|η|,

where δPL
a

denotes the indicator function of the subset {a ∈ A(OF ) ∩
A♦(F)|PL

a is the trivial torsor}, η a gauge form on A and ω a global

translation-invariant generator of �
top
P◦/A.

Since e is chosen to be prime to n, and the order of PL
a in H1(F, P0

a ) divides
n (Lemma 7.14), we see δ(PL

a )e = δPL
a
. It suffices therefore show the existence

of a line bundle N of degree 0, such that the torsor (PL
a )e is isomorphic to

PLeNe−1

a .

According to Lemma 7.13(b) we have an equivalence (PL
a )e � PLeMe−1

a of
P0
a -torsors. The degree of M is equal to

n−1∑

i=0

(− deg D)i = − deg D

2
n(n − 1),

and hence is divisible by n. We let Q be a line bundle on X , such that
deg Qn = degM . We define N = M · Q−n . According to Lemma 7.13
we have equivalences of P0

a -torsors.

PLeMe−1

a � PLeMe−1Q−n(e−1)

a � PLeNe−1
.

This implies δPL
a

= δ
PLeNe−1
a

, and therefore we have

vol
(
ML

SLn
(OF )

)
= vol

(
MLeNe−1

SLn
(OF )

)
.

The connection between p-adic volumes and point counts yields #ML
SLn

(k) =
#MLeNe−1

SLn
(k). ��
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Applying the usual reduction argument one deduces from this equality of
point counts an agreement of Betti and Hodge numbers.

Corollary 7.17 Let n and d be positive coprime integers. We consider a
smooth proper curve X/C endowedwith a line bundle D, such that D⊗(�1

X )−1

is of strictly positive even degree or equal toOX . Let L be a line bundle on X
of degree d. The Betti and Hodge numbers of the complex manifoldsML

SLn
(X)

and Md
GLn

(X) are independent of d.

7.4 Topological mirror symmetry for moduli spaces of Higgs bundles

We continue to use the setup from the previous subsections for S = Spec(R),
where R is a Noetherian ring in which n is invertible. We also assume that n
and d are coprime, and that the étale group scheme� = Pic0(X)[n] is constant
over R. Furthermore, we suppose that μn·|�| = μn2g+1 is constant over R.

As explained in [31], the moduli spaceML
SLn

(X) is endowed with a natural
μn-gerbe αSLn,L . The definition of loc. cit. is stated for the case R = C

but their arguments can be applied to this more general situation with minor
modifications. Indeed, one defines αSLn,L as the obstruction to the existence
of a universal family of Higgs bundles onML

SLn
(X) ×R X . That is, the gerbe

αSLn,L is represented by the morphism of stacks

M
L
SLn

(X) → ML
SLn

(X),

where the left hand side denotes the stack of stable (L-twisted) SLn-Higgs
bundles, and the right hand side is the associated coarse moduli space (or
μn-rigidification).

Recall that� denotes the group R-scheme JX [n] = Pic0(X)[n] of n-torsion
points in the Jacobian. By our assumptions this group scheme is constant, and
by abuse of notation we will denote again by� is group of global sections. The
group R-scheme � acts onML

SLn
(X) by tensoring families of Higgs bundles,

and Hausel–Thaddeus observe in loc. cit. that the gerbe αSLn,L is endowed
with a natural�-equivariant structure.We therefore obtain aμn-gerbe αPGLn,L
on Md

PGLn
(X) by descending the gerbe αSLn,L on ML

SLn
(X) to the quotient

Md
PGLn

(X) = [ML
SLn

(X)/�].
Let now e ≥ 1 be another integer prime to n. Let e′ = ad be a multiple of

d, which is congruent to e modulo n and L ′ = La . Thus L ′ has degree e′ and
the previous construction yields gerbes αSLn,L ′ onML ′

SLn
(X) and αPGLn,L ′ on

Me
PGLn

.
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Theorem 7.18 (Hausel–Thaddeus) The gerbes αSLn,L and αPGLn,L ′ are arith-
metic gerbes and there are canonical isomorphisms

Split′((ML
SLn

)♦/A♦, αe
SLn,L) � (Me

PGLn
)♦/A♦,

Split′((Me
PGLn

)♦/A♦, αd
PGLn,L ′) � (ML

SLn
)♦/A♦

of P♦
PGLn

- (resp. P♦
SLn

)-torsors.

The proof of this result can be found in [31, Proposition 3.2& 3.6]. It applies
mutatis mutandis to the slightly more general context we are working in. We
remark that they denote Split′ by Triv. Furthermore their definition of Triv is a
priori via unitary splittings of μr -gerbes. However, in the proof they actually
argue with the torsor (Splitμr

× Picτ )/Pic[r ], which corresponds exactly to
our definition of Split′ (see Remark 6.6).

The following verifies condition (d) of Definition 6.9:

Lemma 7.19 Assume that R = OF for a local field F (and R satisfies the
assumptions stated at the beginning of this subsection). For every element a ∈
A(OF ) ∩A♦(F) with image aF ∈ A(F), the fibres χ−1

SLn
(aF ) and χ−1

PGLn
(aF )

both have an F-rational point if and only if both gerbes αe
SLn,L

|
χ−1
SLn

(aF )
and

αd
PGLn,L ′ |χ−1

PGLn
(aF )

split.

Proof The “if” direction follows from Theorem 7.18.
Now to the “only if” direction. We first notice that the existence of F-

rational points implies the triviality of Split′ by Theorem 7.18. It follows from
Lemma 6.5, that the gerbes αe

SLn,L
and αd

PGLn,L ′ are constant along the Hitchin
fibres over F . Thus it is enough to check that they are trivial at an arbitrary
F-rational point.
We start with the SLn-side: Themoduli spaceML

SLn
(X) is smooth overOF ,

and proper over A. Every x ∈ ML
SLn

(X)(F), which lies over a ∈ A(OF ),
and extends therefore to anOF -rational point. This shows that x∗αe

SLn,L
= 0,

since Br(OF ) = 0.
On the PGLn-side we will show that for each a ∈ A(OF ) there exists an

OF -rational point x in χ−1
PGLe

n
(a) whenever there exists an F-rational point in

χ−1
SLd

n
(a). We then conclude as above that x∗αd

SLn,L
= 0.

By Lemma 7.13 the torsor χ−1
SLe

n
(a) is a power of the torsor χ−1

SLd
n
(a). In

particular it has an F-rational point whenever χ−1
SLd

n
(a) does. By the paragraph

above the we obtain that χ−1
SLe

n
(a) has an OF -rational point. Its image x in

χ−1
PGLe

n
(a) yields the sought-for OF -rational point. ��
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The following summarises the properties of the two moduli spaces together
with their natural gerbes established above. Recall that we fixed several
assumptions on R at the beginning of this subsection.

Proposition 7.20 The two abstract Hitchin systems (ML
SLn

,PSLn ,A) and
(Me

PGLn
,PPGLn ,A) (c.f. Proposition 7.12) togetherwith theμn-gerbesαe

SLn,L

and αd
PGLn,L ′ form a dual pair of abstract Hitchin systems over R.

Proof The gerbes are admissible by our assumption that μn·|�| = μn2g+1 is
constant over R. Assumption (a) of Definition 6.9 follows directly from the
definition of PPGLn as PSLn/�. We have verified in Proposition 7.10 that the
natural isogeny PSLn → PPGLn is self-dual. This shows (b). Assumption (c)
is Hausel–Thaddeus’s Theorem 7.18. Assumption (d) is verified by Lemma
7.19 after base change along R → OF . ��
As a consequence of ourmain result 6.11we nowobtain the following theorem,
conjectured by Hausel–Thaddeus. For this we fix a prime �, which is invertible
in k and an embedding μn(k) ↪→ Q̄�.

Theorem 7.21 Let X be a smooth projective curve of genus g over a base
field k endowed with a line bundle D, such that D⊗ (�1

X )−1 is of strictly even
positive degree or equal to OX . Let n be a positive integer, and let d and e be
two integers prime to n. Let L ∈ Picd(X) be a line bundle of degree d. We
assume that k contains a primitive root of unity of order n2g+1.

(a) In case k = C we have the equality of stringy E-polynomials

E(ML
SLn

(X); x, y) = Est(Me
PGLn

(X), αd
PGLn,L ′ ; x, y).

(b) In case k = Fq is a finite field of characteristic p > n we have an equality
of stringy point counts

#(ML
SLn

(X)(k)) = #
αd
PGLn ,L′

st (Me
PGLn

(X)).

Proof Toprove (a)we spreadout:Wechoose a subring R ⊂ C,which is finitely
generated over Z, contains 1/n, and all roots of unity of order n2g+1, such that
X , D and L extend to Spec(R). After replacing R by an étale extension we
may also assume that� is constant over R. Then assertion (a) is a consequence
of Theorem 6.11 applied to the dual pair of abstract Hitchin systems given by
Proposition 7.20. Here we use that since ML

SLn
(X) is a smooth scheme the

stringy Hodge number h p,q
c,st(ML

SLn
(X), αe

SLn,L
) is equal to h p,q

c (ML
SLn

(X)).
Similarly, assertion (b) follows from Theorem 6.12 using Proposition

7.20. ��
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Corollary 7.22 In the situation of Theorem 7.21 (a), in case D is the canon-
ical line bundle, we have an equality of Hodge numbers h p,q

c (ML
SLn

(X)) =
h p,q
c,st(Me

PGLn
(X), αd

PGLn,L ′).

Proof The Hodge structures on the cohomology groups H∗
c (ML

SLn
(X)) and

H∗
c,st(Me

PGLn
(X), αd

PGLn,L ′) are pure in this case [31, Section 6] and hence the
equality of Hodge numbers follows from the equality of E-polynomials. ��

There is a second cohomological result, related to the work of Ngô [45],
which we can deduce from our work. Let R be a finite field k of characteristic
p > n.
We denote by IχPGLn the morphism IMe

PGLn
→ A induced by χPGLn :

Me
PGLn

→ A and by NL ′ the Q�-local system on IMe
PGLn

induced by the

μn-torsor on IMe
PGLn

associated to the μn-gerbe αd
PGLn,L ′ (see Sect. 2.2) by

means of our chosen embedding μn(k) ↪→ Q�. Finally NL ′(FPGLn ) denotes
the Tate twist of NL ′ by the fermionic shift.

Let X be a smooth projective curve over a finite base field k endowed with
a line bundle D, such that D ⊗ (�1

X )−1 is of strictly even positive degree or
equal toOX . Let n be a positive integer, and let d and e be two integers prime
to n. We denote by L ∈ Pice(X) a line bundle of degree e. We assume that
R = k satisfies the assumptions stated at the beginning of this subsection.

Theorem 7.23 For everya ∈ A(k) theGal(k)-representations (R(χSLn )∗Q�)a
and (R(IχPGLn )∗NL ′(FPGLn ))a are abstractly isomorphic.

Proof The two complexes of �-adic sheaves R(χSLn )∗Q� and R(IχPGLn )∗NL ′
are pure. In the first case this follows from Verdier duality, the fact that the
map χSLn is proper, and Deligne’s purity theorem [12]. In the second case
one applies the same argument to every stratum of the inertia stack (which are
moduli stacks of Higgs bundles).

It is hence sufficient to establish an equality of point counts

#(χSLn )
−1(a)(k) = Tr(Fr, (R(IχPGLn )∗NL ′)a).

This is a special case of the second assertion of Theorem 6.12. ��

7.5 The action of � on the cohomology of ML
SLn

(X)

We can also prove the following refined version of Theorem 7.21, which
describes the action of the group � on the cohomology of the SLn-moduli
space.

We continue to use the setup of the previous subsection in the case where
the base ring R is a finite field k, which contains all n2g+1th roots of unity. We
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590 M. Groechenig et al.

choose a primitive nth root of unity ζ ∈ k×. Furthermore, we will assume that
� is a constant étale group scheme over k.

The Jacobian JX of X comes with a canonical isomorphism JX ∼= J∨
X under

which the isogeny [n] : JX → JX is self-dual. Hence as a special case of (12)
we obtain an isomorphism

� ∼= �∨. (28)

By our assumptions � is constant, and hence by the assumptions on k the
group scheme �∨ is constant as well with value Hom(�, μn(k)). (Recall that
we write � also for the group of global sections �(k).) Using (28) and our
chosen root of unity ζ we obtain a non-degenerate pairing of abstract groups

( , ) : � × � ∼= � × Hom(�, μn(k)) → μn(k) ∼= Z/nZ ⊂ Q/Z (29)

where we identify � with �∗.
A result similar to the one below has been conjectured by Hausel in [26].

The strategy is to apply Theorem 7.21(b), and compute the arithmetic Fourier
transforms with respect to the finite group � of both sides.

Theorem 7.24 Let X be a smooth projective curve over a finite field k endowed
with a line bundle D, such that D⊗(�1

X )−1 is of strictly even positive degree or
equal toOX . Let d and e be two integers prime to n.We denote by L ∈ Picd(X)

a line bundle of degree d and let L ′ be a power of L of degree congruent to e
modulo n. We assume that k satisfies the properties described at the beginning
of this subsection. For any γ ∈ � and χ ∈ �∗, which correspond to each other
under the identification � ∼= �∗ given by the pairing (29) we have

Tr(Fr, H∗
c (ML

SLn
(X), Q�)χ ) = Tr(Fr, H∗

c ([(ML ′
SLn

(X))γ /�], NL ′(FPGLn ))).

(30)

Proof As in the proof of Lemma 7.7, given L1, L2 ∈ Picd(X)(k), which differ
by an element of the form Ln

0 for some L0 ∈ Pic0(X)(k), we have an isomor-

phismML1
SLn

∼= ML2
SLn

given by tensoring with L0. Hence up to isomorphism

ML1
SLn

only depends on the class of [L1] in Picd(X)(k)/(Pic0(X)(k)n). We

denote the corresponding moduli space for L1 = L by M[0]
SLn

.
More precisely, let δ be the isomorphism

Pic0(X)(k)/(Pic0(X)(k))n ∼= H1(k, �) ∼= �.

Then the above shows that every other moduli spaceML2
SLn

can be obtained by

twisting M[0]
SLn

by the element δ(LL−1
2 ) as in Lemma 7.7. We write the twist

by ν ∈ � as M[ν]
SLn

.
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By Proposition 4.8 there is for every ν ∈ � an isomorphismM[ν]
SLn

∼= M[0]
SLn

over an algebraic closure of k under which Frobenius gets sent to ν−1 ◦ Fr.
Using this the �-adic cohomology of twists can be understood completely: For
χ ∈ �∗ we compute

∑

ν∈�

Tr(Fr, H∗
c (M[ν]

SLn
, Q�))χ(ν)

=
∑

ν∈�

Tr(ν−1 ◦ Fr, H∗
c (M[0]

SLn
, Q�))χ(ν)

=
∑

χ ′∈�∗

∑

ν∈�

Tr(ν−1 ◦ Fr, H∗
c (M[0]

SLn
, Q�)χ ′)χ(ν). (31)

By definition ν−1 acts on H∗
c (M[0]

SLn
, Q�)χ ′ by χ ′(ν−1). This together with

a character sum argument shows

∑

χ ′∈�∗

∑

ν∈�

Tr(ν−1 ◦ Fr, H∗
c (M[0]

SLn
, Q�)χ ′)χ(ν)

=
∑

χ ′∈�∗
Tr(Fr, H∗

c (M[0]
SLn

, Q�)χ ′)
∑

ν∈�

χ ′(ν−1)χ(ν)

= |�|Tr(Fr, H∗
c (M[0]

SLn
, Q�)χ ),

which is exactly the left hand side of (30) up to the factor |�|.
For the right hand side of (30) we will show in Lemma 7.25 below that for

elements L1 and L2 of Pice(X)(k) inducing ν = δ(L1L
−1
2 ) ∈ � and for any

γ ′ ∈ � we have

Tr(Fr, H∗
c ([(ML1

SLn
)γ

′
/�], NL ′

1
(FPGLn )))

= (ν, γ ′)−1Tr(Fr, H∗
c ([(ML2

SLn
)γ

′
/�], NL ′

2
(FPGLn ))). (32)

Assuming this, we can conclude as follows: For every ν ∈ � let Lν be an
element of Picd(X)(k) such that δ(LL−1

ν ) = ν and let L ′
ν be a power of Lν of

degree congruent to e modulo n as in Sect. 7.4. Then using Theorem 7.21 (b)
and (32) we can expand the left hand side of (31) for χ ∈ �∗ corresponding
to γ ∈ � as follows:

∑

ν∈�

Tr(Fr, H∗
c (M[ν]

SLn
, Q�))χ(ν)

=
∑

ν∈�

Tr(Fr, H∗
c (Me

PGLn
, αd

PGLn,L ′
ν
))χ(ν)
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=
∑

ν∈�

∑

γ ′∈�

Tr(Fr, H∗
c ([(ML ′

ν

SLn
)γ

′
/�], NL ′

ν
(FPGLn )))χ(ν)

=
∑

ν∈�

∑

γ ′∈�

Tr(Fr, H∗
c ([(ML ′

SLn
)γ

′
/�], NL ′(FPGLn ))χ(ν)(ν, γ ′)−1

= |�|Tr(Fr, H∗
c ([(ML ′

SLn
)γ /�], NL ′(FPGLn )))

This is the right hand side of (30) and thus proves the assertion.
It remains to establish (32). To do this we translate the problem into one of

p-adic integrals. We choose a local field F with residue field k and a lift to
OF our curve X together with all the appearing line bundles on X .

First let a ∈ A�(OF ) be a point with image aF in A♦(F). We denote the
abelian varieties PSLn,aF , respectively PSLN ,aF /� = PPGLn,aF over F by
A, respectively B and consider the associated long exact sequence of locally
compact abelian groups

0 → � → A(F) → B(F)
β−→ H1(F, �)

α−→ H1(F, A)

→ H1(F, B) → H2(F, �) → 0

from Construction 3.14. We consider the Tate duality pairings

〈 , 〉 : H1(F, A) × B(F) → Q/Z (33)

and
〈 , 〉� : H1(F, �) × H1(F, �) → Q/Z.

Using the self-duality of the isogeny A → B given by Proposition 7.10,
Lemma 3.15 gives a canonical isomorphism of the long exact sequence (33)
with its own Pontryagin dual. As part of this isomorphism there is an identity

〈α(T ), b〉 = 〈T, β(b)〉�. (34)

for elements b ∈ B(F) and T ∈ H1(F, A). As explained above, the moduli
space ML2

SLn
(X) is the twist of ML1

SLn
(X) by ν ∈ H1(OF , �), so that TL2 =

α(ν) · TL1 in H1(F, A). Using this and (34) we find

〈TL1, b〉 = 〈ν, β(b)〉−1
� · 〈TL2, b〉 (35)

for b ∈ B(F). ��
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Lemma 7.25 We have

Tr(Fr, H∗
c ([(ML1

SLn
)γ

′
/�], NL ′

1
(FPGLn )))

= (ν, γ ′)−1Tr(Fr, H∗
c ([(ML2

SLn
)γ

′
/�], NL ′

2
(FPGLn ))).

Proof The left hand side can be computed by means of the Grothendieck-
Lefschetz trace formula as

∑

x∈[(ML1
SLn

)γ
′
/�](kF )

Tr(Frx , NL ′
1
(FPGLn )))

|Aut(x)| ,

which in turn can be understood as the p-adic integral (see Corollary
5.29) of the function fαL1

given by Construction 5.28 on the subset

e−1([(ML1
SLn

)γ
′
/�](kF )), where e is the specialisation map of Construction

4.15. The same description exists for the right hand side.
Lemma 6.7 describes the functions fαLi

in terms of the Tate duality pairing

between B(F) and H1(F, A). We can therefore apply (35) to compare them.
The torsor β(b) appearing corresponds to an element (t, γ ′′) ∈ � ⊕ �.

By definition of the specialisation map e : Me
PGLn

(OF )� → IMe
PGLn

(kF )

we have e(b) ∈ [(ML ′
i

SLn
)γ

′′
/�] so that γ ′ = γ ′′. Using this, the fact that

ν ∈ H1(OF , �), Lemma 3.7 and the last claim of Proposition 7.10, it follows
that 〈ν, β(b)〉� = (ν, γ ′). This allows us to compare the left and right hand
sides. ��

The lemma above concludes the proof of Theorem 7.24. ��
In the sequel [24] to this article we will revisit the strategy employed above

to give a new proof of Ngô’s Geometric Stabilisation Theorem [45, Théorème
6.4.2].
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