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Abstract We prove the Topological Mirror Symmetry Conjecture by Hausel—
Thaddeus for smooth moduli spaces of Higgs bundles of type SL,, and PGL,,.
More precisely, we establish an equality of stringy Hodge numbers for certain
pairs of algebraic orbifolds generically fibred into dual abelian varieties. Our
proof utilises p-adic integration relative to the fibres, and interprets canonical
gerbes present on these moduli spaces as characters on the Hitchin fibres using
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Tate duality. Furthermore, we prove for d prime to n, that the number of rank
n Higgs bundles of degree d over a fixed curve defined over a finite field, is
independent of d. This proves a conjecture by Mozgovoy—Schiffmann in the
coprime case.
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1 Introduction

Moduli spaces of Higgs bundles are known for their rich and intricate geometry.
As manifolds they are distinguished by the presence of a hyperkihler structure;
moreover, they admit a completely integrable system. The latter is in fact
defined as a morphism of complex algebraic varieties and is referred to as the
Hitchin map. It yields a fibration of the moduli space whose generic fibres
are abelian varieties. Furthermore, even though these complex varieties are
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not projective, the cohomology of smooth moduli spaces of Higgs bundles is
pure.

In [45] Ngb exploited these properties to prove the Fundamental Lemma
in the Langlands Programme. His proof utilises the aforementioned purity of
cohomology, and foremost natural symmetries of Hitchin fibres, and connects
them to the arithmetic phenomena of stabilisation and endoscopy. Our article
reverses the flow of these ideas. We use the arithmetic of abelian varieties
to compare topological and complex-analytic invariants of moduli spaces of
Higgs bundles for different structure groups.

Higgs bundles on a smooth complete curve X (or compact Riemann sur-
face) are given by a pair (E, 8), where E is a principal G-bundle and 6 is
an additional structure known as Higgs field. The geometric features of the
moduli spaces mentioned above are intimately connected with representation
theory and arithmetic. For G and G* two Langlands dual reductive groups,
the Hitchin fibrations share the same base, and the generic fibres are dual in
the sense of abelian varieties. This was observed by Hausel-Thaddeus [31]
in the case of SL,, and PGL,,, and for general pairs of Langlands dual reduc-
tive groups this is a theorem by Donagi—Pantev [16]. Inspired by the SYZ
philosophy, Hausel-Thaddeus conjectured that the moduli spaces of SL, and
PGL,,-Higgs bundles are mirror partners, and predicted an agreement of appro-
priately defined Hodge numbers. We prove this conjecture.

Let n be a positive integer, and d, e two integers prime to n. We choose a
line bundle L € Pic(X) of degree d, and denote by /\/l the moduli space of
Higgs bundles (E, 6), where E is a vector bundle of rank n together with an
isomorphism det(E) =~ L, and 6 is trace-free. We let MPGL” be the moduli
space of families of PGL,,-Higgs bundles, which admit over geometric points
a reduction of structure group to a GL,-Higgs bundle of degree e. Moreover,
there exists a natural unitary gerbe on My, , which we denote by oy, [31,
Section 3].

Theorem 1.1 (Topological Mirror Symmetry Conjecture of [31]) We have an
equality of (stringy) Hodge numbers h?: "(M )= h (MﬁGLn, ar).

The coprimality assumption on d and e with respect to n ensures that the
notion of stability and semi-stability coincide. The resulting SL,,-moduli space
MéL” is smooth, while Mg, —has finite quotient singularities. We use hg{q
to denote stringy Hodge numbers. These are numerical invariants introduced
by Batyrev [5], which include appropriate correction terms to compensate for
the presence of singularities. In addition, the gerbe o living on these spaces
needs to be taken into account. This is natural from the point of view of duality
of the Hitchin fibres. The proof of this result proceeds by proving an equality
for stringy point-counts over finite fields first, by means of p-adic integration.
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We then use p-adic Hodge theory to deduce the topological assertion from the
arithmetic one. The details will be given in 7.4.

Our methods are general enough to be applicable beyond the SL,, /PGL,,-
case. In fact we prove an equality of appropriately defined Hodge numbers for
any “dual pair of abstract Hitchin systems” (see Theorem 6.11). We refer the
reader to Definition 6.9 for a detailed account of what this means. At the heart
of the concept lies a pair of maps (M oA M>) of complex algebraic
orbifolds, where the base A is assumed to be smooth, and contains an open
dense subset .A?, such that over this open subset there exist families of abelian
varieties 731<> — AY « Pg , which act faithfully and transitively on the fibres
of M;. Moreover, we assume that P? and Pg are dual in the sense of abelian
varieties. There are further technical conditions that are omitted for the sake
of brevity. They guarantee that M and M are minimal, and hence enable us
to compare topological invariants. These conditions are modelled on the same
structural properties of the Hitchin map fundamental to [45].

Finally, inspired by the set-up of [31, Section 3], we consider gerbes «; €
H ezt (M;, ur) satistying the following condition, which extends the fibrewise

duality of the abelian varieties P? Vo~ 773 to the torsors ./\/lf>

Definition 1.2 We say that the pair (M, «1) is dual to (Ms, ap), if we
have canonical equivalences /\/l<1> ~ Split/(/\/lé> / A9, op), and Mg ~
Split/(/\/l<1> /A, an), where Split’ denotes the principal component of the stack
of fibrewise splittings of a gerbe, as defined in Definition 6.4.

It is for systems satisfying these conditions that we prove our main mirror
symmetry result. At first we need to recall the definition of the E-polynomial
(or Serre characteristic). For a smooth complex projective variety X this is
defined to be the polynomial

EX;x,y)= Y (=DPHRPIX)xPys.
p,qeN

There exists a unique extension of the E-polynomial to arbitrary complex
varieties, such that

EX;x,y)=EX\Z;x,y)+ E(Z;x,y)

for every closed subvariety Z C X (see [30, Definition 2.1.4]).
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Suppose that I is a finite group acting generically fixed point free on a
complex quasi-projective variety X, such that for every y € I" the fixpoint set
X7 is connected (for simplicity). We define the stringy E-polynomial as

Eq((X/TLx,y)= Y  EX"/Cy);x, »ay) ),
y el’/conj

where C(y) denotes the centraliser of y, and F(y) denotes the so-called
fermionic shift. We refer the reader to Definition 2.2 for more details.

Furthermore, a w,.-gerbe o on [X/I'] gives rise to a modified invariant
Est([X/T], a; x, y). We refer the reader to Definition 2.12.

Theorem 1.3 (Topological Mirror Symmetry, c.f. Theorem 6.11) Let (M; —
A, a;) be a dual pair of abstract Hitchin systems in the sense of Definition 6.9
over a ring of finite type over Z. Then we have the equality of stringy E-
polynomials Egt(M, ay; x,y) = Egt{(Ma, a2; x, y).

By a “stringy version” of the Weil conjectures, the dimensions of the stringy
cohomology groups appearing here are governed by “stringy point-counts”
over finite fields (c.f. 2.4). As mentioned above we will prove our mirror
symmetry result by a comparison of stringy point-counts of similar varieties
over finite fields.

Strategy: Our approach to Theorem 1.1 is strongly inspired by Batyrev’s proof
of the following result (see [4]):

Theorem 1.4 (Batyrev) Let X and Y be smooth projective birational Calabi-
Yau varieties over the field of complex numbers. Then X and Y have equal
Betti numbers.

Batyrev’s proof uses the fact that it suffices to compare the point-counts of
two such varieties over finite fields by virtue of the Weil Conjectures. Using
standard reduction steps one is led to the following set-up: Let F//Q, be a
local field with ring of integers O and residue field IF,. We have smooth and
projective Calabi-Yau schemes X and Y over OF together with a birational
transformation X --+ Y over Op. Batyrev then invokes a result of Weil [54,
Theorem 2.2.5], which asserts that the set of Op-integral points of X has a
canonical measure satisfying

#X (F,)

vol (X(OF)) = qdiW' (1)

Itis therefore sufficient to prove that X (Of) and Y (OF) have the same volume.
Since the canonical measure can be described in terms of a non-vanishing top
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degree form on X, and the two varieties are isomorphic up to codimension 2,
the equality of the volumes is remarkably easy to prove.

The first piece of evidence that a similar strategy can be applied to the
Hausel-Thaddeus conjecture is provided by the fact that the p-adic volume of
an orbifold over OF is related to the stringy point-count.

Theorem 1.5 (Theorem 4.16) Let X be a smooth scheme over the ring of
integers Of of a local field F with residue field F,. Assume that an abstract
finite abelian group T acts generically fixed point-free on X preserving the
canonical line bundle and that F contains all roots of unity of order |I'|. Then
we have

#4X/T(F
vol (X/T)(OF)) = %’

with respect to the canonical orbifold measure on X/ T.

This is well-known to experts, and various versions exist in the literature
[14,56]. However we were unable to find a reference that can be applied directly
in our context, particularly concerning the calculation of the fermionic shift in
measure-theoretic terms. For this reason we have included a proof in Sect. 4.3.

The stringy point-count of X/ I" twisted by a gerbe « can also be computed
in this manner: As we explain in Definition 5.28, the gerbe « induces a measur-
able function f, on (X/I")(OF) (defined almost everywhere) whose integral
determines the stringy point-count twisted by «. Analogously to Batyrev’s
proof of Theorem 1.4, one deduces Theorem 1.1 from the following equality:

Theorem 1.6 (TMS for p-adic integrals, c.f. Theorem 6.17) Let F be a local
field and (M; — A, «;) a dual pair of abstract Hitchin systems over F. Then
we have the equality

/ faldﬂorb = / fazdﬂarb-
M (OF) M2(OF)

The proof proceeds by evaluating both sides fibre-by-fibre along M; — A
using relative measures. After discarding a subset of measure zero we may only
work with the fibres above those rational points a € A(OF), which belong
to AC(F) as well. That is we only have to analyse the fibrewise version of
the identity above over torsors of abelian varieties defined over F. Using a
reinterpretation of the functions f, in terms of Tate Duality one can show
that on a single fibre these functions are either constant of value 1 or exhibit
character-like behaviour, depending on whether the dual fibre has a rational
point or not. This guarantees that only a contribution of those fibres, which
can be matched by an equal contribution on the other side, survives.
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A similar idea applies to a conjecture of Mozgovoy—Schiffmann on the num-
ber of points of MéLn, the moduli space of semi-stable GL,-Higgs bundles
of fixed degree d.

Theorem 1.7 (Theorem 7.15) Let d, e be positive integers prime to n and
X /F, a smooth proper curve. Then we have

#MEL (X)(Fy) = #MG (X)(Fy).

There are independent proofs of this theorem by Yu [57], and by Mellit [38]
without the coprimality assumption.

Previously known cases of TMS: Theorem 1.1 was conjectured by Hausel—
Thaddeus [31]. They provided ample evidence for their prediction, particularly
a full proof for the cases n = 2 and n = 3.

In [29] Hausel—Pauly analysed the group of connected components of Prym
varieties. They show that the finite group I' = J[n] acts trivially on the coho-
mology up to the degree predicted by Theorem 1.1.

In [25, Section 5.3] Hausel observes that Ngo’s [45, Theorem 6.4.1] should
imply a fibrewise version of Theorem 1.1, over an open dense subset of the
Hitchin base.

Finally we remark that there is also an analogue of the Topological Mirror
Symmetry Conjecture for parabolic Higgs bundles. The paper [7] by Biswas—
Dey verified that also in the parabolic case the moduli spaces for the SL,, and
PGL, -case are generically fibred into dual abelian varieties. This motivates
study of the stringy cohomology of moduli spaces of parabolic Higgs bundles.
There is a certain family of examples of such spaces, which can be described in
terms of Hilbert schemes of the cotangent bundles of an elliptic curve (see [20]).
Using Gottsche’s formula for the cohomology of Hilbert schemes one can
verify the conjecture for these cases, as has been explained to us by Boccalini—
Grandi [8]. Recently, the rank 2 and 3 case of the topological mirror symmetry
conjecture for strongly parabolic Higgs bundles was established by Gothen—
Oliveira in [21].

In [28] by Hausel-Mereb—Rodriguez-Villegas the authors will show the
analogue of the Topological Mirror Symmetry Conjecture for E-polynomials
of character varieties.

Conventions: For acommutative ring R we will sometimes use the terminol-
ogy R-variety to refer to areduced and separated scheme of finite presentation
over Spec(R).

Some aspects of our work require a choice primitive roots of unity. We
therefore assume for the sake of convenience that for every field F appearing
in this article, and every positive integer r, such that n,(F) has order r, we
have chosen a primitive root of unity ¢, of order r. Furthermore, we assume
that these choices are compatible, that is, satisfy ¢, = ¢,. If there is no risk
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of confusion, we will drop the subscript and simply write { = ¢, for a fixed
positive integer r.

2 Stringy cohomology and gerbes
2.1 Stringy invariants

We will mostly consider stringy invariants of varieties, which admit a presen-
tation as a global quotient Y/ I, where Y is a smooth variety, and I" a finite
abstract group. A priori, the invariants will depend on this presentation, but
can be shown to be a well-defined invariant of the quotient stack [Y/I']. For
more details on this, as well as a treatment of stringy Hodge numbers for more
general classes of singular varieties, we refer the reader to Batyrev’s [6].

Definition 2.1 Let &X' be a Deligne-Mumford stack. We say that X’

(a) is a finite quotient stack, if there exists an algebraic space Y with a
generically fixed-point free action of an abstract finite group I" such that
X ~[Y/T].

(b) is afinite abelian quotient stack, if (a) holds, and the group I can further-
more be assumed to be abelian.

Definition 2.2 Let X = [Y/I'] be a smooth finite quotient stack over a field
k as in Definition 2.1, such that |I"| is invertible in k. Fix an algebraic closure
k of k. Let x € Y be a closed point fixed by an element y € I'. The tangent
space T, Y inherits therefore a representation by the finite cyclic group I = (y)
generated by y. Over k we choose a basis of eigenvectors (vy, ..., vx) and
denote by (¢, ..., ) the corresponding list of eigenvalues.

Let ¢ be our fixed primitive root of order r = ord(y) in k. For each eigen-
value ¢; there exists a unique expression {; = ¢ with 0 < ¢; < r. With
respect to this choice we define the fermionic shift of y at x to be the sum of
fractions

k
N
Fly,x)=) —
i=1

This number is locally constant on Y7, and therefore defines a function on
mo(YY). Furthermore F(y, -) is constant on C(y)-orbits in o(Y?") , where
C(y) C I' denotes the centraliser of y. Hence we obtain a function

F(y,) :m(Y”/C(»)) — Q.

@ Springer



Mirror symmetry for moduli spaces of Higgs bundles 513

There is also a version of the fermionic shift in the literature, where the
numbers cy, . . ., c; are chosen to satisfy 0 < ¢; < r (c.f. e.g. [14,37,55]). We
write

w(y, ) mo(Y”/C(y)D) — Q,

for the corresponding locally constant function. For any connected compo-
nent Z € mo([Y? /C(y)]) the two functions F, w are related by the formulas
F(y,2)=w(y, Z) —dim Z and w(y, 2) =dim X — F(y !, 2).

We reiterate that the definition of the fermionic shift depends on the choice
of a primitive root of unity ¢ of order r. Over the field of complex numbers it
i

. i . . .
is standard to choose { = e ~, but for all other fields this choice is a recurring
aspect of our work.

Remark 2.3 For a groupoid A (typically the k-points of X'), we will denote
by Ajso the set of isomorphism classes of A. If Ajq, is finite we write #A for
the mass of A, that is

1
#A = :
azA: |Aut(x)]

iso

Definition 2.4 Let X" be a smooth finite quotient stack over a field k. Choose
a presentation X = [Y/ I'] as in Definition 2.1 with Y smooth, as well as a
primitive root of unity & € k of order |I'|.

(a) If k = C is the field of complex numbers, we denote by Egi(X; x, y) the
polynomial

Eq(X;x,y)= ) Y EExnan

yel/eonj \ Zemo(Y? /C(y))
where we define for Z = [W/C(y)]

E(Zix.y)= Y (—=DFdim(HI T W) @)xryd,
p.q.k

Here H/ ’q;k(W) denotes the space grgﬁrq HCk(W)p 4 given by the mixed

Hodge structure on the compactly supported cohomology of W.
(b) If k = IF; is a finite field, we denote by #st(X) the sum

() = ) Yoo g Przm | er.

yel/conj \ Zemo(YY/C(y))
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The fermionic shift £ (y, Z) depends on the choice of ¢. These stringy invari-
ants are however independent of it: Let ¢’ be another choice, and F'(y, Z)
the resulting shift. There exists an integer k, prime to |T'|, such that ¢’ = ¢*.
Elementary group theory shows that y¥ is also a generator of the finite cyclic
group I generated by y. Therefore we have F(y, Z) = F'(y*, Z) and the
above sums remain the same. One can also check that these definitions do not
depend on the choice of presentation of .

Remark 2.5 (Inertia stacks) Recall that for any stack X" the inertia stack /X
is defined to be X x yxx X. Concretely, for any scheme S the groupoid of
S-points IX(S) equals the groupoid of pairs (x, ) where x € X(S) is an
S-point of X and o € Auty (x). One can check that for a finite quotient stack
X = [Y/I'] one has an equivalence

= || /el

[v1€l’/conj

In particular the Fermionic shift and the weight from Definition 2.4 can be
considered as locally constant functions

F,w: IX (k)i — Q.

Over a finite field k one then has

()= Y

el O |Autx (i) (X)]

F(x)

In the next subsection we will introduce a variant of this definition, which
also depends on a gerbe @« € H 2([Y /'], i) on the quotient stack.

2.2 Gerbes and transgression

We begin this subsection by recalling terminology from the theory of gerbes.
Only gerbes banded by A = p, and A = G, will appear in this article.

Definition 2.6 LetS be a Deligne-Mumford stack and A acommutative group
scheme over S.

(i) A gerbe o over S is a morphism of algebraic stacks « — S satisfying the
following two conditions:
e For any scheme S’ over S and any two objects x, x" € «(S’) there
exists an étale covering S” of S’ such that x and x” become isomorphic
ina(S").
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e There exists an étale covering S’ of S such that «(S’) is not empty.

(ii) A banding of a gerbe a over S by A consists of isomorphisms Ag =
Aut. (x) of étale group sheaves over S’ for every S-stack S’ and every
object x € «(S’), which are compatible with pullbacks. A gerbe together
with an A-banding is called an A-gerbe.

Descent data for A-gerbes are given by 2-cocycles with values in A. For
this reason, the set of isomorphism classes of A-gerbes is equal to H ézt(S ,A).

The reason we care about gerbes is that for X a Deligne—-Mumford stack
and o an A-gerbe on X', by the so-called transgression construction, the inertia
stack /X inherits an A-torsor P,. The formal definition of this torsor uses
the functoriality of the inertia stack construction. In the remainder of this
subsection we describe three equivalent descriptions of Py, hoping that at
least one of them will appeal to the reader.

2.2.1 An explicit picture for quotient stacks

We give the first construction of P,: For X = [Y/I'] a quotient of a variety
by an abstract group I" we have

w= |] v/cml

yel'/conj

Let A be acommutative group scheme. An A-gerbe o on X correspondstoal -
equivariant A-gerbe « on Y. We will summarise the discussion of [31], where
a C(y)-equivariant A-torsor is defined on every stratum Y?. By descending
this torsor one obtains an A-torsor P, on IX.

The TI'-equivariant structure of « is given by equivalences of gerbes
ny: v¥a > o for every y € I', which satisfy various compatibility and
coherence conditions (most of which are not relevant to us). Restricting this
equivalence for a given y € I' to the fixed point locus Y one obtains an
automorphism of «|y»:

. n
nylyy : alyr = (idyy)*alyr = (vlyr)*alyr — alyr. (2)

The groupoid of automorphisms of an A-gerbe on Y7 is equivalent to the
groupoid of A-torsors on Y. This construction therefore yields an A-torsor
P, on Y7, which is C(y)-equivariant by virtue of the I'-equivariance of «.
Descent theory yields an A-torsor P, on the component [YV /C(y)] of IX.

Below we record a technical lemma relating central extension and equivari-
ant structures on gerbes. The proof can be skipped when reading this article
for the first time.
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516 M. Groechenig et al.

Lemma 2.7 In the following we assume that Y is a scheme endowed with the
action of an abstract finite group, and that A — Y is a smooth group scheme.

(a) The set of isomorphism classes of T"-equivariant structures on a trivial
.o . 2 .
A-gerbe o on Y is isomorphic to Hsm: . v-sen. (s A), that is, the set of
isomorphism classes of central extensions

l>A->T>T—1, (3)

where A, f and ' are viewed as smooth group schemes on Y. We denote
. 1
the corresponding Ext-group by Ext am. Y_sclh\.(F, A).
(b) Ifthe group I is cyclic, then a central extension I as in (a) is automatically
abelian. Hence in this case isomorphism classes of central extensions of

I' by A correspond to elements of Extslm. ab. grp. Y-sch. (T, A).

(¢) In case Y = Speck for k a field with H éZt(Speck, A) =0, and I" a cyclic
group, there is a short exact sequence

H (k. HOMgy. ab, grp. k-sen, (T2 A)) = HZ(Y/T1, A) — Ext)

sm. ab. grp. E'SdL(F, Az). (4)

Furthermore, if A is a constant étale group scheme, then this sequence
splits.

Proof Since « is assumed to be trivial on Y, an equivariant structure on an
A-gerbe o corresponds to a choice of equivalences of A-gerbes

Nyt ooy a)

for every S-valued point y € Y (S) for § a Y-scheme, such that 7, is the
identity for y = e the neutral element, ,, is compatible with pullbacks, and
for y1, y» € I'(S) we have a commutative diagram

Nyy
o —

o

Ny,
TIVZ\N J/
o

Furthermore, there is a compatibility condition, which is needed to be satisfied
for every triple y1, 2, y3 € I'(S) (see the commutative diagram below). An
equivalence o ~ o of A-gerbes corresponds to an A-torsor. We therefore see
that a I'-equivariant structure on « assigns to every y € I'(S) an A-torsor L,
on S, such that for the neutral element ¢ € I" we have that L, ~ A is the trivial
torsor, and furthermore we have isomorphisms indexed by pairs (y1, y»2) € r?

Gyipnt Ly @ Lyy = Ly,
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such that for the neutral element ¢ € I" one has that
¢y,e: Ly L, >~ Ly

is compatible with the chosen trivialisation of L, (and similarly for ¢, , ), and
for every triple y1, y2, y3 € ['(S) we have a commutative diagram

71 v ®i d

(LVI ® L}’Z) ® LV3 VIVZ ® L}’3
. l Privams
assoc. constraint
¢y2 3 brivars
Ly ®(Ly, ® L)/a) Ly, ® Ly,y, *Lyyyrys-

This amounts to a monoidal map of stacks in groups
¢: T — ByA.
Given such a map, we associate to it the central extension
l > A>T xgpaY—>T—>1,

where Y — By A is the canonical map to the quotient stack. Vice versa, given
a central extension (3), it is clear that T — Iisan A-torsor, and hence we
obtain a map of stacks I' — By A. The central extension property yields that
this is a monoidal map of stacks in groups.

It suffices to prove the analogue of Claim (b) for abstract groups, since
commutativity of smooth group schemes is a local property. The corresponding
statement for extensions of abstract groups can be deduced from the short exact
sequence (*) in [49].

Claim (c): to see why (4) is true we argue as follows. By the assumption
on k, a A-gerbe on [Speck/I'] is the same as a ['-equivariant structure on the
trivial A-gerbe on Speck. By (a) and (b) such data correspond to elements of
ExtSm ab. arp. «ch (I's A). This Ext-group maps to Ext!(T, Ap) by base change.
The kernel of this homomorphism can be identified with the set of isomorphism
classes of extensions I', which split when pulled back to the algebraic closure.
Since the set of splitting is a torsor under Hom(I", A) we obtain a short exact
sequence

H'(k, Hom(T, A)) < Ext! n (T, A) — Ext!(T, 4p).

sm. ab. grp. sc

If A is a constant étale group scheme, then the sequence splits by sending
an extension of abstract abelian groups to the constant extension of abelian
group schemes. O
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2.2.2 A purist’s approach to transgression: central extensions of inertia
groups

Recall that the inertia stack of a Deligne-Mumford stack X is defined to be
IX = X xXyxx X. A more direct definition can be given as follows: Let
us denote by S a test scheme. An S-point of X’ is (by definition) the same
as a morphism § — AX. There exists a group Aut,(X), which is equal to
the automorphism group of x in the groupoid X' (S). The assignment S +—
{(x,®)|x € X(S) and @ € Aut,(X)} is represented by IX.

The second viewpoint shows that there exists a morphism IX — X, such
that the fibre over a given S-point x equals the group S-scheme denoted by
Aut, (X). Vice versa, one can use the abstract definition of X as the self-
intersection of the diagonal of X to deduce the existence of a relative group
scheme structure on the morphism IX — X.

We give the second construction of P,: Let A be a commutative group
scheme and fix an A-gerbe o over a Deligne-Mumford stack X. An S-point
y € a(S) induces an S-point x € X (S). Moreover we obtain a surjective
morphism of automorphism groups My () — Aut, (X). The kernel of this
morphism is equal to the group scheme A and is central in My (cv). Therefore,
we obtain a central extension

A< Aut, (@) —» Aut, (X).

The inertia stack of X is fibred in these group schemes over X, and the total
spaces of these central extensions can be assembled into an A-torsor on /X.
The technical details are summarised below.

Construction 2.8 A morphism of stacks « — & induces a morphism of
inertia stacks Ioe — IX. For o an A-gerbe (where A is assumed to be a flat
commutative group scheme), we obtain a canonical morphism lo — IX. For
example, the trivial A-gerbe By A yields the stack /(ByA) = o xx A. Since
every A-gerbe is étale locally equivalent to the trivial A-gerbe we conclude
that /o is étale locally equivalent to o x x A. This shows that Jo is a stack. As
above there exists for every S-point Z € I« (S) a central embedding A(S) —
Aut, (lo). We can therefore apply the rigidification process of [1, Theorem
5.1.5] to obtain a stack IX = lw//A, which gives a central extension of X'-
group schemes

l > A—IX — IX — 1.

Then, P, = IX is an A-torsor on the Deligne-Mumford stack /X.
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2.2.3 A modern viewpoint on transgression

We give a construction of P, (which we learned from B. Antieau). An A-gerbe
on X corresponds to a morphism of 2-stacks X — B2A = B(BA). Since
the inertia stack I(B2A) is equivalent to BA x B2 A we obtain the morphism
IX — IB>A — BA, which is the classifying morphism of the A-torsor P,
on IX.

2.3 Transgression for torsion G,,-gerbes

As before we let X' be a Deligne—Mumford stack, and let r be a positive integer
invertible on X'. The Kummer sequence

[r] [r]
= HLX G) 5 HLUX, Gp) — HE(X ) — H2(X,Gp) > HE(X,Gp) — -~ (5)

implies that H ézt(X , W) surjects onto the r-torsion subgroup H ézt(X ,Go[r].
That is, for every G,,-gerbe B, such that 8" is a neutral gerbe, there exists a
wr-gerbe «, which induces 8 via the embedding u, < G,,.

Lemma 2.9 Let Y be an irreducible Noetherian scheme endowed with the
action of an abstract finite group I, such that Y admits a Zariski-open covering
by I'-equivariant affine subsets. Let r be a positive integer, such that ji,.r| is
a constant étale group scheme on Y. Then, there exist a map

T H2([Y/T1,Gu)lr]l — H(Y/T1, 1),

such that the diagram

H2(Y/ T, ) — =2 HLAY/ T, 1)

J B l

2 B—Pp 1
Hé,([Y/ ry,G)lr]l ——— Hét(I[Y/ '], Gp)

commutes.
Proof As we have seen above, it follows from the Kummer sequence that

Hézt([Y/ '], ;) surjects onto Hézt([Y/ I'l, G,,)[r]. It is therefore sufficient to
prove that for

a € ker(HZ([Y/T1, uy) — HZ(Y/T1, Gulr])
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the associated j,-torsor on the inertia stack
Py € HY(ITY/ T, )

is trivial.

Let Y = [ J;.; Ui be a covering by I'-equivariant Zariski-open affine sub-
sets. Since Y is Noetherian, we may assume that / is finite. Furthermore, by
further refining this covering, we achieve that the open subsets U; do not carry
non-trivial line bundles. Below, we will prove triviality of Py |y, . The general
case follows from the following claim. O

Claim 2.10 A Zariski locally trivial w,-torsor on Y is trivial.

Proof At first we observe that w, is by assumption a constant étale group
scheme. In his Tohoku paper, Grothendieck proved a vanishing result for higher
cohomology groups Héar(Y, A) of a constant abelian group valued sheaf on an
irreducible Noetherian space Y (see [22, p. 168] and also [52, Tag 02UW]). In
particular we have Hzlar(Y, ur) = 0, which implies triviality of Zariski locally
trivial p,-torsors. O

Henceforth we may assume without loss of generality that Y is affine and
irreducible. By assumption, « induces the trivial G,,-gerbe on [Y/I']. It fol-
lows from the Kummer sequence that « = §(L), where L € Pic([Y/T]) =
H,([Y/T], Gy) and

§: HA([Y/T1,Gy) — HZ(Y/T1 1)

denotes the boundary map of the Kummer sequence (5). The p,-gerbe §(L)
measures the obstruction to the existence of an rth root of L. As a groupoid-
valued functor, it assigns to a test scheme S — Y the groupoid of pairs (M, ¢),
where M is a line bundle on S and ¢: M®" ~ L.

After replacing Y by a Zariski open subset on which L is trivialisable, we
see that the gerbe o« = §(L) splits when pulled back along Y — [Y /'], since
Ly ~ Oy ~ (’)?’ . It follows from Lemma 2.7 that « corresponds to a central
extension of Y-group schemes

1= iy = g > T — 1. (6)

Claim 2.11 The central extension (6) is Zariski locally induced by a central
extension of abstract groups.

Proof By assumption, u, is a constant étale group scheme on Y, and I' is the
constant group scheme. These facts together with connectivity of ¥, imply that
it suffices to prove that I'y, is constant.
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Recall that @« = 8(L) where L € Pic([Y/T]). Since we replaced Y by an
affine open on which (the pullback of) L is trivial, we see that L corresponds
to the choice of a I'-equivariant structure on Oy. That is, L corresponds to a
character A: I' — (Gy,.

We claim that the central extension (6) can be constructed explicitly as a
fibre product of A: I' — G,y by the rth power map [r]: G,, = G,:

= pri
1 — Ury — Fa =T X)L,quy,[r] Gm,y — I = 1.
Indeed, projection to the second component gives rise to a character
u’: FO{ e Gm,Y’

such that u” = X o pri. That is, the central extension ﬁx agrees with the
obstruction for A to have an rth root.

The character A: I' — G, y factors th{pugh wiry,y, which we assumed to
be a constant group scheme. Therefore, I'y, is obtained by pulling back the
central extension

[r]
l — pry = pr ),y — mry — 1

along A: I' — pu,y. The assumption that 1, r| is a constant étale group
scheme on Y yields that the latter central extension is induced by an extension
of abstract groups. O

By definition of the transgression map, the u,-torsor P, is given by pulling
back the u,-torsor FO, along the map /[Y/T'] — I' x Y. Since Fa —Tisa
trivial p,-torsor by the claim above, we deduce that P, is trivial. This proves
what we wanted. O

2.4 Twisted stringy invariants

The p,-torsor P, associated to a u,-gerbe « by the transgression construction
from the previous subsection enables us to define a variant of stringy coho-
mology of a quotient stack X = [Y /'], which takes a given u,-gerbe on X
into account:

Definition 2.12 Let X = [Y/I'] be a complex quotient stack of a smooth
complex variety Y by a finite group I'. For a positive integer r and a gerbe
aeH ézt(X , r) we define the a-twisted stringy E-polynomial of X as

Eq(X,a:x,y) = Y > E(Z.Ly:x,y)(xy) 2 |
yel/conj \ Zemo([YY/C(y)])

@ Springer



522 M. Groechenig et al.

where L, denotes the ,-torsor Py |y /c(y) on [YY/C(y)] given by trans-
gression and
E(Z,Ly;x,y)=EX(L,;x,y),

where x : u,(C) — C* denotes the standard character, and EX denotes the
part of the E-polynomial corresponding to the y-isotypic component of the
cohomology of the total space HX(L, ).

Similarly we can define a-twisted versions of stringy points counts for quo-
tient stacks over a finite field k. The definition passes via £-adic cohomology,
and hence requires us to choose an embedding 1, (k) C Qy, in order to extract
an {-adic local system L,, from the p,-torsor P,.

Definition 2.13 Let Y be a variety over a finite field k = [, with an action
of a finite abstract group I'. Let X = [Y/I"] be the associated quotient stack.
For a positive integer r prime to the characteristic of k, and @« € H ézt(X , L)
we define

)= ) . TPz ).

yel/conj \ Zem([YY/C(y)D

where L, denotes the induced £-adic local system on Y7 obtained from the
wr-torsor Pyliyv/c(y)) and

Tr(Fre, Ly )

L, —
e 2 Aut(x)]

x€Z(k)iso

where Fr, denotes the Frobenius at x.

2.5 From point-counts to E-polynomials

Let X¢ be a complex variety. For a subring R C C we refer to an R-scheme
X R together with an isomorphism Xz xg C = X¢ as an R-model of Xc.
Using a finite presentation argument it is easy to show that for every complex
variety Xc there exists aring R C C of finite type over Z such that X¢ has an
R-model.

In this section we recall an argument, which allows one to deduce from an
agreement of all possible stringy point counts for given R-models of two com-
plex varieties X, Y¢ an agreement of stringy E-polynomials Esi(Xc; x, y) =
Est(Yc; x, y).

We begin by proving an equivariant analogue of Katz’s Theorem 6.1.2 in the
appendix of [30] (which is a generalisation of Ito’s [33]). This will be obvious

@ Springer



Mirror symmetry for moduli spaces of Higgs bundles 523

to experts, but we are including the details for the sake of completeness. We
recommend to readers who are new to this application of p-adic Hodge theory
to take a look at Katz’s explanations in loc. cit.

In the following we will always work with compactly supported cohomology
when dealing with non-projective varieties.

Definition 2.14 Let G be a finite abstract group. We understand G-schemes
over a base scheme S to be schemes over S with a G-action over §, and G-
varieties to be separated G-schemes of finite type over a base field, such that
every G-orbitis contained in an affine open subscheme. For a G-representation
V over a field k and a character x : G — k*, we denote by VX the x-isotypic
component of V.

(a) For a complex G-variety X and a complex-valued character x of G we
let Eé (X; x,y) € Z[x, y] be the polynomial

EG(Xix,y) = ) Y (=)' dim[griy? H(X)" Jx? y.
P.qEeL i€l

(b) For a G-variety X over a finite field Iy, and a @g—valued character y of

G, we define the x-twisted point count #é (X) e @g to be the alternating
sum of traces

HE(X) =D (D'TFr H (X, Q1= > TrlFrx, (Ly.l,

i€Z xe[X/G1(Fgiso

where L, denotes the £-adic local system on the quotient [ X/ G] induced
by x.

We can now state an equivariant analogue of Katz’s [30, Theorem 6.1.2].
We repeat once more that our proof follows closely the one given in loc. cit.,
and refer the reader to the original source for a less terse account.

Theorem 2.15 Let G be a finite group and R C C a subalgebra of finite type
over 7. We fix an abstract isomorphism of C and Q, and let x be a complex-
valued character of G. Assume that X and Y are separated G-schemes of finite
type over R, such that for every ring homomorphism R — I, to a finite field
F, we have #é(X xgFy) = #é(Y x g Fy). Then, we also have

EL(X xgCix,y) = ES(Y xg C;x, y).
Proof As in loc. cit. we may assume that X and Y are smooth and projective

over R. This is possible by virtue of Bittner’s [9, Lemma 7.1], which we use
to replace [30, Lemma 6.1.1] in Katz’s proof.
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Furthermore, we can achieve regularity of SpecR by inverting a single
element in R (since R C C is integral, it is generically smooth). We let
f: X — SpecR and g: Y — SpecR denote the structural morphisms. As in
loc. cit. we choose a prime £, such that £ is larger than dim X and dim Y and
such that we have a finite extension E of Q; together with an embedding R into
the valuation ring O of E (in fact, by virtue of Cassels’s Embedding Theorem
[11] there are infinitely many prime numbers £, such that E can be chosen to
be Q). For every integer i we then consider the lisse sheaves (R’ f,Q;)* and
(R'g.Q¢)* on SpecR[%]. Smoothness and projectivity of X and Y guarantee
purity of these sheaves. Hence the equality #é (X IF,,r) = #é (Y]Fq,) for all finite
overfields - of I, implies the identity

det(1 — tFry, (R' £,Q¢)*) = det(1 — tFr,, (R g.Q¢)%)

for all integers i. Chebotarev’s Density Theorem yields an isomorphism of
semi-simplifications

(R £:Q0))* = (R gQp)*)*

of lisse sheaves of SpecR[%].

Using the embedding R < O we can pull back our constructions and
insights obtained so far to this finite extension of Z,. We obtain two smooth
projective E-varieties Xg and Yg of good reduction for which we have an
equivalence of lisse sheaves over SpecE

(R (fE)«Qo))™ =~ (R'(gE)«Qe)¥)*.

Fontaine—Messing’s [19] or Faltings’s [17] shows that Ri((fE)*Qg) =
H'(Xz,Qg) is a Hodge-Tate representation of Gal(E) and that there is a
natural isomorphism

P HI(XE, @) @ Ce(—p) =~ H (X3, Qo) ® Ce.
prq=i

The naturality of this isomorphism implies that this isomorphism respects the
G-action on both sides. We infer that the Hodge Tate numbers of H 0.6 7> Qo)X
recover the dimension of the x-isotypic component of H? (X g, 27). We con-
clude the proof by applying the same reasoning to Y and using the equivalence
of the semi-simplifications of the Gal(E)-representations H 0 7> Q)% and

Hi(YE,Qg)X. O

We will use a slightly more general result. In order to apply Theorem
2.15 to compare stringy E-polynomials, we have to adjoin formal rth roots
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of the Lefschetz motive . = [A!] to the Grothendieck ring of G-varieties
1
Ko(Varg/R)[(L7)r>2].

Definition 2.16 (a) For g € Z a prime power, a compatible system of roots
of g is a sequence s = (s;),>2 in C with s) = g and s}, = s,/ for all
/
ror' > 1.
(b) Givenaring homomorphism R — F,, every compatible system s of roots
of ¢ induces a well-defined equivariant point-count homomorphism

1
#fF’qX: Ko(Varg/R)[(L7),>2] — C
extending the usual point count homomorphism

#fng Ko(Varg/R) — C

by stipulating #ISF’(,X (IL%) = s, for the trivial character x and O otherwise.
(c) Since two choices s and s of roots of p differ by an element o of
Gal(@/@), we see that for X, Y € Ko(Varg/R)[(]L%)rzg] we have
#5%(X) = #7(Y) if and only if #;;X (X) = #fF/q’X (Y). Hence we obtain
a well-defined relation #f;q (X) = #gq (Y) on Ko(Varg /R)[(L%),Zz].
(d) Similarly, the equivariant E-polynomial extends to a function

EX: Ko(Varg/C)[(L7)y=2] — Z[(x+, y7)y=2]

by stipulating EX (L'l') = (x y)% for the trivial character, and O otherwise.

The most natural choice of a compatible system of roots of ¢ is the
sequence of positive real roots. However we will also consider the sequence
(Tr(Frg » Qg(%)))ri | given by a homomorphism R — F, and a compatible
system of roots of the Tate twist Q¢(1) on SpecR in the following sense:

Lemma 2.17 After replacing R by a finite étale extension R’ there exist rth
roots Qg(%) of the Tate twist Qg (1) as lisse £-adic sheaves on SpecR for all

r > 1 satisfying Qg(#)‘g”/ = Qg(%)for allr,r’ > 1.

Proof Thisis amild generalisation of Ito’s [33, 5.3]. We consigler the Tate twist
Q¢ (1) as arepresentation of the étale fundamental group p : nft (SpecR, C) —
Q. Since it is a continuous ¢-adic presentation of a profinite group it factors
through Z, . We choose an open subgroup U C Z; and V C Zg, such that we
have a logarithm log: U — V andexp: V — U. There exists a pointed finite
étale covering SpecR’ — SpecR, such that ,O|n_ié[ (SpeckR’,C) factors through U.
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For r > 1 we define another continuous {-adic representation of
n{'(SpecR’, C) by the formula

1
exp(; 10g(,0 |7Tiél(SpecR’,(C)))'

By construction the corresponding lisse étale sheaves are rth roots of the Tate
twist satisfying the required compatibility condition. O

Theorem 2.18 Let G be a finite group and R C C a subalgebra of finite type
over Z. We fix an abstract isomorphism of C and Q, and let x be a complex-

valued character of G. We assume that X,Y € Ko(Varc;/R)[(]L%)rZz], such
that for every ring homomorphism R — T, to a finite field F, we have
#éq (X) = #I)F(q (Y). Then, we also have

EX(X xgC;x,y) = EX(Y xg C; x,y).

Proof Afterreplacing R by a finite étale extension we may choose a compatible
system Q((%) as in Lemma 2.17.

We fix a character x of G. The assertion is reduced to the following: Let
X0, ..., X and Yy, ..., Y,y be smooth projective G-varieties over R C C
(which is smooth over Z), and

a0y -« Uy Bos -+, B € QN [0, 1),

such that we have for every R — F, an equality

m m'

i g5 X ) — i g5 X (Y.
ng“ e (Xi) = ;qﬁ e (¥)),
- =

where s = (Tr(Fry > Qe (%))),21 is the induced system of roots of ¢. We denote
by X = Y7 ,[Xi] 1 L% and Y = Z'J’-’;O[Y,-]Lﬂf the corresponding elements
of Ko(Varg/R)[(L")=2].

We choose a prime £, such that £ > dim X;, dim Y¥; for all i, j, and, such
that we have a finite extension E of QQ; together with an embedding R into the
valuation ring O of E.

We denote by f;: X; — SpecR and g;: ¥; — SpecR the structural mor-
phisms. For a rational number ¢ € Q\N we define (R f; «Q¢)* = 0. We can
now consider for every rational number ¢ > 0 the lisse £-adic sheaves

(R £:Q0)* = @R f; .Qu (i),

i=0
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and similarly,

’

(R°2:Q0)* = EP(Rig; LQu(Bi)*.

i=0

By Chebotarev Density we have an isomorphism of semi-simplifications
(R€ fQ)**% ~ (R g,Q¢)%-*% of lisse sheaves over SpecR[Z_l]. We now use
the morphism R — E, and consider the Galois representations of Gal(E/E)
induced by these lisse sheaves by pullback to E.

By applying p-adic Hodge theory (that is, Fontaine—Messing’s [19] or Falt-
ings’s [17], as in the proof of Theorem 2.15) to the smooth projective varieties
X; (and Y;), we see that the Hodge-Tate weights of these Galois representation
are given by the formal expressions:

m
Wt (Xe) = ) hy e (X,
i=0

respectively hy? (Y¢) = Z;”:/O Ry 417 (Y ;) where p, g € Q, and we use
the convention that for non-integral rational number ¢, d we have hg(’d (X)) =
0. We therefore conclude that EX (X¢) = EX(Y¢). O

Theorem 2.19 Let R C C subalgebra of finite type over Z. We fix an abstract
isomorphism of C and Q,. Let X; be smooth T;-varieties for two abstract
finite abelian groups "1 and I'y. Let X; = [X;/ ;] be the resulting quotient
R-stacks and o; be a p,-gerbe on X; fori = 1, 2. We suppose that for every
ring homomorphism R — [ to a finite field F, we have #g; (X1 xgFy) =
#g? (X2 xg Fy). Then, we also have

Est(X) xg C a3 x,y) = Est(X xg C, a2; x, y).

Proof We may assume 'y = I'p, since we can replace I'; and I', by I' =
['1 x I'y in the following way:

X1 =[(X1 xT'y)/T],

and similarly for X>. Moreover after enlarging R C C we may assume that
these presentations as quotient stacks are also defined over R. We shall assume
that R contains u,(C); this can always be achieved by suitably modifying R.

For each prime power q let s, = (q%)rzl be the compatible system of
positive real roots. Then for every homomorphism R — [, the stringy point-

count of A&; twisted by «; is given by #];?q’x applied to }° i, LFOL;

where L; ) is the I'-equivariant local system on X ly induced by the gerbe «;.
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The local system L; ,, is induced by a p,-torsor (with respect to a chosen
embedding x : u, < Q). Let Y;,,, be the total space of this torsor. It is acted
onby I' x u,, and EF(XI?’, L,;x,y)is equal to EI)EXM(Y,-,,,; x,y), where x
denotes the character induced by the chosen embedding , < Q, and the
projection I' X u, — . We can therefore apply Theorem 2.18to G = I x
and Zy crlYi,1- L% to deduce the assertion. O

3 Arithmetic of local fields
3.1 Galois theory of local fields

We fix a prime p > 0. First we recall some general facts about non-
archimedean local fields of residue characteristic p, that is, finite extensions
of Q, or F,((T)).

For such a field F equipped with a valuation v: F* — Z we denote by Of
the ring of integers of F', by my the maximal ideal of O andby kr = Op/mp
its residue field. We will be interested in local fields F as well as their algebraic
extensions, which we equip with the unique prolongation of the valuation on
F.

Now we fix a local field F and a separable closure F* of F. We also fix a
uniformiser 7 € F.

Definition 3.1 For an algebraic overfield L of F we let the inertia group
11, be the kernel of the canonical surjective homomorphism Gal(L/F) —
Gal(kr/kF) and, in case I, is finite, we let the ramification index ey /r of L
over I be the order of I} .

(i) Analgebraic field extension F' C L is called totally ramified if the induced
extension of residue fields kg C ky, is the trivial one.

(i1) An algebraic field extension F C L is called unramified if for every
intermediary field F C L’ C L, which is finitely generated over F we
have eL'/F = 1.

(iii)) An algebraic field extension F' C L is called tamely ramified if for every
intermediary field ¥ C L’ C L, which is finitely generated over F the
ramification index e,/ is prime to p.

We will be mainly interested in abelian algebraic extensions of F. A fixed
separable closure F* of F contains the following tower of extensions:

FCFurCFtrCFabCFS
Here F? is the maximal abelian extension of F, F' is the maximal abelian

unramified extension and F" is the maximal tamely ramified abelian extension
of F.
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By local class field theory there is a canonical homomorphism r: F* —
Gal(F®®/F), which is injective and has dense image. It fits into a diagram of
split short exact sequences

0 05 F* : Z 0

| I |

0 —— Gal(F®/F') —— Gal(F®/F) —— Gal(kr /kr) —— 0

where each vertical homomorphism is injective with dense image and the
right vertical homomorphism sends 1 € Z to the Frobenius automorphism
x> xkelof kp.

Brauer groups play an important role in local class field theory. We refer
the reader to [50, Proposition XIII.6] for a proof of the following result, which
summarises the main properties of Brauer groups of local fields.

Theorem 3.2 The Brauer group Br(F) of alocal field is isomorphic to Q/Z by
means of the Hasse invariant inv: Br(F) — Q/Z. For a finite field extension
of local fields L/ F we have a commutative diagram

Br(F) —— Q/Z

J J.[m

Br(L) —— Q/Z.

For M a finite étale abelian group scheme over F, we denote by
H ét(F , M) the degree i Galois cohomology group of M, that is, the group
H'(Gal(F*¢P/F), M). Alternatively, we can view it as the ith étale cohomol-
ogy group of M over SpecF'. Fori = 0 we obtain the finite group of F'-rational
points of M and fori = 1 the group of M-torsors defined over Spec F'. In higher
degrees one can give similar geometric interpretations, but we will not need
this. The cohomology groups are known to vanish in degrees i > 3 (see [41,
Section 1.2]).

We denote by H! (F, M) the Galois cohomology group H ét (Gal(F“"/F),
M). Since Gal(F“'/F) = Gal(k."/kF), we see that Hl.(F, M) =~
Hy(OF, M) ~ H; (kp, My,).

For a finite abelian group G, we denote by G* the group of characters
G — Q/Z. This construction is a special case of the Pontryagin dual defined
below. For a finite commutative group scheme M over F, we denote by MY :=
Hom (M, G,,) its Cartier dual.
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Theorem 3.3 [41, Corollary 1.2.3] Let M be a commutative finite group
scheme over F of order prime to p. For every i € Z there exists a canon-
ical perfect pairing Hét(F, M) x Hézt_’(F, MY) — Q/Z. Furthermore, the
annihilator of H. (F, M) is equal to H>"'(F, M").

As we remarked above the cohomology groups H ét( F, M) are finite. Their
cardinalities are subject to the following constraint.

Theorem 3.4 Let M be a commutative finite étale group scheme over F of
order prime to p. Then we have

|HJ (F, M)| = |[M(F)||M" (F)|.

Proof This is a combination of [41, 1.2.9] and the identity |Hé2t(F ,M)| =
|MY (F)| implied by Theorem 3.3. |

Now let I be a finite abelian group of order n prime to p. We denote by [
the constant group schemes over Spec(F) or Spec(Of) with value group I'
and by w(F) the finite group of roots of unity in F.

Construction 3.5 Consider the homomorphisms
7 x w(F) 2> F* 5 Gal(F®/F),
where i sends 1 € Z to the chosen uniformiser 7 € F* and is the inclusion
Ww(F) < F* on the second factor and r is the reciprocity homomorphism
from (7).
Since I is a constant abelian group scheme, there are canonical isomor-
phisms

H/ (F,T) = Hom(Gal(F®/F), T) = Hom(Gal(F®®/F), T),

where Hom denotes continuous group homomorphisms. Hence composition
with i gives a homomorphism

1
Hg (F,T) — I @ Hom(u(F), I').
Proposition 3.6 The homomorphism
1
H,(F, ') - I' ® Hom(u(F), T') (8)

from Construction 3.5 is an isomorphism. With respect to this isomorphism
the inclusion of I' corresponds to H,.(F,I") C H élt(F , D).
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Proof As noted above the reciprocity homomorphism r: F* — Gal(F?/F)
is injective with dense image. Hence it induces an isomorphism

Hom(Gal(F®®/F), ') =< Hom(F*, T).

Now the choice of uniformiser = € F gives an isomorphism F* = Zx Oj.
The Z-module structure on O extends uniquely to a continuous Z,-module
structure. Because of the existence of the logarithm the Z,-module O is
isomorphic to the direct sum of a free Z,-module (which has finite rank if F
has characteristic zero and countably infinite rank otherwise) and its torsion
subgroup w(F) (see [44, Satz I11.5.7]). Since the order of I' is prime to p we
finally obtain an isomorphism

Hom(F*,T) ZEHom(Z x w(F),T) =T & Hom(u(F), ).

The second claim follows from the above and the diagram (7). O

Lemma 3.7 Assume that F contains all roots of unity of order |T'|. Then (L)Y
is the constant group scheme with value Hom(T', w(F)). Under the isomor-
phisms (8)

H,(F,I) =T @& Hom(i(F),T)

and
H{ (F, L") = Hom(T, u(F)) & Hom(u(F), Hom(T, ju(F)))

the Tate duality pairing H' (F,T') x H'(F, (I')Y) — Q/Z from Theorem 3.3
can be described as follows: The first factors of H'(F,T) and H'(F, (I)V)
jointly pair to zero, and analogously for the second factors. The remaining
part of the pairing is given by the canonical evaluation pairings

I' x Hom(u(F), Hom(T', u(F))) — Hom(uw(F), w(F)) = Z/|u(F)|Z
and
Hom(u(F), T') x Hom(", w(F)) — Hom(u(F), uw(F)) = Z/|ju(F)|Z.

Proof The claim about the first (respectively second) factors pairing to zero
follows from the last part of Theorem 3.3. For the remaining part of the claim,
using functoriality in I" one can reduce to the case I' = Z/nZ. In this case the
claim can be verified using [41, Remark 1.2.5(b)]. |

@ Springer



532 M. Groechenig et al.

3.2 Tate duality

Following [41], we call an abelian torsion group M of cofinite type if for
each n € Z the n-torsion subgroup of M is finite. In the following we will
deal with various abelian groups M, which are either profinite or torsion of
cofinite type. We will always equip the profinite groups with the profinite
topology and the torsion groups with the discrete topology. On the intersection
of these two classes, namely finite abelian groups, these topologies agree.
For such an M we denote by M* := Hom(M, Q/Z) its Pontryagin dual.
The functor M — M™* is a contravariant equivalence from the category of
profinite groups to the category of torsion groups of cofinite type and vice
versa. For a finite group M we have |M| = |M*|. For a profinite group M and
a torsion group N of cofinite type (or vice versa) a continuous bilinear pairing
M x N — Q/Z is called non-degenerate if the induced homomorphism
M — N*is an isomorphism.

Let F be a local field as above. For an abelian variety A over F' we recall
the Tate duality pairings on the étale cohomology groups H éit(F ,A) of A:

Lemma 3.8 ([41, 1.3.1]) For any abelian variety A over F and any r > 0
there is a canonical isomorphism

HL(F, AY) S Exti (A, Gy).

These isomorphisms are functorial in A.
Construction 3.9 For each r > 0 there is a natural pairing
HL(F, A) x Ext* (A, Gy) — HZ(F,Gy). )
From the construction of these pairings one sees that they are functorial in A
(see [41,1.0.16]).
By combining these pairings with the Hasse invariant
H(F, Gp) = Q/Z
(c.f. Theorem 3.2) we obtain functorial pairings
1—- \Y
H; (F, A) x H, "(F,AY) - Q/Z.
Theorem 3.10 (Tate, see [41, 1.3.4]) Let A be an abelian variety over F. The
cohomology groups H" (F, A) are zero forr > 2. The group A(F) is profinite
and the group Hé]t(F, A) is torsion of cofinite type. For r = 0, 1 the pairing
1—
Hy(F, A) x H, "(F,AY) - Q/Z
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defined above is continuous and non-degenerate.

Remark 3.11 Let D be derived category of the abelian category of étale
sheaves of abelian groups over F. We denote by S: D — D the shift
functor X +— X[1]. Then by [41, Section 1.0], the Tate duality pairing
A(F) x Hélt(F, AY) — Q/Z from Theorem 3.10 can be described as fol-
lows:

Leta € A(F)and T € Hélt(F, AY). Under the isomorphism Hélt(F, AV) =
Ext*(A, G,,) = Homp (A, S*(G,,)), the torsor T corresponds to a G,,-gerbe
on A. Pulling this gerbe back along

a: Spec(F) — A

gives a (G, -gerbe on Spec(F'), which corresponds to an element of the Brauer
group Br(F) = Hézt(F, Gy,). This element is the image of a and ¢ under the
pairing.

Let Z be the constant étale sheaf over F with value group Z. Then for some
r > 0 there are canonical isomorphisms

H (F, A) = Homp(Z, S"(A)),
Ext> (A, G,,) = Homp(A, S>7(G,)),

and HZ (F, Gy) = Homp (Z, S*(Gp))

under which the pairing (9) coincides with the pairing

Homp(Z, S"(A)) x Homp(A, S (Gn))
= Homp(Z, S"(A)) x Homp(S"(A), S*(G ) — Homp(Z, S*(G )

given by composition of morphisms in D.

The forgetful morphism Ext*(A, G,,) — H ezt (A, Gyy) is of central impor-
tance. The elements of the abelian group Ext’>(A,G,,) are isomorphism
classes of (,,;,-gerbes on A endowed with a group structure (see for instance
[53, 3.1], or [48, 5.5] for an exposition using the language of Azumaya alge-
bras). Informally they can be thought of as central extensions

1—>BGm—>Zf—>A—>1
of abelian group stacks. The canonical map Ext®(A,G,) — Hézt(A, Gu)
retains only the isomorphism class of the G,,-gerbe and forgets the group

structure. The next lemma shows that after replacing G,, by u,, the analogous
morphism is actually an injection, and its image can be described explicitly.

@ Springer



534 M. Groechenig et al.

Lemma 3.12 Let F be a local field and r a positive integer invertible in F.
We denote by A/F an abelian variety, and by P/F an A-torsor. Then the
natural map Ext*(A, u,) — Hézt (A, ) is injective. Its image corresponds
to those |u,-gerbes o on A, which become trivial when pulled back along the
morphisms Aps = A X SpecF°® — A and SpecF 5 A

Similarly, we have a canonical equivalence

ker(Br(P) — Br(Pgs))[r]
Br(F)|r]

~ Ext*(A, u,).

Proof According to Lemma 3.8 and Kummer theory we can identify
Ext*(A, uy) with H}(F, A¥[r]). Similarly, the subset of HZ(A, ) cor-
responding to gerbes which are trivial on A s can be naturally identified with
H élt(F , AY[r]). To see this one observes that a descent datum of j,-gerbes
on the trivial u,-gerbe on Aps yields a Gal(F)-cocycle taking values in the
group of isomorphism classes of p,-torsors on A, which can be identified with
H élt(F , AY[r]). Vice versa, one can recover « from the corresponding element
H élt(F , AV[r]) up to an element of Br(F). Since we assume in addition that
e*a is trivial, this establishes the correspondence.

The second assertion is established with the same argument. Since P is an
A-torsor, there exists an equivalence Prs >~ Aps. As before we can therefore
describe descent data on the trivial w,-gerbe as 1-cocycles in p,-torsors. This
allows one to recover a gerbe in ker(Br(P) — Br(Pps))[r] up to an element
of Br(F)[r]. O

Corollary 3.13 Let F be a local field and r a positive integer, such that r is
invertible in F. Let A/ F be an abelian variety, and P/F an A-torsor. Then
there exists a canonical isomorphism

ker(Br(A) — Br(Aps))[r] _ ker(Br(P) — Br(Pp:))Ir]
Br(F)Ir] B Br(F)Ir] '

Construction 3.14 Using Theorem 3.10 one sees that given an isogeny
¢: A — B of abelian varieties over F, the exact sequence 0 — ker(¢) —
A — B — 0 induces the following exact sequence of cohomology groups:

0 — ker(¢)(F) — A(F) % B(F) — H)(F, ker(¢)) — HL(F, A)
— H}(F, B) — HZ(F, ker(¢)) — 0 (10

Lemma 3.15 Consider an isogeny ¢ : A — B of abelian varieties over F as
well as its dual isogeny ¢ : BY — A" with kernel ker(¢p") = ker(¢)". The
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associated long exact sequences (10) are dual to each other under Tate duality
in the sense that they fit into a commutative diagram

4
ker(¢)(F) A(F) B(F) HY (F, ker(¢)) —> H)(F, A) — HL(F, B) = HZ(F,ker(¢))

HY'(F, ker(¢))* — HL(F, BY)* — HL(F, AY)* — H)(F,ker(¢)")* — BY(F)* —> AY(F)* — ker(9)"(F)*,

in which the vertical isomorphisms are given by Tate duality.

Proof The commutativity of the squares not involving boundary maps is an
instance of the naturality of the Tate duality pairings. That these pairings are
also compatible with boundary maps follows from their construction. This can
be seen as follows: All the pairings appearing arise from the natural pairing

Ext'(C,Gp) x H.'(F,C) — HZ(F,Gp) = Q/Z, (11)

which exists for an étale sheaf C of abelian groups on F, and is given by com-
position in the derived category of such sheaves as in Remark 3.11. These
induce the Tate duality pairings via natural isomorphisms H; (F, AY) =

Ext't1(A,G,,) for an abelian variety A (c.f. [41, Lemma [.3.1]) and
H ét(F , M) = Ext'(M, G,,) for an étale commutative finite group scheme
M over F (c.f. the proof of [41, Cor. 1.2.3]). Thus is suffices to check the com-
patibility of (11) with boundary maps. This follows from a direct verification
using the description as composition in the derived category. O

An isogeny ¢: A — B of abelian varieties A and B is said to be self-dual,
if there exists an isomorphism v : A = B such that the diagram

A—? .p

wlz :lwv

BY —— AY
commutes. Such ¢ and v induce canonical isomorphisms
ker(¢p)" = ker(¢") = ker(¢). (12)
The proposition below plays a key role in the proof of our main result.

Proposition 3.16 Let A i) B be a self-dual isogeny of abelian varieties over
F whose kernel has order prime to p. Then |B(F)/¢(A(F))| = | ker(¢)(F)|.
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Proof Let K := B(F)/¢(A(F)) C Hélt(F, ker(¢)) and Q := Hél[(F, ker(¢))
/K. By the sequence (10) there is an isomorphism

O = ker(H)(F, A) — H/(F, B)).
Using Lemma 3.15 we get an isomorphism
K = coker(H}(F, B)* — Hj(F, A)*) = Q*.
Since Q is finite we thus get |Q| = |Q*| = | K |. Hence the exact sequence
00— K — Hélt(F, ker(¢)) > Q — 0

implies |H/ (F, ker(¢))| = |K|*.

On the other hand, by (12) we have ker(¢) = ker(¢)". Hence Theorem 3.4
implies |Hélt(F, ker(¢))| = |ker(q§)(F)|2 and thus | K| = | ker(¢)(F)|, which
is what we wanted. O

4 p-adic integration
4.1 Basic p-adic integration

As before we fix alocal field F'. We write | - | for its non-archimedean norm and
w'y for the Haar measure on F”* with the usual normalisation u;, (O%) = 1. An
F-analytic manifold (or F-manifold) is essentially defined the same way as
over the real numbers, as explained in [32]: it is a second countable Hausdorff
space with an atlas consisting of charts homeomorphic to open subsets of
F", such that the change of coordinate functions are locally expressible by
convergent power series. Similarly one defines F-analytic differential forms
on F-analytic manifolds.

The main example we are interested in comes from algebraic geometry:
for a smooth algebraic variety X over F the set of F-rational points X (F)
admits the structure of an F'-manifold and any algebraic n-form on X induces
an F-analytic differential form on X (F).

Given an n-dimensional F-manifold X and a global section w of (52’;()@’
we can define a measure d ., on X as follows: Given a compact open chart
U < F" of X and an analytic function f : U — F such that o)y =
F)(dy, Adyxy A=+ Ady, )" we set

po@) = [ 141 au.
U
This extends to a measure on X as in [56, 3.2].
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For an F-manifold X we will denote Q‘,i(im(x) by Qt;()p . For an integerr > 1,
we call a nowhere vanishing section of (Qt;()p)@’ an r-gauge form. As in the
real case they can be divided in a relative setting. Indeed, for a submersion
f: X — Y there is a sheaf of relative top degree forms Qt;p = AP Q} The

short exact sequence
1 1 1
[*Qy & Qy - Qp
yields a canonical isomorphism of line bundles
Ay @ QY ~ Q. (13)

It allows us to assign to a section 6 of Qt})p and w of Qt;p a top degree form

0 A ffo.

Proposition 4.1 Let f : X — Y be a submersion of F-manifolds and wx and

wy two r-gauge forms on X and Y. Then there exists a unique analytic section
0 of the sheaf (Qt})p Y®" on Y, such that

9/\f*a)y=a)x

with respect to (13), and for an integrable function « : X — C we have

/adﬂwx =/ (/ Oldltey) ditewy
X Y A1)

where 0 denotes the restriction of 0 to the fibre f (). Furthermore, if X, Y
are the F-rational points of smooth varieties, the submersion f is induced by
a smooth morphism and wy, wy algebraic r-gauge forms, then 0 stems from
an algebraic section of(Qz}]p)‘@r.

Proof In the algebraic case we abuse notation and write also X and Y for the
underlying varieties over Spec F'. We consider the isomorphism of line bundles

QR = (F 2y 0™ © @y,

which are understood to be sheaves of either algebraic or analytic forms
according to the situation. Let 6 be the unique section of (Qt}?/py)@” such that
wx = wy @ 0. For each y € Y the section 6 restricts to an r-gauge form 6,
on f~!(y) and we claim that these sections have the required property. Since
the above isomorphism of line bundles is compatible with analytification it
suffices to show this in the analytic case.
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The analytic case for r = 1 follows from [32, Theorem 7.6.1] by inspecting
the proof of loc.cit. and verifying that the gauge forms 6, constructed there
coincide with the ones constructed above. For r > 1 we note that it suffices to
prove that the r-gauge forms 6, have the required property locally on X and
Y for the analytic topology. The following claim shows that once we restrict
to suitable analytically open subsets we may assume that wy and wy have rth
roots. O

Claim 4.2 Let w be an r-gauge form on an F-analytic manifold X. For every
x € X there exists an F-analytic 1-gauge form n defined on an open neigh-
bourhood of x, such that |n®"| = g™ - |w| withm € Q.

Proof By choosing a chart containing x we may assume that X is an open
subset U of F" and represent w as g - (dx) A --- Adx,)®", where g is locally
expressible by an analytic power series. We define m by |g(x)| = ¢~". Since
g: U — F is continuous, there exists an open neighbourhood V of x, such
that for all y € V one has

m

g =1gx)=q .

We conclude that for all y € V one has 1 = [(dx] A --- Adx,)®"| = g™ -
lg(dxi A -+ Adx,)®|. So we can take 1 to be (dx| A --- Adx,)®". i

This reduces the assertion to the case r = 1 proven in loc. cit. O

Lemma 4.3 Let f: X — Y be an isomorphism of F-manifolds and wy an
r-gauge form on Y. For any integrable function o.: Y — C we have

/aofd,uf*wyz/ad,uwy.
X Y

Proof For r = 1 this is proven in [32, Section 7.4]. For r > 1 by working
locally on X we may assume that wy has an rth root on Y, see Claim 4.2. This
allows us to reduce the lemma to the case r = 1. O

We will briefly recall p-adic integration on (not necessarily smooth) Op-
varieties, where we essentially follow [56, Section 4]. For a O-variety X we
write X p = X Xspec(op) Spec(F) and Xy, = X Xspec(0r) Spec(kr). Let X3
be the smooth locus of X g and set

X° = X(Op) N XF"(F),

where we think of X (OpF) as a subset of X(F) = Xpg(F). Then X° has
naturally the structure of an F-manifold. Thus we can integrate any section
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w e HO(X}m, (Qt}?ﬁ’m/F)@’) on X°. This way we obtain a measure ., on X°,
F
which we extend by zero to all of X (OF).

The following facts will be essential for manipulating p-adic integrals:

Proposition 4.4 [56, Lemma 4.3, Theorem 4.8]

(1) For any subscheme Y C X of strictly positive codimension we have
KoY (OF)) = 0.

(2) Let f : Y — X be a morphism of Op-varieties. Assume that Y admits a
generically stabiliser-free action by a finite group ', that the morphism
f is U-invariant and that Y/ U — X is birational. Then for any open
I-invariant subset A C Y (OFf) and any r-gauge form w on X° we have

1
e = [ e
Tl Ja f(A)

4.2 Twisting by torsors

This subsection is independent of p-adic integration, but will be used in the
proof of Theorem 4.16 below and also later in Sect. 7.5.

We fix a scheme S and a commutative étale group S-scheme I'. In our
applications, the scheme S will be either Spec F' or SpecOF, and I" a constant
group scheme over S.

Definition 4.5 Let N be an S-scheme endowed with a I'-action. For a
torsor T € H élt(S ,I') we define the T-twist of N to be the S-space
N7t =[(NxgT)/I'],whereI" acts on the fibre product N x g T anti-diagonally.
The group scheme I" acts on N7 through its action on 7.

We emphasise that N7 is an S-space, since it is stabiliser-free. It is an
algebraic S-space, since I" is assumed to be étale (see [52, Tag 06DC]).

In general, several S-schemes N’ with ['-action may yield isomorphic quo-
tient stacks [N’/ I']. Twisting is a way to produce such examples, as the next
lemma shows.

Lemma 4.6 There exists anatural equivalence of S-stacks [N/ '] >~ [Nt/ T'].

Proof We have [N7/T'] =~ [[(N x5 T)/1I"]/2T"], where the first I" acts anti-
diagonally, and the second I" acts only on the first component. Lemma 4.7
below allows us to exchange the two quotients and we obtain

(LN xs T)/2T1/iT] = [[N/T] xs T]/T = [N/T],

where we have used that I" acts trivially on [N/ I'], and through the standard
actionon 7. Since T is a I'-torsor, we have [T/T'] =~ S. O
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Lemma 4.7 Let N be an S-scheme endowed with commuting actions of fppf
group S-schemes I'1 and I'». Then there exists an equivalence [[N/ ']/ '2] =~
[[N/T2]/ 1]

Proof Let T be an S-scheme. By definition, a morphism 7 — [[N/T'{]/ 3]
relative to the base S is given by a I'>-equivariant morphism

P — [N/T1],

where P — T is a I';-torsor. Unravelling this further, we see that this corre-
sponds to a I'-equivariant morphism Q — N, where Q — P is a I'|-torsor
endowed with a I';-equivariant structure on P. Faithfully flat descent theory
implies that Q is the pullback of a I'j-torsor P’ — S, and that we have a
I'y-equivariant morphism P’ — N.

This shows that morphisms T — [[N/I'1]/I';] are equivalent to the
groupoid of triples (P, P’, ¢), where P is a I';-torsor on S, P’ a I'y-torsor
on S, and ¢ a (I'; x I'1)-equivariant morphism P x P’ — N.

The same argument as above relates this to the groupoid of morphisms
T — [[N/T3]/T'1]. This shows that [[N/T2]/I"1] and [[N/ 1]/ 2] are
equivalent. O

We record the following assertion for later use.

Proposition 4.8 Let U be a variety over a finite field k with an action of a
finite abelian group T. Let T € H'(k,T) =T be a L-torsor corresponding
to an element y € T'. Then, there is an isomorphism of Q,-vector spaces

H. (U, Qp) ~ H}(Ur, Q)

between the étale cohomology groups of U and Ut with respect to which the
Frobenius operators are related by the formula

FFUT = (]/*)71 - Fry.

Proof This follows directly from the definition of twists: Over the algebraic
closure k a section of 7' induces an isomorphism between the schemes Ur
and (Ut ), and with respect to this isomorphism the Frobenius morphisms are
related by multiplication with y. |

Corollary 4.9 For a smooth variety Y over a finite field k with an action of a
finite abelian group T" we have

1
HY/TIH) = > 1Ykl

TeH! (kI
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4.3 The orbifold measure

We start with some basic terminology for finite quotient stacks (c.f. Definition
2.1).

Definition 4.10 (i) For a ring R and an integer m, we say that R contains
all roots of unity of order m if for every homomorphism from R to an
algebraically closed field &, the group fi,, (R) surjects onto i, (k).

(ii) Let R be a ring. A finite abelian quotient stack M over R is admissible
if it admits a presentation M = [Y/I'] by a smooth quasi-projective
R-variety Y with a generically fixed-point free action by a finite abelian
group I whose order is invertible in R and such that R contains all roots
of unity of order |I'|. In this case we write M for the geometric quotient
Y/ T and also call such a presentation M = [M/ '] admissible.

Lemma 4.11 Let M be an admissible finite abelian quotient stack over a ring
R. Then M is Q-Gorenstein.

Proof We have to show that M is normal and that its canonical divisor K s
is Q-Cartier. By [39, 0.2 (2)] the scheme M is normal. Lemma 5.16 in [34]
yields that every Weil divisor on M is a Q-Cartier divisor. O

Let M be an admissible finite abelian quotient stack over Spec(OF) and fix
an admissible presentation M = [Y/I']. We write pr: ¥ — M = Y/T for
the quotient morphism, A C Y for the locus on which I" does not act freely,
and U = Y\ A for the complement of A. The F-manifold

M(Op)" = M(OF) N pr(U)(F)
admits a measure through the following construction.

Construction 4.12 (Orbifold measure) By Lemma 4.11 the quotient M is
normal and hence we have canonical Q-Weil divisors Ky and K. By [56,
Lemma 7.2] there exists a unique Q-Weil divisor D on M such that K + D is
QQ-Cartier and such that the pullback pr*(Ky; 4+ D) is equal to Ky. In fact the
proof of loc.cit. shows that D can be expressed in terms of the pushforward of
the ramification divisorin Y. We let o, be the measure on M (OF) associated
to the pair (M, D) by [56, Definition 4.7]. It is defined as follows: Pick r > 1
such that r (K s 4+ D) is a Cartier divisor. Then r (K s + D) gives rise to a line
bundle / on M.

Over pr(U) the line bundle 7 is a subsheaf of (Q;ff(u))‘g’r and locally on

M (OF)" the measure Lo is given by integrating a generating section of . As
in [56, 4.1] one sees that this gives rise to a well-defined measure on M (O F)”,
which can then by extended by zero to all of M (OF). One can check that the
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divisor D, and hence the measure o, are independent of the choice of the
presentation of M.

We now discuss two special cases, in which o can be described more
explicitly.

Remark 4.13 If the canonical bundle Qt)(,)p is trivial one has a global form worb

on M ((’)F)t that computes pop. Namely if o € H Oy, Qt;p ) is a nowhere
vanishing global section, its norm

Nm(o) = R) y*o € H° (Y, (Qt;’f’)@”) ,
yell

is T'-invariant. Thus Nm(w) descends to a global section gy, of (Q;’rp (U))®|F‘,
which extends to a section of the line bundle / appearing in Construction 4.12.

In particular one has pr*wer, = Nm(w).

Remark 4.14 Assume that codimy A > 2 and that Q;’rpw) is trivialised by

some volume form w. Then the orbifold measure 1o is given by integrating
lw| over M(OF)* C U(F).

Indeed codimy A > 2 implies that D = 0 (since A cannot contain the
support of a non-zero divisor) in Construction 4.12 and thus " is a local non-
zero section of the line bundle / which restricts to Q;)f ) in the complement

of A. Hence for every measurable set A C M(Or)" we get

uorbm):/ PG =/ o,
A A

We now study the volume of M (OF) with respect to torh. Here the inertia
stack IMy,. of the special fibre My, = M Xspec(o) Spec(kr) naturally
appears. Namely one has a specialisation map

e. ]W(OF)D — IM(kF)iso,

where as before IM(kF)iso denotes the set of isomorphism classes of the
groupoid IM (kr).

Construction 4.15 (Specialisation map) To any ¢ € X (Op)” we associate
the I'-torsor Ty over Spec(F) given by the fibre of Y — M =Y /T over ¢|f.

Consider the commutative diagram
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Ty —— Spec(OT¢) L Y

N T ¢

Spec(F) —— Spec(OF) L M,

constructed as follows: the ring (’)T¢ is the normalisation of O inside the
ring of global sections I'(Ty) of Ty. More concretely, expressing the étale
F-algebra I'(Ty) as a product of fields L*!, where L/F is a finite Galois
extension, and therefore itself a local field, we define (’)T¢ to be the product

Ozi. The I'-action on Tj extends uniquely to a I'-action on Spec(O7,).

The morphism ¢ is the unique one extending the inclusion Ty — Y. Here
the fact that pr is finite and hence in particular proper allows one to deduce
the existence of ¢ by applying the evaluative criterion of properness to each
discrete valuation ring factor Oy, of OT¢- Uniqueness follows from separated-

ness of Y. The uniqueness of ¢ implies that it is ['-equivariant, which gives a
morphism of quotient stacks

[Spec(Or,)/ T1 — M.
The stabiliser group of the unique closed point x of this stack satisfies

Aut, ([Spec(Or,)/TD = IL;F, (14)

where I,/ denotes the inertia group of the extension L/ F'. We refer the reader
to Lemma 5.7 where we give a detailed proof of a closely related statement.

By local class field theory (see (7)), the inertia group Iy ,F is cyclic and
receives a canonical surjective map w(F) — Ir,r. Hence our choice of a
primitive |I"|th root of unity ¢ yields a generator y of I7,r. The morphism
Aut, — IMy, together with the generator y of I,/ define a pointin IM (k).
This yields a map

e: M(OF)? — IM(kF)iso-
The following theorem explains how the orbifold volume is related to the

stringy point count.

Theorem 4.16 Let M = [Y/T'] be an admissible finite abelian quotient
stack over Op with an admissible presentation. For any y € I' and any
x € [YY/T'(kp) C IM(kp) we have

q—w(y,X)

1 _
Morp(e™ (X)) = AUt
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The proof of Theorem 4.16 will take up the rest of this section. We will first
consider two special cases:

4.3.1 The affine case

Assume first that M = A", that ' = (y) is cyclic of order d and
that y acts on A" diagonally and non-trivial by y - (x1,x2,...,%x,) =
(€1, ¢%%xy, ..., x,), where we choose 1 < ¢; < d (see Remark 2.2).

Proposition 4.17 Let O denote the image of the originin [(A")” / T'|(kF). Then
we have

—w(y,0)
Horpte ™ (0)) = T——

Proof The proof is similar to [14, Section 2]. Let w € F be a uniformiser and
define A : A" — A"/ T on the level of coordinate rings as

) o
fxt, ooy xp) > f@dxy, ..., mdx,).

Then by [14, (2.3.4)] one has A (A" (OF))N(A"/ T)(OF)" = e~ '(0) and hence
by Proposition 4.4

_ 1 1 1
Morb(e 1(0)) =/ |worb |7 = _/ |)\*worb|d,
e~1(0) d Janop)

with worp the form satisfying pr*wom = (dxy A - /\dxn)®d given by Remark
4.13. Now a direct verification shows A*wory, = i€ (dxi AN+ A dxn)®d
and hence

1 I 1 1 —w(y.0)
_/ |)‘*w0rb|d:_/ |ﬂ2ici|zdxl---dxn=q—
d A"(Op) d O d

n
F

4.3.2 The cyclic case

Now we assume that as before I' = (y) is cyclic of order d, but Y is now any
smooth Of-variety as in Theorem 4.16.

Proposition 4.18 Forany x € [Y?V /T'|(kr) C IM(kFr) we have

q—w(y,X)

Lorn(e ™ (X)) = y
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This follows from Proposition 4.17 by linearising the I'-action around
x. More precisely we have the following well-known lemma (even without
assuming that I" is cyclic).

Lemma 4.19 Let x € Y (k) be a closed point fixed by I". There exists a I'"-
invariant open neighbourhood U C Y of x and an étale morphism f : U —
A’éF such that the following holds:

(1) There exists a diagonal action of I" on A’(lf)F with respect to which the
morphism f is I'-equivariant.
(ii) The morphism f induces a F-analytic diffeomorphism

[ € Y/T)OF) | ppr = x} = {¢ € (A"/T)(OF) | dpr =0}

Proof Proposition 3.24 in [40] implies the existence of an open neighbourhood
U’ C Y of x together with an étale morphism f: U" — Af, = (we implicitly
use that the only non-empty open subsets of SpecOp are given by the singleton
SpecF or SpecOp itself). Without loss of generality we may assume that
f(x)=0.

We define U” = (), v - U’, which is a I"-invariant open neighbourhood
of x. The étale morphism f” induces an isomorphism of tangent spaces Ty Y =~
To(A™). In particular we obtain a basis for 7, Y. For y € I" we denote by A,
the matrix of the linear map dy: T,Y — T,Y computed with respect to the
aforementioned basis of 7, Y. We define

f=ZA;lof'oy: U//_)A?QF'
yell

The assumption (p, |I'|) = 1 implies that the Jacobi matrix df of f at x is still
invertible (it is equal to |I"| - df”). We conclude that there exists an I'-invariant
open neighbourhood U C U” of x on which the morphism f is étale. We let
I' act on A" via y — A, . The following computation for y’ € I" and y € U
shows that f is I'-equivariant:

FON=) A ooy =As D AL 0 folryI)

vel yel

This concludes the proof of (i).

To see (ii), note that as U contains x, the quotient U/ " contains {¢ €
(Y/T)(OF) | ¢k = x}. Using this, (ii) follows from standard properties of
Henselian rings (see [40, Theorem 4.2]) and étale maps. O
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Proof of Proposition 4.18 If x € [YY / T'](kF) lies in the image of the quotient
map YV (krp) — [YY/T](kr) we can directly apply Lemma 4.19 to a lift of
x. In this case the proposition follows from Lemma 4.3 and Proposition 4.17,
since the orbifold measures in question are compatible with f.

In general x will be in the image of Y7 (kp) — (Y5 /Tl(kp) = YV /T1(kF)
(see Lemma 4.6) for some I'-torsor 7 on Of. The same argument as before
now applies with Y replaced by Y7.

After this preparation we are now ready for the

Proof of Theorem 4.16 Let I C I' denote the cyclic group generated by . As
in the proof of Proposition 4.18 we can assume that x is in the image of the quo-
tient morphism Y? (kp) — [Y7/T'](kr) (otherwise we twist by an unramified
["-torsor). This implies that every ¢ € e~ (x) fits into a commutative diagram

Spec(Opr) ¢—> Y

|, |

Spec(Op) 22— Y/T,

where L/ F is a totally tamely ramified Galois extension with Galois group /
and ¢ is I-equivariant. In particular we see that ¢ lies in the image of the map
Y/I)(OfF) — (Y/I')(OF) induced by the quotient morphism s : Y/I —
Y/T.

Now let o, 7 and ey denote the orbifold measure and specialisation mor-
phism for [Y/I]. Then Proposition 4.4 implies

1
Lorb(e ™ (x)) = Wuorb,l(s”e”(x)).

Now let s, be the quotient morphism Y” /I — YV /T". Then one can check
that there is a decomposition

s_le_l(x) = |_| 61_1(37),
Fesy ' (x)
and thus Proposition 4.18 implies

s ! (o) lg )

Lo (e (x)) =

T
Essentially from the definition of the quotient stack [Y? /I'] it follows that
|Aut(x)| = |sJF(|)c)| , which finishes the proof.
14
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5 A stack-theoretic approach to Brauer groups of local fields

The Brauer group of a non-archimedean local field F is isomorphic to Q/Z
(see Theorem 3.2 and the references given there). We refer to the map
inv: Br(F) — Q/Z specified in loc. cit. as the Hasse invariant. In Subsection
6.3, devoted to the proof of Main Theorem 6.12, we will consider integrals

/ exp(—2miinv(a))|w|,
Y(F)

where is Y a proper F-scheme (a Hitchin fibre) endowed with a top degree
form w and o € Br(Y) is a gerbe. The integrand above is to be understood to
be the function which associates to an F-point y € Y (F') the complex number
exp(—2miinv(y*a)), where y*a € Br(F) denotes the pullback of @ along the
morphism y: SpecF — Y.

The F-scheme Y itself embeds into an ambient finite abelian quotient O -
stack M (the total space of the Hitchin fibration), and the gerbe « on Y extends
to M. It will be crucial to understand the aforementioned function y —
inv(y*a) in terms of the inertia stack IM and the transgression construction
discussed in Sect. 2.2.

This section provides the backbone for such a comparison and devel-
ops a stack-theoretic interpretation of the Hasse invariant of an element
a € Br(F)[e], where e is positive integer prime to the residue characteris-
tic p of F, for which F contains all eth roots of unity. Our approach can be
summarised as follows.

(a) For every tame field extension L/ F of ramification degree dividing e, we
construct a Deligne-Mumford O g-stack X7, such that one has an open
immersion ig: SpecF — X7 ,r and a closed immersion j,: Bl —
Xp,F, where I C Gal(L/F) denotes the inertia group (Subsection 5.1).

SpecF s Xy p <270 By, (15)

(b) Pullback along the open immersion SpecF < X,/ r induces an isomor-
phism Br(X7/r)[e] >~ Br(F)[e] (Sect. 5.3).

(c) The transgression construction (2.2) gives rise to a map Br(X,,r) —
Z)el. = Q/7Z (Sect. 5.4).

(d) We prove that the composition of the maps Br(F)[e] LN Br(X.,r) 5
(Q/Z)[e] agrees with the Hasse invariant (Theorem 5.20).
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Furthermore, for y € Y (F) as above, we will see in Sect. 5.5 that there
exists a field extension L/ F as above, for which y: SpecF — Y factors as

SpecF —— Y

|

XL/F*L/\/I.

This factorisation, together with (d) above, accomplishes our goal to compare
inv(cy) to the transgression construction with respect to the stack M.

5.1 The construction of the stack X7,

Henceforth we fix a non-archimedean local field F' of residue characteristic p
and finite Galois extension L/F of degree d and inertia degree e. The latter
divides the former: e|d. Furthermore, we assume that (p, e) = 1, that is, that
the extension L/ F is tame, and that F contains all eth roots of unity. We use
the notation ¢ for the cardinality of the residue field kr and refer to the inertia
group by I = I /r. Section 3.1 contains a brief overview of the terminology
of local field theory.

At first we observe that the assumptions above impose strong restrictions
on the structure of the Galois group I' = Gal(L/F).

Lemma 5.1 (a) For a uniformiser wy, of L, the subfield F (7y) of L is totally
ramified, Galois and of degree e over F. The Galois group Gal(L/F (1))
is a normal subgroup of T', which maps isomorphically to T'/ 1.

(b) Given wy as in (a), there are natural isomorphisms U'/1 = 7/ %Z and
I = pe(F).

(¢c) The Galois group T is a finite abelian group, which is a split extension of
a cyclic group of order d /e by a cyclic group of order e.

0 I | E—— 0
0 Z/eZ. Z/eL®L/LL ——Z/47 —— 0

Hence the choice of F (rry) induces an isomorphism T' = (I'/I) x 1.
(d) Every splitting of ' — T'/I arises from a uniformiser of L in the above
way.

Proof (a) By [36, Proposition I1.5.11] the field F (77 ) is totally ramified and of
degree e over F. Hence by [36, Proposition I1.5.12] there exists a uniformiser
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m; of F(my) for which (;r;)¢ is in F. Since by assumption F contains all
eth roots of unity, the field F'(7r7 ) is then the splitting field of the polynomial
X¢—(m; )¢ € F[X]. Thusitis Galois over F and consequently Gal(L/F (1))
is normal in I".

Let L' C L be the unique subfield, which is unramified over F' and has
residue field k. Since F (;rr) is totally tamely ramified over F we find F (;rz) N
L' = F. The fields F(xry) and L’ together generate L. By Galois theory this
implies that restriction gives an isomorphism Gal(L/F (1)) = Gal(L'/F) =
r/l.

(b) The Frobenius generator of Gal(kr/kr) gives an isomorphism
Gal(L/F(mp)) = Gal(ky/kp) = Z/%Z. By the above, there is a natural
isomorphism . (F) = Gal(F () /F), &€ — (g +— &mp).

(c) follows from the previous claims.

(d) Let I'/I — T be a splitting. Then the field L"/! has degree e over F
and residue field k. Thus we may apply the above considerations to this field
to get (d). |

We now turn to defining the principal object of study of this section. It is
reminiscent of a root stack and provides a partial compactification of SpecF
measuring tame ramification.

Definition 5.2 We define X7,r to be the Deligne-Mumford stack
[Spec(OL)/T'].

Lemma 5.3 Let X — Y be a finite étale Galois morphism of schemes with
Galois group G. The morphism X — Y induces an equivalence

[X/G]=Y

between the quotient stack [X /Gl and Y.

Proof First we claim that X is a G-torsor over Y. For this we need to verify
that a certain morphism X x G — X Xy X is an isomorphism. Choosing a
geometric point y of Y, we use the equivalence between finite étale schemes
over Y and finite sets with a continuous nft(Y, y)-action. It follows from the
definition of an étale Galois covering that the image of X x G — X xy X
under this equivalence is an isomorphism. Thus X is a G-torsor over Y.

By descent, it suffices to prove the claim that [ X/ G] — Y is anisomorphism
étale-locally on X. Thus it follows from the above. O

The following describes the generic fibre of X7 /F:

Lemma 5.4 There is an open immersion

Spec(F) 2" Xy 5.
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Proof By the construction of X7,r as a quotient stack, the morphism
SpecO; — AXp/F is an atlas. We have a I'-invariant open immersion
SpecL — SpecOp, which descends to an open immersion

[SpecL/ F] —> XL/F-

Since [SpecL /'] = SpecF by Lemma 5.3, this proves the claim. O

In the definition of X7 ,r we allowed L/F to be an arbitrary finite Galois
extension, satisfying the assumptions stated at the beginning of the subsection.
For two non-isomorphic field extensions L, Lo/ F the associated Deligne—
Mumford stacks X7 ,,r and X7,/ can be isomorphic. In fact, as shown by
the following lemma, it suffices to work with totally ramified field extensions
(that is, field extensions satisfying I = I).

Lemma 5.5 Foreveryuniformisermy of L, the inclusion F (i) < L induces
an equivalence

XFep) ) F = XL/F-

Proof Since L is unramified over F(mw;) by Lemma 5.1, the morphism
Spec(Or) — Spec(OF(x,)) is a finite étale Galois cover with Galois group
Gal(L/F(mp)) = I'/1. Hence by Lemma 5.3 there is a natural isomorphism
[Spec(Op)/(I'/1)] = Spec(OF(x,)). Using the isomorphism I' = I'/1 x I
from Lemma 5.1 we get isomorphisms

[Spec(OL)/ T = [[Spec(OL)/(T'/D]/1]1 = [Spec(OF (x)) /11 = XF(ay)/F-
(16)
This proves the lemma. |

The lemma below describes the special fibre of A7/ r defined in the following
definition.

Definition 5.6 The closed reduced complement of the open immersion
ip: SpeckF — Xp,r of Lemma 5.4 is denoted by XZ/F.

Lemma 5.7 For every splitting o : I' — I of the inclusion I — T', we obtain
an equivalence of stacks XL./F = [Speckr /'] >~ By, I, and thus a closed
immersion

jai BkFI = XL./F —> XL/F-

Proof At first we remark that a splitting o exists by virtue of Lemma 5.1.
Furthermore, it is shown there that o is induced by the choice of a subfield
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F(mp) C L.Suchafield has residue field k£ r and Galois group Gal(F (rrr)/ F)
isomorphic to /. By virtue of Lemma 5.5 we have an equivalence of stacks

XF = XF@y)/F

and thus may assume L = F(;rz) and I' = I without loss of generality. The
open inclusion i is given by the quotient of

SpecL — SpecOy,

by the /-action. The reduced closed complement of this open immersion is
given by

Speck; < SpecOy.

Since L = F(mr) is a totally ramified extension of F' we obtain k; = kf.
After quotienting by / we obtain a closed immersion

By I = [Speckp /1] — X /F.

This concludes the proof. |

5.2 Etale cohomology groups of X}/

In this subsection we compute several étale cohomology groups of the stacks
X1/ F. These computations play arole in our determination of the Brauer group
Br(Xx,, /F).

Lemma 5.8 The Picard group of X1, /F is isomorphic to Z./eZ.

Proof As we saw in Lemma 5.5, there is an isomorphism X7/ r = Xp(z,)/F»
where F(rr)/F is a Galois extension with Galois group equal to the inertia
group /. Henceforth we assume without loss of generality that L is a totally
ramified field extension of F, that is, that it satisfies " = I.

By virtue of the definition of Xr(,)/F as a quotient stack, the group
Pic(XF(x,),r) is isomorphic to the set of equivalence classes of /-equivariant
line bundles on SpecOF(x,). As OF(x,) is a local ring, every line bundle on
SpecOF(x,) is trivial. An I-equivariant structure on the trivial line bundle cor-
responds to an element of the Galois cohomology group H' (1, Ol)*i(n))' This
yields an isomorphism of abstract groups

Pic(XF () F) = H' , O;(n))'
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The short exact sequence of /-modules
1 > l4+mpe,) — O;(n) —kp — 1
yields the exact sequence

HY(L K}y ) = kp = H' (L 14+ mpe) = H (L0 )
— H' (I, kf ) = HX(IL 1+ Wpr,)).

A priori, the groups H (1,1 + Mpg,)) for i = 1,2 are pro-p-groups as
1 + mp(xr,) is a pro-p-group. Since [ is a cyclic group of order e, which is
prime to p, the cohomology groups H'(I, M) for i > 0 vanish for every
finite /-module on which multiplication by e is invertible. This shows that
H'(I,1+mp(z,)) =0fori =1,2. O

Claim 5.9 H'(I,ky) ~Z/eZ

Proof We have H'(I, k) = Pic([Speckr/I1), that is, the group of isomor-
phism classes of /-equivariant line bundles on Speck . Since line bundles on
Speckr are trivial, we obtain

Pic([Speckr/I1) ~ Hom(I, G,;,) = Hom(u., G,,) = Z/eZ

and this concludes the proof of the claim. m|

We therefore obtain an exact sequence
0=H'(I,1 +mpe,)) — H(U, OF ) = H'(1,k}) — H*(I, 1 +mpe,) =0,

concluding the proof of the lemma. O

The conclusion of the following lemma holds for arbitrary non-negative
integers i. We opted for the inclusion of a conceptual argument for degrees
i =0, 1, 2 which avoids computations with spectral sequences.

Lemma 5.10 Let F be a finite étale sheaf of groups on X of order prime to
p. For every splitting o of the embedding 1 — T, pullback along the map
Jo: Bipl — Xy F induces isomorphisms

H. (Xp/p, F) >~ H, (B I, F) fori =0, 1,2.

Proof Pullback along the inclusion ¢: Speck; < SpecQ}, induces an equiv-
alence of finite étale sites [40, Proposition 3.4.4]. In particular, since F is a
finite étale group scheme, pullback along ¢ induces equivalences between the
respective groupoids of I'-equivariant F-torsors.
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The group H élt is isomorphic to the group of isomorphism classes of étale
F-torsors, and H éot is isomorphic to the group of sections of the finite étale
group space F, that is, to the group of isomorphisms of F with the trivial
JF-torsor. Thus for i = 0, 1 we obtain an isomorphism

H. (Xp)p, F) ~ H. (B, 1, F).

The case of degree 2 cohomology is dealt with similarly using the language
of gerbes: O

Claim 5.11 Pullback along the closed immersion : Speck;, — SpecOp
induces an equivalence of the 2-groupoids of F-gerbes

*: Gerbe(Specky, F) ~ Gerbe(SpecOyp, F). (17

Proof For a 2-groupoid C we denote by mp the set of isomorphism classes,
and for X € C we write 1 (C, X) for the set of 1-automorphisms of X up to 2-
isomorphisms, and 77 (C, X) for the set of 2-automorphisms of idy. A functor
F: C — D of 2-groupoids is an equivalence if and only if 7o (F): 7o(C) —
o(D) is an isomorphism, and for every X € C and i = 1, 2 the induced map
i (C, X) — m;(D, F(X)) is an isomorphism.

For the 2-groupoids above, one has

mo(Gerbe(U, F)) ~ HZ (U, F),
and for every G € Gerbe(U, F) we have
;i (Gerbe(U, F), G) ~ H; (U, F)
(note that the right hand side does not depend on G). .

Pullback along ¢ induces isomorphisms H (SpecOp,, F) =~ H; (Speckr, F)
of étale cohomology groups (see [40, Remark II1.3.11]). We therefore deduce
that the functor ¢* from (17) is an equivalence as asserted. O
The equivalence of 2-groupoids of gerbes asserted by the lemma above yields
that ¢* also induces an equivalence of 2-groupoids of I"-equivariant F-gerbes

on SpecO and Specky. We deduce that Hézt(XL/F, F) ~ Hézt(BkFl, F). O

Lemma 5.12 There is a split short exact sequence

Z/eZ — HZ(By.I, jt.) — Z/eL.
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Proof The set of isomorphism classes of u.-gerbes on [Speckr/I] =
[Specky / I'] are in correspondence with central extensions of finite étale group
schemes

1—>,ue—>f\—>F—>l

up to isomorphism (see Lemma 2.7). By part (c) of loc. cit. we have a split
short exact sequence

Hom (e, pte) — Hézt(BkFIa Me) = Ext(le, [e),

where the Hom and Ext-groups are meant for abstract abelian groups, since
e 18 a constant group scheme over kr by virtue of our standing assumptions.
Since . is a cyclic group of order e, we may identify Hom(u,, ©.) and
Ext (e, te) with Z/eZ. This concludes the proof of the lemma. O

Lemma 5.13 A choice of a splitting o: I' — I of the inclusion I — T
induces a split short exact sequence

Z)eZ — HZ(Xp/F, jte) — Z/eL. (18)

Proof Every choice of a splitting o : ' — [ of the inclusion / < T yields
an isomorphism

JE HZ(XLF, ) = Ha (B, 1, [he)

(see Lemma5.10 for 7 = ). We apply Lemma 5.12 to conclude the assertion
above. O

5.3 On the Brauer group of X/

In this subsection we relate the Brauer group of X7,/ to Br(F). A Brauer class
a € Br(&Xy,r) can be pulled back along the inclusion i : SpecF < X /F.
We claim that the resulting Brauer class i ;. on F has order dividing d. Indeed,
its pullback to L extends to SpecOr. This follows from the commutative
diagram

SpecL —— SpecOr,

|

SpecF —— X /F.
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Since Br(Op) = 0 we have (ija);, = 0. The commutative diagram of Theo-
rem 3.2

Br(F) 2 Q/Z
[d]

Br(L) ™ Q/Z,

where [d] denotes multiplication by d, yields that i« has order dividing d.

Lemma 5.14 Restriction along i induces an injective mapiy,: B( Xy r) —
Br(F)[d].

Proof We have already seen above that i}, factors through Br(F)[d] C Br(F).
It remains to show thatitis injective. We will show this using the Brauer-Severi
construction. For this purpose we let o € Br(X,r) be a Brauer class on X7/
for which i} = 0. Let B be an Azumaya algebra on A7/ representing the
Brauer class «.

To an Azumaya algebra B of rank r2 on a Deligne-Mumford stack X', one

can naturally associate a [P"-bundle, called the Brauer-Severi variety Yp LLN
X. The Azumaya algebra p B splits on X if and only if Y3 — & has a
section. This is discussed in [40] in case X is a scheme. The generalisation to
Azumaya algebras on Deligne-Mumford stacks is an application of faithfully
flat descent theory.

Let B be an Azumaya algebra on X ,r, which splits when restricted
to Spec(F) < Xr,r. We see that we have a I'-equivariant section of
Y X x,,, SpecOy over SpecL. By faithfully flat descent the morphism pp is
proper and smooth. The valuative criterion of properness therefore yields an
extension of this section to Spec;, and uniqueness implies that this section
is I"-equivariant. We conclude that we have a section of Yp — X /r and thus
a splitting of the Azumaya algebra B on X /F. O

Our next goal is to prove that Br(X,r) has order e. This implies
Br(X.,r) >~ Br(F)[e] = Z/e’Z. This is the content of the following proposi-
tion. Its proof relies on our computation of étale cohomology groups of X7 /¢
given earlier.

Proposition 5.15 Pullback along if induces an isomorphism i : Br(Xp) ~
Br(F)le]. In particular, since Br(F) ~ Q/Z, we have that Bi(X|, ;) has order
e.

Proof Let [e]: G,, — G, be the eth power map. The Kummer sequence
le]
1= e > G, — G, — 1
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yields a long exact sequence of étale cohomology groups

[e]
"'*’fﬂicxi/F’(}m)'f+ fﬂiC*Z/F,(}m)

[e]
— H2(XLFs o) = H2(Xi/F, Gp) —> H2(Xp/p, Gy) — -

According to Lemma 5.8 we have that Hélt(XL/p, Gy,) is isomorphic to

Z/eZ. Thus, the cokernel of Hé'[(XL/F, Gum) ﬂ Hélt(XL/F, G,y) is isomor-
phic to Z/eZ. In Lemma 5.13 we established a non-canonical isomorphism
Hézt(XL JF> e) == ZJeli @ Z]eZ. We therefore have the following exact
sequence

2)eT, S T)el — T)eT.® TeT. — H2(XL/r, Gu) 5> HA(XL 5, Go).

Thus, we obtain |Hézt(XL/F, Gm)lell = e.

Lemma 5.16 below shows that HéZ[(XL/F,Gm) = Br(&r,r), and we
have seen in Lemma 5.14 that Br(X,,r) < Br(F)[d], and therefore
Br(X.,r)le] < Br(F)[e] = Z/eZ. Hence the above shows

BF(XL/F)[e] g Z/eZ

We have seen in Lemma 5.5 that we may assume without loss of generality
that L/ F is totally tamely ramified. We then have d = [L : F] = e, and
therefore by virtue of 5.14 an embedding Br(Xy,r) < (Q/Z)[e]. Since the
right hand side has order e, we see that the order of every element in Br(X7 /)
divides e. This implies Br(X7,r)[e] = Br(Xr,r) and thus finishes the proof.O

Lemma 5.16 Let ' be a finite abstract group acting on a scheme U, which
admits an ample invertible sheaf. Then, the quotient stack [U / I'] satisfies

Br((U/T1) =~ HZ(U/T1, Gu)""™.

We explain the proof of the lemma below. It relies on a geometric strategy
to decide whether a given cohomology class « € H ézt(X , G;,) on an algebraic

stack X’ lies in the image of Br(X) — Hézt(X, Gum).

Definition 5.17 Let (U; — X);c; be a smooth cover of X’ by schemes and

let (a;j) € th(X ,G,) be a Cech cocycle for X, representing an element

o € Hézt(X , Gin). An «a-twisted coherent sheaf on X is given by coherent
sheaves F; € Coh(U;) and isomorphisms

éij: Filu;, — Fjlug
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such that on Uj ji the twisted cocycle identity ¢;; o ¢jx = ajjk - ¢ix holds.

Let a be a G,,-gerbe on X'. Such an « comes from an Azumaya algebra B if
and only if there exists a locally free «-twisted sheaf of finite rank: indeed, an
Azumaya algebra B is a B-module and thus gives rise to a twisted sheaf, vice
versa, if F is an a-twisted sheaf we have an Azumaya algebra B = End(F),
which represents «.

Proof of Lemma 5.16 We recall that according to a theorem of Gabber [13],
the Brauer group Br(U) of a scheme U which admits an ample invertible
sheaf can be identified with the torsion part H ézt(U , Gi)'"S of degree 2 étale
cohomology of G,,. This proves the assertion above for I" being the trivial
group.

For the proof of the general case we observe that we have a finite and
étale quotient map g: U — [U/T']. Letx € Hézt([U/ '], G,,)'"S be a coho-
mological Brauer class. The pullback ¢*a € H ézt(U , G,,)'°" corresponds by
virtue of Gabber’s theorem to an element of Br(U). Equivalently, there exists
a locally free g*a-twisted sheaf E on U. The pushforward ¢.E is a locally
free a-twisted sheaf on [U/ I']. This shows that @ € Br([X/T]).

In Lemma 5.7 we saw that a splitting o : I' — [ of the inclusion I — T
induces an equivalence of stacks [Speckr/I] = [Speckr/I'].

Proposition 5.18 For every splitting o of the embedding I — T, pullback
along the map j : By, 1 — XL ,F induces an isomorphism

Jo: Br(Xp p)lel =~ Br(By.I)[e]. (19)

Proof The Kummer sequence
[e]
1> e > G, - G, > 1
yields an exact sequence
[e]
HZ(U, ) — ker(HZ(U, Gp) — HZ(U,Gp)) = Br(U)le] — 0,

where U denotes a Deligne-Mumford stack on which e is invertible. In par-
ticular, we see that Hézt(U , e) — Br(U)[e] is surjective. Applying this to

U = [Specky/T'] and U = X ,F we obtain the following commutative dia-
gram
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HZ(Xp/F, pe) —— HZ([Speckr /T, )

i |

Br(X,/¢)e] — 2 Br([Speck /I])[e].

Here the top morphism is an isomorphism by Lemma 5.10. We deduce
that j¥: Br(X.,r)le] — Br([Speckr/I])[e] is a surjection. Proposition
5.15 guarantees that Br(X7,r)[e] is a finite group of order e. Therefore
Jo: Br(XL,r)lel — Br([Speckr/I])[e] is an isomorphism. O

Lemma 5.19 The isomorphism (19) is independent of the choice of o.

Proof Let 01,02: I' — I be two splittings, and let «; : By, [/ = [kp/T]
be the corresponding equivalences. Then, we obtain an autoequivalence
a, Lo 1: Byl — By, 1. It remains to show that the diagram

ailoq)*

Br(Bi, 1) _ e Br(Bi, 1)

T,

H'(kp, we) ® HO(kp, Z/eZ)

commutes.

To see this we argue as follows: maps from [Speck /1] toitself are classified
by I-equivariant /-torsors on the point Speckr. That is, the set of such self-
maps up to isomorphism is in bijection with H!(kr, I) @ Hom(I, I). Let
[Speckr /11 — [Speckr/I]be a map inducing the identity id;: I — I. Then
the induced map H'(kp, IY) ~ Br([kp/I1) — Br([kp/I1) — H'(kp,IV)
is the identity. Since o, 2q satisfies this property, this concludes the proof. O

5.4 Transgression and Hasse’s invariant

In the following we assume that ., is contained in k. We denote by
T: Br(B.I)[e] — Hélt(IBkFI, We) the transgression morphism of Lemma
2.9. Recall that the inertia stack /By, I is equivalent to I x By, I (see Remark
2.5). Let

Speckr x I — 1By, I (20)

be the map induced from the equivalence above and the natural map Speckr —
By, I. Furthermore, we have an isomorphism / >~ u.. Pullback along (20)
induces a map

Tr: Hélt(IBkFl'Le’ I’Le) g Hom(l’be7 Hélt(kF’ I’Le)) = Z/6Z7 (21)
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where the isomorphism is given by evaluating an element of H élt(kp, He) =

Hom(Gal(k/kr), jt.) at the Frobenius element Fr, and using Hom(ie, t0) =~
Z./eZ. The composition

T=Troto j5:Br(Xr/r) = Hom(ie, te) = Z/eZ

is independent of o (according to Lemma 5.19). The result below asserts that
for elements of Br(F)[e], the value of the transgression map T agrees with the
Hasse invariant. A more general result can be found in the authors’ recent [24].
In loc. cit. we extend this comparison to arbitrary Brauer classes of order prime
to p. The proof given below is similar to the one in loc. cit. and is included for
the sake of keeping the paper self-contained.

Theorem 5.20 Let (i;’;)_1 : Br(F)le] — Br(Xy,r) be the inverse to the iso-
morphism of Proposition 5.15, and ©: B( Xy r) — Z/eZ the morphism
defined above. Then the diagram

sk —1

@i%)
Br(F)[e] —— Br(XpF)lel

T

(Q/Z)]e)

commutes.

Proof According to Lemma 5.5 we may assume that L/ F is totally ramified.
There exists a unformizer 7w of F such that there exists a uniformizer 7 /¢ of
L satisfying (7!/¢)¢ = 7.

We begin the proof by recalling the definition of the Hasse invariant. The
Brauer group of F is isomorphic to H 2(Gal(F /F), F*).However, a gerbe on
F splits on an unramified cover, which means that it belongs to the image of
the cohomology group H?(Gal(F*"/F), (F*")*) = Hz(/Z\, (F"my>).

Recall that the Hasse invariant is defined by the composition

H>(Gal(F"™ /F), (F"™)*) ~ H*(Gal(k/k), Z)) ~ H}(Z,Q/Z) ~ Q/.

The first map is induced by the valuation v: (F"")* — Z which sends the
uniformiser 7 to 1. This map v has a section Z — (F“")*, givenby 1 — 7.

For a fixed Brauer class a € Br(F)[e], we denote by ¢ = (¢;;x) the Z-
valued 2-cocycle on the site of unramified coverings of F (the site equivalent
to the small étale site of OF) which corresponds to « under the isomorphism
of the paragraph above. That is, the gerbe « is represented by (77 ?i/k).
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By assumption, the order ord(a) of « is a divisor of e, and is prime to
p. This implies that (e - ¢;;x) is a coboundary. We denote by v = (;;) a
1-cochain which satisfies d(y) = e - ¢.

Vij
We define an L*-valued 1-cochain (nTJ), such that

Yij
dm) =%, (22)

Next we define a 2-cochain taking values in Z/eZ = Hom(u,, G;,). Itis
given by

ciji & > EVii

foré € .. We claim that this 1-cochainis a coycle, that s, satisfies d (c;;) = 1.
Indeed, an element & € p, gives rise to a field automorphism o¢ of L/F (and

all unramified base changes thereof) sending e s E-m ‘. We apply o¢ to
(22) and obtain
Vij
d(g‘//ijn—Tj) —
This shows d(£"i/) = 1 as asserted above. O

Claim 5.21 The cohomology class induced by the 1-cocycle (c;j) agrees with
() € Z)eZ ~ H' (k, Z/eZ).

Proof By definition, the 2-cocycle (%) represents @ on the small site of
unramified étale schemes over F (equivalently, the small étale site of Of). We
pull back « to the I'-torsor SpecL — SpecF where we have chosen an eth

root 1, denoted by ¢. The gerbe oy obtained thereby is also represented by
the cocycle (7 %i%), now seen as an L*-valued cocycle. It is a coboundary, as
shown by the following computation:

(nd’ijk) — <(n%)e‘¢ijk) — ((Tré)d(l//ij)) )

The 1-cochain ((n%)(‘”l’f )) represents a splitting of the pulled back gerbe «r .

As above there is an action of £ € u, on L/F, given by e s £ . The
splitting of 7, given by <(n%)(‘/’i/’)), is sent to

(8> €50 0) = (cyy(®) - )
by the action of & € .. Therefore, the 2-cocyle (c;;) represents 7 (). O
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By our identification of Z/eZ with u, = Hom(u,, G,,), we obtain a 1-
cocycle (¥;;) in Z/eZ. The boundary map of the Bockstein sequence

7 — 7 — T]ed

sends (¢;jx) to the cocycle (V;;) in Z/eZ. The commutative diagram (with
exact rows)

1L—— 1 —>1]el

|

27— Q ——Q/Z

together with the definition of the Hasse invariant as the image of (¥;x) €
H?(k,Z) ~ H'(k,Q/Z), shows that T(«¢) = inv(a). This concludes the
proof. O

5.5 Hasse invariants for gerbes on Deligne-Mumford stacks

We now turn to a description of the typical set-up to which we will apply the
results of this section. For the applications we have in mind, the scheme Y
will be a Hitchin fibre and M the moduli stack of stable Higgs bundles for the
groups SL,, or PGL,, of degree prime to n (see Sect. 7).

The following axiomatizes the conditions of Lemma 2.9:

Definition 5.22 Let M be an admissible finite abelian quotient stack over a
ring R.

(1) An integer r > 1 is admissible with respect to M if r is invertible in R
and if there exists an admissible presentation M = [Y/I'] of M such
that R contains all - |I"|th roots of unity.

(2) A Gy,-gerbe on M is admissible if it has finite order and its order is
admissible with respect to M.

(3) Forr > 1, a ,-gerbe is admissible if r is admissible with respect to M.

Then we will be interested in the following set-up:

Situation 5.23 (1) Let M be an admissible finite abelian quotient stack over
OF. We denote by M the coarse moduli space of M, it is an algebraic
OF-space. We let U C M be the maximal open subspace over which
M — M is an isomorphism.

(2) We suppose that we have a proper algebraic Op-scheme Y/OF with a
morphismi: Y — M which sends the generic fibre ¥ Xgpeco, F to U.
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(3) Furthermore, we fix an admissible G,,-gerbe o« on M. We denote by
iNVe: M(OF)" — Q/Z the map sending y: SpecF — M to inv(y*a).
Recall from Sect. 4.3 that M (OF)" consists of certain Op-points of M,
for which the induced F-rational point lifts to M.

Definition 5.24 Let M be an admissible finite abelian quotient stack over
OF and r > 1 admissible with respect to M. Let v: Br(M;,)lr] —
Hélt(IMkF, Ur) be the transgression morphism of Lemma 2.9. For o €
Br(My,)[r] we denote by

f(;: IM(kF)iso — Hl(ka /“LI’) = Mr.

the induced function sending y € IM (kF)iso to the restriction of the &, -torsor
7(a) on IMy, along y: Speckr — IMy,.. Welett,(y) € Z/rZbe the unique
element, such that £%®) = 7,,(y), where we recall that { € u, denotes the
fixed primitive root of unity of order r.

Under the assumptions of Situation 5.23 we will show in Corollary 5.26
that the function inv, on Y (F) factors through e : Y(F) — IM(kF)iso, and
the resulting function on IM (kf) agrees with the function z,. We will deduce
this from the following more general assertion.

Proposition 5.25 Let M be an admissible finite abelian quotient stack over
OF and a an admissible G,,-gerbe on M. There is a commutative diagram of
sets

M(OF)?

em

IM(kp)iso —— Q/Z.

Proof In Construction 4.15 it is shown that the restriction of y € M (O )P to
SpecF extends to a morphism

y': [SpecOy /Gal(L/F)] — M
for an appropriately chosen finite tame field extension L/ F with abelian Galois
group. By definition, the quotient stack [SpecO /Gal(L/F)] is X1 ,r. By
virtue of Theorem 5.20 we have

inv(y*a) = 1(y*a).

By definition, the right hand side agrees with 7, (y). O
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Corollary 5.26 Assume that the assumptions of Situation 5.23 are satisfied.
Then, there is a commutative diagram of sets

Y (F)
J iNVy

e A0l

IM(kp)iso ~— Q/Z.

Proof Let y € Y(F). According to assumption (2) of Situation 5.23 the
scheme Y is proper over Of. Therefore, the F-point y extends uniquely to
an Op-point y € Y (OF). Since i(y) € U(F) by assumption (2) we see that
i(§) € M(Op)". Thus, the value of the specialisation map exq: M(OF)* —
IM(kF)iso at i () is well-defined. We can now apply Proposition 5.25 to con-
clude the proof. |

5.6 p-adic integrals of the Hasse invariant

Let r > 1 be an integer prime to p such that F' contains all rth roots of
unity. Recall that we fix a generator { € p,(F). This choice gives rise to
an embedding u,(F) — C*. We also fix an isomorphism Q, >~ C. By

combining these choices we obtain an embedding ¢: w, (F) — @;

Definition 5.27 Let M be an admissible finite abelian quotient stack over O
and « an admissible u,-gerbe on M. By Sect. 2.2, the gerbe « induces a -
torsor P, on IM. We denote by L, the £-adic local system on /(M xo,. k)
induced from P, via the embedding .

Construction 5.28 Let M be an admissible finite abelian quotient stack over
Op and « an admissible u,-gerbe on M. We obtain a function

IM(k)iso — pr(F) CC, x TrFrx (Lalx).

By composing this with the specialisation map e : M(OF)" — IM(k)iso
we obtain a function

fo: M(Op)" — C, x — T, (Lalew)- (23)

Note that by definition f,, agrees with 7, o e under the exponential.

On the other hand there is a natural function M(OF)? — C associated with
o, namely
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M(Op)" - C
x — exp2mi - inv(x*a)),

where inv : Br(F) — Q/7Z denotes the Hasse invariant. It follows from
Proposition 5.25, that this function agrees with f,.

Corollary 5.29 Let M be an admissible finite abelian quotient stack over O
and a an admissible j1,-gerbe on M. The associated function fy: M(Op)* —
C satisfies

#op (M) = o
Stdi—m/\/ll: = f Sattors = / exp(—27wi - INVy) orb,
q M(Op)t M(OF)*

where #5(My,.) is defined in 2.13 and fu denotes the complex conjugate of

o

Proof We choose an admissible presentation M = [Y/T'] as in Definition
5.22 with respect to r. By Theorem 4.16 we have

» ; Trer, (Lal)
— —dim M F(y 1 z) Fro \Walx
.//AVI(OF)U Jattorb = ¢ Z Z q Z —|AUt(x)| )

yel Zem([YY/T]) xeZ(kr)iso

where we also used the relation —w(y, Z) = F(y~ I Z)—dim M. Now under
the identification [Y7 /T'] = [YV_I/ '] we have Ly |iyr,r] = L |[Y
see (2), and thus

vty

2, 4 2 Aut(x)]

Zem([YY/T]) xeZ(kr)iso
Fiy='.2) Trer (Lo lx)
- Z I Z |Aut(x)|
Zem([Y? /T xeZ(kF)iso

which implies the first equality. The second equality follows directly from
Proposition 5.25. O

6 Mirror symmetry

In this section we formulate various comparison theorems for dual abstract
Hitchin systems. The definition of dual abstract Hitchin systems is motivated
by the theory of G-Higgs bundles, notably the SL,, and PGL,, cases, which
appear in Hausel-Thaddeus’s conjecture.
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6.1 Relative splittings of gerbes

Let U — V be a proper morphism of algebraic spaces with geometrically
connected fibres and r > 1 a positive integer which is invertible on V.
According to [3] there exists an algebraic stack of line bundles Pic(U/V).
Its G,,-rigidification (see [1, Section 5]) will be denoted by Pic(U/V). We
denote by Pic® (U/ V) the open substack of line bundles on U of torsion degree,
that is, those line bundles inducing a torsion element in the geometric fibres
of my(Pic(U/V)).

Definition 6.1 Let A be a smooth group scheme over V. We say that an A-
gerbe € H éZt(U , A) is V-arithmetic, if there exists an étale covering family
{Vi = V}icr such that « splits when pulled back to U xy V; foralli € I.

These definitions are already interesting to us when V is the spectrum of
a field. Let K be a field and X a projective and geometrically connected K -
scheme. A G,,;-gerbe 8 on X is K -arithmetic, if and only if Bgsep € Br(X gsep)
is trivial. We denote the corresponding subgroup of Br(X) by Br(X)g. There
is a short exact sequence

0 — Br(K) — Br(X)x — H'(K*P, Pic(Xgsep)) — 0, (24)

which expresses the difference between Br(K) and Br(X)g.

If a/i\_s/ a G,,-gerbe on U, then one defines the V-stack of relative split-
tings Split(U/V, «) as follows: for every affine scheme W with a morphism
f: W — V one associates the groupoid of splittings of f*«a on U xy W.
Since we can tensor sphttmgs of f*a with line bundles on U xy W, we see
that F’IC(U/ V) acts on Spllt(U/ V, ). Furthermore, any pair of f*«-splittings
differs by a line bundle on U xy W unique up to isomorphism. In other words,

%(U/ V,a)isa |5TC(U/ V')-quasitorsor.

Lemma 6.2 If  is a V-arithmetic G,,-gerbe on U, then %(U/ V,a)isa
Pic(U/ V)-torsor.

Proof We already observed that §|:\)ﬁt(U /V,a) is a ﬁC(U / V)-quasitorsor.
The V -arithmeticity assumption on « implies the existence of an étale covering
{Vi — V}ier, such that « splits when pulled back to U xy V;. In particular,

Split(U/V, @) has a V;-rational point. This implies the torsor property. O

Since the stack Split(U/V, «) is a torsor under F”TC(U / V), its fibres contain
infinitely many connected components. For instance, for U — V a relative
family of smooth proper curves, this sheaf of sets of connected components
would be a Z-torsor. The following two definitions will be used to single out

a much smaller subset of éBm(U/ V,a).
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Definition 6.3 For « € Hézt(U, Ur) a ur-gerbe on U we denote by

%ur(lj /V, a) the V-stack sending a test scheme S — V to the groupoid
of splittings of the pullback of « to U xy S. The w,-rigidification of this stack
in the sense of [1, Section 5] will be denoted by Split, (U/V, ).

We now make use of the embedding of smooth group schemes u, < Gy,.
It gives rise to a natural map from the stack Tors, (U/V) of u,-torsors,

to Pic(U/ V). The Kummer sequence implies that after rigidification of the
stacks, one obtains an isomorphism Tors,, >~ Pic(U/V)[r].

Definition 6.4 For a V-arithmetic gerbe o € Hézt(U , M) we denote the
induced Pic’ (U/ V)-torsor

Split,, (U/V, a) x"W/VIrTpict (U v)

by Split' (U/V, ). This torsor will be referred to as the principal component
of the space of relative splittings of «.

It is clear that the existence of a splitting of « on X/K as above implies
that Split’ (X) has a K -rational point. The converse is not true, as shown by
the case where « is the pullback of a non-split gerbe 8 on SpecK and we
assume X to have a K -rational point x. In this situation, the gerbe o cannot be
split, as x*a = B. On the other hand, the space Split' (X, o) ~ Pic’ (X) has a
K -rational point. This is essentially the only thing that can happen as the next
lemma proves.

Lemma 6.5 Let K be a field, X a geometrically connected proper K -scheme,
and o on X be a K -arithmetic ju,.-gerbe. We denote by B the induced G,,,-gerbe
on X. If Split' (X, «) has a K -rational point, then B agrees with the pullback
of a Gy,-gerbe on SpecK .

Proof It follows from the assumption that B is sent to zero in
H'(K%P, Pic® (X gsep)), and hence also induces zeroin H' (K*¢P, Pic(X gse)).
We infer from exactness of (24) that B lies in the image of the map
Br(K) — Br(Xg) and thus that 8 is isomorphic to the pullback of an element
of Br(K). O

Our main motivation to work with arithmetic gerbes comes from geometry.
The principal component of splittings provides an algebraic analogue of the
manifold of unitary splittings of a torsion gerbe. We record this observation
in the following remark. It will not be needed in any of the arguments, but
it provides the key to translate our algebraic viewpoints on gerbes into the
analytic language of flat unitary gerbes used in Section 3 of [31].
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Recall that we denote by Pic’ (U/ V) the torsion component of the relative
Picard variety (if it exists), that is, Pic* (U/ V) is the preimage of the maximal
torsion subgroup of o (Pic(U/V)).

Remark 6.6 Let U — V be a smooth projective morphism of complex vari-
eties, and « a V -arithmetic u,-gerbe on U. If Pic® (U/ V) = PiCO(U/ V), then
the complex space Split'(U/ V, «) is isomorphic to the manifold of flat unitary
splittings of the unitary gerbe induced by «.

Lemma 6.7 Assume we are in Situation 5.23 and that the F-fibre YF is a
torsor under an abelian variety A. Assume in addition that the |i,-gerbe o
is Op-arithmetic. Consider the space T = Split' (Y/Op, a) whose generic
fibre is canonically an A" -torsor over Spec(F). If Yrp(F) # (, then for any
trivialisation h: Yr = A there exists a root of unity &, such that the function

faoh ™'t A(F) > M(OF)! - C
is equal to
ar>§-exp(2mi(a, [TFr])),
where fy is as in (23) and (a, [TF]) is given by the Tate duality pairing
(. ): A(F) x Hi(F, AY) — Q/Z.

Proof Let us assume first that Y is the trivial A-torsor A together with the
trivialisation given by the identity map. The claim then follows from Corollary
5.26 and the definition of the Tate Duality pairing for an abelian variety A/ F:
Given a rational point x € A(F) and a torsor T € HY(F, AY), we use the
isomorphism H'(F, AY) ~ Ext*(A, G,,) to produce a gerbe a7 € Br(A).
By virtue of Remark 3.11 we have that (x, T') equals the Hasse invariant of
the gerbe x*ap € Br(F) obtained by pulling back ar along x: SpecF — A.
By Lemma 3.12 there exists such a T such that « = a7. We have shown in
Corollary 5.26 that f,, is equal to inv(x*«) under the embedding Q/Z — C
given by the exponential, thus we obtain f, = exp(2mi(—, T)).

In the general case, where we choose an arbitrary trivialisation of Y, we
apply Corollary 3.13. It follows from the statement of loc. cit that the choice
of trivialisation leads to f, = & - exp(2mwi(—, T)), and the scalar & is a root
of unity. m|
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6.2 The setting for mirror symmetry of abstract Hitchin systems

In this subsection we denote by R a Noetherian commutative ring. The reader
is invited to think of it as a subring of the field of complex numbers C or as
the valuation ring OF of a non-archimedean local field F.

Definition 6.8 Consider a smooth R-variety .A/R, a smooth admissible finite
abelian quotient stack M over R in the sense of Definition 4.10, a morphism
7: M — A, and P an A-group scheme acting on M relative to 4. We say
that (M, P, A) is an abstract Hitchin system over R, if there exists an open
dense subscheme A® C A with respect to which the following conditions are
satisfied:

(a) We denote the coarse moduli space of M by M. We assume that the map
M — Ais proper.

(b) The base change P® = P x 4 A is an abelian A?-scheme.

(c) There exists an open dense subset M’ C M, which is a P-torsor relative
to A (not necessarily surjective over the base). Furthermore we assume
that M® := M x 4 A is contained in M’, and that codim (M\ M) > 2.

The definition above is directly modelled on the properties of the G-Hitchin
system studied in [45, Section 4].

Condition (c) above implies that the stack M is generically a scheme, since
a torsor over P /A is at least an algebraic space, and algebraic spaces of finite
type are generically schematic ([52, Tag 06NH]). The generic fibre of P/ A is
connected (as is implied by (b)), but special fibres may have several connected
components.

Definition 6.9 A dual pair of abstract Hitchin systems over R consists of
two abstract Hitchin systems (M;, P;, A) over R fori = 1, 2 together with
admissible A-arithmetic u,-gerbes o; on M; for i = 1, 2 for some integer
r > 1 such that there exists an open dense subset A C A satisfying the
conditions of Definition 6.8 for i = 1, 2 with respect to which the following
conditions hold:

(a) We require there to be an étale isogeny ¢: P; — P, of group .A-schemes.
In positive or mixed characteristic we assume that over A° the orders of
the geometric fibres of the group scheme ker ¢ are invertible in R.

(b) Over A9 there exists an isomorphism v : (731<> =S 73§> , with respect to
which the isogeny ¢ is self-dual. That is, the diagram

PHyY 2 POy

-l v

Pt
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commutes.

(c) Fori = 1,2 we denote by i’ the unique element in the set {1, 2}\{i}.
By definition we have that Split’ (M? JA®, @;) is an (PZ.O)V—torsor. The
isomorphism of (b) defines a 731.<,>—torsor structure on the same space. We

stipulate that for i = 1, 2 we have isomorphisms of 771-<> -torsors
Split' (M /A%, a;) = M.

(d) Foreverylocal field F, every homomorphism R — O and every element
a € A(OF) N A°(F) with image ar € A(F), both fibres nl_l(ap) and
Ty (ar) have an F-rational point if and only if both gerbes a;|

split.

ar)

and a2|n2—1(aF)

Note that condition (c) implies the “if”” direction of condition (d), but not
the “only if” direction by Lemma 6.5.

Remark 6.10 For a ring homomorphism R — R’ by base change change
every dual pair of abstract Hitchin systems over R induces such a pair over R’.

We can now state our main result, an abstract version of the Topological Mirror
Symmetry Conjecture by Hausel-Thaddeus.

Theorem 6.11 (Topological Mirror Symmetry) Let R be a subalgebra of C
of finite type over 7. Let (M;, P;, A, a;) be a pair of dual abstract Hitchin
systems over R. Then we have an identity of stringy E-polynomials

Est(M1 xgr C, 1) = Est(M3 xg C, 7).

As stated in the introduction we will deduce this result in complex geometry
from an analogue over non-archimedean local fields.

For a dual pair of abstract Hitchin system we denote by nl.l i IM; — Athe
inertia stacks of M; together with the induced morphisms to the base A.

Theorem 6.12 (Arithmetic Mirror Symmetry) Let k be a finite field. Let
(M, Pi, A, a;) a pair of dual abstract Hitchin systems over k. Then

#e (M) = #gf (M2).
In fact the identity holds fibrewise i.e. for every a € A(k) we have
THFT. (Rt{ Ny (F1))a) = THCFT, (R73 ,Nay (F2))a).

where Ny, denotes the £-adic local system on IM; induced by the ,.-gerbe
o; and some embedding |1, (k) — @gx as in Definition 5.27, F;: IM; — Q
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denotes the locally constant functions given by the fermionic shift (see 2.2),
and N, (F;) indicates Tate twist by the fermionic shift.

Reduction of Theorem 6.11 to 6.12 This is an application of Theorem 2.19.
O

6.3 Proof of arithmetic mirror symmetry

In this subsection we prove Theorem 6.12 by means of p-adic integration. Let
F be the local field k((z)). By pulling back the pair of dual abstract Hitchin
systems (M;, P;, A, a;)ie(1,2) along Spec(Of) — Spec(k) one obtains a pair
of dual abstract Hitchin systems over O, which we denote by the same letters.

We start by describing the orbifold measures on M;(OF)? in terms of
volume forms. As it is enough to prove the fibrewise assertion of Theorem 6.12
we fix an a € A(k). By replacing A with a neighbourhood of « if necessary
Ze may assume that szl;op is trivial and we fix a global volume form w4 on

We also fix a global, translation-invariant, trivialising section @, of Q;?f /A
which exists since P, — A is an A-group scheme. As the kernel of the
isogeny ¢ from Definition 6.9 is prime to the characteristic of k, the pull-back
@] = ¢*@y is a global, translation-invariant, trivialising section of Q;gf/ e
Through the isomorphism

top ~ _*etop top
PijoF =T R 470, ® Lp) s

we thus obtain a global volume form
w; = JTl-*a) A N J)i

on P;. A similar definition will be given for M below, but at first we need the
following lemma.

Lemma 6.13 Let V be a scheme, and A L v asmooth group V -scheme. We

denote its zero section by s: V — A. For every A-torsor T LV there exists
a canonical isomorphism of sheaves

q*s*Q’X/V — Q7).
Proof For (T — V) = (A — V), one obtains a canonical isomorphism
q*s*Q’X/V — Q’A‘/V by extending sections of s*Q’X/V to sections of Q’X/V

invariant under left translation (c.f. [10, Proposition 4.2.2]).
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For an arbitrary torsor 7" and a trivialisation Ty’ = Ay over some covering
V' of V one obtains an isomorphism

(qs* Qv = Qv = Q) (25)

by composition. The left invariance noted above implies that the isomor-
phism (25) remains unchanged if one changes the trivialisation by the action
of an element of A(V’). Hence (25) descends to a canonical isomorphism
q Ty = Q7. ]

By Lemma 6.13, the relative forms @; induce a section of Qtj(\)fl’{ /400 the P;-

torsor M} C M; denoted by the same symbol. As before, we obtain a nowhere

vanishing top degree form 7*w 4 A &; on M. By condition (c) of Definition

6.8 and Hartogs’s extension theorem, there exists a nowhere vanishing global
. . top . .

section w; of Q Mi /O which satisfies

a),|M; =1"wg A ;.

From Remark 4.14 we conclude that the orbifold measure (o, ; on M; (O 7"
is given by integrating |w; /|, since the intersection A N M} = @ is empty, as
M cannot contain orbifold points as a relative ;-torsor.

Remark 6.14 This use of condition (c) of Definition 6.8 is analogous to the
use of the Calabi-Yau condition in the argument of Batyrev. We note that
condition (c) is necessary for Theorem 6.12. Indeed, by blowing up a point on
one of the M; outside of ./\/l;, one could obtain a situation as in Theorem 6.12
which satisfies all the assumptions except for condition (c). For such blowups
the conclusion of Theorem 6.12 will not hold in general. The reason is that
our construction above of the top degree form w; relies on Hartogs’s extension
theorem.

Definition 6.15 Let A(OF)” be the set
AOp) = AOF) N A%(F).

For every b € A(O F)’ we write w; p for the volume form on the fibres of
M; - Aand P; — A over b.

The following lemma allows us to compare the volumes of fibres of dual
Hitchin systems. An alternative argument, based on the behaviour of Néron
models with respect to duality of abelian varieties, can be found in the authors’
[24].
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Lemma 6.16 (Key Lemma) Let b € A(OF) be a rational point such that
nl._l (b)(F) is non-empty fori € {1, 2}. Then we have

/] |67)1,b|=/I [@2,p].
27 B)(F) 75 (b)(F)

Proof LetP; j, denote the fibre of P; — Aoverb. As ni_l (b)(F)is non-empty,
there is an isomorphism ni_l (b) = P p over F and hence

[ as= [ ol
7 (b)(F) Pip(F)

By Proposition 4.4 we have

1
L 1] = / 2.
lker ¢ (F)| Jp, ,(r) & (P1p(F))

The right hand side can be equated to

1
P26 (F) /¢ (P1p ()| Jp, ,(F)

|@2.5],

since by translation invariance of @, we have
[ o= > @2,
P2 (F) [YIEP2 5 (F) /¢ Py (F)) 7P PLo(E))

— Pab(F) /¢ (Pry(F)] - / @2
¢ (P1,p(F))

By condition (b) of Definition 6.9, the isogeny ¢ is a self-dual isogeny and
therefore we can apply Proposition 3.16 to deduce [(P2),(F) /¢ (P1)p(F)| =
| ker ¢ (F')|. This concludes the proof. O

Recall from Construction 5.28, that the w,-gerbe «; on M; induces a func-
tion

fur : Mi(OF)" — C.

The presence of these functions allows us to generalise the previous Lemma
6.16 to arbitrary fibres.
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Theorem 6.17 For every b € A(OF)" we have an equality of integrals

/ 1 falli)l,bIZ/ 1 Sanl®a p|.
7 (b)(F) 7, (b)(F)

Proof There are four cases to consider.

(1) I ;' (b)(F) = m; '(b)(F) = @, then both integrals are 0.

(2) It ;' (B)(F) = ¥, but ;' (b)(F) # ¥ the left hand side will be 0, so we
have to prove that the integral on the right vanishes. By Definition 6.9 (b)
the fibres P, and P, ;, are dual abelian varieties and we denote the Tate
duality pairing by

(=, —=): Pap(F) x HY(F, Py ;) - Q/Z C C.

By virtue of Lemma 6.7 for an isomorphism of P, ,-torsors 7, ! (b) i)
‘P2.p, the function fy, oh~isequal to £, exp(27i(—, t1)) on P>.»(F).Here
&, € u(C) is a constant and #| € H! (F,P1,p) denotes the isomorphism
class of nl_l(b) = Split/(nz_l(b), ay). Since the Tate duality pairing is
non-degenerate we deduce that up to the constant &, the function

fap © s Prp(F) — C,

is anon-trivial character on P, 5, (F), as by assumption#; 7# 0. Translation-
invariance of @, j therefore implies

f L Jwlansl = / faz o h™H@2,p] = 0.
7, (b)(F) Pap(F)

(3) The case that 712_1 (b)(F) = @, but nl_l (b)(F) # (s treated analogously
to case (2).

@ If ni_l (b)(F) # ¥ for both i = 1, 2, then by Definition 6.9 (d) the gerbe
%=1 () splits for i = 1, 2. From Proposition 5.25 we thus see

Sty = 1-

The proposition now follows from our Key Lemma 6.16, which shows
that Py »(F) and P, 5, have the same volume.

These four cases cover all possibilities and therefore establish the formula
claimed in the proposition. O

Finally we are ready for the
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Proof of Theorem 6.12 1t is enough to prove for every a € A(k) the fibrewise
assertion

Tr(Fr, (Rm| ,L1(F1))a) = Tr(Fr, (Rm3 ,L2(F2))a),
as the global equality
#ey (M) = #g7 (My)

follows from summing over all a € A(k).
Let M, , be the fibre of M; — Aovera. Using the Grothendieck-Lefschetz
trace formula (see [35, Theorem 12.1(iv)]) we can write

£y TR, (L))

Tr(Fr, (R?Ti{*Li(Fi))a) = Z |Aut(x)|

XEIMi,a(k)iso
Now let ¢ : IM; ,(k) — IM,; (k) denote the involution sending a pair
(m, ) € IM; (k) to (m,¢~"). Then one has for every x € IM, ,(k) the
relations F;(x) = —w; (¢(x)) + dim M; and
TI’(FI’, (La,-)x) = Tr(Fr’ (L(li)t(x))v

see (2) and the proof of Corollary 5.29 for a similar argument. Thus we get

w0y THFT, (L))

Tr(Fr, (R Li(F))a) = ¢ M0 ) AUt

xelM; q(k)iso

By Theorem 4.16 the right hand side can be written as a p-adic integral, namely

Z gV (x) Tr(Fr, (La;)x) _

= fa'/‘vorb,i :/ fa|wz‘
reIMy, Biso AUl /e*(lMi.a(knm) ’ UM K)iso)

Next let A(Op)a = {b € A(OF)” | blspectiy) = a}. We have
e (UM o (K)iso) = {b € M(OF)" | 7 (b)|speciir) = al,
and the complement of.A((’)F)Z inside A(OF), = {b € A(OF) | blspectir) =

a} has measure zero with respect to w 4 by Proposition 4.4. Furthermore, the
resulting map of analytic F-manifolds

e (IM; 4 (K)iso — AOF)”
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is a submersion, since it is induced by the smooth morphism /\/ll<> — A (and
taking F-rational points). Thus we can apply Proposition 4.1 and get

/ futo = [ loal [ fuldisl
e~ (UM 4 (K)iso) be A(OF)a 7= 1(b)(F)

Theorem 6.12 now follows from Theorem 6.17. O

7 The topological mirror symmetry conjecture by Hausel-Thaddeus

In this section we explain how our main theorem implies the Topological
Mirror Symmetry conjecture by Hausel-Thaddeus [31]. This is mostly a matter
of recalling that the assumptions in 6.9 are satisfied. The reader is referred to
the original sources by Hitchin [27] and Simpson [51] for an introduction to
Higgs bundles.

7.1 Moduli spaces of Higgs bundles

Our strategy requires us to consider moduli spaces of Higgs bundles over
various base schemes. For the sake of avoiding awkward language we fix a
Noetherian scheme S, and consider a smooth and proper morphism X —
S whose geometric fibres are connected curves of a fixed genus g. Below
we will recall the definition and basic properties of moduli spaces of Higgs
bundles over X /S. We assure the minimalists amongst the readers that only the
following down-to-earth cases are relevant to us: § = SpecC, S = SpeclF,,
S = SpecOF, § = SpecF, S = SpecR, where F is alocal field and R C Cis
a finite type subalgebra of C.

Definition 7.1 (a) Let D be a line bundle on X. A D-Higgs bundle is a pair
(E, 0),where E isavectorbundleon S,and 6 : E — E® D an Ox-linear
morphism.

(b) For integers n and d we denote by /\/léLn (X) the moduli space of stable
D-Higgs bundles of rank n and degree d.

(c) For aline bundle L of degree d on X, a line bundle D of arbitrary degree
and an integer n we denote by MéLn (X) the moduli space of stable
D-Higgs bundles (E, 0) together with an isomorphism det(E) ~ L sat-
isfying Tré = 0.

For the rest of this section we fix a line bundle L on X of degree d as well as
a line bundle D and an integer n. Traditionally one chooses D to be equal to
the canonical line bundle Q}( /s However we do not need this restriction, and

the general case is of independent interest. We denote by Jx the Jacobian of X
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over S and by I' = Jx[n] the associated finite flat group scheme of n-torsion
points.

Remark 7.2 Existence of the moduli space in this generality can be deduced
easily from algebraicity of the stack of vector bundles Bun,(X/S) on X
(Olsson’s algebraicity result for mapping stacks [47, Theorem 1.1] implies
algebraicity of Bun,(X/S)). For this dévissage argument one considers
the stack of all D-Higgs bundles and the forgetful map Higgs,(X/S) —
Bun,, (X/S).Itfollows from [23, Théoréme 7.7.6] that this map is representable
and affine. Therefore the stack Higgs, (X/S) is itself algebraic. Since stable
D-Higgs bundle form an open substack, we obtain algebraicity of the stack of
stable D-Higgs bundles. The corresponding moduli space can be obtained by
rigidifying this stack with respect to the group G,,. Rigidification preserves
algebraicity (see [1]), and hence we deduce that MéL,, (X) is representable by
an algebraic space.

Henceforth we will leave D implicit, and simply refer to D-Higgs bundles
as Higgs bundles. However, we emphasise that according to our conventions,
MéLn (X) is the space of stable SL,-Higgs bundles. Nonetheless, the case of
principal interest is when n and d are coprime integers (see Theorem 7.6). It
is well-known that in this case /\/léLn (X) is a smooth variety, which is acted
on by the finite group scheme of n-torsion points I'. As we work in a more
general setting than usual we provide a proof of smoothness:

Lemma 7.3 Assume that D ® (Q;(/S)_1 is a line bundle, which is either of

strictly positive degree or equal to Oy s. Then the moduli space Mé 1, (X/S)
is smooth over S.

Proof Without loss of generality we may assume that S is affine. The defor-
mation theory of (twisted) SL,-Higgs bundles (E, 6) (over an arbitrary base)
is governed by the (relative) hypercohomology of the complex (here End,(E)
denotes the sheaf of trace-free endomorphisms of E)

C*(E, ¢) = [Endy(E) — End\(E) ® D]

sitting in degrees —1 and 0. We refer the reader to [45, 4.14] for deriva-
tion of this fact in a general context. We have natural isomorphisms
HO(X, C*(E, ¢)) ~ End(E,¢), H'(X,C*(E,$)) ~ TEpM§, , and
H?(X, C*(E, ¢)) equals the space of obstructions. In order to show that
MéL,, (X/S) is smooth, we have to show vanishing of H?(X, C*(E, ¢)) fora
stable Higgs bundle (E, ¢). Since stable SL,,-Higgs bundles have a discrete
group of automorphisms the group End(E, ¢) ~ HO(X, C*(E, ¢)) vanishes.
Serre duality applied to the family of curves X /S implies

H*(X, C*(E, ¢))” ~H(X,C*(E. $)" ® Q/s)-
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The complex C*(E, ¢)¥ ® Q%{/s is given by

[Endy(E) ® D~' ® Q) — Endy(E) ® Q]
~ [Hom(E,E® D' @ Q%) - Hom(E,E® D' @ @}) ® D].

Therefore, H° of this complex describes the space of trace-free homomor-
phisms of Higgs bundles

Homo((E. $), (E® D' ® Q). $).

Let us assume that the degree of D ® (Q}( /S)_1 is strictly positive. Since
(E,¢) and (E ® D' Ql, ¢) are stable and the second Higgs bundle is
of strictly smaller degree than the first, we have that this space of homo-
morphisms is 0. Similarly, if D ® (Q;US)_l is equal to Oy/s, then we have
Endy((E, ¢), (E, ¢)) = 0 as noted above. O

Definition 7.4 We denote by Mpgr,, (X/S) the moduli stack of families of
PGL,,-Higgs bundles, which admit a presentation as a stable Higgs bundle
over each geometric point. The notation MgGL,, (X/S) refers to the moduli
stack of stable PGL,-Higgs bundles, which admit a presentation by a vector
bundle of degree congruent to d modulo n over each geometric point.

We will sometimes denote MéLn (X/S)and MgGL,, (X/S) simply by MéLn
and MgGL,,'

Remark 7.5 (a) The connected components of the moduli stack of stable
PGL,,-bundles are parametrised by congruence classes of integers modulo
n. Thatis, we have MpgL, = | |jez,uz MgGLn'

(b) The stack MgGL,, is equivalent to the quotient stack [MéLn (X)/T]. In
particular, we see that the resulting quotient stack only depends on the
degree d (modulo n) of the line bundle L.

The Hitchin base A is defined to be the affine S-space corresponding to the
locally free sheaf

o'_,H(X, D®).

It receives a morphisms xsp,, and xpgL, (called the Hitchin map) from the
moduli spaces MéLn (X/S) and MgGLn (X/S). These maps are given by the
familiar construction of characteristic polynomials, applied to the Higgs field
0 itself.

Theorem 7.6 (Hitchin, Nitsure, Faltings) If d and n are coprime, then the
morphisms xsL, . XPGL, are proper.
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See Nitsure’s [46] for a proof of properness in the case of GL,-Higgs bun-
dles, which implies the assertion for SL,,, or Faltings’s [18] for a proof of the
case of G-Higgs bundles for reductive G.

We conclude this subsection by mentioning a connection between the notion
of twisting (see Sect. 4.2) and the moduli spaces MéLn (X) for varying L. The
proof of Theorem 7.16 is based on this property. We let F' be a local field and
take S = Spec(OF). We let M be a line bundle of degree 0 on X and assume
that # is an integer prime to the residue characteristic of F. We associate to
M a torsor under I' = Jx|[n] as follows: the multiplication by » map is an
isogeny

0—>F—>Jxﬂ>fx—>0.

This sequence induces a long exact sequence of (unramified) Galois cohomol-
ogy groups as part of which we get a boundary map

8: Jx(OF) — HL(F,T).

The torsor associated to M is §(M). It can also be understood as the fibre
[n]~1(M) with its natural ["-action.

Lemma 7.7 There is an isomorphism
MEM(X) = (M, (X))sm)s

where ()s(m) denotes the twist by the torsor (M) (as in Definition 4.5).

Proof We denote by F"' the unramified closure of F, and by Opuw its ring
of integers. The latter is a discrete valuation ring with algebraically closed

residue field k . Hence there exists a line bundle M " € Pic(X o) for which
(M%)” ~ M. There is a morphism

Mél{‘f(x)ol:ur — MéLn (X)OFur

given by tensoring a family of Higgs bundles with M 7. The obstruction for this
isomorphism to descend to an isomorphism defined over OF is precisely given
by §(M) € Hulr(F, I'). This shows that we have an isomorphism Méﬁ‘: (X) ~

(MéLn (X))s(m)- O

7.2 The Prym variety and its properties

We denote by 7: ¥ — X x A the universal family of spectral curves. The
moduli stacks M éLn (X) and MgGLn (X) are acted on by smooth commutative
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group schemes Psy,, /A and Ppgr, /A: First we consider the SL,, side, where
Psi,, is given by the relative Prym variety of the universal family of spectral
curves ¥ — X x A.

Let AY C Abe the open dense subscheme corresponding to smooth spectral
curves. Over this open subset, the fibres of the Hitchin map y : MéL” —- A
admit the following well-known description. For a finite morphism C — C’ of
relative curves over S we refer the reader to Hausel-Pauly’s [29, Section 3] for
the definition of the norm map Nm¢ ¢/ : Pic(C/S) — Pic(C’/S). Although
the authors of loc. cit. work under more restrictive assumptions, their treatment
of the norm map is easily generalised to our more general situation. For a line
bundle L on C’ we denote by NmE/lC,(L) the G, -rigidification of the stack
obtained by taking the preimage of L under the morphism Nm¢,c/. We will
sometimes abbreviate Ps,, as P.

Lemma 7.8 Leta € A%(S) be an S-valued point.
(a) The fibre x "' (a) = MéLn X 4 S is naturally equivalent to the stack

Nmy | s/x (L ® det(mOy x 45)).

(b) The equivalence of (a) is an equivalence of P,-torsors.
(c) For line bundles M1 and My on X we have the following identity in
H}(S.P):

[Nm;iAS/X(Ml)][Nm)_’j(AS/X(MZ)] = [Nm)_/LAs/X(Mle)],

where [ | denotes the class of the P-torsor in Hélt(S, P).
(d) For a line bundle M € Pic(X) we have an identity of torsors
[Ny s/ x(M™] = 0in Hi(S, P).

Proof The first part is a consequence of the formula
NMy . 45/x (L) = det(r:L') - det(m:Oyx 45) "

for a line bundle L' on Y x 4 S (see [29, Corollary 3.12]). The second and
third parts follow from the multiplicativity of the norm map: Indeed, the tensor
product of line bundles on Y induces a map

Nm;iAS/X(Ml) X Nm;iAs/X(MZ) - Nm;iAS/X(MlMZ)'

This map has the property of being a bilinear map of P,-torsors, and therefore
induces a morphism of P,-torsors

Nm;iAS/X(Ml) ® Nm;iAS/X(Mz) — Nm;iAS/X(MlMZ).
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As a morphism of P,-torsors this is automatically an isomorphism.

The fourth assertion is a consequence of the identity Nmy a8/ x(T*M) =
M®" and multiplicativity: Multiplication with 7z*M induces a morphism of
‘forsors Nm;iAS/X(OX) — Nm;iAS/X(JT*M), which is automatically an
isomorphism. o

We will now turn to a description of the PGL,,-counterpart of the Prym-
variety Psy,, /A. At first we recall its definition, which renders the description
of the action on /\/lf;.GLn relative to A tautological. We then turn to the veri-
fication of the properties demanded in Definition 6.9. Recall that we denote
Pic(X)[n] by I'.

Definition 7.9 We define Ppgr,, = Pst, /.

We include the proof of the assertion below for the convenience of the reader
since the original reference does not comment on the self-duality property of
the isogeny. In the following, for an A-scheme Z we denote by Z¢ the base
change Z x 4 A°.

Proposition 7.10 (c.f. [29, Lemma 2.2 and 2.3]) There is an isomorphism of
abelian A9-schemes (73§>Ln)v and PI?GLn. With respect to this isomorphism

the quotient map 73§>L” — Pl<>>GL,, is a self-dual isogeny. Furthermore, the
identification T = ' associated to this self-dual isogeny via (12) is the same

as the one associated to the self-dual isogeny Jx I Jx.

Proof We begin the proof by fixing notation. The relative Jacobian of the trivial
family of curves X x5 .A/.A will be denoted by J. The relative Jacobian of
the universal spectral curve ¥ /A will be denoted by J. Similarly we denote
by J' and J! the relative moduli spaces of degree 1 line bundles.

Henceforth we restrict every A-scheme to the open subset A®. To avoid
awkward notation we will omit the corresponding superscript.

The relative norm map induces a morphism of abelian .A-schemes T Nm, J.
Similarly, pullback of line bundles yields 7*: J — J. We claim that these two
morphisms are dual to each other with respect to the canonical isomorphism
JV =~ J induced by the Poincaré bundle (and similarly for J). To see this we
observe that we have a commutative diagram (the horizontal arrows represent
the Abel-Jacobi map)
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to which we can apply the contravariant Pico(?/AO) functor to obtain the
commutative diagram of abelian schemes

T
J
We will now show that the dual of the isogeny

I' = Psr, = ProL, (26)

is equivalent to itself. A convenient framework for the argument is provided
by the theory of abelian group stacks, as explained in [2]. Equivalently, one
could employ a derived category of commutative group sheaves. For (nice)
abelian group stacks there exists a duality functor given by Hom(—, BG,,). It
sends an abelian scheme to its dual, and a finite étale group scheme I' to B[V,
the classifying stack of its Cartier dual. The sequence of maps in (26) is sent
to the fibre sequence

PpoL, = Psp, — BT, (27)

where the first map is the sought-for dual isogeny. It is sufficient to show that
Pg/Ln — BTV is equivalent to the map Ppgr,, — BT'. This amounts to the
following three claims: That the dual of Pst, is Ppgr,,, that 'Y ~ T, and
that the isogeny (26) is self-dual. We will obtain these assertions by analysing
the two commutative diagrams below, which are related by the duality functor
Hom(—, BGy).

5
=

*
I —
_—

AN J—

N/ N
]
N/ <
P4
3
=
—
STy
*

Furthermore, the top row of the first diagram is the fibre of the vertical arrows
and hence the top row of the second diagram is the corresponding cofibre. By
explicitly computing the fibres in the second diagram we obtain a commuting
square
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BTY «—— 7’va,1

] I=

BT «<—— PpgL,,

where we have observed that BT is the cofibre of J - J and PrcL, is by

definition the cofibre of J —— J. This concludes the proof of the first assertion.
The last part of the claim follows from the construction above. |

The following verifies condition (c) of Definition 6.8.

Proposition 7.11 (Ngo, [45, Proposition 4.3.3], [42, Theorem 2.1]) There
exist natural open and dense open subspaces MI§Ln (X) of /\/llgLn (X) and
MgGLn (X) of /\/lgGLn (X) on which the Prym varieties Psy,, and PpgL, act
faithfully and transitively. Their complements are of codimension > 2.

Altogether we have shown:

Proposition 7.12 Assume that " is constant over S. Then, MéL,, X)) — A
and MgGLn (X) — A are abstract Hitchin systems over R.

Proof 1t follows from the assumption that MgGLn (X) is the quotient of M éLn
with respect to the abstract finite abelian group I'. Since MI§Ln is smooth
(Lemma 7.3), we deduce that is a finite abelian quotient stack. The Hitchin
system x and the action of the Prym varieties Psy,, and Ppgr,, was shown
above (Proposition 7.11) to satisfy the requirements of the definition of abstract
Hitchin systems. o

We conclude this subsection with two technical lemmas that will be needed
later.

Lemma 7.13 Fora € AO(S) we denote by PC? the fibre (Psv,)a, and by PaL

the fibre (MéLn )a. Moreover, for the finite flat morphismw: Y — X x A, we

write M = det (. Oy).

(a) We have an abstract isomorphism of P?-torsors PF - PaL/ -~ PaLL/M -

(b) For an integer d we have an abstract isomorphism of Pa? -torsors between
(PLyd ang PL*M™,

(¢) Aline bundle N € Pic(X) induces an abstract isomorphism of Pg-torsors
Pl ~ pEN",

Proof According to Lemma 7.8 we identify the torsor PaL with (rigidifica-
tion of) the fibre Nm;iA s/ x (LM). Multiplication of line bundles Pic(Y) x
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Pic(Y) — Pic(Y) yields a P-bilinear map PL x PL" — PLL'M Thig
induces a morphism of torsors PL - PL" — PLL'M Since a morphism of
torsors is automatically an isomorphism, we conclude that assertion (a) must
hold. Statement (b) follows by induction.

Assertion (c¢) is based on the fact that multiplication by 7*N induces an
isomorphism of torsors PaL — N- PaL. Using Lemma 7.8 again, in combination
with the formula NmyXAS/X(L -*N) = NmyXAs/X(L) - N (see [29,
Proposition 3.10]), we obtain an isomorphism of PaO—torsors PaL ~ PaLN "o

Over alocal field every torsor over an abelian variety is of finite order. In our
particular situation, we can show that the order of the P(? -torsor PaL divides n.

Lemma 7.14 Let F be a local field whose residue characteristic satisfies p >
n, and X a curve over SpecOp. We assume that a € AO(F) is an F-point,
which extends to an Op-point of A. We denote by dy, , the order of the P,-
torsor PaL. Then we have dy, 4|n.

Proof This follows from Lemma 7.8. To see this, observe that there is a line
bundle M’ on X, such that P ~ Nm;iAs/X(M’). By virtue of 7.8(b-d) we

have n - [PF] = [Nmy} ¢, x(M)")] = 0in HL(S, P). O

7.3 On a conjecture by Mozgovoy—Schiffmann

In this subsection we use p-adic integration to show independence of the point
counts of moduli spaces of Higgs bundles from the degree d as long as it is
prime to n. This is the independence of d part of [43, Conjecture 1.1] for d
and n coprime. These arguments are independent from Sect. 6.

There is an alternative proof of this fact by Yu [57] using automorphic
methods. A full proof of the conjecture, without the coprimality assumption
on (d, n), has been obtained by Mellit [38] by combinatorial means.

Theorem 7.15 Let n and d be positive coprime integers, let k be a finite
field of characteristic p prime to n and d, let X/k be smooth proper curve
of genus g, and let D be a line bundle on X such that D ® (Q}()_1 is of
strictly positive even degree or equal to Ox. We assume that k contains a
primitive n>&th root of unity. Then, for any integer e prime to n and p we have
#ME (X)) (k) = #MG (X) (k).

Proof We choose a local field F with kg = k and lift X and D to Of. Note
that there are no obstructions to lifting, since X is a curve.
We will show that the p-adic volume of the moduli space MéLn (X)(OF)

is independent of d. Since for d and n coprime, the moduli space MéLn is

@ Springer



584 M. Groechenig et al.

smooth, we obtain the asserted comparison of point-counts over k i, by evoking
Weil’s equation (1)

#MEL, (X) (kr)
dim M, (X)

vol (MéLn (X)((’)p)) -
q

For the purpose of this proof we will introduce the finer notation ¢ : MéLn —
A for the Hitchin map. It follows from Lemma 7.14 that the order of the Pgr,, -
torsor 7%~ (a) divides n. If e denotes an integer prime to d one therefore has
that [7%~!(a)]¢ has the same order. We conclude that 7% ~!(a) is the trivial
F-torsor if and only if 7¢~!(a) is trivial, whenever d and e are prime to 7.
Arguing as in Sect. 6.3, we choose a gauge form 7 on Agr, and a relative
gauge form w over A (that is, a translation-invariant generators of the sheaf

QP ) and obtain

/ dhon = [ (/ |wa|) i
M (OF) a€AqL, (Or)" \Jr=1(a)(F)
= / / lwal | 171
acAOF)” \I Mg, (OF)

The last equality holds, since by the discussion above 7% ~!(a) has an F-
rational point if and only if 7! (a) has an F-rational point. This implies the
independence of d of the right hand side. |

There exists a variant of the above results for SL,,-Higgs bundles:

Theorem 7.16 Let n and d be positive coprime integers and k be a finite field
of characteristic p > n. We consider a smooth proper curve Xk of genus g
endowed with a line bundle D, such that D ® (Q}()_1 is of strictly positive
even degree or equal to Ox. Let L be a line bundle on X of degree d. We
assume that k contains a primitive n*8th root of unity. Then, there exists a
degree O line bundle N on X, such that for any e and n coprime we have

#MY Ok = #MENT 0O ().

Proof We choose alocal field F with kr = k, and lift X, D and L to OF. This
is possible since X is a curve.

Leta € AY(F). We write P? to denote the Prym variety acting faithfully
and transitively on the Hitchin fibre x V) c MéLn (X). Recall that this

action is induced by base change of the relative action of P on MéLn (X),
which endows the latter with a torsor structure over A°.
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We will now compute the p-adic volume of MéLn. According to 4.4 we
have

vol (MgLn (X)(OF)> — vol (MgL (X)(Op) N M <>(X)(F))

The right hand side can be computed as a double integral by applying 4.1 (and
a second time 4.4):

vol(MSL (X)(Op) N Mg <><X><F)) f (/ |wa|>|n|
AOF)NAC(F) \JPL(F)

-/ [, seslant )
AOp)NAS(F) \JPO(F)

where § PL denotes the indicator function of the subset {a € A(Of) N
AO(F )|PE is the trivial torsor}, n a gauge form on A and @ a global
translation-invariant generator of Q7>° A"

Since e is chosen to be prime to n, and the order of PaL in H'(F, PC?) divides
n (Lemma7.14), we see §(pr)e = 8 pL. It suffices therefore show the existence

of a line bundle N of degree 0, such that the torsor (PaL)e is isomorphic to
PaLe Nefl )

According to Lemma 7.13(b) we have an equivalence (PaL )¢ ~ PaLeM “of
P)-torsors. The degree of M is equal to

D
g nn—1),

n—1 .
> (—deg D)i =
i=0

and hence is divisible by n. We let O be a line bundle on X, such that
deg Q" = degM. We define N = M - Q". According to Lemma 7.13
we have equivalences of P(?—torsors.

LeMe—l ~ LeMe—lQ—n(e—l) ~ LeNe—l
P, ~ P, ~ P .
This implies §pr = 8, eye-1, and therefore we have
a a

vol (Ml (0p)) = vol (MEN"©p)) .

The connection between p-adic volumes and point counts yields #M (k) =
#MENT k). 0
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Applying the usual reduction argument one deduces from this equality of
point counts an agreement of Betti and Hodge numbers.

Corollary 7.17 Let n and d be positive coprime integers. We consider a
smooth proper curve X /C endowed with a line bundle D, such that D® (SZ}()_1
is of strictly positive even degree or equal to Ox. Let L be a line bundle on X
of degree d. The Betti and Hodge numbers of the complex manifolds M éLn (X)

and M‘éLn (X) are independent of d.

7.4 Topological mirror symmetry for moduli spaces of Higgs bundles

We continue to use the setup from the previous subsections for § = Spec(R),
where R is a Noetherian ring in which n is invertible. We also assume that n
and d are coprime, and that the étale group scheme I' = Pic®(X)[n]is constant
over R. Furthermore, we suppose that jt,.;r| = [4,2¢+1 1S constant over R.

As explained in [31], the moduli space M éLn (X) is endowed with a natural
pn-gerbe ast, 1. The definition of loc. cit. is stated for the case R = C
but their arguments can be applied to this more general situation with minor
modifications. Indeed, one defines asy,, ;. as the obstruction to the existence
of a universal family of Higgs bundles on ./\/léLn (X) xgr X. That is, the gerbe
asL,, 1 is represented by the morphism of stacks

Mgy, (X) — Mg, (X),

where the left hand side denotes the stack of stable (L-twisted) SL,-Higgs
bundles, and the right hand side is the associated coarse moduli space (or
up-rigidification).

Recall that I" denotes the group R-scheme Jx[n] = PiCO(X )[n] of n-torsion
points in the Jacobian. By our assumptions this group scheme is constant, and
by abuse of notation we will denote again by I" is group of global sections. The
group R-scheme I" acts on MéLn (X) by tensoring families of Higgs bundles,
and Hausel-Thaddeus observe in loc. cit. that the gerbe asy, 7 is endowed
with a natural I"-equivariant structure. We therefore obtain a ,,-gerbe apgr,, 1.
on MgGLn (X) by descending the gerbe asy,,.z on MéLn (X) to the quotient
Mo, (X) =M (X)/TI.

Let now e > 1 be another integer prime to n. Let ¢’ = ad be a multiple of
d, which is congruent to e modulo n and L’ = L. Thus L’ has degree ¢’ and
the previous construction yields gerbes asy,, 7/ on Mlg/Ln (X) and apgr,, 1’ on

e
PGL,"
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Theorem 7.18 (Hausel-Thaddeus) The gerbes asy,,, 1. and apgL, 1’ are arith-
metic gerbes and there are canonical isomorphisms

Split (M )0/A% gy 1) =~ (Mg )0 /A%,
Split' (Mar )0 /A, oty 1) = (Mg )0 7A°

of 731<)>GL”- (resp. 77§>L" )-torsors.

The proof of this result can be found in [31, Proposition 3.2 & 3.6]. It applies
mutatis mutandis to the slightly more general context we are working in. We
remark that they denote Split’ by Triv. Furthermore their definition of Triv is a
priori via unitary splittings of u,-gerbes. However, in the proof they actually
argue with the torsor (Splitur x Pic?)/Pic[r], which corresponds exactly to
our definition of Split’ (see Remark 6.6).

The following verifies condition (d) of Definition 6.9:

Lemma 7.19 Assume that R = Op for a local field F (and R satisfies the
assumptions stated at the beginning of this subsection). For every element a €
AOF) N AC(F) with image ar € A(F), the fibres Xs_Ll (ar) and XP_GIL (ap)

both have an F-rational point if and only if both gerbes aSL L| (up)

d
6L, L s (ap) SPHE

Proof The “if” direction follows from Theorem 7.18.

Now to the “only if” direction. We first notice that the existence of F-
rational points implies the triviality of Split by Theorem 7.18. It follows from
Lemma 6.5, that the gerbes aSL pand ozPGL 1 are constant along the Hitchin
fibres over F. Thus it is enough to check that they are trivial at an arbitrary
F-rational point.

We start with the SL,,-side: The moduli space /\/léL (X) is smooth over O,
and proper over A. Every x € /\/l (X)(F), which lies over a € A(Op),
and extends therefore to an Of- ratronal point. This shows that x aSLm . =0,
since Br(Or) = 0.

On the PGL,,-side we will show that for each a € A(OF) there exists an
OFp-rational point x in XP_C}L,‘; (a) whenever there exists an F'-rational point in

Xs_Llﬁ (a). We then conclude as above that x*agLn’ . =0.
By Lemma 7.13 the torsor Xs_Lle (a) 1s a power of the torsor X_ld(a) In
particular it has an F'-rational point whenever X Ld L (@) does. By the paragraph

above the we obtain that XSLe (a) has an Op- ratlonal point. Its image x in
n

XP_GlLe (a) yields the sought-for O p-rational point. |
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The following summarises the properties of the two moduli spaces together
with their natural gerbes established above. Recall that we fixed several
assumptions on R at the beginning of this subsection.

Proposition 7.20 The two abstract Hitchin systems (/\/léLn, PsL,, A) and
(./\/lle)GLn . PpGL, , A) (c.f. Proposition1.12) together with the [1,,-gerbes oszn L

and ongLn’ 1 Jorm a dual pair of abstract Hitchin systems over R.

Proof The gerbes are admissible by our assumption that .|| = [L,2¢+1 1S
constant over R. Assumption (a) of Definition 6.9 follows directly from the
definition of Ppgr, as Psr,/I'. We have verified in Proposition 7.10 that the
natural isogeny Ps;,, — PpagL, is self-dual. This shows (b). Assumption (c)
is Hausel-Thaddeus’s Theorem 7.18. Assumption (d) is verified by Lemma
7.19 after base change along R — Op. O

Asaconsequence of our main result 6.11 we now obtain the following theorem,
conjectured by Hausel-Thaddeus. For this we fix a prime £, which is invertible
in k and an embedding w, (k) — Q.

Theorem 7.21 Let X be a smooth projective curve of genus g over a base
field k endowed with a line bundle D, such that D ® (2 ;)_1 is of strictly even
positive degree or equal to Ox. Let n be a positive integer, and let d and e be
two integers prime to n. Let L € Pic?(X) be a line bundle of degree d. We
assume that k contains a primitive root of unity of order n*$+1.

(a) In case k = C we have the equality of stringy E-polynomials
E(Mg, (X): x,y) = EstMpgp, (X), gL 15X, Y).

(b) Incase k = I is a finite field of characteristic p > n we have an equality
of stringy point counts

(Xd ’
# M 0K = #5 (Mgr (X))
Proof To prove (a) we spread out: We choose a subring R C C, which s finitely
generated over Z, contains 1/n, and all roots of unity of order n28+1 such that
X, D and L extend to Spec(R). After replacing R by an étale extension we
may also assume that I" is constant over R. Then assertion (a) is a consequence
of Theorem 6.11 applied to the dual pair of abstract Hitchin systems given by
Proposition 7.20. Here we use that since MI§L,, (X) is a smooth scheme the

stringy Hodge number hf”sqt (/\/léLn (X), angL) is equal to h7? (MéLn (X)).
Similarly, assertion (b) follows from Theorem 6.12 using Proposition

7.20. O

@ Springer



Mirror symmetry for moduli spaces of Higgs bundles 589

Corollary 7.22 In the situation of Theorem 7.21 (a), in case D is the canon-
ical line bundle, we have an equality of Hodge numbers h¥ ’q(/\/léLn (X)) =

p.q e d
hc,st(MPGLn (X)), aPGLn,L/)'

Proof The Hodge structures on the cohomology groups H} (./\/léLn (X)) and

HY st(MleDGLn (X), al‘fGLn ;) are pure in this case [31, Section 6] and hence the
equality of Hodge numbers follows from the equality of E-polynomials. 0O

There is a second cohomological result, related to the work of Ngo [45],
which we can deduce from our work. Let R be a finite field k of characteristic
p > n.

We denote by Ixpgr, the morphism IMgg —— A induced by xpgt, :

Mpgr, = Aand by Ny the Qy-local system on [ MpgL, induced by the
L, -torsor on IMI(;GL,, associated to the p,-gerbe agGLn 1 (see Sect. 2.2) by

means of our chosen embedding 1, (k) — @g. Finally N;/(FpgL,) denotes
the Tate twist of N,/ by the fermionic shift.

Let X be a smooth projective curve over a finite base field £ endowed with
a line bundle D, such that D ® (2 k)_l is of strictly even positive degree or
equal to Oy. Let n be a positive integer, and let d and e be two integers prime
to n. We denote by L € Pic®(X) a line bundle of degree e. We assume that
R = k satisfies the assumptions stated at the beginning of this subsection.

Theorem 7.23 Foreverya € A(k) the Gal(k)-representations (R (xsL, )+Qp)a
and (R(IxpGL, )« N1 (FpGL,))a are abstractly isomorphic.

Proof The two complexes of £-adic sheaves R( XSLn)*@e and R(IxpGL, )« N1/
are pure. In the first case this follows from Verdier duality, the fact that the
map xsL, is proper, and Deligne’s purity theorem [12]. In the second case
one applies the same argument to every stratum of the inertia stack (which are
moduli stacks of Higgs bundles).

It is hence sufficient to establish an equality of point counts

#(xs1,) (@) (k) = Tr(Fr, (R(IxpGL,)«N1)a)-

This is a special case of the second assertion of Theorem 6.12. O

7.5 The action of I' on the cohomology of Mé‘Ln (X)

We can also prove the following refined version of Theorem 7.21, which
describes the action of the group I' on the cohomology of the SL,-moduli
space.

We continue to use the setup of the previous subsection in the case where
the base ring R is a finite field k, which contains all n2¢%!th roots of unity. We
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choose a primitive nth root of unity ¢ € k*. Furthermore, we will assume that
I" is a constant étale group scheme over k.

The Jacobian Jx of X comes with a canonical isomorphism Jx = J )\(/ under
which the isogeny [n]: Jx — Jx is self-dual. Hence as a special case of (12)
we obtain an isomorphism

r=rv. (28)

By our assumptions I' is constant, and hence by the assumptions on k the
group scheme I'V is constant as well with value Hom(T", ., (k)). (Recall that
we write I" also for the group of global sections I'(k).) Using (28) and our
chosen root of unity { we obtain a non-degenerate pairing of abstract groups

(,): T xT =T x Hom(T, pn(k)) — pn(k) = Z/nZ C Q/Z  (29)

where we identify I with T'*.

A result similar to the one below has been conjectured by Hausel in [26].
The strategy is to apply Theorem 7.21(b), and compute the arithmetic Fourier
transforms with respect to the finite group I of both sides.

Theorem 7.24 Let X be a smooth projective curve over afinite field k endowed
with a line bundle D, such that D® (Q Y~V is of strictly even positive degree or

equalto Ox. Let d and e be two integers prime to n. We denote by L € Pic? (X)
a line bundle of degree d and let L' be a power of L of degree congruent to e
modulo n. We assume that k satisfies the properties described at the beginning
of this subsection. Forany y € I and x € T'*, which correspond to each other
under the identification ' = T'* given by the pairing (29) we have

THFr, HE (M, (X),Qp),) = THFr, HE (MY (X))7/ T, N (Fear,)).-
(30)

Proof Asinthe proof of Lemma 7.7, given L1, L, € Pic? (X)(k), which differ
by an element of the form L for some L € PiCO(X )(k), we have an isomor-

phism M SL, = ~ ML SL,, given by tensoring with Lo. Hence up to isomorphism
MSL” only depends on the class of [L{] in Pic? (X)(k)/(Plc (X)(k)™). We

denote the corresponding moduli space for L1 = L by /\/l[o]
More precisely, let § be the isomorphism

Pic’(X) (k) /(Pic®(X) (k)" = H'(k,T) = T.

Then the above shows that every other moduli space Méﬁn can be obtained by
twisting M[S(E by the element § (LL, 1) as in Lemma 7.7. We write the twist
byv el as /\/l[v]
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By Proposition 4.8 there is for every v € I" an isomorphism M[S]En =M [S(En

over an algebraic closure of k under which Frobenius gets sent to v—! o Fr.
Using this the £-adic cohomology of twists can be understood completely: For
x € I'* we compute

Y Tr(Fr, Hr Mg Qex(v)

vell
=Y T o Fr, HY (MY . T)x(v)
vell
= > Y T oFr HX MY Qo) xm). (31)
x'er*vell

By definition v~ acts on H} (M[SOL]n, @@)X/ by x'(v™1). This together with
a character sum argument shows

Y Y T o Fr, HX MY Qo y0x ()

x'er* vell
= > TFr HX MG Q) Y ' 07hHxw)
x'el* vel

IT[Tr(Fr, H (MY Q)0

which is exactly the left hand side of (30) up to the factor |I'|.

For the right hand side of (30) we will show in Lemma 7.25 below that for
elements L and L, of Pic®(X)(k) inducing v = 8(L1L2_]) € I' and for any
vy’ € T" we have

Tr(Fr, HY ([(Mg] )"/ T1, Ny (Fear,))
= (v, )" Tr(Fr, HY (M2 )Y/ T1, Ny (Fear,)). - (32)

Assuming this, we can conclude as follows: For every v € I" let L, be an
element of Pic? (X) (k) such that S(LL‘TI) = v and let L, be a power of L, of
degree congruent to e modulo # as in Sect. 7.4. Then using Theorem 7.21 (b)
and (32) we can expand the left hand side of (31) for x € I'* corresponding
to y € I' as follows:

> T (Fr Hi MY Q)x ()

vel

=Y Tr(Fr, HX (Mg, @, )X ()

vell
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=3 " T HE (M )Y/ T Ny (Fear, )X (0)

vel' y’el

=33 TeFr HFAME,)Y /T Ny (FeaL, ) x 0 (0, 7!

vel' y’el’
= |T[Tr(Fr, HX (M )Y /T, Ny (Fee,))

This is the right hand side of (30) and thus proves the assertion.

It remains to establish (32). To do this we translate the problem into one of
p-adic integrals. We choose a local field F' with residue field k and a lift to
OF our curve X together with all the appearing line bundles on X.

First let a € A”(OF) be a point with image ar in AQ(F). We denote the
abelian varieties Psy, qy, respectively Pspy . ar/ T = PpGL,,ap Over F by
A, respectively B and consider the associated long exact sequence of locally
compact abelian groups

0T — A(F) — B(F) 5> HY(F.T) % H'(F, A)
— HY(F,B) - H*(F,T) - 0
from Construction 3.14. We consider the Tate duality pairings
(,): H'(F, A) x B(F) - Q/Z (33)

and
(,)r: HY(F,T)x H'(F,T) - Q/Z.

Using the self-duality of the isogeny A — B given by Proposition 7.10,
Lemma 3.15 gives a canonical isomorphism of the long exact sequence (33)
with its own Pontryagin dual. As part of this isomorphism there is an identity

(a(T), b) = (T, B(D))r- (34)

forelements b € B(F) and T € H'(F, A). As explained above, the moduli
space Méﬁn (X) is the twist of Méﬁn (X) by v e H'(OF, ), so that T, =
a(v) - T, in H'(F, A). Using this and (34) we find

(Tr,, b) = (v, BB))r" - (T1,, b) (35)

for b € B(F). ]
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Lemma 7.25 We have

Tr(Fr, HY (LM, )"/ T1. Ny (Fpa, )
= (v, y) "' THFr, HF (LMGE, )/ T1, Ny (Far, ).

Proof The left hand side can be computed by means of the Grothendieck-
Lefschetz trace formula as

Tr(Fry, Ny (FeaL,)))
Z |Aut(x)]| ’

xelMgl )Y/ TIkp)

which in turn can be understood as the p-adic integral (see Corollary
5.29) of the function f,, ~given by Construction 5.28 on the subset

e‘l([(/\/lélln)y/ /'l(kF)), where e is the specialisation map of Construction
4.15. The same description exists for the right hand side.
Lemma 6.7 describes the functions f, L in terms of the Tate duality pairing

between B(F) and H'(F, A). We can therefore apply (35) to compare them.
The torsor B(b) appearing corresponds to an element (¢,y”) € T & .
By definition of the specialisation map e: Mf—,GLn (OF) — IM;GL” (kp)

we have e(b) € [(Méin)yﬁ/ '] so that ' = y”. Using this, the fact that
v e HY(Op, '), Lemma 3.7 and the last claim of Proposition 7.10, it follows
that (v, B(b))r = (v, y’). This allows us to compare the left and right hand
sides. O

The lemma above concludes the proof of Theorem 7.24. |

In the sequel [24] to this article we will revisit the strategy employed above
to give a new proof of Ng&’s Geometric Stabilisation Theorem [45, Théoréeme
6.4.2].
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