
Invent. math. (2019) 217:799–831
https://doi.org/10.1007/s00222-019-00875-4

An optimal uncertainty principle in twelve
dimensions via modular forms

Henry Cohn1 · Felipe Gonçalves2,3

Received: 14 March 2018 / Accepted: 20 March 2019 / Published online: 4 May 2019
© The Author(s) 2019

Abstract We prove an optimal bound in twelve dimensions for the uncer-
tainty principle of Bourgain, Clozel, and Kahane. Suppose f : R12 → R

is an integrable function that is not identically zero. Normalize its Fourier
transform ̂f by ̂f (ξ) = ∫

Rd f (x)e−2π i〈x,ξ〉 dx , and suppose ̂f is real-valued
and integrable. We show that if f (0) ≤ 0, ̂f (0) ≤ 0, f (x) ≥ 0 for |x | ≥ r1,
and ̂f (ξ) ≥ 0 for |ξ | ≥ r2, then r1r2 ≥ 2, and this bound is sharp. The con-
struction of a function attaining the bound is based on Viazovska’s modular
form techniques, and its optimality follows from the existence of the Eisen-
stein series E6. No sharp bound is known, or even conjectured, in any other
dimension. We also develop a connection with the linear programming bound
of Cohn and Elkies, which lets us generalize the sign pattern of f and ̂f
to develop a complementary uncertainty principle. This generalization unites
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800 H. Cohn, F. Gonçalves

the uncertainty principle with the linear programming bound as aspects of a
broader theory.

1 Introduction

An uncertainty principle expresses a fundamental tradeoff between the prop-
erties of a function f and its Fourier transform ̂f . The most common variants
measure the dispersion, with the tradeoff being that f and ̂f cannot both be
highly concentrated near the origin. Motivated by applications to number the-
ory, Bourgain, Clozel, and Kahane [2] proved an elegant uncertainty principle
for the signs of f and ̂f : if these functions are nonpositive at the origin and not
identically zero, then they cannot both be nonnegative outside an arbitrarily
small neighborhood of the origin. We can state this principle more formally
as follows.

We say that a function f : Rd → R is eventually nonnegative (resp., non-
positive) if f (x) ≥ 0 (resp., f (x) ≤ 0) for all sufficiently large |x |. If that is
the case, we let

r( f ) = inf {R ≥ 0 : f (x) has the same sign for |x | ≥ R}
be the radius of its last sign change. We normalize the Fourier transform ̂f of
f by

̂f (ξ) =
∫

Rd
f (x)e−2π i〈x,ξ〉 dx .

Let A+(d) denote the set of functions f : Rd → R such that

(1) f ∈ L1(Rd), ̂f ∈ L1(Rd), and ̂f is real-valued (i.e., f is even),
(2) f is eventually nonnegative while ̂f (0) ≤ 0, and
(3) ̂f is eventually nonnegative while f (0) ≤ 0.

(Note the tension in (2) between the eventual nonnegativity of f and the
inequality

∫

Rn f = ̂f (0) ≤ 0, and the analogous tension in (3).)
The uncertainty principle of Bourgain, Clozel, and Kahane from [2,

Théorème 3.1] says that

A+(d) := inf
f ∈A+(d)\{0}

√

r( f )r( ̂f ) > 0.

Taking the geometric mean of r( f ) and r( ̂f ) is a natural way to eliminate
scale dependence, because rescaling the input of f preserves this quantity.
Thus, the uncertainty principle amounts to saying that r( f ) and r( ̂f ) cannot
both be made arbitrarily small if f ∈ A+(d)\{0}.
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An optimal uncertainty principle in twelve dimensions 801

In [Theorem 3, 12], Gonçalves, Oliveira e Silva, and Steinerberger proved
that for each dimension d there exists a radial function f ∈ A+(d)\{0} such
that f = ̂f and

r( f ) = r( ̂f ) = A+(d);

furthermore, A+(d) is exactly the minimal value of r(g) in the following
optimization problem:

Problem 1.1 (+ 1 eigenfunction uncertainty principle). Minimize r(g) over
all g : Rd → R such that

(1) g ∈ L1(Rd)\{0} and ĝ = g, and
(2) g(0) = 0 and g is eventually nonnegative.

The name “+ 1 eigenfunction” refers to the fact that g is a eigenfunction of
the Fourier transform with eigenvalue + 1.

Upper and lower bounds for A+(d) are known [2,12], but the exact value
has not previously been determined, or even conjectured, in any dimension.
Our main result is a solution of this problem in twelve dimensions:

Theorem 1.2 We have A+(12) = √
2. In particular, there exists a radial

Schwartz function f : R12 → R that is eventually nonnegative and satisfies
̂f = f , f (0) = 0, and

r( f ) = r( ̂f ) = √
2.

Moreover, as a radial function f has a double root at |x | = 0, a single root at
|x | = √

2, and double roots at |x | = √
2 j for integers j ≥ 2.

See Fig. 1 for plots. The appealing simplicity of this answer seems to be
unique to twelve dimensions, and we have been unable to conjecture a closed
form for A+(d) in any other dimension d. See Sect. 4 for an account of the
numerical evidence, which displays noteworthy patterns and regularity despite
the lack of any exact conjectures.

We find the exceptional role of twelve dimensions surprising: why should a
seemingly arbitrary dimension admit an exact solution with mysterious arith-
metic structure not shared by other dimensions? As far as we are aware,
Theorem 1.2 is the first time such behavior has arisen in an uncertainty prin-
ciple.

The proof of Theorem 1.2 makes use of modular forms. The lower bound
A+(12) ≥ √

2 follows from the existence of the Eisenstein series E6, while
the upper bound A+(12) ≤ √

2 is based on Viazovska’s methods, which were
developed to solve the sphere packing problem in eight dimensions [18] and
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802 H. Cohn, F. Gonçalves

Fig. 1 Two plots of the function f from Theorem 1.2. The upper image is a cross section of
the graph of x 	→ f (x) for |x |2 ≤ 8; note that this function decreases rapidly enough that
the double roots are nearly invisible. The function in the lower image is instead proportional
to x 	→ |x |11 f (x). This transformation distorts the picture but clarifies the behavior, because
|x |11 is proportional to the surface area of a sphere of radius |x | in R12; thus, one-dimensional
integrals of the plotted function are proportional to integrals of f in R12.

twenty-four dimensions [8] (see also [4] for an exposition). We prove both
bounds for A+(12) in Sect. 2.

The close relationship of this uncertainty principle with sphere packingmay
seem surprising, given that Problem 1.1 makes no reference to any discrete
structures. The connection is through the Euclidean linear programming bound
of Cohn and Elkies [5], which converts a suitable auxiliary function f into an
upper bound for the sphere packing density�d inRd . Suppose f : Rd → R is
an integrable function such that ̂f is also integrable and real-valued (i.e., f is
even), f (0) = ̂f (0) = 1, ̂f ≥ 0 everywhere, and f is eventually nonpositive.
Then the linear programming bound obtained from f is the upper bound

�d ≤ vol
(

Bd
r( f )/2

)

, (1.1)

where Bd
R is the closed ball of radius R about the origin in R

d . (Strictly
speaking, the proof in [5] requires additional decay hypotheses on f and ̂f ;
see [11, Theorem 3.3] for a proof in the generality of our statement here.)
Optimizing this bound amounts to minimizing r( f ).
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An optimal uncertainty principle in twelve dimensions 803

Based on numerical evidence and analogies with other problems in coding
theory, Cohn and Elkies conjectured the existence of functions f achieving
equality in (1.1) when d ∈ {2, 8, 24}, and they proved it when d = 1. The case
d = 2 remains an open problem today, despite the existence of elementary
solutions of the two-dimensional sphere packing problem by other means (see,
for example, [13]). However, the case d = 8 was proved fourteen years later
in a breakthrough by Viazovska [18], and the case d = 24 was proved shortly
thereafter based on her approach [8]. These papers solved the sphere packing
problem in dimensions 8 and 24.

The problem of optimizing the linear programming bound for �d already
appears somewhat similar to Problem 1.1, but there is a deeper analogy based
on a problem studied by Cohn and Elkies in [5, Section 7]. Given an auxiliary
function f for the sphere packing bound, let g = ̂f − f . Note that g is not
identically zero, because otherwise f and ̂f would both have compact support
(thanks to their opposite signs outside radius r( f )), which would imply that
f = ̂f = 0. Then g satisfies the conditions of the following problem, with
r(g) ≤ r( f ):

Problem 1.3 (−1 eigenfunction uncertainty principle). Minimize r(g) over
all g : Rd → R such that

(1) g ∈ L1(Rd)\{0} and ĝ = −g, and
(2) g(0) = 0 and g is eventually nonnegative.

This problem has been solved for d ∈ {1, 8, 24}, as a consequence of the
sphere packing boundsmentioned above; the answers are 1,

√
2, and 2, respec-

tively. When d = 2, it is conjectured that the optimal value of r(g) is (4/3)1/4,
but no proof is known. No other closed forms have been identified.

Cohn and Elkies conjectured [5, Conjecture 7.2] that the minimal value of
r(g) in Problem 1.3 is exactly the same as that of r( f ) in the linear program-
ming bound, and that in fact an auxiliary function f for the linear programming
bound can always be reconstructed from an optimal g via g = ̂f − f . Nobody
has proved that such an f always exists, but numerical evidence strongly sup-
ports this conjecture.

We can extend Problem 1.3 to a broader uncertainty principle as follows.
Let A−(d) denote the set of functions f : Rd → R such that

(1) f ∈ L1(Rd), ̂f ∈ L1(Rd), and ̂f is real-valued (i.e., f is even),
(2) f is eventually nonnegative while ̂f (0) ≤ 0, and
(3) ̂f is eventually nonpositive while f (0) ≥ 0.

Let

A−(d) = inf
f ∈A−(d)\{0}

√

r( f )r( ̂f ),
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804 H. Cohn, F. Gonçalves

and note that every function g in Problem 1.3 satisfies r(g) ≥ A−(d).
For completeness, we state our next theorem for both ±1 cases, although

all the results in the following theorem were already proved for the + 1 case
by Gonçalves, Oliveira e Silva, and Steinerberger in [12]. Note that we regard
A+ 1 and A−1 as synonymous with A+ and A−, respectively.

Theorem 1.4 Let s ∈ {±1}. Then there exist positive constants c and C such
that

c ≤ As(d)√
d

≤ C

for all d. Moreover, for each d there exists a radial function f ∈ As(d)\{0}
with ̂f = s f , f (0) = 0, and

r( f ) = As(d).

Furthermore, any such function must vanish at infinitely many radii greater
than As(d).

In particular, A−(d) > 0. Thus, we obtain a natural counterpart to the
uncertainty principle ofBourgain,Clozel, andKahane, butwith f and ̂f having
opposite signs, and with the optimal function coming from Problem 1.3. We
can take c = 1/

√
2πe and C = 1.

This uncertainty principle places the linear programming bound in a broader
analytic context and gives a deeper significance to the auxiliary functions that
optimize this bound. Outside of a few exceptional dimensions, they do not
seem to come close to solving the sphere packing problem, but they conjec-
turally achieve an optimal tradeoff between sign conditions in the uncertainty
principle.

Except for extremal functions for A+(1), our proof in Sect. 3.3 and the
proof in [12] actually show that any extremal function cannot be eventually
positive; that is, it must vanish on spheres with arbitrarily large radii, not just
at infinitely many radii greater than As(d). We strongly believe that this is the
case for A+(1) as well.

Problems 1.1 and 1.3 are closely related and behave in complementary
ways. We prove Theorem 1.4 by adapting the techniques of [12] to − 1
eigenfunctions. However, the analogy between these problems is not perfect.
For example, the equality A+(12) = A−(8) = √

2 suggests that perhaps
A+(28) = A−(24) = 2, but that turns out to be false (see Sect. 4). Similarly,
relatively simple explicit formulas show that A−(1) = 1, while A+(1) remains
a mystery.

123



An optimal uncertainty principle in twelve dimensions 805

In addition to its values in specific dimensions, the asymptotic behavior of
As(d) as d → ∞ is of substantial interest. It was shown in [2] that

0.2419 · · · = 1√
2πe

≤ lim inf
d→∞

A+(d)√
d

≤ lim sup
d→∞

A+(d)√
d

≤ 1√
2π

= 0.3989 . . . .

In Sect. 3, we obtain the same lower bound for the case of A−(d), and an
improved upper bound of 0.3194 . . . for that case based on [11] (the exact
value is complicated).

Conjecture 1.5 The limits

lim
d→∞

A+(d)√
d

and lim
d→∞

A−(d)√
d

exist and are equal.

See Sect. 4 for the numerical evidence supporting this conjecture.We expect
that the common value of these limits is strictly between the bounds 0.2419 . . .

and 0.3194 . . . , and perhaps not so far from the latter.
In the remainder of the paper, we prove Theorem 1.2 in Sect. 2 and

Theorem 1.4 in Sect. 3. In Sect. 4 we present numerical computations and
conjectures, and we conclude in Sect. 5 with a construction of summation for-
mulas that validate our numerics and lend support to our general conjectures
about As(d).

2 The + 1 eigenfunction uncertainty principle in dimension 12

In this section, we prove Theorem 1.2.

2.1 Optimality

We begin by establishing that A+(12) ≥ √
2. For this inequality, we use

a special Poisson-type summation formula for radial Schwartz functions
f : R12 → C based on the modular form E6. Converting a modular form
into such a formula is a standard technique; for completeness, we will give a
direct proof.

Consider the normalized Eisenstein series E6 : H → C, where H denotes
the upper half-plane in C (see, for example, [19, §2]). This function has the
Fourier expansion
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806 H. Cohn, F. Gonçalves

E6(z) = 1 −
∑

j≥1

c j e
2π i j z, (2.1)

where c j = 504σ5( j) and σ5( j) is the sum of the fifth powers of the divisors
of j . In particular, c j > 0 for j ≥ 1 and we have the trivial bound c j ≤ 504 j6.
Because E6 is a modular form of weight 6 for SL2(Z), it satisfies the identity

E6(z) = z−6E6(−1/z). (2.2)

This identity turns into a summation formula for a Gaussian f : R12 → R

defined by f (x) = e−πα|x |2 with α > 0, or more generally Re(α) > 0. Specif-
ically, if we set z = iα, then f (x) = eπ i z|x |2 and ̂f (ξ) = −z−6eπ i(−1/z)|ξ |2 ,
fromwhich it follows that f (

√
2 j) = e2π i j z and ̂f (

√
2 j) = −z−6e2π i j (−1/z),

where we use f (
√
2 j) to denote the common value f (x) with |x | = √

2 j .
Hence combining (2.1) and (2.2) yields

f (0) −
∑

j≥1

c j f (
√

2 j) = − ̂f (0) +
∑

j≥1

c ĵf (
√

2 j).

The key to proving that A+(12) ≥ √
2 is the following lemma, which

extends this summation formula to arbitrary radial Schwartz functions.

Lemma 2.1 For all radial Schwartz functions f : R12 → C,

f (0) −
∑

j≥1

c j f (
√

2 j) = − ̂f (0) +
∑

j≥1

c ĵf (
√

2 j).

We follow the approach used to prove Theorem 1 in [16, Section 6].

Proof Let � : Srad(R12) → C be the functional

�( f ) = f (0) −
∑

j≥1

c j f (
√

2 j) + ̂f (0) −
∑

j≥1

c ĵf (
√

2 j)

on the radial Schwartz space Srad(R12). As noted above, �( f ) = 0 whenever
f (x) = e−πα|x |2 with Re(α) > 0. Moreover, the bound c j = O( j6) shows
that � is a continuous linear functional in the topology of the Schwartz space.
Thus, we need only prove our desired identity for compactly supported, radial
C∞ functions, which are dense in Srad(R12).

Write f (x) = F(|x |2)e−π |x |2 , where F : R → R is a smooth and compactly
supported function. Let ̂F be the one-dimensional Fourier transform of F , and
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An optimal uncertainty principle in twelve dimensions 807

note that ̂F is also rapidly decreasing. By Fourier inversion,

f (x) =
∫

R

̂F(t)e−π(1−2i t)|x |2 dt = lim
T→∞

∫ T

−T

̂F(t)e−π(1−2i t)|x |2 dt.

The functions x 	→ ∫ T
−T

̂F(t)e−π(1−2i t)|x |2 dt belong to Srad(R
12) for each

T > 0 and converge to f in the Schwartz topology. Moreover,

�

(

x 	→
∫ T

−T

̂F(t)e−π(1−2i t)|x |2 dt
)

=
∫ T

−T

̂F(t)�
(

x 	→ e−π(1−2i t)|x |2) dt = 0,

where the commutation is justified since the Riemann sums of the integral
converge to the integral in the topology of Srad(R12). This finishes the proof
of the lemma. ��

Noam Elkies has provided the following alternative proof of Lemma 2.1
using Poisson summation. Explicit calculation shows that one can write the
modular form E6 in terms of theta series of lattices and their duals as

E6 = −11

10
�D12 + 11

20
�D∗

12
− 1

20
�L + 8

5
�L∗,

where L is the D12 root lattice rescaled by a factor of 1/
√
2. Then the summa-

tion formula from Lemma 2.1 becomes a linear combination of the Poisson
summation formulas for the lattices D12, D∗

12, L , and L∗, which implies that it
holds for all radial Schwartz functions. This argument shows that Lemma 2.1
is closely related to Poisson summation, while the proof we gave above applies
directly to other modular forms as well as E6.

Lemma 2.2 Let f ∈ A+(12). If both r( f ) and r( ̂f ) are at most
√
2, then

f (x) = ̂f (x) = 0 whenever |x | = √
2 j with j a nonnegative integer.

Proof Without loss of generality, we can assume f is a radial function; other-
wise, we simply average its rotations about the origin. (If the averaged function
vanishes at radius

√
2 j , then so does f because r( f ) ≤ √

2, and the same
holds for ̂f .)

If f is a radial Schwartz function, then Lemma 2.1 implies that

f (0) + ̂f (0) =
∑

j≥1

c j f (
√

2 j) +
∑

j≥1

c ĵf (
√

2 j),
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808 H. Cohn, F. Gonçalves

and the conclusion follows from the inequalities f (0) ≤ 0, ̂f (0) ≤ 0,
f (

√
2 j) ≥ 0, ̂f (

√
2 j) ≥ 0, and c j > 0 for j ≥ 1.

For general f , we can apply a standard mollification argument. Let
ϕ : Rd → R be a nonnegative, radial C∞ function supported in the unit ball
Bd
1 with ϕ̂ ≥ 0 and ϕ̂(0) = 1, so that the functions ϕε defined for ε > 0 by

ϕε(x) = ε−dϕ(x/ε) form an approximate identity.
Now let fε = ( f ∗ ϕε)ϕ̂ε. Because f and ̂f are continuous functions that

vanish at infinity, fε → f and ̂fε → ̂f uniformly on R
d as ε → 0. Since

supp(ϕε) ⊆ Bd
ε , we obtain the inequality fε(x) ≥ 0 whenever |x | ≥ r( f )+ε.

Similarly ̂fε = ( ̂f ϕ̂ε) ∗ ϕε, which implies that ̂fε(x) ≥ 0 whenever |x | ≥
r( ̂f )+ε. Furthermore, fε is a Schwartz function. To see why, note that ϕ̂ε is a
Schwartz function, while f ∗ ϕε is smooth and all its derivatives are bounded.

Now that we have Schwartz functions approximating f , we again apply
Lemma 2.1 to obtain

fε(0) + ̂fε(0) =
∑

j≥1

c j fε(
√

2 j) +
∑

j≥1

c ĵfε(
√

2 j).

To derive information from this identity, we combine the limits fε(
√
2 j) →

f (
√
2 j) and ̂fε(

√
2 j) → ̂f (

√
2 j) for j ≥ 0, the inequalities f (0) ≤ 0,

̂f (0) ≤ 0, f (
√
2) ≥ 0, and ̂f (

√
2) ≥ 0, and the inequalities fε(

√
2 j) ≥ 0

and ̂fε(
√
2 j) ≥ 0 for j ≥ 2 (when ε < 2−√

2). We conclude that f (
√
2 j) =

̂f (
√
2 j) = 0 for j ≥ 0, as desired. ��

We will now apply this lemma to prove the lower bound A+(12) ≥ √
2.

Lemma 2.3 Suppose f ∈ A+(12). If r( f )r( ̂f ) < 2, then f vanishes identi-
cally.

Proof By rescaling the input to f ,we can assumewithout loss of generality that
r( f ) and r( ̂f ) are both less than

√
2. Now we apply Lemma 2.2 to a rescaled

version of f . Choose λ > 0 and let g(x) = f (λx). Then ĝ(ξ) = λ−12
̂f (ξ/λ),

and it follows that g ∈ A+(12). Moreover, if λ is close enough to 1, then r(g)
and r(ĝ) are both less than

√
2.

By Lemma 2.2, if λ is sufficiently close to 1, then g(x) = 0 whenever
|x | = √

2 j with j ≥ 1. Thus there exists some λ0 > 1 such that f (x) = 0
whenever |x | ∈ (

√
2 j/λ0,

√
2 jλ0) and j ≥ 1, and the same holds for ̂f . The

union of these intervals covers the entire half-line [R, ∞) for some R > 0,
because

lim
j→∞

√
2 j + 2√
2 j

= 1.

In other words, f and ̂f both have compact support, which implies
that f = 0. ��
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An optimal uncertainty principle in twelve dimensions 809

Exactly the same technique applies to any dimension and sign:

Proposition 2.4 Let s ∈ {±1}, 0 < ρ0 < ρ1 < · · · with

lim
j→∞

ρ j+1

ρ j
= 1,

and c j > 0 for j ≥ 0. If every radial Schwartz function f : Rd → R satisfies
the summation formula

f (0) + s ̂f (0) = s
∑

j≥0

c j f (ρ j ) +
∑

j≥0

c ĵf (ρ j ), (2.3)

then As(d) ≥ ρ0.

For example, for k ≥ 2, the summation formula coming from the Eisenstein
series E2k proves that A(−1)k−1(4k) ≥ √

2. This lower bound is sharp for k = 2
and k = 3, but it is not even true for k = 1, because E2 ismerely a quasimodular
form.

The summation formula (2.3) automatically holds when ̂f = − s f . Thus,
it is equivalent to the assertion that

f (0) = s
∑

j≥0

c j f (ρ j ) (2.4)

holds whenever ̂f = s f .

Conjecture 2.5 For each s = ±1 and d ≥ 1 except perhaps (s, d) = (1, 1),
there is a summation formula that proves a sharp lower bound for As(d) via
Proposition 2.4.

In the case s = − 1, this conjecture is analogous to [3, Conjecture 4.2].
It holds in every case in which As(d) is known exactly: the summation for-
mulas that establish sharp lower bounds for A−(1), A−(8), and A−(24) are
Poisson summation over the Z, E8, and Leech lattices, respectively, while the
A+(12) case is Lemma 2.1. The conjectured value of A−(2) corresponds to
Poisson summation over the isodual scaling of the A2 lattice. Conjecture 2.5
is not known to hold in any other case, nor can we guess what the summation
formula should be, but the numerical and theoretical evidence in favor of this
conjecture is compelling (see Sects. 4 and 5). In particular, in most cases we
can compute the constants c j and ρ j in these conjectural summation formulas
to high precision.

The coefficients c j are integers in the five exact cases listed above, but
integral coefficients seem to be rare, and it is plausible that no more such

123



810 H. Cohn, F. Gonçalves

Table 1 Summation formula that would prove A+(28) ≥ 1.985406934891049 . . .

j ρ j c j

0 1.985406934891049 . . . 173693.2739265496 . . .

1 2.448204775489784 . . . 38022505.25862595 . . .

2 2.828451453989980 . . . 1612404204.870089 . . .

3 3.162301096885930 . . . 29295881893.82392 . . .

4 3.464102777388629 . . . 313503500519.3102 . . .

5 3.741654846843136 . . . 2325238355388.562 . . .

6 3.999999847797149 . . . 13196060863066.90 . . .

...
...

...

We conjecture that there exists a formula of the form (2.3) in R28 that agrees with
all the digits listed in this table and proves a sharp lower bound for A+(28).

cases exist. One interesting example is the (conjectural) summation formula
that yields A+(28). It is natural to guess that A+(28) = 2, in accordance with
A+(12) = A−(8) and A−(24) = 2, but in fact A+(28) < 1.98540693489105,
and we conjecture that A+(28) = 1.985406934891049 . . . . (See Sect. 4 for a
discussion of our numericalmethods.) InTable 1,we approximate a conjectural
summation formula that would establish this equality, which we computed
using the techniques of Sect. 5. We are unable to describe the numbers ρ j and
c j in the summation formula exactly, but we believe that ρ j = √

2 j + 4 + o(1)
as j → ∞ (see Conjecture 4.2) and c j = (24 + o(1))σ13( j + 2). The latter
equation says that −c j is asymptotic to the coefficient of e(2 j+4)π i z in the
Fourier expansion

E14(z) = 1 − 24e2π i z − 196632e4π i z − 38263776e6π i z − 1610809368e8π i z

− 29296875024e10π i z − 313495116768e12π i z

− 2325336249792e14π i z − 13195750342680e16π i z − · · ·

of the Eisenstein series E14, and indeed these coefficients are close to those
in the table. Note that the difference between the role of E14 here and that of
E6 when d = 12 is that the summation formula for d = 28 suppresses the
−24e2π i z term in E14(z) at the cost of perturbing all the remaining numbers.

2.2 Theta series and an extremal function in dimension 12

To prove the upper boundA+(12) ≤ √
2, wewill construct an explicit function

f ∈ A+(12) satisfying ̂f = f , f (0) = 0, and r( f ) = √
2. To do so, we
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An optimal uncertainty principle in twelve dimensions 811

will use a remarkable integral transform discovered by Viazovska that turns
modular forms into radial eigenfunctions of the Fourier transform. See [19]
for background on modular forms, and [8,9,18] for other applications of this
transform.

Viazovska’smethod can be summarized by the following proposition,which
is implicit in [18] but was stated there only for a specific modular form with
d = 8 (and similarly for d = 24 in [8]). We omit the proof, because it closely
follows the same approach as [18, Propositions 5 and 6] and [8, Lemma 3.1].
All that needs to be checked is the dependence on the dimension d.

Proposition 2.6 Let d be a positive multiple of 4, and let ψ be a weakly
holomorphic modular form of weight 2 − d/2 for �(2) such that

zd/2−2ψ(−1/z) + ψ(z + 1) = ψ(z)

for all z in the upper half-plane, td/2−2ψ(i/t) → 0 as t → ∞, and |ψ(i t)| =
O

(

eKπ t
)

as t → ∞ for some constant K .Define a radial function f : Rd → R

by

f (x) = i

4

∫ i

−1
ψ(z + 1)eπ i |x |2z dz + i

4

∫ i

1
ψ(z − 1)eπ i |x |2z dz

− i

2

∫ i

0
ψ(z)eπ i |x |2z dz − i

2

∫ i∞

i
zd/2−2ψ(−1/z)eπ i |x |2z dz.

(2.5)

Then f is a Schwartz function and an eigenfunction of the Fourier transform
with eigenvalue (−1)1+d/4. Furthermore,

f (x) = sin
(

π |x |2/2)2
∫ ∞

0
ψ(i t)e−π |x |2t dt

whenever |x |2 > K.

Viazovska in fact developed two such techniques, one for each eigenvalue,
and both are used in the sphere packing papers [8,18]. We will not need the
other technique, which yields eigenvalue (−1)d/4 instead of (−1)1+d/4 and
uses a weakly holomorphic quasimodular form of weight 4 − d/2 and depth
2 for SL2(Z).

When applying Proposition 2.6, we will use the notation

�00(z) =
∑

n∈Z
eπ in2z,
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812 H. Cohn, F. Gonçalves

�01(z) =
∑

n∈Z
(−1)neπ in2z,

and

�10(z) =
∑

n∈Z
eπ i(n+1/2)2z

for theta functions from [8,18]. Their fourth powers �4
00, �

4
01, and �4

10 are
modular forms of weight 2 for �(2), which satisfy the Jacobi identity �4

00 =
�4

01 + �4
10 and the transformation laws

�00(z + 1)4 = �01(z)
4, z−2�00(−1/z)4 = − �00(z)

4,

�01(z + 1)4 = �00(z)
4, z−2�01(−1/z)4 = − �10(z)

4,

�10(z + 1)4 = − �10(z)
4, z−2�10(−1/z)4 = − �01(z)

4

under the action of SL2(Z). We will also use the modular form �, defined by

�(z) = e2π i z
∞
∏

n=1

(1 − e2π inz)24.

It is a modular form of weight 12 for the group SL2(Z), which contains �(2);
thus �(z + 1) = �(z) and z−12�(−1/z) = �(z).

Using these ingredients, we will now construct a suitable modular form for
use in Proposition 2.6, to prove Theorem 1.2. Let

ψ =
(

�4
00 + �4

10

)

�12
01

�
. (2.6)

(We discuss the motivation for this definition at the end of this section.) Then
ψ is a weakly holomorphic modular form of weight 4 · 2− 12 = − 4, and the
identity

z4ψ(−1/z) + ψ(z + 1) = ψ(z)

can be checked using the formulas listed above. (Note that ψ is weakly holo-
morphic because the product formula shows that � does not vanish in the
upper half-plane.)

Using the definitions for�00,�01,�10, and� given above, we can compute
the Fourier series

ψ(z) = e−2π i z −264+4096eπ i z −36828e2π i z +245760e3π i z +· · · . (2.7)
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An optimal uncertainty principle in twelve dimensions 813

This series is absolutely convergent in the upper half-plane, and thus |ψ(i t)| =
O

(

e2π t
)

as t → ∞. Using the transformation laws again, we find that

z4ψ(−1/z) =
(

�00(z)4 + �01(z)4
)

�10(z)12

�(z)

= 8192eπ i z + 491520e3π i z + 12828672e5π i z + · · · .

In particular, |t4ψ(i/t)| = O
(

e−π t
)

as t → ∞.
Thus,ψ satisfies the hypotheses of Proposition 2.6 with d = 12 and K = 2.

Define f : R12 → R by (2.5). Then f is a radial Schwartz function satisfying
̂f = f and

f (x) = sin
(

π |x |2/2)2
∫ ∞

0
ψ(i t)e−π |x |2t dt (2.8)

for |x | >
√
2.

It follows from (2.6) that
ψ(i t) > 0 (2.9)

for all t > 0, because �00(i t), �01(i t), and �10(i t) are all real, while 0 <

�(i t) < 1. Thus, (2.8) implies that f (x) ≥ 0 for |x | >
√
2, with double roots

at |x | = √
2 j for integers j ≥ 2 and no other roots in this range.

For comparison, the quasimodular form inequalities that play the same
role as (2.9) in [18] and [8] are obtained via computer-assisted proofs. The
reason for this discrepancy is that those proofs combine + 1 and − 1 eigen-
functions, which introduces technical difficulties. If all one wishes to prove is
that A−(8) = √

2 and A−(24) = 2, then one can avoid computer assistance.
Specifically, the formula (3.1) in [8] is visibly positive in the same sense as
our formula (2.6), and while that is not true for formula (46) in [18], it can
be rewritten so as to be visibly positive (see, for example, the corresponding
formula in [4]).

To analyze the behavior of f (x) with 0 ≤ |x | ≤ √
2, we can simply cancel

the growth of ψ(i t). The series (2.7) shows that

ψ(i t) = e2π t − 264 + O
(

e−π t)

as t → ∞. For |x | >
√
2, we obtain the new formula

f (x) = sin
(

π |x |2/2)2
(

528 − 263|x |2
π |x |2(|x |2 − 2)

+
∫ ∞
0

(

ψ(i t) − e2π t + 264
)

e−π |x |2t dt
)

from (2.8), and the integral in this formula now converges for all x . It follows
from (2.5) that f (x) is a holomorphic function of |x |; thus, the new formula
must agree with the old one for all x by analytic continuation.
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814 H. Cohn, F. Gonçalves

The term

sin
(

π |x |2/2)2
∫ ∞

0

(

ψ(i t) − e2π t + 264
)

e−π |x |2t dt

vanishes to second order at |x | = √
2 j for all j ≥ 1, and to fourth order at the

origin. Thus, f (x) must agree with

sin
(

π |x |2/2)2
(

528 − 263|x |2
π |x |2(|x |2 − 2)

)

to second order at |x | = √
2 and to fourth order at the origin, and so f (x) has

a single root at |x | = √
2 and a double root at the origin. More specifically,

f (x) = π√
2
(|x | − √

2) + O
(

(|x | − √
2)2

)

as |x | → √
2, and

f (x) = − 66π |x |2 + O
(|x |4)

as x → 0.
In particular, f (0) = 0. It follows that f ∈ A+(12), and therefore

A+(12) ≤ √
2, as desired. We have now proved all of the assertions from

Theorem 1.2.
As the quadratic term − 66π |x |2 suggests, our construction of f is scaled

so that its values are rather large. For example, its minimum value appears to
be f (x) ≈ − 23.8088, achieved when |x | ≈ 0.557391. In Fig. 1, we have
plotted a more moderate scaling of this function.

To arrive at the definition (2.6) of ψ , we began with the Ansatz that ψ�

should be a holomorphic modular form of weight 8 for �(2). Equivalently,
it should be a linear combination of �16

00, �12
00�

4
01, �8

00�
8
01, �4

00�
12
01, and

�16
01. Imposing the constraint z4ψ(−1/z)+ψ(z+1) = ψ(z) eliminates three

degrees of freedom,which leaves just one degree of freedom, up to scaling. The
remaining constraint is that the coefficient of e−π i z in the Fourier expansion
of ψ(z) must vanish, and then ψ is determined modulo scaling. Finally, we
rewrote the formula for ψ to make it visibly positive.

3 The − 1 eigenfunction uncertainty principle

This section is devoted to the proof of Theorem 1.4. We deal only with the −1
case, because all the assertions in this theorem were already proved in [12] for
the +1 case. First, we reduce determining A−(d) to solving Problem 1.3.
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An optimal uncertainty principle in twelve dimensions 815

Lemma 3.1 For each f ∈ A−(d)\{0}, there exists a radial function g ∈
A−(d)\{0} such that ĝ = −g, g(0) = 0, and r(g) ≤

√

r( f )r( ̂f ).

Proof If f is not radial, then we average its rotations about the origin to obtain
a radial function without increasing r( f ) or r( ̂f ). Thus, we can assume that
f is radial. Note that this process cannot lead to the zero function: if it did,
then f and ̂f would both have compact support and hence vanish identically.

The quantity r( f )r( ̂f ) is unchanged if we replace f with x 	→ f (λx) for
some λ > 0. Thus, we can assume that r( f ) = r( ̂f ). Letting g = f − ̂f we
deduce that g ∈ A−(d), ĝ = −g, and r(g) ≤ r( f ). Again, g cannot vanish
identically, because f and− ̂f are eventually nonnegative and would thus both
have to have compact support.

It remains to force g(0) = 0, since a priori we can have g(0) > 0. For
t > 0, consider the auxiliary function

ϕt (x) = e−tπ |x |2 − e−2tπ |x |2

t−d/2 − (2t)−d/2 . (3.1)

Then ϕt ≥ 0, ϕt (0) = 0, ϕ̂t (0) = 1, and ϕ̂t (x) < 0 if |x |2 ≥ td log(2)/π .
Choosing t > 0 so that

√

td log(2)/π = r(g), we deduce that the function
h = g+g(0)(ϕt − ϕ̂t ) belongs toA−(d),̂h = −h, h(0) = 0, and r(h) ≤ r(g).
Finally, if g(0) > 0, then h(x) > g(x) for all sufficiently large x , and thus h
is not the zero function. ��

3.1 Lower and upper bounds

To obtain a lower bound for A−(d), we follow [2,12]. Let g ∈ A−(d)\{0} be
a radial function satisfying ĝ = −g and g(0) = 0, and assume without loss of
generality that ‖g‖1 = 1.

Let g+ = max{g, 0} and g− = max{−g, 0}, so that g+, g− ≥ 0, these
functions are never positive at the same point, and g = g+ − g−. Since
ĝ(0) = 0,

∫

Rd
g+ =

∫

Rd
g−.

Furthermore,

∫

Rd
g− =

∫

Bd
r(g)

g−,
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816 H. Cohn, F. Gonçalves

where Bd
r(g) is a d-dimensional ball of radius r(g) and centered at the origin,

because {x ∈ R
d : g(x) < 0} ⊆ Bd

r(g). It follows that

∫

Bd
r(g)

g− = 1/2,

because ‖g‖1 = 1. Thus,

1/2 ≤ vol
(

Bd
1

)

r(g)d‖g‖∞
≤ vol

(

Bd
1

)

r(g)d‖ĝ‖1
= vol

(

Bd
1

)

r(g)d‖g‖1
= vol

(

Bd
1

)

r(g)d ,

and we conclude that

A−(d) ≥
(

1

2 vol
(

Bd
1

)

)1/d

= �(d/2 + 1)1/d

21/d
√

π
>

√

d

2πe
. (3.2)

Next we prove an upper bound for A−(d). Let

Lν
n(z) =

n
∑

j=0

(

n + ν

n − j

)

(−z) j

j !

be the generalized Laguerre polynomial of degree n with parameter ν > −1.
When ν = d/2 − 1, the functions ψν

n : Rd → R defined by

ψν
n (x) = Lν

n(2π |x |2)e−π |x |2 (3.3)

form a orthogonal basis for the space of radial functions in L2(Rd), and they
are eigenfunctions for the Fourier transform:

̂ψn = (−1)nψn.

(See, for example, Lemma 10 in [12].)
Let

p(z) = Lν
1(z)L

ν
3(0) − Lν

3(z)L
ν
1(0)

= (1 + ν)

6
z
(

2(3 + ν)(2 + ν) − 3(3 + ν)z + z2
)

.
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An optimal uncertainty principle in twelve dimensions 817

The roots of this polynomial are 0 and

3ν + 9 ± √
33 + 14ν + ν2

2
,

and it is positive beyond the largest of these roots. If ν = d/2 − 1, then the
largest root takes the form

3d/2 + 6 + √

20 + 6d + d2/4

2
.

Now the function g : Rd → R defined by

g(x) = ψν
1 (x)ψν

3 (0) − ψν
3 (x)ψν

1 (0)

= p(2π |x |2)e−π |x |2

is radial, belongs to A−(d), and satisfies ĝ = −g and g(0) = 0. Hence

A−(d) ≤
√

3d/2 + 6 + √

20 + 6d + d2/4

4π
= (

1 + O(d−1/2)
)

√

d

2π
. (3.4)

Estimates (3.2) and (3.4) imply that A−(d)/
√
d is bounded above and below

by positive constants, as desired. In particular, the lower bound is 1/
√
2πe,

and the upper bound is at most 1 except for d = 1, in which case we can use
A−(1) = 1 to obtain an upper bound of 1.

We believe that the upper bound (3.4) cannot be improved if we replace p
with any polynomial of bounded degree, in the following sense. For N ≥ 3
and s = ±1, let As,N (d) be the infimum of r(g) over all nonzero g : Rd → R

such that ĝ = sg, g(0) = 0, and g is of the form

g(x) = p(2π |x |2)e−π |x |2,

where p is a polynomial of degree atmost N . (The restriction to N ≥ 3 ensures
that such a function exists.)

Conjecture 3.2 For fixed N ≥ 3 and s = ±1,

lim
d→∞

As,N (d)√
d

= 1√
2π

.

However, the upper bound forA−(d) can be improved using other functions.
In particular, we can make use of the auxiliary functions f constructed in [11]
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818 H. Cohn, F. Gonçalves

for the linear programming bound in high dimensions. If we set g = ̂f − f ,
then one can show that

r(g) ≤ (0.3194 . . . + o(1))
√
d

as d → ∞. The number 0.3194 . . . is derived from the Kabatiansky–
Levenshtein bound for sphere packing, and the construction in [11] shows how
to obtain that bound via the linear programming bound. The precise number is
rather complicated, but it can be characterized as follows. Let θ = 1.0995 . . .

be the unique root of

2 log(sec(θ) + tan(θ)) = sin(θ) + tan(θ)

in the interval (0, π/2), and let

c = sin(θ/2) cot(θ)esec(θ)/2

√
2π

= 0.3194 . . . .

Then

r(g) ≤ (c + o(1))
√
d

as d → ∞, and hence

lim sup
d→∞

A−(d)√
d

≤ c.

We do not know how to prove the corresponding bound for A+(d), although
we believe it should be true, as it would follow from Conjecture 1.5.

3.2 Existence of extremizers

The existence proof for extremizers with s = −1 is almost identical to the
proof of the +1 case in [12, Section 6]. We briefly outline the proof here
for completeness. Let fn ∈ A−(d)\{0} be an extremizing sequence; that is,
√

r( fn)r( ̂fn) ↘ A−(d) as n → ∞. By Lemma 3.1 we can assume that
̂fn = − fn and fn(0) = 0, and hence r( fn) ↘ A−(d). We can also assume
that ‖ fn‖1 = 1 for all n. In particular, since ̂fn = − fn , we have

‖ fn‖22 =
∫

Rd
| fn|2 ≤ ‖ fn‖∞ · ‖ fn‖1 ≤ ‖ ̂fn‖1 · ‖ fn‖1 = 1.
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An optimal uncertainty principle in twelve dimensions 819

Because the unit ball in L2(Rd) is weakly compact, we can assume that fn
converges weakly to some function f ∈ L2(Rd). Because A−(d) is convex,
we can apply Mazur’s lemma to assume furthermore that fn converges almost
everywhere and in L2(Rd) to f . Thus, necessarily we have ̂f = − f and
r( f ) ≤ A−(d). Since ‖ fn‖∞ ≤ ‖ ̂fn‖1 = ‖ fn‖1 = 1 and r( fn) is decreas-
ing, we can apply Fatou’s lemma for gn = 1Bd

r( f1)
+ fn ≥ 0 to deduce that

f ∈ L1(Rd) and ̂f (0) ≤ 0. Hence, f (0) ≥ 0. We now use Jaming’s high-
dimensional version [14] of Nazarov’s uncertainty principle [15] to deduce,
exactly as in [12, Lemma 23], that there exists K < 0 such that for all n,

∫

Bd
r( fn )

fn ≤ K .

(Alternatively,we can use Proposition 2.6 from [1],which tells us less about the
constant K but has a simpler proof.) Fatou’s lemma implies that f satisfies the
same estimate, and hence is not identically zero.We conclude that f ∈ A−(d),
̂f = − f , and r( f ) ≤ A−(d), and thus r( f ) = A−(d). Finally, we must have
f (0) = 0, since otherwise the proof of Lemma 3.1 would produce a better
function.

3.3 Infinitely many roots

All that remains to prove is that the extremizers have infinitely many roots.
The proof follows the ideas of [12, Section 6.2] for the+1 case. If f ∈ A−(d)

satisfies ̂f = − f and f (0) = 0 and vanishes at only finitelymany radii beyond
r( f ), then we find a perturbation function g ∈ A−(d) satisfying ĝ = −g and
g(0) = 0 such that r( f + εg) < r( f ) for small ε > 0; thus, f cannot
be extremal. In [12], the construction of g varies between the cases d = 1
(using the Poincaré recurrence theorem) and d ≥ 2 (using a trick involving
Laguerre polynomials). However, thanks to the Poisson summation formula,
every extremal function f ∈ A−(1) with ̂f = − f and f (0) = 0 must vanish
at the integers. Thus, we only need to prove our assertion for d ≥ 2.

In fact, we will rule out the possibility that an extremizer f is eventually
positive. Then applying this proof to the radialization of f will show that f
must vanish on spheres of arbitrarily large radius. Thus, let f ∈ A−(d) be
such that ̂f = − f , f (0) = 0, and f (x) > 0 for |x | ≥ R. We must show that
r( f ) > A−(d).

Let ϕt be the function defined in (3.1) with t ∈ (0, 1) chosen so that

√

td log(2)/π < r( f ),
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820 H. Cohn, F. Gonçalves

and let ψ = ϕt − ϕ̂t . Then ̂ψ = − ψ , ψ(0) = −1, and ψ(x) > 0 for
|x | ≥ r( f ). This function almost works as a possible perturbation g, but it
needs to be fixed at the origin without changing its eventual nonnegativity. To
do so, let ν = d/2 − 1 and consider the function

gn = ψ + ψν
2n+1

ψν
2n+1(0)

,

whereψν
2n+1 is the eigenfunction defined in (3.3). Now ĝn = −gn , gn(0) = 0,

and gn is eventually positive for each n ≥ 0, because t < 1 implies thatψν
2n+1

decays faster than ψ .
As observed in [12], for d ≥ 2 the eigenfunctions ψν

j /ψ
ν
j (0) converge

to zero uniformly on all compact subsets of Rd\{0} as j → ∞; the proof
amounts to Fejér’s asymptotic formula for Laguerre polynomials [17, Theo-
rem 8.22.1]. Using this convergence, let n be large enough that gn(x) > 0
for |x | ∈ [r( f ), R], and then choose R′ so that gn(x) > 0 for |x | ≥ R′.
Let m = min{| f (x)| : R ≤ |x | ≤ R′}, M = max{|gn(x)| : x ∈ R

d}, and
0 < ε < m/M . Then the perturbation fε = f + εgn satisfies fε(x) > 0 for
|x | ≥ r( f ). Thus, r( fε) < r( f ), which means f cannot be extremal. This
completes the proof of Theorem 1.4.

4 Numerical evidence

To explore howA+(d) behaves,we numerically optimized functions g : Rd →
R satisfying the conditions of Problem 1.1. Readers who wish to examine this
data can obtain our numerical results from [6].

In our calculations we always choose g to be of the form g(x) =
p(2π |x |2)e−π |x |2 , where p is a polynomial in one variable of degree at most
4k + 2, which means p has 4k + 2 degrees of freedom modulo scaling. The
constraint g(0) = 0 eliminates one degree of freedom, and one can check using
the Laguerre eigenbasis that the constraint ĝ = g eliminates 2k+1 degrees of
freedom. To control the remaining 2k degrees of freedom, we specify k double
roots at radii ρ1 < · · · < ρk . We then attempt to choose the radii ρ1, . . . , ρk
so as to minimize r(g). To do so, we iteratively optimize the choice of radii
for successive values of k, by making an initial guess based on the previous
value of k and then improving the guess using multivariate Newton’s method.
Each choice of ρ1, . . . , ρk proves an upper bound for A+(d), and we hope to
approximate A+(d) closely as k grows. (Note that if Conjecture 3.2 holds, then
we cannot obtain improved bounds if k remains bounded for large d.) This
method was first applied by Cohn and Elkies [5, Section 7] to A−(d), with a
simpler optimization algorithm. Cohn and Kumar [7] replaced that algorithm
with Newton’s method, and we made use of their implementation.
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An optimal uncertainty principle in twelve dimensions 821

Table 2 Upper bounds for A+(d) and A−(d − 4)

d A+(d) A−(d − 4) d A+(d) A−(d − 4)

1 0.572990 17 1.619692 1.627509

2 0.756207 18 1.657044 1.665874

3 0.887864 19 1.693390 1.703115

4 0.965953 20 1.728806 1.739328

5 1.036454 1 21 1.763360 1.774593

6 1.101116 1.074570 22 1.797112 1.808982

7 1.161109 1.141962 23 1.830115 1.842559

8 1.217275 1.203808 24 1.862417 1.875378

9 1.270241 1.261244 25 1.894060 1.907490

10 1.320483 1.315083 26 1.925084 1.938938

11 1.368375 1.365923 27 1.955522 1.969763

12
√
2

√
2 28 1.985407 2

13 1.458239 1.460307 29 2.014769 2.029684

14 1.500647 1.504478 30 2.043633 2.058842

15 1.541603 1.546952 31 2.072024 2.087503

16 1.581246 1.587911 32 2.099965 2.115691

We have no guarantee that the numerical optimization will converge to
even a local optimum for any given d and k, or that the resulting bounds will
converge to A+(d) as k → ∞. Indeed, we quickly ran into problems when
d ≤ 2, and eventually for d = 3 and 4 as well, but for 5 ≤ d ≤ 128 we arrived
at the global optimum for each k ≤ 64. These calculations are what initially
led us to believe that A+(12) = √

2.
Our numerical calculations are generally not rigorous: although we believe

we have used more than sufficient precision, we cannot bound the error from
the use of floating-point arithmetic. However, we have used exact rational
arithmetic to prove all the numerical upper bounds for As(d) we report in this
paper.1 Thus, they are genuine theorems, while our numerical assertions about
summation formulas have not been rigorously proved.

Table 2 shows our upper bounds for A+(d) for 1 ≤ d ≤ 32, together with
A−(d − 4) for comparison (taken from [4]). The shift by 4 approximately
aligns the columns, with the best case being A+(12) = A−(8) = √

2. We
have no conceptual explanation for this alignment, but it fits conveniently with

1 The non-sharp cases fromTable 2 are straightforward to check rigorously, while the inequality
A+(28) < 1.98540693489105 requires more work because it uses a higher-degree polynomial
with more complicated coefficients. We have proved it using the techniques and code from
Appendix A of [7].
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822 H. Cohn, F. Gonçalves

the sign in Proposition 2.6, and it supports our conjecture that

lim
d→∞

A+(d)√
d

= lim
d→∞

A−(d)√
d

.

The convergence to this limit is slow enough that it is difficult to estimate the
limit accurately from numerical data.

For d ≤ 2 our numerical methods perform poorly, for the reasons described
below. For d = 3 the bound for A+(d) in Table 2 is obtained using k = 27,
and for d ≥ 4 we use k = 32. In particular, we deliberately use a smaller value
of k than the limits of our computations for d ≥ 4, so that we can use data
from larger k to estimate the rate of convergence. These computations suggest
the following conjecture.

Conjecture 4.1 For 3 ≤ d ≤ 32, the upper bounds forA+(d) andA−(d −4)
in Table 2 are sharp, except for an error of at most 1 in the last decimal digit
shown.

In each case with d ≥ 3, we can use a summation formula to check that
we have found the optimal bound for the given values of d and k; we explain
how this is done in Sect. 5. However, we do not know how quickly the bounds
converge as k → ∞, or whether they indeed converge to As(d) at all. Our
confidence in Conjecture 4.1 comes from comparing the bounds for 32 ≤ k ≤
64 when d ≥ 5. They seem to have converged to this number of digits, but of
course we cannot rule out convergence to the wrong limit.

The approximation A+(d) ≈ A−(d − 4) and equality A+(12) = A−(8) =√
2 raise the question of whether the other exact values A−(1) = 1, A−(2) =

(4/3)1/4 (conjecturally), and A−(24) = 2 are also mirrored by A+. That
turns out not to be the case: Table 2 strongly suggests that A+(5) > 1 and
A+(6) > (4/3)1/4, and it proves that A+(28) < 2. The case of A+(28) is
particularly disappointing, because itmight have stood in the same relationship
to A+(12) as the Leech lattice does to the E8 root lattice. We have found no
case other than d = 12 for which we can guess the exact value of A+(d).

Taking k = 128 shows that A+(28) < 1.98540693489105, and again we
believe that all these digits agree with A+(28) except the last. This upper
bound for A+(28) seems discouragingly complicated, but the underlying root
locations display remarkable behavior, shown in Table 3. The table leads us to
the following conjecture:

Conjecture 4.2 There exists a radial Schwartz function g ∈ A+(28)\{0}with
ĝ = g, g(0) = 0, and r(g) = A+(28), and whose nonzero roots are at radii√
2 j + o(1) as j → ∞, starting with j = 2.

This pattern is reminiscent of [10, Section 7], as well as the behavior of
A±(d) in other cases, but it is a particularly striking example. We expect that
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Table 3 Approximations to r(g)2, ρ21 , ρ22 , . . . , ρ231 when d = 28 and k = 128

3.9418406971135 20.000001150214 35.999999987965 52.000000000234

5.9937066227310 21.999999768273 37.999999967198 54.000000000902

8.0001376275780 23.999999651853 40.000000012100 55.999999999543

10.000148227366 25.999999804782 42.000000017800 58.000000002140

12.000008052312 28.000000118205 43.999999995225 60.000000000589

13.999980992905 30.000000112036 46.000000002272 61.999999999086

15.999998782377 31.999999979813 48.000000000644 63.999999999805

18.000002092309 33.999999997483 49.999999993657 65.999999999746

We view these numbers as approximations to the squared radii for the roots of a
function achieving A+(28).

Conjecture 4.2 is true, but a weaker conjecture consistent with the data is that
there exists some ε < 1 such that the squared radii are within ε of successive
even integers.

For comparison, [8] constructs a function achieving A−(24)whose nonzero
roots are exactly at

√
2 j with j ≥ 2. Our best guess is that the function

achieving A+(28) is given by a primary term that has these exact roots, plus
one or more secondary terms that perturb the roots but do not substantially
change them. If that is the case, then perhaps one can describe this function
explicitly and thereby characterizeA+(28) exactly. However, we have not been
able to guess or derive such a formula.

Another mystery is the behavior of A+(d) for d ≤ 2. In these dimensions
we quickly run into cases in which the last sign change r(g) is not a contin-
uous function of ρ1, . . . , ρk at the optimum, and this lack of continuity ruins
our numerical algorithms. (Instead, we resort to linear programming, which
is much slower.) Of course it is no surprise that the last sign change is dis-
continuous at some points, because a small perturbation of a polynomial can
convert a double root to two single roots, or even create a new root if the degree
increases. However, we do not expect this behavior to occur generically. In
particular, it cannot occur if deg(p) = 4k+2 and g has no double roots beyond
the k double roots we have forced to occur.

When d = 2, even the case k = 1 is problematic. Specifically, one can
check that the optimal value r(g) = √

2/π is achieved by setting ρ1 = √
3/π .

As ρ1 approaches
√
3/π from the left, r(g) decreases towards

√
2/π , but it

increases towards infinity as ρ1 approaches
√
3/π from the right. This discon-

tinuity occurs because the leading coefficient of the polynomial p vanishes
when ρ1 = √

3/π . The leading coefficient also vanishes at the best choices
of ρ1, . . . , ρk we have found for 2 ≤ k ≤ 4, while the case k = 5 suffers
from a different problem: the resulting polynomial has six double roots, rather
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824 H. Cohn, F. Gonçalves

than just five, and again the location of the last sign change is discontinu-
ous.

When d = 1, there are no problems for k ≤ 2, and the leading coefficient
vanishes for k = 3. For k = 4, we find an extra double root, but there is no
discontinuity when k = 5.

In Table 2 we have reported the bound using k = 5 for d ≤ 2. We believe
that we have approximated the true optima for k = 5, but the bounds almost
certainly do not agree with A+(d) to the full six digits shown, unlike Conjec-
ture 4.1.

We have not observed a discontinuity near the optimum in any other dimen-
sion. However, when d = 3 we cannot find a local optimum with k = 28,
because the largest root tends to infinity in our calculations. Computations
carried out by David de Laat indicate that the optimum occurs at a singular-
ity and the resulting discontinuity is interfering with our algorithms. When
d = 4 we run into a similar problem at k = 36. We do not know whether this
phenomenon is limited to d ≤ 4.

5 Summation formulas

We do not know how to obtain the hypothetical summation formulas described
in Conjecture 2.5. Aside from A−(2) and the four cases that have been solved
exactly (namely A−(1), A−(8), A+(12), and A−(24)), we have not found any
summation formulas that come close to matching our upper bounds. However,
in many cases we can compute optimal summation formulas for polynomials
of a fixed degree. For d ≥ 3, these formulas show that we have found the
optimal polynomials for each fixed k in our computations in Sect. 4, and we
believe that when k is large they should approximate the ultimate summation
formulas. For example, Table 1 is based on calculations with k = 128.

Recall that our numerical method uses the Laguerre eigenbasis. If we are
bounding As(d), we let ν = d/2 − 1 and

q j =
{

Lν
2 j if s = 1, and

Lν
2 j+1 if s = −1.

Then our method seeks a linear combination p of q0, q1, . . . , q2k+1 that van-
ishes at 0 and minimizes r(p); using the function f (x) = p(2π |x |2)e−π |x |2 ,
we conclude that As(d) ≤ √

r(p)/(2π), where

r(p) = inf {R ≥ 0 : p(x) has the same sign for x ≥ R}.
(Unlike earlier, we require only x ≥ R in the definition of r(p), rather than
|x | ≥ R, because we care only about the right half-line.) To construct p, we
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Table 4 Values of k for which we have numerically computed a local minimum and the corre-
sponding summation formula to one hundred decimal places

s d k s d k

1 1 1, 2, 5 −1 1 1–64

1 2 – − 1 2 1–64

1 3 1–27 − 1 3 1–20, 26–31

1 4 1–35 − 1 4–128 1–64

1 5–128 1–64

1 28 1–128

When (s, d) = (1, 1), (1, 2), (1, 3), (1, 4), or (−1, 3), we believe the next value of k does not
work (i.e., there is no local optimum satisfying our non-degeneracy conditions); otherwise,
the table simply leaves off where we stopped computing.

impose double roots at locations ρ1, . . . , ρk , and then choose these locations
so as to minimize ρ0 := r(p). Note that in our notation here, ρi denotes what
would have been called 2πρ2

i in Sect. 4.
To obtain a summation formula, we will need to impose some non-

degeneracy conditions. We will assume that 0 < ρ0 < ρ1 < · · · < ρk , and
that p is uniquely determined among linear combinations of q0, . . . , q2k+1 by
the following conditions:

(1) p(0) = 0,
(2) p(ρi ) = p′(ρi ) = 0 for 1 ≤ i ≤ k, and
(3) the coefficient of q2k+1 is 1.

We assume furthermore that p has roots of order exactly 1 at ρ0 and exactly 2
at ρ1, . . . , ρk , and no other real roots greater than ρ0. Finally, we assume that
we have found a strict local minimum for r(p); in other words, r(p) increases
if we perturb ρ1, . . . , ρk .

These assumptions cannot alwaysbe satisfied. For example,when (s, d, k) =
(1, 2, 1) the coefficient of q2k+1 vanishes. However, for d > 2 they are satis-
fied in every case in which we have found a local minimum. See Table 4 for a
list.

Proposition 5.1 Under the hypotheses listed above, up to scaling there are
unique coefficients c0, . . . , ck+1, not all zero, such that

k
∑

i=0

ci g(ρi ) + ck+1g(0) = 0
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826 H. Cohn, F. Gonçalves

for every linear combination g of q0, . . . , q2k+1. Furthermore, c0, . . . , ck are
nonzero and have the same sign. If s = 1, then ck+1 is nonzero and has the
opposite sign.

We prove this proposition below. It is a polynomial analogue of the sum-
mation formula (2.4) (with the Gaussian factors from the Laguerre eigenbasis
implicitly incorporated into the coefficients ci ), and it is reminiscent of Gauss-
Jacobi quadrature in that it holds on a (2k + 2)-dimensional space despite
using only k + 2 coefficients.

Corollary 5.2 Any linear combination g of q0, . . . , q2k+1 with g(0) = 0 and
r(g) < ρ0 must vanish identically, and p is the unique linear combination
achieving r(p) = ρ0, up to scaling.

In other words, although we have assumed only a strict local minimum for
the last sign change among polynomials with k double roots, we have found the
global minimum among polynomials with no such restriction. For example,
when s = 1 and k = 64, we find that p is the best possible polynomial
of degree at most 4k + 2 = 258. This phenomenon not only certifies our
numerics by establishing matching lower bounds, but also helps explain why
our algorithms perform well: degeneracy is the only way to get stuck in a local
optimum.

Proof of Corollary 5.2 Suppose g is a linear combination of q0, . . . , q2k+1
with r(g) ≤ ρ0, g(0) = 0, and g(z) ≥ 0 for large z. By Proposition 5.1,

k
∑

i=0

ci g(ρi ) = − ck+1g(0) = 0.

Because ρ0 ≥ r(g), all of g(ρ0), . . . , g(ρk) must be nonnegative. It follows
that g must vanish at ρ0, . . . , ρk , since c0, . . . , ck are nonzero and have the
same sign. Furthermore, ρ1, . . . , ρk must be roots of even order, since other-
wise g would change sign beyond r(g). However, we have assumed that the
equations g(0) = 0, g(ρi ) = 0, and g′(ρi ) = 0 for 1 ≤ i ≤ k determine g
up to scaling. Thus g must be proportional to p, and the only way to achieve
r(g) < r(p) is if g vanishes identically. ��

It will prove convenient to distinguish between ρ1, . . . , ρk and perturbations
of these points. For that purpose, we fix ρ1, . . . , ρk as the values described
above, while ρ̃1, . . . , ρ̃k are variables taking values in some neighborhood of
ρ1, . . . , ρk .

The proof of Proposition 5.1 involves carefully studying howdifferent quan-
tities behave as functions of ρ̃1, . . . , ρ̃k . We can set up simultaneous linear
equations to determine the coefficients of q0, . . . , q2k+1 as follows. Write
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α = (α j )0≤ j≤2k+1 for the column vector of coefficients (all vectorswill be col-
umn vectors unless otherwise specified, sometimes indexed starting with 0 and
sometimes with 1), and define the entries of the matrix M = (Mi, j )0≤i, j≤2k+1
as follows:

Mi, j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

q j (0) for i = 0,

q j (ρ̃i ) for 1 ≤ i ≤ k,

q ′
j (ρ̃i−k) for k + 1 ≤ i ≤ 2k, and

δ j,2k+1 for i = 2k + 1.

Let v = (δi,2k+1)0≤i≤2k+1. Then the equation Mα = v expresses the con-
straints that

∑2k+1
j=0 α j q j vanishes at 0, vanishes to second order at ρ̃1, . . . , ρ̃k ,

and has α2k+1 = 1.
We write ρ̃ = (ρ̃1, . . . , ρ̃k) and ρ = (ρ1, . . . , ρk). When necessary to avoid

confusion, we write M(ρ̃) for the matrix depending on ρ̃, α(ρ̃) for the solution
of M(ρ̃)α = v if M(ρ̃) is invertible, and pρ̃ for the corresponding linear
combination

∑2k+1
j=0 α j q j of q0, . . . , q2k+1. Thus, the polynomial p discussed

above amounts to pρ .
We have assumed thatM(ρ) is invertible, whichmeans that α(ρ̃) and pρ̃ are

smooth functions of ρ̃ defined on some neighborhood of ρ. Because pρ has a
single root at ρ0, pρ̃ has a single root at some smooth function ρ̃0 of ρ̃1, . . . , ρ̃k
with ρ̃0(ρ) = ρ0, by the implicit function theorem. We will always assume
that ρ̃ is in a small enough neighborhood of ρ for this to be true. Furthermore,
our assumptions so far imply that r(pρ̃ ) = ρ̃0 for ρ̃ in some neighborhood of
ρ, and again we restrict our attention to such a neighborhood.

Because of our assumption of local minimality, the function ρ̃0 must have
a stationary point at ρ. In other words,

∂ρ̃0

∂ρ̃i
(ρ) = 0

for 1 ≤ i ≤ k. In addition, ρ̃0 > ρ0 for ρ̃ �= ρ in some small neighborhood of
ρ by strict local minimality. Once again we confine ρ̃ to such a neighborhood.

Lemma 5.3 The vectors α(ρ) and (∂α/∂ρ̃i )(ρ) with 1 ≤ i ≤ k are linearly
independent.

Proof The vector α has α2k+1 = 1, while all the partial derivatives ∂α/∂ρ̃i
vanish in that coordinate. Thus, it will suffice to show that the partial derivatives
are linearly independent at ρ, and because M is invertible, we can examine
M(∂α/∂ρ̃i ) instead of ∂α/∂ρ̃i .
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828 H. Cohn, F. Gonçalves

Differentiating Mα = v shows that

M
∂α

∂ρ̃i
= −∂M

∂ρ̃i
α.

The matrix ∂M/∂ρ̃i vanishes except in rows i and k + i , and the entries
of (∂M/∂ρ̃i )α in those rows are p′̃

ρ(ρ̃i ) and p′′̃
ρ(ρ̃i ), respectively. We

have p′̃
ρ(ρ̃i ) = 0 by construction, but p′′

ρ(ρi ) �= 0. Thus, the vectors
(∂M/∂ρ̃i )(ρ) α(ρ) are linearly independent, as desired. ��
Lemma 5.4 There are real numbers c0, . . . , ck+1, not all zero, such that

k
∑

i=0

ci g(ρi ) + ck+1g(0) = 0

for every linear combination g of q0, . . . , q2k+1.

This lemma differs from Proposition 5.1 in not asserting uniqueness or sign
conditions for c0, . . . , ck+1.

Proof Define the matrix

T = (Ti, j ) 0≤i≤k+1
0≤ j≤2k+1

by

Ti, j =
{

q j (ρi ) for 0 ≤ i ≤ k, and

q j (0) for i = k + 1.

Then

(c0, . . . , ck+1)
�T =

(

k
∑

i=0

ciq j (ρi ) + ck+1q j (0)

)�

0≤ j≤2k+1

for all row vectors (c0, . . . , ck+1)
�. Thus, the desired summation formula

amounts to a nonzero row vector in the kernel of right multiplication by T . To
prove that such a vector exists, we will show that rank(T ) < k + 2.

It will suffice to find k + 1 linearly independent vectors in the kernel of left
multiplication by T , because (2k + 2) − (k + 1) < k + 2. Those vectors will
be α(ρ) and (∂α/∂ρ̃i )(ρ) for 1 ≤ i ≤ k, which are linearly independent by
Lemma 5.3. All that remains is to prove that they are in the kernel of T .
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We have Tα = (pρ̃ (ρ0), . . . , pρ̃ (ρk), pρ̃ (0)), and thus Tα(ρ) = 0. For the
partial derivatives, we must show that

2k+1
∑

j=0

∂α j

∂ρ̃i
(ρ) q j (ρn) = 0 (5.1)

for 0 ≤ n ≤ k and

2k+1
∑

j=0

∂α j

∂ρ̃i
(ρ) q j (0) = 0.

The latter equation follows from differentiating the identity

2k+1
∑

j=0

α j q j (0) = 0.

To prove (5.1), we start with the fact that

2k+1
∑

j=0

α j q j (ρ̃n) = 0

for 0 ≤ n ≤ k. Differentiating with respect to ρ̃i shows that

2k+1
∑

j=0

∂α j

∂ρ̃i
q j (ρ̃n) +

2k+1
∑

j=0

α j q
′
j (ρ̃n)

∂ρ̃n

∂ρ̃i
= 0.

It follows that

2k+1
∑

j=0

∂α j

∂ρ̃i
(ρ) q j (ρn) = 0,

because ∂ρ̃0/∂ρ̃i vanishes at ρ while for 1 ≤ n ≤ k,

2k+1
∑

j=0

α j q
′
j (ρ̃n) = 0.

We have therefore found k + 1 linearly independent vectors in the kernel of
left multiplication by T , as desired. ��
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Proof of Proposition 5.1 By Lemma 5.4, a summation formula exists, and all
that remains is to prove uniqueness and the sign conditions.

Because M(ρ) is nonsingular, the values g(0) and g(ρi ) with 1 ≤ i ≤ k
can be chosen arbitrarily. Thus, the summation formula must be unique up to
scaling, and the coefficient c0 of ρ0 cannot vanish.

Now let 1 ≤ i ≤ k, and let ρ̃ equal ρ except in the i-th coordinate, where
ρ̃i = ρi + ε with ε > 0 small. Then pρ̃ (ρi ) and pρ̃ (ρ0) have opposite signs
because r(pρ̃ ) > r(pρ), while pρ̃ vanishes at the rest of ρ1, . . . , ρk . It follows
from taking g = pρ̃ that ci must be nonzero, with the same sign as c0.

Finally, when s = 1 we can compute the sign of ck+1 by taking g = q0 = 1
to obtain

k+1
∑

i=0

ci = 0. ��

When s = − 1, we conjecture that ck+1 always has the same sign as
c0, . . . , ck . This conjecture holds for every case listed in Table 4.
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