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Abstract Letag € {0, ..., 9}. We show there are infinitely many prime num-
bers which do not have the digit ag in their decimal expansion. The proof is an
application of the Hardy-Littlewood circle method to a binary problem, and
rests on obtaining suitable “Type I and “Type II” arithmetic information for use
in Harman’s sieve to control the minor arcs. This is obtained by decorrelating
Diophantine conditions which dictate when the Fourier transform of the primes
is large from digital conditions which dictate when the Fourier transform of
numbers with restricted digits is large. These estimates rely on a combination
of the geometry of numbers, the large sieve and moment estimates obtained
by comparison with a Markov process.

1 Introduction

Letag € {0, ..., 9} and let

Al = Z n:10" i n; €40, ..., 9N ao}, k >0

0<i<k

be the set of numbers which have no digit equal to ag in their decimal expan-
sion. The number of elements of .4; which are less than x is O (x!~¢), where
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¢ = log (10/9)/1og 10 =~ 0.046 > 0. In particular, .4; is a sparse subset of
the natural numbers. A set being sparse in this way presents several analytic
difficulties if one tries to answer arithmetic questions such as whether the
set contains infinitely many primes. Typically we can only show that sparse
sets contain infinitely many primes when the set in question possesses some
additional multiplicative structure.

The set .A; has unusually nice structure in that its Fourier transform has a
convenient explicit analytic description, and is often unusually small in size.
There has been much previous work [1,2,4-6,11,13] studying .4; and related
sets by exploiting this Fourier structure. In particular the work of Dartyge and
Mauduit [7,8] shows the existence of infinitely many integers in .A; with at
most 2 prime factors, this result relying on the fact that A is well-distributed
in arithmetic progressions [7,12,16]. We also mention the related work of
Mauduit and Rivat [17] who showed the sum of digits of primes is well-
distributed, and the work of Bourgain [3] which showed the existence of primes
in the sparse set created by prescribing a positive proportion of the binary digits.

We show that there are infinitely many primes in .4;. Our proof is based on a
combination of the circle method, Harman'’s sieve, the method of bilinear sums,
the large sieve, the geometry of numbers and a comparison with a Markov
process. In particular, we make key use of the Fourier structure of 4, in the
same spirit as the aforementioned works. Somewhat surprisingly, the Fourier
structure allows us to successfully apply the circle method to a binary problem.

Theorem 1.1 Let X > 4 and A = {}o4nil0 < X : n; €
{0,...,9\{ao}, kK = O} be the set of numbers less than X with no digit in
their decimal expansion equal to ag. Then we have

log9/log 10
#{pe A} < A XX B .
log X log X
Here, and throughout the paper, f =< g means that there are absolute constants
c1,¢cp >0suchthate  f < g <caf.

Thus there are infinitely many primes with no digit ap when written in
base 10. Since #.4/ X'089/10210 ogcillates as X — oo, we cannot expect an
asymptotic formula of the form (¢ + o(1))X'°2%/10¢10 /100 X Nonetheless,
we expect that

#A
#pe A = (ka+ 0(1))—1 ,
og X
where 00 (10)—1
e, if(10,a0) = 1,
KA =110 . (1.1)
T otherwise.
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Indeed, there are (¢ (10)k.4/10 4+ o(1))#.A elements of A which are coprime
to 10, and (1+o0(1)) X/ log X primes less than X which are coprime to 10, and
(#(10)/1040(1)) X integers less than X coprime to 10. Thus if the properties
‘being in A’ and ‘being prime’ where independent for integers n < X coprime
to 10, we would expect (k4 +0(1))#.4/log X primes in A. Theorem 1.1 shows
this heuristic guess is within a constant factor of the truth, and we would be
able to establish such an asymptotic formula if we had stronger ‘Type II’
information.

One can consider the same problem in bases other than 10, and with more
than one excluded digit. The set of numbers less than X missing s digits in
base ¢ has < X¢ elements, where ¢ = log(q — s)/logq. For fixed s, the
density becomes larger as g increases, and so the problem becomes easier.
Our methods are not powerful enough to show the existence of infinitely many
primes with two digits not appearing in their decimal expansion, but they can
show that there are infinitely many primes with s digits excluded in base ¢
provided g is large enough in terms of s. Moreover, if the set of excluded digits
possesses some additional structure this can apply to very thin sets formed in
this way.

Theorem 1.2 Let g be sufficiently large, and let X > gq.
For any choice of BC {0, ...,q — 1} with#B = s < ¢*3/%0, let

A = Z niqi<X: ni€f0,....,qg —1\B, k>0

0<i<k

be the set of integers less than X with no digit in base q in the set B. Then we
have

xlog(g—s)/logq

#HpeA)= og X

In the special case when B =1{0,...,s —1}orB={q —s,...,q — 1}, this
holds in the wider range 0 < s < g — q°"/%.

The final case of Theorem 1.2 when B = {0,...,s — 1} ands ~ g — ¢°'/%
shows the existence many primes in a set of integers A’ with #.4’ ~ X>7/80 =
XO0-7125 " 3 rather thin set. The exponent here can be improved slightly with
more effort.

The estimates in Theorem 1.2 can be improved to asymptotic formulae if
we restrict s slightly further. For general B with s = #8 < ¢'/4~% and any ¢
sufficiently large in terms of § > 0 we obtain

#A
#peA}=(kp+ 0(1))@,
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where if B contains exactly ¢ elements coprime to ¢, we have

_ 4@ -1
5T @) g —s)

In the case of just one excluded digit, we can obtain this asymptotic formula
forg > 12. Inthe case of B = {0, ..., s — 1}, we obtain the above asymptotic
formula provided s < g — ¢3/4+9.

We expect several of the techniques introduced in this paper might be useful
more generally in other digit-related questions about arithmetic sequences. Our
general approach to counting primes in .4 and our analysis of the minor arc
contribution might also be of independent interest, with potential application to
other questions on primes involving sets whose Fourier transform is unrelated
to Diophantine properties of the argument.

2 Outline

Our argument is fundamentally based on an application of the circle method.
Clearly for the purposes of Theorem 1.1 we can restrict X to a power of 10
for convenience. The number of primes in A is the number of solutions of the
binary equation p — a = 0 over primes p and integers a € A, and so is given
by

#Hpedj=z 3 M(%)Sﬂm(%‘),

O0<a<X

where

Sa) =) e(ad),
acA

Sp(®) = Y _ e(ph).

p<X

We then separate the contribution from the a in the ‘major arcs’ which give
our expected main term for #{p € A}, and the a in the ‘minor arcs’ which we
bound for an error term.

The reader might be (justifiably) somewhat surprised by this, since it is
well known that the circle method typically cannot be applied to binary prob-
lems. Indeed, one cannot generally hope for bounds better than ‘square-root
cancellation’

Sp(d) < X'/2,
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Sa0) < #AYV?,

for ‘generic’ 8 € [0, 1]. Thus if one cannot exploit cancellation amongst the
different terms in the minor arcs, we would expect that the > X different
‘generic’ a in the sum above would contribute an error term which we can
only bound as O (X 1724 AY/2), and this would dominate the expected main
term.

It turns out that the Fourier transform S 4 (6) has some somewhat remarkable
features which cause it to typically have better than square-root cancellation.
(A closely related phenomenon is present and crucial in the work of Mauduit
and Rivat [17] and Bourgain [3].) Indeed, we establish the 2! bound

3 ‘SA (%)‘ & #A X036, @2.1)

0<a<X

which shows that for ‘generic’ a we have S4(a/X) < #.A/XO'64 < X032,
This gives us a (small) amount of room for a possible successful application of
the circle method , since now we might hope the ‘generic’ a would contribute
a total O (X%32) if the bound Sp(a/X) < X'/ held for all a in the minor
arcs, and this O (X°82) error term is now smaller than the expected main term
of size #4110,

We actually get good asymptotic control over all moments (including frac-
tional ones) of S4(a/X) rather than just the first. By making a suitable
approximation to S 4(0), we can re-interpret moments of this approximation
as the average probability of restricted paths in a Markov process, and obtain
asymptotic estimates via a finite eigenvalue computation.

By combining an £2 bound for Sp(a / X) with an 21526 bound for S Ala/ X),
we are able to show that it is indeed the case that ‘generic’ a < X make a
negligible contribution, and that we may restrict ourselves to a € £, some set
of size 0(X039).

We expect that Sp(@) is large only when 6 is close to a rational with small
denominator, and S 4(0) is large when 6 has a decimal expansion containing
many 0’s or 9’s. Thus we expect the product to be large only when both of
these conditions hold, which is essentially when 6 is well approximated by a
rational whose denominator is a small power of 10.

By obtaining suitable estimates for A in arithmetic progressions via the large
sieve, one can verify that amongst all a in the major arcs M where a/ X is
well-approximated by a rational of small denominator we obtain our expected
main term, and this comes from when a/ X is well-approximated by a rational
with denominator 10.

Thus we are left to show whena € £ and a/ X is not close to a rational with
small denominator, the product S 4(a/X)Sp(—a/X) is small on average. By
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132 J. Maynard

using an expansion of the indicator function of the primes as a sum of bilinear
terms (similar to Vaughan’s identity), we are led to bound expressions such as

_1>

2.2)
which is a weighted and averaged form of the typical expressions one encoun-
ters when obtaining a £°° bound for exponential sums over primes. Here || - ||
is the distance to the nearest integer.

The double sum over n1, ns in (2.2) is of size O(N?) for ‘typical’ pairs
(a1, a2), and if it is noticeably larger than this then a; and a; must share
some Diophantine structure. We find that the pair (a1, a) must lie close to the
projection from Z3 to Z? of some low height plane or low height line if this
quantity is large, where the arithmetic height of the line or plane is bounded in
terms of the size of the double sum (For example, the diagonal terms a; = a3
give a large contribution and lie on a low height line, and a1, a; which are both
small give a large contribution and lie in a low height plane.).

This restricts the number and nature of pairs (a1, a») which can give a large
contribution. Since we expect the size of S 4(a1/ X)S 4 (az/ X) tobe determined
by digital rather than Diophantine conditions on ap, a», we expect to have a
smaller total contribution when restricted to these sets. By using the explicit
description of such pairs (aj, ap) we succeed in obtaining such a superior
bound on the sum over these pairs. It is vital here that we are restricted to
ai, ap lying in the small set £ (for points on a line) and outside of the set M
of major arcs (for points in a lattice).

This ultimately allows us to get suitable bounds for (2.2) provided N €
[X0-36, x0-4251 If this ‘Type Il range’ were larger, we would be able to express
the indicator function of the primes as a combination of such bilinear expres-
sions and easily controlled terms. We would then obtain an asymptotic estimate
for #{p € A}. Unfortunately our range is not large enough to do this. Instead
we work with a minorant for the indicator function of the primes throughout
our argument, which is chosen such that it is essentially a combination of bilin-
ear expressions which do fall into this range. It is this feature which means
we obtain a lower bound rather than an asymptotic estimate for the number of
primes in A.

Such a minorant is constructed via Harman’s sieve, and, since it is essentially
a combination of Type II terms and easily handled terms, we can obtain an
asymptotic formula for elements of .4 weighed by it. This gives a lower bound

aypny —axnz
X

> (s T om(y

ay,apeE\M ny,np<N

#A
#Hpe Al > (c +0(1))@
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Primes with restricted digits 133

for some constant c. We use numerical integration to verify that we (just) have
¢ > 0, and so we obtain our asymptotic lower bound for #{p € A}. The upper
bound is a simple sieve estimate.

Remark For the method used to prove Theorem 1.1, strong assumptions such
as the Generalized Riemann Hypothesis appear to be only of limited benefit.
In particular, even under GRH one only gets pointwise bounds of the strength
Sp(0) < X3/4T°M for ‘generic’ @, which is not strong enough to give a non-
trivial minor arc bound on its own. The assumption of GRH and the above
pointwise bound is sufficient to deal with the entire minor arc contribution
in the regime where we obtain asymptotic formulae (i.e. when the base is
sufficiently large).

3 Notation

We use the asymptotic notation <, >, O(+), o(-) throughout, denoting a depen-
dence of the implied constant on a parameter ¢ by a subscript. As mentioned
earlier, we use f < g to denote thatboth f « g and g < f hold. Throughout
the paper € will denote a single fixed positive constant which is sufficiently
small; € = 10719 would probably suffice. In particular, any implied constants
may depend on €. We will assume that X is always a suitably large integral
power of 10 throughout. We will exclusively use the letter p to denote a prime
number, without always making this restriction explicit.

We will use the nonstandard notation that n ~ X to mean that » lies in the
interval (X /10, X] throughout the paper.

Several variables will be assumed to be non-negative integers, without
directly specifying this. Thus sums such as ) _, will be assumed to be
over integers n with 0 < n < X, for example. The usage should be clear from
the context.

It will be convenient to normalize the Fourier transform of A, and to be able
to view it at different scales. With this in mind, we define

Fy(0) = Y~ '0g9/1og10 Z 14, (n)e(nd)

n<Y

. 3.1)

Whenever we encounter the function Fy we assume that Y is a positive integral
power of 10. (Or that they are powers of g in Sect. 16.) We use || - || to denote
the distance to the nearest integer, and || - ||» to denote the standard Euclidean
norm. We use 14, for the indicator function of the set .A; of integers with
restricted digits. Here e(x) = ¢>™* is the complex exponential function.

We need to make use of various numerical estimates throughout the paper,
some of which succeed only by a small margin. We have endeavored to avoid
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134 J. Maynard

too many explicit calculations and we encourage the reader to not pay too
much attention to the numerical constants appearing on a first reading.

4 Structure of the paper

In Sect. 6, we use a sieve decomposition to reduce the proof of Theorem 1.1 to
the proof of Propositions 6.1 and 6.2, which are asymptotic estimates for par-
ticular types of terms arising from sieve decompositions. These propositions
are established in Sect. 7.

In Sect. 7, we use sieve theory to reduce the proof of Propositions 6.1 and
6.2 to the proof of Propositions 7.1 and 7.2, which are our ‘Type I’ and ‘Type
II” estimates. These will be established in Sects. 8 and 9 respectively.

In Sect. 8 we use a large sieve argument to reduce the proof of our Type 1
estimate Proposition 7.1 to that of Lemmas 8.1 and 8.2, which are Fourier ¢*°
and ¢! bounds. These will be established in Sect. 10.

In Sect. 9 we use the circle method and geometric decompositions to reduce
the proof of our Type II estimate Proposition 7.2 to that of Propositions 9.1, 9.2
and 9.3, which are our estimates for the ‘major arcs’, the ‘generic minor arcs’
and the ‘exceptional minor arcs’. These will be established in Sects. 11, 12
and 13 respectively.

In Sect. 10 we establish various Fourier estimates. In particular we establish
Lemmas 8.1 and 8.2, as well as several auxiliary lemmas which will be used
in later sections.

In Sect. 11 use results on primes in arithmetic progressions to establish our
major arc estimate Proposition 9.1, making use of the estimates of Sect. 10.

In Sect. 12 we use Fourier moment bounds from Sect. 10 to establish our
generic minor arc estimate Proposition 9.2.

In Sect. 13 we use the geometry of numbers to reduce the proof of the
exceptional minor arc estimate Proposition 9.3 to the proof of Propositions 13.3
and 13.4, which are estimates from frequencies constrained to lie in low height
lattices or low height lines. These will be established in Sects. 14 and 15.

In Sect. 14 we establish our estimate for low height lattices Proposition 13.3,
using the estimates of Sect. 10.

In Sect. 15 we establish our estimate for low height lines Proposition 13.4
, using the geometric counting estimates and the results of Sect. 10. This
completes the proof of Theorem 1.1.

In Sect. 16, we sketch the modifications in the argument required to establish
Theorem 1.2.

In particular, the dependency graph between the main statements in the
proof of Theorem 1.1 is as follows:
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Lemma 8.1

Proposition 6.2

Lemma 8.2 Proposition 7.1

Proposition 9.1 Theorem 1.1

P iti 2
Proposition 9.2 roposition 7

Proposition 6.1
Proposition 13.3

Proposition 9.3

5
L

Proposition 13.4

5 Basic estimates

We will make frequent use of some well-known facts in analytic number the-
ory without extra comment. In particular, we make use of the Prime Number
Theorem in short intervals and arithmetic progressions with error term (see
[10, Chapter 22], for example). This states that for any A > 0 we have

Y Am= AY + 04 (L> (5.1)
o (q) (log ¥)A

Y<n<Y+AY
n=a (mod q)

provided A > (logY)™4 and ¢ < (log Y)4 and ged(a, ¢) = 1.
We recall the following sieve estimate (see, for example, [18, Theorem
7.11]): Foru > 14 1/(logY)!/?

. uy _ 24
#Hn<Y:ph=p>Y'"= (o) +0u(1))@’ (5.2)

where w (1) is the Buchstab function defined by the delay-differential equation

W) = 1/u, 1<u<2,
W)= —-1) — o), u > 2.

We recall some results from the geometry of numbers and Minkowski’s theory
of successive minima (see, for example, [9, p. 110]). A lattice in R is a discrete
subgroup of the additive group R¥. For any lattice A there is a Minkowski-
reduced basis {vy, ..., v,} of linearly independent vectors in R¥ such that

A=wZ+---+ V.7,
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136 J. Maynard

and for any x, ..., x, € R we have

.
xivi+ -+ xvl2 < Z llxivill2,
i=1

and with ||vq|l2---||v+]l2 < det(A), where these implied constants depend
only on the ambient dimension k. Here det(A) is the r-dimensional volume
of the fundamental parallelepiped, given by

r
invi X1y, Xy € [0, 1]}
i=1

We say r is the rank of the lattice. We see the properties of the Minkowski-
reduced basis above indicate that each generating vector v; has a positive
proportion of its length in a direction orthogonal to all the other basis vectors.

6 Sieve decomposition and proof of Theorem 1.1

First, we prove Theorem 1.1 assuming two key propositions, given below. This
reduces the problem to establishing Propositions 6.1 and 6.2 which we do over
the remaining sections.

As remarked in Sect. 2, it suffices to consider X as a power of 10.If X = 10*
we will think of all elements of A as having k digits, none of which is equal
to ag. This is equivalent to slightly changing the definition of .4 in the case
when ag = 0 (since it restricts .4 to (X/10, X]), but by considering X, X/10,
X/100. .. we see that we can easily recover Theorem 1.1 for the original set
A from this situation.

We will make a decomposition of #{p € A} into various terms following
Harman’s sieve (see [15] for more details). Each of these terms can then be
asymptotically estimated by Propositions 6.1 or 6.2 (given below), or can be
trivially bounded below by 0. To keep track of the terms in this decomposition
we apply the same decomposition to the set

B={0<n< X}

by considering a weighted sequence w;,.
Let w, be weights supported on non-negative integers n < X given by

KA#A KA#HA KA#HA
P S

wy, = 14(n) — (6.1)
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[We recall that 1 4 is the indicator function of .4, and « 4 is the constant given
by (1.1).] For a set C we define

Cqg={c: cd e},
SC,z) =#{ceC: plc= p >z}

Given an integer d > 0 and a real number z > 0, let

#A
S = Y waa =S(An D~ LESBr). (62)
n<X/d
pln=p>z

We expect that S;(z) is typically small for a wide range of d and z. The
following two propositions show that this is the case for certain d, z.

Proposition 6.1 (Sieve asymptotic terms) Fix an integer £ > 0. Let 01 =
9/25+2¢€ and 0y = 17/40 — 2¢. Let L be a set of O(1) affine linear functions
L : R — R. Then we have

*

#A
2 : 0r,—6
Spep KT =0 (log x) ’

X2 <pi<-<pg
prpe<Xx'=0

where Y " indicates the summation is restricted by the conditions

(logpt - logpe)
log X log X

forall L € L.

Proposition 6.1 includes the case £ = 0, where we interpret the statement as

S (X% = (%) . (6.3)

Proposition 6.2 (Type II terms) Fix an integer £ > 1. Let 01, 0>, L be as in
Proposition 6.1, and let T C {1,...,L}and j € {1, ..., £}. Then we have

*

#A
Z Sprpe(Pj) =o0r <@> ’

X270 <pr<-<pe
XN <[Tiez pi<x®
p1pe<X/pj
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138 J. Maynard

and

*

#A
) Spr-pe(Pj) = o (@) :

X2 <pi<--<py
X' <[]z pj<X'™"
p1-pe<X/p;j

where Y_* indicates the same restriction of summationto L > O forall L € L
as in Proposition 6.1.

We note that by inclusion-exclusion the same result holds if some of the
inequalities L > 0 are replaced by the strict inequality L > 0.

Proof of Theorem 1.1 assuming Proposition 6.1 and Proposition 6.2 Let6; =
9/25 + 2¢ and 6, = 17/40 — 2¢ as in Proposition 6.1.

We first consider the upper bound for Theorem 1.1, which is essentially a
standard sieve upper bound. Since 6, — 0 < 1/2, we have

#{pe A =SA X+ 0x'?) < 54, X2 + ox'/?).

Thus, using (6.3) and the fact (5.2) that there are O(X/log X) integers in
[0, X] with no prime factors smaller than X%~ we have

#{p e A) < S(A, X" + ox'/?

#A
= ka5~ S5, X270 4§51 (x%27) + 0(x1/?)

#A #A
:/(Ay#{n<X3 pIn:>p>X92_91}+o(@)
#A

<10gX'

Thus it suffices to establish the lower bound.
To simplify notation, we let z; < zp < z3 < z4 < z5 < z¢ be given by

71 = X270, 7= X", 3= X",
4 = X1/2’ 75 = X1—92’ 26 = X1—91.
We have
KA#A
#HpeAl=#ped: p>X"+0X"?) =5(z4) + (1 +0(1) l:gX .
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Thus we wish to bound Sj(z4) from below. By Buchstab’s identity (i.e.
inclusion-exclusion on the least prime factor) we have

Si(za) = S$1) = Y. Sp(p).

21<Pp=z4

The term S (z1) is o(#.4/log X) by (6.3) from Proposition 6.1. We split the
sum over p into ranges (z;, z;+1], and see that all the terms with p € (z2, z3]
are also negligible by Proposition 6.2. This gives

#A
S1(z4) = — Z Sp(p) — Z Sp(p)+0<logX>'

11<p=22 3<Pp=24

We wish to replace S,(p) by S,(min(p, (X/p)l/z)). We note that these
are the same when p < X 173 put if p > X 1/3 then there are addi-
tional terms in Sp((X/p)l/z) from primes in the interval ((X/p)l/z, p]. For
8 = 1/(log X)'/%, by the prime number theorem and Proposition 6.1, we have

0= D (S(Ap min(p, (X/p)"/) = S(Ap. p))

p<X1/2

< > >+ Y S

p<XV2=8 (x/ )12 <g<p X12-8<p<x1/2
gpeA

#A 1
<<Zl+logX > =

X1/275§p<xl/2 p

#A
=0 <logX) ) (6.4)

Here, and throughout this section, ¢ is restricted to being a prime number.

Similarly, we get corresponding bounds for S(B,,, min(p, (X/ )'72)), and so

we can replace S, (p) with S, (min(p, (X/p) 172}y at the cost of a small error.
Using this, and applying Buchstab’s identity again, we have

Siza)=— Y Spy(min(p, (X/p)'/?))

Z1<P=22
. #A
- 2 Sp<mm<p,<X/p>1/2))+o<—)
log X
Z3<Pp=z4
== Y SG@D— Y S0+ Y. Sp@
2I<p=22 B<P=z4 2I<q=p=z2
a=(X/p)'?
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140 J. Maynard

#A
+ Z Spq(Q)‘i‘O(@)

Z3<P=z4
21<q=(X/p)'/?

The first two terms above are asymptotically negligible by Proposition 6.1,
and so this simplifies to

#A
Sie =Y S+ ), Spq<q)+o(@). (6.5)

21<q=p=22 3<pP=z4
g=X/p)\/? 21<q=(X/p)'/?

We perform further decompositions to the remaining terms in (6.5). We first
concentrate on the first term on the right hand. Splitting the ranges of pgq into
intervals, and recalling those with a pq in the interval [z>, z3] or [z5, z¢] make
a negligible contribution by Proposition 6.2, we obtain

Z Spq(‘]) = Z Spq(Q)+ Z Spq(q)

21<g=p=22 ZI<q=p=22 Z1<g=p=22
q=(X/p)'/? q=(X/p)'/? q=(X/p)'/?
6<pq 3=pq<zs
#A
+ S +o|——). 6.6
> Spe) (log X) (6.6)
21<g=p=22
21=pq <22

Here we have dropped the condition ¢ < (X/p)'/? in the final sum, since

this is implied by ¢ < p and pg < z>. On recalling the definition (6.1) of
wy, we can lower bound the first term of (6.6) by dropping the non-negative
contribution from the set A via w, > —x4#.4/X. By partial summation, and
using the estimate (5.2), this gives

—Kk4#A
Y Splg) = K; Y 5B a)

21<g=p=22 21<qg=p=22
g=X/p)\/? g=(X/p)1/?
6<pq Z6<pq

21<q¢=p=22 n<X/pq
q<(X/p)'* P=(n)>q
26<pq

» (IO%X/pq> #_A
0}
> —(at+op#A Y = +o< )
Z1<g=p=22 pq logq logX
q=(X/p)'/?
26<Dq
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- a4 (1)) AA // (1—u—v)dudzv'
uv

—01<v<u<0
v<(1 u)/2
1-0) <u+v

(6.7)

Here w(u) is Buchstab’s function, and P~ (n) denotes the least prime factor
of n.

We perform further decompositions to the second term of (6.6), first splitting
according to the size of g2 p compared with zg.

Yo Sw@= Y. S@+ Y. Sple). (638

Z1<qg=p=22 Z1<g=p=22 Z1<g=p=22
g<(X/p)\/? 3=pq<zis 3=pq<zs
23<pq<zs q*p<z6 26<q’p<X

For the second term of (6.8) when ¢ p is large, we first separate the contri-
bution from products of three primes. By an essentially identical argument to
when we replaced S, (p) by S, (min(p, (X/p)l/z)) in (6.4), we may replace
Spq(q) by Spg(min (q (X/pq) 1/ 2)) at the cost of a negligible error term (since
Pq < z6)- By Buchstab’s identity we have (with r restricted to being prime)

Y Spg(min(g, (X/pg)'/?))

Z1<q=p=22
3=pq<zs5
26<q*p=<X

= Y Sp(X/p)"+ D Sper().

Z1<g=p=22 21<g=p=22
23<pq<zs 23<pq<zs
26<¢*p=<X 26<q’p<X

g<r<(X/pg)'?

The first term above is counting products of exactly three primes, and for
these terms we drop the contribution from .4 for a lower bound. By partial
summation and the prime number theorem, this gives

#A dud
Y S (X)) = —(Ho(l))fg‘g = / / -

uv(l —u —v)’
Z1<q=p=22 0r—01 <v<u<0;

23=pqg<27s
6 <u+v<1-—6
2 2 2
26<q"p=X 1-6) <2v+u<l

(6.9)
For the terms not coming from products of 3 primes, we split our summation
according to the size of gr, noting that this is negligible if gr € [z2, z3] by
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Proposition 6.2. For the terms with gr ¢ [z2, z3] we just take the trivial lower
bound. Thus

#A
Yo S = D S+ Y S,,q,(r)+o<10gx)

21<q<p=<z2 21<q<p=<z2 211<q<p=<z
23=pq<zs B=pg<zs 23=pq<zs
26<q>p<X 26<¢*p<X 26<q*p<X
q<r=(X/pg)'/? q<r=(X/py)'/? q<r=(X/pg)'/?
qr<zp qr>273
A.A l—u—v—w)\ dudvdw
>—(+o (1)) /// < > 5 (6.10)
uvw
(u v,w)ER]
K_A#A l—u—v—w) dudvdw
-1+ (1)) /// ( ) 5 (6.11)
uvw
(u v,W)ER,

where R and R, are given by

Ri={(u,v,w): 6, —6; <v<u <06,
h<ut+v<l—6,1-60<u+2v<l,
v<w<({l—-u—-v)/2, v+w<b},

Ro={(u,v,w): 6 -6y <v <u <0,
h<ut+v<l—6,1—-0 <u+2v<l,
v<w<(1—-u—v)/2, v+w>6}.

Together (6.9), (6.10) and (6.11) give a suitable lower bound for the terms in
(6.8) with g% p > zg.

When g2 p < z¢ we can apply two further Buchstab iterations, since then we
can evaluate terms S, ,(z1) withr < g < p using Proposition 6.1 as pgr <
g’ < z6. As before, we may replace Spq(q) by Spg(min(g, (X/pg)'/?)) and
Spqr(r) with S, (min(r, (X/ pqr)l/ 2)) at the cost of negligible error terms
(since pgr < ze). This gives

#A
D Sw@o= ) Spq(min<q,(X/pq>1/2>>+o(@)

21<q=p=22 21<q=p=22
q>p<zs q’p<z6
23=pq<zs 3=pq<zs
#A
= E Spq(zl) - E pqr( r)+o <10gX
21<q=p=22 ZI<r=q=p=z2
q*p<zs q’p<z6
23=pq<zs 23=pq<zs

r<(X/pg)'/?
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#A
=0 ( ) - Z Spqr (min(r, (X/pqr)1/2))

log X
ZI<r=q=<p=z2

q°p<z6
23<pq<zs

r<(X/pg)'/?

#A
=0<logX> - Z Spqr(Zl)+ Z Spqrs(s)

ZI<Ir=q=p=z22 ZI<SSr=q=p=22
7’p<zs a>p<zs
3=pg <25 3=pg<zs
r<(X/pq)'? r*pq.sirpg<X

#A
:O(IOgX) + Z Spqrs(s),

ZI<SSr=q=<p=z2

q*p<zs
23=pq<zs
rzpq,szpqrsX

where r, s are restricted to primes in the sums above. Finally we see that any
part of the final sum with a product of two of p, g, r, s in [z, z3] can be
discarded by Proposition 6.2. Trivially lower bounding the remaining terms as
we did before yields

Z Spqrs (s)

ZI<SSIr=q=<p=z22

9> p<zs
23=pq<zs
rzpq,szpqrsX

- (4 (1))KA#A //f/ l—u—v—w-—1\ dudvdwdt
— 0 1) ,
- log X t uvwt?

(u,v,w,t)eR3
(6.12)

where R3 is given by

Ri={(u,v,w,t): -0 <t <w<v<u<>o,
u+2v<1—-0,u+v+2w<1,
ut+v+w+2t<l,b<u+t+v<l1-—0;,
fu+v,u+w,u+t,v+w,v+t,w+t}N[O,0]=90}.

This completes our decomposition of the terms from (6.8), coming from the
second term of (6.6). We note that we could have imposed various further
restrictions such as u + v 4+ w ¢ [61, 6>] in R3, but for ease of calculation we
do not include these.

We perform decompositions to the third term of (6.6) in a similar way to

how we dealt with the second term. We have ¢%p < (gp)3/? < z;/z < Z6
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s0, as above, we can apply two Buchstab iterations and use Proposition 6.1 to
evaluate the terms S, (z1) since we have pgr < pq? < z¢. Furthermore, we
notice that terms with any of pgr, pgs, prs, or grs in [z2, z3] U [z5, 26] are
negligible by Proposition 6.2. This gives

Z Spa(q) = Z Spq(21) — Z Spar(r)

1<g=p=22 21<qg=p=22 ZI<r=q=p=<z2
2I=pq<22 2=pq<2 Z1=pg <22
#A
=0 log X - E Spqr(zl) + E Spqrs(s)
g 21<r<q<p<z ZI<S<r<q<p<za
Z1=pqg <22 1<pq<z2

#A
= > Spars(s) + 0 (
pqrs
ZI<S<r<q<p<zp IOgX
1<pqg<z2
prq.pqs,prs,qrs¢lzz,z3]
pqrsé[z2,231U[z5,26]

. (1))KA#A //f/ (l—u—v—w—t> dudvdwdt
? log X @ t uvwt?

(u,v,w,t)eR4
(6.13)

(A%

where

Ra={u,v,w,t): -0 <t<w=<v<u<0],u+tv<0,
u+v+w+rt¢[0,0]U[l —0,1-0],
fu+v+w,u+v+t,u+w+t,v+w-+t}N[o6, 6] =09}.

We note that for R4 we have dropped different constraints to those we dropped
in R3.

Together (6.7), (6.9), (6.10), (6.11), (6.12) and (6.13) give our lower bound
for all the terms occurring in (6.6), and so gives a lower bound for first term
from (6.5) which covers all terms with p < z».

We are left to consider the second term from (6.5), which is the remaining
terms with p € (z3, z4]. We treat these in a similar manner to those with p < z5.
We first split the sum according to the size of gp. Terms with gp € [z5, z6]
are negligible by Proposition 6.2, so we are left to consider gp € (z3, z5) or
qp > z6. We then split the terms with gp € (z3, z5) according to the size of
g° p compared with z¢. This gives

Z Spa(q) =81+ 8+ S3+0 #A
pgq) = 91 2 3 logX’

3<p=z4
21<q=(X/p)'/?
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where

Si= D Sple)

3<P=24
21<q9=<(X/p)
26<4p

(14 o(1))A*A // w(l_”_”> d:li”, (6.14)

1/2

v

log X v
Oh<u<l1/2
6r—01<v<(1—u)/2
1-601 <u+v
= > Sp@
3<p=24
21<q=(X/p)'/?
3<gp<zs
16561217
KA#A l1—u—v)\ dudv
> —(1+o(1)4 // ® . 615)
log X v uv?
Or<u<l1/2
6 —01<v<(1—u)/2
O <utv<l—6>
1-0; <2v+u
and where

&
|

> Sp@).

3<p=z4

71<q=(X/p)
23<qp<zs

a>p<z6

172

We apply two further Buchstab iterations to S3 (we can handle the inter-
mediate terms using Proposition 6.1 as before since ¢?p < z¢). As
before, we may replace Szpq(q) by Sy, (min(g, (X/pg)'/?)) and Spqr(r)
by S,qr(min(r, (X/ pqr)l/ )) at the cost of a negligible error term (since
pqr < ze). This gives

#A
_ . 1/2
S3= Y Spg(min(g, (X/pq) ))+0<10gx>
23<p=z4

21<q=(X/p)'/?
3<gp<zs

a*p<zs

= Y Spelan)
3<p=z4
21<q=(X/p)'/?
P<Z6
3<gp<zs
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- Z Spqr (min(r, (X/pqr)l/z)) +o0 ( #A >

I3<Pp=74 logX
1<r<g<(X/p)'/?
Zp<z6
3<gp<zs
rqusx
#A
=0(10 X) - Z Spqr(zl)+ Z Spqrs(s)
g 3<p=z4 3<p=z4
n1<r<q<(X/p)'/? 1<s<r=q=<(X/p)'/?
P<z6 4 P<Z6
23<qp<zs 3<qgp<zs
rqugX szqrp,rqugX
#A
= > Spqrs(s) +o0 (logX)
3<p<z4
z1<s<r=q=(X/p)'/?
P<Z6
Z3<(1P<ZS
s2qrp,riqp<X

pq.pr.ps.qr.qs.rs¢lz2,23]U[zs, 26

- a4 (1)) .A A //‘//‘ (l—u—v—w—t)dudvduz)dt’ (6.16)
uvwt

(u v,w,1)€R5

where

Rs={(u,v,w,t): b -0 <t <w<v, bh<u<l/2, u+2v<1-0,
utv+2w<l,ut+v4+w4+2t<1,0<u+v<1-—0,
fu+v,u+w,u+t,v+w,v+t,w+1t} ¢[01,0]}.

Together (6.14), (6.15), (6.16) give our lower bound for the second term from
(6.5), which is all the terms with p € [z3, z4]. This completes our lower bound
for S1(z4).

Let Iy, ..., Iy denote the integrals in (6.7), (6.9), (6.10), (6.11), (6.12),
(6.13), (6.14), (6.15) and (6.16) respectively. Putting everything together, we
obtain

#p € A} = (1 + o(1) K““#

L—Dbh—1—14—1Is— Ig— I7 — Ig—19).

In particular, we have

KA#HA

#Hpe Al >0+ 0(1))m

(6.17)

@ Springer



Primes with restricted digits 147

provided that I1 + --- + Iy < 0.999. Numerical integration! then gives the
following bounds on Iy, ..., Iy in the case when 6| and 6, in the definition of
11, ..., Ig are replaced by 9/25 and 17/40 respectively.

11 <0.02895, I, <0.35718,
I3 <0.01402, 14 <0.04238,
Is <0.05547, Is < 0.06622,
I; <0.21879, Is <0.20339,
Iy <0.00924.

Thus in this case we have 1 4 - - - 4+ Iy < 0.996, and so by continuity we have
I+ 419 < 0.996+0O(e) when0; = 9/25+42¢ and 6, = 17/40—2¢. Thus,
taking € suitably small, we see that (6.17) holds, and so we have completed
the proof of Theorem 1.1 for X sufficiently large. If X > 4 is bounded by
a constant, then Theorem 1.1 follows (after potentially adjusting the implied
constants) on noting that either 2 or 3 is a prime in .4 and so Theorem 1.1 also
holds for bounded X > 4. O

We note that there are various ways in which one can improve the numerical
estimates, but we have restricted ourselves to the above decomposition in the
interests of clarity. Judiciously employing further Buchstab decompositions
would give small numerical improvements, for example.

Thus it suffices to establish Propositions 6.1 and 6.2 .

7 Sieve asymptotics

In this section we prove Propositions 6.1 and 6.2 assuming Propositions 7.1 and

7.2, given below. This reduces the problem to proving standard ‘Type I’ and

“Type II’ estimates. These propositions will then be proven in Sects. 8 and 9 .
Before we state the propositions, we set up some extra notation. Let

Qu(m ={(x1,...,x) ER : p<x; <---<xq, x; +---+x=1}.

By a closed convex polytope in R¢ we mean a region R defined by a finite
number of non-strict affine linear inequalities in the coordinates (equivalently,
this is the convex hull of a finite set of points in R*). Given a closed convex
polytope R € Q¢ (n), we let

. . lo; lo,
1, ifa= p|---pgforsome pq,..., pe with ( lfgl;l ,,,,, 1oggff) eR,

1r(a) = )
0, otherwise.

' A Mathematica® file detailing this computation is included with this article on arxiv.org.
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We caution that 1k counts numbers with a particular type of prime factoriza-
tion, and should not be confused with 1 4, the indicator function of the set A.
Werecal B={neZ:0<n< X}.

Our two key propositions that we will use are given below.

Proposition 7.1 (Type I estimate) Let A > Q0 and Q < X 50/77 (log X )y—24-2
Then we have

#A

#A
> [pc 4 e w10 =0T s

<0
(,10)=1

where

P @10 # 1,
0P, if (a0, 10) = 1.

Proposition 7.2 (Type II estimate) Let n > 0, and let £ < 2n~'. Let R C
Q¢ (n) be a closed convex polytope in RE which has the property that

9 17
2: = L — —
eeR:>. e,e|:25+e 10 ei|

for some set I C {1,...,L}. Then we have
#A #A
Y Ir(@) =kagz Y Ir(n) + Or,y (—) ,
ey #B — log X loglog X
where

10((10)—1) - _
KA — 9¢(10) ’ l_f(lo’ aO) - 17
%, otherwise.

Proposition 6.2 follows quickly from Proposition 7.2, but it will be convenient
to establish a slightly more general version where the primes can be as small
as X'

Lemma 7.3 (Type II terms, alternative formulation) Fix an integer £ > 1 and
a quantity n > 0. Let 61 = 9/25 + 2¢, 6 = 17/40 — 2¢, and L be as in
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Proposition 6.2, and let T C {1,...,¢}and j € {1, ..., L}. Then we have

*

#A
Z Spr-pe(Pj) = 0Ly <logX) ’

XT<p1<--<pe
X0 <[Njez pi<X®
p1pe<X/pj

and

*

#A
Z SPIPZ(pJ) = oﬁ’n (logx> ’

X"<p1<--=<pg
X1—92 Sniez ijXl_gl
p1pe<X/p;j

where Y " indicates the same restriction of summationto L > O forall L € L
as in Proposition 6.2.

As before, we note that by inclusion-exclusion the same result holds if some
of the constraints L > 0 are replaced with L > 0. We see Proposition 6.2
follows immediately from Lemma 7.3 on choosing n = 6, — 6.

Proof of Lemma 7.3 assuming Proposition 7.2 We just deal with the case
when HieI pi € [X?, X%2]; the other case is entirely analogous with 6
and 6, simply replaced with 1 — 6, and 1 — 6; throughout. (Notice that
if e € R C Qu(n) satisfies ) ,.;¢; € [23/40 + €,16/25 — €], then
Ziﬂ ei €19/25+ €, 17/40 — €]. Thus the interval [9/25 + €, 17/40 — €] in
Proposition 7.2 can be replaced by the interval [23/40 + €, 16/25 — €], and
so Proposition 7.2 applies similarly in both cases.)

Recall the definition (6.2) of S;(z). We see that Sp,..,,(p;) is a sum
of w, only involving integers n with at most 1/n prime factors, since
all prime factors are of size at least X". The terms with exactly r prime
factors (for some r < 1/n) are a sum of wy,..,, over pi,..., p, with
the summation only restricted by a bounded number of linear inequalities
on log p;/log X, ..., log pr/log X. (These are the previous restrictions on
D1, - -, pe, and the restriction p; < pgy1 < --- < p,). We may write the
condition X" < p; and the restriction on the size of [;.; pi and [[‘_, pi as
linear conditions only involving log p1/log X, ..., log p,/log X with coef-
ficients having constants depending only on 5. Thus, after increasing £ to
include these conditions, it suffices to show that

*
#A
Z wpl...pr = 05’;7 (@) s (71)

P1=-=py
Pj=Pt+1="=pr
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where Y * indicates that the summation is restricted by the conditions

] ]
L8P 08Pt o (7.2)
log X log X

forall L € L.

Let § = 1/loglog X. We first trivially discard the contribution from n =
pi1---pr < X'7% Each n appears 0,(1) times in (7.1), so recalling the
definition (6.1) of w, and dropping the other constraints, the total contribution
from such terms is

#A #A
18 _
- 1+ § 1 < #A _0”(—1ogx)' (7.3)

neA n<XI -
n<Xx!-4

Thus it is sufficient to show

*
#A
Z wPl"'Pr = 057’7 (10gX> . (74)
P1==p¢
Pj=Pt+1==pr
prepr=X17

Since we have the constraint py---py < X/p; < X =1 the result follows
immediately if » = £ (if n < § the result is trivial). Thus we may assume that
r > £, so none of the constraints involve all the p;. We now wish to replace
log p;/log X with log p; / log n in the conditions (7.2). Forn € [X!7%, X], we
have

log pi - log pi < +25)10gp,
log X logn g X
. log log p log logpg \ -
and so if exactly one of L (]og—’; logXl> and L <W]:11"“’ logn‘) is
non-negative, we must have
Io lo
‘L( SPL gpﬁ)‘«ca. (7.5)
logn logn

To bound the contribution of such terms, let y > 0 be a parameter and

#A
G(y.L) := > (1A<p1 )+l pr)) .
n"<pi,... pr
_ySL(l?fintl """ lffgl;( )=y

0 0
n1 <[liez pi=n®2*€
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(Here the summation is over all choices of primes py, ..., p,, and for any such
choice n = py - - - pr. We do not restrict to n > X'~ in the summation.) We
wish to show that if y = o ,(1) then G(y, L) = or ,(#.A/log X), and we
will do this by first thinking of y fixed but very small.

We split the sum into at most ! = O, (1) subsums where the variables are
ordered (we potentially double-count the contribution from p; = p;s for an
upper bound). Thus, after relabelling the p;, we see that

#A
Gly, L)< sup > <1A(P1 P+ L 1B "'Pr))
in,.i€{l,.r} n1<pi<--<pr
distinct I‘E”fl_ Tog v,
—r=L( Togn *+> Togn )=y

n1 <[T;eqr pisn®2te
for some set Z' C {1,...,r}.Let R = R(y, L, n) € Q,(n) be given by
@1 X)) €Qr() =Y SL(Nipa . Xi) SV )X e[91,92+e]].
ieT’

Then R satisfies the conditions of Proposition 7.2, so

> La(pr-+pr) =Y 1r(n)

n’<pi<-<py neA
log p; log p;
— 1 e
y=L( logn > logn )=y

0 R Oy +e€
n1 <[ l;eqr pi<n®2

#A #A
=25 > 1rm)+or (—) :

— log X loglog X
Thus
#A #A
G(y,L) <K — sup 1z () + OL 4, (—) .
#B iy, igell .. r}ng;( "7 \log X log log X

distinct

By the Prime Number Theorem and partial summation, we have
X dey...de,_1 X
o = o [ [ S o ().
ng;{ logX( [Ti_; e (log X)?2
el,....er)ER

Since all components of elements of R are at least 7, the integral is bounded
by n~" times the (r — 1)-dimensional volume of R. Since L involves at most
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¢ <r — 1 coordinates and R C [, 1], this volume is O, ,(y). Thus

y#A #A
Gy,L)y=0 — 0 — .
(v L) Lo (logX> +OLay <logX10g10gX

If y - 0 as X — oo suitably slowly, we see that this shows that G(y, L) =
or,,(#A/log X). But from the definition of G, we see that G(y, L) is non-
decreasing in y, so in fact we deduce that for any y = oy ,(1) we have
G(y,L) =o0p,,#A/log X).

We see from (7.5) that the error introduced to (7.4) by replacing
log p;i/log X with log p;/logn in the conditions (7.2) is O(}_,; ., G(y, L))
for some y <z 8 = oz(1). By the above discussion, this is o, (#.4/log X),
which is negligible.

After making this change, we may reintroduce the terms with n < X'~ at
the cost of a negligible error by using the bound (7.3) again. Thus

* kk
#A
Z Wpy--p, = Z Wpy-.p, T 0Ly (logX> )

P1==p¢ P1==pe
Dj=Pe1="=pr Pj=Pe+1==pr
prpr=X'7?

where Y ** indicates the sum is constrained to

L (logplym’ logpz> =0
logn logn

for all L € L. Moreover, since we had the constraint [ [;,.; pi € (X%, X02]
in (7.2), this second sum includes the constraint [ [, e Di € [n?1, n2]. We
now split the summation into O, (1) subsums where the p; are totally ordered.
Afterrelabelling the coordinates, Proposition 7.2 applies to each of these sums,
since the linear constraints L > 0 for L € £ define a closed convex polytope
(depending only on £), and the ordering of the variables ensures that this lies
within Q,(n) (recall that the constraint X” < p; becomes n” < pq, so all
primes are at least n). The constraint [ [; e Di € [n?1, n2] corresponds to
the sum of a subset of the coordinates of all points in the polytope lying in
[61, 62]. Proposition 7.2 shows that the contribution from each such sum is
oc,,(#A/log X). Since there are O,(1) such sums, the total contribution is
oc,,(#A/log X), giving the result. ]

Our aim for the remainder of this section is to establish Proposition 6.1 using
Propositions 7.1 and 7.2. We first establish an auxiliary lemma.
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Lemma 7.4 (Fundamental Lemma) For § > 0 we have

K a#A s exp(—872/3) #A
S(Aq, X°) — S(Ba, X%)| < + :
d<X%/:776 #B log X (1Og X) 100
pld=p>X?®

The implied constant is independent of 6.

Proof of Lemma 7.4 assuming Proposition 7.1 If 8§ > €* then since S(C, X")
is nonnegative and decreasing in ¢ for any set C, we have

#.A. 64 5 #./4 y
—KA@S(BUI, X¢) < S(Ag, X°) — KA@S(Bd, X%)

4y KA#A A
< (S(Ad,X ) e S(Ba, X ))
#A 4
— X).
+KA#BS(Bd, )

Since S(By, X<*) <« X/(d1og X) for d < X'~€ by (5.2), this gives

#A
‘S(Ad, X% — KayzSBa, X°)

. 4y #;4 4
—'S(Ad,X ) KA#BS(Bd»X )

#A
+0 (dlogX)'

By the rough number estimate (5.2) again, we see that the sum of 1/d over
d < X with all prime factors bigger that X° is Os(1). Thus the result for
8 > €* follows from the result for § = €*, so we may assume without loss of
generality that § < €*.

Let

A ={aeA: (a,10) =1)}.

Then # A" = k#.A, where « is the constant given in Proposition 7.1. Let R;(e)
be defined by

"
#Hae A, ela) = Kd—;4 + Ry(e).
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We put ¢ = de and see from Proposition 7.1 that for any A > 0 the error
terms Rz (e) satisfy

Kk#A
Y Y me< X -4
d<X50/777€ e<xe/2 q<X50/777€/2 C]
p|d:>p>X(S (e,10)=1 (qg,10)=1
ple=p=<X®
#A

By the fundamental lemma of sieve methods (see, for example, [14, Theorem
6.9]) we have

S(AG, X*) = (1 -0 (e"p (;_;») T pn (1 ) %)

<Xx?
pt10

+0| D> Rale)
e<X€/?
(e,10)=1
ple=p=<X?

Summing over d and using the bound (7.6), we obtain

, #A 1
st (1)

d<x50/71—¢ p<x?
pld=p>Xx? pi10
<<exp<—26—8> l_[ <1—l>#¢4 Z l—i-l#—AlOO.
<X p d<Xx30/77—¢ d (log X)
pt10 pld=p>X?

The product in the final bound is o6 ! (log X )~1), and the inner sum over d
is seen to be O(8~!) by an Euler product upper bound. Finally, since we are
assuming that § < €*, we have that § 2 exp(—e/(28)) K exp(—8_2/3). Thus

, #A 1
> s xh - = ]‘[(1--)

d<X50/77—€ ng‘S p
pld=p>X?® pi10
exp(—823)#A #A

(7.7)

log X + (log X)100°
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An identical argument works for the set B’ = {n < X : (n, 10) = 1} instead
of A’. This gives

) #B’ 1
> 8@y x%) - y I1 (1——)

d<X50/77—6 ng‘S p
pld=p>X?® pt10
exp(—38 23 #B’ #B

. 7.8
log X + (log X)100 78)
We see that for (d,10) = 1 we have S(A,, X%) = S(Ag, X?%), that
S(B,, X% = S(By, X?%), and that #8' = ¢(10)#5/10. Thus, by the trian-
gle inequality

10« #
s xh) - 2 s, x0)
I
pld=p>Xx°

< ¥ S(A;,,X‘S)—KZA I1 (1—1)

d<Xx50/771—€ p<Xx? p
pld=p>Xx?® pt10

10K#A Yy 5 #_[3, _l
g, X -5 T (1-5)

<X 50/77—€ p<X?

#A 1 10k #A#B' 1
v X AL () - o (1=
d< x50/ TT—¢ p<x? p ¢ (10)d#B e’ p
pimp=x | o i

We bound the first summation by (7.7), the second summation by (7.8), and
note that since #8’ = ¢ (10)#/10, the third summation is zero. Since k4 =
10k /¢ (10), this gives

K a# A s exp(—872/3) #A
S(Ag, X°) — SBa, X « ———— A4 ——
d<X§/:776 #B IOgX (log X)IOO
p|d:>p>X‘S
O

Using Lemma 7.4 we can now prove Proposition 6.1.
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Proof of Proposition 6.1 assuming Lemma 7.3 and Lemma 7.4 Recall that 6;
=9/25+2¢,0p) = 17/40 — 2¢. Let 6 := 0, — 01, and let § > 1/loglog X
be a small quantity which we will eventually choose to tend to O in a suitable
manner. In particular, § will be small compared with €.

We first consider the contribution from py --- py < X o1, Given a set C and
an integer d, we let

. _ 8
Tn(C: d) = > SCprpy X°),
X0 <pj,<<p| <X’
dp; “'ptlnfxel

. _ /
Um(cs d) - Z S(Cp;p;nv pm)v
X?<py,<<pi<X?
ap|ply <X

Vin(C; d) = > SCplecpp,» Pin)-
X°<pp,<--<pi<X’
X0 <dp/--p! <X91p

m—

Buchstab’s identity shows that

Un(Cid) = Ty(C; d) = Unt1(Ci d) — Viny1(C; d).

We define Ty(C; d) = S(C; X°) and Vo(C; d) = 0. This gives ford < X%

S(C, X%) = To(C; d) — Vi(C; d) — Uy (C; d)
=D (=) (Tu(C; d) + Viu(C; ).

m=>0

We apply the above decomposition to 4,. This gives an expression with
0 (8~ 1) terms since trivially 7,,(Agq; d) = Upn(Ag;d) = Vip(Ag;d) = 0
if m > 1/6. Applying the same decomposition to By, taking the weighted
difference, and summing over d = pp - - - p; we obtain

’ # ’
3 S(Ad,xf’)—K““XA Z S(Ba, X%

< > Y | Asa) - d)l
0<m<1/8 p1,....pe
/ #
+ 2| X <Vm<Ad;d>— A 'd>)'. (7.9)
0<m<1/8 |P1,.-, Pt
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Here Y’ indicates we are summing over all choices of pi, ..., pg which
appear in the summation in Proposition 6.1 with the additional condition that
d=py-pe <X

We note that py, ..., p¢ > X?, sod has O(1) prime factors and any integer
e can be represented O (1) times as dp/ - - - p,, for some primes p;, < --- < p}
and some choice of py, ..., p¢ defining d. Thus, expanding the definition of
T, if § < € we have

#A
oY s - d)'
0<m<1/8 p1,--»P¢
< ) ‘S(AE,X(3 e X°)
e<X%1
ple=p>Xx?®
8" exp(—82/7)#
exp( WA (7.10)
log X

Here we applied by Lemma 7.4 in the last line, using § > 1/loglog X.

We now consider the V,,, terms. We expand the definition of V,, as a sum.
We note that p;n < X? = X%27% g0 the summation is constrained by
X% <d pi cepr <X %2 which is our Type Il constraint. We see that all terms
have dp| - -- p,, < X/p,,, so we can insert this condition without changing
the sum. We recall py, ..., p; are constrained only by some linear conditions
onlog pi/logX,...,log p¢/log X. Thus we see that the sum is of the form
considered in Lemma 7.3 with n = §, since all the conditions in the summa-
tion can be written as linear constraints on log p;/log X for 1 < i < ¢ and
log p;./log X for 1 < j < m. Thus, by Lemma 7.3, we have

/ K A#A . _ #A
Y (V (Agid) = = 2=V (Bd»d))‘ =0s.c <logX)'

m<&s=—1 P15, pe
(7.11)

Putting together (7.9), (7.10) and (7.11), we obtain

’ 0. Kka#A / 0
D S XN —=o= Y S(Ba XY
Pl pe P15 D¢

#A
—1/2
< (exp(—=8712) + 05, (1)) g X'

Letting 8§ — 0 sufficiently slowly then gives the result for d < X'
The contribution from d with X < d < X'=% can be handled by an
identical argument, where instead of restricting to dp}---p,, < X o1 and
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X% < dpj---p,, < X%p, in Ty, Uy and V,, we instead restrict to
dpy-- ph < X% and X'7% < dp/ .- p;, < X'7%p/ respectively. The
terms corresponding to V,, involve a € ‘AdPﬁ p, With X =0 ~ ¢ Pl P <
xX1-0 < x/ P, 80 can be handled by the second part of Lemma 7.3 instead of
the first part. Since 50/77 > 1—17/40+2¢ = 1—6,, the terms corresponding
to Ty, can still be handled by Lemma 7.4.

Finally, the contribution from d with X" <d < X2or X2 < g4 <
X1=% can be bounded almost immediately by Lemma 7.3. One Buchstab
iteration gives

Sa(X?) = Sa(Xy = D Sap(p).
X8 <p<X*

We put d = pp--- p¢ and sum over pji, ..., pe satisfying the constraints
imposed by £ and such that d e [X!7%, X!=01], The first term makes a
negligible total contribution by Lemma 7.4 since d < X!~ < x30/77—¢
The second term makes negligible total contribution by Lemma 7.3 (not-
ing that dp < X'70+t9 < x1-¢ < X/p). This gives the result when
d e [X'7%2, x'=%]. The argument for d € (X%, X%] is completely anal-
ogous.
Together these cover the whole range pi - - - pp < X!~%, giving the result.
O

Thus, since Lemmas 7.3 and 7.4 follow from Propositions 7.1 and 7.2, it
suffices to establish Propositions 7.1 and 7.2.

8 Type I estimate

In this section we establish our ‘Type I’ estimate Proposition 7.1, assuming
the more technical Lemmas 8.1 and 8.2 , which we will establish later in
Sect. 10. We recall that Proposition 7.1 describes the number of elements of
A in arithmetic progressions to modulus up to X>%77=¢ ~ X065 on average.

Our Type I estimate is based on suitable bounds on the Fourier Transform

SA0) = Z e(abd)

acA
of the set A. We recall our definition of the function Fy from (3.1), which is a

normalized version of S 4. In particular, |S4(0)| = #A - Fx(0). The two key
lemmas which we use in this section are the following.
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Lemma 8.1 (Large sieve estimate) We have

5 2 ()<t
Y y30/77°

q<0 0<a<q
(a,q)=

Lemma 8.2 (¢ bound) Letg < Y'/3 be of the formq = q1g> with (g1, 10) =
1 and q1 > 1, and let |n| < Y~2/3/2. Then for any integer a coprime with q

we have
a logY
Fy|—+n)<Kexp|—c
q logg

for some absolute constant ¢ > 0.

Proof of Proposition 7.1 assuming Lemma 8.1 and Lemma 8.2 By  Mobius
inversion and using additive characters, we have for (¢, 10) =1

#A; =#laeA: gla, (a,10) =1}

=) > ua

aeAd|(10,a)
qla

=S¥ X ()

4110 acA \ 1 0<p=dq 4

d b
-2 X ().

d
ano 4 o<p=aq

We write b/dg = b’ /dq’ with (b', q’) = 1, and separate the terms withq¢' = 1.
We then let b'/dq’ = b"/d'q’ with (b”,d'q") = 1. For (¢, 10) = 1 we see
that this representation is unique for all b, d under consideration. Thus

) ,u(d) 1 b
#A, = ZSA o> > > — 1S4l
drio 0<b'<d A0 g'1q 0<b'<dq' 1

q'>1 (b .qg")=1

:é#{aeA:(a,10)=1}+0 =X X X F"(di/)

4110 ¢'lq 0=b"<d'q’
q>1 0" dq)=I
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We note that #{a € A : (a, 10) = 1} = «#A. Summing over ¢ < Q with

!

(¢, 10) =1 and letting ¢ = ¢'q"”, we obtain

/ k#A #A b

I R - 30 D S
q<0 q9<Q d’|loq|q 0<b"<dq’
(@.10=1 (¢.10)=1 q'>10".d'q)=1

<X ¥y Y w(p) X 4

’ ’ 1" dq ” 4
1<q'<Q d'110 0<b” <d'q’ q"<0/q

(q/,l()):1 (b// d’q/) 1
1
<ratogx? sp o Y X mx(p) B
01<0 Ql ’ 1 ot d
2710 (I/NQI 0=b"<d'q
(¢',10)=1 (»",d'q"=1
q'>1

Here we recall our notation that ¢’ ~ Q means ¢’ € (Q1/10, Q1]. By
Lemma 8.1 we have for any d|10

o X X E(g) < gty
X dq Q%3/77 X50/77°

q 01 0<a<dq
(a,dq)=

which gives the required bound if Q1 > (log X)*4*3 on recalling that Q| <
0 < X% (1og X)~2472, In the case Q; < (log X)*A*® we instead use
Lemma 8.2, which gives

a 0
Z Z FX ( ) < Ql sup FX (@) <<A W

=1
q~01 a<dq (a,9)
(q 10) 1 (a.dg)=1 1<g=Q,
o) (g.10)=1
d|10

Thus we see that the bound (8.1) is O (#.A/(log X)4) in either case, as
required. o

We are left to establish Proposition 7.2 and Lemmas 8.1 and 8.2.

9 Type II estimate

In this section we reduce our ‘Type II” estimate to various major arc and minor
arc estimates. In particular, we will reduce the proof of Proposition 7.2 to
the proof of Propositions 9.1, 9.2 and 9.3 . We first recall the statement of
Propositon 7.2 which allows us to count integers in .A with a specific type of
prime factorization provided such numbers always have a ‘conveniently sized’
factor.
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Proposition (Type II estimate Proposition 7.2 restated) Let > 0, and let
¢ <2n7l Let R € Qu(n) be a closed convex polytope in R which has the
property that

9 17
2: = L — —
eeR=>. e,e|:25+e 10 e:|

for some set T C {1, ..., L}. Then we have
#A #A
1 =KpA— 1 (0] ],
Z R(@) =k #B Z R(®) + Or.y (logXlog logX)
aceA n<X

where

10

10(10)—-1) . _
K= T 94(10) ° if (10, a0) = 1,
5> otherwise.

To avoid technical issues due to the fact that ) 1 4(n) can fluctuate with Y,

n<Y
we will replace our counts 1 (n) with a weight Ar, where foraset’R C [n, 11¢
we define ,
Army = > []logp: ©.1)
DPlseees 144 i=1
p1+pe=n
(R §25 )em

We note that in A the conditions are on log p;/log X, whereas in 1 the
conditions are on log p; /logn. If every e € R has e < --- < ¢, then at most
one term occurs in the summation, so A simplifies to

‘ T log p; log py
[l;—logpi, ifn=pi---pgand (logX""’logX e R,

, otherwise.

Ar(n) =

We prove Proposition 7.2 by an application of the Hardy-Littlewood circle
method, whereby we study the functions

Sa0) =Y e(@d), Sp®) =) Ar(n)eno).

acA n<X

Proposition 7.2 then relies on the following three components.
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Proposition 9.1 (Major arcs) Fix n > 0 and let £ € 7Z satisfy 1 < £ < 2/n.
Let § = (loglog X)_l, and let Rx = Rx(ay, ..., ar—1) be given by

Rx =1ecR':e; € (aj,a; +8forl <i<t—1,

l -1

n
Eleifl, eng’l’lﬂX(Z,l— Elai—ﬁ8)},
1= 1=

forsomeay, ...,a¢—1 € R satisfying min; a; > n/2 and Zf;ll ai <1—n/2
Let M = M(C) be given by

b
M:{O§G<X3 ﬁ——|
q
log X)©
< %JCOY some integers b, g with g < (log X)C}-

Then
1 a —a #A #A
x 2 S (?) SR (7) =ra D, Ary(n) + Ocy ((log X)C) '

0<a<X n<X
aeM

Here k 4 is the constant given in Proposition 7.2. The implied constant depends
on C and n, but noton Ry oray ..., ap—1.

Proposition 9.2 (Generic minor arcs) Fix n > 0 and let € € Z satisfy 1 <
€ <2/n. Let R € R be a closed convex polytope. Let M = M(C) be as in
Proposition 9.1.

Then there is some exceptional set £ C [0, X] with

4€ < X340,

such that

1 a —a #A
(g5 ()] <
XZ’ A\X R(X) < xe
a<X
ag¢é
The implied constant depends on n, but not on R.
Proposition 9.3 (Exceptional minor arcs) Let A > 0. Let n, {, Rx =
Rx(ai,...,ap—1) and M = M(C) be as given in Proposition 9.1. Let
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ai, ..., ae—1 in the definition of Rx satisfy ) ;.ra; € [9/25+€/2,17/40 —
€/2]1 U [23/40 + €/2,16/25 — €/2] for some T < {1,...,€ — 1}, and let
C = C(A, n) in the definition of M be sufficiently large in terms of A and 1.
Let £ C [0, X] be any set such that #£ < X 23/40 Then we have

1 a —a #A

— Y (—) (y p— i

X azeg Ax ) Ry ( X ) A {og X)A
agM

The implied constant depends on n and A, but not on Ry oray, ..., as—1.

We expect the contribution from the major arcs M to give the main contri-
bution. Proposition 9.1 shows that we can get an asymptotic formula from
frequencies in M. Proposition 9.2 shows that most frequencies contribute
negligibly, and that any significant contribution must come from some small
exceptional set £. (In view of Proposition 9.1, we must have £ contains ele-
ments of M and so £ is non-empty). We would expect that we can take £ = M,
but cannot quite show this. However, Proposition 9.3 shows that £\ M con-
tributes negligibly to our sum, which is sufficient for our purposes.

Proof of Proposition 7.2 assuming Propositions 9.1, 9.2 and 9.3 and Lemma 7.4
Proof of Proposition 7.2 assuming Propositions 9.1, 9.2 and 9.3 and
Lemma 7.4 Let § = (loglog X)~!. Clearly we may assume that § is suffi-
ciently small in terms of 7, since otherwise the result is trivial. We note that
£ > 2, since the sum of coordinates of points in R is 1 but a non-trivial subset
of them lies in [9/25, 17/40]. Given reals ay, ...,as—1 > 0and y > O and a
set S € RE, let

C@y):=(ar,a1 +y]x - x(@-1,a-1+y],

Ct@ay) = {e em/4,11°: (..., ec—1) €C(as y),

) -1
Ze,» <1, e > I—Za,- —za},
i=1

i=1

_ : log py log py
1, n=pp--- peforsome pi,..., pg with (logX""’ Tog X es,

1s(n) ::{

0, otherwise.

We see that 15 and ig differ in that the denominators of the fractions are log n
and log X respectively.

We cover [17, 11~ by 0(6~~D) disjoint hypercubes C(a, 8) of side length
8 (for example, we can take all a € {0,8,25,...,[8 118} 1. Let R <
[1, 11°~! denote the projection of R onto the first £ — 1 coordinates (which
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is also a closed convex polytope). We see that if n € [X 1_52, X] then logn
and log X differ by a factor of at most 1 — 2. In particular, if log p j/logX €
[aj,aj + 8] then certainly log p;/logn € [aj,a; + 28]. This means that
if C(a;28) € R and logpj/logX € [aj,aj + 8] for all j < € — 1, then
1R(p1--- pe) = 1 forall py € [X'=5/py--- pe_1. X/p1 -+ pe—1]. Thus for
ne X X

0, if RN C(a; 28) =0,
1r(M)1c+@:5) (1) = { 1o+ (a:s) (1), if C(a; 28) C R, 9.2
O(ic+(a;5)(n)), otherwise.

If C(a; 28) N R # @ but C(a; 26) g R then C(a; 28) intersects the boundary
AR of R.

Since 1 (n) is supported on n with £ prime factors all at least n”, if n =
Pl pe > X' and 1z (n) = 1 then there is an a with ¢; > 1/2 such
that ic(a;(;)(pl ---pe—1) = 1. Moreover, since n > X1=%° we have pe >

-1 ~
Xl_‘sz/pl ceepe—1 = XI=Xicrai—t s in fact 1c+(a;5)(n) = 1. Since the
cubes are disjoint, this happens for exactly one choice of a. Therefore we have
for any n € [Xl_‘sz, X]

Ir(n) =Y Ters M 1r®).

Using this with (9.2) to split the summation over hypercubes C, we find

3 IR(m)—KA;A Yoo 1xm)

”EEA X1-% <p<X
X1 em<Xx

< K A#A -
= Z Z Lo+ s 0m) = X Z 1c+(az5) ()
a . .A 5
C@:25)<R X._Ziimd X1-8 <peX

= Kk p#A -
+ X ol X deanm+ ) Y let@s

a __ meA 152
C@2)NIR#AD  \y1-92 _x X <n<X

. . . _ 82 _ 52 .
Re-inserting terms with m < X!=%" and n < X'~%°, we obtain

3 trom — LS 1m )
meA n<X
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= X

~ KA#HA .
Z 1o+ (a:5)(m) — Z 1o+ (a5 (1)

a _ |meA X n<X
C(a;28)CR
~ KA#A -
+ ) o X Teraam+ ) e 1c+(a;5)(n))
a _ meA n<X
C(a;28)NIRAD
#A
+0 Zl+0721. (9.3)
meA n<xl-2
msxl—é -

The final two terms above satisfy

#A :  #A S#HA
1 = 1« #AT 4« 7 9.4
> KA Yo l<#A 37 Cioex (9.4)
meA 5 n<xl-62
mSXl—(S -

We now consider the contribution to (9.3) from C(a; 28) N dR # . Since
R C [n, 11, we must have ¢; > 1/2 and since the coordinates of points in R
sum to 1 we also have Zf;ll ai <1—n/2.Since ic+(a;5)(n) and Ac+a.s)(n)
have the same support, which is restricted to integers with no factor less than
X% we have ic+(a;5)(n) <y (log X)_KAC+(3;,;)(n). Thus we have

~ KA#A ~
D v (m) + X D et ()
meA n<X

1 KA#A
<y Tog X)! (Z Ac+(a;s)(m) + e Z Ac+(a;a)(n)>

meA n<X

<1
= (log X)¢

KA#A
Z Ac+;s)(m) — X Z Ac+a:s)(n)
meA n<X

2 kyu#tA
EATZ ST At o) (1) 9.5
T o) X ; c+asa) (1) ©-3)

Here we used the triangle inequality in the final line. By the prime number
theorem, for any choice of a € [0, 2]5_1 we have

-1
Y Act@s () < > (l_[ log pi) Y. logpe
i=1

n<X PlaenPe—1 Pe<X/pr-pe—i
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< X Z l—[ 10ng

P Pe—1 =1
pie(X%, Xu,+§]

< 8 X 1og X))

Since R is a closed convex polytope, so is R C Rﬁ‘ !, Therefore there are
Or (8~ (=2 hypercubes C(a; 26) which intersect dR. Thus the contribution
to (9.3) from the final term of (9.5) is

A s-laA
< X(lo—gX)e Z Z Ao+ (n) € Tog X Z 1

a _  p<X a
C(a;28)NIR#W C(a;28)NOR#0D

s#A
log X~

< (9.6)

We now consider the terms with C(a; 28) < R.Since R € Qu(n),ife € R
thene; < --- < ey, s0if e € Rthene] < --- < ¢, ,. Therefore, since

C(a; 28) C R,

aj+8 <ajy forje{l, ... 0—2} (9.7)
Since Zle e, = land ey < e, fore € R, if ¢ € R then e < 1—
Zf;ll e;. Therefore, since (a1 +28, ..., a1 +28) € C(a; 26) R, we have

-1 -1

a;_1+28<1-— Zai —20—-2)8<1— Za,- —05. 9.8)
i=1 i=1

Together (9.7) and (9.8) imply that at most one term occurs in the summation
in Ac+a;s)- Thus for such C(a; 28), since the coordinates are localized, we
have

(I+ On(5))Ac+(a 5 (1)

Lo+ (a5 (n) =
@ (1= Y an (1) i) (log X)*
Ac+(a 5 (1) ~
— + 0,51 a; (n)). (9.9)
=yl ay (T apdogxf 1 cr@?
Thus

Z |Z To+(azs) (m) — KA;A Z To+ a8 ()

a _ |meA n<X
C(a;28)CR
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1 KA#A
n (log X)Z Z ‘ Z AC+(a;5) (m) - X Z Ac+(a;5) (n)
€A

a n<X
C(a:28)CR
~ KA#A ~
+3 Z Z Lo+ (a;s)(m) + ¥ Z 1c+(a;5)(")> . (9.10)
a _ \meA n<X
C(a:28)CR

Since any n = pj - - - p¢ contributing to the second term above is counted at
most once and has all prime factors at least X"/4, we have

Y (Z e+ (a;s)(m) + KA A > e 5)(n))

meA n<X

a
C(a‘25)CR
L 8S(A, X”/4)+8 S(B X4

< S#A
Tlog X'

9.11)

Here we used Lemma 7.4 and (5.2) in the final line. Combining (9.4), (9.5),
(9.6), (9.10) and (9.11), we find (9.3) is bounded by

1
T log X)° Z ‘Z Ac+ais)(m) — KA— Z Ac+a;s) (1)
C(@:28) RN <X
S#A
log X'

Thus to establish Proposition 7.2 it is sufficient to show that for any A > 0,
we have

#A #A
Z Ac+(azs)(m) = 5 Z Act@s)(n) + O,y ((l X)A) 9.12)

meA n<X

uniformly for every hypercube C(a; 8) of side length § with C(a; 28) N\ R # @.
Since ) ;.7 € [9/25+€,17/40 — €] if e € R, by taking J = T or
= {1,...,€})\Z, we must have that } ,_;a; € [9/25 + €/2,17/40 —
€/2] U [23/40 + €/2,16/25 — €/2] for some J < {l,...,£ — 1} for any
a such that C(a; 26) N R # @. Since R C [n, 11¢, we have min; ¢; > n/2
and Zf;ll a; < 1—mn/21if C(a;28) N'R # §. Thus all hypercubes under
consideration satisfy the assumptions on Ry of Propositions 9.1-9.3.

@ Springer



168 J. Maynard

By Fourier expansion we have

Z Ac+@.s)(m) = Z Sa ( > Sc+(a:5) (_Xb> .

meA 0<b<X

We split the summation over b into the sets M, [0, X)\(£ U M) and E\M,
where M is as given by Proposition 9.1, and £ is the set who existence
is asserted by Proposition 9.2. We then apply Propositions 9.1, 9.2 and 9.3
respectively to each set in turn. Let He+(0) = S4(0)Sc+a:5)(—0). For C in
the definition of M sufficiently large in terms of A and 7, this gives

1 b 1 b
S hcwam =5 3 e (3) vy 2 e ()

meA beM b¢EUM
b
+ E Z HC+ (§>
be&
bgé/\/l
#A
= KA_ Z AC+(a 5)(1@) + Ogp 0 ((1 X)A)
n<X
This gives (9.12), and hence completes the proof of Proposition 7.2. O

Since Lemma 7.4 follows from Proposition 7.1, which in turn follows from
Lemmas 8.1 and 8.2, we are left to establish Lemmas 8.1, 8.2, Propositions 9.1,
9.2 and 9.3.

10 Fourier estimates

In this section we collect various distributional bounds on the Fourier trans-
form

Sa®) =) e(ad).

acA

which will underpin our later analysis. In particular, we establish Lemma 8.1
and Lemma 8.2, as well as several other related estimates. Specifically,
Lemma 8.1 is a special case of Lemma 10.5, and Lemma 8.2 is the same
as Lemma 10.1.

We recall our normalized version of S 4(6) from (3.1)

Fy () = Yy~ 10g9/log10 Z 14, (n)e(nd)|.

n<Y
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We recall that we assume Y is an integral power of ten whenever we encounter
Fy to avoid some unimportant technicalities. In particular,

Fy(0) <1 (10.1)
for all 6 and Y. The key property of Fy which we exploit is that it has an
exceptionally nice product form. If ¥ = 10*, then letting n = 0 n; 10°
have decimal digits ny_1, ..., ng, we find

| k—1
Fr(©) = 5 Z (Z n; 10%)
no,....,ng—1€{0,....9}\{ao} i=0
k—1

1 .
=115 > emi100)

e(10'0) — 1
e(10i-19) —

— e(aOIOi_IG)‘. (10.2)

We note that Fy is perlodlc modulo 1, and that the above product formula

gives the identity
Fyy () = Fy(0)Fy (U9). (10.3)

(We recall that we assume that U and V are both powers of 10 in such a
statement.)

Lemma 10.1 (¢* bound, Lemma 8.2 restated) Let g < Y'/3 be of the form
g = q1g> with (g1, 10) = 1 and q1 > 1, and let |n| < Y 2/3/2. Then for any
integer a coprime with q we have

a logY
Fy|—+n) <exp|—c
q logg

for some absolute constant ¢ > 0.

Proof From the bounds coming from truncated Taylor expansions, we have
that

le(nf) + e((n + 1)0)|> = 24 2cosu ||0]) < 4 — 47 2||0]> + 4n*10]*/3
<4 —4[0)* < dexp(—[10]?).

We recall that || - || denotes the distance to the nearest integer. This implies
that

0 2
Yo emib)| <7+ 2exp(—[10]1>/2) < exp (‘ ”2(|)| ) '
n; €{0,...,9}\{ao}

@ Springer



170 J. Maynard

For the final inequality we used the convexity of exp(—x2). We substitute this
bound into our expression (10.2) for Fy, which gives for ¥ = 10%

k—1

Fy(t) = l_[é Z e(ni10'1)

i=0 " |n;€{0,....9}\{ao}

k—1
< exp (——lelo’tll )

If t = a/qi1q> with g1 > 1, (g1,10) = 1 and (a, ¢1) = 1, then |[107¢] >
1/q1q> for all i. Similarly, if t = a/q192 + n with a, q1, g2 as above, with
In| < Y=2/3/2 and with ¢ = q1g» < Y'/3 then fori < k/3 we have ||107¢| >
1/g —10'|n| > 1/2g. However, if | 10¢¢|| < 1/20 then ||[10:T1¢|| = 10]107¢].
Thus, for any interval Z C [0, k/3] of length log ¢ / log 10, there must be some
integer i € Z such that ||107(a/g + )| > 1/200. This implies that

k 2
210’( ) z%LIOgYJ.
= 10° [ 3logg

Substituting this into the bound for F, and recalling we assume ¢ < Y'!/3
gives the result. o

Lemma 10.2 (Markov moment bound) Let J be a positive integer. Let A; j
be the largest eigenvalue of the 107 x 107 matrix M;, given by

G, ..., ajp), ifi—1=Y7_1ap 1101 j—1=37_, ap10t!
(Mp)i,j = for someay, ..., ajy1 €1{0,...9},
0, otherwise,

e (ijo 11077 + 10y) —1
G(tg,...,t;) = sup

1
lyl<10=/-1 e (ZJ]-:O 1j1077=1 4 )/) —1

Then we have that
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Proof We recall the product formula (10.3) with ¥ = 10¥

k

1| e(10'0) — 1 -
Fy(0) = — | — - 10°7°0) |,
v (6) 1196004”—1 e(ag )
where we interpret the term in parentheses as 9 if [|[10°~16| = 0. Writing
0 = Zle ;107 for ; € {0,...,9}, we see that the (k — j)th term in
the product depends only on #;_;, ..., #. Moreover, the value of the term is

mainly dependent on the first few of these digits by continuity. Thus we may
approximate the absolute value of Fy(0) by a product where the jth term
depends only on ¢}, ..., t; 1 for some constant J. Explicitly, we have

1 e(ZJ tii—l—lOy)—l

k
li J=0 10/
A (i) <T1 s 5| o

i=1 i=1lyl=1077~ e (ijo Tor+T T J/) -1
‘o
i+J
—e aoz ToiH + aopy
j=0
k
=166, ....ten),

where we put #; = 0 for j > k.

With this formulation we can interpret the above bound in terms of the
probability of a walk on {0, ...,9, 00}*. Let r € R be given. Consider an
order-J Markov chain X, X5, ... where for a,ay,...,a, € {0,...,9} we
have forn > J

P(X, =alX,—i=a;forl <i<J)=cG(a,ay,a,...,ay)

for some suitably small constant ¢ (so that the probability that X,, € {0, ..., 9}
is less than 1). To make this a genuine Markov chain we choose the probability
that X,, = oo given X,,_1, ..., X,— to be such that the probabilities add up
to 1, and if X,, = oo then we have that X, 1| = oo with probability 1.

Then we have that

k t
aij
Fy (Z 101’—1)
i=1

<c"P(X; =arpgpiiford <i<k+J|X =---=X;=0).
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The sum (over all paths in {0, . . ., 9}%) of the probabilities of paths is a linear
combination of the entries in the kth power of the transition matrix restricted
to {0, ..., 9}. Thus such a moment estimate is a linear combination of the
kth power of the eigenvalues of this matrix. This allows us to estimate any
moment of Fy(a/Y) over a € [0, Y) uniformly for all £ by performing a
finite eigenvalue calculation. In particular, this gives us a (arbitrarily good as
J increases) numerical approximation to the distribution function of Fy.
Explicitly, let M; be the 107 x 10/ matrix given by

(My)i,
Gat,...,azp1)', ifi—1=30_1ap110 j—1=37_ as10!
= forsomeay, ...,ayj41 €1{0,...,9},
0, otherwise,

and let X, ; be the absolute value of the largest eigenvalue of M,. Since
G(t1,...,tj4+1) > Oforallsy, ..., t;+1, we have that M, is irreducible, and so
each eigenspace corresponding to an eigenvalue of modulus A; ; has dimen-
sion 1 by the Perron-Frobenius Theorem. Let (M;); ; = m; ;. By expanding
out the kth power, we have

k
(M;)i,; = E MMy Mgy, j-
i1yif—1€{0,...,107 =1}

We recall that m; ; = O unless thereis ay, ..., a1 € {0, ..., 9} such that

i—1=ay+10az +---+10"la; .,
j—1=a;+10a +---+ 10" 1ay.

Thus the product m; ;,m;, ;, - - -m;,_, ; is non-zero only if there are ay, ...,
arg+y €10, ..., 9} such that

j—1=a;+10a +---+ 10" lay,
it —1=ay+10a3 +--- 4+ 10" lay 4,

it — 1 =ag+ 10ar41 + -+ 10" a4y,
i—1=agp1 + 10ag= + - + 10" 'a 4.

If this is the case then we have

k
t
mi,ilmil,iz ce mik_l,j = 1_[ G(Cli, [777555 P a,-+J) .
i=1
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Thus, fixing i = 1 so thatay41 = -+ = aj4++ = 0, and summing over j, we
have that

107 —1

k
Z (M), = Z M1y Miyip » 0 Miy_y,
Jj=0

i1yeenig—1,j€{0,...,10Y =1}
t t
Y GGl

ai,...,ap€{0,...,9}
ak+1 ==ayy ;=0

105 —1 a \t
= 3 (i)

On the other hand, by the eigenvalue expansion of M;, we have

107 —1

D (M) <ig Ay
j=0

This gives the result. O
Lemma 10.3 (¢! bound) We have for any k € N

k
Z HG(Z[,.,,,[i+4) & 10271(/77‘
tef{0,...,9)k i=1

In particular, we have for Y1 < Y, < Y3

sup Z Fy, (,3+ ) < Y27/77

ﬂeRa<Y1

and

1
1
/FY(t)dt < y30/77°
0

Here 27/77 = 0.35 is slightly larger than 1/3, and 50/77 ~ 0.65.

Proof This follows from Lemma 10.2 and a numerical bound on X1 4. Specif-
ically, by Lemma 10.2 taking J = 4 we find

> H G, tix)) < Y (M{TH1; < My (10.4)

tef0,...,9)k i=1 J
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A numerical calculation? reveals that
A4 < 224190 < 10?777 (10.5)

for all choices of ay € {0, ..., 9}. Thus, letting ¥ = 10 we have )»]1‘?4 <
Y2777 which gives the first result.

For the second bound, let Uy = max(1, Y3/Y>). Since Y3 < Y;, we have
Ui < 1. Any a < Yj can be written as a = aj + Ujay + Y3as for some
0<a1 <U;«<1,0<a, <Y3/U; =min(Y3,Y2)and 0 < a3 < Y1/13 K
1. Since there are O (1) choices of a1, az and these can be absorbed into the
supremum over 8, we see that it suffices to show

a
w T ()

BER 4y <min(Y2,Y3)

Since Fy, > 0 we can extend the summation to a; < Y>. Thus without loss of
generality we may assume that Y| = Y» = Y3 = ¥ = 10X. We see that

k k—4
Fy (ZW + 77) < 11 (G(l‘i,...,t,-+4) + 0(101'71”))

i=1

k—4
=0+ 0, [[GGi.....t0a).  (106)

i=1
Here we used the fact that G(t;, ..., tj+4) is bounded away from O for all
t, ..., 1 €10, ..., 9}sinceitis the maximal absolute value of a trigonometric

polynomial over an interval. Since F is periodic modulo 1 we see that

k
ti
sup Z Fy 21—014—,3 sup Z Fy Zl_()’+n
BER (¢ nel0.Y e, ok i=1

.....

and so the second bound of the lemma follows from (10.6), (10.4) and (10.5)
on letting a = Zle t;/10". For the final bound we integrate (10.6) over
n € [0, Y_l] and sum over f1, ..., t € {0, ..., 9}, giving

1 Y—1 1/Y
fo Fy(t)dt = Z/O Fy(a/Y +mdn
a=0

2 A Mathematica® file detailing this computation is included with this article on arxiv.org.
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o)k i=1

<<— Z HG(tl,...,ti+4)

1

< yso777°

Lemma 10.4 (235/154th moment bound) We have that
# {O <a<Y: Fy <£> ~ l} « B235/154y59/433
B y/ B

Here 235/154 ~ 1.5 and 59/433 & 0.14. We recall that n ~ X means that
X/10 <n < X.

Proof This follows from Lemma 10.2 and a numerical bound for A235/154,4.
Explicitly, we take J = 4 and ¥ = 10*. By Lemma 10.2 we have

) a 1 235/154 235/154
#{O§a<Y.Fy(?) B} B Y F ( )

O<a<Y

235/154
< B>/ )‘235/1544
A numerical calculation’ reveals that
A235/154,4 < 1.36854 < 1059/433,

for all choices of ag € {0, ..., 9}. Substituting this in the bound above gives
the result. o

Lemma 10.5 (Large sieve estimates) We have

a q
sup Y _ sup Fy (— + B+ 77) L (I+49) <q27/77 + Y50/77> ’
BGRafq |n|<$8 q

2
sup D sup Fy (g +B+ n) < (1+50%) (Q54/77 + ysQom) ’

,BeRq<Q O<a<q [n|<éd
(a,q)=1

3 A Mathematica® file detailing this computation is included with this article on arxiv.org.
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and for any integer d, we have

4 8Q2 Q2 27/717 Q2
Y Y s A (2 1+ 2200 (£ —"
pek i< Y<‘1+ﬁ+n> <<< T ) < d ) Taysom

4=0 0<a<q
dlg (a.q)=1

Proof Foreacha < g, let |n,| maximize Fy(a/q + n) over |n| < §. Since the
fractions a/q are all separated from one another by at least 1/g, we have for
any ¢

a 1 1
#{afq: na+—e|:t——,t+—]}<<1+q8.
q 2q 2q

Thus, considering t = b/q — B, we see that
a b
> sup Fy (?1 + B+ n) <(+g8)) sup Fy (5 + n) . (107

We have that
t
Fy(t) = Fy(s) —I—/ Fj;(v)dv.
S

Thus integrating over s € [t — y, t 4 y] for some y > 0, we have

1 t+y t+y

Fy () < —/ Fy(s)ds +f |Fyy (s)lds.

YV Ji—y t—y

This implies that
t42y t4+2y
sup Fy(t +n) < —/ Fy(s)ds —I—/ |F{,(s)|ds.
t

<y V Ji-2y =2y

Taking y = 1/2q, we obtain

b
> s ()
b=q M=1/24 q
b/q+1/q b/q+1/q
<y (Q / Fy(s)ds + / IF{J(s)Ids)
b/qg—1/q b/q—1/q

b=q

1 1
< q/ Fy(t)dt +/ |F(,(1)|dt. (10.8)
0 0
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Writing U = 10" andn = > 01 n;10°, we see that

Z nlg(n)e(nt)|.

n<10“

, 2w
[Fy O] =5

Writing n = Z _0 nj 10/~! and using the triangle inequality, we have

IFU(t)I<—Z 1071 > njla(n)e(n;107r)

j=0 0<n;<10

< ] > 1ame(n;10't)

0<i<u—1|0<n;<10

i#]

u

<goswe [ | X tamemi10).
J=Mo<i<u—1]0<n;<10
i£]
We recall the function G from Lemma 10.2. Since G(¢1, ..., t1+y) is bounded

away from 0, we see that for n K U -1

! b

i=1

<UTT(GG...tis0) + 0(10D))
i=1

KWU+oWn|[[6w, ... 1m0
i=1

Thus, integrating over n € [0, U_l], taking J = 4, and using Lemma 10.3,
we obtain

/ ol < Y 166t <V (109)

tef0,...,9}* i=1

By Lemma 10.3 we have

1
1
/ Fy(0di < w777 (10.10)
0
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Combining (10.10), (10.9), (10.8) and (10.7), we obtain

a q
D sup Fy (_ ot 77) «(1+29) (U27/77 + 50/77) '
g Inl<s q U

Combining this with the trivial bound
Fy(t) < Fy(t)

for U <Y, and choosing U maximally subjectto U < g and U < Y gives
the first result of the lemma.

The other bounds follow from entirely analogous arguments. In particular
we note that for (a, g) = 1, ¢ < Q, the numbers a/q are separated from one
another by 1/Q?, and those with d|q are separated from each other by d/Q?,
so we have the equivalent of (10.7) with 8¢ replaced by § 0% or § 0?/d and
In| < 1/2q replaced by || < 1/2Q% or [n| < d/2Q*. O

Lemma 10.6 (Hybrid Bounds) Let E > 1. Then we have

a 2w, 4E
F - + E + ’
> X Y (q ’7> < (GE) y50/77

a=q |n|<E/Y
(n+a/q)Y€eZ

2 27/77 2
a Q°E Q°FE
S Y X ae)<(5) o
g<Q a=q  |n|<E/Y

dlg (a,9)=1 (n+a/q)Y€Z

In the above lemma, we emphasize that a, ¢, d are all integers, bu the sum-
mation over 7 is over real numbers which are well-spaced from the condition
Y(n+a/q) € Z.

Proof We first note that the summand a/q + n runs through fractions b/ Y with
|b| < E+Y since we have the condition (n+a/q)Y € Z.Each fractionb/Y is
represented O (1 +min(gE/Y, q)) times, since if a1 /q +n1 = az/q +n then
ay =a1+0(qgE/Y)and n; isdetermined by a1, az, n1. Thereare O(14+E/Y)
choices of b giving the same fraction (mod 1), and since Fy is periodic (mod 1)
these all give the same value of Fy(b/Y). Thus we may consider only b < Y
with each fraction /Y occurring O((1 + E/Y) min(gE/Y, q)) times. Thus
we see that if 10g £ > Y then

a . qFE E b
> Fy (;+n> « min (7,q) (1 +?> > Fy (?)
a<q |n|<E)Y 0<b<Y

(n+a/q)YeZ
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qE b
= Fr(<).
<5 ZY Y(Y)

0<b<

In this case the result now follows from Lemma 10.3. Thus we may assume
qgFE < Y/10.
Using the product formula (10.3), we have for ¥ > UV powers of 10

Fy(©0) = FyO)Fy(UO)Fy,uyv(UV0O).

We also have the trivial bound Fy(U8) < 1 of (10.1). For UV < Y and
[n| < E/Y these give

a UVa a
Fy (—+77) < Fy,uv (—+UV77) sup Fy (—+y).
q q lVISE/Y q

We choose V and then U to be the largest powers of 10 such that V < Y/qFE
and U < Y/V E. Note that this choice gives U, V > 1 since g E < Y /10 and
q, E > 1. Thus

= ale)

a=q |n|<E/Y

(n+a/q)YeZ
a UVa
<Y sup Fy (—-i—)/) > Fruov <—+UV77>
a=q IVI=E/Y N4 nl<E/Y 4
(n+a/q)YeZ
< X130,

where

a
21=Z sup FU<—+J/>,

Sp=sup Y Fyyv (UVB+UVp)
BER 1pi<E/y
Y(n+B)eZ
UVa
< sup Z Fy,uv (,3/4- Y )
P'eR y<2F

Since we chose U and V maximally, we have V > Y/10gE,soq/100 < U <
10g. Since g E < Y /10, we may extend the supremum in X7 to y < 1/10q
for an upper bound. Thus, by Lemma 10.5 we have
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Y < q27/77.

Similarly, since Y/UV < E, by Lemma 10.3 we have
%, < EXTT.

Putting this together gives the first result.

The second bound follows from an entirely analogous argument. We first
split the argument depending on whether Q?E /d > Y /10 or not, and use the
final bound of Lemma 10.5 instead of the first bound to handle X». O

The argument giving the first bound of Lemma 10.6 is essentially sharp if the
¢! bounds used in the proof are sharp and if ¢ is a divisor of a power of 10 or if
QE > Y.When QFE < Y'~€ and g is not a divisor of a power of 10, however,
we trivially bounded a factor Fy (U (a/q + n)) by 1 in the proof, which we
expect not to be tight. Lemma 10.7 below allows us to obtain superior bounds
(in certain ranges) provided the denominators do not have large powers of 2
or 5 dividing them.

Lemma 10.7 (Alternative Hybrid Bound) Let D, E, Y, Q1 > 1 be integral
powers of 10 with DE < Y. Let g1 ~ Q1 with (q1,10) = 1 and letd ~ D
satisfy d|10% for some u > 0. Let

S = S(d, qi1, QZa E? Y)

a
- X T A,
@~02  a<dqiq <E/Y 7192

(92,10)=1 (a,dq192)=1 (n+a/q1q2d)Y €Z

Then we have

E5/6D3/2Ql Q2

27/77 241721 2

In particular, if g = dq’ with (¢', 10) = 1 and d|10" for some integer u > 0,
then we have

5/6d3/2
Z Z a 271777 121 , E q
FY<5+T])<<(dE) q +W

a<q  |n|<E/Y
(a.9)=1 (n+a/q)YeZ

For example, if (g, 10) = 1 and gE is a sufficiently small power of Y,
then we improve the first bound (¢ E)?"/"7 of Lemma 10.6 in the g-aspect
to E27/7741/21 This improvement is important for our later estimates.
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Proof Choose E’ < E and D’ < D with E’, D" > 1 integral powers of
10 such that E'D’ < Y. Let V be the largest integral power of 10 such that
V2 <Y/D'E’.Since D'E’ <Y we have that V > 1. Let d = did»d3 where
d3 = (d, D/) and d2d3 = (d, VD/).

By the periodicity of F modulo one, the fact (192, d) = 1, and the Chinese
remainder theorem, we have

2 2 fr (dqcin " n)

a<dqiqz m<E/Y
(a,dq192)=1 (n+a/q1q2d)Y €Z

=YX YYYXryX XA

a/<q1q2 b1<d) by<dy by<dy In|<E/Y
(@ .q1q2)=1 (b1+d1br+d1dab3,d)=1

a by by b3 >
X + + +—=+n), (10.11)
(Cllqz didrdy  dydy  ds
where the dash on Z’ indicates that 1 is summed over all reals satisfying
a, bl b2 b3 )
n—+ + + +—=1]Y eZ.
( q1q92  didrds  dodzy  d3

By (10.3), we have Fpipy2(t) = Fp/(t)Fy2(D't)Fp(D'V?t). Since
D'E'V? < Y,wehave Fy(t) < Fp/gy2(t). Thus, since F is periodic modulo
1 and d3|D’ and d>d5|V D', we have

F(a/—l- b +b2+—b3+>
n
"N " didads " dods " ds

b
< Fp (B + D/Vzn) sup Fp <,32 + £ + )/) Fy2(D'B2+ D'y),

lyI<E/Y
where
a by a by by
| =D'V? ( + ) : 2 = + + -
d q1q2  didrd; q1q2  didxds  dods

Moreover, by (10.3) and Cauchy—Schwarz, we have

Fy2(0) = Fy(0)Fv(V0) < Fy(0)> + Fy(VO)>.

Since drd3| D'V, this gives
Fy2 (D'fy+ D'y) < Fy (D'pa+ D'y)> + Fy (B3 + D'Vy)’.
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where
D'Va'  by(D'V/dyds
5 | DDV [dads)
q192 d
These give
)SEED I I DI M e
a'<qiqy  bi<dy ba<dy bz<d; |n|<E/Y
(@' .q192)=1 (bi+dibr+didrb3,d)=1
by b3
+—+—+) T+ iz,
dods "y 1) SRt s
where

Si=sup Y Fg(D'V’B+D'Vy)
BER |p<E/Y
Y(n1B)eZ

2
< sup ZFE/(,B-i-DV >

B e]Ra<2E

IED DD DD DD DI FD/<ﬂ2+Z—§+

a'<qiq2 bi1<dy ba<dy bi<dy lyI<E/Y
(@’.q192)=1 (b1+d1b2+d1d2b3,d)=1

x Fy (D'f2+ D'y)’
=), ) ) ). sw FD/<ﬁz+Z—3+

a<qq bi<d) by<dy by<ds [YISE/Y
(@,q1q2)=1 (bi+d1by+didrb3.d)=1

x Fy (B3 + D/VV)z-

—_—~

/)
/)

Since (d1dad3, D') = d3 and (q1¢2,d) = 1, as d’, by and b, go through all
residue classes (mod g1¢q»2), (mod d1) and (mod d>) respectively subject to
(d, q192) = (b1+d1by, d\dy) = 1, we see that D’ B, goes through all values of

c/q192d1dy (mod 1) for 0 < ¢ < q1q2d1dy with (¢, q1g2d1dr) = 1,

and each

value is attained exactly once. Similarly, since (d d>d3, D'V) = dpds, we see

that B3 goes through every value of ¢/q1g2d; (mod 1) with 0 < ¢

< q1q2d;

and (c, q192d1) = 1 exactly once as a goes through the values (mod q142)

and b goes through the values (mod d) with (a, g192) = (b1, d1)
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Thus we have
| K %3,
T € T4%s,
where

b
22=supz sup FD/(—3+,3+J/),
BER i, IVI<E/Y d3

2
Y3 = Z sup Fy <L + D/V> ,

did
a1 <drdaqi a2 ly|<E/Y 1429192
(a1,d1d2q192)=1

b/
X4 = sup Z sup FDr< +,3+)/),

ﬁeRb’<d2d3 lYISE/Y d2d3
2
a
Y5 = Z sup Fy <d 2 + D/V)/) .
ax<diq192 lyIsE/Y 19192
(a2,d19192)=1

We note that only ¥3 and X5 depend on ¢>. Thus, summing over g» ~ Q>
with (g2, 10) = 1 we obtain

> > R (Ld + n) < 31 (Z23% + 43D,

@~02  a<dqiq n<E/Y 142
(92,10)=1 (a,dq192)=1 (n+a/dqi1q2)Y€Z

(10.12)
where X1, X5 and X4 are as above and Zg and Zg are given by
aj 2
ST SR SN R
@~01  ar<didagiqy 1VISE/Y 1929192
(92,10)=1 (a;,d1d2q192)=1
2
a
= Z Z sup Fy (d 2 +D’Vy> .
@~0r  ax<diqiqz lvI<E/Y 19192
(92,10)=1 (a2,d19192)=1
Since Y/D'V? < E = E’, by Lemma 10.3 we have
¥ < EYT (10.13)

We have dhds < d < D and DE K Y, so E/Y < 1/dyds;. Thus, by
Lemma 10.5, we have
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S<d;, (10.14)

T4 K (o). (10.15)
We are left to bound X and X, which are very similar. Let

Y =%(q1,d1, do)

- ¥ 3 sup  Fy (L—I—y)z.

@~02 ar<didaqiq2 ly|=D'EV/Y didxq1q2
(q2,10)=1 (a1,d1d2q192)=1

We note that X(q1, di, d>) is the same as X} except we have increased the
range of the supremum, and so we have 2§ < ¥'(q1,d, d2). Moreover, we
see that X is a special case of X’ with d = 1, so X = X'(q1,d1, 1). Thus
it will suffice to get suitable bounds on X'

Since Fgr(0) > Fy(@) for R < V, we may replace Fy with Fr where
R = 10" is the largest power of 10 less than min(V, d1d» Q1 Q%). SinceR <V
and D'EV /Y « 1/V,we seeall quantities y occurring in the supremum are of
size atmost O (1/R). Given any choice of reals 0, 4, < 1/R fora < didxq19>
and g» ~ QO with (a, d1d>q1q2) = 1, the numbers a/didxq1q2 + 14,4, can
be arranged into O (d1d> Q1 Q% /R) sets such that all numbers in any set are
separated by > 1/R. (Recall that r is chosen such that R < d;d>Q Q%.)
Thus, as in the proof of Lemma 10.5 (specifically the argument leading up to
(10.8)), we find that

2

a

D S S A YT
p~0r  a<didrgrgy MKI/R 1029192
(q2,10)=1 (a,d1d2q192)=1

1 d1dr 01035 (!
< didr 0103 /O Fredi D221 /0 FL(@)|Fr(t)dt.

By Parseval we have

1
1 1
2. § —
A FR(Z) dt—@ 1_9_r’

acA
a<R
and
1 2r
1 10
/ 2 _ § : 2 2
/(; FR(t) dt—@ 4“a < 9r .
acA;
a<R
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Using Cauchy—Schwarz and the above bounds, we obtain

1 1 1/2 1 R
f |Fp(t)| Fr(tdt < ( f F;ga)zdz) ( f FR(r>2dz> <5
0 0 0

Putting this together gives

did» 0103

/
Y

We recall that R = 10" ~ min(V, dlszlQ%) and V = (Y/DE)I/Z, and note
that 20/21 < log9/log 10. This gives

y \—10/21
Y < (d1d2 010" +did2 0103 (ﬁ> : (10.16)

This gives a bound for X} since £} < %', and we obtain an analogous bound
for Zg with dy replaced by 1. Combining (10.16) with our earlier bounds
(10.13), (10.14) and (10.15) and substituting these into (10.12) gives

> X X A(ia+se)
@~02  a<dqiq n<E/Y
(q2,10)=1 (a,dq192)=1 (n+a/dqiq2)Y€Z

y \ 1021
< EFT (027/77(Q1Q%>”21 +0103D <ﬁ> :

Simplifying the exponents by noting 1 + 10/21 < 3/2 and 27/77 4+ 10/21 <
5/6 then gives the result.

The second statement of the lemma is simply the case when Q> = 1 and
q =dqi. O

We see that Lemma 8.1 follows immediately from Lemma 10.5, and
Lemma 8.2 is the same as Lemma 10.1. Thus we are left to establish Proposi-
tions 9.1, 9.2 and 9.3, which we do over the next few sections.

11 Major arcs

In this section we establish Proposition 9.1 using the prime number theorem
in arithmetic progressions and short intervals, making use of Lemma 10.1.

Proof of Proposition 9.1 We split M up as three disjoint sets
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where

X q

C
M1={ae/\/l: a ”‘<M

for some b, g < (logX)C, q J[X},

b
My = {ae/\/l:%z——i—vforsome b, qg(logX)C,
q

C
41X, 0 < |v|s@}

k]

b
Ms = {aeM :%:—forsome b, g < (log X)°, qIX}-
q

By Lemma 10.1 and recalling X is a power of 10, we have

sup
aeM;

Sa (%)‘ = #Aail/l\l/)ll Fx (%) & #Aexp(—y/log X).

Using the trivial bound Sz, () < X(logX )¢, where ¢ < 2/n and noting
#M; < (log X)3C, we obtain

1 a —a #A
ya;l Sa (}) Sk, (7) €C Gog X0 (11.1)

This gives the result for M.
We now consider M. Recalling the definition of Ry, we have that for
n<X

£
ARy (n) = > [Tlogpi= > Actmlogp,
i=1

n=pi--pe n=mp
pje(X“j,Xa.fH]for j<t p>X"/4
pe= X4 x1-Xia;—t8 p=X1-Xiai=t

(11.2)
where C = (ay, a; + 8] X - -+ x (ag—1, ag—1 + 8] is the projection of Rx onto
the first £ — 1 coordinates. We note the crude bound

-1

3 Aclm) _ 3 P « ogx)!. (11.3)

m
m<X p<X

Let A = [log X]7'0¢~10¢ We note thatifa € M thena/X = b/q+c/ X for
some integers b, g, |c| < (log X)€ (cisan integer since ¢|X for the set M»).
We separate the sum Sr, (a/X) by putting the prime variable p occurring
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in (11.2) in short intervals of length Ax/m and in arithmetic progressions
(mod ¢). We note that A¢ is supported on m < X2i@+(E=Dd o x1-n/3 ¢4
we can drop the constraints p > X"/4, X1=2i 4~ at the cost of some terms
with mp < X1=7/12 4 X1=% Thus we have

sup S, (%) = sup Z Ac(m) Z (log p)e <a§p>

aeMy

aeMz iy p<X/m
+ 0, Y (ogX)
pm<X'1-n/124x1-5
= YCny (log X)*C
g—1
+  sup D MmN
q;(?:gs)?)c m<X1=1/3 r=00<j<a~!

0<|c|<(log X)€

b c
X lo -+ — .
. Z ( gp)e(mp(q—i—x))
peljAX/m,(j+1)AX/m)
p=r (mod q)

Ifmp =jAX + O(AX) and p = r (mod ¢g) we have

(0 (G +5)) =< (55 C
el\mp|—+ — =e|—)e(jcA)+ O(A(log X)~).
qg X q

By the prime number theorem in short intervals and arithmetic progressions
(5.1), form < X'77/3 and (r, ¢) = 1 we have

1 AX Lo < AZX >

> ogp=——+0Ocy

peljAX/m,(j+1)AX/m) m¢(q) me(q)
p=r (mod q)

Thus
S a
an 55, (2)
aeMj X X

=AX sup Z nAqZ)((’Zi Z e(br_m) Z e(jAc)

b=q cm<X1=n/3 I<r<q g I<j<A-l
quog gc r.q)=1
c=<(log

+0 X
<1\ (log X)*C )
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Finally, since ¢ € Z and ¢ # 0 and A~ € Z, we have

Y e(jAc) = —e(c) = —1=0().
I<j<A-l
Using (11.3), this gives
a c Ac(m) X
sup Sry <§> <K AX(log X) Z - + Oc,y ((lo—

4C
aeM, m<X1-n/3 gX)

<<C,n (114)

(log X)4C"
Note that in the above argument for us to be able to save an arbitrary power of
log it was important that we are counting elements with weight A, (n) rather
than 1%, (n), and that Xv € Z fora € M.

Using the trivial bounds S4(8) < #A and #M; < (log X)3¢ along with
(11.4), we obtain

1 Z SA( )SRX (%) < (IOZ—“;)C. (11.5)
aeMz

Finally, we consider M3. By the prime number theorem in arithmetic pro-
gressions as above, we have for (r, ¢) = 1 and ¢ < (log X)€ that

X Ac(m) _X
Z A'RX (7’[) - d)(q) Z m + On,C ((log X)4C)

m<X1-n/3

n<X
n=r (mod q)

X
¢< 2 Arx(m) + Onc (<logX)4C>'

n<X

Thus, for (a,q) =1

Sk (f> -y e(ﬂ) o A

q 0<r<gq q n<X
n=r (mod q)
ar X
ARy (n) e(—) + 0, (—)
¢<)<,§( Rx ) 0;@ q "<\ (log X)4°

(r.g)=1

©(q) < X )
=N Ar () + 0
¢(q>,§( R On | Gog xyic
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Since u(g) = 0 for ¢|10¥ = X unless ¢ € {1,2,5, 10}, using the trivial
bounds #M3 < (log X)?€ and |S4(a/X)| < #A, we obtain

—dad
—_ Z S.A( )SRX (7)
1 b —b #A
B §0<§<:1OSA (10> Ry ( 10) + Oca (aog X)C)
#A
Z Z AR’X (I’l) + OC,U ((1 X)C)

meA <X
n=m (mod 10)

10 (1 #A
=500 <§’§Amm)> #{me A:(m, 10) =1} + Oc, ((log—X)C)

#A #A
= KA Z Ary(n) + Oc,y <(1 X)C) (11.6)
n<X
Thus (11.1), (11.5) and (11.6) gives the result. O

Remark We have only needed to use the prime number theorem in arithmetic
progressions when the modulus is a small divisor of X, and so has no large
prime factors. This means that our implied constants can be taken to be effec-
tively computable since for such moduli we do not need to appeal to Siegel’s
theorem.

12 Generic minor arcs

In this section we establish Proposition 9.2 and obtain some bounds on the
exceptional set £ by using the distributional estimates of Lemma 10.4.

Lemma 12.1 (¢? bound for primes) We have that

X
#{0 <a<X: ‘SR <%>| ~ E} &« C?*(log X)),

Proof This follows from the £ bound coming from Parseval’s identity.
#lo<a<x ‘S (a)‘> X <<CZZ|S <a>|2
a<X: — — — —
= X/ =0c ] T x2 & PR X
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&« C?(log X)),

Lemma 12.2 (Generic frequency bounds) Let

a 1

Then

#5 << X23/4O_6,

and

Proof The first bound on the size of £ follows from using Lemma 10.4 with
B = X?3/30 and verifying that (23 x 235)/(80 x 154) 4+ 59/433 < 23/40.
For the second bound we see from Lemma 10.4 that

ZFX(%) < Z:O #{O§a<X: FX<%>N2<;}

ac >
2 <X23/80

< Z 2(235/154—1)] y59/433

Jj=0
2] <x23/80
« X9/433+23x235/(80x154)~23/80

and so the calculation above gives the result.

It remains to bound the sum over a ¢ £. We divide the sum into O (log X )2
subsums where we restrict to those a such that Fx(a/X) ~ 1/B and
|Sr(a/X)| ~ X/C for some B > X?3/80 and C < X? (terms with C > X?
makes a contribution O (1/X)). This gives

1 a —a
L3 [r () e (5
X X R(X)‘
a<X
agé
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(log X)? 1

< s Sy a5 ()4
xs30.p X = \x/) 7"\ x X2
1<C<x2 Fx(a/X)~1/B

Sr(—a/X)~X/C

We concentrate on the inner sum. Using Lemmas 10.4 and 12.1 we see that
the sum contributes

< X 4 F (a) 1 S —a X
_— a . — |~ —, —— ~ —=
BC \x) B "R\ x C
X (log X)) min (Cz Bz35/154X59/433)
BC ’
X59/866
1+4€

<y X B73/308"

Here we used the bound min(x, y) < x'/2y!/2 in the last line. In particular,
we see this is 0, (X'72€) if B > X230 on verifying that 23/80 x 73/308 >
59/866. Substituting this into our bound above gives the result. O

13 Exceptional minor arcs

In this section we reduce Proposition 9.3 to the task of establishing Proposi-
tions 13.3 and 13.4, given below. We do this by making use of the bilinear
structure of A, (n) which is supported on integers of the form nn, with ny
of convenient size, and then showing that if these resulting bilinear expressions
are large then the Fourier frequencies must lie in a smaller additively struc-
tured set. Propositions 13.3 and 13.4 then show that we have superior Fourier
distributional estimates inside such sets. Thus we conclude that the bilinear
sums are always small. To make the bilinear bound explicit, we establish the
following lemma, from which Proposition 9.3 follows quickly.

Lemma 13.1 (Bilinear sum bound) Let N, M, Q > 1 and E satisfy X°/* <
N < x4 0 < x1/2, NM < 1000X and E < 100X'/2/Q, and either
E>1/XorE=0.Let F =F(Q, E) be given by

b
F:{a<X: %:—+vf0rs0me(b,q):1withq~Q,vNE/X}.
q

Then for any complex 1-bounded complex sequences oy, By, Yo we have

> D F (a) B (_anm) < X (log X))

X\3 ) %% PmVal 10 °

acFNE n'v]/t//l X X (Q + E)G/
m~
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Proof of Proposition 9.3 assuming Lemma 13.1 By symmetry, we may ass-

ume that 7 = {1,...,£,} for some £; < {. By Dirichlet’s theorem on
Diophantine approximation, any a € [0, X) has a representation

a b n

—_ = — v

X q

for some integers (b, ¢) = 1 with ¢ < X'/? and some real [v| < 1/X!/?q.
Thus we can divide [0, X) into O(log X)? sets F(Q, E) as defined by
Lemma 13.1 for different parameters Q, E satisfying 1 < Q < X!/2
and E = Oor 1/X < E < 100X'2/Q. Moreover, if a ¢ M then
a € F = F(Q,E) for some Q, E, with Q + E > (logX)C. Thus, pro-
vided C is sufficiently large compared with A and 7, we see it is sufficient to
show that

1

#A

RCERAZEN

3 sa (%) Sry <_7“> (13.1)

acFNE

From the definition (9.1) of Ar, and shape of Rx given by Proposition 9.3,
we have that forn < X

Ary(n) = > AR, (n1) AR, (n2) log p.,

ninyp=n
xn/4 x1-Yia-t<
where R is the projection of Ry onto the first £; coordinates, and R is the
projection onto the subsequent ¢ — £; — 1 coordinates.
Since ny, ny, p and X are integers, |log (X — 1/2)/ninap)| > 1/X.
Thus, by Perron’s formula (see, for example, [10, Chapter 17]), we have for
ni,np, p<X

1/log X+ix* ( 1/2) 1+0(X™2), ifninap < X,
(Zm) 1/log X—i X4 ninyp s 0(X™?), otherwise.

We will use this to remove the constraint n = nin2p < X in Sg, (—a/X).
We first put ny, na, p into one of O (log X)3 intervals of the form (Y /10, Y],
and then apply the above estimate. The O (X ~2) error term trivially makes a
negligible contribution to (13.1). Thus, we see that for C sufficiently large, it
suffices to show uniformly over all s with f(s) = 1/log X and all choices of

Ni. Na. P with N{N>P < 1000X and P > X!~XiZ1 @i~ that

1 a AR, (n)AR,(n2)c, (—anmp #A
X Z SA<§>Z njnjp’ < X ><<(Q+E)€/15’

aeFNE ni~Np
ny~Ny
p~P
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where ¢, = logp if p > X4 x1=2i 4~ and 0 otherwise. (The integral
over s and the choices of Ny, N,, P contribute a factor of O(log X )4, which
is acceptable for establishing (13.1) if C is sufficiently large.)

4 4
Since Ag, (n1) is supported on ny € [Xzill i xXiti 4i+t8] and AR, ([n2)
-1
is supported on n, > XZ‘W 4 we only need to consider NN, P > x!1-t

' 14
and Ny € [XZit1@ | xXiliai+e/6] Byt, by assumption,

i C[O L €17 €] B 16
a. N _’___ N _’___’
— 25 2740 2 40 2°25 2

soeither Ny or Np P liein [X%/?%, X17/40] Since AR, (1), Ar,(n2),log p <
(log X)“~1, for C sufficiently large in terms of £ we see that it suffices to show
that

1 a —anm #A
X Z Sa (;) Z oy Z Bme (T) < W (13.2)

aceFNE n~N m~M

uniformly over all choices of N e [X%/?, X!7/40] and M < 1000X/N
and uniformly over all 1-bounded complex sequences «;,, B,,. (Setting o, =
Ar,(n)/(log X)* and By = 3,1, pepnyn, ARy (n2)cp/(log X)* gives
the bound when Zf‘zl a; € [9/25 + €/2,17/40 — €/2]; the other case is
analogous with «,, and 8, swapped.)

Finally, let y, be the 1-bounded sequence satisfying S4(a/X) = #Ay, Fx
(a/ X). After substituting this expression for S 4, we see that (13.2) follows
immediately from Lemma 13.1 for C sufficiently large in terms of »n, thus
giving the result. m|

Thus itremains to establish Lemma 13.1. The key estimate constraining Fourier
frequencies to additively structured sets is the following lemma.

Lemma 13.2 (Geometry of numbers) Let Ko be a sufficiently large constant,
lett €e R3with ||t|p=1andlet N > 1> 8 > 0. Let

R={veR: |Vl <N, |v-t| <6}

satisfy #RNZ> > §K N? for some K > K. Then there exists a lattice A C 7>
of rank at most 2 such that

SK N2
#Hve ANR) > )
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If a cuboid R C R? of volume V lies in a the region |z| < e, then it can easily
contain rather more than V lattice points from the plane z = 0. Lemma 13.2
says that such a situation is essentially the only way a cuboid can contain
many lattice points; if any cuboid has substantially more than V lattice points
in R N Z3, then these lattice points must come from some lower dimensional
linear subspace. The region R which we are interested in is a slightly thickened
disc through the origin in the plane orthogonal to t.

Proof of Lemma 13.2 Let ¢ : R} — R3 be the linear map which is a dilation
by a factor N/§ in the t-direction (i.e. ¢p(v) = v + t(N/§ — 1)(v - t).) Let
A1 = ¢(Z*) c R3 be the lattice which is the image of Z> under ¢. Since the
determinant of a lattice is the volume of the fundamental parallelepiped, we
see that det(A1) = N/4.

Let {v1, v2, v3} be a Minkowski-reduced basis of A{. We recall that this
means that any v € A can be written uniquely as n1vy + navy + n3vs for
some ny, ny, n3 € Z, and for any ny, np, n3 € Z we have

3

[n1vi + nava + n3vs|2 < Z nivill2,
i=1

and that ||vi[]2]v2ll2]|v3ll2 < det(A1) = N/&. Without loss of generality let
Ivill2 = Ivall2 = lIv3ll.

We now notice that any element of R N Z? is mapped injectively by ¢ to an
element of {x € A1 : ||x]l2 < 2N}. Thus for a sufficiently large constant C,
we have

3

E njvj

i=1

3
neZ: Znin’ eqS(R)] C {neZ3:

i=1

<o
2

N
g{neZ3:|ni|§C }
Ivill2

If ||v3]l» > CN, then there are no n € Z> counted above with n3 # 0. If
instead ||v3|[> < CN then since ||vi]2 < |[v2]l2 < ||v3]]2, the number of n is

C3N3 < N3
[T, Ivilla — det(Ap)

< < SN2

Thus in either case there are O (§ N?) points with nz # 0. However, by assump-
tion of the lemma we have that K is sufficiently large and

SKN? <#{xeZ’NR)=#{x e A : x € dp(R)}.
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This means that most of the contribution must come from terms with n3 = 0.
Indeed, we have

#{(n1,n2) € Z2 - mvi +nmava € $(R))
=#{xe A : ¢(x)eR})— OBN?)
> 8KN* — O(8N?).
We may choose K such that if K > Kj then the right hand side is at least

8K N?/2. Thus, we see if A is the lattice ¢! (v{)Z + ¢~ (v2)Z then A C Z>
and

#{ve ANR} > SKN?/2.

O

We establish Lemma 13.1 assuming two key propositions, Proposition 13.3
and Proposition 13.4, given below. These propositions will be proven over the
next two sections.

Proposition 13.3 (Bound for angles generating lattices) Let X, K, N, Q > 1
and 8 > 0, E > 0 satisfy X'"/%0 < NK, § > N/X, E < 100X'?/Q and
0 < XY2 Let By = Bi(N, K, 8) C [0, X)? be the set of pairs (a1, ay) € Z?
such that there is a lattice A C 7> of rank 2 such that

#{ne A |nja; +naay +n3X| < 8X, |nf2 < N} > §KN?,

and not all of these points lie on a line through the origin. Let F = F(Q, E)
be given by

b
f={a<X: ﬁ=——i—vforsome(b,q)z1withq~Q, |v|~E/X}.
q

e

Then we have

a a log X)> X
> m(R)m(F)< (é -EE))E/“ NK
(ar,a2)€eB1(N,K,8)
ap,areFNE

Proposition 13.4 (Bound for angles generating lines) Let N > X%/?3 § >
N/X and K > 1. Let B, = B»(N, K,$§) < [0, X)? be the set of pairs
(a1, ap) € 72 such that there exists a line L through the origin such that

#{ne LNZ:|nja +nar +n3X| <8X, |n|» < N} > SN?K.
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Given B < X?3/80 let &' = £'(B) be given by

e =fa<x:me(5)~ 5/

Then we have

(a1,a2)€B2(N,K,5)
a1,a2€5,

Proof of Lemma 13.1 assuming Propositions 13.3 and 13.4 We split £ into
O (log X) subsets of the form

& =¢&(B) = {a € [0, X) : Fy <%> ~ l}

for some B € [1, X?3/80]. By Cauchy-Schwarz, we have

R % e () <5

aeFNE n~N
m~M
where
X
Si= ), Bl <
m&X/N
2
a —anm
.- ()
= LT T (g)e(7F")
m<X/N laeFNE n~N
= Z FX(X)FX< ) Z anlanzyalyaz
ap,apeFNE’ ni,na~N
m(ajny — axny)
X
> (mem men)
m<X/N
< X n(§)a(E) T om(y]emge
\x/) X\ N’ X ‘
ay,apeFNE’ ni,np~N

Thus it suffices to show

> (§)n(E) X (),

ay,apeFNE’ ni,nay<N

ainy —daxnp
X

)
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NX (log X)0M
(Q + E)/5

’

provided X°/% < N < X740, 0 < X'/ and E < 100X'/%/Q.
Let G(K) denote the set of pairs (a1, az) € F N E such that

X —1
Z min (-, ) ~ N’K.
N

ny,na<N
We consider 1 < K < X/N taking values which are integral powers of 10, and
split the contribution of our sum according to these sets. We see it is therefore
sufficient to show that for each K

ap a» X (log X)O(l)
Y (R (3) < (0 + E)ANK
(a1,a2)€G(K)

ay,areFNE’

niap —naaz
X

Let G(K, 8) denote the set of pairs (aj, az) € F N E’ such that

nia; — nyay — n3X
X

#{neZz’:

<38, ||, < 10N} > SN?K.

By considering § = 27/ and using the pigeonhole principle, we see that if

X —1
Z min (—, ) NNZK,
N

ni,na<N
then there is some § > N/X and some K/log X <« K’ < K such that

niay —naaz
X

(a1, a2) € G(K', 5).

Thus is suffices to show for all K’, § that

ai a» X (log X)0M
> F(y) e (R) < (0 + EY¥SNK’" (133
(a1,a2)€G(K’,5)

ai,ayeFNE'

From Lemma 12.2, we have the bound

2
a1 a2 ai 23/40—2¢
P @) ()« (2 (@)«
> Fx(3)Fx(x) <[ X (%)) <
(a1,a2)€G(K",8) ae&’
ay,areFNE’
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198 J. Maynard

which gives (13.3) in the case when NK’ <« X17/40+€_ Thus we may assume
that NK’ > X 17/40+¢ By assumption, we also have that N < X174 50 we
only consider K’ >> X€. In particular, we may use Lemma 13.2 to conclude
that either there is a rank 2 lattice A C Z3 such that

#{ne A : |n|p < 10N, |n1a; +npar +n3X| <6X} > 8K’N2/2,

and not all of these points lie on a line through the origin, or there is a line
L C 73 such that

#{ne L : ||n|, < 10N, |nja; +nyay + n3X| <X} > SK/NZ/Z.

In either case (13.3) follows from Proposition 13.3 or Proposition 13.4 (taking
‘N’ and ‘K’ in the propositions to be 10N and K’/1000 > 1 in our notation
here). |

Thus it remains to establish Propositions 13.3 and 13.4.

14 Lattice estimates

In this section we establish Proposition 13.3, which controls the contribution
from pairs of angles which cause a large contribution to the bilinear sums
considered in Sect. 13 to come from a lattice. A low height lattice A makes a
significant contribution only if (a1, az, X) is approximately orthogonal to the
plane of the lattice, and so only if (a;, a2, X) lies close to the line through the
origin orthogonal to this lattice. We note that we only make small use of the
fact that these angles lie in a small set, but it is vital that the angles lie outside
the major arcs.

Lemma 14.1 (Lattice generating angles have simultaneous approximation)
Letd >0and X, N, K > 1 be suchthat§ > N/X. Let B = B1(N, K, §) C
[0, X)2 be the set of pairs (a1, ay) € 72 such that there is a lattice A C 7 of
rank 2 such that

#{ne A : |na; +nma +n3X| <8X, |nja < N} > SKN?,
and moreover the points counted above do not all lie on a line through the

origin.
Then all pairs (a1, ap) € By have the simultaneous rational approximations

ai by 1
_:_+0 T k)
X q NKq

b 1
a_2:_2+0 s ’
X q NKgq
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for some integer g < X/NK.

We see Lemma 14.1 restricts the pair (a1, a») to lie in a set of size O(X/NK)?,
which is noticeably smaller than X? for the range of N K under consideration.
This allows us to obtain superior bounds for the sum over aj, az, by exploiting
the estimates of Lemma 10.6 which show F is not abnormally large on such
a set.

Proof Clearly we may assume that N K is sufficiently large, since otherwise
the result is trivial. By assumption of the lemma, for any pair (a;, az) € B
there is a rank 2 lattice A = A, 4, such that #(A N'H) > §K N? where

H={xeR: |xja; +x2a2 + x3X| < 8X, ||x]]2 < N}.

Moreover, not all the points in A N H lie in a line through the origin. Let
a = (aj,ap, X), and let ¢ : R3 — R3 be a dilation by a factor N/§ in the
a-direction, and let A’ = ¢(A). Then we see that

p(ANH) S {xe A |Ix]2 <2N}.

Moreover, not all the points on the right hand hand side lie in a line through the
origin, since ¢! preserves lines through the origin. Let A" have a Minkowski-
reduced basis {v, v»}, and let V| = ||v{]l2 and V, = ||vz||». Since ||mv| +
mava|la < |mq| V1 + |mao|V,, for a suitably large constant C we have

CN
xe A :|xl2 <2N} S {mivi+mava: |mi| < —, |ma| < —¢.
Vi Vs

Since not all of the points in the final set lie in a line through the origin, we
see that V|, Vo < CN. Thus

2

N
SKN? <#(ANH) =#(A' Nop(H)) < TR
1V2

In particular, V1 Vo < 1/6K.

Let w; = ¢_1(V1) and wy = qb_l(vz), so wi and w» are linearly inde-
pendent vectors in A € Z3. Since ¢ can only increase the length of vectors,
lwill2 < Vi and ||wa|l2 < V. Lete; = |wy - a| and e = w3 - a|. Trivially
we have |v; - a] < VX and |vp - a]| < VX, and so recalling that ¢ is a
dilation by a factor N/§ in the a-direction, we see that €; < 6XV;/N and
€ KL 8XV,/N.
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200 J. Maynard

Putting this together, we see that for any pair (a1, a) € B there are linearly
independent vectors wy, wyp € 73 and quantities V1, V> such that

1
ViV, « 5K will2 < Vi, [wall2 < V2,
| 2N |« XV2
a-w y a-w .
! N 2 N

This puts considerable constraints on the possibilities for (a1, az), since it must
lie in an infinite cylinder with axis parallel to wi x w; with short radius, for
some low height vectors wi, w,. (Here X is the standard cross product on R3.)
Explicitly, let eq, e>, e3 be an orthonormal basis of R3 with e; orthogonal to
wi and w;, and with e orthogonal to w;. Then we see that e; o« w; X wa,

ey X Wy x ej and e3 o« wy. In particular, we have that |e3 - wa| = ||[w2 |2, and
Wi - (W2 x (W x w2))|  [[wp X w22
|e2 * Wi | = =
Iwall2llw1 x wall2 w212

(Here we used the identity a - (b x ¢) = ¢ - (a x b).) Thus, if x = xje; +
xo€r + x3e3 has |[x - wi| K §XV(/N and |x - wy| K §XV,/N, then

X2 S x-wal = sl Iwal
X - Wo| = |x3] [|[W2]l2,
N 2 3 2102
sXVi [x2] [lw1 X wa||2
> X wi| = + 0 (sl Iwill)
N wallz

Since [[will2 < Vi, [Iwzll2 < V2 and [[wy x wall2 < [[will2]lw2]|2, this
implies that

XV, SXViV,
lx3| < ,
Niwall2 — Nlwy x wall2
X1V, L3 (Wi ll2 lw2ll2 SXViVa
|x2] <K .
Niwy x wa |2 lwi x wall2 N{wy x wa|l2

Thus, since V1V, <« 1/§K, we see that any vector X with |x-wi| < §XV|/N
and |x - wp| < § XV, /N satisfies

X
X:k(wlxwz)—l—O( )
NK|w; x wa|l2

for some A € R. We note that the error term is o(X) since wy, w» are linearly
independent integer vectors and N K is assumed sufficiently large. Let the
components of w; x wy be ci, ¢c2, c3 (with respect to the standard basis of
R3). Since wi, wo € Z3, we have ¢, ¢2, c3 € Z. Thus if a is of the above
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form we must have a = A(w; x wp) + o(X) for some A. Since ||a], > X
and a1,a; < a3 = X, we must have that |c{[, |c2] < |c3|. In particular,
lc3| < |l[wi x waz]l2. Dividing through by X = Ac3 + O(X/NK|c3|) then

gives
air/X\ _(ci/c3 ‘ (14.1)
a/ X c2/c3) |,  NK]cs
Finally, we note that since § > N/X and V|V, <« 1/6K we have
< I < Iwillalwall < ViV < — <
c1, ¢, ¢c3 < ||lwi x wall2 < [[will2llwall2 < — K —.
1,€2,C3 1 2112 tli2llwz]l2 V2 <5 Ko

Thus, we see that for any pair (a1, az) € B there must be integers c1, ¢3, ¢3 K
X/NK such that (14.1) holds. This gives the result. m|

Lemma 14.2 (Size of rational approximations) Let Bi(N, K, §) and F =
F(Q, E) be as in Proposition 13.3. If Bi(N, K, 8) N F* # () then

X 2
0+ EKL (ﬁ) .

Proof By Lemma 14.1, if (a1, ap) € B1(N, K, §) then

ar by n
_ = — Vi,
X q !
a b

- = + V2,
X q 2

for some ¢ <« X/NK and |vy], |[v2] < 1/NKgq. By clearing common factors
we may assume that (b1, by, q) = 1.

If NK > X?/3 (and X is sufficiently large) then we see that by /g and by /g
are the best rational approximations to a;/X and a>/X with denominator
O(X'73), since the error in the approximation is O (1/(gX?%/?)). Thus if we
also have ay, ay € F(Q, E) then we must have g > Q and |vy|, |v2| ~ E/X.
In particular, we must have Q + E <« X/NK. If instead NK < X 2/3 then
since Q + E <« X2 we have Q + E « (X/NK)Z. Thus in either case we
have that there are no such pairs (ai, a2) in both B (N, K, §) and in F x F
unless 0 + £ K (X/NK)Z. |

Lemma 14.3 Let NK > X'7/%0 and let Bi(N, K, 8), F = F(Q, E) and €
be as in Proposition 13.3. Then we have

a a .
Yoo A (F) () <X’ sup Y min(SiSz i8).
(a1,a2)€B1(N,K,8) 91-G1-02 4y dyey
al’a2€g 0,1, L0 ZO,\,ID)O
1~ D]

@ Springer



202 J. Maynard

where V = {2"5Y : u,v € Zso}, the supremum is over all choices
of 01,G1,Ga, Do, D1, Ey > 1 which are powers of 10 and satisfy
01G1GaDgDEy K X/NK and G| < Gy, and Sy, S2, S5 are given by

Sy = sup Z Z Z Fx

//\./
@ 10%1 §1~G1  by<dodiq'gy |vI<Eo/X
T-T0=0 (g1, 100=1 (g dod g g7)=1 X B2/ doc1 48 +v2) €L

b/
X (2/ 7 +v2),
dod14’g|

8- Y Y% > ().

d /
q'~01 8&~G2 bi<doq'g lvi|<Eo/X 09 82
(¢',10)=1 (b}, dog' g2)=1X (b /dog' g2+v1)€L
aj
3= ) Fx () Nar.do),
3 Z x\x (a1, do)
aje€
Nad) =g~ 0135t %= | <20 (h.dgn =1, g~ G
a,a) = q 1 ,gs..X ng_X’ .dgg) =1, g .

Proof By Lemma 14.1 we are considering pairs (a1, a2) € Bi(N, K, §) such
that

ai b1
_:_+v7
X q !
a b
_— = — V,
X q—i— 2

for some g <« X/NK and |vy|, |v2]| K 1/NKgq.

By clearing common factors we may assume that (b1, b2, q) = 1. We let
g1 = (b1, g) and g2 = (b2, q). By symmetry we may assume that g; < g>. We
let di be the part of g; not coprime to 10 (i.e. d1|10* for some integer u, and
g1 = gyd for some (g}, 10) = 1). Similarly we let dy be the part of ¢/g1£>
which is not coprime to 10. To ease notation we let b} = b1/g1, b, = b2/ g2,
q' = q/g182doand g) = g1/d1. Thus g = g\ g2dod1q’, b1 = b\ d1g| and by =
b o with (b), dog'g2) = (b}, dodrg'g}) = 1 and (¢', 10) = (g}, 10)=1.

We split the contribution of pairs (a1, az) € B; into O(log X ) subsets.
We consider terms where we have the restrictions ¢’ ~ Q1, gi ~ Gy, g2~
G>, dy ~ Do and di ~ D; for some Qi, G1, G2, Dg, D1 > 1 all integer
powers of 10 with Qo := Q1G1G2DyD; < X/NK. Since g1 = gidi <
g2» we have G1D; < Gj,. We relax the restriction |vy], [1z] < 1/NKgq to
[vi], [12] < Ep/X for a suitable power of 10 Eg < X/NK Q¢ with Ep > 1.
We see there are O (log X) sets with such restrictions which cover all possible
(b1, b2, q, v1, v2) and hence all (a;, az) € Bj. For simplicity, the reader might
like to consider the special case G| = G, = Doy = D1 = 1 on a first reading.
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To ease notation we let V = {2“5" : u,v € Z>o}, and note that we have
do, d1 € V. By summing over all possibilities of ¢, g/, g2, do, d, b}, b,, we
see that

Z Fx <a1>FX( )<< (logX)5 sup Z So,

X
(a1,a2)€B1 (N, K ,8) 9u.G1, gz do,di €V
aj,az€€ 0, &1 do~Do
di1~Dq

where the supremum is over all choices of Q1, G, G2, Do, D1, Eg > 1 which
are powers of 10 and satisfy Q1G1G2DgD1Eyg < X/NK and G1D; < G2
and Sy is given by

b/
Z Z 2: < +U1) Fx (%—I—vz).
q'~Q1 bi<doq'gy |vil<Eo/X doq’g> dod1q'g]
81~G1 b, <d0d1q/ 1 n|<Eo/X

82~G2

In Sp, we have used Y’ to indicate that the summation is further constrained
by the conditions

(q', 10) = (g}, 10) = (b}, doq'g2) = (b5, dod1q'g)) = 1,
X(b)/dog'gx+v1) € Z,  X(by/dod1q'g] + v2) € Z,

which we suppressed for notational simplicity. We see that gi , 82, ’1 , b’z, Vi, V2
each occur in only one of the two Fy terms, and so given dy, d, ¢’ the remain-
ing summation in Sy factors into a product of two sums. Taking a supremum
over all choices of ¢’ in the first of these then gives

Z FX<X>FX(X)<< (logX) sup Z S152,

G1,G
(a1,a2)€B1 (N, K ,5) 91.G1.G2 4y 4, ey
ay,axeF Do. D1, Eo do~ Dy
dy~Dq
(14.2)
where
by
si-w Y% > e(gtn)
1Q11 ~G1  by<dodiq'g) [val<Eo/X 0419 81
(q',10) (g 10) 1(172 d()dlf{gl) 1X(h2/d()d1q gl+vz)eZ
(14.3)
b/
Sy = Z Z Z Z Fyx (d q}g +v1>. (14.4)
7~01 §~G2 bi<dog'ss  Iil<Eo/X 09 82
(q',10)=1 (b].dog’ g2)=1 X (b} /doq’ g2+v1)EZ
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The bound (14.2) will be useful when Qg is small, but when Qy is large it is
wasteful to sum over all these possibilities since we have not made use of the
fact that a;, ap € £, a small set. To obtain an alternative bound we first sum
over all a; € &, then all possibilities of g, by, vp. This shows that

3 FX<X>FX( 2) < Gog X swp Y ) (145)

(a1,a2)€B1 (N, K ,3) 01.G1.G2 4y gy ey
ay,are€ 0,1, OdO’VDO
di~Dy

where the supremum has the same constraints as before, and S, is given by

SO—Z Z Z Z Z FX<a1>FX(d0dbqg + 2)

a1€€ q'~Q1 g|~G1 by<dodiq'g) I2|<Eo/X
Here the summation in ) is constrained by

(q/, 10) = (gi, 10) = (bé, dodlq/g/l) =1,
X (by/dodrq'g) + v2) € Z,
b}

a
b}, g st |— ———| < b}, d, =1,9~G
1 82 ‘X Jdoza| = (b1, dogq’ 82) 82 2.

Y
Again, taking a supremum over ¢’ and factorizing the summation, we find that
Sy <K 8183, (14.6)

where S is as given by (14.3) above, and S3 is given by

Ss= Y Fx <X> N(ar, do), (14.7)
a €€
where
N (ay, do) /
=# {q/ ~ Q1 :3b}, g st % — q/z(;gz

, (b].dog'g2) =1, g2 ~ Gz}-
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Putting together (14.2), (14.5), (14.6) we obtain

> () (R)

\x )" (x
(ay,a2)€B(N,K,8)

ay,are€
< (logX)® sup > min(S;Sy, S153),

01.G1.G2 4 4 ey
Do,Dy, Eg c(i)(;~lD0
di~D

as required. O

Lemma 14.4 Let NK > X'7/%0 and let S, S», S3 be as in Lemma 14.3. Let
01, Gy, Ga, Do, D1, Ey = 1be powers of 10 which satisfy Q1G1G2DyD1 Eg
&K X/NK and G| < G3. Then we have

min($1.52, $153) K Q(l)_eEé_e’

where Qg = Q1G1G2DyD;.

Proof We first bound Sy, >, S3 individually using Lemmas 12.2, 10.6 and
10.7. We will then combine these bounds to give the desired result.

WEe first consider the quantity N (aj, dp) occurring in S3. If ¢ and ¢’ are
both counted by N (a, d) then there exists b, g and b’, g’ such that (b, gdg) =
(b',q'dg"y =1and

a b 1 b 1
X qdg NK Qp q'dg NK Qo

Here we used the fact that Eg/ X <« 1/NK Qq. The variables we consider
satisfy g, ¢' ~ Q1 < Qo/G1G2DoD; and g, g’ ~ G, and d ~ Dy. Thus

Qo < Qo
DyD?GINK ~ DoDINK’

bq's' —b'qg <

Let h « Qo/DoDiNK be such that bq'g’ — b'qg = h. There are O(1 +
Qo/DoD1N K) such choices of h. Given q, g, b, h with (¢g, b) = 1, we then
see

g's’ = hb~! (mod qg),
b = h(gg)~" (mod b).
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Since ¢’¢’ =< qg and b’ < b, there are O(1) choices of " and ¢’g’. Thus there
are O(Qg) such choices of ¢’, g’, b’ by the divisor bound. Thus we find that

Q1+€

N (a1, do) < Qf + —D DINK"

Combining this with Lemma 12.2 gives the bound

Q0X23/80
Sy« X23/80 4 07 14.8
3 K + DoDINK (14.3)

We recall Qg = Q1G1G2DgD; is the approximate size of g and that G| <
G2, EnQo < X/NK « X.By Lemma 10.6 we have

EoDyD1Q1G}
S1 < (EoDoDy 01GH/ 4+ s

27/77 27/77 (14.9)

< Qg
Q%G%E()D()
X30/77

QZE 27/77 Q2E

0 0

<\ =% + s (14.10)
DyD3G? X/71Dy DG,

Sy < (EoDoQ3G3)*/ 4

Alternatively, we may bound S using Lemma 10.7, which gives

01G3(DyD1)3E)/°

x 10721
5/6

00G1(DoD1)'/*E

G,x10/21

S; < (DoD1Eg)*""(01GHV* +

1/21

< 0 (DoDyEg)?T + (14.11)

If the first term in (14.11) dominates, then since Eg << X/N K Qy, the bounds
(14.11) and (14.10) give

24+1/21
54774121 Qg

o + X50/77

141/21+€
1—e 1—e€ 1 X
< Q) "Ep U+ Sso77 x50/77T \ NK :

This shows $15; < Q(l)_6 E(l)_6 in this case by recalling that NK > x!7/40
and verifying that 22/21 x 23/40 < 50/77.

$15, < E54/77
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If instead the second term in (14.11) dominates, then by (14.9) and (14.11)

(using G <« G and replacing E(S)/6

have

with Eg to simplify the expression), we

o(DoDy)'/?
X 10/21

. E
S| < min ((Q0E0)27/77, Qo (14.12)

Combining this with (14.10), we obtain

27/77 23
S$18) « EO—Q(Z) ((E 0 )27/77)1/3 QoEo(DoDy)'/?
2 G32DyD} 0%0 X 10721

Q3Ey  QoEo(DoDy)'/?
X50/77D0D1G1 Xx10/21
3/2 -6/5
0/ E” | O%F
X3/10 T X9/8 "

<

Here we have simplified the exponents appearing for an upper bound. We recall
that Q9 Eo < X /N K and (by assumption of the lemma) N K >> X'7/40_ These
give

3/2 6/5
Q / / QOEO X23/40 1/2 QOEO
X3/10 < X3/10( )L X1/80°
Thus this term is O(Q(l)_E Eé_e), and so
Q3 Ed

S18 < Q) “Ey ¢ +

<978 ° (14.13)

Similarly, we find that combining (14.12) and (14.8) gives

QoEo(DoDy)'/? X2/80 0,
X10/21 DoD|NK
Q3Eo
X3/16NK :

Here we used 10/21 — 23/80 > 3/16. Since QpEg < X/NK and NK >
X17/40 5, x13/32+€ e see that

8183 <« X580, En?!T +

< X23/80(Q0E0)27/77 +

02E, X 13/16

l—€ pl1—e
vrenE < O wre <L Q) <K Q) EyC.

Thus we have

S183 < Qp “Ey € + X200 Eg)?T. (14.14)
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Combining (14.13) and (14.14), we obtain

32
E
min(S; 52, §153) < Q) E¢~¢ + min <X23/80(Q0E0)27/77, M) ,

X9/8
We find that
' Q3 E2
min (X23/80(Q0E0)27/77, Xog/go
03?2 23/100
23/80 27/77\77/100 00
< (XP0(Q0Eg)*TT) (W)
96/100 ~73/100
_ 9 Ey
~ X (90—77)x23/8000
l—€ p1—
L Qy “E, ¢
Thus we have min(S152, $35,) < Q(l)_é Eé_E in all cases, as desired. O

Having established the technical Lemmas 14.3 and 14.4, we are now in a
position to prove Proposition 13.3.

Proof of Proposition 13.3 We wish to show that

a a log X X
2 Fx <Yl> Fx (Y2> < (é fE))f/“ NK
(a1,a2)€B1(N,K,$)
ay,axeFNE

in the region X174 < NK. Since B (N, K, 8) N F2 =  unless O+ FE KL
(X/NK)? by Lemma 14.2, we may assume that Q + E < (X/NK)?.
By Lemmas 14.3 and 14.4 we have

> () (%)
\x) X \x
(a1,a2)€B1(N,K,$)
ap,aeFNE

< (logX)’ sup Y min($1Sy, 51S3)
01.G1.G2 g, 4, ey
Do.Dr.Eo - go~p,
di~D

1—¢ p1—
< (logX)’ sup > Qg Ey .
QI,GI,sz d
Dy. D1, Eg 0‘;035;’
di~D
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There are O( Qg/ 2) elements dy, d; € V with dy, di < Qp. Thus, recalling
that QopE¢9 < X/NK, we have

aj ar _ _
Z Fx <_> Fx (-) & sup (logX)SQ(l) e/zEé €
(ay,a2)eB1(N,K,8) X X 01,G1,G2
ay,areFNE Dy,D1,Ep
< (10 X)S X 1—€/2
g NK .

We recall that Q + E < (X/NK )2, and so this gives

a ar log X)°X
2 Fx (71) Fx <Y) < (Q(+%E)€)/4NK’
(a1,a2)€B (N, K,8)
ay,apeFNE
as required. O

15 Line estimates

In this section we establish Proposition 13.4, which controls the contribution
from pairs of angles which cause a large contribution to the bilinear sums con-
sidered in Sect. 13 to come from a line. If a line L makes a large contribution,
then (a1, az, X) must lie close to the low height plane orthogonal to this line.
We note that we do not make use of the fact that these angles lie outside the
major arcs, but it is vital that the angles are restricted to the small set £.

Lemma 15.1 (Line angles lie in low height plane) Let 0 < & < 1 and
K,N,X > 1 be reals with 8 > N/X and NK > X'"/40 Let B, =
Bo(N, K, 8) be the set of integer pairs (ay,ap) € [0, X)2 such that there
is a line L through the origin such that

#{ne LNZ: |nja) + naaz + n3X| < 8X, nf2 < N} > SN?K.
Then all pairs (a1, ay) € By satisfy
viar +voay +v3X +v4 =0

for some integers v1, va, V3, V4 K X/NZK not all zero.

Proof Letv = (v1, vz, v3) be a non-zero element of 73 N L of smallest norm,
and let V = ||v||2 and €; = |via; + voapy + v3X|. Then all of Z3N L is
generated by v, and so
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N §X
#ne LNZ: |na) +naar +n3X| < 8X, |Inflz < N} < min (7, E—) .
1

By assumption, this is also 3> 8 N?K, and so we obtain

1 X
VK — K ——, —.
< NKs < NZK € K NIK
Letting v4 = —(via; + vaaz + v3X) € {£e1} gives the result. O

Lemma 15.2 (Sparse sets restricted to low height planes) Let C C [0, X) be
a set of integers. Then we have for any V > 1

#{(a1,a) € C* : I(v1, v2, v3,v4) € [-V, VI'\{0}
s.t. via] + vaaz + v3X +vg =0}

432y

(0 5/4y,2

<L X° (#C Vo+ X2 >

Proof Trivially there are O (#C?) choices of a1, ax € C, which gives the

required bound if V > #C3/8. In particular, we may assume that V < #C < X.

There are O (#C) points with a; = 0 or a; = 0, so we may assume that

al’ a2 # 0
We first claim that there are

o#cvixeW) (15.1)

choices of vy, v2, V3, V4, a1, and a, satisfying via; +voaz +v3X +v4 = 0 with
atleastone of vy, vy, v3, v4 equal to O and at least one of vy, v2, v3, v4 non-zero.
For example, if v; = 0 then there are O (#C V2) choices of ap, v3, v4, which
then determines vyay. Since there are no non-zero solutions to v3 X + v4 = 0,
this is non-zero and so there are O(X¢) choices of vy, ap. The other cases
are entirely analogous. Thus it suffices to consider pairs (a1, a) such that
viay + voas + v3X + v4 = 0 for some vy, vy, v3, v4 all non-zero. We let C;
denote the set of such pairs.

Given a € Z, let M, be the smallest value of (c% + c%)l/ 2 over all non-
zero integers cp, ¢z such that ¢; = ¢; X (mod a). We divide C into O (log X )2
subsets localizing the size of a < X and M, < X by considering the sets

CAM)y={acC:a~A, M, ~M}.
There are O (M?) choices of ¢, ¢ with (c% + c%)l/ 2 < M, and given any such

choice with M < X there are X°(D choices of alcy — ¢ X from the divisor
bound (noting that this must be non-zero). Thus we have that
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#C(A, M) < X°D min(#C, M?).
By Cauchy—Schwarz we have
2 112
> 1< x'Muc P sup [ 3 >
(a1,a2)€Ca AM\ gec | meca,m)
(ay,a2)€C
< x°O#c'2 sup N)/?, (15.2)
AM
where
Ny =#{(az, ab, a1) € C(A, M)* x C :
na v v vha, v} v,
g =22 B v NG s Y

X v ouX  vX v vX'
for some integers 0 < [vi], [v}], [val, [v3], [v3l, [v3], lval, vg] <V,
alaza/z 7+~ O} .

We wish to bound N>. Given vy, vy, let d = ged(vi, v)) and v; = dvy, v} =
dv] so ged(v1, 7)) = 1. We split the count N> by considering max(?y, v}) ~

V1 for different choices of Vi. Since V < X, there are O (log X) choices of
V1 we need to consider. This gives

N2 < (log X) sup N3(V1), (15.3)
Vi
where

N3 (V1)

= #{(az. a3, a1, d, U1, 0], v2, V3, V4, V), V3, V) :
0<d< V/V],al EC\{O},

- - vaan V4 -
ajdv| v = (7 + 3+ Y) ol

v/zaé ’ U:; ~ /
=5 Tuty vy, az, ay € C(A, M)\{0},

0 < [B1], 1911, lval, 3l [vsl, (V3] Jval, 04l <V,
max (|91, [0}]) ~ V1, ged(dy, b)) = 1}.

We wish to show that N3(V) <« X°WD#C3/2v* +#C?V©/ X) for any choice
of 0 < Vi < V. By symmetry we may assume |01| > |0}], so [01] ~ Vi. Let
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b] = f)i vy, bz = —f)lv’z, b3 = f)i v3 — INJ]vg and b4 = 6’11)4 — f)lvzl. We see that

any solution counted by N3(V1) must give a solution to
biar + bza/z +b3X +bs =0

with 0 < |by], |bal, |b3], |b4] < 2V1V and by, by # 0.

There are 0(V13V3) choices of by, b3, by and O (#C) choices of aé. Given
such a choice of by, b3, by, aé, there are O (X°(D) choices of b and a, by the
divisor bound, since bjar = —bzaé — b3X — by and byay is non-zero. Given
b1, by there are O (X°(D) choices of 71, v, v2, v5 by the divisor bound (recall
b1, by # 0). Given vy, v} and b3 we see that

v3 = b3}~ (mod ).

Thus there are O (V/ V1) choices of v3 (here we use the fact that ged(vy, 173) =
1). Given vy, v1, b3 and such a choice of v3 there is just one choice of vg.
Similarly, there are O(V/ V) choices of vy, v"l given vy, f); and b4. Given
31, v2, v3, V4, az, there are O (X°(D) choices of d, a; since da; 1 X = vaas +
v3X + v4 and da;v1 X # 0. Putting this all together, we have

N3 (V) < X°Dgev,vo., (15.4)

This bound will be good for us if V; is small, but we need a different argument
if Vv is large.
We note that

biay +b2a/2 + by VViA
— < .

by =
3 X X

We make achoice of as, aé, by, forwhich there are < V V; X min(M*, #C?)
possibilities counted by N3 (V7). We see that b3, by satisfy

b3X + by = bi1ax (mod aé)

Let b3 ¢, b4, o be asolution to this congruence with b%,0+bi o minimal. We may
assume that b3 0 < VVIA/X and bs 9 < V'V since otherwise there are no
possible b3, b4. All pairs b3, by satisfying the congruence are then of the form
(b3, by) = (b3,0+D5, by o+D)) for some integers b5, b satisfying b3 X +-by =
0 (mod a3) and by < VV1A/X, by < VVy.This forces bye; +bje; toliein a
lattice A C Z? of determinant aé, where e[, e, are the standard basis vector of
7%. Let ¢ : R — R? be the linear map which is a dilation by a factor X/A in
the e direction, and A’ = ¢(A), a lattice in R? of determinant ax X /A =< X.
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Let A’ have a Minkowski-reduced basis {v{, vo}. We recall this means that
[Ivill2 - Ivall2 =< det(A) = a3 X/A < X and [[n1vy + nava|l2 < [[mivill2 +
|[n2v2]l2. From the definition of M, we see that the smallest non-zero vector
in A has length at least M /10, and so since ¢ can only increase the length of
vectors we have ||vy]2, [[v2]l2 > M/10.

The set of vectors bje; + bye; in A inside the bounded region |b}| <
VVIA/X, |b£1| <« VVj can be injected by ¢ into the set {x € A" : ||x|]2 <
CV Vy} for some suitably large constant C. Thus, provided C is sufficiently
large so that we also have ||nv] +navall2 > max; ||n;v;|2/C, we see that the
number of pairs (b}, b)) is bounded by

#{xe A x| <CVVy)
=#{(n1,n2) € Z*: |n1vi + navall2 < CVV}

s#{(nl,rm eZ*: || <C?

8% 4%
< (1 4+ ! ) <1 4+ >
Ivill2 Iv2ll2

<1420 vevi
M det(A’)
AL V2vi
L1+ 7 + X
Here we used the fact that || vy |2, |[v2ll2 > M and ||vi]l2 - ||[v2ll2 =< det(A))
in the penultimate line, and det(A’) =< X in the final line.

Given any choice of as, a’z, b1, b3, by, we see that by is then determined
uniquely by bias + bra) = b3 X + by, since we have already chosen all the
other terms. As before, given aj, aé, b1, by, b3, by there are O(X"(I)VZ/ V12)
choices of ¥y, 0}, v2, v3, V4, V), V5, V), d, a;. Putting this all together, we obtain
the bound

VvV, VvV
Lyl < 2 }
Ivill2 Iv2ll2

y3 Vv, Viv?z
N3 (V. XD minm*, #¢3) [1+ — L.
3(V) K i min( )1+ i + ¥

Since min(M*, #C?) < min(M#C3/?, #C?) this gives

V3 #C2V°
N3 (V1) < <#027 +#CPV + T) xoW, (15.5)
1

Combining (15.4) and (15.5), we obtain

V3 #C2V°
N3 (V1) < X° min (#cv1 v, #627 +#C2V + T)
1
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12 216

1/2 V3 #C2V

< x°0 ((#cvl V5) (#(327) FHCPVA 4 T)
1

#C2Vo
< x°M (#03/2V4 + T) . (15.6)
We substitute (15.3) and (15.6) into (15.2), and obtain

Z 1 < Xo(l) (#CS/4V2+

(a1,a2)€C

#0323
X1/2 )

We recall from (15.1) that terms with vjvov3vsaia; = 0 contribute a total
O #CV?2x°D), which is negligible compared with the #C/4V? term above.
Thus we obtain the result. O

We see that Lemma 15.2 improves on the trivial bound O (X°™") min(V3#C,
#C?)) if V8/3+e « #C « VA€ 4 x17€,

Proof of Proposition 13.4 We wish to show that

Y () (8 <ir
\x/) ¥ NK
(ay,a2)€B2(N,K,8)

ap,are€’

in the region N > X°/%. We recall that

e=fa<x:me(3)~glee

for some B <« X%3/39 Trivially, we have that

> (4) re () < #E2

ay,are€’

By Lemma 10.4, we have

#5/ < 3235/154)(59/433. (157)
This gives
Z Fyx <X> Fyx (X) « BSU/TTx118/433 . py23/80—e
ay,are€’
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on verifying that 4/77 x 23/80 + 118/433 < 23/80. This gives the required
bound if NK « X>7/80/B.

Alternatively, if NK > X37/80/B_ we use Lemmas 15.1 and 15.2 to bound
#(B, N (£)?), and obtain

#(Bo(N, K, 8) N (E)?
3 Fx<ﬂ>Fx<2>§ (Ba( ) N(EN)
X X B2
(ar,a2)€By (N, K ,8)
ay,are&’

1 X
< ot {al, ar € & v e ZNW {0} s.t. || < i VA= 0}

xo) s X \2 @& x \3
/4
< 72 ((#8) (NZK) + X172 (NZK) . (15.8)

Here we have written a for the vector (a1, a2, X, 1) € Z*.

Since NK > X°/39/B, we have X/NK <« X?>*/%0B. Combining
this bound with (15.7), we obtain a bounds for (#£')>*B~2X/NK and
#EN3?B72X~1/2(X/NK)? of the form X“BP" for some b > 0. Since we
are only considering B <« X23/80, these expressions are maximized when
B = X»/30 When B =< X?3/80 we have #£ « X*¥/%0 and X/NK «
X23/40_Thus we obtain the bounds

5/4
(#5;)2/ NXK « X115/160 _ x23/32.
#E)3/? < X

2
e (2 75/80 _ y15/16
BIx12 NK> <X X .

Substituting these bounds into (15.8) gives

Z - (al)F <a2> < X23/32+X15/16 x 14o(D)
\x /) ¥ (x N2 N3 NK
(ay,a2)€B2(N,K,8)
ay,are€’

We can then verify that 2 x 9/25 > 23/32 and that 3 x 9/25 > 15/16, so for
N > X%/ thisis O(X'~¢/NK), as required. O

16 Modifications for Theorem 1.2
Theorem 1.2 follows from essentially the same overall approach as in Theo-

rem 1.1. We only provide a brief sketch the proof, leaving the complete details
to the interested reader. When g is large, there is negligible benefit from using
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the 235/154th moment, so we just use £! bounds. For ¥ = ¢* a power of g,
we let

k—1
1 .
Fy(0) = y~loglats)/logg |y 7 q O =]]— :q'0)| .
v (6) > La(n)e(nd) ]‘[q_s 2 e(nig'0)
n<Y i=0 ni<q

n;¢B

The inner sum is < min(g —s, s +2/|/¢*6|]). Thus, similarly to Lemma 10.3,
we find

ZFY( ) —s)kl_[

me( —, —+L+S)

<Y i=0 lti<q i qa-
1
-0 (M) ) (16.1)
q—-s

In particular, for ¢ large enough in terms of € and s < ¢23/80, this is
O(Y?3/80+€) We can use this bound in place of Lemmas 10.3 and 10.4
throughout the argument with the same (or stronger) consequences. This gives
the first part of Theorem 1.2.

For the second part of Theorem 1.2, we see that in the special case B =
{0,...,5 — 1} we have

Z e(ni0)| =

ni<q
n;¢B

w‘<min< _si>
e@—1 | ="\ e )

Using this bound, get a corresponding improvement on (16.1), which gives

v (5) < (o ni %)

<Y i=01i<q 4-1
lo —s\F
_0 (%) | (162)
q—S
If s < g —¢°"/30 and ¢ is sufficiently large in terms of e, this gives a bound

y23/80+¢  As before, using this bound in place of Lemmas 10.3 and 10.4
throughout gives the result.

For the results mentioned after Theorem 1.2, we find that in the further
restricted ranges s < 511/4_‘S (ors < g — q3/4+‘S if B={0,...,s—1}), the
bound (16.1) [or (16.2)] give an ¢! bound of Y1/4-8/2, Following this through
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the argument, we obtain a wider Type Il range and can estimate bilinear sums
provided N € [X3/16 x1/2] instead of [X%/%, X17/40], By symmetry, we
can then also estimate terms in N € [X /2, X11/16] This allows us to obtain
asymptotic estimates for all the terms in the right hand side of the identity

S(A, X'y = §(A, x3/87%€) — > S(A,, p),

X3/8—2ESP<X1/2

by the equivalents of Propositions 6.1 and 6.2 adapted to this larger Type 11
range.
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