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Abstract Let a0 ∈ {0, . . . , 9}. We show there are infinitely many prime num-
bers which do not have the digit a0 in their decimal expansion. The proof is an
application of the Hardy–Littlewood circle method to a binary problem, and
rests on obtaining suitable ‘Type I’ and ‘Type II’ arithmetic information for use
in Harman’s sieve to control the minor arcs. This is obtained by decorrelating
Diophantine conditionswhich dictatewhen the Fourier transformof the primes
is large from digital conditions which dictate when the Fourier transform of
numbers with restricted digits is large. These estimates rely on a combination
of the geometry of numbers, the large sieve and moment estimates obtained
by comparison with a Markov process.

1 Introduction

Let a0 ∈ {0, . . . , 9} and let

A1 =
⎧
⎨

⎩

∑

0≤i≤k

ni10
i : ni ∈ {0, . . . , 9}\{a0}, k ≥ 0

⎫
⎬

⎭

be the set of numbers which have no digit equal to a0 in their decimal expan-
sion. The number of elements of A1 which are less than x is O(x1−c), where
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128 J. Maynard

c = log (10/9)/ log 10 ≈ 0.046 > 0. In particular, A1 is a sparse subset of
the natural numbers. A set being sparse in this way presents several analytic
difficulties if one tries to answer arithmetic questions such as whether the
set contains infinitely many primes. Typically we can only show that sparse
sets contain infinitely many primes when the set in question possesses some
additional multiplicative structure.

The set A1 has unusually nice structure in that its Fourier transform has a
convenient explicit analytic description, and is often unusually small in size.
There has been much previous work [1,2,4–6,11,13] studyingA1 and related
sets by exploiting this Fourier structure. In particular the work of Dartyge and
Mauduit [7,8] shows the existence of infinitely many integers in A1 with at
most 2 prime factors, this result relying on the fact thatA1 is well-distributed
in arithmetic progressions [7,12,16]. We also mention the related work of
Mauduit and Rivat [17] who showed the sum of digits of primes is well-
distributed, and thework ofBourgain [3]which showed the existence of primes
in the sparse set created byprescribing a positive proportion of the binary digits.

We show that there are infinitely many primes inA1. Our proof is based on a
combination of the circlemethod,Harman’s sieve, themethod of bilinear sums,
the large sieve, the geometry of numbers and a comparison with a Markov
process. In particular, we make key use of the Fourier structure of A1, in the
same spirit as the aforementioned works. Somewhat surprisingly, the Fourier
structure allows us to successfully apply the circlemethod to a binary problem.

Theorem 1.1 Let X ≥ 4 and A = {∑0≤i≤k ni10
i < X : ni ∈

{0, . . . , 9}\{a0}, k ≥ 0} be the set of numbers less than X with no digit in
their decimal expansion equal to a0. Then we have

#{p ∈ A} � #A
log X

� X log 9/ log 10

log X
.

Here, and throughout the paper, f � g means that there are absolute constants
c1, c2 > 0 such that c1 f < g < c2 f .

Thus there are infinitely many primes with no digit a0 when written in
base 10. Since #A/X log 9/ log 10 oscillates as X → ∞, we cannot expect an
asymptotic formula of the form (c + o(1))X log 9/ log 10/ log X . Nonetheless,
we expect that

#{p ∈ A} = (κA + o(1))
#A
log X

,

where

κA =
{

10(φ(10)−1)
9φ(10) , if (10, a0) = 1,

10
9 , otherwise.

(1.1)
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Indeed, there are (φ(10)κA/10 + o(1))#A elements of A which are coprime
to 10, and (1+o(1))X/ log X primes less than X which are coprime to 10, and
(φ(10)/10+o(1))X integers less than X coprime to 10. Thus if the properties
‘being inA’ and ‘being prime’ where independent for integers n < X coprime
to 10, wewould expect (κA+o(1))#A/ log X primes inA. Theorem 1.1 shows
this heuristic guess is within a constant factor of the truth, and we would be
able to establish such an asymptotic formula if we had stronger ‘Type II’
information.

One can consider the same problem in bases other than 10, and with more
than one excluded digit. The set of numbers less than X missing s digits in
base q has � Xc elements, where c = log(q − s)/ log q. For fixed s, the
density becomes larger as q increases, and so the problem becomes easier.
Our methods are not powerful enough to show the existence of infinitely many
primes with two digits not appearing in their decimal expansion, but they can
show that there are infinitely many primes with s digits excluded in base q
provided q is large enough in terms of s. Moreover, if the set of excluded digits
possesses some additional structure this can apply to very thin sets formed in
this way.

Theorem 1.2 Let q be sufficiently large, and let X ≥ q.
For any choice of B ⊆ {0, . . . , q − 1} with #B = s ≤ q23/80, let

A′ =
⎧
⎨

⎩

∑

0≤i≤k

niq
i < X : ni ∈ {0, . . . , q − 1}\B, k ≥ 0

⎫
⎬

⎭

be the set of integers less than X with no digit in base q in the set B. Then we
have

#{p ∈ A′} � X log(q−s)/ log q

log X
.

In the special case when B = {0, . . . , s − 1} or B = {q − s, . . . , q − 1}, this
holds in the wider range 0 ≤ s ≤ q − q57/80.

The final case of Theorem 1.2 when B = {0, . . . , s − 1} and s ≈ q − q57/80

shows the existence many primes in a set of integersA′ with #A′ ≈ X57/80 =
X0.7125, a rather thin set. The exponent here can be improved slightly with
more effort.

The estimates in Theorem 1.2 can be improved to asymptotic formulae if
we restrict s slightly further. For general B with s = #B ≤ q1/4−δ and any q
sufficiently large in terms of δ > 0 we obtain

#{p ∈ A′} = (κB + o(1))
#A
log X

,
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where if B contains exactly t elements coprime to q, we have

κB = q(φ(q) − t)

φ(q)(q − s)
.

In the case of just one excluded digit, we can obtain this asymptotic formula
for q ≥ 12. In the case of B = {0, . . . , s − 1}, we obtain the above asymptotic
formula provided s ≤ q − q3/4+δ.

We expect several of the techniques introduced in this paper might be useful
more generally in other digit-related questions about arithmetic sequences.Our
general approach to counting primes in A and our analysis of the minor arc
contributionmight also be of independent interest, with potential application to
other questions on primes involving sets whose Fourier transform is unrelated
to Diophantine properties of the argument.

2 Outline

Our argument is fundamentally based on an application of the circle method.
Clearly for the purposes of Theorem 1.1 we can restrict X to a power of 10
for convenience. The number of primes inA is the number of solutions of the
binary equation p − a = 0 over primes p and integers a ∈ A, and so is given
by

#{p ∈ A} = 1

X

∑

0≤a<X

SA
( a

X

)
SP

(−a

X

)

,

where

SA(θ) =
∑

a∈A
e(aθ),

SP(θ) =
∑

p<X

e(pθ).

We then separate the contribution from the a in the ‘major arcs’ which give
our expected main term for #{p ∈ A}, and the a in the ‘minor arcs’ which we
bound for an error term.

The reader might be (justifiably) somewhat surprised by this, since it is
well known that the circle method typically cannot be applied to binary prob-
lems. Indeed, one cannot generally hope for bounds better than ‘square-root
cancellation’

SP(θ) � X1/2,
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SA(θ) � #A1/2,

for ‘generic’ θ ∈ [0, 1]. Thus if one cannot exploit cancellation amongst the
different terms in the minor arcs, we would expect that the � X different
‘generic’ a in the sum above would contribute an error term which we can
only bound as O(X1/2#A1/2), and this would dominate the expected main
term.

It turns out that the Fourier transform SA(θ) has some somewhat remarkable
features which cause it to typically have better than square-root cancellation.
(A closely related phenomenon is present and crucial in the work of Mauduit
and Rivat [17] and Bourgain [3].) Indeed, we establish the �1 bound

∑

0≤a<X

∣
∣
∣SA

( a

X

)∣
∣
∣� #A X0.36. (2.1)

which shows that for ‘generic’ a we have SA(a/X) � #A/X0.64 � X0.32.
This gives us a (small) amount of room for a possible successful application of
the circle method , since now we might hope the ‘generic’ a would contribute
a total O(X0.82) if the bound SP(a/X) � X1/2+ε held for all a in the minor
arcs, and this O(X0.82) error term is now smaller than the expected main term
of size #A1+o(1).

We actually get good asymptotic control over all moments (including frac-
tional ones) of SA(a/X) rather than just the first. By making a suitable
approximation to SA(θ), we can re-interpret moments of this approximation
as the average probability of restricted paths in a Markov process, and obtain
asymptotic estimates via a finite eigenvalue computation.

By combining an �2 bound for SP(a/X)with an �1.526 bound for SA(a/X),
we are able to show that it is indeed the case that ‘generic’ a < X make a
negligible contribution, and that we may restrict ourselves to a ∈ E , some set
of size O(X0.36).

We expect that SP(θ) is large only when θ is close to a rational with small
denominator, and SA(θ) is large when θ has a decimal expansion containing
many 0’s or 9’s. Thus we expect the product to be large only when both of
these conditions hold, which is essentially when θ is well approximated by a
rational whose denominator is a small power of 10.

By obtaining suitable estimates forA in arithmetic progressions via the large
sieve, one can verify that amongst all a in the major arcs M where a/X is
well-approximated by a rational of small denominator we obtain our expected
main term, and this comes from when a/X is well-approximated by a rational
with denominator 10.

Thus we are left to show when a ∈ E and a/X is not close to a rational with
small denominator, the product SA(a/X)SP(−a/X) is small on average. By
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132 J. Maynard

using an expansion of the indicator function of the primes as a sum of bilinear
terms (similar to Vaughan’s identity), we are led to bound expressions such as

∑

a1,a2∈E\M

∣
∣
∣SA

(a1
X

)
SA
(a1
X

)∣
∣
∣
∑

n1,n2≤N

min

(
X

N
,

∥
∥
∥
∥
a1n1 − a2n2

X

∥
∥
∥
∥

−1
)

,

(2.2)
which is a weighted and averaged form of the typical expressions one encoun-
ters when obtaining a �∞ bound for exponential sums over primes. Here ‖ · ‖
is the distance to the nearest integer.

The double sum over n1, n2 in (2.2) is of size O(N 2) for ‘typical’ pairs
(a1, a2), and if it is noticeably larger than this then a1 and a2 must share
some Diophantine structure. We find that the pair (a1, a2) must lie close to the
projection from Z

3 to Z
2 of some low height plane or low height line if this

quantity is large, where the arithmetic height of the line or plane is bounded in
terms of the size of the double sum (For example, the diagonal terms a1 = a2
give a large contribution and lie on a low height line, and a1, a2 which are both
small give a large contribution and lie in a low height plane.).

This restricts the number and nature of pairs (a1, a2) which can give a large
contribution. Sincewe expect the size of SA(a1/X)SA(a2/X) to be determined
by digital rather than Diophantine conditions on a1, a2, we expect to have a
smaller total contribution when restricted to these sets. By using the explicit
description of such pairs (a1, a2) we succeed in obtaining such a superior
bound on the sum over these pairs. It is vital here that we are restricted to
a1, a2 lying in the small set E (for points on a line) and outside of the set M
of major arcs (for points in a lattice).

This ultimately allows us to get suitable bounds for (2.2) provided N ∈
[X0.36, X0.425]. If this ‘Type II range’ were larger, we would be able to express
the indicator function of the primes as a combination of such bilinear expres-
sions and easily controlled terms.Wewould then obtain an asymptotic estimate
for #{p ∈ A}. Unfortunately our range is not large enough to do this. Instead
we work with a minorant for the indicator function of the primes throughout
our argument, which is chosen such that it is essentially a combination of bilin-
ear expressions which do fall into this range. It is this feature which means
we obtain a lower bound rather than an asymptotic estimate for the number of
primes in A.

Such aminorant is constructed viaHarman’s sieve, and, since it is essentially
a combination of Type II terms and easily handled terms, we can obtain an
asymptotic formula for elements ofAweighed by it. This gives a lower bound

#{p ∈ A} ≥ (c + o(1))
#A
log X
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for some constant c. We use numerical integration to verify that we (just) have
c > 0, and so we obtain our asymptotic lower bound for #{p ∈ A}. The upper
bound is a simple sieve estimate.

Remark For the method used to prove Theorem 1.1, strong assumptions such
as the Generalized Riemann Hypothesis appear to be only of limited benefit.
In particular, even under GRH one only gets pointwise bounds of the strength
SP(θ) � X3/4+o(1) for ‘generic’ θ , which is not strong enough to give a non-
trivial minor arc bound on its own. The assumption of GRH and the above
pointwise bound is sufficient to deal with the entire minor arc contribution
in the regime where we obtain asymptotic formulae (i.e. when the base is
sufficiently large).

3 Notation

Weuse the asymptotic notation�, �,O(·),o(·) throughout, denoting adepen-
dence of the implied constant on a parameter t by a subscript. As mentioned
earlier, we use f � g to denote that both f � g and g � f hold. Throughout
the paper ε will denote a single fixed positive constant which is sufficiently
small; ε = 10−100 would probably suffice. In particular, any implied constants
may depend on ε. We will assume that X is always a suitably large integral
power of 10 throughout. We will exclusively use the letter p to denote a prime
number, without always making this restriction explicit.

We will use the nonstandard notation that n ∼ X to mean that n lies in the
interval (X/10, X ] throughout the paper.

Several variables will be assumed to be non-negative integers, without
directly specifying this. Thus sums such as

∑
n<X will be assumed to be

over integers n with 0 ≤ n < X , for example. The usage should be clear from
the context.

It will be convenient to normalize the Fourier transform ofA, and to be able
to view it at different scales. With this in mind, we define

FY (θ) = Y− log 9/ log 10

∣
∣
∣
∣
∣

∑

n<Y

1A1(n)e(nθ)

∣
∣
∣
∣
∣
. (3.1)

Whenever we encounter the function FY we assume that Y is a positive integral
power of 10. (Or that they are powers of q in Sect. 16.) We use ‖ · ‖ to denote
the distance to the nearest integer, and ‖ · ‖2 to denote the standard Euclidean
norm. We use 1A1 for the indicator function of the set A1 of integers with
restricted digits. Here e(x) = e2π i x is the complex exponential function.

We need to make use of various numerical estimates throughout the paper,
some of which succeed only by a small margin. We have endeavored to avoid
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134 J. Maynard

too many explicit calculations and we encourage the reader to not pay too
much attention to the numerical constants appearing on a first reading.

4 Structure of the paper

In Sect. 6, we use a sieve decomposition to reduce the proof of Theorem 1.1 to
the proof of Propositions 6.1 and 6.2, which are asymptotic estimates for par-
ticular types of terms arising from sieve decompositions. These propositions
are established in Sect. 7.

In Sect. 7, we use sieve theory to reduce the proof of Propositions 6.1 and
6.2 to the proof of Propositions 7.1 and 7.2, which are our ‘Type I’ and ‘Type
II’ estimates. These will be established in Sects. 8 and 9 respectively.

In Sect. 8 we use a large sieve argument to reduce the proof of our Type I
estimate Proposition 7.1 to that of Lemmas 8.1 and 8.2, which are Fourier �∞
and �1 bounds. These will be established in Sect. 10.

In Sect. 9 we use the circle method and geometric decompositions to reduce
the proof of our Type II estimate Proposition 7.2 to that of Propositions 9.1, 9.2
and 9.3, which are our estimates for the ‘major arcs’, the ‘generic minor arcs’
and the ‘exceptional minor arcs’. These will be established in Sects. 11, 12
and 13 respectively.

In Sect. 10 we establish various Fourier estimates. In particular we establish
Lemmas 8.1 and 8.2, as well as several auxiliary lemmas which will be used
in later sections.

In Sect. 11 use results on primes in arithmetic progressions to establish our
major arc estimate Proposition 9.1, making use of the estimates of Sect. 10.

In Sect. 12 we use Fourier moment bounds from Sect. 10 to establish our
generic minor arc estimate Proposition 9.2.

In Sect. 13 we use the geometry of numbers to reduce the proof of the
exceptionalminor arc estimate Proposition 9.3 to the proof of Propositions 13.3
and 13.4, which are estimates from frequencies constrained to lie in low height
lattices or low height lines. These will be established in Sects. 14 and 15.

In Sect. 14we establish our estimate for low height lattices Proposition 13.3,
using the estimates of Sect. 10.

In Sect. 15 we establish our estimate for low height lines Proposition 13.4
, using the geometric counting estimates and the results of Sect. 10. This
completes the proof of Theorem 1.1.

In Sect. 16, we sketch themodifications in the argument required to establish
Theorem 1.2.

In particular, the dependency graph between the main statements in the
proof of Theorem 1.1 is as follows:
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Theorem 1.1

Proposition 6.2

Proposition 6.1

Proposition 7.1

Proposition 7.2

Lemma 8.1

Lemma 8.2

Proposition 9.1

Proposition 9.2

Proposition 9.3

Proposition 13.3

Proposition 13.4

5 Basic estimates

We will make frequent use of some well-known facts in analytic number the-
ory without extra comment. In particular, we make use of the Prime Number
Theorem in short intervals and arithmetic progressions with error term (see
[10, Chapter 22], for example). This states that for any A > 0 we have

∑

Y≤n≤Y+	Y
n≡a (mod q)


(n) = 	Y

φ(q)
+ OA

(
Y

(log Y )A

)

(5.1)

provided 	 ≥ (log Y )−A and q ≤ (logY )A and gcd(a, q) = 1.
We recall the following sieve estimate (see, for example, [18, Theorem

7.11]): For u > 1 + 1/(log Y )1/2

#{n < Y : p|n ⇒ p ≥ Y 1/u} = (ω(u) + ou(1))
uY

logY
, (5.2)

whereω(u) is the Buchstab function defined by the delay-differential equation

ω(u) = 1/u, 1 ≤ u ≤ 2,
ω′(u) = ω(u − 1) − ω(u), u > 2.

We recall some results from the geometry of numbers andMinkowski’s theory
of successiveminima (see, for example, [9, p. 110]). A lattice inR

k is a discrete
subgroup of the additive group R

k . For any lattice 
 there is a Minkowski-
reduced basis {v1, . . . , vr } of linearly independent vectors in R

k such that


 = v1Z + · · · + vrZ,
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and for any x1, . . . , xr ∈ R we have

‖x1v1 + · · · + xrvr‖2 �
r∑

i=1

‖xivi‖2,

and with ‖v1‖2 · · · ‖vr‖2 � det(
), where these implied constants depend
only on the ambient dimension k. Here det(
) is the r -dimensional volume
of the fundamental parallelepiped, given by

{
r∑

i=1

xivi : x1, . . . , xr ∈ [0, 1]
}

.

We say r is the rank of the lattice. We see the properties of the Minkowski-
reduced basis above indicate that each generating vector vi has a positive
proportion of its length in a direction orthogonal to all the other basis vectors.

6 Sieve decomposition and proof of Theorem 1.1

First, we prove Theorem 1.1 assuming two key propositions, given below. This
reduces the problem to establishing Propositions 6.1 and 6.2 which we do over
the remaining sections.

As remarked in Sect. 2, it suffices to consider X as a power of 10. If X = 10k

we will think of all elements of A as having k digits, none of which is equal
to a0. This is equivalent to slightly changing the definition of A in the case
when a0 = 0 (since it restricts A to (X/10, X ]), but by considering X , X/10,
X/100 . . . we see that we can easily recover Theorem 1.1 for the original set
A from this situation.

We will make a decomposition of #{p ∈ A} into various terms following
Harman’s sieve (see [15] for more details). Each of these terms can then be
asymptotically estimated by Propositions 6.1 or 6.2 (given below), or can be
trivially bounded below by 0. To keep track of the terms in this decomposition
we apply the same decomposition to the set

B = {0 ≤ n < X}

by considering a weighted sequence wn .
Let wn be weights supported on non-negative integers n < X given by

wn = 1A(n) − κA#A
#B = 1A(n) − κA#A

X
≥ −κA#A

X
. (6.1)
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[We recall that 1A is the indicator function of A, and κA is the constant given
by (1.1).] For a set C we define

Cd = {c : cd ∈ C},
S(C, z) = #{c ∈ C : p|c ⇒ p > z}.

Given an integer d > 0 and a real number z > 0, let

Sd(z) =
∑

n<X/d
p|n⇒p>z

wnd = S(Ad , z) − κA#A
X

S(Bd , z). (6.2)

We expect that Sd(z) is typically small for a wide range of d and z. The
following two propositions show that this is the case for certain d, z.

Proposition 6.1 (Sieve asymptotic terms) Fix an integer � ≥ 0. Let θ1 =
9/25+2ε and θ2 = 17/40−2ε. Let L be a set of O(1) affine linear functions
L : R

� → R. Then we have

∗∑

Xθ2−θ1≤p1≤···≤p�

p1···p�≤X1−θ1

Sp1···p�
(X θ2−θ1) = oL

(
#A
log X

)

,

where
∑∗ indicates the summation is restricted by the conditions

L

(
log p1
log X

, . . . ,
log p�

log X

)

≥ 0

for all L ∈ L.
Proposition 6.1 includes the case � = 0, where we interpret the statement as

S1(X
θ2−θ1) = o

(
#A
log X

)

. (6.3)

Proposition 6.2 (Type II terms) Fix an integer � ≥ 1. Let θ1, θ2,L be as in
Proposition 6.1, and let I ⊆ {1, . . . , �} and j ∈ {1, . . . , �}. Then we have

∗∑

Xθ2−θ1≤p1≤···≤p�

Xθ1≤∏i∈I pi≤Xθ2

p1···p�≤X/p j

Sp1···p�
(p j ) = oL

(
#A
log X

)

,
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138 J. Maynard

and

∗∑

Xθ2−θ1≤p1≤···≤p�

X1−θ2≤∏i∈I p j≤X1−θ1

p1···p�≤X/p j

Sp1···p�
(p j ) = oL

(
#A
log X

)

,

where
∑∗ indicates the same restriction of summation to L ≥ 0 for all L ∈ L

as in Proposition 6.1.

We note that by inclusion-exclusion the same result holds if some of the
inequalities L ≥ 0 are replaced by the strict inequality L > 0.

Proof of Theorem 1.1 assuming Proposition 6.1 and Proposition 6.2 Let θ1 =
9/25 + 2ε and θ2 = 17/40 − 2ε as in Proposition 6.1.

We first consider the upper bound for Theorem 1.1, which is essentially a
standard sieve upper bound. Since θ2 − θ1 < 1/2, we have

#{p ∈ A} = S(A, X1/2) + O(X1/2) ≤ S(A, X θ2−θ1) + O(X1/2).

Thus, using (6.3) and the fact (5.2) that there are O(X/ log X) integers in
[0, X ] with no prime factors smaller than X θ2−θ1 , we have

#{p ∈ A} ≤ S(A, X θ2−θ1) + O(X1/2)

= κA
#A
X

S(B, X θ2−θ1) + S1(X
θ2−θ1) + O(X1/2)

= κA
#A
X

#{n < X : p|n ⇒ p > X θ2−θ1} + o

(
#A
log X

)

� #A
log X

.

Thus it suffices to establish the lower bound.
To simplify notation, we let z1 ≤ z2 ≤ z3 ≤ z4 ≤ z5 ≤ z6 be given by

z1 = X θ2−θ1, z2 = X θ1, z3 = X θ2,

z4 = X1/2, z5 = X1−θ2, z6 = X1−θ1 .

We have

#{p ∈ A} = #{p ∈ A : p > X1/2} + O(X1/2) = S1(z4) + (1 + o(1))
κA#A
log X

.
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Thus we wish to bound S1(z4) from below. By Buchstab’s identity (i.e.
inclusion-exclusion on the least prime factor) we have

S1(z4) = S1(z1) −
∑

z1<p≤z4

Sp(p).

The term S1(z1) is o(#A/ log X) by (6.3) from Proposition 6.1. We split the
sum over p into ranges (zi , zi+1], and see that all the terms with p ∈ (z2, z3]
are also negligible by Proposition 6.2. This gives

S1(z4) = −
∑

z1<p≤z2

Sp(p) −
∑

z3<p≤z4

Sp(p) + o

(
#A
log X

)

.

We wish to replace Sp(p) by Sp(min(p, (X/p)1/2)). We note that these
are the same when p ≤ X1/3, but if p > X1/3 then there are addi-
tional terms in Sp((X/p)1/2) from primes in the interval ((X/p)1/2, p]. For
δ = 1/(log X)1/2, by the prime number theorem and Proposition 6.1, we have

0 ≤
∑

p<X1/2

(
S(Ap,min(p, (X/p)1/2)) − S(Ap, p)

)

≤
∑

p<X1/2−δ

∑

(X/p)1/2<q≤p
qp∈A

1 +
∑

X1/2−δ≤p≤X1/2

S(Ap, z1)

�
∑

a∈A
a<X1−δ

1 + #A
log X

∑

X1/2−δ≤p<X1/2

1

p

= o

(
#A
log X

)

. (6.4)

Here, and throughout this section, q is restricted to being a prime number.
Similarly, we get corresponding bounds for S(B p,min(p, (X/p)1/2)), and so
we can replace Sp(p) with Sp(min(p, (X/p)1/2)) at the cost of a small error.

Using this, and applying Buchstab’s identity again, we have

S1(z4) = −
∑

z1<p≤z2

Sp(min(p, (X/p)1/2))

−
∑

z3<p≤z4

Sp(min(p, (X/p)1/2)) + o

(
#A
log X

)

= −
∑

z1<p≤z2

Sp(z1) −
∑

z3<p≤z4

Sp(z1) +
∑

z1<q≤p≤z2
q≤(X/p)1/2

Spq(q)
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+
∑

z3<p≤z4
z1<q≤(X/p)1/2

Spq(q) + o

(
#A
log X

)

.

The first two terms above are asymptotically negligible by Proposition 6.1,
and so this simplifies to

S1(z4) =
∑

z1<q≤p≤z2
q≤(X/p)1/2

Spq(q) +
∑

z3<p≤z4
z1<q≤(X/p)1/2

Spq(q) + o

(
#A
log X

)

. (6.5)

We perform further decompositions to the remaining terms in (6.5). We first
concentrate on the first term on the right hand. Splitting the ranges of pq into
intervals, and recalling those with a pq in the interval [z2, z3] or [z5, z6] make
a negligible contribution by Proposition 6.2, we obtain

∑

z1<q≤p≤z2
q≤(X/p)1/2

Spq(q) =
∑

z1<q≤p≤z2
q≤(X/p)1/2

z6<pq

Spq(q) +
∑

z1<q≤p≤z2
q≤(X/p)1/2
z3≤pq<z5

Spq(q)

+
∑

z1<q≤p≤z2
z1≤pq<z2

Spq(q) + o

(
#A
log X

)

. (6.6)

Here we have dropped the condition q ≤ (X/p)1/2 in the final sum, since
this is implied by q ≤ p and pq ≤ z2. On recalling the definition (6.1) of
wn , we can lower bound the first term of (6.6) by dropping the non-negative
contribution from the set A via wn ≥ −κA#A/X . By partial summation, and
using the estimate (5.2), this gives

∑

z1<q≤p≤z2
q≤(X/p)1/2

z6<pq

Spq(q) ≥ −κA#A
X

∑

z1<q≤p≤z2
q≤(X/p)1/2

z6<pq

S(Bpq , q)

≥ −κA#A
X

∑

z1<q≤p≤z2
q≤(X/p)1/2

z6<pq

∑

n<X/pq
P−(n)>q

1

≥ −(κA + o(1))#A
∑

z1<q≤p≤z2
q≤(X/p)1/2

z6<pq

ω
(
log X/pq
log q

)

pq log q
+ o

(
#A
log X

)
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≥ −(1 + o(1))
κA#A
log X

∫∫

θ2−θ1<v<u<θ1
v<(1−u)/2
1−θ1<u+v

ω

(
1 − u − v

v

)
dudv

uv2
.

(6.7)

Here ω(u) is Buchstab’s function, and P−(n) denotes the least prime factor
of n.

We perform further decompositions to the second termof (6.6), first splitting
according to the size of q2 p compared with z6.

∑

z1<q≤p≤z2
q≤(X/p)1/2
z3≤pq<z5

Spq(q) =
∑

z1<q≤p≤z2
z3≤pq<z5
q2 p<z6

Spq(q) +
∑

z1<q≤p≤z2
z3≤pq<z5
z6≤q2 p≤X

Spq(q). (6.8)

For the second term of (6.8) when q2 p is large, we first separate the contri-
bution from products of three primes. By an essentially identical argument to
when we replaced Sp(p) by Sp(min(p, (X/p)1/2)) in (6.4), we may replace
Spq(q) by Spq(min(q, (X/pq)1/2)) at the cost of a negligible error term (since
pq < z6). By Buchstab’s identity we have (with r restricted to being prime)

∑

z1<q≤p≤z2
z3≤pq<z5
z6≤q2 p≤X

Spq(min(q, (X/pq)1/2))

=
∑

z1<q≤p≤z2
z3≤pq<z5
z6≤q2 p≤X

Spq((X/pq)1/2) +
∑

z1<q≤p≤z2
z3≤pq<z5
z6≤q2 p≤X

q<r≤(X/pq)1/2

Spqr (r).

The first term above is counting products of exactly three primes, and for
these terms we drop the contribution from A for a lower bound. By partial
summation and the prime number theorem, this gives

∑

z1<q≤p≤z2
z3≤pq<z5
z6≤q2 p≤X

Spq((X/pq)1/2) ≥ −(1+o(1))
κA#A
log X

∫∫

θ2−θ1<v<u<θ1
θ2<u+v<1−θ2
1−θ1<2v+u<1

dudv

uv(1 − u − v)
.

(6.9)
For the terms not coming from products of 3 primes, we split our summation
according to the size of qr , noting that this is negligible if qr ∈ [z2, z3] by
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Proposition 6.2. For the terms with qr /∈ [z2, z3] we just take the trivial lower
bound. Thus

∑

z1<q≤p≤z2
z3≤pq<z5
z6≤q2 p≤X

q<r≤(X/pq)1/2

Spqr (r) =
∑

z1<q≤p≤z2
z3≤pq<z5
z6≤q2 p≤X

q<r≤(X/pq)1/2

qr<z2

Spqr (r) +
∑

z1<q≤p≤z2
z3≤pq<z5
z6≤q2 p≤X

q<r≤(X/pq)1/2

qr>z3

Spqr (r) + o

(
#A
log X

)

≥ −(1 + o(1))
κA#A
log X

∫∫∫

(u,v,w)∈R1

ω

(
1 − u − v − w

w

)
dudvdw

uvw2 (6.10)

− (1 + o(1))
κA#A
log X

∫∫∫

(u,v,w)∈R2

ω

(
1 − u − v − w

w

)
dudvdw

uvw2 , (6.11)

where R1 andR2 are given by

R1 = {(u, v, w) : θ2 − θ1 < v < u < θ1,

θ2 < u + v < 1 − θ2, 1 − θ1 < u + 2v < 1,

v < w < (1 − u − v)/2, v + w < θ1} ,

R2 = {(u, v, w) : θ2 − θ1 < v < u < θ1,

θ2 < u + v < 1 − θ2, 1 − θ1 < u + 2v < 1,

v < w < (1 − u − v)/2, v + w > θ2} .

Together (6.9), (6.10) and (6.11) give a suitable lower bound for the terms in
(6.8) with q2 p ≥ z6.

When q2 p < z6 we can apply two further Buchstab iterations, since thenwe
can evaluate terms Spqr (z1) with r ≤ q ≤ p using Proposition 6.1 as pqr ≤
pq2 < z6. As before, we may replace Spq(q) by Spq(min(q, (X/pq)1/2)) and
Spqr (r) with Spqr (min(r, (X/pqr)1/2)) at the cost of negligible error terms
(since pqr < z6). This gives

∑

z1<q≤p≤z2
q2 p<z6

z3≤pq<z5

Spq(q) =
∑

z1<q≤p≤z2
q2 p<z6

z3≤pq<z5

Spq(min(q, (X/pq)1/2)) + o

(
#A
log X

)

=
∑

z1<q≤p≤z2
q2 p<z6

z3≤pq<z5

Spq(z1) −
∑

z1<r≤q≤p≤z2
q2 p<z6

z3≤pq<z5
r≤(X/pq)1/2

Spqr (r) + o

(
#A
log X

)
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= o

(
#A
log X

)

−
∑

z1<r≤q≤p≤z2
q2 p<z6

z3≤pq<z5
r≤(X/pq)1/2

Spqr (min(r, (X/pqr)1/2))

= o

(
#A
log X

)

−
∑

z1<r≤q≤p≤z2
q2 p<z6

z3≤pq<z5
r≤(X/pq)1/2

Spqr (z1) +
∑

z1<s≤r≤q≤p≤z2
q2 p<z6

z3≤pq<z5
r2 pq,s2rpq≤X

Spqrs(s)

= o

(
#A
log X

)

+
∑

z1<s≤r≤q≤p≤z2
q2 p<z6

z3≤pq<z5
r2 pq,s2 pqr≤X

Spqrs(s),

where r, s are restricted to primes in the sums above. Finally we see that any
part of the final sum with a product of two of p, q, r, s in [z2, z3] can be
discarded by Proposition 6.2. Trivially lower bounding the remaining terms as
we did before yields

∑

z1<s≤r≤q≤p≤z2
q2 p<z6

z3≤pq<z5
r2 pq,s2 pqr≤X

Spqrs(s)

≥ −(1 + o(1))
κA#A
log X

∫∫∫∫

(u,v,w,t)∈R3

ω

(
1 − u − v − w − t

t

)
dudvdwdt

uvwt2
,

(6.12)

where R3 is given by

R3 = {(u, v, w, t) : θ2 − θ1 < t < w < v < u < θ1,

u + 2v < 1 − θ1, u + v + 2w < 1,

u + v + w + 2t < 1, θ2 < u + v < 1 − θ2,

{u + v, u + w, u + t, v + w, v + t, w + t} ∩ [θ1, θ2] = ∅ } .

This completes our decomposition of the terms from (6.8), coming from the
second term of (6.6). We note that we could have imposed various further
restrictions such as u + v + w /∈ [θ1, θ2] inR3, but for ease of calculation we
do not include these.

We perform decompositions to the third term of (6.6) in a similar way to
how we dealt with the second term. We have q2 p < (qp)3/2 < z3/22 < z6
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so, as above, we can apply two Buchstab iterations and use Proposition 6.1 to
evaluate the terms Spqr (z1) since we have pqr ≤ pq2 < z6. Furthermore, we
notice that terms with any of pqr, pqs, prs, or qrs in [z2, z3] ∪ [z5, z6] are
negligible by Proposition 6.2. This gives

∑

z1<q≤p≤z2
z1≤pq<z2

Spq(q) =
∑

z1<q≤p≤z2
z1≤pq<z2

Spq(z1) −
∑

z1<r≤q≤p≤z2
z1≤pq<z2

Spqr (r)

= o

(
#A
log X

)

−
∑

z1<r≤q≤p≤z2
z1≤pq<z2

Spqr (z1) +
∑

z1<s<r<q<p<z2
z1<pq<z2

Spqrs(s)

=
∑

z1<s<r<q<p<z2
z1<pq<z2

prq,pqs,prs,qrs /∈[z2,z3]
pqrs /∈[z2,z3]∪[z5,z6]

Spqrs(s) + o

(
#A
log X

)

≥ −(1 + o(1))
κA#A
log X

∫∫∫∫

(u,v,w,t)∈R4

ω

(
1 − u − v − w − t

t

)
dudvdwdt

uvwt2
,

(6.13)

where

R4 = {(u, v, w, t) : θ2 − θ1 < t < w < v < u < θ1, u + v < θ1,

u + v + w + t /∈ [θ1, θ2] ∪ [1 − θ2, 1 − θ1],
{u + v + w, u + v + t, u + w + t, v + w + t} ∩ [θ1, θ2] = ∅} .

We note that forR4 we have dropped different constraints to those we dropped
in R3.

Together (6.7), (6.9), (6.10), (6.11), (6.12) and (6.13) give our lower bound
for all the terms occurring in (6.6), and so gives a lower bound for first term
from (6.5) which covers all terms with p ≤ z2.

We are left to consider the second term from (6.5), which is the remaining
termswith p ∈ (z3, z4].We treat these in a similarmanner to thosewith p ≤ z2.
We first split the sum according to the size of qp. Terms with qp ∈ [z5, z6]
are negligible by Proposition 6.2, so we are left to consider qp ∈ (z3, z5) or
qp > z6. We then split the terms with qp ∈ (z3, z5) according to the size of
q2 p compared with z6. This gives

∑

z3<p≤z4
z1<q≤(X/p)1/2

Spq(q) = S1 + S2 + S3 + o

(
#A
log X

)

,
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where

S1 =
∑

z3<p≤z4
z1<q≤(X/p)1/2

z6<qp

Spq(q)

≥ −(1 + o(1))
κA#A
log X

∫∫

θ2<u<1/2
θ2−θ1<v<(1−u)/2

1−θ1<u+v

ω

(
1 − u − v

v

)
dudv

uv2
, (6.14)

S2 =
∑

z3<p≤z4
z1<q≤(X/p)1/2

z3<qp<z5
z6≤q2 p

Spq(q)

≥ −(1 + o(1))
κA#A
log X

∫∫

θ2<u<1/2
θ2−θ1<v<(1−u)/2

θ2<u+v<1−θ2
1−θ1<2v+u

ω

(
1 − u − v

v

)
dudv

uv2
, (6.15)

and where

S3 =
∑

z3<p≤z4
z1<q≤(X/p)1/2

z3<qp<z5
q2 p<z6

Spq(q).

We apply two further Buchstab iterations to S3 (we can handle the inter-
mediate terms using Proposition 6.1 as before since q2 p < z6). As
before, we may replace Spq(q) by Spq(min(q, (X/pq)1/2)) and Spqr (r)
by Spqr (min(r, (X/pqr)1/2)) at the cost of a negligible error term (since
pqr < z6). This gives

S3 =
∑

z3<p≤z4
z1<q≤(X/p)1/2

z3<qp<z5
q2 p<z6

Spq (min(q, (X/pq)1/2)) + o

(
#A
log X

)

=
∑

z3<p≤z4
z1<q≤(X/p)1/2

q2 p<z6
z3<qp<z5

Spq (z1)
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−
∑

z3<p≤z4
z1<r≤q≤(X/p)1/2

q2 p<z6
z3<qp<z5
r2qp≤X

Spqr (min(r, (X/pqr)1/2)) + o

(
#A
log X

)

= o

(
#A
log X

)

−
∑

z3<p≤z4
z1<r≤q≤(X/p)1/2

q2 p<z6
z3<qp<z5
r2qp≤X

Spqr (z1) +
∑

z3<p≤z4
z1<s≤r≤q≤(X/p)1/2

q2 p<z6
z3<qp<z5

s2qrp,r2qp≤X

Spqrs(s)

=
∑

z3<p<z4
z1<s≤r≤q≤(X/p)1/2

q2 p<z6
z3<qp<z5

s2qrp,r2qp≤X
pq,pr,ps,qr,qs,rs /∈[z2,z3]∪[z5,z6]

Spqrs(s) + o

(
#A
log X

)

≥ −(1 + o(1))
κA#A
log X

∫∫∫∫

(u,v,w,t)∈R5

ω

(
1 − u − v − w − t

t

)
dudvdwdt

uvwt2
, (6.16)

where

R5 = {(u, v, w, t) : θ2 − θ1 < t < w < v, θ2 < u<1/2, u+2v < 1 − θ1,

u + v + 2w < 1, u + v + w + 2t < 1, θ2 < u + v < 1 − θ2,

{u + v, u + w, u + t, v + w, v + t, w + t} /∈ [θ1, θ2] } .

Together (6.14), (6.15), (6.16) give our lower bound for the second term from
(6.5), which is all the terms with p ∈ [z3, z4]. This completes our lower bound
for S1(z4).

Let I1, . . . , I9 denote the integrals in (6.7), (6.9), (6.10), (6.11), (6.12),
(6.13), (6.14), (6.15) and (6.16) respectively. Putting everything together, we
obtain

#{p ∈ A} = (1 + o(1))
κA#A
log X

+ S1(z4)

≥ (1+o(1))
κA#A
log X

(1− I1− I2− I3 − I4 − I5 − I6 − I7 − I8−I9).

In particular, we have

#{p ∈ A} ≥ (1 + o(1))
κA#A

1000 log X
(6.17)
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provided that I1 + · · · + I9 ≤ 0.999. Numerical integration1 then gives the
following bounds on I1, . . . , I9 in the case when θ1 and θ2 in the definition of
I1, . . . , I9 are replaced by 9/25 and 17/40 respectively.

I1 ≤ 0.02895, I2 ≤ 0.35718,

I3 ≤ 0.01402, I4 ≤ 0.04238,

I5 ≤ 0.05547, I6 ≤ 0.06622,

I7 ≤ 0.21879, I8 ≤ 0.20339,

I9 ≤ 0.00924.

Thus in this case we have I1 +· · ·+ I9 < 0.996, and so by continuity we have
I1+· · ·+ I9 < 0.996+O(ε)when θ1 = 9/25+2ε and θ2 = 17/40−2ε. Thus,
taking ε suitably small, we see that (6.17) holds, and so we have completed
the proof of Theorem 1.1 for X sufficiently large. If X ≥ 4 is bounded by
a constant, then Theorem 1.1 follows (after potentially adjusting the implied
constants) on noting that either 2 or 3 is a prime inA and so Theorem 1.1 also
holds for bounded X ≥ 4. ��
We note that there are various ways in which one can improve the numerical
estimates, but we have restricted ourselves to the above decomposition in the
interests of clarity. Judiciously employing further Buchstab decompositions
would give small numerical improvements, for example.

Thus it suffices to establish Propositions 6.1 and 6.2 .

7 Sieve asymptotics

In this sectionwe prove Propositions 6.1 and 6.2 assumingPropositions 7.1 and
7.2, given below. This reduces the problem to proving standard ‘Type I’ and
‘Type II’ estimates. These propositions will then be proven in Sects. 8 and 9 .

Before we state the propositions, we set up some extra notation. Let

Q�(η) = {(x1, . . . , x�) ∈ R
� : η ≤ x1 ≤ · · · ≤ x�, x1 + · · · + x� = 1}.

By a closed convex polytope in R
� we mean a region R defined by a finite

number of non-strict affine linear inequalities in the coordinates (equivalently,
this is the convex hull of a finite set of points in R

�). Given a closed convex
polytopeR ⊆ Q�(η), we let

1R(a) =
{
1, if a = p1 · · · p� for some p1, . . . , p� with

(
log p1
log a , . . . ,

log p�
log a

)
∈ R,

0, otherwise.

1 A Mathematica® file detailing this computation is included with this article on arxiv.org.
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We caution that 1R counts numbers with a particular type of prime factoriza-
tion, and should not be confused with 1A, the indicator function of the set A.
We recall B = {n ∈ Z : 0 ≤ n < X}.

Our two key propositions that we will use are given below.

Proposition 7.1 (Type I estimate) Let A > 0 and Q ≤ X50/77(log X)−2A−2.
Then we have

∑

q<Q
(q,10)=1

∣
∣
∣
∣#{a ∈ A : q|a, (a, 10) = 1} − κ

#A
q

∣
∣
∣
∣�A

#A
(log X)A

,

where

κ =
{

φ(10)
9 , if (a0, 10) �= 1,

φ(10)−1
9 , if (a0, 10) = 1.

Proposition 7.2 (Type II estimate) Let η > 0, and let � ≤ 2η−1. Let R ⊆
Q�(η) be a closed convex polytope in R

� which has the property that

e ∈ R ⇒
∑

i∈I
ei ∈

[
9

25
+ ε,

17

40
− ε

]

for some set I ⊆ {1, . . . , �}. Then we have
∑

a∈A
1R(a) = κA

#A
#B

∑

n<X

1R(n) + OR,η

(
#A

log X log log X

)

,

where

κA =
{

10(φ(10)−1)
9φ(10) , if (10, a0) = 1,

10
9 , otherwise.

Proposition 6.2 follows quickly from Proposition 7.2, but it will be convenient
to establish a slightly more general version where the primes can be as small
as Xη.

Lemma 7.3 (Type II terms, alternative formulation) Fix an integer � ≥ 1 and
a quantity η > 0. Let θ1 = 9/25 + 2ε, θ2 = 17/40 − 2ε, and L be as in
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Proposition 6.2, and let I ⊆ {1, . . . , �} and j ∈ {1, . . . , �}. Then we have
∗∑

Xη≤p1≤···≤p�

Xθ1≤∏i∈I pi≤Xθ2

p1···p�≤X/p j

Sp1···p�
(p j ) = oL,η

(
#A
log X

)

,

and

∗∑

Xη≤p1≤···≤p�

X1−θ2≤∏i∈I p j≤X1−θ1

p1···p�≤X/p j

Sp1···p�
(p j ) = oL,η

(
#A
log X

)

,

where
∑∗ indicates the same restriction of summation to L ≥ 0 for all L ∈ L

as in Proposition 6.2.

As before, we note that by inclusion-exclusion the same result holds if some
of the constraints L ≥ 0 are replaced with L > 0. We see Proposition 6.2
follows immediately from Lemma 7.3 on choosing η = θ2 − θ1.

Proof of Lemma 7.3 assuming Proposition 7.2 We just deal with the case
when

∏
i∈I pi ∈ [X θ1, X θ2]; the other case is entirely analogous with θ1

and θ2 simply replaced with 1 − θ2 and 1 − θ1 throughout. (Notice that
if e ∈ R ⊆ Q�(η) satisfies

∑
i∈I ei ∈ [23/40 + ε, 16/25 − ε], then∑

i /∈I ei ∈ [9/25+ ε, 17/40− ε]. Thus the interval [9/25+ ε, 17/40− ε] in
Proposition 7.2 can be replaced by the interval [23/40 + ε, 16/25 − ε], and
so Proposition 7.2 applies similarly in both cases.)

Recall the definition (6.2) of Sd(z). We see that Sp1···p�
(p j ) is a sum

of wn only involving integers n with at most 1/η prime factors, since
all prime factors are of size at least Xη. The terms with exactly r prime
factors (for some r ≤ 1/η) are a sum of wp1···pr over p1, . . . , pr with
the summation only restricted by a bounded number of linear inequalities
on log p1/ log X, . . . , log pr/ log X . (These are the previous restrictions on
p1, . . . , p�, and the restriction p j ≤ p�+1 ≤ · · · ≤ pr ). We may write the
condition Xη ≤ p1 and the restriction on the size of

∏
i∈I pi and

∏�
i=1 pi as

linear conditions only involving log p1/ log X, . . . , log p�/ log X with coef-
ficients having constants depending only on η. Thus, after increasing L to
include these conditions, it suffices to show that

∗∑

p1≤···≤p�
p j≤p�+1≤···≤pr

wp1···pr = oL,η

(
#A
log X

)

, (7.1)
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where
∑∗ indicates that the summation is restricted by the conditions

L

(
log p1
log X

, . . . ,
log p�

log X

)

≥ 0 (7.2)

for all L ∈ L.
Let δ = 1/ log log X . We first trivially discard the contribution from n =

p1 · · · pr < X1−δ . Each n appears Oη(1) times in (7.1), so recalling the
definition (6.1) ofwn and dropping the other constraints, the total contribution
from such terms is

�η

∑

n∈A
n<X1−δ

1 + #A
#B

∑

n<X1−δ

1 � #A1−δ + #A
X δ

= oη

(
#A
log X

)

. (7.3)

Thus it is sufficient to show

∗∑

p1≤···≤p�
p j≤p�+1≤···≤pr
p1···pr≥X1−δ

wp1···pr = oL,η

(
#A
log X

)

. (7.4)

Since we have the constraint p1 · · · p� ≤ X/p j ≤ X1−η, the result follows
immediately if r = � (if η < δ the result is trivial). Thus we may assume that
r > �, so none of the constraints involve all the pi . We now wish to replace
log pi/ log X with log pi/ log n in the conditions (7.2). For n ∈ [X1−δ, X ], we
have

log pi
log X

≤ log pi
log n

≤ (1 + 2δ)
log pi
log X

,

and so if exactly one of L
(
log p1
log X , . . . ,

log p�

log X

)
and L

(
log p1
log n , . . . ,

log p�

log n

)
is

non-negative, we must have

∣
∣
∣
∣L

(
log p1
log n

, . . . ,
log p�

log n

)∣
∣
∣
∣�L δ. (7.5)

To bound the contribution of such terms, let γ > 0 be a parameter and

G(γ, L) :=
∑

nη≤p1,..., pr
−γ≤L(

log p1
log n ,...,

log p�
log n )≤γ

nθ1≤∏i∈I pi≤nθ2+ε

(

1A(p1 · · · pr ) + #A
#B 1B(p1 · · · pr )

)

.
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(Here the summation is over all choices of primes p1, . . . , pr , and for any such
choice n = p1 · · · pr . We do not restrict to n ≥ X1−δ in the summation.) We
wish to show that if γ = oL ,η(1) then G(γ, L) = oL ,η(#A/ log X), and we
will do this by first thinking of γ fixed but very small.

We split the sum into at most r ! = Oη(1) subsums where the variables are
ordered (we potentially double-count the contribution from pi = pi ′ for an
upper bound). Thus, after relabelling the pi , we see that

G(γ, L)� sup
i1,...,i�∈{1,...,r}

distinct

∑

nη≤p1≤···≤pr

−γ≤L(
log pi1
log n ,...,

log pi�
log n )≤γ

nθ1≤∏i∈I′ pi≤nθ2+ε

(

1A(p1 · · · pr )+ #A
#B 1B(p1 · · · pr )

)

for some set I ′ ⊆ {1, . . . , r}. Let R = R(γ, L , η) ⊆ Qr (η) be given by

{

(x1, . . . , xr ) ∈Qr (η) : −γ ≤ L(xi1, . . . , xi�) ≤ γ,
∑

i∈I′
xi ∈ [θ1, θ2 + ε]

}

.

ThenR satisfies the conditions of Proposition 7.2, so

∑

nη≤p1≤···≤pr

−γ≤L(
log pi1
log n ,...,

log pi�
log n )≤γ

nθ1≤∏i∈I′ pi≤nθ2+ε

1A(p1 · · · pr ) =
∑

n∈A
1R(n)

= #A
#B

∑

n<X

1R(n)+oR
(

#A
log X log log X

)

.

Thus

G(γ, L) � #A
#B sup

i1,...,i�∈{1,...,r}
distinct

∑

n<X

1R(n) + OL ,η,γ

(
#A

log X log log X

)

.

By the Prime Number Theorem and partial summation, we have

∑

n<X

1R(n) = X

log X

∫

· · ·
∫

(e1,...,er )∈R

de1 . . . der−1
∏r

i=1 ei
+ OR

(
X

(log X)2

)

.

Since all components of elements of R are at least η, the integral is bounded
by η−r times the (r − 1)-dimensional volume ofR. Since L involves at most
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� ≤ r − 1 coordinates and R ⊆ [η, 1]r , this volume is OL ,η(γ ). Thus

G(γ, L) = OL ,η

(
γ #A
log X

)

+ OL ,η,γ

(
#A

log X log log X

)

.

If γ → 0 as X → ∞ suitably slowly, we see that this shows that G(γ, L) =
oL ,η(#A/ log X). But from the definition of G, we see that G(γ, L) is non-
decreasing in γ , so in fact we deduce that for any γ = oL ,η(1) we have
G(γ, L) = oL ,η(#A/ log X).

We see from (7.5) that the error introduced to (7.4) by replacing
log pi/ log X with log pi/ log n in the conditions (7.2) is O(

∑
L∈L G(γ, L))

for some γ �L δ = oL(1). By the above discussion, this is oL,η(#A/ log X),
which is negligible.

After making this change, we may reintroduce the terms with n < X1−δ at
the cost of a negligible error by using the bound (7.3) again. Thus

∗∑

p1≤···≤p�
p j≤p�+1≤···≤pr
p1···pr≥X1−δ

wp1···pr =
∗∗∑

p1≤···≤p�
p j≤p�+1≤···≤pr

wp1···pr + oL,η

(
#A
log X

)

,

where
∑∗∗ indicates the sum is constrained to

L

(
log p1
log n

, . . . ,
log p�

log n

)

≥ 0

for all L ∈ L. Moreover, since we had the constraint
∏

i∈I pi ∈ [X θ1, X θ2]
in (7.2), this second sum includes the constraint

∏
i∈I pi ∈ [nθ1, nθ2]. We

now split the summation into Oη(1) subsums where the pi are totally ordered.
After relabelling the coordinates, Proposition 7.2 applies to each of these sums,
since the linear constraints L ≥ 0 for L ∈ L define a closed convex polytope
(depending only on L), and the ordering of the variables ensures that this lies
within Qr (η) (recall that the constraint Xη ≤ p1 becomes nη ≤ p1, so all
primes are at least nη). The constraint

∏
i∈I pi ∈ [nθ1, nθ2] corresponds to

the sum of a subset of the coordinates of all points in the polytope lying in
[θ1, θ2]. Proposition 7.2 shows that the contribution from each such sum is
oL,η(#A/ log X). Since there are Oη(1) such sums, the total contribution is
oL,η(#A/ log X), giving the result. ��
Our aim for the remainder of this section is to establish Proposition 6.1 using
Propositions 7.1 and 7.2. We first establish an auxiliary lemma.
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Lemma 7.4 (Fundamental Lemma) For δ > 0 we have

∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣S(Ad , X

δ) − κA#A
#B S(Bd , X

δ)

∣
∣
∣
∣�

exp(−δ−2/3)

log X
#A+ #A

(log X)100
.

The implied constant is independent of δ.

Proof of Lemma 7.4 assuming Proposition 7.1 If δ > ε4 then since S(C, Xt )

is nonnegative and decreasing in t for any set C, we have

−κA
#A
#B S(Bd , X

ε4) ≤ S(Ad , X
δ) − κA

#A
#B S(Bd , X

δ)

≤
(

S(Ad , X
ε4) − κA#A

#B S(Bd , X
ε4)

)

+ κA
#A
#B S(Bd , X

ε4).

Since S(Bd , X ε4) � X/(d log X) for d < X1−ε by (5.2), this gives

∣
∣
∣
∣S(Ad , X

δ) − κA
#A
#B S(Bd , X

δ)

∣
∣
∣
∣

=
∣
∣
∣
∣S(Ad , X

ε4) − κA
#A
#B S(Bd , X

ε4)

∣
∣
∣
∣+ O

(
#A

d log X

)

.

By the rough number estimate (5.2) again, we see that the sum of 1/d over
d < X with all prime factors bigger that X δ is Oδ(1). Thus the result for
δ > ε4 follows from the result for δ = ε4, so we may assume without loss of
generality that δ ≤ ε4.

Let

A′ = {a ∈ A : (a, 10) = 1}.

Then #A′ = κ#A, where κ is the constant given in Proposition 7.1. Let Rd(e)
be defined by

#{a ∈ A′
d : e|a} = κ#A

de
+ Rd(e).
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We put q = de and see from Proposition 7.1 that for any A > 0 the error
terms Rd(e) satisfy

∑

d<X50/77−ε

p|d⇒p>X δ

∑

e<Xε/2

(e,10)=1
p|e⇒p≤X δ

Rd(e) �
∑

q<X50/77−ε/2

(q,10)=1

∣
∣
∣
∣#A′

q − κ#A
q

∣
∣
∣
∣

�A
#A

(log X)A
. (7.6)

By the fundamental lemma of sieve methods (see, for example, [14, Theorem
6.9]) we have

S(A′
d , X

δ) =
(

1 − O

(

exp

(−ε

2δ

)))
κ#A
d

∏

p≤X δ

p�10

(

1 − 1

p

)

+O

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

e<Xε/2

(e,10)=1
p|e⇒p≤X δ

Rd(e)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Summing over d and using the bound (7.6), we obtain

∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣
∣
∣
∣
∣
∣

S(A′
d , X

δ) − κ#A
d

∏

p≤X δ

p�10

(

1 − 1

p

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

� exp
(
− ε

2δ

) ∏

p≤X δ

p�10

(

1 − 1

p

)

#A
∑

d<X50/77−ε

p|d⇒p>X δ

1

d
+ #A

(log X)100
.

The product in the final bound is O(δ−1(log X)−1), and the inner sum over d
is seen to be O(δ−1) by an Euler product upper bound. Finally, since we are
assuming that δ ≤ ε4, we have that δ−2 exp(−ε/(2δ)) � exp(−δ−2/3). Thus

∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣
∣
∣
∣
∣
∣

S(A′
d , X

δ) − κ#A
d

∏

p≤X δ

p�10

(

1 − 1

p

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

� exp(−δ−2/3)#A
log X

+ #A
(log X)100

. (7.7)
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An identical argument works for the set B′ = {n < X : (n, 10) = 1} instead
of A′. This gives

∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣
∣
∣
∣
∣
∣

S(B′
d , X

δ) − #B′

d

∏

p≤X δ

p�10

(

1 − 1

p

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

� exp(−δ−2/3)#B′

log X
+ #B′

(log X)100
. (7.8)

We see that for (d, 10) = 1 we have S(A′
d , X

δ) = S(Ad , X δ), that
S(B′

d , X
δ) = S(Bd , X δ), and that #B′ = φ(10)#B/10. Thus, by the trian-

gle inequality

∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣S(Ad , X

δ) − 10κ#A
φ(10)#B S(Bd , X

δ)

∣
∣
∣
∣

≤
∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣
∣
∣
∣
∣
∣

S(A′
d , X

δ) − κ#A
d

∏

p≤X δ

p�10

(

1 − 1

p

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

+ 10κ#A
φ(10)#B

∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣
∣
∣
∣
∣
∣

S(B′
d , X

δ) − #B′

d

∏

p≤X δ

p�10

(

1 − 1

p

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

+
∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣
∣
∣
∣
∣
∣

κ#A
d

∏

p≤X δ

p�10

(

1 − 1

p

)

− 10κ#A#B′

φ(10)d#B
∏

p≤X δ

p�10

(

1 − 1

p

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

We bound the first summation by (7.7), the second summation by (7.8), and
note that since #B′ = φ(10)#B/10, the third summation is zero. Since κA =
10κ/φ(10), this gives

∑

d<X50/77−ε

p|d⇒p>X δ

∣
∣
∣
∣S(Ad , X

δ) − κA#A
#B S(Bd , X

δ)

∣
∣
∣
∣�

exp(−δ−2/3)

log X
#A + #A

(log X)100
.

��
Using Lemma 7.4 we can now prove Proposition 6.1.
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Proof of Proposition 6.1 assuming Lemma 7.3 and Lemma 7.4 Recall that θ1
= 9/25 + 2ε, θ2 = 17/40 − 2ε. Let θ := θ2 − θ1, and let δ ≥ 1/ log log X
be a small quantity which we will eventually choose to tend to 0 in a suitable
manner. In particular, δ will be small compared with ε.

We first consider the contribution from p1 · · · p� < X θ1 . Given a set C and
an integer d, we let

Tm(C; d) =
∑

X δ<p′
m≤···≤p′

1≤Xθ

dp′
1···p′

m≤Xθ1

S(Cp′
1···p′

m
, X δ),

Um(C; d) =
∑

X δ<p′
m≤···≤p′

1≤Xθ

dp′
1···p′

m≤Xθ1

S(Cp′
1···p′

m
, p′

m),

Vm(C; d) =
∑

X δ<p′
m≤···≤p′

1≤Xθ

Xθ1<dp′
1···p′

m≤Xθ1 p′
m

S(Cp′
1···p′

m
, p′

m).

Buchstab’s identity shows that

Um(C; d) = Tm(C; d) −Um+1(C; d) − Vm+1(C; d).

We define T0(C; d) = S(C; X δ) and V0(C; d) = 0. This gives for d ≤ X θ1

S(C, X θ ) = T0(C; d) − V1(C; d) −U1(C; d)

=
∑

m≥0

(−1)m(Tm(C; d) + Vm(C; d)).

We apply the above decomposition to Ad . This gives an expression with
O(δ−1) terms since trivially Tm(Ad; d) = Um(Ad; d) = Vm(Ad; d) = 0
if m > 1/δ. Applying the same decomposition to Bd , taking the weighted
difference, and summing over d = p1 · · · p� we obtain

∑′

p1,...,p�

S(Ad , X
θ ) − κA#A

X

∑′

p1,...,p�

S(Bd , X
θ )

�
∑

0≤m�1/δ

∑′

p1,...,p�

∣
∣
∣
∣Tm(Ad; d) − κA#A

X
Tm(Bd; d)

∣
∣
∣
∣

+
∑

0≤m�1/δ

∣
∣
∣
∣
∣

∑′

p1,...,p�

(

Vm(Ad; d) − κA#A
X

Vm(Bd; d)

)∣∣
∣
∣
∣
. (7.9)
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Here
∑′ indicates we are summing over all choices of p1, . . . , p� which

appear in the summation in Proposition 6.1 with the additional condition that
d = p1 · · · p� < X θ1 .

We note that p1, . . . , p� ≥ X θ , so d has O(1) prime factors and any integer
e can be represented O(1) times as dp′

1 · · · p′
m for some primes p′

m ≤ · · · ≤ p′
1

and some choice of p1, . . . , p� defining d. Thus, expanding the definition of
Tm , if δ ≤ ε we have

∑

0≤m�1/δ

∑′

p1,...,p�

∣
∣
∣
∣Tm(Ad; d) − κA#A

#B Tm(Bd; d)

∣
∣
∣
∣

�
∑

e<Xθ1

p|e⇒p>X δ

∣
∣
∣
∣S(Ae, X

δ) − κA#A
#B S(Be, X

δ)

∣
∣
∣
∣

� δ−1 exp(−δ−2/3)#A
log X

. (7.10)

Here we applied by Lemma 7.4 in the last line, using δ ≥ 1/ log log X .
We now consider the Vm terms. We expand the definition of Vm as a sum.

We note that p′
m ≤ X θ = X θ2−θ1 , so the summation is constrained by

X θ1 ≤ dp′
1 · · · p′

m ≤ X θ2 , which is our Type II constraint.We see that all terms
have dp′

1 · · · p′
m ≤ X/p′

m , so we can insert this condition without changing
the sum. We recall p1, . . . , p� are constrained only by some linear conditions
on log p1/ log X, . . . , log p�/ log X . Thus we see that the sum is of the form
considered in Lemma 7.3 with η = δ, since all the conditions in the summa-
tion can be written as linear constraints on log pi/ log X for 1 ≤ i ≤ � and
log p′

j/ log X for 1 ≤ j ≤ m. Thus, by Lemma 7.3, we have

∑

m�δ−1

∣
∣
∣
∣
∣

∑′

p1,...,p�

(

Vm(Ad; d) − κA#A
#B Vm(Bd; d)

)∣∣
∣
∣
∣
= oδ,L

(
#A
log X

)

.

(7.11)
Putting together (7.9), (7.10) and (7.11), we obtain

∑′

p1,...,p�

S(Ad , X
θ ) − κA#A

#B
∑′

p1,...,p�

S(Bd , X
θ )

� (
exp(−δ−1/2) + oδ,L(1)

) #A
log X

.

Letting δ → 0 sufficiently slowly then gives the result for d < X θ1 .
The contribution from d with X θ2 < d < X1−θ2 can be handled by an

identical argument, where instead of restricting to dp′
1 · · · p′

m ≤ X θ1 and
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X θ1 < dp′
1 · · · p′

m ≤ X θ1 p′
m in Tm , Um and Vm , we instead restrict to

dp′
1 · · · p′

m ≤ X1−θ2 and X1−θ2 < dp′
1 · · · p′

m ≤ X1−θ2 p′
m respectively. The

terms corresponding to Vm involve a ∈ Adp′
1···p′

m
with X1−θ2 < dp′

1 · · · p′
m ≤

X1−θ1 ≤ X/p′
m , so can be handled by the second part of Lemma 7.3 instead of

the first part. Since 50/77 > 1−17/40+2ε = 1−θ2, the terms corresponding
to Tm can still be handled by Lemma 7.4.

Finally, the contribution from d with X θ1 ≤ d ≤ X θ2 or X1−θ2 ≤ d ≤
X1−θ1 can be bounded almost immediately by Lemma 7.3. One Buchstab
iteration gives

Sd(X
θ ) = Sd(X

δ) −
∑

X δ<p<Xθ

Sdp(p).

We put d = p1 · · · p� and sum over p1, . . . , p� satisfying the constraints
imposed by L and such that d ∈ [X1−θ2, X1−θ1]. The first term makes a
negligible total contribution by Lemma 7.4 since d ≤ X1−θ1 < X50/77−ε .
The second term makes negligible total contribution by Lemma 7.3 (not-
ing that dp ≤ X1−θ1+θ ≤ X1−θ ≤ X/p). This gives the result when
d ∈ [X1−θ2, X1−θ1]. The argument for d ∈ [X θ1, X θ2] is completely anal-
ogous.

Together these cover the whole range p1 · · · p� ≤ X1−θ1 , giving the result.
��

Thus, since Lemmas 7.3 and 7.4 follow from Propositions 7.1 and 7.2, it
suffices to establish Propositions 7.1 and 7.2.

8 Type I estimate

In this section we establish our ‘Type I’ estimate Proposition 7.1, assuming
the more technical Lemmas 8.1 and 8.2 , which we will establish later in
Sect. 10. We recall that Proposition 7.1 describes the number of elements of
A in arithmetic progressions to modulus up to X50/77−ε ≈ X0.65 on average.

Our Type I estimate is based on suitable bounds on the Fourier Transform

SA(θ) =
∑

a∈A
e(aθ)

of the setA. We recall our definition of the function FY from (3.1), which is a
normalized version of SA. In particular, |SA(θ)| = #A · FX (θ). The two key
lemmas which we use in this section are the following.
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Lemma 8.1 (Large sieve estimate)We have

∑

q≤Q

∑

0<a<q
(a,q)=1

FY

(
a

q

)

� Q54/77 + Q2

Y 50/77
.

Lemma 8.2 (�∞ bound)Let q < Y 1/3 be of the formq = q1q2with (q1, 10) =
1 and q1 > 1, and let |η| < Y−2/3/2. Then for any integer a coprime with q
we have

FY

(
a

q
+ η

)

� exp

(

−c
logY

log q

)

for some absolute constant c > 0.

Proof of Proposition 7.1 assuming Lemma 8.1 and Lemma 8.2 By Möbius
inversion and using additive characters, we have for (q, 10) = 1

#A′
q = #{a ∈ A : q|a, (a, 10) = 1}

=
∑

a∈A
q|a

∑

d|(10,a)

μ(d)

=
∑

d|10
μ(d)

∑

a∈A

⎛

⎝
1

dq

∑

0≤b<dq

e

(
ab

dq

)
⎞

⎠

=
∑

d|10

μ(d)

dq

∑

0≤b<dq

SA
(

b

dq

)

.

Wewrite b/dq = b′/dq ′ with (b′, q ′) = 1, and separate the termswith q ′ = 1.
We then let b′/dq ′ = b′′/d ′q ′ with (b′′, d ′q ′) = 1. For (q, 10) = 1 we see
that this representation is unique for all b, d under consideration. Thus

#A′
q =

∑

d|10

μ(d)

dq

∑

0≤b′<d

SA
(
b′
d

)

+ O

⎛

⎜
⎜
⎜
⎝

∑

d|10

∑

q ′|q
q ′>1

∑

0≤b′<dq ′
(b′,q ′)=1

1

q

∣
∣
∣
∣SA

(
b′
dq ′
)∣
∣
∣
∣

⎞

⎟
⎟
⎟
⎠

= 1

q
#{a ∈ A : (a, 10) = 1} + O

⎛

⎜
⎜
⎜
⎝

#A
q

∑

d ′|10

∑

q ′|q
q ′>1

∑

0≤b′′<d ′q ′
(b′′,d ′q ′)=1

FX

(
b′′
d ′q ′

)

⎞

⎟
⎟
⎟
⎠

.
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We note that #{a ∈ A : (a, 10) = 1} = κ#A. Summing over q < Q with
(q, 10) = 1 and letting q = q ′q ′′, we obtain

∑

q<Q
(q,10)=1

∣
∣
∣
∣#A′

q − κ#A
q

∣
∣
∣
∣�

∑

q<Q
(q,10)=1

#A
q

∑

d ′|10

∑

q ′|q
q ′>1

∑

0≤b′′<dq ′
(b′′,d ′q ′)=1

FX

(
b′′
d ′q ′

)

�
∑

1<q ′<Q
(q ′,10)=1

#A
q ′

∑

d ′|10

∑

0≤b′′<d ′q ′
(b′′,d ′q ′)=1

FX

(
b′′
d ′q ′

) ∑

q ′′<Q/q ′

1

q ′′

� #A(log X)2 sup
Q1≤Q
d ′|10

1

Q1

∑

q ′∼Q1
(q ′,10)=1

q ′>1

∑

0≤b′′<d ′q ′
(b′′,d ′q ′)=1

FX

(
b′′
d ′q ′

)

. (8.1)

Here we recall our notation that q ′ ∼ Q1 means q ′ ∈ (Q1/10, Q1]. By
Lemma 8.1 we have for any d|10

1

Q1

∑

q∼Q1

∑

0≤a<dq
(a,dq)=1

FX

(
a

dq

)

� 1

Q23/77
1

+ Q1

X50/77
,

which gives the required bound if Q1 > (log X)4A+8 on recalling that Q1 ≤
Q ≤ X50/77(log X)−2A−2. In the case Q1 ≤ (log X)4A+8 we instead use
Lemma 8.2, which gives

1

Q1

∑

q∼Q1
(q,10)=1

q>1

∑

a≤dq
(a,dq)=1

FX

(
a

dq

)

� Q1 sup
(a,q)=1
1<q≤Q1
(q,10)=1

d|10

FX

(
a

dq

)

�A
Q1

(log X)100(A+1)
.

Thus we see that the bound (8.1) is OA(#A/(log X)A) in either case, as
required. ��
We are left to establish Proposition 7.2 and Lemmas 8.1 and 8.2.

9 Type II estimate

In this section we reduce our ‘Type II’ estimate to various major arc and minor
arc estimates. In particular, we will reduce the proof of Proposition 7.2 to
the proof of Propositions 9.1, 9.2 and 9.3 . We first recall the statement of
Propositon 7.2 which allows us to count integers in A with a specific type of
prime factorization provided such numbers always have a ‘conveniently sized’
factor.
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Proposition (Type II estimate Proposition 7.2 restated) Let η > 0, and let
� ≤ 2η−1. Let R ⊆ Q�(η) be a closed convex polytope in R

� which has the
property that

e ∈ R ⇒
∑

i∈I
ei ∈

[
9

25
+ ε,

17

40
− ε

]

for some set I ⊆ {1, . . . , �}. Then we have
∑

a∈A
1R(a) = κA

#A
#B

∑

n<X

1R(n) + OR,η

(
#A

log X log log X

)

,

where

κA =
{

10(φ(10)−1)
9φ(10) , if (10, a0) = 1,

10
9 , otherwise.

To avoid technical issues due to the fact that
∑

n<Y 1A(n) can fluctuate with Y ,
wewill replace our counts1R(n)with aweight
R, where for a setR ⊆ [η, 1]�
we define


R(n) =
∑

p1,...,p�
p1···p�=n(

log p1
log X ,...,

log p�
log X

)
∈R

�∏

i=1

log pi . (9.1)

We note that in 
R the conditions are on log pi/ log X , whereas in 1R the
conditions are on log pi/ log n. If every e ∈ R has e1 ≤ · · · ≤ e� then at most
one term occurs in the summation, so 
R simplifies to


R(n) =
{∏�

i=1 log pi , if n = p1 · · · p� and
(
log p1
log X , . . . ,

log p�

log X

)
∈ R,

0, otherwise.

We prove Proposition 7.2 by an application of the Hardy–Littlewood circle
method, whereby we study the functions

SA(θ) =
∑

a∈A
e(aθ), SR(θ) =

∑

n<X


R(n)e(nθ).

Proposition 7.2 then relies on the following three components.
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Proposition 9.1 (Major arcs) Fix η > 0 and let � ∈ Z satisfy 1 ≤ � ≤ 2/η.
Let δ = (log log X)−1, and let RX = RX (a1, . . . , a�−1) be given by

RX =
⎧
⎨

⎩
e ∈ R

� : ei ∈ (ai , ai + δ] for 1 ≤ i ≤ � − 1,

�∑

i=1

ei ≤ 1, e� ≥ max

(
η

4
, 1 −

�−1∑

i=1

ai − �δ

)}

,

for some a1, . . . , a�−1 ∈ R satisfyingmini ai ≥ η/2 and
∑�−1

i=1 ai < 1− η/2.
LetM = M(C) be given by

M =
{

0 ≤ a < X :
∣
∣
∣
∣
a

X
− b

q

∣
∣
∣
∣

≤ (log X)C

X
for some integers b, q with q ≤ (log X)C

}

.

Then

1

X

∑

0≤a<X
a∈M

SA
( a

X

)
SRX

(−a

X

)

= κA
#A
X

∑

n<X


RX (n) + OC,η

(
#A

(log X)C

)

.

Here κA is the constant given in Proposition 7.2. The implied constant depends
on C and η, but not on RX or a1 . . . , a�−1.

Proposition 9.2 (Generic minor arcs) Fix η > 0 and let � ∈ Z satisfy 1 ≤
� ≤ 2/η. Let R ⊆ R

� be a closed convex polytope. Let M = M(C) be as in
Proposition 9.1.

Then there is some exceptional set E ⊆ [0, X ] with
#E ≤ X23/40,

such that

1

X

∑

a<X
a /∈E

∣
∣
∣SA

( a

X

)
SR
(−a

X

) ∣
∣
∣�η

#A
X ε

.

The implied constant depends on η, but not on R.

Proposition 9.3 (Exceptional minor arcs) Let A > 0. Let η, �, RX =
RX (a1, . . . , a�−1) and M = M(C) be as given in Proposition 9.1. Let
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a1, . . . , a�−1 in the definition ofRX satisfy
∑

i∈I ai ∈ [9/25+ ε/2, 17/40−
ε/2] ∪ [23/40 + ε/2, 16/25 − ε/2] for some I ⊆ {1, . . . , � − 1}, and let
C = C(A, η) in the definition of M be sufficiently large in terms of A and η.
Let E ⊆ [0, X ] be any set such that #E ≤ X23/40. Then we have

1

X

∑

a∈E
a /∈M

SA
( a

X

)
SRX

(−a

X

)

�η,A
#A

(log X)A
.

The implied constant depends on η and A, but not on RX or a1, . . . , a�−1.

We expect the contribution from the major arcs M to give the main contri-
bution. Proposition 9.1 shows that we can get an asymptotic formula from
frequencies in M. Proposition 9.2 shows that most frequencies contribute
negligibly, and that any significant contribution must come from some small
exceptional set E . (In view of Proposition 9.1, we must have E contains ele-
ments ofM and soE is non-empty).Wewould expect thatwe can takeE = M,
but cannot quite show this. However, Proposition 9.3 shows that E\M con-
tributes negligibly to our sum, which is sufficient for our purposes.

Proof of Proposition7.2assumingPropositions9.1, 9.2and9.3and Lemma7.4
Proof of Proposition 7.2 assuming Propositions 9.1, 9.2 and 9.3 and
Lemma 7.4 Let δ = (log log X)−1. Clearly we may assume that δ is suffi-
ciently small in terms of η, since otherwise the result is trivial. We note that
� ≥ 2, since the sum of coordinates of points inR is 1 but a non-trivial subset
of them lies in [9/25, 17/40]. Given reals a1, . . . , a�−1 ≥ 0 and γ > 0 and a
set S ∈ R

�, let

C(a; γ ) := (a1, a1 + γ
]× · · · × (a�−1, a�−1 + γ

]
,

C+(a; γ ) :=
{

e ∈ [η/4, 1]� : (e1, . . . , e�−1) ∈ C(a; γ ),

�∑

i=1

ei ≤ 1, e� ≥ 1 −
�−1∑

i=1

ai − �δ

}

,

1̃S(n) :=
{
1, n = p1 · · · p� for some p1, . . . , p� with

(
log p1
log X , . . . ,

log p�

log X

)
∈S,

0, otherwise.

We see that 1S and 1̃S differ in that the denominators of the fractions are log n
and log X respectively.

We cover [η, 1]�−1 by O(δ−(�−1)) disjoint hypercubes C(a, δ) of side length
δ (for example, we can take all a ∈ {0, δ, 2δ, . . . , �δ−1�δ}�−1). Let R ⊆
[η, 1]�−1 denote the projection of R onto the first � − 1 coordinates (which
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is also a closed convex polytope). We see that if n ∈ [X1−δ2, X ] then log n
and log X differ by a factor of at most 1− δ2. In particular, if log p j/ log X ∈
[a j , a j + δ] then certainly log p j/ log n ∈ [a j , a j + 2δ]. This means that
if C(a; 2δ) ⊆ R and log p j/ log X ∈ [a j , a j + δ] for all j ≤ � − 1, then

1R(p1 · · · p�) = 1 for all p� ∈ [X1−δ2/p1 · · · p�−1, X/p1 · · · p�−1]. Thus for
n ∈ [X1−δ2, X ]

1R(n)1̃C+(a;δ)(n) =

⎧
⎪⎨

⎪⎩

0, ifR ∩ C(a; 2δ) = ∅,

1̃C+(a;δ)(n), if C(a; 2δ) ⊆ R,

O(1̃C+(a;δ)(n)), otherwise.

(9.2)

If C(a; 2δ) ∩ R �= ∅ but C(a; 2δ) � R then C(a; 2δ) intersects the boundary
∂R ofR.

Since 1R(n) is supported on n with � prime factors all at least nη, if n =
p1 · · · p� ≥ X1−δ2 and 1R(n) = 1 then there is an a with ai ≥ η/2 such
that 1̃C(a;δ)(p1 · · · p�−1) = 1. Moreover, since n ≥ X1−δ2 we have p� ≥
X1−δ2/p1 · · · p�−1 ≥ X1−∑�−1

i=1 ai−�δ , so in fact 1̃C+(a;δ)(n) = 1. Since the
cubes are disjoint, this happens for exactly one choice of a. Therefore we have
for any n ∈ [X1−δ2, X ]

1R(n) =
∑

a

1̃C+(a;δ)(n)1R(n).

Using this with (9.2) to split the summation over hypercubes C, we find
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

m∈A
X1−δ2<m<X

1R(m) − κA#A
X

∑

X1−δ2<n<X

1R(n)

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤
∑

a
C(a;2δ)⊆R

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

m∈A
X1−δ2<m<X

1̃C+(a;δ)(m) − κA#A
X

∑

X1−δ2<n<X

1̃C+(a;δ)(n)

∣
∣
∣
∣
∣
∣
∣
∣
∣

+
∑

a
C(a;2δ)∩∂R�=∅

O

⎛

⎜
⎜
⎜
⎝

∑

m∈A
X1−δ2<m<X

1̃C+(a;δ)(m) +
∑

X1−δ2<n<X

κA#A
X

1̃C+(a;δ)(n)

⎞

⎟
⎟
⎟
⎠

.

Re-inserting terms with m ≤ X1−δ2 and n ≤ X1−δ2 , we obtain
∣
∣
∣
∣
∣

∑

m∈A
1R(m) − κA#A

X

∑

n<X

1R(n)

∣
∣
∣
∣
∣
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≤
∑

a
C(a;2δ)⊆R

∣
∣
∣
∣
∣

∑

m∈A
1̃C+(a;δ)(m) − κA#A

X

∑

n<X

1̃C+(a;δ)(n)

∣
∣
∣
∣
∣

+
∑

a
C(a;2δ)∩∂R�=∅

O

(
∑

m∈A
1̃C+(a;δ)(m) +

∑

n<X

κA#A
X

1̃C+(a;δ)(n)

)

+ O

⎛

⎜
⎜
⎜
⎝

∑

m∈A
m≤X1−δ2

1

⎞

⎟
⎟
⎟
⎠

+ O

⎛

⎝
#A
X

∑

n≤X1−δ2

1

⎞

⎠ . (9.3)

The final two terms above satisfy

∑

m∈A
m≤X1−δ2

1 + κA
#A
X

∑

n≤X1−δ2

1 � #A1−δ2 + #A
X δ2

� δ#A
log X

. (9.4)

We now consider the contribution to (9.3) from C(a; 2δ) ∩ ∂R �= ∅. Since
R ⊆ [η, 1]�, we must have ai ≥ η/2 and since the coordinates of points inR
sum to 1 we also have

∑�−1
i=1 ai ≤ 1− η/2. Since 1̃C+(a;δ)(n) and 
C+(a;δ)(n)

have the same support, which is restricted to integers with no factor less than
Xη/4, we have 1̃C+(a;δ)(n) �η (log X)−�
C+(a;δ)(n). Thus we have

∑

m∈A
1̃C+(a;δ)(m) + κA#A

X

∑

n<X

1̃C+(a;δ)(n)

�η

1

(log X)�

(
∑

m∈A

C+(a;δ)(m) + κA#A

X

∑

n<X


C+(a;δ)(n)

)

≤ 1

(log X)�

∣
∣
∣
∣
∣

∑

m∈A

C+(a;δ)(m) − κA#A

X

∑

n<X


C+(a;δ)(n)

∣
∣
∣
∣
∣

+ 2

(log X)�

κA#A
X

∑

n<X


C+(a;δ)(n). (9.5)

Here we used the triangle inequality in the final line. By the prime number
theorem, for any choice of a ∈ [0, 2]�−1 we have

∑

n<X


C+(a;δ)(n) ≤
∑

p1,...,p�−1
pi∈(Xai ,Xai+δ]

(
�−1∏

i=1

log pi

)
∑

p�<X/p1···p�−1

log p�
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� X
∑

p1,...,p�−1
pi∈(Xai ,Xai+δ]

�−1∏

i=1

log pi
pi

� δ�−1X (log X)�−1.

Since R is a closed convex polytope, so is R ⊆ R
�−1. Therefore there are

OR(δ−(�−2)) hypercubes C(a; 2δ) which intersect ∂R. Thus the contribution
to (9.3) from the final term of (9.5) is

� #A
X (log X)�

∑

a
C(a;2δ)∩∂R�=∅

∑

n<X


C+(a;δ)(n) � δ�−1#A
log X

∑

a
C(a;2δ)∩∂R�=∅

1

�R
δ#A
log X

. (9.6)

We now consider the terms with C(a; 2δ) ⊆ R. Since R ⊆ Q�(η), if e ∈ R
then e1 ≤ · · · ≤ e�, so if e′ ∈ R then e′

1 ≤ · · · ≤ e′
�−1. Therefore, since

C(a; 2δ) ⊆ R,
a j + δ < a j+1 for j ∈ {1, . . . , � − 2}. (9.7)

Since
∑�

i=1 ei = 1 and e�−1 ≤ e� for e ∈ R, if e′ ∈ R then e′
�−1 ≤ 1 −

∑�−1
i=1 e

′
i . Therefore, since (a1 +2δ, . . . , a�−1 +2δ) ∈ C(a; 2δ) ⊆ R, we have

a�−1 + 2δ ≤ 1 −
�−1∑

i=1

ai − (2� − 2)δ ≤ 1 −
�−1∑

i=1

ai − �δ. (9.8)

Together (9.7) and (9.8) imply that at most one term occurs in the summation
in 
C+(a;δ). Thus for such C(a; 2δ), since the coordinates are localized, we
have

1̃C+(a;δ)(n) = (1 + Oη(δ))
C+(a;δ)(n)

(1 −∑�−1
i=1 ai )(

∏�−1
i=1 ai )(log X)�

= 
C+(a;δ)(n)

(1 −∑�−1
i=1 ai )(

∏�−1
i=1 ai )(log X)�

+ Oη(δ1̃C+(a;δ)(n)). (9.9)

Thus

∑

a
C(a;2δ)⊆R

∣
∣
∣
∣
∣

∑

m∈A
1̃C+(a;δ)(m) − κA#A

X

∑

n<X

1̃C+(a;δ)(n)

∣
∣
∣
∣
∣
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�η

1

(log X)�

∑

a
C(a;2δ)⊆R

∣
∣
∣
∣
∣

∑

m∈A

C+(a;δ)(m) − κA#A

X

∑

n<X


C+(a;δ)(n)

∣
∣
∣
∣
∣

+ δ
∑

a
C(a;2δ)⊆R

(
∑

m∈A
1̃C+(a;δ)(m) + κA#A

X

∑

n<X

1̃C+(a;δ)(n)

)

. (9.10)

Since any n = p1 · · · p� contributing to the second term above is counted at
most once and has all prime factors at least Xη/4, we have

δ
∑

a
C(a;2δ)⊆R

(
∑

m∈A
1̃C+(a;δ)(m) + κA#A

X

∑

n<X

1̃C+(a;δ)(n)

)

� δS(A, Xη/4) + δ
#A
X

S(B, Xη/4)

�η

δ#A
log X

. (9.11)

Here we used Lemma 7.4 and (5.2) in the final line. Combining (9.4), (9.5),
(9.6), (9.10) and (9.11), we find (9.3) is bounded by

�η

1

(log X)�

∑

a
C(a;2δ)∩R�=∅

∣
∣
∣
∣
∣

∑

m∈A

C+(a;δ)(m) − κA

#A
X

∑

n<X


C+(a;δ)(n)

∣
∣
∣
∣
∣

+ δ#A
log X

.

Thus to establish Proposition 7.2 it is sufficient to show that for any A > 0,
we have

∑

m∈A

C+(a;δ)(m) = #A

X

∑

n<X


C+(a;δ)(n) + OA,η

(
#A

(log X)A

)

, (9.12)

uniformly for every hypercube C(a; δ) of side length δ with C(a; 2δ)∩R �= ∅.
Since

∑
i∈I ei ∈ [9/25 + ε, 17/40 − ε] if e ∈ R, by taking J = I or

J = {1, . . . , �}\I, we must have that
∑

i∈J a j ∈ [9/25 + ε/2, 17/40 −
ε/2] ∪ [23/40 + ε/2, 16/25 − ε/2] for some J ⊆ {1, . . . , � − 1} for any
a such that C(a; 2δ) ∩ R �= ∅. Since R ⊆ [η, 1]�, we have mini ai ≥ η/2
and

∑�−1
i=1 ai < 1 − η/2 if C(a; 2δ) ∩ R �= ∅. Thus all hypercubes under

consideration satisfy the assumptions on RX of Propositions 9.1–9.3.
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By Fourier expansion we have

∑

m∈A

C+(a;δ)(m) = 1

X

∑

0≤b<X

SA
(
b

X

)

SC+(a;δ)
(−b

X

)

.

We split the summation over b into the sets M, [0, X)\(E ∪ M) and E\M,
where M is as given by Proposition 9.1, and E is the set who existence
is asserted by Proposition 9.2. We then apply Propositions 9.1, 9.2 and 9.3
respectively to each set in turn. Let HC+(θ) = SA(θ)SC+(a;δ)(−θ). For C in
the definition of M sufficiently large in terms of A and η, this gives

∑

m∈A

C+(a;δ)(m) = 1

X

∑

b∈M
HC+

(
b

X

)

+ 1

X

∑

b/∈E∪M
HC+

(
b

X

)

+ 1

X

∑

b∈E
b/∈M

HC+
(
b

X

)

= κA
#A
X

∑

n<X


C+(a;δ)(n) + OA,η

(
#A

(log X)A

)

.

This gives (9.12), and hence completes the proof of Proposition 7.2. ��

Since Lemma 7.4 follows from Proposition 7.1, which in turn follows from
Lemmas 8.1 and 8.2 ,we are left to establish Lemmas 8.1, 8.2, Propositions 9.1,
9.2 and 9.3.

10 Fourier estimates

In this section we collect various distributional bounds on the Fourier trans-
form

SA(θ) =
∑

a∈A
e(aθ),

which will underpin our later analysis. In particular, we establish Lemma 8.1
and Lemma 8.2, as well as several other related estimates. Specifically,
Lemma 8.1 is a special case of Lemma 10.5, and Lemma 8.2 is the same
as Lemma 10.1.

We recall our normalized version of SA(θ) from (3.1)

FY (θ) = Y− log 9/ log 10

∣
∣
∣
∣
∣

∑

n<Y

1A1(n)e(nθ)

∣
∣
∣
∣
∣
.
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We recall that we assume Y is an integral power of ten whenever we encounter
FY to avoid some unimportant technicalities. In particular,

FY (θ) ≤ 1 (10.1)

for all θ and Y . The key property of FY which we exploit is that it has an
exceptionally nice product form. If Y = 10k , then letting n = ∑k−1

i=0 ni10
i

have decimal digits nk−1, . . . , n0, we find

FY (θ) = 1

9k

∣
∣
∣
∣
∣
∣

∑

n0,...,nk−1∈{0,...,9}\{a0}
e

(
k−1∑

i=0

ni10
iθ

)∣∣
∣
∣
∣
∣

=
k−1∏

i=0

1

9

∣
∣
∣
∣
∣
∣

∑

ni∈{0,...,9}\{a0}
e(ni10

iθ)

∣
∣
∣
∣
∣
∣

=
k∏

i=1

1

9

∣
∣
∣
∣
e(10iθ) − 1

e(10i−1θ) − 1
− e(a010

i−1θ)

∣
∣
∣
∣ . (10.2)

We note that FY is periodic modulo 1, and that the above product formula
gives the identity

FUV (θ) = FU (θ)FV (Uθ). (10.3)
(We recall that we assume that U and V are both powers of 10 in such a
statement.)

Lemma 10.1 (�∞ bound, Lemma 8.2 restated) Let q < Y 1/3 be of the form
q = q1q2 with (q1, 10) = 1 and q1 > 1, and let |η| < Y−2/3/2. Then for any
integer a coprime with q we have

FY

(
a

q
+ η

)

� exp

(

−c
logY

log q

)

for some absolute constant c > 0.

Proof From the bounds coming from truncated Taylor expansions, we have
that

|e(nθ) + e((n + 1)θ)|2 = 2 + 2 cos(2π‖θ‖) ≤ 4 − 4π2‖θ‖2 + 4π4‖θ‖4/3
≤ 4 − 4‖θ‖2 ≤ 4 exp(−‖θ‖2).

We recall that ‖ · ‖ denotes the distance to the nearest integer. This implies
that

∣
∣
∣
∣
∣
∣

∑

ni∈{0,...,9}\{a0}
e(niθ)

∣
∣
∣
∣
∣
∣
≤ 7 + 2 exp(−‖θ‖2/2) ≤ 9 exp

(

−‖θ‖2
20

)

.
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For the final inequality we used the convexity of exp(−x2). We substitute this
bound into our expression (10.2) for FY , which gives for Y = 10k

FY (t) =
k−1∏

i=0

1

9

∣
∣
∣
∣
∣
∣

∑

ni∈{0,...,9}\{a0}
e(ni10

i t)

∣
∣
∣
∣
∣
∣

≤ exp

(

− 1

20

k−1∑

i=0

‖10i t‖2
)

.

If t = a/q1q2 with q1 > 1, (q1, 10) = 1 and (a, q1) = 1, then ‖10i t‖ ≥
1/q1q2 for all i . Similarly, if t = a/q1q2 + η with a, q1, q2 as above, with
|η| < Y−2/3/2 and with q = q1q2 < Y 1/3 then for i ≤ k/3 we have ‖10i t‖ ≥
1/q −10i |η| ≥ 1/2q. However, if ‖10i t‖ < 1/20 then ‖10i+1t‖ = 10‖10i t‖.
Thus, for any interval I ⊆ [0, k/3] of length log q/ log 10, there must be some
integer i ∈ I such that ‖10i (a/q + η)‖ > 1/200. This implies that

k∑

i=0

∥
∥
∥
∥10

i
(
a

q
+ η

)∥
∥
∥
∥

2

≥ 1

105

⌊
logY

3 log q

⌋

.

Substituting this into the bound for F , and recalling we assume q < Y 1/3

gives the result. ��
Lemma 10.2 (Markov moment bound) Let J be a positive integer. Let λt,J
be the largest eigenvalue of the 10J × 10J matrix Mt , given by

(Mt )i, j =

⎧
⎪⎨

⎪⎩

G(a1, . . . , aJ+1)
t , if i − 1 =∑J

�=1 a�+110
�−1, j − 1 =∑J

�=1 a�10
�−1

for some a1, . . . , aJ+1 ∈ {0, . . . 9},
0, otherwise,

where

G(t0, . . . , tJ ) = sup
|γ |≤10−J−1

1

9

∣
∣
∣
∣
∣
∣

e
(∑J

j=0 t j10
− j + 10γ

)
− 1

e
(∑J

j=0 t j10
− j−1 + γ

)
− 1

−e

⎛

⎝
J∑

j=0

a0t j
10 j+1 + a0γ

⎞

⎠

∣
∣
∣
∣
∣
∣
.

Then we have that

∑

0≤a<10k

F10k
( a

10k

)t �J,t λkt,J .
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Proof We recall the product formula (10.3) with Y = 10k

FY (θ) =
k∏

i=1

1

9

∣
∣
∣
∣
e(10iθ) − 1

e(10i−1θ) − 1
− e(a010

i−1θ)

∣
∣
∣
∣ ,

where we interpret the term in parentheses as 9 if ‖10i−1θ‖ = 0. Writing
θ = ∑k

i=1 ti10
−i for ti ∈ {0, . . . , 9}, we see that the (k − j)th term in

the product depends only on tk− j , . . . , tk . Moreover, the value of the term is
mainly dependent on the first few of these digits by continuity. Thus we may
approximate the absolute value of FY (θ) by a product where the j th term
depends only on t j , . . . , t j+J for some constant J . Explicitly, we have

FY

(
k∑

i=1

ti
10i

)

≤
k∏

i=1

sup
|γ |≤10−J−1

1

9

∣
∣
∣
∣
∣
∣

e
(∑J

j=0
ti+ j

10 j + 10γ
)

− 1

e
(∑J

j=0
ti+ j

10 j+1 + γ
)

− 1

−e

⎛

⎝a0

J∑

j=0

ti+ j

10 j+1 + a0γ

⎞

⎠

∣
∣
∣
∣
∣
∣

=
k∏

i=1

G(ti , . . . , ti+J ),

where we put t j = 0 for j > k.
With this formulation we can interpret the above bound in terms of the

probability of a walk on {0, . . . , 9, ∞}k . Let t ∈ R be given. Consider an
order-J Markov chain X1, X2, . . . where for a, a1, . . . , an ∈ {0, . . . , 9} we
have for n > J

P(Xn = a|Xn−i = ai for 1 ≤ i ≤ J ) = cG(a, a1, a2, . . . , aJ )
t

for some suitably small constant c (so that the probability that Xn ∈ {0, . . . , 9}
is less than 1). To make this a genuineMarkov chain we choose the probability
that Xn = ∞ given Xn−1, . . . , Xn−J to be such that the probabilities add up
to 1, and if Xn = ∞ then we have that Xn+1 = ∞ with probability 1.

Then we have that

FY

(
k∑

i=1

ai
10i−1

)t

≤ c−k
P(Xi = ak+J+1−i for J < i ≤ k + J |X1 = · · · = X J = 0).
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The sum (over all paths in {0, . . . , 9}k) of the probabilities of paths is a linear
combination of the entries in the kth power of the transition matrix restricted
to {0, . . . , 9}. Thus such a moment estimate is a linear combination of the
kth power of the eigenvalues of this matrix. This allows us to estimate any
moment of FY (a/Y ) over a ∈ [0, Y ) uniformly for all k by performing a
finite eigenvalue calculation. In particular, this gives us a (arbitrarily good as
J increases) numerical approximation to the distribution function of FY .
Explicitly, let Mt be the 10J × 10J matrix given by

(Mt )i, j

=

⎧
⎪⎨

⎪⎩

G(a1, . . . , aJ+1)
t , if i − 1 =∑J

�=1 a�+110�−1, j − 1 =∑J
�=1 a�10�−1

for some a1, . . . , aJ+1 ∈ {0, . . . , 9},
0, otherwise,

and let λt,J be the absolute value of the largest eigenvalue of Mt . Since
G(t1, . . . , tJ+1) > 0 for all t1, . . . , tJ+1, we have thatMt is irreducible, and so
each eigenspace corresponding to an eigenvalue of modulus λt,J has dimen-
sion 1 by the Perron-Frobenius Theorem. Let (Mt )i, j = mi, j . By expanding
out the kth power, we have

(Mk
t )i, j =

∑

i1,...,ik−1∈{0,...,10J−1}
mi,i1mi1,i2 · · ·mik−1, j .

We recall that mi, j = 0 unless there is a1, . . . , aJ+1 ∈ {0, . . . , 9} such that

i − 1 = a2 + 10a3 + · · · + 10J−1aJ+1,

j − 1 = a1 + 10a2 + · · · + 10J−1aJ .

Thus the product mi,i1mi1,i2 · · ·mik−1, j is non-zero only if there are a1, . . . ,
ak+J ∈ {0, . . . , 9} such that

j − 1 = a1 + 10a2 + · · · + 10J−1aJ ,

ik−1 − 1 = a2 + 10a3 + · · · + 10J−1aJ+1,

...

i1 − 1 = ak + 10ak+1 + · · · + 10J−1aJ+k−1,

i − 1 = ak+1 + 10ak=2 + · · · + 10J−1aJ+k .

If this is the case then we have

mi,i1mi1,i2 · · ·mik−1, j =
k∏

i=1

G(ai , ai+1, . . . , ai+J )
t .
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Thus, fixing i = 1 so that ak+1 = · · · = aJ+k = 0, and summing over j , we
have that

10J−1∑

j=0

(Mk
t )1, j =

∑

i1,...,ik−1, j∈{0,...,10J−1}
m1,i1mi1,i2 · · ·mik−1, j

=
∑

a1,...,ak∈{0,...,9}
ak+1=···=ak+J=0

G(a1, . . . , aJ+1)
t · · ·G(ak, . . . , ak+J )

t

≥
10k−1∑

a=0

FY
( a

10k

)t
.

On the other hand, by the eigenvalue expansion of Mt , we have

10J−1∑

j=0

(Mk
t )1, j �t,J λkt,J .

This gives the result. ��
Lemma 10.3 (�1 bound)We have for any k ∈ N

∑

t∈{0,...,9}k

k∏

i=1

G(ti , . . . , ti+4) � 1027k/77.

In particular, we have for Y1 � Y2 � Y3

sup
β∈R

∑

a<Y1

FY2

(

β + a

Y3

)

� Y 27/77
1 ,

and
∫ 1

0
FY (t)dt � 1

Y 50/77
.

Here 27/77 ≈ 0.35 is slightly larger than 1/3, and 50/77 ≈ 0.65.

Proof This follows from Lemma 10.2 and a numerical bound on λ1,4. Specif-
ically, by Lemma 10.2 taking J = 4 we find

∑

t∈{0,...,9}k

k−4∏

i=1

G(ti , . . . , ti+J ) ≤
∑

j

(Mk−4
1 )1, j � λk1,4. (10.4)
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A numerical calculation2 reveals that

λ1,4 < 2.24190 < 1027/77 (10.5)

for all choices of a0 ∈ {0, . . . , 9}. Thus, letting Y = 10k we have λk1,4 <

Y 27/77, which gives the first result.
For the second bound, let U1 = max(1, Y3/Y2). Since Y3 � Y2, we have

U1 � 1. Any a < Y1 can be written as a = a1 + U1a2 + Y3a3 for some
0 ≤ a1 < U1 � 1, 0 ≤ a2 < Y3/U1 = min(Y3, Y2) and 0 ≤ a3 < Y1/Y3 �
1. Since there are O(1) choices of a1, a3 and these can be absorbed into the
supremum over β, we see that it suffices to show

sup
β∈R

∑

a2<min(Y2,Y3)

FY2

(

β + a2
Y2

)

� Y 27/77
2 .

Since FY2 ≥ 0 we can extend the summation to a2 < Y2. Thus without loss of
generality we may assume that Y1 = Y2 = Y3 = Y = 10k . We see that

FY

(
k∑

i=1

ti
10i

+ η

)

≤
k−4∏

i=1

(
G(ti , . . . , ti+4) + O(10i−1η)

)

= (1 + OJ (Yη))

k−4∏

i=1

G(ti , . . . , ti+4). (10.6)

Here we used the fact that G(ti , . . . , ti+4) is bounded away from 0 for all
t1, . . . , tk ∈ {0, . . . , 9} since it is themaximal absolute value of a trigonometric
polynomial over an interval. Since F is periodic modulo 1 we see that

sup
β∈R

∑

t∈{0,...,9}k
FY

(
k∑

i=1

ti
10i

+ β

)

= sup
η∈[0,Y−1]

∑

t∈{0,...,9}k
FY

(
k∑

i=1

ti
10i

+ η

)

,

and so the second bound of the lemma follows from (10.6), (10.4) and (10.5)
on letting a = ∑k

i=1 ti/10
i . For the final bound we integrate (10.6) over

η ∈ [0, Y−1] and sum over t1, . . . , tk ∈ {0, . . . , 9}, giving
∫ 1

0
FY (t)dt =

Y−1∑

a=0

∫ 1/Y

0
FY (a/Y + η)dη

2 A Mathematica® file detailing this computation is included with this article on arxiv.org.
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� 1

Y

∑

t∈{0,...,9}k

k−4∏

i=1

G(ti , . . . , ti+4)

� 1

Y 50/77
.

��
Lemma 10.4 (235/154th moment bound)We have that

#

{

0 ≤ a < Y : FY
( a

Y

)
∼ 1

B

}

� B235/154Y 59/433.

Here 235/154 ≈ 1.5 and 59/433 ≈ 0.14. We recall that n ∼ X means that
X/10 < n ≤ X .

Proof This follows from Lemma 10.2 and a numerical bound for λ235/154,4.
Explicitly, we take J = 4 and Y = 10k . By Lemma 10.2 we have

#

{

0 ≤ a < Y : FY
( a

Y

)
∼ 1

B

}

≤ B235/154
∑

0≤a<Y

FY
( a

Y

)235/154

� B235/154λk235/154,4.

A numerical calculation3 reveals that

λ235/154,4 < 1.36854 < 1059/433,

for all choices of a0 ∈ {0, . . . , 9}. Substituting this in the bound above gives
the result. ��
Lemma 10.5 (Large sieve estimates)We have

sup
β∈R

∑

a≤q

sup
|η|<δ

FY

(
a

q
+ β + η

)

� (1 + δq)
(
q27/77 + q

Y 50/77

)
,

sup
β∈R

∑

q≤Q

∑

0<a<q
(a,q)=1

sup
|η|<δ

FY

(
a

q
+ β + η

)

� (
1 + δQ2)

(

Q54/77 + Q2

Y 50/77

)

,

3 A Mathematica® file detailing this computation is included with this article on arxiv.org.
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and for any integer d, we have

sup
β∈R

∑

q≤Q
d|q

∑

0<a<q
(a,q)=1

sup
|η|<δ

FY

(
a

q
+β + η

)

�
(

1+ δQ2

d

)⎛

⎝

(
Q2

d

)27/77

+ Q2

dY 50/77

⎞

⎠ .

Proof For each a ≤ q, let |ηa| maximize FU (a/q +η) over |η| < δ. Since the
fractions a/q are all separated from one another by at least 1/q, we have for
any t

#

{

a ≤ q : ηa + a

q
∈
[

t − 1

2q
, t + 1

2q

]}

� 1 + qδ.

Thus, considering t = b/q − β, we see that

∑

a≤q

sup
|η|<δ

FU

(
a

q
+ β + η

)

� (1 + qδ)
∑

b≤q

sup
|η|≤1/2q

FU

(
b

q
+ η

)

. (10.7)

We have that

FU (t) = FU (s) +
∫ t

s
F ′
U (v)dv.

Thus integrating over s ∈ [t − γ, t + γ ] for some γ > 0, we have

FU (t) � 1

γ

∫ t+γ

t−γ

FU (s)ds +
∫ t+γ

t−γ

|F ′
U (s)|ds.

This implies that

sup
|η|≤γ

FU (t + η) � 1

γ

∫ t+2γ

t−2γ
FU (s)ds +

∫ t+2γ

t−2γ
|F ′

U (s)|ds.

Taking γ = 1/2q, we obtain

∑

b≤q

sup
|η|≤1/2q

FU

(
b

q
+ η

)

�
∑

b≤q

(

Q
∫ b/q+1/q

b/q−1/q
FU (s)ds +

∫ b/q+1/q

b/q−1/q
|F ′

U (s)|ds
)

� q
∫ 1

0
FU (t)dt +

∫ 1

0
|F ′

U (t)|dt. (10.8)
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Writing U = 10u and n =∑u−1
i=0 ni10i , we see that

|F ′
U (t)| = 2π

9u

∣
∣
∣
∣
∣

∑

n<10u
n1A(n)e(nt)

∣
∣
∣
∣
∣
.

Writing n =∑u−1
j=0 n j10 j−1 and using the triangle inequality, we have

|F ′
U (t)| ≤ 2π

9u

u−1∑

j=0

10 j

∣
∣
∣
∣
∣
∣

∑

0≤n j<10

n j1A(n j )e(n j10
j t)

∣
∣
∣
∣
∣
∣

×
∏

0≤i≤u−1
i �= j

∣
∣
∣
∣
∣
∣

∑

0≤ni<10

1A(ni )e(ni10
i t)

∣
∣
∣
∣
∣
∣

� 10u

9u
sup
j≤u

∏

0≤i≤u−1
i �= j

∣
∣
∣
∣
∣
∣

∑

0≤ni<10

1A(ni )e(ni10
i t)

∣
∣
∣
∣
∣
∣
.

We recall the functionG from Lemma 10.2. SinceG(t1, . . . , t1+J ) is bounded
away from 0, we see that for η � U−1

∣
∣
∣
∣
∣
F ′
U

(
u∑

i=1

ti
10i

+ η

)∣
∣
∣
∣
∣
� U

u∏

i=1

(
G(ti , . . . , ti+J ) + O(10iη)

)

� (U + O(U 2η))

u∏

i=1

G(ti , . . . , ti+J ).

Thus, integrating over η ∈ [0,U−1], taking J = 4, and using Lemma 10.3,
we obtain

∫ 1

0
|F ′

U (t)|dt �
∑

t∈{0,...,9}u

u∏

i=1

G(ti , . . . , ti+4) � U 27/77. (10.9)

By Lemma 10.3 we have

∫ 1

0
FU (t)dt � 1

U 50/77
. (10.10)
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Combining (10.10), (10.9), (10.8) and (10.7), we obtain

∑

a≤q

sup
|η|<δ

FU

(
a

q
+ β + η

)

� (1 + δq)
(
U 27/77 + q

U 50/77

)
.

Combining this with the trivial bound

FY (t) ≤ FU (t)

for U ≤ Y , and choosing U maximally subject to U ≤ q and U ≤ Y gives
the first result of the lemma.

The other bounds follow from entirely analogous arguments. In particular
we note that for (a, q) = 1, q < Q, the numbers a/q are separated from one
another by 1/Q2, and those with d|q are separated from each other by d/Q2,
so we have the equivalent of (10.7) with δq replaced by δQ2 or δQ2/d and
|η| ≤ 1/2q replaced by |η| ≤ 1/2Q2 or |η| ≤ d/2Q2. ��
Lemma 10.6 (Hybrid Bounds) Let E ≥ 1. Then we have

∑

a≤q

∑

|η|≤E/Y
(η+a/q)Y∈Z

FY

(
a

q
+ η

)

� (qE)27/77 + qE

Y 50/77
,

∑

q<Q
d|q

∑

a≤q
(a,q)=1

∑

|η|≤E/Y
(η+a/q)Y∈Z

FY

(
a

q
+ η

)

�
(
Q2E

d

)27/77

+ Q2E

dY 50/77
.

In the above lemma, we emphasize that a, q, d are all integers, bu the sum-
mation over η is over real numbers which are well-spaced from the condition
Y (η + a/q) ∈ Z.

Proof Wefirst note that the summand a/q+η runs through fractions b/Y with
|b| ≤ E+Y since we have the condition (η+a/q)Y ∈ Z. Each fraction b/Y is
represented O(1+min(qE/Y, q)) times, since if a1/q+η1 = a2/q+η2 then
a2 = a1+O(qE/Y ) and η2 is determined by a1, a2, η1. There are O(1+E/Y )

choices ofb giving the same fraction (mod 1), and since FY is periodic (mod 1)
these all give the same value of FY (b/Y ). Thus we may consider only b < Y
with each fraction b/Y occurring O((1 + E/Y )min(qE/Y, q)) times. Thus
we see that if 10qE ≥ Y then

∑

a≤q

∑

|η|≤E/Y
(η+a/q)Y∈Z

FY

(
a

q
+ η

)

� min

(
qE

Y
, q

)(

1 + E

Y

) ∑

0≤b<Y

FY

(
b

Y

)
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� qE

Y

∑

0≤b<Y

FY

(
b

Y

)

.

In this case the result now follows from Lemma 10.3. Thus we may assume
qE < Y/10.

Using the product formula (10.3), we have for Y ≥ UV powers of 10

FY (θ) = FU (θ)FV (Uθ)FY/UV (UV θ).

We also have the trivial bound FV (Uθ) ≤ 1 of (10.1). For UV ≤ Y and
|η| < E/Y these give

FY

(
a

q
+ η

)

≤ FY/UV

(
UVa

q
+UVη

)

sup
|γ |≤E/Y

FU

(
a

q
+ γ

)

.

We choose V and then U to be the largest powers of 10 such that V ≤ Y/qE
and U ≤ Y/V E . Note that this choice gives U, V ≥ 1 since qE < Y/10 and
q, E ≥ 1. Thus

∑

a≤q

∑

|η|≤E/Y
(η+a/q)Y∈Z

FY

(
a

q
+ η

)

≤
∑

a≤q

sup
|γ |≤E/Y

FU

(
a

q
+ γ

) ∑

|η|≤E/Y
(η+a/q)Y∈Z

FY/UV

(
UVa

q
+UVη

)

≤ �1�2,

where

�1 =
∑

a≤q

sup
|γ |≤E/Y

FU

(
a

q
+ γ

)

,

�2 = sup
β∈R

∑

|η|≤E/Y
Y (η+β)∈Z

FY/UV (UVβ +UVη)

≤ sup
β ′∈R

∑

a≤2E

FY/UV

(

β ′ + UVa

Y

)

.

Since we choseU and V maximally, we have V ≥ Y/10qE , so q/100 ≤ U ≤
10q. Since qE < Y/10, we may extend the supremum in �1 to γ ≤ 1/10q
for an upper bound. Thus, by Lemma 10.5 we have

123



180 J. Maynard

�1 � q27/77.

Similarly, since Y/UV � E , by Lemma 10.3 we have

�2 � E27/77.

Putting this together gives the first result.
The second bound follows from an entirely analogous argument. We first

split the argument depending on whether Q2E/d ≥ Y/10 or not, and use the
final bound of Lemma 10.5 instead of the first bound to handle �2. ��
The argument giving the first bound of Lemma 10.6 is essentially sharp if the
�1 bounds used in the proof are sharp and if q is a divisor of a power of 10 or if
QE ≥ Y . When QE ≤ Y 1−ε and q is not a divisor of a power of 10, however,
we trivially bounded a factor FV (U (a/q + η)) by 1 in the proof, which we
expect not to be tight. Lemma 10.7 below allows us to obtain superior bounds
(in certain ranges) provided the denominators do not have large powers of 2
or 5 dividing them.

Lemma 10.7 (Alternative Hybrid Bound) Let D, E, Y, Q1 ≥ 1 be integral
powers of 10 with DE � Y . Let q1 ∼ Q1 with (q1, 10) = 1 and let d ∼ D
satisfy d|10u for some u ≥ 0. Let

S = S(d, q1, Q2, E, Y )

=
∑

q2∼Q2
(q2,10)=1

∑

a<dq1q2
(a,dq1q2)=1

∑

|η|≤E/Y
(η+a/q1q2d)Y∈Z

FY

(
a

dq1q2
+ η

)

.

Then we have

S � (DE)27/77(Q1Q
2
2)

1/21 + E5/6D3/2Q1Q2
2

Y 10/21 .

In particular, if q = dq ′ with (q ′, 10) = 1 and d|10u for some integer u ≥ 0,
then we have

∑

a<q
(a,q)=1

∑

|η|≤E/Y
(η+a/q)Y∈Z

FY

(
a

q
+ η

)

� (dE)27/77q1/21 + E5/6d3/2q

Y 10/21 .

For example, if (q, 10) = 1 and qE is a sufficiently small power of Y ,
then we improve the first bound (qE)27/77 of Lemma 10.6 in the q-aspect
to E27/77q1/21. This improvement is important for our later estimates.
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Proof Choose E ′ � E and D′ � D with E ′, D′ ≥ 1 integral powers of
10 such that E ′D′ ≤ Y . Let V be the largest integral power of 10 such that
V 2 ≤ Y/D′E ′. Since D′E ′ ≤ Y we have that V ≥ 1. Let d = d1d2d3 where
d3 = (d, D′) and d2d3 = (d, V D′).

By the periodicity of F modulo one, the fact (q1q2, d) = 1, and the Chinese
remainder theorem, we have

∑

a<dq1q2
(a,dq1q2)=1

∑

|η|≤E/Y
(η+a/q1q2d)Y∈Z

FY

(
a

dq1q2
+ η

)

=
∑

a′<q1q2
(a′,q1q2)=1

∑

b1<d1

∑

b2<d2

∑

b3<d3
(b1+d1b2+d1d2b3,d)=1

∑′

|η|≤E/Y

FY

×
(

a′

q1q2
+ b1

d1d2d3
+ b2

d2d3
+ b3

d3
+ η

)

, (10.11)

where the dash on
∑′ indicates that η is summed over all reals satisfying

(

η + a′

q1q2
+ b1

d1d2d3
+ b2

d2d3
+ b3

d3

)

Y ∈ Z.

By (10.3), we have FE ′D′V 2(t) = FD′(t)FV 2(D′t)FE ′(D′V 2t). Since
D′E ′V 2 ≤ Y , we have FY (t) ≤ FD′E ′V 2(t). Thus, since F is periodic modulo
1 and d3|D′ and d2d3|V D′, we have

FY

(
a′

q1q2
+ b1

d1d2d3
+ b2

d2d3
+ b3

d3
+ η

)

≤ FE ′
(
β1 + D′V 2η

)
sup

|γ |≤E/Y
FD′

(

β2 + b3
d3

+ γ

)

FV 2
(
D′β2 + D′γ

)
,

where

β1 = D′V 2
(

a′

q1q2
+ b1

d1d2d3

)

, β2 = a′

q1q2
+ b1

d1d2d3
+ b2

d2d3
.

Moreover, by (10.3) and Cauchy–Schwarz, we have

FV 2(θ) = FV (θ)FV (V θ) ≤ FV (θ)2 + FV (V θ)2.

Since d2d3|D′V , this gives

FV 2
(
D′β2 + D′γ

) ≤ FV
(
D′β2 + D′γ

)2 + FV
(
β3 + D′V γ

)2
.
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where

β3 = D′Va′

q1q2
+ b1(D′V/d2d3)

d1
.

These give

∑

a′<q1q2
(a′,q1q2)=1

∑

b1<d1

∑

b2<d2

∑

b3<d3
(b1+d1b2+d1d2b3,d)=1

∑′

|η|≤E/Y

FY
( a′

q1q2
+ b1

d1d2d3

+ b2
d2d3

+ b3
d3

+ η
)

� �1�
′
1 + �1�

′′
1 ,

where

�1 = sup
β∈R

∑

|η|≤E/Y
Y (η+β)∈Z

FE ′
(
D′V 2β + D′V 2η

)

≤ sup
β ′∈R

∑

a≤2E

FE ′
(

β ′ + D′V 2a

Y

)

,

�′
1 =

∑

a′<q1q2
(a′,q1q2)=1

∑

b1<d1

∑

b2<d2

∑

b3<d3
(b1+d1b2+d1d2b3,d)=1

sup
|γ |≤E/Y

FD′
(

β2 + b3
d3

+ γ

)

× FV
(
D′β2 + D′γ

)2
,

�′′
1 =

∑

a′<q1q2
(a′,q1q2)=1

∑

b1<d1

∑

b2<d2

∑

b3<d3
(b1+d1b2+d1d2b3,d)=1

sup
|γ |≤E/Y

FD′
(

β2 + b3
d3

+ γ

)

× FV
(
β3 + D′V γ

)2
.

Since (d1d2d3, D′) = d3 and (q1q2, d) = 1, as a′, b1 and b2 go through all
residue classes (mod q1q2), (mod d1) and (mod d2) respectively subject to
(a′, q1q2) = (b1+d1b2, d1d2) = 1,we see that D′β2 goes through all values of
c/q1q2d1d2 (mod 1) for 0 < c < q1q2d1d2 with (c, q1q2d1d2) = 1, and each
value is attained exactly once. Similarly, since (d1d2d3, D′V ) = d2d3, we see
that β3 goes through every value of c/q1q2d1 (mod 1) with 0 < c < q1q2d1
and (c, q1q2d1) = 1 exactly once as a goes through the values (mod q1q2)
and b1 goes through the values (mod d1) with (a, q1q2) = (b1, d1) = 1.
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Thus we have

�′
1 � �2�3,

�′′
1 � �4�5,

where

�2 = sup
β∈R

∑

b3<d3

sup
|γ |≤E/Y

FD′
(
b3
d3

+ β + γ

)

,

�3 =
∑

a1<d1d2q1q2
(a1,d1d2q1q2)=1

sup
|γ |≤E/Y

FV

(
a1

d1d2q1q2
+ D′γ

)2

,

�4 = sup
β∈R

∑

b′<d2d3

sup
|γ |≤E/Y

FD′
(

b′

d2d3
+ β + γ

)

,

�5 =
∑

a2<d1q1q2
(a2,d1q1q2)=1

sup
|γ |≤E/Y

FV

(
a2

d1q1q2
+ D′V γ

)2

.

We note that only �3 and �5 depend on q2. Thus, summing over q2 ∼ Q2
with (q2, 10) = 1 we obtain

∑

q2∼Q2
(q2,10)=1

∑

a<dq1q2
(a,dq1q2)=1

∑

|η|≤E/Y
(η+a/dq1q2)Y∈Z

FY

(
a

q1q2d
+ η

)

≤ �1(�2�
′
3 + �4�

′
5),

(10.12)
where �1, �2 and �4 are as above and �′

3 and �′
5 are given by

�′
3 =

∑

q2∼Q2
(q2,10)=1

∑

a1<d1d2q1q2
(a1,d1d2q1q2)=1

sup
|γ |≤E/Y

FV

(
a1

d1d2q1q2
+ D′γ

)2

,

�′
5 =

∑

q2∼Q2
(q2,10)=1

∑

a2<d1q1q2
(a2,d1q1q2)=1

sup
|γ |≤E/Y

FV

(
a2

d1q1q2
+ D′V γ

)2

.

Since Y/D′V 2 � E � E ′, by Lemma 10.3 we have

�1 � E27/77. (10.13)

We have d2d3 ≤ d ≤ D and DE � Y , so E/Y � 1/d2d3. Thus, by
Lemma 10.5, we have
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�2 � d27/773 , (10.14)

�4 � (d2d3)
27/77. (10.15)

We are left to bound �′
3 and �′

5, which are very similar. Let

�′ = �′(q1, d1, d2)

=
∑

q2∼Q2
(q2,10)=1

∑

a1<d1d2q1q2
(a1,d1d2q1q2)=1

sup
|γ |≤D′EV/Y

FV

(
a1

d1d2q1q2
+ γ

)2

.

We note that �′(q1, d1, d2) is the same as �′
3 except we have increased the

range of the supremum, and so we have �′
3 ≤ �′(q1, d1, d2). Moreover, we

see that �′
5 is a special case of �′ with d2 = 1, so �′

5 = �′(q1, d1, 1). Thus
it will suffice to get suitable bounds on �′.

Since FR(θ) ≥ FV (θ) for R ≤ V , we may replace FV with FR where
R = 10r is the largest power of 10 less thanmin(V, d1d2Q1Q2

2). Since R ≤ V
and D′EV/Y � 1/V , we see all quantitiesγ occurring in the supremumare of
size at most O(1/R). Given any choice of reals ηa,q2 � 1/R for a ≤ d1d2q1q2
and q2 ∼ Q2 with (a, d1d2q1q2) = 1, the numbers a/d1d2q1q2 + ηa,q2 can
be arranged into O(d1d2Q1Q2

2/R) sets such that all numbers in any set are
separated by � 1/R. (Recall that r is chosen such that R ≤ d1d2Q1Q2

2.)
Thus, as in the proof of Lemma 10.5 (specifically the argument leading up to
(10.8)), we find that

�′ ≤
∑

q2∼Q2
(q2,10)=1

∑

a<d1d2q1q2
(a,d1d2q1q2)=1

sup
|η|�1/R

FR

(
a

d1d2q1q2
+ η

)2

� d1d2Q1Q
2
2

∫ 1

0
FR(t)2dt + d1d2Q1Q2

2

R

∫ 1

0
|F ′

R(t)|FR(t)dt.

By Parseval we have

∫ 1

0
FR(t)2dt = 1

92r
∑

a∈A
a≤R

1 = 1

9r
,

and

∫ 1

0
F ′
R(t)2dt = 1

92r
∑

a∈A1
a≤R

4π2a2 � 102r

9r
.
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Using Cauchy–Schwarz and the above bounds, we obtain

∫ 1

0
|F ′

R(t)|FR(t)dt �
(∫ 1

0
F ′
R(t)2dt

)1/2 (∫ 1

0
FR(t)2dt

)

� R

9r
.

Putting this together gives

�′ � d1d2Q1Q2
2

9r
.

We recall that R = 10r ∼ min(V, d1d2Q1Q2
2) and V � (Y/DE)1/2, and note

that 20/21 < log 9/ log 10. This gives

�′ � (d1d2Q1Q
2
2)

1/21 + d1d2Q1Q
2
2

(
Y

DE

)−10/21

. (10.16)

This gives a bound for �′
3 since �′

3 ≤ �′, and we obtain an analogous bound
for �′

5 with d2 replaced by 1. Combining (10.16) with our earlier bounds
(10.13), (10.14) and (10.15) and substituting these into (10.12) gives

∑

q2∼Q2
(q2,10)=1

∑

a<dq1q2
(a,dq1q2)=1

∑

|η|≤E/Y
(η+a/dq1q2)Y∈Z

FY

(
a

q1q2d
+ b

d
+ η

)

� E27/77

(

D27/77(Q1Q
2
2)

1/21 + Q1Q
2
2D

(
Y

DE

)−10/21
)

.

Simplifying the exponents by noting 1+ 10/21 < 3/2 and 27/77+ 10/21 <

5/6 then gives the result.
The second statement of the lemma is simply the case when Q2 = 1 and

q = dq1. ��
We see that Lemma 8.1 follows immediately from Lemma 10.5, and
Lemma 8.2 is the same as Lemma 10.1. Thus we are left to establish Proposi-
tions 9.1, 9.2 and 9.3, which we do over the next few sections.

11 Major arcs

In this section we establish Proposition 9.1 using the prime number theorem
in arithmetic progressions and short intervals, making use of Lemma 10.1.

Proof of Proposition 9.1 We splitM up as three disjoint sets

M = M1 ∪ M2 ∪ M3,
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where

M1 =
{

a ∈ M :
∣
∣
∣
∣
a

X
− b

q

∣
∣
∣
∣ ≤

(log X)C

X
for some b, q ≤ (log X)C , q � X

}

,

M2 =
{

a ∈ M : a

X
= b

q
+ ν for some b, q ≤ (log X)C ,

q|X, 0 < |ν| ≤ (log X)C

X

}

,

M3 =
{

a ∈ M : a

X
= b

q
for some b, q ≤ (log X)C , q|X

}

.

By Lemma 10.1 and recalling X is a power of 10, we have

sup
a∈M1

∣
∣
∣SA

( a

X

)∣
∣
∣ = #A sup

a∈M1

FX

( a

X

)
� #A exp(−√log X).

Using the trivial bound SRX (θ) � X (log X)�, where � ≤ 2/η and noting
#M1 � (log X)3C , we obtain

1

X

∑

a∈M1

SA
( a

X

)
SRX

(−a

X

)

�C,η

#A
(log X)C

. (11.1)

This gives the result for M1.
We now consider M2. Recalling the definition of RX , we have that for

n < X


RX (n) =
∑

n=p1···p�

p j∈(Xa j ,Xa j+δ] for j<�

p�≥Xη/4,X1−∑i ai−�δ

�∏

i=1

log pi =
∑

n=mp
p≥Xη/4

p≥X1−∑i ai−�δ


C(m) log p,

(11.2)
where C = (a1, a1 + δ] × · · · × (a�−1, a�−1 + δ] is the projection ofRX onto
the first � − 1 coordinates. We note the crude bound

∑

m<X


C(m)

m
≤
⎛

⎝
∑

p≤X

log p

p

⎞

⎠

�−1

� (log X)�−1. (11.3)

Let	 = �log X�−10C−10�.We note that if a ∈ M2 then a/X = b/q+c/X for
some integers b, q, |c| ≤ (log X)C (c is an integer since q|X for the setM2).
We separate the sum SRX (a/X) by putting the prime variable p occurring
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in (11.2) in short intervals of length 	x/m and in arithmetic progressions
(mod q). We note that 
C is supported on m ≤ X

∑
i ai+(�−1)δ < X1−η/3, so

we can drop the constraints p ≥ Xη/4, X1−∑i ai−�δ at the cost of some terms
with mp < X1−η/12 + X1−δ . Thus we have

sup
a∈M2

SRX

( a

X

)
= sup

a∈M2

∑

m<X1−η/3


C(m)
∑

p<X/m

(log p)e
(amp

X

)

+ O�

⎛

⎝
∑

pm<X1−η/12+X1−δ

(log X)�

⎞

⎠

= OC,η

(
X

(log X)4C

)

+ sup
1≤b≤q

q≤(log X)C

0<|c|≤(log X)C

∑

m<X1−η/3


C(m)

q−1∑

r=0

∑

0≤ j<	−1

×
∑

p∈[ j	X/m,( j+1)	X/m)
p≡r (mod q)

(log p)e

(

mp

(
b

q
+ c

X

))

.

If mp = j	X + O(	X) and p ≡ r (mod q) we have

e

(

mp

(
b

q
+ c

X

))

= e

(
brm

q

)

e( jc	) + O(	(log X)C).

By the prime number theorem in short intervals and arithmetic progressions
(5.1), for m < X1−η/3 and (r, q) = 1 we have

∑

p∈[ j	X/m,( j+1)	X/m)
p≡r (mod q)

log p = 	X

mφ(q)
+ OC,η

(
	2X

mφ(q)

)

Thus

sup
a∈M2

SRX

( a

X

)

= 	X sup
b≤q

q≤(log X)C

c≤(log X)C

∑

m<X1−η/3


C(m)

mφ(q)

∑

1≤r<q
(r,q)=1

e

(
brm

q

) ∑

1≤ j<	−1

e( j	c)

+ OC,η

(
X

(log X)4C

)

.
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Finally, since c ∈ Z and c �= 0 and 	−1 ∈ Z, we have

∑

1≤ j<	−1

e( j	c) = −e(c) = −1 = O(1).

Using (11.3), this gives

sup
a∈M2

SRX

( a

X

)
� 	X (log X)C

∑

m<X1−η/3


C(m)

m
+ OC,η

(
X

(log X)4C

)

�C,η

X

(log X)4C
. (11.4)

Note that in the above argument for us to be able to save an arbitrary power of
log it was important that we are counting elements with weight
RX (n) rather
than 1RX (n), and that Xν ∈ Z for a ∈ M2.

Using the trivial bounds SA(θ) ≤ #A and #M2 � (log X)3C along with
(11.4), we obtain

1

X

∑

a∈M2

SA
( a

X

)
SRX

(−a

X

)

�C,η

#A
(log X)C

. (11.5)

Finally, we considerM3. By the prime number theorem in arithmetic pro-
gressions as above, we have for (r, q) = 1 and q ≤ (log X)C that

∑

n<X
n≡r (mod q)


RX (n) = X

φ(q)

∑

m<X1−η/3


C(m)

m
+ Oη,C

(
X

(log X)4C

)

= 1

φ(q)

∑

n<X


RX (n) + Oη,C

(
X

(log X)4C

)

.

Thus, for (a, q) = 1

SRX

(
a

q

)

=
∑

0≤r<q

e

(
ar

q

) ∑

n<X
n≡r (mod q)


RX (n)

= 1

φ(q)

(
∑

n<X


RX (n)

)
⎛

⎜
⎜
⎝

∑

0≤r<q
(r,q)=1

e

(
ar

q

)

⎞

⎟
⎟
⎠+ Oη,C

(
X

(log X)4C

)

= μ(q)

φ(q)

∑

n<X


RX (n) + Oη,C

(
X

(log X)4C

)

.
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Since μ(q) = 0 for q|10k = X unless q ∈ {1, 2, 5, 10}, using the trivial
bounds #M3 � (log X)2C and |SA(a/X)| ≤ #A, we obtain

1

X

∑

a∈M3

SA
( a

X

)
SRX

(−a

X

)

= 1

X

∑

0≤b<10

SA
(

b

10

)

SRX

(−b

10

)

+ OC,η

(
#A

(log X)C

)

= 10

X

∑

m∈A

∑

n<X
n≡m (mod 10)


RX (n) + OC,η

(
#A

(log X)C

)

= 10

φ(10)

(
1

X

∑

n<X


RX (n)

)

#{m ∈ A : (m, 10) = 1} + OC,η

(
#A

(log X)C

)

= κA
#A
X

∑

n<X


RX (n) + OC,η

(
#A

(log X)C

)

. (11.6)

Thus (11.1), (11.5) and (11.6) gives the result. ��

Remark We have only needed to use the prime number theorem in arithmetic
progressions when the modulus is a small divisor of X , and so has no large
prime factors. This means that our implied constants can be taken to be effec-
tively computable since for such moduli we do not need to appeal to Siegel’s
theorem.

12 Generic minor arcs

In this section we establish Proposition 9.2 and obtain some bounds on the
exceptional set E by using the distributional estimates of Lemma 10.4.

Lemma 12.1 (�2 bound for primes)We have that

#

{

0 ≤ a < X :
∣
∣
∣SR

( a

X

)∣
∣
∣ ∼ X

C

}

� C2(log X)Oη(1).

Proof This follows from the �2 bound coming from Parseval’s identity.

#

{

0 ≤ a < X :
∣
∣
∣SR

( a

X

)∣
∣
∣ ≥ X

10C

}

� C2

X2

∑

a<X

∣
∣
∣SR

( a

X

)∣
∣
∣
2
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= C2

X

∑

n<X


R(n)2

� C2(log X)Oη(1).

��
Lemma 12.2 (Generic frequency bounds) Let

E =
{

0 ≤ a < X : FX

( a

X

)
≥ 1

X23/80

}

.

Then

#E � X23/40−ε,
∑

a∈E
FX

( a

X

)
� X23/80−ε,

and

1

X

∑

a<X
a /∈E

∣
∣
∣
∣FX

( a

X

)
SR
(−a

X

)∣
∣
∣
∣�η

1

X ε
.

Proof The first bound on the size of E follows from using Lemma 10.4 with
B = X23/80 and verifying that (23 × 235)/(80 × 154) + 59/433 < 23/40.
For the second bound we see from Lemma 10.4 that

∑

a∈E
FX

( a

X

)
�

∑

j≥0
2 j≤X23/80

#
{
0 ≤ a < X : FX

( a

X

)
∼ 2− j

}

�
∑

j≥0
2 j≤X23/80

2(235/154−1) j X59/433

� X59/433+23×235/(80×154)−23/80,

and so the calculation above gives the result.
It remains to bound the sum over a /∈ E . We divide the sum into O(log X)2

subsums where we restrict to those a such that FX (a/X) ∼ 1/B and
|SR(a/X)| ∼ X/C for some B ≥ X23/80 and C ≤ X2 (terms with C > X2

makes a contribution O(1/X)). This gives

1

X

∑

a<X
a /∈E

∣
∣
∣
∣FX

( a

X

)
SR
(−a

X

)∣
∣
∣
∣
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� sup
X23/80≤B
1≤C≤X2

(log X)2

X

∑

a<X
FX (a/X)∼1/B

SR(−a/X)∼X/C

∣
∣
∣
∣FX

( a

X

)
SR
(−a

X

)∣
∣
∣
∣+

1

X2 .

We concentrate on the inner sum. Using Lemmas 10.4 and 12.1 we see that
the sum contributes

� X

BC
#

{

a : FX

( a

X

)
∼ 1

B
,

∣
∣
∣
∣SR

(−a

X

)∣
∣
∣
∣ ∼

X

C

}

� X (log X)Oη(1)

BC
min

(
C2, B235/154X59/433

)

�η X1+ε X
59/866

B73/308 .

Here we used the bound min(x, y) ≤ x1/2y1/2 in the last line. In particular,
we see this is Oη(X1−2ε) if B ≥ X23/80 on verifying that 23/80 × 73/308 >

59/866. Substituting this into our bound above gives the result. ��

13 Exceptional minor arcs

In this section we reduce Proposition 9.3 to the task of establishing Proposi-
tions 13.3 and 13.4, given below. We do this by making use of the bilinear
structure of 
RX (n) which is supported on integers of the form n1n2 with n1
of convenient size, and then showing that if these resulting bilinear expressions
are large then the Fourier frequencies must lie in a smaller additively struc-
tured set. Propositions 13.3 and 13.4 then show that we have superior Fourier
distributional estimates inside such sets. Thus we conclude that the bilinear
sums are always small. To make the bilinear bound explicit, we establish the
following lemma, from which Proposition 9.3 follows quickly.

Lemma 13.1 (Bilinear sum bound) Let N , M, Q ≥ 1 and E satisfy X9/25 ≤
N ≤ X17/40, Q ≤ X1/2, NM ≤ 1000X and E ≤ 100X1/2/Q, and either
E ≥ 1/X or E = 0. Let F = F(Q, E) be given by

F =
{

a < X : a

X
= b

q
+ ν for some (b, q) = 1 with q ∼ Q, ν ∼ E/X

}

.

Then for any complex 1-bounded complex sequences αn, βm, γa we have

∑

a∈F∩E

∑

n∼N
m∼M

FX

( a

X

)
αnβmγae

(−anm

X

)

� X (log X)O(1)

(Q + E)ε/10
.

123



192 J. Maynard

Proof of Proposition 9.3 assuming Lemma 13.1 By symmetry, we may ass-
ume that I = {1, . . . , �1} for some �1 < �. By Dirichlet’s theorem on
Diophantine approximation, any a ∈ [0, X) has a representation

a

X
= b

q
+ ν

for some integers (b, q) = 1 with q ≤ X1/2 and some real |ν| ≤ 1/X1/2q.
Thus we can divide [0, X) into O(log X)2 sets F(Q, E) as defined by
Lemma 13.1 for different parameters Q, E satisfying 1 ≤ Q ≤ X1/2

and E = 0 or 1/X ≤ E ≤ 100X1/2/Q. Moreover, if a /∈ M then
a ∈ F = F(Q, E) for some Q, E , with Q + E ≥ (log X)C . Thus, pro-
vided C is sufficiently large compared with A and η, we see it is sufficient to
show that

1

X

∣
∣
∣
∣
∣

∑

a∈F∩E
SA
( a

X

)
SRX

(−a

X

)∣∣
∣
∣
∣
� #A

(Q + E)ε/20
. (13.1)

From the definition (9.1) of 
RX and shape of RX given by Proposition 9.3,
we have that for n < X


RX (n) =
∑

n1n2 p=n
Xη/4,X1−∑i ai−�δ≤p


R1(n1)
R2(n2) log p,

where R1 is the projection of RX onto the first �1 coordinates, and R2 is the
projection onto the subsequent � − �1 − 1 coordinates.

Since n1, n2, p and X are integers, | log ((X − 1/2)/n1n2 p)| � 1/X .
Thus, by Perron’s formula (see, for example, [10, Chapter 17]), we have for
n1, n2, p < X

1

(2π i)2

∫ 1/ log X+i X4

1/ log X−i X4

(
X − 1/2

n1n2 p

)s ds

s
=
{
1 + O(X−2), if n1n2 p < X,

O(X−2), otherwise.

We will use this to remove the constraint n = n1n2 p < X in SRX (−a/X).
We first put n1, n2, p into one of O(log X)3 intervals of the form (Y/10, Y ],
and then apply the above estimate. The O(X−2) error term trivially makes a
negligible contribution to (13.1). Thus, we see that for C sufficiently large, it
suffices to show uniformly over all s with �(s) = 1/ log X and all choices of

N1, N2, P with N1N2P ≤ 1000X and P ≥ X1−∑�−1
i=1 ai−�δ that

1

X

∑

a∈F∩E
SA
( a

X

) ∑

n1∼N1
n2∼N2
p∼P


R1(n1)
R2(n2)cp
ns1n

s
2 p

s
e

(−anmp

X

)

� #A
(Q + E)ε/15

,
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where cp = log p if p ≥ Xη/4, X1−∑i ai−�δ and 0 otherwise. (The integral
over s and the choices of N1, N2, P contribute a factor of O(log X)4, which
is acceptable for establishing (13.1) if C is sufficiently large.)

Since 
R1(n1) is supported on n1 ∈ [X
∑�1

i=1 ai , X
∑�1

i=1 ai+�δ] and 
R2(n2)

is supported on n2 ≥ X
∑�−1

�1+1 ai , we only need to consider N1N2P ≥ X1−�δ

and N1 ∈ [X
∑�1

i=1 ai , X
∑�1

i=1 ai+ε/6]. But, by assumption,

�1∑

i=1

ai ∈
[
9

25
+ ε

2
,
17

40
− ε

2

]

∪
[
23

40
+ ε

2
,
16

25
− ε

2

]

,

so either N1 or N2P lie in [X9/25, X17/40]. Since
R1(n1), 
R2(n2), log p ��

(log X)�−1, for C sufficiently large in terms of �we see that it suffices to show
that

1

X

∑

a∈F∩E
SA
( a

X

)∑

n∼N

αn

∑

m∼M

βme

(−anm

X

)

� #A
(Q + E)ε/12

(13.2)

uniformly over all choices of N ∈ [X9/25, X17/40] and M ≤ 1000X/N
and uniformly over all 1-bounded complex sequences αn, βm . (Setting αn =

R1(n)/(log X)� and βm = ∑

pn2=m,p∼P,n2∼N2

R2(n2)cp/(log X)� gives

the bound when
∑�1

i=1 ai ∈ [9/25 + ε/2, 17/40 − ε/2]; the other case is
analogous with αn and βm swapped.)

Finally, let γa be the 1-bounded sequence satisfying SA(a/X) = #Aγa FX
(a/X). After substituting this expression for SA, we see that (13.2) follows
immediately from Lemma 13.1 for C sufficiently large in terms of η, thus
giving the result. ��
Thus it remains to establishLemma13.1.Thekey estimate constrainingFourier
frequencies to additively structured sets is the following lemma.

Lemma 13.2 (Geometry of numbers) Let K0 be a sufficiently large constant,
let t ∈ R

3 with ‖t‖2 = 1 and let N > 1 > δ > 0. Let

R = {v ∈ R
3 : ‖v‖2 ≤ N , |v · t| ≤ δ}

satisfy #R∩Z
3 ≥ δK N 2 for some K > K0. Then there exists a lattice
 ⊂ Z

3

of rank at most 2 such that

#{v ∈ 
 ∩ R} ≥ δK N 2

2
.
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194 J. Maynard

If a cuboidR ⊆ R
3 of volume V lies in a the region |z| ≤ ε, then it can easily

contain rather more than V lattice points from the plane z = 0. Lemma 13.2
says that such a situation is essentially the only way a cuboid can contain
many lattice points; if any cuboid has substantially more than V lattice points
inR ∩ Z

3, then these lattice points must come from some lower dimensional
linear subspace. The regionRwhichwe are interested in is a slightly thickened
disc through the origin in the plane orthogonal to t.

Proof of Lemma 13.2 Let φ : R
3 → R

3 be the linear map which is a dilation
by a factor N/δ in the t-direction (i.e. φ(v) = v + t(N/δ − 1)(v · t).) Let

1 = φ(Z3) ⊂ R

3 be the lattice which is the image of Z
3 under φ. Since the

determinant of a lattice is the volume of the fundamental parallelepiped, we
see that det(
1) = N/δ.

Let {v1, v2, v3} be a Minkowski-reduced basis of 
1. We recall that this
means that any v ∈ 
1 can be written uniquely as n1v1 + n2v2 + n3v3 for
some n1, n2, n3 ∈ Z, and for any n1, n2, n3 ∈ Z we have

‖n1v1 + n2v2 + n3v3‖2 �
3∑

i=1

‖nivi‖2,

and that ‖v1‖2‖v2‖2‖v3‖2 � det(
1) = N/δ. Without loss of generality let
‖v1‖2 ≤ ‖v2‖2 ≤ ‖v3‖2.

We now notice that any element ofR∩ Z
3 is mapped injectively by φ to an

element of {x ∈ 
1 : ‖x‖2 ≤ 2N }. Thus for a sufficiently large constant C ,
we have

{

n ∈ Z
3 :

3∑

i=1

nivi ∈ φ(R)

}

⊆
{

n ∈ Z
3 :
∥
∥
∥
∥
∥

3∑

i=1

nivi

∥
∥
∥
∥
∥
2

≤ 2N

}

⊆
{

n ∈ Z
3 : |ni | ≤ C

N

‖vi‖2
}

.

If ‖v3‖2 > CN , then there are no n ∈ Z
3 counted above with n3 �= 0. If

instead ‖v3‖2 ≤ CN then since ‖v1‖2 ≤ ‖v2‖2 ≤ ‖v3‖2, the number of n is

� C3N 3

∏3
i=1 ‖vi‖2

� N 3

det(
1)
� δN 2.

Thus in either case there are O(δN 2) pointswith n3 �= 0.However, by assump-
tion of the lemma we have that K is sufficiently large and

δK N 2 ≤ #{x ∈ Z
3 ∩ R} = #{x ∈ 
1 : x ∈ φ(R)}.
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This means that most of the contribution must come from terms with n3 = 0.
Indeed, we have

#{(n1, n2) ∈ Z
2 : n1v1 + n2v2 ∈ φ(R)}

= #{x ∈ 
1 : φ(x) ∈ R} − O(δN 2)

≥ δK N 2 − O(δN 2).

We may choose K0 such that if K ≥ K0 then the right hand side is at least
δK N 2/2. Thus, we see if 
 is the lattice φ−1(v1)Z + φ−1(v2)Z then 
 ⊆ Z

3

and

#{v ∈ 
 ∩ R} ≥ δK N 2/2.

��
We establish Lemma 13.1 assuming two key propositions, Proposition 13.3
and Proposition 13.4, given below. These propositions will be proven over the
next two sections.

Proposition 13.3 (Bound for angles generating lattices) Let X, K , N , Q ≥ 1
and δ > 0, E ≥ 0 satisfy X17/40 ≤ NK, δ ≥ N/X, E ≤ 100X1/2/Q and
Q ≤ X1/2. Let B1 = B1(N , K , δ) ⊆ [0, X)2 be the set of pairs (a1, a2) ∈ Z

2

such that there is a lattice 
 ⊆ Z
3 of rank 2 such that

#{n ∈ 
 : |n1a1 + n2a2 + n3X | ≤ δX, ‖n‖2 ≤ N } ≥ δK N 2,

and not all of these points lie on a line through the origin. Let F = F(Q, E)

be given by

F =
{

a < X : a

X
= b

q
+ ν for some (b, q) = 1 with q ∼ Q, |ν| ∼ E/X

}

.

Then we have

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈F∩E

FX

(a1
X

)
FX

(a2
X

)
� (log X)5

(Q + E)ε/4

X

NK
.

Proposition 13.4 (Bound for angles generating lines) Let N ≥ X9/25, δ ≥
N/X and K ≥ 1. Let B2 = B2(N , K , δ) ⊆ [0, X)2 be the set of pairs
(a1, a2) ∈ Z

2 such that there exists a line L through the origin such that

#{n ∈ L ∩ Z
3 : |n1a1 + n2a2 + n3X | ≤ δX, ‖n‖2 ≤ N } ≥ δN 2K .
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Given B ≤ X23/80, let E ′ = E ′(B) be given by

E ′ =
{

a < X : FX

( a

X

)
∼ 1

B

}

.

Then we have

∑

(a1,a2)∈B2(N ,K ,δ)
a1,a2∈E ′

FX

(a1
X

)
FX

(a2
X

)
� X1−ε

NK
.

Proof of Lemma 13.1 assuming Propositions 13.3 and 13.4 We split E into
O(log X) subsets of the form

E ′ = E ′(B) =
{

a ∈ [0, X) : FX

( a

X

)
∼ 1

B

}

for some B ∈ [1, X23/80]. By Cauchy–Schwarz, we have
∑

a∈F∩E ′

∑

n∼N
m∼M

FX

( a

X

)
αnβmγae

(−anm

X

)

� �
1/2
1 �

1/2
2 ,

where

�1 =
∑

m�X/N

|βm |2 � X

N
,

�2 =
∑

m�X/N

∣
∣
∣
∣
∣

∑

a∈F∩E ′

∑

n∼N

αnγa FX

( a

X

)
e

(−anm

X

)∣∣
∣
∣
∣

2

=
∑

a1,a2∈F∩E ′
FX

(a1
X

)
FX

(a2
X

) ∑

n1,n2∼N

αn1αn2γa1γa2

×
∑

m�X/N

e

(
m(a1n1 − a2n2)

X

)

�
∑

a1,a2∈F∩E ′
FX

(a1
X

)
FX

(a2
X

) ∑

n1,n2∼N

min

(
X

N
,

∥
∥
∥
∥
a1n1 − a2n2

X

∥
∥
∥
∥

−1
)

.

Thus it suffices to show

∑

a1,a2∈F∩E ′
FX

(a1
X

)
FX

(a2
X

) ∑

n1,n2≤N

min

(
X

N
,

∥
∥
∥
∥
a1n1 − a2n2

X

∥
∥
∥
∥

−1
)
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� N X (log X)O(1)

(Q + E)ε/5
,

provided X9/25 ≤ N ≤ X17/40, Q ≤ X1/2 and E ≤ 100X1/2/Q.
Let G(K ) denote the set of pairs (a1, a2) ∈ F ∩ E ′ such that

∑

n1,n2≤N

min

(
X

N
,

∥
∥
∥
∥
n1a1 − n2a2

X

∥
∥
∥
∥

−1
)

∼ N 2K .

We consider 1 ≤ K ≤ X/N taking values which are integral powers of 10, and
split the contribution of our sum according to these sets. We see it is therefore
sufficient to show that for each K

∑

(a1,a2)∈G(K )
a1,a2∈F∩E ′

FX

(a1
X

)
FX

(a2
X

)
� X (log X)O(1)

(Q + E)ε/5NK
.

Let G(K , δ) denote the set of pairs (a1, a2) ∈ F ∩ E ′ such that

#

{

n ∈ Z
3 :
∣
∣
∣
∣
n1a1 − n2a2 − n3X

X

∣
∣
∣
∣ ≤ δ, ‖n‖2 ≤ 10N

}

≥ δN 2K .

By considering δ = 2− j and using the pigeonhole principle, we see that if

∑

n1,n2≤N

min

(
X

N
,

∥
∥
∥
∥
n1a1 − n2a2

X

∥
∥
∥
∥

−1
)

∼ N 2K ,

then there is some δ ≥ N/X and some K/ log X � K ′ ≤ K such that

(a1, a2) ∈ G(K ′, δ).

Thus is suffices to show for all K ′, δ that

∑

(a1,a2)∈G(K ′,δ)
a1,a2∈F∩E ′

FX

(a1
X

)
FX

(a2
X

)
� X (log X)O(1)

(Q + E)ε/5NK ′ . (13.3)

From Lemma 12.2, we have the bound

∑

(a1,a2)∈G(K ′,δ)
a1,a2∈F∩E ′

FX

(a1
X

)
FX

(a2
X

)
�
⎛

⎝
∑

a1∈E ′
FX

(a1
X

)
⎞

⎠

2

� X23/40−2ε,
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which gives (13.3) in the case when NK ′ � X17/40+ε . Thus we may assume
that NK ′ � X17/40+ε . By assumption, we also have that N ≤ X17/40, so we
only consider K ′ � X ε . In particular, we may use Lemma 13.2 to conclude
that either there is a rank 2 lattice 
 ⊆ Z

3 such that

#{n ∈ 
 : ‖n‖2 ≤ 10N , |n1a1 + n2a2 + n3X | ≤ δX} ≥ δK ′N 2/2,

and not all of these points lie on a line through the origin, or there is a line
L ⊆ Z

3 such that

#{n ∈ L : ‖n‖2 ≤ 10N , |n1a1 + n2a2 + n3X | ≤ δX} ≥ δK ′N 2/2.

In either case (13.3) follows from Proposition 13.3 or Proposition 13.4 (taking
‘N ’ and ‘K ’ in the propositions to be 10N and K ′/1000 ≥ 1 in our notation
here). ��
Thus it remains to establish Propositions 13.3 and 13.4.

14 Lattice estimates

In this section we establish Proposition 13.3, which controls the contribution
from pairs of angles which cause a large contribution to the bilinear sums
considered in Sect. 13 to come from a lattice. A low height lattice 
 makes a
significant contribution only if (a1, a2, X) is approximately orthogonal to the
plane of the lattice, and so only if (a1, a2, X) lies close to the line through the
origin orthogonal to this lattice. We note that we only make small use of the
fact that these angles lie in a small set, but it is vital that the angles lie outside
the major arcs.

Lemma 14.1 (Lattice generating angles have simultaneous approximation)
Let δ > 0 and X, N , K ≥ 1 be such that δ ≥ N/X. Let B1 = B1(N , K , δ) ⊆
[0, X)2 be the set of pairs (a1, a2) ∈ Z

2 such that there is a lattice 
 ⊆ Z
3 of

rank 2 such that

#{n ∈ 
 : |n1a1 + n2a2 + n3X | ≤ δX, ‖n‖2 ≤ N } ≥ δK N 2,

and moreover the points counted above do not all lie on a line through the
origin.

Then all pairs (a1, a2) ∈ B1 have the simultaneous rational approximations

a1
X

= b1
q

+ O

(
1

NKq

)

,

a2
X

= b2
q

+ O

(
1

NKq

)

,
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for some integer q � X/NK.

We see Lemma 14.1 restricts the pair (a1, a2) to lie in a set of size O(X/NK )3,
which is noticeably smaller than X2 for the range of NK under consideration.
This allows us to obtain superior bounds for the sum over a1, a2, by exploiting
the estimates of Lemma 10.6 which show F is not abnormally large on such
a set.

Proof Clearly we may assume that NK is sufficiently large, since otherwise
the result is trivial. By assumption of the lemma, for any pair (a1, a2) ∈ B1
there is a rank 2 lattice 
 = 
a1,a2 such that #(
 ∩ H) ≥ δK N 2 where

H = {x ∈ R
3 : |x1a1 + x2a2 + x3X | ≤ δX, ‖x‖2 ≤ N }.

Moreover, not all the points in 
 ∩ H lie in a line through the origin. Let
a = (a1, a2, X), and let φ : R

3 → R
3 be a dilation by a factor N/δ in the

a-direction, and let 
′ = φ(
). Then we see that

φ(
 ∩ H) ⊆ {x ∈ 
′ : ‖x‖2 ≤ 2N }.

Moreover, not all the points on the right hand hand side lie in a line through the
origin, since φ−1 preserves lines through the origin. Let
′ have aMinkowski-
reduced basis {v1, v2}, and let V1 = ‖v1‖2 and V2 = ‖v2‖2. Since ‖m1v1 +
m2v2‖2 � |m1|V1 + |m2|V2, for a suitably large constant C we have

{x ∈ 
′ : ‖x‖2 ≤ 2N } ⊆
{

m1v1 + m2v2 : |m1| ≤ CN

V1
, |m2| ≤ CN

V2

}

.

Since not all of the points in the final set lie in a line through the origin, we
see that V1, V2 ≤ CN . Thus

δK N 2 ≤ #(
 ∩ H) = #(
′ ∩ φ(H)) � N 2

V1V2
.

In particular, V1V2 � 1/δK .
Let w1 = φ−1(v1) and w2 = φ−1(v2), so w1 and w2 are linearly inde-

pendent vectors in 
 ⊆ Z
3. Since φ can only increase the length of vectors,

‖w1‖2 ≤ V1 and ‖w2‖2 ≤ V2. Let ε1 = |w1 · a| and ε2 = |w2 · a|. Trivially
we have |v1 · a| � V1X and |v2 · a| � V2X , and so recalling that φ is a
dilation by a factor N/δ in the a-direction, we see that ε1 � δXV1/N and
ε2 � δXV2/N .
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Putting this together, we see that for any pair (a1, a2) ∈ B1 there are linearly
independent vectors w1,w2 ∈ Z

3 and quantities V1, V2 such that

V1V2 � 1

δK
, ‖w1‖2 ≤ V1, ‖w2‖2 ≤ V2,

|a · w1| � δXV1
N

, |a · w2| � δXV2
N

.

This puts considerable constraints on the possibilities for (a1, a2), since it must
lie in an infinite cylinder with axis parallel to w1 × w2 with short radius, for
some low height vectorsw1,w2. (Here× is the standard cross product on R

3.)
Explicitly, let e1, e2, e3 be an orthonormal basis of R

3 with e1 orthogonal to
w1 and w2, and with e2 orthogonal to w2. Then we see that e1 ∝ w1 × w2,
e2 ∝ w2 × e1 and e3 ∝ w2. In particular, we have that |e3 ·w2| = ‖w2‖2, and

|e2 · w1| = |w1 · (w2 × (w1 × w2))|
‖w2‖2‖w1 × w2‖2 = ‖w1 × w2‖2

‖w2‖2 .

(Here we used the identity a · (b × c) = c · (a × b).) Thus, if x = x1e1 +
x2e2 + x3e3 has |x · w1| � δXV1/N and |x · w2| � δXV2/N , then

δXV2
N

� |x · w2| = |x3| ‖w2‖2,
δXV1
N

� |x · w1| = |x2| ‖w1 × w2‖2
‖w2‖2 + O (|x3| ‖w1‖2) .

Since ‖w1‖2 � V1, ‖w2‖2 � V2 and ‖w1 × w2‖2 ≤ ‖w1‖2‖w2‖2, this
implies that

|x3| � δXV2
N‖w2‖2 � δXV1V2

N‖w1 × w2‖2 ,

|x2| � δXV1V2
N‖w1 × w2‖2 + |x3| ‖w1‖2 ‖w2‖2

‖w1 × w2‖2 � δXV1V2
N‖w1 × w2‖2 .

Thus, since V1V2 � 1/δK , we see that any vector x with |x ·w1| � δXV1/N
and |x · w2| � δXV2/N satisfies

x = λ(w1 × w2) + O

(
X

NK‖w1 × w2‖2
)

for some λ ∈ R. We note that the error term is o(X) since w1,w2 are linearly
independent integer vectors and NK is assumed sufficiently large. Let the
components of w1 × w2 be c1, c2, c3 (with respect to the standard basis of
R
3). Since w1,w2 ∈ Z

3, we have c1, c2, c3 ∈ Z. Thus if a is of the above
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form we must have a = λ(w1 × w2) + o(X) for some λ. Since ‖a‖2 ≥ X
and a1, a2 ≤ a3 = X , we must have that |c1|, |c2| � |c3|. In particular,
|c3| � ‖w1 × w2‖2. Dividing through by X = λc3 + O(X/NK |c3|) then
gives ∥

∥
∥
∥

(
a1/X
a2/X

)

−
(
c1/c3
c2/c3

)∥
∥
∥
∥
2

� 1

NK |c3| . (14.1)

Finally, we note that since δ ≥ N/X and V1V2 � 1/δK we have

c1, c2, c3 ≤ ‖w1 × w2‖2 ≤ ‖w1‖2‖w2‖2 ≤ V1V2 � 1

δK
� X

NK
.

Thus, we see that for any pair (a1, a2) ∈ B1 there must be integers c1, c2, c3 �
X/NK such that (14.1) holds. This gives the result. ��
Lemma 14.2 (Size of rational approximations) Let B1(N , K , δ) and F =
F(Q, E) be as in Proposition 13.3. If B1(N , K , δ) ∩ F2 �= ∅ then

Q + E �
(

X

NK

)2

.

Proof By Lemma 14.1, if (a1, a2) ∈ B1(N , K , δ) then

a1
X

= b1
q

+ ν1,

a2
X

= b2
q

+ ν2,

for some q � X/NK and |ν1|, |ν2| � 1/NKq. By clearing common factors
we may assume that (b1, b2, q) = 1.

If NK > X2/3 (and X is sufficiently large) then we see that b1/q and b2/q
are the best rational approximations to a1/X and a2/X with denominator
O(X1/3), since the error in the approximation is O(1/(qX2/3)). Thus if we
also have a1, a2 ∈ F(Q, E) then we must have q � Q and |ν1|, |ν2| ∼ E/X .
In particular, we must have Q + E � X/NK . If instead NK ≤ X2/3 then
since Q + E � X1/2 we have Q + E � (X/NK )2. Thus in either case we
have that there are no such pairs (a1, a2) in both B1(N , K , δ) and in F × F
unless Q + E � (X/NK )2. ��
Lemma 14.3 Let NK ≥ X17/40, and let B1(N , K , δ), F = F(Q, E) and E
be as in Proposition 13.3. Then we have

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈E

FX
(a1
X

)
FX
(a2
X

)
� (log X)5 sup

Q1,G1,G2
D0,D1,E0

∑

d0,d1∈V
d0∼D0
d1∼D1

min(S1S2, S1S3),
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where V = {2u5v : u, v ∈ Z≥0}, the supremum is over all choices
of Q1,G1,G2, D0, D1, E0 ≥ 1 which are powers of 10 and satisfy
Q1G1G2D0D1E0 � X/NK and G1 � G2, and S1, S2, S3 are given by

S1 = sup
q ′∼Q1

(q ′,10)=1

∑

g′
1∼G1

(g′
1,10)=1

∑

b′
2<d0d1q ′g′

1
(b′

2,d0d1q
′g′

1)=1

∑

|ν2|≤E0/X
X (b′

2/d0d1q
′g′

1+ν2)∈Z

FX

×
(

b′
2

d0d1q ′g′
1

+ ν2

)

,

S2 =
∑

q ′∼Q1
(q ′,10)=1

∑

g2∼G2

∑

b′
1<d0q ′g2

(b′
1,d0q

′g2)=1

∑

|ν1|≤E0/X
X (b′

1/d0q
′g2+ν1)∈Z

FX

(
b′
1

d0q ′g2
+ ν1

)

,

S3 =
∑

a1∈E
FX
(a1
X

)
N (a1, d0),

N (a, d) = #

{

q ∼ Q1 : ∃b, g s.t.

∣
∣
∣
∣
a

X
− b

qdg

∣
∣
∣
∣ ≤

E0
X

, (b, dqg) = 1, g ∼ G2

}

.

Proof By Lemma 14.1 we are considering pairs (a1, a2) ∈ B1(N , K , δ) such
that

a1
X

= b1
q

+ ν1,

a2
X

= b2
q

+ ν2,

for some q � X/NK and |ν1|, |ν2| � 1/NKq.
By clearing common factors we may assume that (b1, b2, q) = 1. We let

g1 = (b1, q) and g2 = (b2, q). By symmetry wemay assume that g1 ≤ g2.We
let d1 be the part of g1 not coprime to 10 (i.e. d1|10u for some integer u, and
g1 = g′

1d1 for some (g′
1, 10) = 1). Similarly we let d0 be the part of q/g1g2

which is not coprime to 10. To ease notation we let b′
1 = b1/g1, b′

2 = b2/g2,
q ′ = q/g1g2d0 and g′

1 = g1/d1. Thus q = g′
1g2d0d1q

′, b1 = b′
1d1g

′
1 and b2 =

b′
2g2 with (b′

1, d0q
′g2) = (b′

2, d0d1q
′g′

1) = 1 and (q ′, 10) = (g′
1, 10)=1.

We split the contribution of pairs (a1, a2) ∈ B1 into O(log X)5 subsets.
We consider terms where we have the restrictions q ′ ∼ Q1, g′

1 ∼ G1, g2 ∼
G2, d0 ∼ D0 and d1 ∼ D1 for some Q1,G1,G2, D0, D1 ≥ 1 all integer
powers of 10 with Q0 := Q1G1G2D0D1 � X/NK . Since g1 = g′

1d1 ≤
g2 we have G1D1 � G2. We relax the restriction |ν1|, |ν2| � 1/NKq to
|ν1|, |ν2| ≤ E0/X for a suitable power of 10 E0 � X/NKQ0 with E0 ≥ 1.
We see there are O(log X)5 sets with such restrictions which cover all possible
(b1, b2, q, ν1, ν2) and hence all (a1, a2) ∈ B1. For simplicity, the reader might
like to consider the special case G1 = G2 = D0 = D1 = 1 on a first reading.
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To ease notation we let V = {2u5v : u, v ∈ Z≥0}, and note that we have
d0, d1 ∈ V . By summing over all possibilities of q ′, g′

1, g2, d0, d1, b
′
1, b

′
2, we

see that
∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈E

FX

(a1
X

)
FX

(a2
X

)
� (log X)5 sup

Q1,G1,G2
D0,D1,E0

∑

d0,d1∈V
d0∼D0
d1∼D1

S0,

where the supremum is over all choices of Q1,G1,G2, D0, D1, E0 ≥ 1which
are powers of 10 and satisfy Q1G1G2D0D1E0 � X/NK and G1D1 � G2
and S0 is given by

S0 =
′∑

q ′∼Q1
g′
1∼G1

g2∼G2

′∑

b′
1<d0q ′g2

b′
2<d0d1q ′g′

1

′∑

|ν1|≤E0/X|ν2|≤E0/X

FX

(
b′
1

d0q ′g2
+ ν1

)

FX

(
b′
2

d0d1q ′g′
1

+ ν2

)

.

In S0, we have used
∑′ to indicate that the summation is further constrained

by the conditions

(q ′, 10) = (g′
1, 10) = (b′

1, d0q
′g2) = (b′

2, d0d1q
′g′

1) = 1,

X (b′
1/d0q

′g2 + ν1) ∈ Z, X (b′
2/d0d1q

′g′
1 + ν2) ∈ Z,

whichwe suppressed for notational simplicity.We see that g′
1, g2, b

′
1, b

′
2, ν1, ν2

each occur in only one of the two FX terms, and so given d0, d1, q ′ the remain-
ing summation in S0 factors into a product of two sums. Taking a supremum
over all choices of q ′ in the first of these then gives

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈F

FX

(a1
X

)
FX

(a2
X

)
� (log X)5 sup

Q1,G1,G2
D0,D1,E0

∑

d0,d1∈V
d0∼D0
d1∼D1

S1S2,

(14.2)
where

S1 = sup
q ′∼Q1

(q ′,10)=1

∑

g′
1∼G1

(g′
1,10)=1

∑

b′
2<d0d1q ′g′

1
(b′

2,d0d1q
′g′

1)=1

∑

|ν2|≤E0/X
X (b′

2/d0d1q
′g′

1+ν2)∈Z

FX

(
b′
2

d0d1q ′g′
1

+ ν2

)

,

(14.3)

S2 =
∑

q ′∼Q1
(q ′,10)=1

∑

g2∼G2

∑

b′
1<d0q ′g2

(b′
1,d0q

′g2)=1

∑

|ν1|≤E0/X
X (b′

1/d0q
′g2+ν1)∈Z

FX

(
b′
1

d0q ′g2
+ ν1

)

. (14.4)
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The bound (14.2) will be useful when Q0 is small, but when Q0 is large it is
wasteful to sum over all these possibilities since we have not made use of the
fact that a1, a2 ∈ E , a small set. To obtain an alternative bound we first sum
over all a1 ∈ E , then all possibilities of q, b2, ν2. This shows that

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈E

FX

(a1
X

)
FX

(a2
X

)
� (log X)5 sup

Q1,G1,G2
D0,D1,E0

∑

d0,d1∈V
d0∼D0
d1∼D1

S′
0, (14.5)

where the supremum has the same constraints as before, and S′
0 is given by

S′
0 =

′∑

a1∈E

′∑

q ′∼Q1

′∑

g′
1∼G1

′∑

b′
2<d0d1q ′g′

1

′∑

|ν2|≤E0/X

FX

(a1
X

)
FX

(
b′
2

d0d1q ′g′
1

+ ν2

)

.

Here the summation in S′
0 is constrained by

(q ′, 10) = (g′
1, 10) = (b′

2, d0d1q
′g′

1) = 1,

X (b′
2/d0d1q

′g′
1 + ν2) ∈ Z,

∃ b′
1, g2 s.t.

∣
∣
∣
∣
a1
X

− b′
1

q ′d0g2

∣
∣
∣
∣ ≤

E0

X
, (b′

1, d0q
′g2) = 1, g2 ∼ G2.

Again, taking a supremum over q ′ and factorizing the summation, we find that

S′
0 � S1S3, (14.6)

where S1 is as given by (14.3) above, and S3 is given by

S3 =
∑

a1∈E
FX

(a1
X

)
N (a1, d0), (14.7)

where

N (a1, d0)

= #

{

q ′ ∼ Q1 : ∃ b′
1, g2 s.t.

∣
∣
∣
∣
a1
X

− b′
1

q ′d0g2

∣
∣
∣
∣

≤ E0

X
, (b′

1, d0q
′g2) = 1, g2 ∼ G2

}

.
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Putting together (14.2), (14.5), (14.6) we obtain

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈E

FX

(a1
X

)
FX

(a2
X

)

� (log X)5 sup
Q1,G1,G2
D0,D1,E0

∑

d0,d1∈V
d0∼D0
d1∼D1

min(S1S2, S1S3),

as required. ��
Lemma 14.4 Let NK ≥ X17/40 and let S1, S2, S3 be as in Lemma 14.3. Let
Q1,G1,G2, D0, D1, E0 ≥ 1 be powers of 10 which satisfy Q1G1G2D0D1E0
� X/NK and G1 � G2. Then we have

min(S1S2, S1S3) � Q1−ε
0 E1−ε

0 ,

where Q0 = Q1G1G2D0D1.

Proof We first bound S1, S2, S3 individually using Lemmas 12.2, 10.6 and
10.7. We will then combine these bounds to give the desired result.

We first consider the quantity N (a1, d0) occurring in S3. If q and q ′ are
both counted by N (a, d) then there exists b, g and b′, g′ such that (b, qdg) =
(b′, q ′dg′) = 1 and

a

X
= b

qdg
+ O

(
1

NKQ0

)

= b′

q ′dg′ + O

(
1

NKQ0

)

.

Here we used the fact that E0/X � 1/NKQ0. The variables we consider
satisfy q, q ′ ∼ Q1 � Q0/G1G2D0D1 and g, g′ ∼ G2 and d ∼ D0. Thus

bq ′g′ − b′qg � Q0

D0D2
1G

2
1NK

� Q0

D0D1NK
.

Let h � Q0/D0D1NK be such that bq ′g′ − b′qg = h. There are O(1 +
Q0/D0D1NK ) such choices of h. Given q, g, b, h with (qg, b) = 1, we then
see

q ′g′ ≡ hb−1 (mod qg),

b′ ≡ h(qg)−1 (mod b).
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Since q ′g′ � qg and b′ � b, there are O(1) choices of b′ and q ′g′. Thus there
are O(Qε

0) such choices of q
′, g′, b′ by the divisor bound. Thus we find that

N (a1, d0) � Qε
0 + Q1+ε

0

D0D1NK
.

Combining this with Lemma 12.2 gives the bound

S3 � X23/80 + Q0X23/80

D0D1NK
. (14.8)

We recall Q0 = Q1G1G2D0D1 is the approximate size of q and that G1 �
G2, E0Q0 � X/NK � X . By Lemma 10.6 we have

S1 � (E0D0D1Q1G
2
1)

27/77 + E0D0D1Q1G2
1

X50/77

� Q27/77
0 E27/77

0 , (14.9)

S2 � (E0D0Q
2
1G

2
2)

27/77 + Q2
1G

2
2E0D0

X50/77

�
(

Q2
0E0

D0D2
1G

2
1

)27/77

+ Q2
0E0

X50/77D0D1G1
. (14.10)

Alternatively, we may bound S1 using Lemma 10.7, which gives

S1 � (D0D1E0)
27/77(Q1G

2
1)

1/21 + Q1G2
1(D0D1)

3/2E5/6
0

X10/21

� Q1/21
0 (D0D1E0)

27/77 + Q0G1(D0D1)
1/2E5/6

0

G2X10/21 . (14.11)

If the first term in (14.11) dominates, then since E0 � X/NKQ0, the bounds
(14.11) and (14.10) give

S1S2 � E54/77
0 Q54/77+1/21

0 + Q2+1/21
0 E2

0

X50/77

� Q1−ε
0 E1−ε

0

(

1 + 1

X50/77

(
X

NK

)1+1/21+ε
)

.

This shows S1S2 � Q1−ε
0 E1−ε

0 in this case by recalling that NK � X17/40

and verifying that 22/21 × 23/40 < 50/77.
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If instead the second term in (14.11) dominates, then by (14.9) and (14.11)
(using G1 � G2 and replacing E5/6

0 with E0 to simplify the expression), we
have

S1 � min

(

(Q0E0)
27/77,

Q0E0(D0D1)
1/2

X10/21

)

. (14.12)

Combining this with (14.10), we obtain

S1S2 �
(

E0Q2
0

G2
1D0D2

1

)27/77
(
(E0Q0)

27/77)1/3
(
Q0E0(D0D1)

1/2

X10/21

)2/3

+ Q2
0E0

X50/77D0D1G1

Q0E0(D0D1)
1/2

X10/21

� Q3/2
0 E6/5

0

X3/10 + Q3
0E

2
0

X9/8 .

Herewe have simplified the exponents appearing for an upper bound.We recall
that Q0E0 � X/NK and (by assumption of the lemma) NK � X17/40. These
give

Q3/2
0 E6/5

0

X3/10 � Q0E0

X3/10 (X23/40)1/2 � Q0E0

X1/80 .

Thus this term is O(Q1−ε
0 E1−ε

0 ), and so

S1S2 � Q1−ε
0 E1−ε

0 + Q3
0E

2
0

X9/8 . (14.13)

Similarly, we find that combining (14.12) and (14.8) gives

S1S3 � X23/80(Q0E0)
27/77 + Q0E0(D0D1)

1/2

X10/21

X23/80Q0

D0D1NK

� X23/80(Q0E0)
27/77 + Q2

0E0

X3/16NK
.

Here we used 10/21 − 23/80 > 3/16. Since Q0E0 � X/NK and NK �
X17/40 � X13/32+ε , we see that

Q2
0E0

X3/16NK
� Q0

X13/16

(NK )2
� Q1−ε

0 � Q1−ε
0 E1−ε

0 .

Thus we have

S1S3 � Q1−ε
0 E1−ε

0 + X23/80(Q0E0)
27/77. (14.14)
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Combining (14.13) and (14.14), we obtain

min(S1S2, S1S3) � Q1−ε
0 E1−ε

0 + min

(

X23/80(Q0E0)
27/77,

Q3
0E

2
0

X9/8

)

.

We find that

min

(

X23/80(Q0E0)
27/77,

Q3
0E

2
0

X9/8

)

� (
X23/80(Q0E0)

27/77)77/100
(
Q3

0E
2
0

X9/8

)23/100

= Q96/100
0 E73/100

0

X (90−77)×23/8000

� Q1−ε
0 E1−ε

0 .

Thus we have min(S1S2, S3S2) � Q1−ε
0 E1−ε

0 in all cases, as desired. ��
Having established the technical Lemmas 14.3 and 14.4, we are now in a
position to prove Proposition 13.3.

Proof of Proposition 13.3 We wish to show that

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈F∩E

FX

(a1
X

)
FX

(a2
X

)
� (log X)5

(Q + E)ε/4

X

NK

in the region X17/40 ≤ NK . Since B1(N , K , δ) ∩ F2 = ∅ unless Q + E �
(X/NK )2 by Lemma 14.2, we may assume that Q + E � (X/NK )2.

By Lemmas 14.3 and 14.4 we have

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈F∩E

FX

(a1
X

)
FX

(a2
X

)

� (log X)5 sup
Q1,G1,G2
D0,D1,E0

∑

d0,d1∈V
d0∼D0
d1∼D1

min(S1S2, S1S3)

� (log X)5 sup
Q1,G1,G2
D0,D1,E0

∑

d0,d1∈V
d0∼D0
d1∼D1

Q1−ε
0 E1−ε

0 .
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There are O(Qε/2
0 ) elements d0, d1 ∈ V with d0, d1 � Q0. Thus, recalling

that Q0E0 � X/NK , we have

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈F∩E

FX

(a1
X

)
FX

(a2
X

)
� sup

Q1,G1,G2
D0,D1,E0

(log X)5Q1−ε/2
0 E1−ε

0

� (log X)5
(

X

NK

)1−ε/2

.

We recall that Q + E � (X/NK )2, and so this gives

∑

(a1,a2)∈B1(N ,K ,δ)
a1,a2∈F∩E

FX

(a1
X

)
FX

(a2
X

)
� (log X)5X

(Q + E)ε/4NK
,

as required. ��

15 Line estimates

In this section we establish Proposition 13.4, which controls the contribution
from pairs of angles which cause a large contribution to the bilinear sums con-
sidered in Sect. 13 to come from a line. If a line L makes a large contribution,
then (a1, a2, X) must lie close to the low height plane orthogonal to this line.
We note that we do not make use of the fact that these angles lie outside the
major arcs, but it is vital that the angles are restricted to the small set E .
Lemma 15.1 (Line angles lie in low height plane) Let 0 < δ < 1 and
K , N , X > 1 be reals with δ ≥ N/X and NK ≥ X17/40. Let B2 =
B2(N , K , δ) be the set of integer pairs (a1, a2) ∈ [0, X)2 such that there
is a line L through the origin such that

#{n ∈ L ∩ Z
3 : |n1a1 + n2a2 + n3X | ≤ δX, ‖n‖2 ≤ N } � δN 2K .

Then all pairs (a1, a2) ∈ B2 satisfy

v1a1 + v2a2 + v3X + v4 = 0

for some integers v1, v2, v3, v4 � X/N 2K not all zero.

Proof Let v = (v1, v2, v3) be a non-zero element of Z
3 ∩ L of smallest norm,

and let V = ‖v‖2 and ε1 = |v1a1 + v2a2 + v3X |. Then all of Z
3 ∩ L is

generated by v, and so
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#{n ∈ L ∩ Z
3 : |n1a1 + n2a2 + n3X | ≤ δX, ‖n‖2 ≤ N } � min

(
N

V
,
δX

ε1

)

.

By assumption, this is also � δN 2K , and so we obtain

V � 1

NK δ
� X

N 2K
, ε1 � X

N 2K
.

Letting v4 = −(v1a1 + v2a2 + v3X) ∈ {±ε1} gives the result. ��
Lemma 15.2 (Sparse sets restricted to low height planes) Let C ⊆ [0, X) be
a set of integers. Then we have for any V ≥ 1

#
{
(a1, a2) ∈ C2 : ∃(v1, v2, v3, v4) ∈ [−V, V ]4\{0}
s.t. v1a1 + v2a2 + v3X + v4 = 0}
� Xo(1)

(

#C5/4V 2 + #C3/2V 3

X1/2

)

.

Proof Trivially there are O(#C2) choices of a1, a2 ∈ C, which gives the
required bound if V > #C3/8. In particular, we may assume that V < #C ≤ X .
There are O(#C) points with a1 = 0 or a2 = 0, so we may assume that
a1, a2 �= 0.

We first claim that there are

O(#CV 2Xo(1)) (15.1)

choices of v1, v2, v3, v4, a1, and a2 satisfying v1a1+v2a2+v3X+v4 = 0 with
at least one of v1, v2, v3, v4 equal to 0 and at least one of v1, v2, v3, v4 non-zero.
For example, if v1 = 0 then there are O(#CV 2) choices of a1, v3, v4, which
then determines v2a2. Since there are no non-zero solutions to v3X + v4 = 0,
this is non-zero and so there are O(X ε) choices of v2, a2. The other cases
are entirely analogous. Thus it suffices to consider pairs (a1, a2) such that
v1a1 + v2a2 + v3X + v4 = 0 for some v1, v2, v3, v4 all non-zero. We let C2
denote the set of such pairs.

Given a ∈ Z, let Ma be the smallest value of (c21 + c22)
1/2 over all non-

zero integers c1, c2 such that c1 ≡ c2X (mod a). We divide C into O(log X)2

subsets localizing the size of a < X and Ma < X by considering the sets

C(A, M) = {a ∈ C : a ∼ A, Ma ∼ M}.
There are O(M2) choices of c1, c2 with (c21 +c22)

1/2 ≤ M , and given any such
choice with M < X there are Xo(1) choices of a|c1 − c2X from the divisor
bound (noting that this must be non-zero). Thus we have that
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#C(A, M) ≤ Xo(1) min(#C, M2).

By Cauchy–Schwarz we have

∑

(a1,a2)∈C2
1 � Xo(1)#C1/2 sup

A,M

⎛

⎜
⎜
⎝

∑

a1∈C

⎛

⎜
⎜
⎝

∑

a2∈C(A,M)
(a1,a2)∈C2

1

⎞

⎟
⎟
⎠

2⎞

⎟
⎟
⎠

1/2

≤ Xo(1)#C1/2 sup
A,M

N 1/2
2 , (15.2)

where

N2 = #
{
(a2, a

′
2, a1) ∈ C(A, M)2 × C :

a1 = v2a2
v1X

+ v3

v1
+ v4

v1X
= v′

2a
′
2

v′
1X

+ v′
3

v′
1

+ v′
4

v′
1X

,

for some integers 0 < |v1|, |v′
1|, |v2|, |v′

2|, |v3|, |v′
3|, |v4|, |v′

4| ≤ V,

a1a2a
′
2 �= 0

}
.

We wish to bound N2. Given v1, v
′
1, let d = gcd(v1, v′

1) and v1 = d ṽ1, v′
1 =

d ṽ′
1 so gcd(ṽ1, ṽ′

1) = 1. We split the count N2 by considering max(ṽ1, ṽ′
1) ∼

V1 for different choices of V1. Since V < X , there are O(log X) choices of
V1 we need to consider. This gives

N2 � (log X) sup
V1

N3(V1), (15.3)

where

N3(V1)

= #
{
(a2, a

′
2, a1, d, ṽ1, ṽ

′
1, v2, v3, v4, v

′
2, v

′
3, v

′
4) :

0 < d ≤ V/V1, a1 ∈ C\{0},
a1d ṽ1ṽ

′
1 =

(v2a2
X

+ v3 + v4

X

)
ṽ′
1

=
(

v′
2a

′
2

X
+ v′

3 + v′
4

X

)

ṽ1, a2, a
′
2 ∈ C(A, M)\{0},

0 < |ṽ1|, |ṽ′
1|, |v2|, |v′

2|, |v3|, |v′
3|, |v4|, |v′

4| ≤ V,

max(|ṽ1|, |ṽ′
1|) ∼ V1, gcd(ṽ1, ṽ

′
1) = 1

}
.

We wish to show that N3(V1) � Xo(1)(#C3/2V 4 + #C2V 6/X) for any choice
of 0 < V1 < V . By symmetry we may assume |ṽ1| ≥ |ṽ′

1|, so |ṽ1| ∼ V1. Let
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b1 = ṽ′
1v2, b2 = −ṽ1v

′
2, b3 = ṽ′

1v3 − ṽ1v
′
3 and b4 = ṽ′

1v4 − ṽ1v
′
4. We see that

any solution counted by N3(V1) must give a solution to

b1a2 + b2a
′
2 + b3X + b4 = 0

with 0 ≤ |b1|, |b2|, |b3|, |b4| ≤ 2V1V and b1, b2 �= 0.
There are O(V 3

1 V
3) choices of b2, b3, b4 and O(#C) choices of a′

2. Given
such a choice of b2, b3, b4, a′

2, there are O(Xo(1)) choices of b1 and a2 by the
divisor bound, since b1a2 = −b2a′

2 − b3X − b4 and b1a2 is non-zero. Given
b1, b2 there are O(Xo(1)) choices of ṽ1, ṽ

′
1, v2, v

′
2 by the divisor bound (recall

b1, b2 �= 0). Given ṽ1, ṽ
′
1 and b3 we see that

v3 ≡ b3ṽ
′
1
−1 (mod ṽ1).

Thus there are O(V/V1) choices of v3 (here we use the fact that gcd(ṽ1, ṽ′
1) =

1). Given v1, ṽ1, b3 and such a choice of v3 there is just one choice of v′
3.

Similarly, there are O(V/V1) choices of v4, v
′
4 given ṽ1, ṽ

′
1 and b4. Given

ṽ1, v2, v3, v4, a2, there are O(Xo(1)) choices of d, a1 since da1ṽ1X = v2a2 +
v3X + v4 and da1ṽ1X �= 0. Putting this all together, we have

N3(V1) � Xo(1)#CV1V 5. (15.4)

This bound will be good for us if V1 is small, but we need a different argument
if V1 is large.

We note that

b3 = −b1a2 + b2a′
2 + b4

X
� VV1A

X
.

Wemakea choice ofa2, a′
2, b1, forwhich there are� VV1Xo(1) min(M4, #C2)

possibilities counted by N3(V1). We see that b3, b4 satisfy

b3X + b4 ≡ b1a2 (mod a′
2).

Let b3,0, b4,0 be a solution to this congruencewith b23,0+b24,0 minimal.Wemay
assume that b3,0 � VV1A/X and b4,0 � VV1 since otherwise there are no
possible b3, b4. All pairs b3, b4 satisfying the congruence are then of the form
(b3, b4) = (b3,0+b′

3, b4,0+b′
4) for some integers b′

3, b
′
4 satisfying b

′
3X+b′

4 ≡
0 (mod a′

2) and b
′
3 � VV1A/X , b′

4 � VV1. This forces b′
3e1+b′

4e2 to lie in a
lattice
 ⊂ Z

2 of determinant a′
2, where e1, e2 are the standard basis vector of

Z
2. Let φ : R

2 → R
2 be the linear map which is a dilation by a factor X/A in

the e1 direction, and 
′ = φ(
), a lattice in R
2 of determinant a2X/A � X .
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Let 
′ have a Minkowski-reduced basis {v1, v2}. We recall this means that
‖v1‖2 · ‖v2‖2 � det(
) = a′

2X/A � X and ‖n1v1 + n2v2‖2 � ‖n1v1‖2 +
‖n2v2‖2. From the definition of Ma , we see that the smallest non-zero vector
in 
 has length at least M/10, and so since φ can only increase the length of
vectors we have ‖v1‖2, ‖v2‖2 ≥ M/10.

The set of vectors b′
3e1 + b′

4e2 in 
 inside the bounded region |b′
3| �

VV1A/X , |b′
4| � VV1 can be injected by φ into the set {x ∈ 
′ : ‖x‖2 ≤

CVV1} for some suitably large constant C . Thus, provided C is sufficiently
large so that we also have ‖n1v1 +n2v2‖2 ≥ maxi ‖nivi‖2/C , we see that the
number of pairs (b′

3, b
′
4) is bounded by

#{x ∈ 
′ : ‖x‖2 ≤ CVV1}
= #

{
(n1, n2) ∈ Z

2 : ‖n1v1 + n2v2‖2 ≤ CVV1
}

≤ #

{

(n1, n2) ∈ Z
2 : |n1| ≤ C2 VV1

‖v1‖2 , |n2| ≤ C2 VV1
‖v2‖2

}

�
(

1 + VV1
‖v1‖2

)(

1 + VV1
‖v2‖2

)

� 1 + VV1
M

+ V 2V 2
1

det(
′)

� 1 + VV1
M

+ V 2V 2
1

X
.

Here we used the fact that ‖v1‖2, ‖v2‖2 � M and ‖v1‖2 · ‖v2‖2 � det(
′)
in the penultimate line, and det(
′) � X in the final line.

Given any choice of a2, a′
2, b1, b3, b4, we see that b2 is then determined

uniquely by b1a2 + b2a′
2 = b3X + b4, since we have already chosen all the

other terms. As before, given a2, a′
2, b1, b2, b3, b4 there are O(Xo(1)V 2/V 2

1 )

choices of ṽ1, ṽ′
1, v2, v3, v4, v

′
2, v

′
3, v

′
4, d, a1. Putting this all together, we obtain

the bound

N3(V1) � Xo(1)V
3

V1
min(M4, #C2)

(

1 + VV1
M

+ V 2V 2
1

X

)

.

Since min(M4, #C2) ≤ min(M#C3/2, #C2) this gives

N3(V1) �
(

#C2 V
3

V1
+ #C3/2V 4 + #C2V 6

X

)

Xo(1). (15.5)

Combining (15.4) and (15.5), we obtain

N3(V1) � Xo(1) min

(

#CV1V 5, #C2 V
3

V1
+ #C3/2V 4 + #C2V 6

X

)
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� Xo(1)

(
(
#CV1V 5

)1/2
(

#C2 V
3

V1

)1/2

+ #C3/2V 4 + #C2V 6

X

)

� Xo(1)
(

#C3/2V 4 + #C2V 6

X

)

. (15.6)

We substitute (15.3) and (15.6) into (15.2), and obtain

∑

(a1,a2)∈C2
1 � Xo(1)

(

#C5/4V 2 + #C3/2V 3

X1/2

)

.

We recall from (15.1) that terms with v1v2v3v4a1a2 = 0 contribute a total
O(#CV 2Xo(1)), which is negligible compared with the #C5/4V 2 term above.
Thus we obtain the result. ��
We see that Lemma 15.2 improves on the trivial bound O(Xo(1) min(V 3#C,

#C2)) if V 8/3+ε � #C � V 4−ε + X1−ε .

Proof of Proposition 13.4 We wish to show that

∑

(a1,a2)∈B2(N ,K ,δ)
a1,a2∈E ′

FX

(a1
X

)
FX

(a2
X

)
� X1−ε

NK

in the region N � X9/25. We recall that

E ′ =
{

a < X : FX

( a

X

)
∼ 1

B

}

⊆ E

for some B � X23/80. Trivially, we have that

∑

a1,a2∈E ′
FX

(a1
X

)
FX

(a2
X

)
≤ (#E ′)2

B2 .

By Lemma 10.4, we have

#E ′ � B235/154X59/433. (15.7)

This gives

∑

a1,a2∈E ′
FX

(a1
X

)
FX

(a2
X

)
� B81/77X118/433 � BX23/80−ε
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on verifying that 4/77 × 23/80 + 118/433 < 23/80. This gives the required
bound if NK � X57/80/B.

Alternatively, if NK � X57/80/B, we use Lemmas 15.1 and 15.2 to bound
#(B2 ∩ (E ′)2), and obtain

∑

(a1,a2)∈B2(N ,K ,δ)
a1,a2∈E ′

FX

(a1
X

)
FX

(a2
X

)
≤ #(B2(N , K , δ) ∩ (E ′)2)

B2

≤ 1

B2 #

{

a1, a2 ∈ E ′ : ∃v ∈ Z
4\{0} s.t. ‖v‖2 � X

N 2K
, v · a = 0

}

� Xo(1)

B2

(

(#E ′)5/4
(

X

N 2K

)2

+ (#E ′)3/2

X1/2

(
X

N 2K

)3
)

. (15.8)

Here we have written a for the vector (a1, a2, X, 1) ∈ Z
4.

Since NK � X57/80/B, we have X/NK � X23/80B. Combining
this bound with (15.7), we obtain a bounds for (#E ′)5/4B−2X/NK and
(#E ′)3/2B−2X−1/2(X/NK )2 of the form XaBb for some b > 0. Since we
are only considering B � X23/80, these expressions are maximized when
B � X23/80. When B � X23/80 we have #E ′ � X23/40 and X/NK �
X23/40. Thus we obtain the bounds

(#E ′)5/4

B2

X

NK
� X115/160 = X23/32,

(#E ′)3/2

B2X1/2

(
X

NK

)2

� X75/80 = X15/16.

Substituting these bounds into (15.8) gives

∑

(a1,a2)∈B2(N ,K ,δ)
a1,a2∈E ′

FX

(a1
X

)
FX

(a2
X

)
�
(
X23/32

N 2 + X15/16

N 3

)
X1+o(1)

NK
.

We can then verify that 2× 9/25 > 23/32 and that 3× 9/25 > 15/16, so for
N � X9/25 this is O(X1−ε/NK ), as required. ��

16 Modifications for Theorem 1.2

Theorem 1.2 follows from essentially the same overall approach as in Theo-
rem 1.1. We only provide a brief sketch the proof, leaving the complete details
to the interested reader. When q is large, there is negligible benefit from using
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the 235/154th moment, so we just use �1 bounds. For Y = qk a power of q,
we let

FY (θ) = Y− log(q+s)/ log q

∣
∣
∣
∣
∣

∑

n<Y

1A(n)e(nθ)

∣
∣
∣
∣
∣
=

k−1∏

i=0

1

q − s

∣
∣
∣
∣
∣
∣
∣

∑

ni<q
ni /∈B

e(niq
iθ)

∣
∣
∣
∣
∣
∣
∣

.

The inner sum is ≤ min(q − s, s +2/‖qiθ‖). Thus, similarly to Lemma 10.3,
we find

∑

t<Y

FY

(
t

Y

)

� 1

(q − s)k

k−1∏

i=0

∣
∣
∣
∣
∣

∑

ti<q

min

(

q − s,
q

ti
+ q

q − ti
+ s

)∣∣
∣
∣
∣

= O

(
q log q + qs

q − s

)k

. (16.1)

In particular, for q large enough in terms of ε and s ≤ q23/80, this is
O(Y 23/80+ε). We can use this bound in place of Lemmas 10.3 and 10.4
throughout the argument with the same (or stronger) consequences. This gives
the first part of Theorem 1.2.

For the second part of Theorem 1.2, we see that in the special case B =
{0, . . . , s − 1} we have

∣
∣
∣
∣
∣
∣
∣

∑

ni<q
ni /∈B

e(niθ)

∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
e((q − s)θ) − 1

e(θ) − 1

∣
∣
∣
∣ ≤ min

(

q − s,
2

‖θ‖
)

.

Using this bound, get a corresponding improvement on (16.1), which gives

∑

t<Y

FY

(
t

Y

)

� 1

(q − s)k

k−1∏

i=0

∑

ti<q

min

(

q − s,
q

ti
+ q

q − ti

)

= O

(
q log q + q − s

q − s

)k

. (16.2)

If s ≤ q − q57/80 and q is sufficiently large in terms of ε, this gives a bound
Y 23/80+ε . As before, using this bound in place of Lemmas 10.3 and 10.4
throughout gives the result.

For the results mentioned after Theorem 1.2, we find that in the further
restricted ranges s ≤ q1/4−δ (or s ≤ q − q3/4+δ if B = {0, . . . , s − 1}), the
bound (16.1) [or (16.2)] give an �1 bound of Y 1/4−δ/2. Following this through
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the argument, we obtain a wider Type II range and can estimate bilinear sums
provided N ∈ [X5/16, X1/2] instead of [X9/25, X17/40]. By symmetry, we
can then also estimate terms in N ∈ [X1/2, X11/16]. This allows us to obtain
asymptotic estimates for all the terms in the right hand side of the identity

S(A, X1/2) = S(A, X3/8−2ε) −
∑

X3/8−2ε≤p<X1/2

S(Ap, p),

by the equivalents of Propositions 6.1 and 6.2 adapted to this larger Type II
range.
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