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Abstract For a smooth variety Y over a perfect field of positive characteristic,
the sheaf DY of crystalline differential operators on Y (also called the sheaf of
PD-differential operators) is known to be an Azumaya algebra over T ∗

Y ′, the
cotangent space of the Frobenius twist Y ′ of Y. Thus to a sheaf of modules M
over DY one can assign a closed subvariety of T ∗

Y ′, called the p-support, namely
the support ofM seen as a sheaf on T ∗

Y ′ .We study here the family of p-supports
assigned to the reductions modulo primes p of a holonomic D-module. We
prove that the Azumaya algebra of differential operators splits on the regular
locus of the p-support and that the p-support is a Lagrangian subvariety of the
cotangent space, for p large enough. The latter was conjectured byKontsevich.
Our approach also provides a new proof of the involutivity of the singular
support of a holonomic D-module, by reduction modulo p.

1 Introduction

Let Y be a smooth variety over a perfect field. We may consider two sheaves
of differential operators on Y : on the one hand the sheaf D(∞)

Y constructed
by Grothendieck in EGA IV and on the other the sheaf DY of crystalline
differential operators, also called the sheaf of PD-differential operators, see
e.g. [6] and [4]. These sheaves coincide if the base field is of characteristic
zero but they are very different if it is of positive characteristic. For example,
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780 T. Bitoun

D(∞)
Y is typically a centerless sheaf of non-Noetherian rings. But DY has a

large center canonically identified with the symmetric algebra of the tangent
sheaf of the Frobenius twist Y ′ of Y. And it is an Azumaya algebra over it, by
[6].

Thus to a coherent sheaf of modules M over DY one can assign a closed
subvariety of the cotangent space T ∗

Y ′ called the p-support, seeDefinition 2.1.4.
Namely it is the support of M seen as a sheaf on T ∗

Y ′ . One might hope that
the p-support is analogous to the classical notion of singular support of a say
complexD-module. The results of this paper confirm this hope. Note however
that without further restrictions on M, the p-support is arbitrary. Indeed every
closed subvariety Z of T ∗

Y ′ is the p-support of the quotient of DY by the
corresponding ideal IZ of its center.

We consider here the reductions of a holonomic D-module modulo large
primes. That is to say, let S be an integral scheme dominant and of finite type
over SpecZ, for example the spectrum of the ring of integers of a number
field, let X be a smooth S-scheme of relative dimension n. Then for μ the
generic point of S and for any closed point s of S, the generic fiber Xμ is a
smooth variety over a field of characteristic zero while the fiber Xs is a smooth
variety over a field of positive characteristic. Let DX/S be the sheaf of relative
crystalline differential operators and let M be a coherent left DX/S-module.
Suppose that the generic fiber Mμ of M is a nonzero holonomic DXμ-module.
For every closed point s of S, we let Ms be the fiber of M over s. Our main
results are:

(a) (Theorem 3.1.1) There is an open dense subset U ⊂ S such that for all
closedpoints s ofU, the p-suppport ofMs is equidimensional of dimension
n.

(b) (Theorem 4.3.3) Suppose that X = A
n
S with coordinates {x1, . . . , xn}.

For all closed points s of S of characteristic p, consider the embedding
of the twisted cotangent space T ∗

X ′
s
in P

2n
k(s) associated to the Rees ring

of the filtration of k(s)[x p
1 , . . . , x p

n , ∂
p
1 , . . . , ∂

p
n ] by the degree of k(s)-

polynomials in the variables {x p
1 , . . . , x p

n , ∂
p
1 , . . . , ∂

p
n }, each of which is

of degree 1 (see Definition 4.2.1 and Proposition 4.3.1). Then there is a
dense open subset U ⊂ S such that, for all closed points s of S and for
every generic point z of an irreducible component of the p-support of Ms
of closure {z} in P

2n
k(s), one has

deg({z}) ≤ e(Mμ), rkz(Ms) ≤ e(Mμ)pn,

where e(Mμ) is the multiplicity of Mμ for the Bernstein filtration
of the Weyl algebra An(k(μ)) (see Definition 4.1.4), rkz(Ms) :=
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dimk(z)((F∗Ms)z ⊗k(z)) and deg({z}) is the degree of the reduced closure
of the image of z in P

2n
k(s).

(c) (Theorem 5.1.4) There is an open dense subset U ⊂ S such that for all
closed points s of U, the Azumaya algebra F∗DXs splits on the regular

locus of the p-support of Ms, where Xs
F−→ X ′

s is the Frobenius.
(d) (Theorem 2.2.1) There is an open dense subset U ⊂ S such that for all

closed points s of U, the p-support of Ms is a Lagrangian subvariety of
T ∗
X ′
s
.

Finally as a corollary of (d), which may be seen as the main result of the
paper, we give a new proof that the singular support of a holonomicD-module
is a Lagrangian subvariety of the cotangent space, by reduction modulo p, see
Corollary 6.3.1.

The statements (a) and (d) are the first essential steps in a comprehensive
program of study of the geometry of the p-supports of a holonomicD-module
as p varies, outlined by Kontsevich in [29].

The geometry of the p-supports of a given module is very rich indeed. They
need neither be conical nor come by reduction modulo p from an invariant
defined over SpecZ, and are closely related to the p-curvatures of the D-
module. Let us illustrate this with a couple examples:

(1) Let S = SpecZ, X = A
n
S and let M be the finitely generated left DX/S-

module corresponding to the integrable connection ∇ = d + dg on OX ,

where g is a global section of OX . From the identity (∂i + ∂g/∂xi )p =
(∂i )

p + (∂g/∂xi )p in An(Z/pZ) [27, 5.2.4] follows that the p-support of
Z/pZ ⊗Z M ⊂ T ∗

(An
Z/pZ)′ = T ∗

A
n
Z/pZ

is the graph of dg modulo p. Thus the

p-supports are not necessarily conical.
(2) Let Z[λ] be the subring of C generated by λ ∈ C and S = SpecZ[λ]. Let

X = SpecZ[λ][x, x−1] = A
1
S − {0} ⊂ A

1
S = SpecZ[λ][x]. Consider the

finitely generated left DX/S-module M corresponding to the integrable
S-connection ∇ = d + λ dx/x on OX . The identity (x∂)p = x p∂ p + x∂
in A1(Z/pZ) [22, Lemma 1] implies that for each closed point s of S
of positive characteristic p, the p-support of Ms, p-supp(Ms) ⊂ T ∗

X ′
s

⊂
T ∗

A
1′
k(s)

= T ∗
A
1
k(s)

is given by the equation xy = λp − λ (mod p), where y is

the global section ofOT ∗
A
1
k(s)

corresponding to dx . Thus if λ is not rational,

then the p-supports depend nontrivially on p.

1.1 Survey of the proofs

Let us now comment on the proofs of (a)–(d) above. This will also serve as a
description of the contents of the paper.

123



782 T. Bitoun

Since pure coherent sheaves have equidimensional supports, we prove (a)
by showing that F∗Ms is a pure coherent sheaf of dimension n on T ∗

X ′
s
, for all

closed points s of a dense open subset S1 of S. For which we use the following
criterion, see Theorem 3.2.3: ∀l �= n and ∀s ∈ S1,

ExtlOT∗
X ′
s

(ExtlOT∗
X ′
s

(F∗Ms,OT ∗
X ′
s
),OT ∗

X ′
s
) = 0.

The vanishing of ExtlDXs
(ExtlDXs

(Ms, DXs ), DXs ), ∀l �= n follows from the
well-known duality property of holonomic DXμ-modules by specialization of
Mμ (Proposition 3.3.4). One then checks the criterion using that F∗DXs is an
Azumaya algebra on T ∗

X ′
s
(Proposition 3.3.5). This concludes the proof of (a).

Note that we also prove along the way that if Y is a smooth variety over a
perfect field of positive characteristic, then the dimensions of a coherent DY -
module as a DY -module and as a coherent module over the center of DY are
equal (Proposition 3.3.5).

We show in Sect. 2.4 that the proof of the main theorem (d) reduces to
X/S = A

n
S/S. In this case we prove that for all closed points s of a dense open

subset S2 of S1, each irreducible component of the p-support p-supp(Ms)

of Ms contains a dense smooth open subset U which is a certain specializa-
tion of the complement Y of a divisor with normal crossings D in a smooth
projective variety over a field of characteristic zero. More precisely there are
an irreducible scheme H of generic point γ of characteristic zero, a smooth
H -scheme ϒ and a closed point h ∈ H such that ϒh = U and ϒγ = Y.

Moreover we show that there is a differential 1-form ν on Y such that dν has
logarithmic poles along D and the restriction of the symplectic form toU is the
specialization at h of dν. But by Hodge theory ([13, Corollaire 3.2.14]) such
a dν has to vanish. Finally by our choice of ϒ this implies that the symplectic
form vanishes onU.Thus the symplectic form vanishes on a dense open subset
of the p-support and since the p-support is equidimensional of dimension n
by (a), it is a Lagrangian subvariety of T ∗

(An
k(s))

′ .

Let us now give more details of how this is achieved. The starting point
of the proof are the estimates of (b). We verify them as follows. Let � be
a good filtration of M, see Definition 3.3.1. Then for all closed points s of
a dense open subset S3 of S2, � specializes to a good filtration �s of Ms
such that its Hilbert polynomial is equal to that of the good filtration �μ of
the (characteristic zero) DXμ-module Mμ (Lemma 4.1.5). In particular, the
degree of this Hilbert polynomial is the dimension m of the singular support
of Mμ and its leading coefficient is m!e(Mμ). We then show that to a good
filtration �s of Ms is associated a good filtration p�s of Ms as a module over
the center of An(k(s))with the Bernstein filtration (Lemma 4.2.6). The Hilbert
polynomial of p�s is of degree m and its leading coefficient is m!e(Mμ)pm
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On the p-supports of a holonomic D-module 783

(Proposition 4.2.7). Thus the coherent sheaf on P
2n
k(s) corresponding to the

Rees module of p�s is of dimension m and degree e(Mμ)pm . It then follows
from intersection theory that�zrkz(Ms) deg({z}) ≤ e(Mμ)pm,where the sum
is over the generic points of the (top-dimensional) irreducible components
of the p-support of Ms (Proposition 4.3.2). This gives the estimate of the
ranks since m = n by assumption that Mμ is holonomic. But F∗Ms is a
module over an Azumaya algebra of rank p2n, thus by Morita theory the
ranks rkz(Ms) are divisible by pn. This gives the estimate of the degrees and
concludes the proof of (b). Note that it also proves an estimate of the number of
irreducible components of p-supp(Ms), namely≤ e(Mμ). Let us remark that
if we relaxed the holonomicity assumption onMμ wewould obtain an estimate
≤ e(Mμ)pm−n of the degrees of the top-dimensional irreducible components
and it is only in the holonomic case m = n that we get a bound independent
of the prime p. This is crucial in what follows.

We consider an open embedding T ∗
A
n
S3

↪→ P
2n
S3

which specializes at every

closed point s of S3 to the open embedding of T ∗
(An

k(s))
′ = T ∗

A
n
k(s)

in P
2n
k(s) from

(b). LetH be the Hilbert scheme of closed subschemes of P
2n
S3

of dimension n
and degree ≤ e(Mμ). Provided the estimate of the degrees of the irreducible
components of the p-support of (b), all of dimension n by (a), we see that for
all closed points s ∈ S3, the closure in P

2n
k(s) of each irreducible component of

p-supp(Ms) corresponds to a closed point of H. This allows us to use H to
show that there is an integer N1 > 0 such that for S4 = S3[ 1

N1
] the following

is satisfied. For each irreducible component Z of p-supp(Ms) for s a closed

point of S4, there is an open embedding U
j

↪−→ U where U ⊂ Z is a dense
smooth open subset andU is a smooth projective variety over k(s) such that the
complement of j is a divisor with normal crossings D. Indeed let ZH ⊂ P

2n
H

be the universal closed subscheme. By the resolution of singularities in char-
acteristic zero, neglecting finitely many positive characteristics {p1, . . . , pr }
with p1 . . . pr = N1,we have a finite partition of the open subset of the Hilbert
scheme H[ 1

N1
] into irreducible subschemes generically of characteristic zero

(Hi ) and above each Hi an open embedding Y ↪→ Y with complement 
 a
divisor with normal crossings relative to Hi , where Y is the smooth locus of
the intersectionZH|Hi ∩T ∗

A
n
Hi

⊂ P
2n
Hi

andY is a smooth projectiveHi -scheme

(Proposition 6.1.4). Let z be the closed point of the Hilbert scheme H corre-
sponding to the closure inP

2n
k(s) of the irreducible component Z of p-supp(Ms)

and suppose that z ∈ Hi . Then we set (H, h, γ, ϒ, Y,U
j

↪−→ U , D, ν) =
(Hi , z, μi ,Y,Yμi ,Yz ↪→ Y z, 
μi , θH|Yμi

) where μi is the generic point of
Hi and θH is the canonical 1-form on T ∗

A
n
H

.
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784 T. Bitoun

We have that the restrictionω|U toU of the symplectic formω on T ∗
(An

k(s))
′ is

equal to the restriction of the exterior derivative dθH to the fiber Yz.Moreover
the partition of H into (Hi ) is such that if (dθH|Y)μi = 0, then dθH|Y = 0
and if there is a closed point z ofHi such that (dθH|Y)z has logarithmic poles
along
z, then (dθH|Y)μi has logarithmic poles along
μi (Proposition 6.1.4).
Thus to prove the main theorem (d) it is enough to show that there exists a
dense open subset S5 ⊂ S4 such that for all closed points s ∈ S5 and for each
irreducible component Z of p-supp(Ms), the restriction of the symplectic
form ω|U has logarithmic poles along D, where U and D are constructed
above. To do so we first show that θH|U is locally in the image of the p-
curvature operator W ∗ − CU , see Definition 5.2.2. And then that if a 1-form
η is locally in the image of the p-curvature operator (and has poles along D
of order at most p − 1, which θH|U has for all large enough characteristic p),
then it has logarithmic poles along D (Proposition 6.2.2).

The proof that θH|U is locally in the image of the p-curvature operator goes

as follows. There is a morphism �1
U

φU−→ Br(U ) with values in the Brauer
group (arising from the p-curvature exact sequence, see Definition 5.2.4) such
that φU (θH|U ) is the class of the Azumaya algebra F∗DA

n
k(s)

|U (Proposition
5.2.9) and the kernel of φU is the space of 1-forms locally in the image of the
p-curvature operator (Proposition 5.2.7).We thus are left to show that F∗DA

n
k(s)

splits on the regular locus of each irreducible component of p-supp(Ms). This
amounts to the splitting of the central simple algebraAz := (F∗DA

n
k(s)

)z⊗k(z)
for each irreducible component Z of p-supp(Ms) of generic point z.Note that
this is equivalent to (c) in the case X/S = A

n
S/S. (Fromwhich the general case

follows, see the proof of Theorem 5.1.4.) But by the estimate of the ranks in
(b) we have that this central simple algebra has a representation of dimension
≤ e(Mμ)pn and thus that e[Az] = 0 for some e ≤ e(Mμ) (Lemma 5.1.1).
Moreover Az is of rank p2n, thus pn[Az] = 0. Hence for p large enough,
since e and pn are coprime, we have [Az] = 0. We thus see that there exists
an integer N2 > 0 such that S5 = S4[ 1

N2
] has the required properties. This

concludes the proofs of (c) and (d).
Let us mention that provided (a)–(c), onemay also prove (d) by adapting the

arguments of [15], as explained in [33]. Our original approach presented here
has, among other things, the advantage of being independent of [15], provid-
ing in particular a new, more geometric insight into the classical involutivity
theorem.

Note finally that for the reader’s convenience we have included an
“Appendix” on the (algebraic) symplectic geometry of the cotangent space.
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1.2 Conventions

Schemes are assumed to be Noetherian, positive characteristics to be nonzero
andmorphisms of algebras to preserve the identity element. For X/S a scheme,

s ∈ S and Spec k(s)
i−→ S the corresponding point, we let Xs/Spec k(s) be the

fiber of X/S at s, that is the base-change of X/S by i. If M is a coherent left
DX/S-module, we denote byMs the left DXs/Spec k(s)-module k(s)⊗OS M, the
restriction of M to the fiber Xs/Spec k(s).When there is no risk of confusion,
we denote the fiber by Xs (instead of Xs/Spec k(s)) and DXs/Spec k(s) by DXs .

As a general rule, if there is no risk of confusion we omit the base scheme S
from the notation if S is the spectrum of a field. Local coordinates of a smooth
scheme X/S mean local étale relative coordinates in the neighborhood of a
closed point of X. If Y is a scheme over a field k of positive characteristic, we
denote Y ′ its base-change by the Frobenius endomorphism of k. A reduced
scheme over a field is called a variety. As a rule we define notions and state
results for left modules, we often omit to mention that they easily adapt to
right modules.

2 Statement of the main result and general reductions in its proof

2.1 Preliminary definitions and notations

Let S be a scheme, X be a smooth S-scheme of relative dimension n and let
TX/S be the tangent sheaf.

Definition 2.1.1 The sheaf of crystalline differential operators DX/S on X/S
is the enveloping algebra UOX (TX/S) of the Lie algebroid (TX/S, [−, −]),
where [−, −] is the Lie bracket on TX/S.

Thus DX/S is generated by the structure sheaf OX and the tangent sheaf
TX/S , subject to relations f.∂ = f ∂, ∂. f − f.∂ = ∂( f ) and ∂.∂ ′ − ∂ ′.∂ =
[∂, ∂ ′], for all f (resp. ∂, ∂ ′) local sections of OX (resp. TX/S). Note that the
formation of DX/S commutes with base-change S′ → S. Moreover if S is the
spectrum of a field of characteristic 0, then DX/S is the usual sheaf of algebraic
differential operators on X. When S is the spectrum of a field, we often omit
the base S from the notations.

We now briefly discuss the coherence of DX/S. Left multiplication by OX
makes DX/S into an OX -module and one sees in local coordinates that DX/S
is quasi-coherent. Further using local coordinates, one easily checks the fol-
lowing:

Proposition 2.1.2 The sheaf of rings DX/S has a natural filtration DX/S =⋃
m≥0 DX/S,≤m, defined by DX/S,≤0 := OX and DX/S,≤m+1 := TX/S.
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786 T. Bitoun

DX/S,≤m + DX/S,≤m, whose associated graded sheaf of rings gr DX/S is
canonically isomorphic toOT ∗

X/S
, the structure sheaf of the cotangent space of

X/S.

Therefore by [2, Corollaires 2.2.5 and 3.1.2], DX/S is a sheaf of coherent
Noetherian rings. By [2, Proposition 3.1.3], coherent DX/S-modules have the
following properties:

Proposition 2.1.3 (1) A left DX/S-module is coherent if and only if it is quasi-
coherent as anOX -module and its module of sections over any open of an
affine covering is a finitely generated left module over the ring of sections
of DX/S.

(2) Assume that X is affine. Then the functor of global sections is an equiva-
lence from the category of coherent left DX/S-modules to the category of
finitely generated left modules over the global sections of DX/S.

Let Y be a smooth variety of pure dimension n over a perfect field k of

positive characteristic p.We denote the relative Frobenius morphism by Y
F−→

Y ′. Let DY := DY/Spec(k) and TY := TY/Spec(k). Recall that by [6, Lemma

1.3.2], the OY ′-linear map TY ′
c′−→ F∗DY sending ∂ to ∂ p − ∂ [p], where ∂ is a

local section of TY ′ and ∂ [p] is its p-th power in TY ′, lands in the center and
induces an isomorphism

OT ∗
Y ′

c−→ F∗Z(DY ),

with Z(DY ) the center of DY .Wewill thus consider F∗DY as anOT ∗
Y ′ -algebra.

Furthermore, by [6, Theorem 2.2.3], F∗DY is an Azumaya algebra over T ∗
Y ′ .

In particular, it is a coherent sheaf on T ∗
Y ′ . Hence if M be a coherent left

DY -module, then F∗M is a coherent OT ∗
Y ′ -module.

We now introduce our main object of study:

Definition 2.1.4 Let M be a coherent left DY -module. The p-support of M
is the support of the coherentOT ∗

Y ′ -moduleM deduced from the direct image
F∗M, using the isomorphism c. It is a closed subset p-supp(M) of T ∗

Y ′ , which
we endow with its reduced subscheme structure.

Remark 2.1.5 Note that the p-support commutes with étale localization on Y.

Remark 2.1.6 The schematic support of M is a not necessarily reduced sub-
scheme of T ∗

Y ′, refining the p-support of M. We do not explore this notion
further here.
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On the p-supports of a holonomic D-module 787

2.2 The statement

If X is an S-scheme, M a left DX/S-module and s a point of S, we denote
by Xs the fiber of X at s and by Ms the left DXs -module deduced from M
by base-change. We refer to the “Appendix” for the definitions of symplectic
form ω on the cotangent space (Definition A.0.4) and Lagrangian subvariety
(Definition A.0.5). Our main result is the following:

Theorem 2.2.1 Let S be an integral scheme dominant and of finite type over
Z, of generic point μ. Let X be a smooth S-scheme of relative dimension n
and let M be a coherent left DX/S-module. Suppose that Mμ is a nonzero
holonomic left DXμ-module, then there is a dense open subset U of S such
that the p-support of Mu is a Lagrangian subvariety of (T ∗

X ′
u
, ωX ′

u
), for all

closed points u of U.

The proof occupies most of the paper and is concluded in Sect. 6.3.

2.3 First reductions

Here we carry out some standard reductions. It is also convenient to consider
the case of the fiber of M at the generic point μ of S being zero. We put these
into two remarks:

Remark 2.3.1 The conclusion of Theorem 2.2.1 depends on S only up to
restricting to a dense open subset, and so do its hypotheses. Moreover, the
assertion is Zariski-local (even étale-local) on X. Indeed Lagrangianity is local
and so is the p-support, as in Remark 2.1.5. And the hypotheses are stable by
restriction to open coverings. Hence to prove the main theoremwemay further
assume that S is affine, regular and that X is regular, affine and integral.

Remark 2.3.2 If the fiber of M at the generic point μ of S is zero, then there
is a dense open subset U of S such that M |U = 0.

Proof Indeed one may assume that X and S are affine and thus consider a
left module over the ring of global sections of DX/S. By the hypotheses, this
module has a finite generating family {m1, . . . ,ml} and eachmi is annihilated
by a nonzero global section ri of OS. Since OS acts through the center of
DX/S, the open subset of S determined by the product of these global sections
fulfills the statement. ��

2.4 Reduction to A
n

Here we show that the proof of the main theorem reduces to X/S = A
n
S. To

do so we use the direct image of DX/S-modules and the general result on the
dimension of p-supports (Theorem 3.1.1), proved independently below.
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788 T. Bitoun

Proposition 2.4.1 To prove Theorem 2.2.1, it is sufficient to suppose that
X/S = A

n
S.

Proof By Remark 2.3.1, one may suppose that X/S is smooth of relative
dimension n and that X and S are affine. Hence there is a closed immersion

X
f

↪→ A
m
S over S, for some m ≥ 0.

Let M be a left DX/S-module as in the statement of Theorem 2.2.1 and let
f+M be its direct image, see [3, 2.4.1] for the definition. It is easy to see that one
has the classical description of the transfer bimodule, as in [9, (4) p. 259].Hence
the latter is flat over DX/S. In particular, the direct image f+M is supported
in degree 0 and H0 f+M is a coherent left DA

m
S /S-module. Furthermore, it

follows directly from the definition that the formation of the transfer bimodule
commutes with base-change S′ → S. Hence H0 f+ commutes with base-
change S′ → S. Thus the generic fiber (H0 f+M)μ = H0 fμ+Mμ is nonzero
and is holonomic by preservation of holonomicity under direct images, where

μ is the generic point of S and Xμ

fμ
↪→ A

m
k(μ) is the induced closed immersion.

Finally, for all closed points s ∈ S, it is also an immediate consequence of the
description of the transfer bimodule as in [9, (4) p. 259] that

p-supp(H0 fs+Ms) = ( f ′
s )π ◦ ( f ′

s )
−1
d (p-supp(Ms)),

where f ′
s is the base-change of fs by the Frobenius and we have used the

notation of the “Appendix” for the maps in the cotangent diagram of f ′
s .

Thus byLemmaA.0.6, to prove that the symplectic formvanishes on the reg-
ular locus of p-supp(Ms) it is enough to prove the corresponding symplectic
form vanishes on the regular locus of p-supp(H0 fs+Ms). This concludes the
proof of the proposition since the part of the theorem concerning dimensions
is Theorem 3.1.1, proved independently below. ��

3 Dimension of the p-supports

As outlined in the introduction, the main theorem splits into an assertion about
the dimension of the p-support and one about the vanishing of the symplectic
form on the regular locus of the p-support. We start by considering the former.

3.1 Statement

Theorem 3.1.1 Let S be an integral scheme dominant and of finite type over
Z, of generic point μ. Let X be a smooth S-scheme of relative dimension
n and let M be a coherent left DX/S-module. Suppose that Mμ is a nonzero
holonomic left DXμ-module, then there is a dense open subset U of S such that
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On the p-supports of a holonomic D-module 789

the p-support of the fiber of M at each closed point u of U is equidimensional
of dimension n = dim X.

The proof is contained in the Sect. 3.3. In view of Remark 2.3.1, we may
and shall assume that S and X are regular, integral and affine.

3.2 Pure coherent sheaves

Recall that the (co)dimension of a coherent sheaf is the (co)dimension of
its support and let us call a coherent sheaf equidimensional if its support is
equidimensional. There is a strengthening of equidimensionality which has a
very convenient interpretation in terms of duality theory. Namely, let Y be an
affine scheme.

Definition 3.2.1 A coherent sheaf on Y is pure if all its nonzero coherent
subsheaves are of the same dimension.

It is easily seen to imply equidimensionality:

Proposition 3.2.2 A coherent sheaf F on Y is pure if and only if all its asso-
ciated points y ∈ Ass(F) are of the same dimension. In particular, a pure
coherent sheaf on Y is equidimensional.

Proof By [18, Proposition 3.1.2] a prime idealp corresponding to an associated
point of F is associated to the module of global sections of F . Thus p is the
annihilator of a global section of F . The only if part immediately follows.

Suppose that the dimension of every associated point of F is d and let
F ′ ⊂ F be a nonzero coherent subsheaf. Then the dimension of F ′ is d.

Indeed the associated points of F ′ contain the generic points of its support, by
[18, Corollaire 3.1.4], and are associated to F by [18, Proposition 3.1.7 (i)].
This concludes the proof of the proposition. ��

Here is the interpretation in terms of duality theory.

Theorem 3.2.3 Suppose that Y is regular and equidimensional. A coherent
sheaf F on Y is pure if and only if there is a nonnegative integer c such that

ExtlOY
(ExtlOY

(F,OY ),OY ) = 0

for all l �= c. If F is nonzero, then c is its codimension.

Proof This is well-known. We refer to the literature. Our definition of purity
is equivalent to [8, A:IV 2.5.] by [9, V, 2.2.3]. The theorem is then [8, A:IV
2.6], since a regular local ring is Auslander regular by [8, A:IV 3.4]. ��
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3.3 Equidimensionality of the p-supports

Here we prove Theorem 3.1.1. In particular, we use Remark 2.3.1 and suppose
that X/S is smooth of relative dimension n with S and X regular, affine and
integral. We start by recalling the notion of good filtration on a coherent DX/S-
module. Recall the filtration on DX/S from Proposition 2.1.2.

Definition 3.3.1 A good filtration on a coherent left DX/S-module is a fil-
tration by coherent OX -submodules, compatible with the filtration on DX/S,

which is bounded below and such that the associated graded module over
gr DX/S

∼= OT ∗
X/S

is coherent.

Note that coherent left DX/S-modules admit good filtrations by [3, 5.2.3
(iv)].

We next give a lemma guaranteeing the freeness on S of a module whose
associated graded is free. The proof of the last part of the lemma was kindly
provided by Michel Van den Bergh.

Lemma 3.3.2 Let M be a left module over a ring R and let {Mi }i∈Z be an
exhaustive increasing filtration of M by left R-submodules. Suppose that there
is i0 ∈ Z such that Mi0 = 0 and, ∀i > i0, the left R-module Mi/Mi−1 is flat,
then M is flat. Suppose further that ∀i, Mi/Mi−1 is free, then M is free.

Proof By hypothesis, Mi0+1 ∼= Mi0+1/(Mi0 = 0) is flat. Moreover, ∀i ≥
i0 + 1, Mi/Mi−1 is flat. So, since extensions of flat modules are flat ([11,
§2 no5 Proposition 5]), ∀i ≥ i0 + 1, Mi is flat. Thus M is a union of flat
submodules. Hence it is flat by [11, §2 no3 Proposition 2(ii)]. This proves the
first assertion.

Suppose that the Mi/Mi−1 are free. Then the union, over all i ≥ i0 + 1, of
an arbitrary lift to Mi of a basis of Mi/Mi−1 is a basis of M. Thus M is free.
This finishes the proof of the lemma. ��

The following lemma is standard forO-modules. Considering the associated
graded allows us to deduce a version for DX/S-modules.

Lemma 3.3.3 Let M be a coherent left DX/S-module. Then there is a dense
open subset U of S such that ∀l ≥ 0 and ∀s ∈ U, the canonical map

(ExtlDX/S
(M, DX/S))s → ExtlDXs

(Ms, DXs )

is an isomorphism, where the subscript s denotes the restriction to the fiber.

Proof First of all, there are only finitely many degrees l to consider. Namely,
by [8, A:IV 4.5], both target and domain of the above morphism are zero for
l > dim T ∗

X/S ≥ dim T ∗
Xs

. Indeed, T ∗
X/S and T ∗

Xs
are the respective spectra of
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the rings gr DX/S and gr DXs , which are both regular. Thus guaranteeing the
vanishing of Extl for l > dim T ∗

X/S. Hence it suffices to prove that, ∀l, there
is an open U as in the statement.

We thus want to prove a DX/S-module version of [18, Corollaire 9.4.3]. But
the proof of the latter adapts to DX/S-modules by considering the associated
graded to good filtrations. Indeed, coherent left DX/S-modules form an abelian
category and the proof of [18, Proposition 9.4.2] carries through, using [25,
Proposition A.17] and Lemma 3.3.2 to conclude. ��

We now obtain that the followingwell-known consequence of holonomicity
spreads from the generic fiber to a neighborhood.

Proposition 3.3.4 Let M be a coherent left DX/S-module. Suppose that Mμ

is a holonomic left DXμ-module, for μ the generic point of S. Then there is a
dense open subset U of S such that for all l �= n and all s ∈ U,

ExtlDXs
(Ms, DXs ) = 0.

Proof ByLemma3.3.3 and [9,VI1.12],∀l �=n, thefiber ofExtlDX/S
(M, DX/S)

at the generic point of S vanishes. Hence by Remark 2.3.2 and Lemma 3.3.3,
∀l �= n, there is a dense open subset Ul of S such that for all s ∈ Ul,

ExtlDXs
(Ms, DXs ) = 0. Since by the proof of 3.3.3 there are only finitely

many such degrees l to consider, U := ⋂
l Ul fulfills the proposition. ��

Then we use the Azumaya property of the ring of differential operators in
positive characteristic ([6, Theorem 2.2.3]) to transfer purity from a DX/S-
module to its associated coherent sheaf on the twisted cotangent space.

Proposition 3.3.5 Let Y be a smooth equidimensional scheme over a field k

of positive characteristic p, let Y
F−→ Y ′ be the relative Frobenius and let M

be a coherent left DY -module. Then, ∀l ≥ 0,

ExtlDY
(M, DY ) = 0 if and only if ExtlOT∗

Y ′
(M,OT ∗

Y ′ ) = 0,

whereM := F∗M is endowed with an action of OT ∗
Y ′ as in Definition 2.1.4.

Proof Since F is affine, ExtlDY
(M, DY ) = 0 if and only if

0 = F∗ExtlDY
(M, DY ) ∼= ExtlF∗DY

(F∗M, F∗DY ).

Set DY := F∗DY , we thus have ExtlF∗DY
(F∗M, F∗DY ) = ExtlDY

(M,DY ).

Let us show that

ExtlDY
(M,DY ) = 0 if and only if ExtlOT∗

Y ′
(M,OT ∗

Y ′ ) = 0.
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792 T. Bitoun

Indeed, both ExtlDY
(M,DY ) and ExtlOT∗

Y ′
(M,OT ∗

Y ′ ), are quasi-coherent

sheaves on T ∗
Y ′ . Hence their respective vanishings may be checked on a flat

covering U π−→ T ∗
Y ′ of T ∗

Y ′ . Since DY is an Azumaya algebra over OT ∗
Y ′ by [6,

Theorem 2.2.3], this covering may be chosen to split DY . That is (DY )U :=
π∗DY � Mr (OU ), the sheaf of r × r matrices with coefficients in OU .

As is well-known in Morita theory, tensoring with the (Mr (OU ),OU )-
bimodule Or

U induces an equivalence between the category of coherent
OU -modules and the category of coherent left Mr (OU )-modules. Note that
the coherent sheaf (Or

U )∨ is sent toOr
U ⊗OU (Or

U )∨ ∼= Mr (OU ) by this equiv-
alence. Let F be a coherent sheaf such that MU := π∗M � Or

U ⊗OU F as
coherent left (DY )U � Mr (OU )-modules. Then, by localization and the above
Morita equivalence,

π∗ExtlDY
(M,DY ) � Extl(DY )U (MU , (DY )U )

� ExtlMr (OU )(Or
U ⊗OU F,Or

U ⊗OU (Or
U )∨) �OU -mod

ExtlOU (F, (Or
U )∨)vanishes

if andonly if, by commutationwithfinite direct sums,ExtlOU
(F,OU ) vanishes,

if and only if

ExtlOU (Or
U ⊗OU F,OU ) � ExtlOU

(MU ,OU ) � π∗ExtlOT∗
Y ′

(M,OT ∗
Y ′ ) vanishes,

using again commutation with finite direct sums and localization. This con-
cludes the proof of the proposition. ��

We can now prove the theorem.

Proof (of Theorem 3.1.1) Note that if the fiber of M at the generic point of
S is nonzero then M is nonzero. Therefore, by generic freeness [14, Theorem
14.4] applied to the associated graded to a good filtration on M and Lemma
3.3.2, there is a dense open subset W of S on which M is faithfully flat.
Hence ∀s ∈ W, Ms �= 0 and thus F∗Ms �= 0. Since M is holonomic on the
generic fiber of S, there is a dense open subset U of W such that ∀l �= n and
∀s ∈ U, ExtlDXs

(Ms, DXs ) = 0, by Proposition 3.3.4. Which, by Proposition

3.3.5, is equivalent to, ∀l �= n and ∀s ∈ U, ExtlOT∗
X ′
s

(F∗Ms,OT ∗
X ′
s
) = 0. In

particular, ∀l �= n and ∀s ∈ U,

ExtlOT∗
X ′
s

(ExtlOT∗
X ′
s

(F∗Ms,OT ∗
X ′
s
),OT ∗

X ′
s
) = 0.
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This implies by Theorem 3.2.3 that ∀s ∈ U, F∗Ms is a pure nonzero coherent
OT ∗

X ′
s
-module of dimension n. Hence it is equidimensional of dimension n by

Proposition 3.2.2. This proves the theorem. ��
Remark 3.3.6 The purity of the coherent OT ∗

X ′
s
-module F∗Ms guarantees fur-

thermore that it has no embedded associated points.

4 Degrees and ranks estimates

We now consider DA
n
S/S

-modules. In addition to the filtration by the order of
differential operators (Proposition 2.1.2), DA

n
S/S

is endowedwith theBernstein
filtration. The latter has the property that each summand of its associated
graded ring is a finitely generated module overO(S). For a DA

n
S/S

-module M
whose generic fiber is holonomic, we use the Bernstein filtration to estimate
the degree (for a suitable projective embedding) of the p-support p-supp(Ms)

as well as the rank of F∗Ms at the generic point of an irreducible component
of its support p-supp(Ms), for s a closed point in a dense open subset of S,

see Theorem 4.3.3.

4.1 Bernstein filtration

Let S be an affine scheme and let R be its ring of global sections. If we fix
coordinates {x1, . . . , xn} on A

n
S, then the ring of global sections of DA

n
S/S

is
isomorphic to the n-th Weyl algebra An(R) over R,

An(R) := R[x1, . . . , xn]〈∂1, . . . , ∂n〉/〈[∂i , ∂ j ], [∂i , x j ] − δi, j ; ∀1 ≤ i, j ≤ n〉.
Definition 4.1.1 The Bernstein filtration B of An(R) is the filtration by the
total order in x and ∂. Namely ∀l ∈ Z, Bl An(R) := ⊕

|α|+|β|≤l Rx
α∂β,

where α, β ∈ Z
n≥0 are multi-indices and we have used the standard notation

xα := xα1
1 . . . xαn

n , ∂β := ∂
β1
1 . . . ∂

βn
n and for a multi-index α ∈ Z

n≥0, |α| :=
α1 + · · · + αn.

Remark 4.1.2 Note that the associated graded ring grBAn(R) is the R-algebra
of polynomials in the variables {x1, . . . , xn, y1, . . . , yn}, graded by the order
of polynomials. Where, ∀1 ≤ i ≤ n, xi (resp. yi ) is the class of xi (resp.
∂i ) ∈ B1An(R)/B0An(R). In particular, ∀l ∈ Z,Bl An(R)/Bl−1An(R) is a
finitely generated free R-module.

We will use the notion of good filtration on a An(R)-module.

Definition 4.1.3 A filtration � of a left An(R)-module M is an increasing
exhaustive filtration of M, indexed by Z and compatible with B. It is said to
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794 T. Bitoun

be a good filtration if it is bounded below and the associated graded module
gr�M is finitely generated over the algebra grBAn(R).

It is easy to see that finitely generated left An(R)-modules have goodfiltrations,
see e.g. [7, Ch.1 Proposition 2.7]. Note that if � is a good filtration of M, then
∀l ∈ Z, �l M/�l−1M (and hence �l M) is a finitely generated R-module.

Suppose that R is a field K . Then a left An(K )-module has well-defined
degree and multiplicity. Indeed, let M be a finitely generated left An(K )-
module and let � be a good filtration on M . Then for l large enough, the
function l �→ dimK �l M coincides with a polynomialHM,� ∈ Q[t] ([7, Ch.1
Corollary 3.3]).

Definition 4.1.4 Let d (resp. ad ) be the degree (resp. the leading coefficient) of
HM,�. Then d!ad is a nonnegative integer. The nonnegative integers d(M) :=
d and e(M) := d!ad are independent of � and called the dimension and
multiplicity of M , respectively ([7, p. 8]).

Now we look at the behavior of these invariants in a family.

Lemma 4.1.5 Suppose that R is a domain and let M be a finitely generated
left An(R)-module. Then there is a dense open subset U of S := Spec(R) such
that the functions s �→ d(Ms) and s �→ e(Ms) are constant on U.

Proof Let� be a good filtration onM . Then by generic freeness ([14, Theorem
14.4]), there is a dense open subsetU of S such that ∀l ∈ Z, (�l M/�l−1M)|U
is free over O(U ). In particular, ∀l ∈ Z, (�l M/�l−1M)|U is a flat O(U )-
module. Hence, ∀l ∈ Z and ∀s ∈ U, (�l M/�l−1M)s ∼= (�l M)s/(�l−1M)s
and (�)s is a good filtration on Ms . The lemma follows since, ∀s ∈ U and
∀l ∈ Z, dimk(s)(�l M)s = ∑i=l

i=−∞ dimk(s)(�i M)s/(�i−1M)s and

dimk(s)(�l M)s/(�l−1M)s = dimk(s)(�l M/�l−1M)s

is the rank of the free module O(U )-module �l M/�l−1M |U . Hence HMs ,�s

is constant on U. ��

4.2 On the filtrations of the center

Let K be a field of positive characteristic p. With the notation of Sect. 4.1,
the center Z An(K ) of An(K ) is the algebra of polynomials K [x p

1 , . . . , x p
n , ∂

p
1 ,

. . . , ∂
p
n ].

Definition 4.2.1 Let C be the filtration on Z An(K ) derived from the grading
| • | of polynomials, where |x p

i | = |∂ p
j | = 1.

We would like to compare C with the Bernstein filtration and to do so we will
use the classical construction of the Rees ring associated to a filtered ring.
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On the p-supports of a holonomic D-module 795

Definition 4.2.2 (1) The Rees ring of the filtered ring (Z An(K ), C) is the
graded ring Rn(C) := ⊕

i∈N
Ci Z An(K ).

(2) Let G be an increasing C-compatible filtration of a Z An(K )-module M.

Then the Rees module associated with G is R(M,G) := ⊕
i∈Z

GiM. It
is a naturally an Rn(C)-module.

We recall elementary properties of the Rees ring in the following lemma.

Lemma 4.2.3 (1) The graded algebra morphism

K [t0, x p
1 , . . . , x p

n , ∂
p
1 , . . . , ∂

p
n ] → Rn(C) :=

⊕

i∈N
Ci K [x p

1 , . . . , x p
n , ∂

p
1 , . . . , ∂

p
n ]

t0 �→ 1, x p
i �→ x p

i , ∂
p
j �→ ∂

p
j

with t0 in degree 1, is an isomorphism.
(2) Using the same notation for t0 and its image under the isomorphism of

(1), the natural map Rn(C)/t0Rn(C) → grCZ An(K ) is an isomorphism
of graded algebras.

(3) There is a unique morphism Rn(C)t0 → Z An(K ), sending t0 to 1 and
extending the inclusions Ci K [x p

1 , . . . , x p
n , ∂

p
1 , . . . , ∂

p
n ] ⊂ Z An(K ). Its

restriction to Rn(C)(t0), the subring of degree 0 elements of the graded
ring Rn(C)t0, is an isomorphism Rn(C)(t0)→̃Z An(K ).

We will use good filtrations of Z An(K )-modules.

Definition 4.2.4 A filtration G of a Z An(K )-module M as in the definition
4.2.2 is said to be good if the associated Rees module R(M,G) is a finitely
generated Rn(C)-module.

This implies in particular that G is bounded below. Moreover, one easily
sees that a filtration G on M is good if and only if G is bounded below and the
associated graded module grGM is finitely generated over grCZ An(K ) ([8,
A:III 1.29]).

Let M be a left An(K )-module and let r∗M be the module M considered as
a Z An(K )-module. We now introduce a C-filtration of r∗M associated with a
B-filtration of M.

Definition 4.2.5 Let � be a filtration of the left An(K )-module M. The C-
filtration p� of r∗M is given by (p�)lr∗M := �plM, for all integers l.

We now want to relate properties of p� to those of �.

Lemma 4.2.6 Let � be a good filtration of the left An(K )-module M, then
p� is a good filtration of r∗M.
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796 T. Bitoun

Proof It is clear from the definition that the filtration p� is bounded below,
since � is.

Let us show that the grCZ An(K )-module gr p�r∗M is finitely generated.
In order to do so, we consider the filtration � of the center induced by the
Bernstein filtration. Thus, ∀l ∈ Z, �l Z An(K ) := Z An(K ) ∩ Bl An(K ). In
particular, x p

i and ∂
p
j are of degree p for the filtration �, for all i, j. Let �(�)

be the �-filtration on r∗M defined by �(�)lr∗M := �pmM , where pm is the
greatest integer multiple of p such that pm ≤ l. Note that there is a K -module
isomorphism gr p�r∗M → gr�(�)r∗M defined by

(p�)lr∗M/(p�)l−1r∗M = �plM/�p(l−1)M = �(�)plr∗M/�(�)pl−1r∗M.

It is ρ-linear, where ρ is the isomorphism of K -algebras grCZ An(K ) →
gr�Z An(K ) satisfying

x p
i + C2Z An(K ) �→ x p

i + �p+1Z An(K ); ∂
p
j + C2Z An(K ) �→ ∂

p
j

+�p+1Z An(K ).

Hence gr p�r∗M is finitely generated over grCZ An(K ) if and only if
gr�(�)r∗M is finitely generated over gr�Z An(K ). Let us show the latter.

Consider the finite exhaustive filtration of gr�(�)r∗M by graded gr�Z An
(K )-submodules,

0 = (gr�(�)r∗M)0 ⊂ (gr�(�)r∗M)1 ⊂ · · · ⊂ (gr�(�)r∗M)p = gr�(�)r∗M.

It is defined as follows, ∀0 ≤ i ≤ p, ∀l ∈ Z, let pm the greatest integer multi-
ple of p such that pm ≤ l. Then (gr�(�)r∗M)i ∩ �(�)lr∗M/�(�)l−1r∗M is
the image of the map �p(m−1)+i M → �(�)lr∗M/�(�)l−1r∗M induced by
the inclusion �p(m−1)+i M ⊂ �pmM =: �(�)lr∗M. Let gr(gr�(�)r∗M) :=
⊕i=p

i=1 (gr�(�)r∗M)i/(gr�(�)r∗M)i−1 be the associated graded gr�Z An(K )-
module. Note furthermore that the module gr�M seen as a module over
gr�Z An(K ) ↪→ grBAn(K ) decomposes into a direct sum of graded
gr�Z An(K )-submodules

⊕i=p
i=1 (gr�M)i ,where (gr�M)i :=⊕

l∈Z
gr�

pl+i M.

Let F∗gr�M be the graded gr�Z An(K )-module
⊕i=p

i=1 (gr�M)i [i − p],
where [•] denotes the degree shift. Then, ∀1 ≤ i ≤ p, there is an isomor-
phism of graded gr�Z An(K )-modules

(gr�(�)r∗M)i/(gr
�(�)r∗M)i−1 → (gr�M)i [i − p].

Indeed in degree l ∈ Z, with pm the greatest integer multiple of p such that
pm ≤ l, it is induced by the quotient map �p(m−1)+i M → gr�

p(m−1)+i M,

the latter being equal to ((gr�M)i )p(m−1)+i = ((gr�M)i [i − p])pm, where
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On the p-supports of a holonomic D-module 797

the outermost index refers to the homogeneous component of a graded
gr�Z An(K )-module. These finally assemble into an isomorphism of graded
gr�Z An(K )-modules

gr(gr�(�)r∗M) � F∗gr�M. (4.2.1)

We conclude by noting that the gr�Z An(K )-module F∗gr�M is finitely
generated. Indeed, by hypothesis, the grBAn(K )-module gr�M is finitely
generated. Hence it is finitely generated as a gr�Z An(K )-module since
grBAn(K ) ∼= K [x1, . . . , xn, y1, . . . , yn] is a finitely generated module over
K [x p

1 , . . . , x p
n , y p1 , . . . , y pn ] ∼= gr�Z An(K ). Thus F∗gr�M is a finitely gen-

erated gr�Z An(K )-module as direct summands of a finitely generatedmodule
are finitely generated. So, by the above isomorphism, the gr�Z An(K )-module
gr(gr�(�)r∗M) is finitely generated. Consequently the finite exhaustive filtra-
tion of gr�(�)r∗M has finitely generated subquotients and hence gr�(�)r∗M
is a finitely generated gr�Z An(K )-module. This finishes the proof of the
lemma. ��

Let M be a left An(K )-module and let � be a good filtration of M. By the
above Lemma 4.2.6, the Rees module of (r∗M, p�) is a finitely generated
graded module over the Rees ring Rn(C) � K [t0, x p

1 , . . . , x p
n , ∂

p
1 , . . . , ∂

p
n ].

Thus it has a Hilbert polynomial HR(r∗M,p�). In the following proposition,
we expressHR(r∗M,p�) in terms of the Hilbert polynomial HM,� of (M, �).

Proposition 4.2.7 Let M be a left An(K )-module and let� be a good filtration
of M. The Hilbert polynomialHR(r∗M,p�)(t) of the Rees module of (r∗M, p�)

is HM,�(pt). In particular, the degree of HR(r∗M,p�) is the dimension d(M)

of M and its leading coefficient times d(M)! is e(M)pd(M), where e(M) is the
multiplicity of M.

Proof For l large enough, on the one hand the Hilbert polynomial HM,�(l)
coincides with the function l �→ dimK �l M and on the other HR(r∗M,p�)(l)
coincides with l �→ dimK (p�)l M = dimK �plM. The proposition immedi-
ately follows. ��

4.3 Conclusion

Here we obtain the estimates mentioned at the beginning of the section.
First, we would like to recall a well-known geometric interpretation of the

Rees ring and module.We use the notations of [17, §2] for projective schemes.
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Proposition 4.3.1 Using the notations of Lemma 4.2.3, we have

D+(t0)
j

↪−→ Proj (Rn(C))
i←−↩ V+(t0)

where j is an open embedding and i is its closed complement, and

(a) D+(t0) ∼= Spec(Z An(K ))

(b) V+(t0) ∼= Proj (grCZ An(K ))

Proof (a) By definition, D+(t0) = Spec(Rn(C)(t0)).Hence (a) follows imme-
diately from (3) of Lemma 4.2.3.

(b) By definition, V+(t0) = Proj (Rn(C)/t0Rn(C)). Hence (b) follows from
(2) of Lemma 4.2.3. ��

Making these identifications, letG be a goodfiltration on a finitely generated

(Z An(K ), C)-module M. Then the coherent sheaf ˜R(M,G) on Proj (Rn(C))

extends the coherent sheaf M̃ on Spec(Z An(K )) and its restriction to the

complement Proj (grCZ An(K )) of Spec(Z An(K )) is isomorphic to g̃rGM .

Finally, one easily sees that the support of ˜R(M,G) is the closure of supp(M̃)

in Proj (Rn(C)). Note that here

Proj (Rn(C)) � Proj (K [t0, x p
1 , . . . , x p

n , ∂
p
1 , . . . , ∂

p
n ]) � P

2n
K ,

Spec(Z An(K )) � Spec(K [x p
1 , . . . , x p

n , ∂
p
1 , . . . , ∂

p
n ]) � A

2n
K

Proj (grCZ An(K )) � Proj (K [x p
1 , . . . , x p

n , ∂
p
1 , . . . , ∂

p
n ]) � P

2n−1
K

The leading coefficient of the Hilbert polynomial of ˜R(M,G) is related to
the top-dimensional irreducible components of its support through the follow-
ing:

Proposition 4.3.2 Let Y
i

↪→ P
m
K be a closed subscheme and let F be a coher-

ent sheaf of dimension d on Y . Let the degree of F with respect to i be
μ(F) := d!ad where ad is the leading coefficient of the Hilbert polynomial of
F with respect to i . Then

�zrkz(F) deg({z}) ≤ μ(F)

where the sum is over the generic points of the d-dimensional irreducible
components of supp(F), rkz(F) := dimk(z)(Fz ⊗ k(z)) and deg({z}) is the
degree of {z}red with respect to i .

Proof By [28, LemmaB.4] and [18, Proposition 5.3.1],μ(F) = �z lgOY,z
(Fz)

μ(O{z}red ), where lg denotes the length, summing over the generic points of
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the d-dimensional irreducible components of supp(F). Let z be as above,
then by additivity of the length under short exact sequences lgOY,z

(Fz) ≥
lgk(z)(Fz ⊗ k(z)) = dimk(z)(Fz ⊗ k(z)) =: rkz(F). The proposition follows
as deg({z}) := μ(O{z}red ). ��

Theorem 4.3.3 Let S be an integral scheme dominant and of finite type over
Z and let M be a coherent left DA

n
S/S

-module. Let μ be the generic point of
S. Suppose that Mμ is a nonzero holonomic left DA

n
k(μ)

-module. Then there is
a dense open subset U of S such that for each closed point u ∈ U and each z
generic point of an irreducible component of p-supp(Mu)

deg({z}) ≤ e(Mμ) and rkz(Mu) ≤ e(Mμ)pn

where e(Mμ) is the multiplicity for the Bernstein filtration of Mμ, deg({z})
is the degree of the reduced closure of the image of z in P

2n
k(u) by the open

immersion of the Rees construction and rkz(Mu) := dimk(z)((F∗Mu)z⊗k(z)).

Proof The proof reduces to the case of an integral and affine S = Spec(R).
We may thus consider that M is a finitely generated left An(R)-module. By
Lemma 4.1.5, there is a dense open subset Ue of S such that for each closed
point u ∈ Ue, d(Mu) = n and e(Mu) = e(Mμ).

Let u ∈ Ue with p = char(k(u)) and let � be a good filtration

on the left An(k(u))-module Mu . By Proposition 4.2.7, ˜R(Mu, p�) is of

dimension n and μ( ˜R(Mu, p�)) = e(Mμ)pn . Moreover supp( ˜R(Mu, p�))

is the closure p-supp(Mu) of p-supp(Mu), in which p-supp(Mu) =
p-supp(Mu) ∩ Spec(Z An(K )) is open. Hence Proposition 4.3.2 implies that
�zrkz(Mu) deg({z}) ≤ e(Mμ)pn, where the sum is over the generic points of
the n-dimensional irreducible components of p-supp(Mu).

By the equidimensionality of the p-supports (Theorem 3.1.1), there is a
dense open subset U ⊂ Ue such that for all closed points u of U, all the
irreducible components of p-supp(Mu) are of dimension n.Hence we deduce
that, for each z generic point of an irreducible component of p-supp(Mu),
rkz(Mu) deg({z}) ≤ e(Mμ)pn . This implies the second estimate of the theo-
rem.

Finally, let u be a closed point in U of characteristic p. By [6, Theorem
2.2.3], F∗Mu is a left module over an Azumaya algebra of rank p2n. Hence
(F∗Mu)z ⊗ k(z) is by [19, Théorème 5.1 (i)] a left module over the algebra
of pn × pn matrices Mpn (k(z)), where k(z) is an algebraic closure of k(z).
Therefore by Morita theory there is a finite dimensional k(z)-vector space V

such that (F∗Mu)z ⊗ k(z) � k(z)
pn ⊗k(z) V, where k(z)

pn
is the standard

left Mpn (k(z))-module. In particular rkz(Mu) := dimk(z)((F∗Mu)z ⊗ k(z)) =
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dimk(z)((F∗Mu))z ⊗ k(z)) is divisible by pn. The first estimate of the theorem
follows. ��
Remark 4.3.4 The first estimate was conjectured in [29, Conjecture 1].

5 The Brauer group and differential forms

Herewe prove, in a first part, that theAzumaya algebra of differential operators
splits on the regular locus of the p-support of a holonomic D-module, for p
large enough. See Theorem 5.1.4.

In a second part, we recollect some facts of differential calculus in positive
characteristic. In particular, we consider the p-curvature exact sequence and a
map arising from it which sends 1-forms to the Brauer group. The image of the
canonical form is the class of the Azumaya algebra of differential operators.
In view of the first part of the section and for later use in the proof of our main
theorem, we describe its kernel.

5.1 Splittings of Azumaya algebras on the support of their modules

LetY be a scheme and letA be anAzumaya algebra onY . SinceA is a coherent
OY -module, it is a coherent Noetherian ring and a left A-module is coherent
if and only if it is coherent as anOY -module. Recall that an Azumaya algebra
A is said to split on Y if its class [A] in the Brauer group Br(Y ) of Y is trivial.

Let M be a coherent left A-module and let z be the generic point of an
irreducible component of the support of the coherentOY -module M. The next
proposition shows that the rank rkz(M) of M at z constrains the order of

[A|
({z}red )reg

] in Br(({z}red)reg).
We first prove a lemma.

Lemma 5.1.1 Let Y be a scheme and let A be an Azumaya algebra of rank
r2 on Y . Suppose that A acts on the left on a locally free sheaf V of rank v.
Then r divides v = lr and l[A] = 0 in Br(Y ).

Proof By hypothesis there is a morphism of OY -algebras A → EndOY (V),

sending 1 to 1. It is injective by [16, Proposition 0.5.5.4] since the fiber of A
at each point of Y is a simple algebra by [19, Théorème 5.1 (i)]. Therefore
one may view A as a subalgebra of EndOY (V) and in particular consider the
commutant CEndOY

(V)(A) of A in EndOY (V), which is a coherent subalgebra
of EndOY (V). By [1, Theorem 3.3], the natural morphism of OY -algebras
A ⊗OY CEndOY

(V)(A) → EndOY (V) is an isomorphism and CEndOY
(V)(A)

is an Azumaya algebra on Y . Hence by the behaviour of ranks under tensor
products, CEndOY

(V)(A) is of constant rank l2, such that v = lr . By definition
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of the Brauer group 0 = [EndOY (V)] = [A]+ [CEndOY
(V)(A)] in Br(Y ). The

lemma follows since for each Azumaya algebra B of rank n2 on Y , n[B] = 0
in Br(Y ) [19, §2] giving 0 = l[A] + l[CEndOY

(V)(A)] = l[A]. ��

Proposition 5.1.2 Suppose that Y is of finite type over a field K . Let A be an
Azumaya algebra of rank r2 on Y , let M be a coherent left A-module and let
z be the generic point of an irreducible component {z} of supp(M). Then r
divides rkz(M) = lz(M)r and

lz(M)[A|
({z}red )reg ] = 0

in Br(({z}red)reg).

Proof Since the vector spaceMz⊗k(z) is of dimension rkz(M) and acted upon
on the left by the rank r2 Azumaya algebra Az ⊗ k(z), Lemma 5.1.1 implies
that rkz(M) = lz(M)r and lz(M)[Az ⊗ k(z)] = 0 in Br(k(z)). Moreover
the restriction of A to the regular locus of the irreducible component satisfies
Az ⊗ k(z) ∼= (A|{z}red )z ⊗ k(z) ∼= (A|

({z}red )reg )z ⊗ k(z). The proposition then

follows from the canonical embedding Br(({z}red)reg) ↪→ Br(k(z)), see [30,
IV Corollary 2.6]. ��

The following combines Proposition 5.1.2 with the second estimate of The-
orem 4.3.3.

Theorem 5.1.3 Let S be an integral scheme dominant and of finite type over
Z and let M be a coherent left DA

n
S/S

-module. Let μ be the generic point of
S. Suppose that Mμ is a nonzero holonomic left DA

n
k(μ)

-module. Then there is
a dense open subset U of S such that for each closed point u ∈ U and each
z generic point of an irreducible component of p-supp(Mu), the Azumaya

algebra F∗DA
n
k(u)

on T ∗
(An

k(u)
)′ splits on ({z}red)reg.

Proof By Theorem 4.3.3 and using its notations, there is a dense open subset
Ub of S such that for each closed point u ∈ Ub and each z generic point of an
irreducible component of p-supp(Mu), rkz(Mu) ≤ e(Mμ)pn where p is the
characteristic of the residue field k(u). Thus using Proposition 5.1.2 and its
notations, we have lz(Mu) ≤ e(Mμ) and lz(Mu)[F∗DA

n
k(u)

|
({z}red )reg ] = 0 in

Br(({z}red)reg). Note that by definition lz(Mu) �= 0 and hence for u ∈ U the
open dense subset of Ub defined by inverting all the primes ≤ e(Mμ), lz(Mu)

and pn are coprime, that is there are integers a and b such that 1 = alz(Mu)+
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bpn. Since F∗DA
n
k(u)

is of rank p2n , pn[F∗DA
n
k(u)

|
({z}red )reg ] = 0 by [19, §2]

and the theorem follows from [F∗DA
n
k(u)

|
({z}red )reg ] = 1[F∗DA

n
k(u)

|
({z}red )reg ]

= (alz(Mu) + bpn)[F∗DA
n
k(u)

|
({z}red )reg

]
= alz(Mu)[F∗DA

n
k(u)

|
({z}red )reg

] + bpn[F∗DA
n
k(u)

|
({z}red )reg

] = 0inBr(({z}red)reg).

��
As a corollary, we have the following.

Theorem 5.1.4 Let S be an integral scheme dominant and of finite type over
Z, let X be a smooth S-scheme of relative dimension n and let M be a coherent
left DX/S-module. Suppose that the fiber of M at the generic point μ of S is
a holonomic left DXμ-module. Then there is a dense open subset U of S such
that for each closed point u of U, the Azumaya algebra F∗DXu on T ∗

X ′
u
splits

on the regular locus of the p-support p-supp(Mu)
reg.

Proof If Mμ = 0, the theorem is trivial by Remark 2.3.2. We thus suppose
that Mμ does not vanish.

By the canonical injection of the Brauer group for the Zariski site (i.e.
the classes of Azumaya algebras which are Zariski-locally isomorphic to an
algebra of matrices) into the Zariski cohomology H2(Y,O×

Y ) ([19, (2.1)]),
the case i = 2 of Lemma 5.1.5 below implies that on a regular (Noetherian)
scheme for an Azumaya algebra to be split is a Zariski-local condition.

Therefore byRemark 2.3.1, onemay further assume that S and X are regular

integral and affine and in particular that there is a closed immersion X
f

↪→ A
m
S

over S.

Let us specialize to a closed point u of positive characteristic p of S. Since
f ′
d is smooth by Lemma A.0.2, the description of p-supp(H0( fu)+Mu) given

in the proof of Proposition 2.4.1, of which we use the notations, implies that
p-supp(H0( fu)+Mu)

reg = ( f ′
u)π ◦ ( f ′

u)
−1
d (p-supp(Mu)

reg).

By [5, Proposition 3.7], f ′
d
∗
(F∗DXu ) splits on f ′

d
−1

(p-supp(Mu)
reg) if

F∗DA
m
k(u)

splits on the regular locus of p-supp(H0( fu)+Mu). Moreover the

pullback of Brauer classes f ′
d
∗ induces an injectivemorphism ofBrauer groups

Br(p-supp(Mu)
reg) ↪→ Br( f ′

d
−1

(p-supp(Mu)
reg)). Indeed f ′

d Zariski-
locally admits a section by Lemma A.0.2 and, on the regular locus, being
split is Zariski-local as we explained above. So F∗DXu splits on the regular
locus of p-supp(Mu) if F∗DA

m
k(u)

splits on p-supp(H0( fu)+Mu)
reg.

Finally, an Azumaya algebra splits on a regular Noetherian scheme if and
only if it splits on its irreducible components. Thus the theorem follows from
Theorem 5.1.3. ��
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Lemma 5.1.5 Let Y be a noetherian scheme. If Y is locally factorial, i.e. its
local rings are UFD, then the Zariski cohomology Hi (Y,O×

Y ) = 0, for all
i ≥ 2.

Proof By definition of the sheaf DivY of Cartier divisors there is an exact
sequence of abelian sheaves 0 → O×

Y → K×
Y → DivY → 0 on Y, where

KY is the sheaf of meromorphic functions and O×
Y → K×

Y is the natural
injection. If Y is locally factorial then it is the sum of its (finitely many)
irreducible components, each of which is integral, by [16, Proposition 4.5.5].

Hence if Yi
fi

↪→ Y is the open immersion of the i-th irreducible component,
then K×

Y
∼= �i fi ∗K×

Yi
. Moreover K×

Yi
is isomorphic to the constant sheaf

associated to k(yi )× for yi the generic point of Yi . In particularK×
Y is flasque.

Since DivY is flasque by [18, Corollaire 21.6.11], K×
Y → DivY is a flasque

right resolution of O×
Y , vanishing in degrees ≥ 2. The result follows as sheaf

cohomology may be computed using flasque resolutions. ��

5.2 The Brauer group via the p-curvature exact sequence

Let Y be a smooth scheme over a perfect field K of positive characteristic

p. Let Y
F−→ Y ′ be the relative Frobenius morphism and let Y ′ W−→ Y be

the projection. We denote by
⊕

i∈Z
�i

Y ′
C−1
Y−−→ ⊕

i∈Z
Hi (F∗�•

Y ) the Cartier
isomorphism, see [27, Theorem 7.2].

Definition 5.2.1 The Cartier operator is the composed morphism

CY :
⊕

i∈Z

Zi (F∗�•
Y )

π−→
⊕

i∈Z

Hi (F∗�•
Y )

inverse of C−1
Y−−−−−−−−→

⊕

i∈Z

�i
Y ′,

where Zi (F∗�•
Y ) := ker(F∗�i

Y
F∗d−−→ F∗�i+1

Y ) is the sheaf of closed i-forms
and π is the quotient morphism.

Recall that there is an exact sequence of étale sheaves on Y ′:

0 → Gm/Y ′
F∗−→ F∗Gm/Y

F∗dlog−−−−→ F∗Z1(�•
Y )

W �−CY−−−−→ �1
Y ′ → 0 (5.2.1)

where dlog(y) := dy/y for all local sections y of Gm/Y and W � is induced
by the pullback on forms, see [24, Corollaire 0.2.1.18].

Definition 5.2.2 The exact sequence (5.2.1) is the p-curvature exact sequence

and the morphism F∗Z1(�•
Y )

W �−CY−−−−→ �1
Y ′ is the p-curvature operator.
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The p-curvature exact sequence (5.2.1) decomposes into two short exact
sequences of étale sheaves on Y ′ :

0 → Gm/Y ′
F∗−→ F∗Gm/Y

F∗dlog−−−−→ ImF∗dlog → 0 (5.2.2)

0 → coker F∗ F∗dlog−−−−→ F∗Z1(�•
Y )

W �−CY−−−−→ �1
Y ′ → 0 (5.2.3)

Composing the coboundary morphisms of the corresponding étale coho-
mology long exact sequences, one deduces a morphism:

�Y : H0(Y ′, �1
Y ′) → H1(Y ′, coker F∗ ∼= ImF∗dlog) → H2(Y ′, Gm/Y ′)

Proposition 5.2.3 The morphism H0(Y ′, �1
Y ′)

�Y−→ H2(Y ′, Gm/Y ′) factors
uniquely through the canonical embedding Br(Y ′)p ↪→ H2(Y ′, Gm/Y ′),
where Br(Y ′)p is the kernel of multiplication by p in Br(Y ′).

Proof This is well-known. By construction �Y factors through

H0(Y ′, �1
Y ′) � coker H0(W � − CY ) → ker H2(F∗) ↪→ H2(Y ′, Gm/Y ′),

the end maps being the natural ones. Moreover by [23, Proposition 2.1], the
image of ker H2(F∗) ↪→ H2(Y ′, Gm/Y ′) is the kernel H2(Y ′, Gm/Y ′)p of
multiplication by p, the latter being the image of the canonical embedding
Br(Y ′)p ↪→ H2(Y ′, Gm/Y ′). ��
Definition 5.2.4 The morphism deduced from Proposition 5.2.3 is denoted

H0(Y ′, �1
Y ′)

φY−→ Br(Y ′)p.

Remark 5.2.5 Here is another description of φY , from [31, Remark 4.3]:

Let α ∈ H0(Y ′, �1
Y ′), then φY (α) = [s∗

α(F∗DY )] ∈ Br(Y ′), where Y ′ sα→
T ∗
Y ′ is the section of T ∗

Y ′/Y ′ corresponding to α.

The morphism φY depends functorially on Y :

Lemma 5.2.6 Let Z
f−→ Y be a K -morphism of smooth K -schemes, Z ′ f ′

−→ Y ′
its base-change by Frobenius and let α ∈ H0(Y ′, �1

Y ′). Then f ′∗φY (α) =
φZ (( f ′∗)adα), where f ′∗ on the left (resp. on the right) is the pullback of
classes in the Brauer group (resp. pullback of forms) by f ′.

Proof Set DY := F∗DY and DZ := F∗DZ . With the notations of the
“Appendix”,wehave:ByRemark5.2.5,φZ (( f ′∗)adα) = [s∗

( f ′∗)adα(DZ )].And
[s∗

( f ′∗)adα(DZ )] = [( f ′
d ◦ (Z ×Y sα))∗(DZ )], since s( f ′∗)adα = f ′

d ◦ Z ×Y sα,

by Remark A.0.1. Moreover by [5, Proposition 3.7], [ f ′
d
∗
(DZ )] = [ f ′

π
∗
(DY )].
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Hence [( f ′
d ◦ (Z ×Y sα))∗(DZ )] = [(Z ×Y sα)∗ f ′

d
∗
(DZ )] = [(Z ×Y

sα)∗ f ′
π

∗
(DY )] = [( f ′

π ◦ (Z ×Y sα))∗(DY )] = [(sα ◦ f ′)∗(DY )], using the
equality f ′

π ◦ (Z ×Y sα) = sα ◦ f ′. Finally by Remark 5.2.5, the last term is
equal to f ′∗φY (α), as stated. ��

By construction φY factors through coker H0(W � −CY ) and we denote the

resultingmapby coker H0(W �−CY )
φY−→ Br(Y ′)p.The followingproposition

provides information on the kernel of φY .

Proposition 5.2.7 Suppose further that Y is affine. Then there is an exact
sequence, commuting with restriction to affine open subsets:

Pic(Y ) → coker H0(W � − CY )
φY−→ Br(Y ′)p → 0.

Proof This is a special case of [23, Corollary 1.7]. ��
Let us now specialize to the case Y = T ∗

X , with X is a smooth K -scheme.

Let X
FX−→ X ′ be the Frobenius morphism and X ′ WX−−→ X the projection.

Remark 5.2.8 The pullback of formsW ∗
X�1

X

W ∗
X−−→ �1

X ′ is an isomorphism and
induces an isomorphism T ∗

X
′→̃T ∗

X ′ . We use this isomorphism to identify T ∗
X

′
and T ∗

X ′ .

We have the following description of the Brauer class of the algebra of
differential operators in terms of φ :
Proposition 5.2.9 Let θX ′ be the canonical 1-form on T ∗

X ′, see Definition
A.0.3. Then φT ∗

X
(θX ′) is the class of the algebra of differential operators

FX ∗DX in the Brauer group Br(T ∗
X ′).

Proof This follows from [31, Propositions 4.4 and 4.2]. (See also [5, Propo-
sition 3.11].) ��

6 Lagrangianity

In this section, we complete the proof of Theorem 2.2.1.

6.1 Nice compactification of the p-supports

Here for p large enough, we show the existence of normal-crossings compact-
ifications of the regular locus of the p-supports which are well-behaved as p
varies. The poles of the canonical form at infinity of this nice compactification
have nice properties. This will allow us to transfer characteristic zero results
to p-supports.
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6.1.1 Poles

To fix notations, we first recall some definitions. Let S be a scheme, let Y be
a smooth S-scheme and let D ⊂ Y be a divisor with normal crossings relative

to S, defined by the invertible ideal sheaf I.Denote by Y
j

↪−→ Y the affine open
embedding complement to D. For anOY -moduleF and n ∈ Z,we letF(nD)

denote F ⊗OY
I⊗OY

(−n)
. We have j∗�m

Y/S = ⋃
n≥0 �m

Y/S
(nD), where �m

Y/S

is the sheaf of relative differential forms of degree m on Y/S. Note that if S
is the spectrum of a field and when there is no risk of confusion, we will (and
have already) commit the abuse of notation to denote �m

Y/S by �m
Y .

Definition 6.1.1 A local section of j∗�m
Y/S which is in �m

Y/S
(nD) is said to

have poles of order at most n along D.

We denote the logarithmic de Rham complex by (�•
Y/S

(logD), d), see [12,

II §3]. It is a subcomplex of j∗(�•
Y/S, dY/S).

Definition 6.1.2 A local section of j∗�m
Y/S which is in �m

Y/S
(logD) is said to

have logarithmic poles along D.

6.1.2 Hilbert scheme

Let us fix coordinates {x1, . . . , xn} onA
n
Z
.They induce by base-change coordi-

nates {x1, . . . , xn} onA
n
S and {x1, . . . , xn, y1, . . . , yn} on its relative cotangent

space T ∗
A
n
S
, for any scheme S. We thus have a filtration of OT ∗

A
n
S

by the order

in {x1, . . . , xn, y1, . . . , yn} and an open embedding T ∗
A
n
S

↪→ P
2n
S , by the Rees

construction (Proposition 4.3.1). If S is the spectrum of a field K of positive
characteristic, we also deduce identifications of the base-change by Frobe-
nius (An

K )′ = A
n
K and T ∗

(An
K )′ = T ∗

A
n
K
. This embedding is the same as that

considered on page 20.
Let P ∈ Q[X ] be a rational polynomial and letH := HilbP

P
2n
Z

be the Hilbert

scheme of P
2n
Z

of index P, see [20, p. 17]. We let ZH ⊂ P
2n
Z

×Spec(Z) H be
the associated universal flat closed subscheme. The following definition is
convenient:

Definition 6.1.3 A (locally closed) subscheme S i
↪−→ H is nice if

(1) S is irreducible and generically of characteristic 0,
(2) Let Z be the restriction ZH ×H S of ZH to S. There exists an open

U ⊂ Zred surjecting onto S and an open immersionU ∩ T ∗
A
n
S

=: Y j
↪−→ Y
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such that Y is a smooth projective S-scheme and the complement 
 of j
is a divisor with normal crossings relative to S,

(3) Let μ be the generic point of S. Then (dθA
n
S
|Y) = 0 if and only if

(dθA
n
S
|Y)μ = 0,

(4) The restriction dθA
n
S
|Y of the symplectic form dθA

n
S
to Y has logarithmic

poles along 
 if and only if there exists a closed point s ∈ S such that the
fiber (dθA

n
S
|Y)s has logarithmic poles along 
s .

We may now state and prove the existence of compactification result.

Proposition 6.1.4 There exists a positive integer N such that H[ 1
N ] has a

finite partition into nice subschemes.

Proof Let X ↪→ H be a subscheme. Denote P(X) the property that there
exists an integer NX > 0 such that X [ 1

NX
] is empty or admits a partition into

nice subschemes of H. We have P(X) if and only if P(Xred) holds. Let us
prove P(X) holds for all reduced closed subschemes X of H, by Noetherian
induction.

Let S ↪→ H be a reduced subscheme. By Noetherian induction, we assume
P(T ) holds for all reduced closed subschemes T of S, distinct from S.Clearly
there is an integer N > 0 such that the irreducible components of S[ 1

N ] have
all generic points of characteristic zero. If S[ 1

N ] is empty then we have P(S).

We thus from now on assume that S[ 1
N ] is not empty.

Let z ∈ S[1/N ] be the generic point of an irreducible component and let
Zz be the fiber of (ZH ×H S[1/N ])red at z. Then Zz ⊂ P

2n
k(z) is a scheme

of finite type over the field of characteristic zero k(z). It is reduced by [18,
Proposition 8.7.2 a)] and hence contains an open dense smooth subset U ⊂
Zz. By the resolution of singularities in characteristic zero, there is an open

immersion Y
j

↪→ Y of the quasi-projective variety Y := U ∩ T ∗
A
n
k(z)

⊂ P
2n
k(z)

into a smooth projective scheme Y over k(z) which is the complement of a
divisor D with normal crossings relative to k(z). Hence by [18, Théorème
8.10.5 and Proposition 17.7.8], there are an open affine neighborhood T of
z, a non-empty smooth open subset U ⊂ (ZH ×H T )red and an open T -

immersion U ∩ T ∗
A
n
T

=: Y j
↪→ Y into a smooth projective T -scheme which is

the complement of a divisorD with normal crossings relative to T . Moreover,
since smooth morphisms are open, T may be chosen such that U surjects on
T . Finally by [16, Proposition 2.1.9 (ii)] it can also be chosen to be integral
and hence irreducible, since S is reduced.

Let θ be the restriction to Y of the canonical form θA
n
T /T on T ∗

A
n
T

. If dθ

vanishes on the generic fiber Yz, then there is a dense open subset V ⊂ T
above which dθ vanishes. If dθ does not vanish on the generic fiber of Y, then
we set V = T .
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Finally, there is a dense open subset W ⊂ V such that dθ |Y|W has logarith-
mic poles along D|W as soon as there is a fiber on which it has logarithmic
poles. Indeed there is a closed subset L of V such that for all closed points
v ∈ V, dθ |Yv has logarithmic poles alongDv if and only if v ∈ L. We prove it
as follows. There is an integer m > 0 such that dθ |Y is a section of the locally
free OY -module �2

Y/V
(mD). Let us locally choose a basis {b1, . . . , b j } of

�2
Y/V

(mD) extending a basis {b1, . . . , bl} of �2
Y/V

(logD) ⊂ �2
Y/V

(mD)

such that for each closed point v ∈ V, the restriction {b1|Yv , . . . , b j |Yv } is
a basis of �2

Yv
(mDv) extending a basis {b1|Yv , . . . , bl |Yv } of �2

Yv
(logDv).

That such a basis exists follows from the case of (Ad
V , {x1 . . . xr = 0}),

which is immediate. Locally we thus have dθ |Y = �
i= j
i=1αi bi for some unique

sections α1, . . . , α j of OY . Moreover its restriction dθ |Yv has logarithmic
poles along Dv if and only if the restrictions αl+1|Yv

, . . . , α j |Yv
vanish. Let

O ⊂ Y be the open complement of the closed subset of Y locally given by
{αl+1 = · · · = α j = 0}. For each closed point v ∈ V, we thus have that
dθ |Yv has logarithmic poles along Dv if and only if O ∩ Yv is empty, that is
v /∈ π(O), where π is the structure map Y → V . But π(O) is open since π is
smooth and thus open. We have that L is the complement of π(O). If L � V,

then we let W be the open complement V \ L. Otherwise we set W = V .

Thuswe have found a nice non-empty open subsetW ⊆ S.Since byNoethe-
rian induction we have P(S \ W ), it follows immediately that we have P(S).

This concludes the proof of the proposition. ��

6.2 Action of the p-curvature operator on the order of poles

Let η be a 1-form in the image of the p-curvature operator. Here we will show
that if η has poles of small order (i.e. ≤ p − 1), then its exterior derivative
dη has at most simple poles and hence has logarithmic poles. The following
definition is convenient.

Definition 6.2.1 Let D be a divisor in a smooth variety X over a field K .

Etale coordinates {x1, . . . , xn} : Vx → A
n
K in the neighbourhood Vx of a

point x ∈ X are D-good, or good if there is no risk of confusion, if there is
0 ≤ r ≤ n such that D ∩ Vx = {x1 . . . xr = 0}.
Thus D ⊂ X has normal crossings if and only if X has an étale covering π

admitting π−1(D)-good étale coordinates in the neighbourhood of each of its
points.

Throughout this subsection, Y will denote a smooth variety over a perfect
field K of positive characteristic p and D ⊂ Y a normal crossings divisor of

open complement Y
j

↪−→ Y . As above, we use ’ to denote the base-change by
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the Frobenius automorphism of K . Recall Definition 5.2.2 of the p-curvature

operator F∗Z1(�•
Y )

W �−CY−−−−→ �1
Y ′ . Here is the main result of the subsection:

Proposition 6.2.2 Let Im(W � −CY ) be the image of abelian sheaves for the
Zariski topology and let I be the intersection of the subsheaves�1

Y
′((p−1)D′)

and j ′∗Im(W � − CY ) of j ′∗�2
Y ′ . Then d(I) ⊂ �2

Y
′(logD′).

Proof The assertion is étale local on Y . Hence by definition of divisor with
normal crossings, we may and do assume that there are good étale coordinates
in the neighbourhood of every point of Y . In this situation, let us prove that
I ⊆ j ′∗B1�•

Y ′ +�1
Y

′(logD′),with B1�•
Y ′ the exact 1-forms. This immediately

implies the proposition.
Let η be a local section of I. By Lemma 6.2.4, we may assume that locally,

there is a local section ρ ∈ j ′∗F∗Z1(�•
Y ) such that η = j ′∗(W � −CY )ρ. More-

over, by p−1-linearity of the Cartier operator CY , see [24, Lemme 0.2.5.4], ρ
has poles of order at most p − 1 along D.

Hence byLemma 6.2.3,ρ is locally a sumof an exact form and a closed form
with logarithmic poles along D. The proposition follows since, by [27, (7.2.4)
of Theorem 7.2], the Cartier operator CY preserves forms with logarithmic
poles. ��
Lemma 6.2.3 Suppose that there are D-good étale coordinates in the neigh-
bourhood of each point of Y . Then there is an inclusion of quasi-coherent
subsheaves of j ′∗F∗�1

Y :

j ′∗Z1(F∗�•
Y ) ∩ F∗�1

Y
((p − 1)D) ⊆ j ′∗B1(F∗�•

Y ) + Z1(F∗�•
Y
(logD)),

where B1(F∗�•
Y ) := Im(F∗OY

F∗d−−→ F∗�1
Y ) and Z1(F∗�•

Y
(logD)) :=

ker(F∗�1
Y
(logD)

F∗d−−→ F∗�2
Y
(logD)).

Proof The assertion being local,wemay assume thatwe have global good étale

coordinates Y
{y1,...,yn}−−−−−→ A

n
K . Moreover it is clear that the lemma reduces to

Y = A
n
K by pullback. So wemay assume that (Y , D) = (An

K , {y1 . . . yr = 0})
for some 0 ≤ r ≤ n, where {y1, . . . , yn} are coordinates on A

n
K .

The coordinates induce a splitting of the canonical short exact sequence

0 → B1(F∗�•
Y ) → Z1(F∗�•

Y )
CY−→ �1

Y ′ → 0 by�1
Y ′

δ−→ Z1(F∗�•
Y ), sending

a local section
∑n

i=1 aidyi to δ(
∑n

i=1 aidyi ) = ∑n
i=1 a

p
i y

p−1
i dyi , where we

have identified A
n
K and its base-change by Frobenius using the coordinates.

Applying j ′∗ we get that a local section ρ of j ′∗Z1(F∗�•
Y ) may uniquely be

written as a sum ρ = ρb +ρc,where ρb is a local section of j ′∗B1(F∗�•
Y ), and
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ρc = ∑n
i=1 a

p
i y

p−1
i dyi , with {a1, . . . , an} uniquely determined local sections

of j ′∗OY ′ .
Let us show that if ρ is a local section of j ′∗Z1(F∗�•

Y ) ∩ F∗�1
Y
((p− 1)D),

then ρc is a local section of Z1(F∗�•
Y
(logD)). This implies the lemma. First

one sees immediately by a computation in coordinates that if ρc has poles of
order at most p − 1, then it actually has poles of order at most 1. Thus it has
logarithmic poles along D, since it is closed.

We conclude the proof by showing that if ρ has poles of order at most
p − 1, then so does ρc (and hence ρb). Set h := y1 . . . yr . We claim that
(hnρ)c = hnρc, for all n ≥ 0,where the multiplication by hn denotes here the
action on�1

Y .Since for all local sections ξ of j ′∗Z1(F∗�•
Y ), ξc = j ′∗δ◦ j ′∗CY (ξ)

and j ′∗δ ◦ j ′∗CY preserves regular forms (i.e. forms having poles of order at
most 0 along D), the claim indeed implies the assertion. But the claim is easily
checked by adjoining to the domain O(Y ) all the p-th roots of its elements.
Indeed the composition of the p−1-linear morphism j ′∗CY and the p-linear
morphism j ′∗δ is linear. ��
Lemma 6.2.4 Let X be a smooth variety over a perfect field K of positive
characteristic p and let D ⊂ X be a normal crossings divisor of open

complement X
j

↪−→ X . Then the canonical inclusion Im( j ′∗(W � − CX )) ↪→
j ′∗Im(W � − CX ) is an isomorphism.

Proof The p-curvature exact sequence of abelian sheaves on X ′ for the

Zariski topology 0 → O×
X ′

F∗−→ F∗O×
X

F∗dlog−−−−→ Z1(F∗�•
X )

W �−CX−−−−→ �1
X ′,

see [24, Corollaire 0.2.1.18], breaks into two short exact sequences: 0 →
coker F∗ F∗dlog−−−−→ Z1(F∗�•

X )
W �−CX−−−−→ Im(W �−CX ) → 0 and 0 → O×

X ′
F∗−→

F∗O×
X → coker F∗ → 0. The long exact sequence for Rj ′∗ of the former:

0 → j ′∗ coker F∗ j ′∗F∗dlog−−−−−→ j ′∗Z1(F∗�•
X )

j ′∗(W �−CX )−−−−−−−→ j ′∗Im(W � − CX )→ R1

j ′∗ coker F∗ → . . .

implies that the lemma follows from the vanishing of R1 j ′∗ coker F∗.
This in turnwould follow from the vanishing of R1 j ′∗(F∗O×

X ) and R2 j ′∗O×
X ′,

by the long exact sequence for Rj ′∗ of the other short exact sequence:

. . . → R1 j ′∗O×
X ′ → R1 j ′∗(F∗O×

X ) → R1 j ′∗ coker F∗ → R2 j ′∗O×
X ′ → . . .

But the direct image F∗ preserves flasque sheaves and is exact, since F is
a homeomorphism. Hence by [21, III Corollary 8.3], Rq F∗(G) = 0 for all
abelian sheaves G and all q > 0. Thus R1 j ′∗(F∗O×

X ) ∼= R1( j ′∗ ◦ F∗)(O×
X ) =

R1(F∗ ◦ j∗)(O×
X ) ∼= F∗R1 j∗(O×

X ). We have therefore shown that the Lemma
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is implied by the vanishing of R1 j∗(O×
X ) and R2 j ′∗O×

X ′ . This follows from
Lemma 6.2.5 below, since smooth schemes are locally factorial. ��

Lemma 6.2.5 Let U
j

↪→ Y be an open immersion. Suppose that Y is a locally
factorial Noetherian scheme. Then Rq j∗(O×

U ) = 0, for all q > 0.

Proof By [21, Proposition 8.1 of Chapter III], Rq j∗(O×
U ) is the abelian sheaf

associated to the presheaf V �→ Hq(U ∩ V,O×
U∩V ), for all V open in Y. But

by Lemma 5.1.5, Hq(U ∩V,O×
U∩V ) = 0 for all q ≥ 2. Thus Rq j∗(O×

U ) = 0,
for all q ≥ 2.

For q = 1, R1 j∗(O×
U ) is the abelian sheaf associated to the presheaf

of Picard groups: V �→ Pic(U ∩ V ), for all V open in Y. Let LU∩V ∈
Pic(U ∩ V ). By [18, Corollaire 21.6.11], it extends to an invertible sheaf
LV ∈ Pic(V ). Hence LU∩V is trivial on the restriction to U of an open cov-
ering of V trivializing LV . Thus the corresponding section of the associated
sheaf R1 j∗(O×

U ) vanishes locally, hence is 0. This implies that R1 j∗(O×
U )

vanishes. ��

6.3 Conclusion

We now combine most of the results above to prove our main theorem.

Proof of Theorem 2.2.1 By Theorem 3.1.1, there is a dense open subset U1
of S such that p-supp(Mu) is equidimensional of dimension n, for all closed
points u of U1.

By Proposition 2.4.1, we may assume that X/S = A
n
S/S. Thus by Theorem

5.1.3, there is a dense open subset U2 of U1 such that the Azumaya algebra
F∗DA

n
k(u)

splits on the regular locus of each irreducible component of the p-
support of Mu, for every closed point u of U2. Let θu = θ(An

k(u)
)′/Spec k(u)

be the canonical form on T ∗
(An

k(u)
)′ . Then the restriction of θu to the regular

locus Zreg
u of an irreducible component Zu of p-supp(Mu) is in the image

of the p-curvature operator Im(W � − CZreg
u

), where we have identified Zreg
u

with Zreg
u

′
, as k(u) is perfect. This follows from the description of ker φY in

Proposition 5.2.7, since φT ∗
A
n
k(u)

(θu) is the class of F∗DA
n
k(u)

in the Brauer group

by Proposition 5.2.9 and φY is commutes with the pullback by Lemma 5.2.6.
By Theorem 4.3.3 and using its notations, there are a dense open subsetU3

of U2 and an integer e > 0 such that for all closed points u of U3, the degree
of each irreducible component Zu of the p-support of Mu is not larger than
e. Hence the Hilbert polynomial of Zu belongs to a finite set {P1, . . . , Pr },
independent of u. Indeed the Hilbert polynomial of Zu is the same as that
of Zu ×Spec k(u) Spec k(u) for an algebraic closure k(u) of the residue field
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k(u). We can then conclude using Chow coordinates, see [20, Lemme 2.4 and
Théorème 2.1(b)]. Moreover by Proposition 6.1.4, there is an integer N > 0
such that the localization

∐i=r
i=1HilbPi

P
2n
Z

[ 1
N ] of the Hilbert scheme of index

{P1, . . . , Pr } has a finite partition into nice subschemes, see Definition 6.1.3.
Hence, in particular, there are a dense open subset U4 of U3 and an integer
N ′ > 0 satisfying the following. For all closed points u ofU4, each irreducible
component Zu of the p-support of Mu has a smooth dense open subset Yu ⊂
Zu embedding as an open into a smooth projective variety Yu

ju
↪−→ Yu with

complement a divisor Du with normal crossings. Moreover the restriction of
the canonical form θu|Yu has poles of order at most N ′ along Du .

Hence by further inverting a positive integer, there exists an open dense
subsetU5 ofU4 such that for all closed points u ofU5, θu|Yu has poles of order
at most pu − 1 along Du, where pu is the characteristic of k(u). Thus since
θu|Yu is in the image of the p-curvature operator, Proposition 6.2.2 implies that
its exterior derivative dθu|Yu has logarithmic poles along Du .

By construction of Yu there are an irreducible U5-scheme H generically
of characteristic zero, a smooth projective H -scheme Y and a divisor 
 of Y
with normal crossings relative to H such that the complement Y := Y − 


is identified with an open in T ∗
A
n
H
. And if we denote by Y

j
↪−→ Y the open

embedding, there is a closed point t of H such that ju (resp. θu|Yu ) is the
specialization of j (resp. θA

n
H /H |Y ) at t. By point (4) of the definition of nice

subscheme, the above implies that dθA
n
H /H |Y has logarithmic poles along 
.

Hence so does its restriction dθA
n
k(γ )

|Yγ to the fiber at the generic point γ of
H. Clearly, being globally exact, the class of the symplectic form dθA

n
k(γ )

|Yγ

vanishes in the hypercohomology of the de Rham complex ( jγ ∗�
•
Yγ

, jγ ∗d).

But since the residue field of γ is of characteristic zero, the canonical inclusion
of complexes �Yγ

(log
γ ) ⊂ jγ ∗�
•
Yγ

is a quasi-isomorphism by [13, Propo-
sition 3.1.8]. Hence the class of dθA

n
k(γ )

|Yγ vanishes in the hypercohomology
of the logarithmic de Rham complex, as well. Thus by the degeneracy at E1 of
the logarithmic Hodge to de Rham spectral sequence ([13, Corollaire 3.2.13
(ii) and Corollaire 3.2.14]), dθA

n
k(γ )

|Yγ = 0. Therefore by point (3) of the defi-
nition of nice subscheme, dθA

n
H /H |Y = 0. It follows directly that for all closed

points u of U5, dθu|Yu = 0. This concludes the proof of the theorem. ��
Let us explain how our results imply the involutivity of the singular support

of a holonomic D-module M. The latter is an important special case of the
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involutivity of the singular support of an arbitrary nonzero coherentD-module,
which was originally proved in [26]. A purely algebraic proof was later given
in [15].

Corollary 6.3.1 Let Y be a smooth variety over a field L of characteristic zero
and let M be a nonzero holonomic leftDY -module. Then the singular support
of M is a Lagrangian subvariety of (T ∗

Y , ωY ).

Proof The corollary immediately reduces to an equidimensional and affine Y.

One proves that the singular support is equidimensional of dimension dim Y by
the methods of Sect. 3, purely in characteristic zero, see e.g. [8, A:IV Theorem
5.2].

Let us now show that the symplectic form ωY vanishes on the regular locus
of the singular support SS(M). Consider a spreading out (X, N ) of (Y, M).

Namely, there are a finitely generated subring A ⊂ L , a smooth affine scheme
X over S := Spec(A) and a coherent left DX/S-module N such that, for μ the
generic point of S, there are compatible isomorphisms L ⊗k(μ) Xμ

∼= Y and
L ⊗k(μ) Nμ

∼= M. Let us define the closed subset SS(N ) ⊂ T ∗
X/S to be the

support of the associated graded gr�N , where � is a good filtration of N , see
Definition 3.3.1. As usual the subset SS(N ) does not depend on the choice of
good filtration of N . We claim that there is a dense open subset S∗ of S such
that, for all closed points u of S∗, the symplectic form ωXu vanishes on the
regular locus of the fiber SS(N )u of SS(N ). Since SS(M) = L⊗k(μ) SS(N )μ,

the corollary follows from the claim.
By generic freeness of gr�N on S, there is a dense open subset S1 of S

such that the fiber �u of � is a good filtration and SS(N )u = SS(Nu), for
all closed points u of S1. Moreover it is clear that Lemma 4.2.6 and its proof
generalize to the Bernstein filtration replaced by the filtration by the order
of differential operators, and A

n
k(u) replaced by Xu . Thus (4.2.1) gives an

isomorphism of gr�Z(DXu )-modules gr(gr�(�u)r∗Nu) � F∗gr�u Nu,where
� is the filtration induced by the order of differential operators on the center
Z(DXu ) of DXu and we have used the notations of the proof of Lemma 4.2.6.
In addition, we have that the symplectic form ωXu vanishes on the regular
locus of the support of gr�u Nu if and only ifωX ′

u
vanishes on the regular locus

of the support of F∗gr�u Nu . Indeed these regular loci and symplectic forms
are mapped to one another by the projection map T ∗

X ′
u

→ T ∗
Xu

, which is an
isomorphism since k(u) is perfect. Hence the symplectic form ωXu vanishes
on the regular locus of the support of gr�u Nu if and only if ωX ′

u
vanishes on

the regular locus T reg
u of the support Tu of gr�(�u)r∗Nu .

But using the Rees module with respect to �, we see that Tu is the reduced
scheme associated to the fiber at the origin of a flat A

1-scheme of generic
fiber isomorphic to the p-support of Nu . And by Theorem 2.2.1, there is a
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dense open subset S2 of S1 such that the p-support of Nu is Lagrangian, for
all closed points u of S2. Thus the claim would follow if the reduced scheme
associated to the fiber at the origin of a flat A

1-scheme of Lagrangian generic
fiber was Lagrangian. This is not in general true in positive characteristic. In
our case however, the proof reduces to the case Xu = A

n and we may use
Theorem 4.3.3. Hence there is a dense open subset S3 of S2 such that for all
closed u ∈ S3, the generic fiber of the A

1-scheme is Lagrangian and of degree
bounded independently of u ∈ S3 (for the projective embedding of Theorem
4.3.3). We may thus use the Hilbert scheme to conclude that there is an integer
l > 0 such that for all u ∈ S∗ := S3[1l ], the assertion that the reduced scheme
associated to the fiber at the origin of the above A

1-scheme is Lagrangian,
follows from the case of characteristic zero. But the latter is a special case of
Lemma 6.3.2 below, applied to the symplectic form. This concludes the proof
of the claim and thus of the corollary. ��
Lemma 6.3.2 Let S be an integral scheme over a field L of characteristic
0. Let M be a smooth S-scheme, let Z ⊂ M be a subscheme which is a
reduced, flat and surjective S-scheme of relative dimension d, and let α be a
relative differential form onM over S. Assume that the restriction of α to the
smooth locus of the generic fibre of Z vanishes and that S is the spectrum of
a Dedekind ring. Then the restriction of α to the smooth locus of the reduced
scheme associated to every closed fibre of Z vanishes.

Proof Wewill reduce the proof to the case of a smooth Z ,which is immediate.
Indeed if Z is smooth over S, the points s of the base S such that the restriction
of α vanishes on the fibre Zs form a closed subset Vα ⊂ S. Since the generic
point of S belongs to Vα by hypothesis, we have Vα = S, which is what we
wanted to prove.

By the Reduced Fibre Theorem [32, Theorem 09IL], there is an integral

affine schemeT and afinite surjectivemorphismT
φ−→ S, such that ifwedenote

by ZT the base-change of Z with respect to φ, and Y
ν−→ ZT the normalization,

then the smooth locus U of Y over T is dense in all the fibres of Y over T .

Note that since the normalization morphism is finite and surjective, Y is a

T -scheme of relative dimension d. Let ZT
β−→ Z be the projection morphism.

For each s ∈ S, we have morphisms between the reduced schemes associated

to the fibres Uφ−1(s)
j

↪−→ (Yφ−1(s))red
(νs)red−−−−→ ((ZT )φ−1(s))red

(βs)red−−−−→ (Zs)red ,

such that (νs)red and (βs)red are finite and surjective. Thus, in particular, the
composition ψ := (βs)red ◦ (νs)red ◦ j is dominant.

We will use the following claim: Let Y g−→ Z be a finite morphism between
schemes of pure dimension d. If V is a dense open subset of Z, then g−1(V )

is a dense open subset of Y. Indeed if the open complement W of the closure
g−1(V ) of g−1(V ) in Y is not empty then it is of dimension d. But it maps to
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the complement of V in Z, which is of dimension < d. This is not possible
since g is finite. Thus W is empty and g−1(V ) is a dense open subset of Y.

By generic smoothness on the target applied to ψ, there is a dense open
subset U of (Zs)red such that the restriction of ψ to U is smooth. Moreover,
by the claim applied to (βs)red ◦ (νs)red , we have that the inverse image
ψ−1(U ∩ (Zs)

sm
red) of the dense open subset U ∩ (Zs)

sm
red of the smooth locus

(Zs)
sm
red of (Zs)red is dense in Uφ−1(s). Thus the restriction of α to (Zs)

sm
red

vanishes if and only if its restriction to Uφ−1(s) vanishes. Hence the lemma
follows from the smooth case, applied to U and the restriction of α to U. ��
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Appendix A: Symplectic geometry of the cotangent space

Let S be a scheme and let Y be a smooth S-scheme of relative dimension
n. Recall that the cotangent space of Y/S is the Y -scheme T ∗

Y/S
pY−→ Y :=

V ((�1
Y/S)

∗) = SpecY (SymOY (�1
Y/S)

∗) and hence that the sheaf of germs of

Y -sections of T ∗
Y/S/Y is canonically identified with �1

Y/S, see [17, (1.7.9)].
Moreover T ∗

Y/S is a smooth Y -scheme of relative dimension n by [18, Propo-
sition 17.3.8], smooth of relative dimension 2n as an S-scheme. We use the
notation T ∗

Y (instead of T ∗
Y/S) when there is no risk of confusion, for example

when S is the spectrum of a field. For f : X → Y a S-morphism of smooth

S-schemes, the pullback of differentials �1
X/S

f ∗
←− f ∗�1

Y/S ([18, 16.4.3.6])

gives rise to the X -morphism T ∗
X/S

( f )d←−− X ×Y T ∗
Y/S called the cotangent map.

It is part of the cotangent diagram of f :
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T ∗
X/S X ×Y T ∗

Y/S
( f )d

( f )π

T ∗
Y/S

where ( f )π is the canonical projection.

Remark A.0.1 LetU ⊂ Y be an open subset, it follows directly from the defi-
nitions that if sα is the section of T ∗

Y/S/U corresponding to α ∈ �(U, �1
Y/S),

then ( f )d ◦ (X ×Y sα) corresponds to ( f ∗)adα ∈ �( f −1(U ), �1
X/S), where

f∗�1
X/S

( f ∗)ad←−−− �1
Y/S is adjoint to f ∗.

We have the

Lemma A.0.2 If f : X → Y is an immersion (resp. a closed immersion)
then ( f )d is smooth and surjective and ( f )π is an immersion (resp. a closed
immersion). Moreover ( f )d admits a section locally on X.

Proof The morphism ( f )d is smooth and surjective by [18, Proposition
17.2.5], [17, Proposition 1.7.11 (iii)], [18, Proposition 17.3.8] and stability
under base-change of surjective smooth morphisms. We have that ( f )π is an
immersion (resp. a closed immersion) by [16, Proposition 4.3.1 (i)]. Finally,
local sections of the locally split “conormal” short exact sequence of [18,
Proposition 17.2.5] induce local sections of ( f )d , by [17, Proposition 1.7.11
(i)]. ��
Definition A.0.3 The canonical global S-relative 1-form θY/S on the cotangent
space of Y/S is the relative 1-form corresponding to the section

T ∗
Y/S


T∗
Y/S/Y

−−−−−→ T ∗
Y/S ×Y T ∗

Y/S
(pY )d−−−→ T ∗

T ∗
Y/S/S

of the cotangent space T ∗
T ∗
Y/S/S

pT∗
Y/S−−−→ T ∗

Y/S , where 
T ∗
Y/S/Y

is the diagonal of

T ∗
Y/S

pY−→ Y .

Let {y1, . . . , yn} be local étale coordinates on Y. In terms of the associated
local étale coordinates {y1, . . . , yn; ξ1, . . . , ξn} on T ∗

Y/S , where {ξ1, . . . , ξn}
are dual to {dy1, . . . , dyn}, θY/S = ∑i=n

i=1 ξi dyi . Note that the formation of the
canonical form commutes with base-change S′ → S and is compatible with
the cotangent diagram, the latter in the sense that ( f )∗πθY/S = ( f )∗dθX/S .

If S is the spectrum of a field k, then we omit the base S from the notations.
Let Q be a smooth k-scheme of pure dimension n.
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Definition A.0.4 The nondegenerate global exact 2-form ωQ := dθQ on T ∗
Q

is called the symplectic form.

Definition A.0.5 A subvariety X
i

↪→ T ∗
Q is said to be a Lagrangian subvariety

of (T ∗
Q, ωQ) if it contains a dense open U ⊂ X on which the symplectic

form vanishes, (i∗ωQ)|U = 0 and if at each of its points x it is of dimension
n = dimx Q.

Let us finally note the

Lemma A.0.6 Let f : X → Y be an immersion of smooth k-schemes and let

ZY
i

↪→ T ∗
Y and ZX

j
↪→ T ∗

X be reduced subschemes. Suppose that ( f )−1
π ZY =

( f )−1
d ZX and that ( f )−1

π ZY
( f )π−−→ ZY is surjective. Then ωY vanishes on a

dense open subset of ZY if and only if ωX vanishes on a dense open subset of
ZX .

Proof Note that by Lemma A.0.2, ( f )d |ZX is smooth and surjective and
( f )π |ZY is an immersion. Since by hypothesis ( f )π |ZY is surjective, it is a
nilimmersion. Hence, ZY being reduced, an isomorphism. Moreover by [18,
Proposition 17.2.3 (ii)], [10, §7 no2 Proposition 4] and flatness of smooth
morphisms, the pullback of forms ( f )∗d : �2

ZX ,z → �2
( f )−1

d ZX ,z̃
is injective

for all z = ( f )d(z̃). Since ( f )∗πωY = ( f )∗dωX as ( f )∗πθY = ( f )∗dθX , and
(( f )d |ZX ) ◦ (( f )π |ZY )−1 as well as (( f )π |ZY ) ◦ (( f )d |ZX )−1 preserve open
dense subsets, the lemma follows. ��
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