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Abstract We study nonuniform sampling in shift-invariant spaces and the
construction of Gabor frames with respect to the class of totally positive func-
tions whose Fourier transform factors as ĝ(ξ) = ∏n

j=1(1 + 2π iδ jξ)−1 e−cξ2

for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaus-
sian type). In analogy to Beurling’s sampling theorem for the Paley–Wiener
space of entire functions, we prove that every separated set with lower Beurling
density > 1 is a sampling set for the shift-invariant space generated by such
a g. In view of the known necessary density conditions, this result is optimal
and validates the heuristic reasonings in the engineering literature. Using a
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1120 K. Gröchenig et al.

subtle connection between sampling in shift-invariant spaces and the theory of
Gabor frames, we show that the set of phase-space shifts of g with respect to a
rectangular lattice αZ× βZ forms a frame, if and only if αβ < 1. This solves
an open problem going back to Daubechies in 1990 for the class of totally pos-
itive functions of Gaussian type. The proof strategy involves the connection
between sampling in shift-invariant spaces and Gabor frames, a new charac-
terization of sampling sets “without inequalities” in the style of Beurling, new
properties of totally positive functions, and the interplay between zero sets of
functions in a shift-invariant space and functions in the Bargmann–Fock space.

Mathematics Subject Classification 42C15 · 42C40 · 94A20

1 Introduction

1.1 Nonuniform sampling

Beurling’s sampling theory for the Paley–Wiener space is at the crossroad of
complex analysis and signal processing and has served as a model and inspira-
tion for many generations of sampling theorems in both fields. To recapitulate
Beurling’s results, let

PW2 = { f ∈ L2(R) : supp f̂ ⊆ [ − 1/2, 1/2]}

be the Paley–Wiener space, where f̂ (ξ) := ∫
R
f (x)e−2π i xξdx is the Fourier

transform. It consists of restrictions of entire functions of exponential type
to the real line and is called the space of bandlimited functions by engineers
and applied mathematicians. This space was and still is the prevailing signal
model for phenomena as diverse as radio signals, temperatures and biomedical
measurements [60].

A separated set � ⊆ R is called a sampling set for PW2, if there exist
A, B > 0 such that

A‖ f ‖22 ≤
∑

λ∈�

| f (λ)|2 ≤ B‖ f ‖22 for all f ∈ PW2. (1.1)

The understanding of sampling sets may be considered a core problem in
complex analysis, but is also a fundamental problem in signal processing. Since
a signal is always sampled and then processed, sampling is a key operation
in the analog-digital conversion. The sampling inequality (1.1) guarantees
that the samples carry the complete information about the signal and that the
signal can be recovered from the samples with some stability with respect to
measurement and processing errors.
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Sampling theorems for shift-invariant spaces 1121

Beurling [10,11] characterized sampling sets by means of their density.
The (lower) Beurling density is the average density of samples per unit and is
formally defined as

D−(�) := liminf
R→∞ inf

x∈R
#(� ∩ [x − R, x + R])

2R
. (1.2)

The theorems of Beurling give an almost complete characterization of sam-
pling sets for the Paley–Wiener space PW2.

Theorem 1.1 (a) If� ⊆ R is separated and D−(�) > 1, then� is a sampling
set for PW2.

(b) Conversely, if � is a sampling set for PW2, then D−(�) ≥ 1.

A related result with uniform densities occurs in the work of Duffin and
Schaeffer [18]. The case of critical density D−(�) = 1 is delicate and was
settled in [49]. Subsequently, the necessary condition (b) above has been
extended and adapted to many different situations, notably to Paley–Wiener
spaces in higher dimension with respect to general spectra by Landau [43],
and to sampling in spaces of analytic functions [57]. The necessary conditions
for sampling can even be formulated and proved for sampling in reproducing
kernel Hilbert spaces over a metric measure space [5,22].

The sufficient condition (a) is much deeper and more subtle and has been
extended only to a handful of situations, notably to sampling in the Bargmann–
Fock space of entire functions by Lyubarskii and Seip [47,56]. For bandlimited
functionswith general spectra, even the existence of sets that are both sampling
and interpolating is a very challenging problem [42,45].

In this article we develop an analog of Beurling’s theory in an unexpected
direction beyond classical complex analysis and study sampling in shift-
invariant spaces. This notion comes from approximation theory and replaces
the Paley–Wiener space in many modern applications because often data
acquisition demands a more flexible setting, where signals are not strictly
bandlimited, but only approximately so. For the definition, let g ∈ L2(R) be
a generating function and consider the space

V 2(g) = {
f ∈ L2(R) : f =

∑

k∈Z
ckg(· − k), c ∈ 	2(Z)

}
.

We always assume that g possesses stable translates so that ‖ f ‖2 
 ‖c‖2.
Typically the Fourier transform of g decays rapidly outside an interval and
thus functions in V 2(g) are approximately bandlimited. In the extreme case of
ĝ = χ[−1/2,1/2], the shift-invariant space V 2(g) is precisely the Paley–Wiener
space PW2. Intuitively, functions in a general shift-invariant space V 2(g) have
a rate of innovation of one degree per space unit [3,12,60]. It is therefore
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expected that nonuniform sampling theorems similar to Theorem 1.1 hold for
general shift-invariant spaces. Such claims are usually backed by a heuristic
comparison to the bandlimited case, but, in spite of their central role in signal
processing, they have been given onlymoderate formal support so far. In [2]we
suggested that every reasonable generator g comes with a notion of a suitable
g-dependent density D−

g (�), such that Beurling’s formulation carries over
verbatim. Despite many efforts and dozens of publications this suggestion and
the attached conjectures remained untouched.

The existing results for sampling in a shift-invariant space use the covering
density δ = 2 supx∈R infλ∈� |x − λ| instead of the Beurling density. Typical
statements assert that every set�with a “sufficiently small” covering density δ

is a sampling set for V 2(g). However, because of the unspecified (and usually
large) gap between the known necessary density and the proven sufficient
density these results are far from optimal and lack practical relevance. See [3]
for a survey of sampling in shift-invariant spaces including many qualitative
results. Sharp results in terms of the covering density (“δ < 1 is sufficient
for sampling”) are known only when the generator g is a B-spline [2], an
exponential B-spline [41], or a totally positive function of finite type [29].

Our objective is to develop a sampling theory in a large class of shift-
invariant spaces in the style of Beurling and to prove the best possible results.
As a natural and suitable class of generators we deal with totally positive
functions. A function g ∈ L1(R) is called totally positive, if for all N ∈ N

and real numbers x1 < x2 < · · · < xN , y1 < y2 < · · · < yN the matrix

(
g(x j − yk)

)

j,k=1,...,N

has non-negative determinant. This property is fundamental in statistics,
approximation theory, and data interpolation [40]. In the following we will
deal with a subset of totally positive functions and call a function g on R

totally positive of Gaussian type if its Fourier transform factors as

ĝ(ξ) =
n∏

j=1

(1 + 2π iδ jξ)−1 e−cξ2, δ1, . . . , δn ∈ R, c > 0, n ∈ N ∪ {0}.
(1.3)

By Schoenberg’s characterization [52,54] of totally positive functions, every
g satisfying (1.3) is totally positive.

Our first main result is the following (almost) characterization of sampling
sets in V 2(g) in analogy to Beurling’s theorem.

Theorem 1.2 Assume that g is a totally positive function of Gaussian type as
in (1.3). If � ⊆ R is separated and D−(�) > 1, then � is a sampling set for
V 2(g).
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Sampling theorems for shift-invariant spaces 1123

Since a sampling set for V 2(g) must necessarily satisfy D−(�) ≥ 1 by [2,5],
this result is optimal. Theorem 1.2 thus validates the heuristic understanding of
the signal processing community that nonuniform sampling above the critical
density (the Nyquist rate) leads to stable reconstruction in a shift-invariant
space. As with bandlimited functions [49], the case of the critical density
D−(�) = 1 is subtle and deserves a more detailed analysis. Generically, the
set � = r +Z is a sampling set, but there always exists at least one r0 ∈ [0, 1]
such that r0 + Z fails to be a sampling set.

To the best of our knowledge, Theorem 1.2 is the first result of this kind
beyond a purely analytic setting (although complex variable methods enter our
proofs through a backdoor). In contrast to the covering density, Theorem 1.2
allows for truly nonuniform sets with large gaps and underscores the use of
Beurling’s density as the right performance metric for sampling.

We stress that Theorem 1.2 is new even for the shift-invariant space with
Gaussian generator. We believe that it opens a new avenue in approximation
theory of radial basis functions, because sampling inequalities have become an
integral part of the error analysis for scattered data interpolation [30,48]. We
also have a dual result for interpolation in shift-invariant spaces, formulated
in terms of Beurling’s upper density D+(�).

Theorem 1.3 Let ϕ(x) = e−cx2 be a Gaussian. If � ⊆ R is separated and
D+(�) < 1, then � is an interpolating set for V 2(ϕ). This means that for all
a ∈ 	2(�) there exists f ∈ V 2(ϕ) such that f (λ) = aλ.

1.2 Gabor analysis

Surprisingly, the problem of sampling in shift-invariant spaces is intimately
connected with the construction of Gabor frames. As a consequence of Theo-
rem 1.2 we make substantial progress towards a conjecture that was originally
expressed by I. Daubechies in [15] and then refined in [26,29].

Let (x, ξ) ∈ R
2 and MξTxg(t) = e2π iξ t g(t − x) be the corresponding

phase-space shift (time–frequency shift). For a separated set � ⊆ R
2 and a

generator g ∈ L2(R) (a window function in the established terminology), let
G(g, �) = {MνTμg : (μ, ν) ∈ �} be the set of time–frequency shifts over �.
We study the question when G(g, �) is a Gabor frame, i.e., when there exist
A, B > 0, such that

A‖ f ‖22 ≤
∑

(μ,ν)∈�

|〈 f, MνTμg〉|2 ≤ B‖ f ‖22 for all f ∈ L2(R). (1.4)

In other words, � is a sampling set for the space V = {F ∈ L2(R2) :
F(x, ξ) = 〈 f, MξTxg〉 for f ∈ L2(R)}. Again there is a universal neces-
sary density condition given by the density theorem for Gabor frames [32]. If
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G(g, �) is a frame for L2(R), then D−
2 (�) ≥ 1 (where D−

2 is the Beurling
density onR2). Under mild conditions on the window g, the inequality is strict
D−
2 (�) > 1 [4,9,28].
On the other hand, the derivation of optimal sufficient conditions for (1.4)

to hold is an old and difficult problem in analysis and is usually studied only
for lattices � = αZ×βZ, α, β > 0 or � = AZ2 with A ∈ GL(2,R) [15,23].

Over a period of 25years a complete characterization was obtained only
for the Gaussian [47,56], the truncated and the symmetric exponential func-
tions [36,37], the hyperbolic secant [38], and for totally positive functions
of finite type ≥ 2 [29]. The fact that all these functions are totally positive
led to the following conjecture: for a continuous function g ∈ L1(R) the set
G(g, αZ × βZ) is a frame, if and only if αβ < 1.

Our second main result proves this conjecture for totally positive functions
of Gaussian type and extends the characterization of Gabor frames to semi-
regular sets of the form � = � × Z for � ⊆ R.

Theorem 1.4 Assume that g is a totally positive function of Gaussian type.
Let � ⊆ R be a separated set.

Then G(g, � × Z) is a Gabor frame for L2(R), if and only if D−(�) > 1.

We formulate the case of rectangular lattices explicitly as a corollary.

Corollary 1.5 Assume that g is a totally positive function of Gaussian type.
Then G(g, αZ × βZ) is a frame, if and only if αβ < 1.

What is still missing to prove the full conjecture is the class of totally
positive functions of infinite type, where ĝ(ξ) = ∏∞

j=1(1+ 2π iδ jξ)−1 e−cξ2 ,
δ j ∈ R\{0}, c ≥ 0. It seems tempting to extend Corollary 1.5 by some form
of limiting procedure, but so far we have not succeeded in finding a rigorous
argument.

Let us emphasize that totally positive functions constitute the only class of
window functions for which a characterization of all frame generating lattices
seems within reach. For other natural classes of window functions, such as
the B-splines or the Hermite functions, only partial results are known [27],
and all explicit conjectures have been disproved [44] and need a thorough
reformulation.

1.3 Totally positive functions

As an important tool, wewill derive a new property of totally positive functions
related to zero sets in shift-invariant spaces. The following result will serve as
a central technical tool for the sampling results.

Theorem 1.6 Assume that g is totally positive of Gaussian type. Let f =∑
k∈Z ckg(· − k) with coefficients c ∈ 	∞(Z) and let N ( f ) = {x ∈ R :

f (x) = 0} be the zero set of f . Then either D−(N ( f )) ≤ 1 or f ≡ 0.
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Sampling theorems for shift-invariant spaces 1125

This statement resembles the classical result on the density of zeros of an
entire function of exponential type [13,46], but its proof is surprisingly indirect
and makes little use of complex analysis methods. Theorem 1.6 can also be
seen in the context of the variation-diminishing property of totally positive
functions [52,53].

1.4 Methods

We draw on methods from different areas and exploit new interplays between
them.

(i) Structure theory of Gabor frames. The duality theory of Gabor
frames [51] in the formulation of Janssen [35] relates the frame property of
G(g, αZ × βZ) to a (uniform) sampling problem in the shift-invariant space
V 2(g) (with shifts byβ−1

Z instead ofZ).We extend this connection to nonuni-
form sampling sets and derive a characterization of semi-regularGabor frames,
which we formulate in a coarse version as follows.

Lemma G(g, (−�) × Z) is a frame for L2(R), if and only if x + � is a
sampling set for V 2(g) for all x with uniform constants.

In a crucial step, we will relate a uniqueness problem of the form “ f ≡ 0 on
� ⇒ f ≡ 0 on R” in a shift-invariant space to the completeness of a Gabor
system in a suitable function space (Theorem 2.6).

(ii) Frames and sampling without inequalities. We will derive several new
abstract characterizations for sampling sets in shift-invariant spaces that do not
require an inequality (Theorem 3.1). These characterizations are inspired by
Beurling’s approach to bandlimited functions and deal with the subtle inter-
play between sampling on the Hilbert space V 2(g) and uniqueness on a larger
space associated with the L∞-norm. While in the Paley–Wiener space there is
an explicit bandwidth parameter that permits such arguments, no direct ana-
log is available for shift-invariant spaces. To circumvent this obstruction, we
use a non-commutative version of Wiener’s Lemma and the spectral invari-
ance of matrices with 	1-off-diagonal decay. The depth of the characterization
of sampling sets without inequality is hidden in these results about spectral
invariance, which go back to Baskakov [7] and Sjöstrand [58].

(iii) Totally positive functions. We will use Schoenberg’s characterization
of totally positive functions by their Fourier–Laplace transform [52], but not
the total positivity itself.

It is worthwhile to compare the methods and results for totally positive
functions of finite type in [29] (where ĝ(ξ) = ∏n

j=1(1 + 2π iδ jξ)−1) to
those for totally positive functions of Gaussian type. For totally positive
functions of finite type we made essential use of the total positivity and the
Schoenberg-Whitney conditions to reduce theGabor frame property to a finite-
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dimensional problem. Corollary 1.5 remains true, whereas the statements of
Theorems 1.2, 1.4 and 1.6 as stated are false for finite type.

Therefore we developed a completely new proof strategy for our results
on totally positive functions of Gaussian type. The line of arguments is quite
nonlinear and switches between sampling in shift-invariant spaces and Gabor
frames.We first prove Theorem 1.2 for the special case of a Gaussian generator
ϕ(x) = e−cx2 . For this we will invoke the fundamental characterization of
sampling sets in Bargmann–Fock space by Lyubarskii and Seip [47,56], and
in fact, slightly elaborate on their main argument that relates density of zeros
and growth. We then show that V 2(g) for totally positive g of Gaussian type
is mapped onto V 2(ϕ) by a suitable differential operator. This fact allows us
to compare the density of the zero sets of functions in the corresponding shift-
invariant spaces. The general version of Theorem 1.2 then follows from the
characterization of sampling sets without inequalities. Finally we translate the
sampling results for the shift-invariant spaces V 2(g) into the characterization
of Gabor frames of Theorem 1.4.

Thepaper is organized as follows. Section 2 introduces shift-invariant spaces
and the connections to Gabor analysis. Section 3 develops a characteriza-
tion of sampling sets without inequalities in the spirit of Beurling. These
tools are exploited in Sect. 4 to obtain sampling and interpolation results in
shift-invariant spaces with a Gaussian generator and some necessary techni-
cal extensions. The density of zero sets for functions in shift-invariant spaces
with different generators is compared in Sect. 5, leading to the main results
on sampling (Theorem 1.2). Finally, Sect. 6 contains the characterization of
semi-regular Gabor frames (Theorem 1.4). In the Appendix we supply the
postponed proofs.

2 Sampling in shift-invariant spaces and nonuniform Gabor families

We first set up the basics about shift-invariant spaces, formulate several struc-
tural characterizations and point out some connections between shift-invariant
spaces and Gabor families. For future reference we remark that the results
in this section hold equally for sampling in shift-invariant spaces in higher
dimensions (with identical proofs).

2.1 Shift-invariant spaces

Let g : R → C be a function in the Wiener amalgam space W0 = W (C, 	1),
i.e., g is continuous and

‖g‖W :=
∑

k∈Z
max

x∈[k,k+1] |g(x)| < ∞.
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Sampling theorems for shift-invariant spaces 1127

In the center of our study are the shift-invariant spaces

V p(g) =
{

∑

k∈Z
ckg(· − k) : (ck)k∈Z ∈ 	p(Z)

}

for 1 ≤ p ≤ ∞. A comprehensive survey on shift-invariant spaces was given
by Ron in [50].

Standard computations using Hölder’s inequality [3] show that

∥
∥
∑

k∈Z
ckg(· − k)

∥
∥
p ≤ ‖g‖W ‖c‖p, c ∈ 	p(Z),

and consequently V p(g) ⊆ L p(R).
Throughout we will assume and use the following stability of the generator

g.

Theorem 2.1 Let g ∈ W0. Then the following are equivalent.

(a) There exists p ∈ [1, ∞] and Cp > 0 such that

∥
∥
∑

k∈Z
ckg(· − k)

∥
∥
p ≥ Cp‖c‖p, c ∈ 	p(Z).

(b) For all p ∈ [1, ∞] there exists a constant Cp > 0 such that

∥
∥
∑

k∈Z
ckg(· − k)

∥
∥
p ≥ Cp‖c‖p, c ∈ 	p(Z).

(c) The shifts {g(· − k) : k ∈ Z} are 	∞-independent; this means that∑
k∈Z ckg(· − k) �= 0 for every c ∈ 	∞(Z)\{0}.

(d) For every ξ ∈ R we have
∑

k∈Z |ĝ(ξ + k)|2 > 0.

We say that g has stable integer shifts if any of the equivalent conditions of
Theorem 2.1 holds. The equivalence was proved in [39, Theorem 3.5] and [50,
Theorem 29] under a slightly more general condition on g.

2.2 Sampling, uniqueness, and interpolating sets for shift-invariant
spaces

Since for g ∈ W0 all spaces V p(g) are subspaces of C(R), sampling of
functions f ∈ V p(g) is well-defined. A subset � ⊆ R is called relatively
separated, if

n� := max
x∈R #(� ∩ [x, x + 1]) < ∞,
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1128 K. Gröchenig et al.

and it is called separated if inf{|λ − μ| : λ, μ ∈ �, λ �= μ} = δ > 0. If
follows that every relatively separated set can be partitioned into n� separated
subsets � j , j = 1, . . . , n�, with separation constant 1/2.

Clearly, for a relatively separated set � the lower Beurling density

D−(�) := liminf
R→∞ inf

x∈R
#(� ∩ [x − R, x + R])

2R

and the upper Beurling density D+(�) (with lim sup and sup in its definition)
are finite.

Let g ∈ W0 have stable integer shifts. A relatively separated set � ⊆ R is
called a sampling set for the shift-invariant space V p(g), 1 ≤ p < ∞, if there
are constants Ap, Bp > 0 such that

Ap‖ f ‖p
p ≤

∑

λ∈�

| f (λ)|p ≤ Bp‖ f ‖p
p (2.1)

for all f ∈ V p(g). For p = ∞, we require that

A∞‖ f ‖∞ ≤ sup
λ∈�

| f (λ)| ≤ B∞‖ f ‖∞

holds for all f ∈ V∞(g).
A set � is called a uniqueness set for V p(g), if f ∈ V p(g) and f (λ) = 0

for all λ ∈ � implies that f = 0.
If for every a ∈ 	p(�) there exists an f ∈ V p(g) such that f (λ) = aλ,

then � is said to be an interpolating set.
These notions can be expressed in terms of the matrices (called the pre-

Gramian in [51])

P�(g) := (g(λ − k))λ∈�, k∈Z . (2.2)

If g ∈ W0, then by Schur’s test, the matrix P�(g) defines a bounded linear
operator P�(g) : 	p(Z) → 	p(�), 1 ≤ p ≤ ∞, and,

‖P�(g)c‖p ≤ n� ‖g‖W ‖c‖p, c ∈ 	p(Z),

see for example [3]. The equivalence of norms ‖ ∑
k ckg(·−k)‖p 
 ‖c‖p and

the definitions imply the following characterizations.

Lemma 2.2 Assume that g ∈ W0 has stable integer shifts. Let 1 ≤ p ≤ ∞
and � ⊆ R be relatively separated. Then:
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Sampling theorems for shift-invariant spaces 1129

(a) � is a sampling set for V p(g), if and only if P�(g) is p-bounded below,
i.e., if and only if there exist Ã p > 0 such that

‖P�(g)c‖p ≥ Ã p‖c‖p for all c ∈ 	p(Z).

(b) � is a uniqueness set for V p(g), if and only if P�(g) is one-to-one on
	p(Z).

(c) � is an interpolating set for V p(g), if and only if P�(g) is surjective from
	p(Z) onto 	p(�).

2.3 The connection between sampling and Gabor analysis

Sampling and interpolation problems in the shift-invariant space V 2(g) are
closely related to the construction of Gabor frames and Riesz bases. The con-
nection is implicit in the duality theory by Janssen [35] and Ron and Shen [51]
and has been instrumental in the characterization of Gabor frames on lattices
for totally positive functions of finite type [29]. The main objective of this
section is to extend the relation between Gabor analysis and shift-invariant
space to (i) more nonuniform phase-space nodes and to (ii) uniqueness / com-
pleteness problems in appropriate function spaces.

We use Tyg(x) = g(x − y) for translation and Mξ g(x) = e2π i xξ g(x) for
modulation. A Gabor family is a collection of time–frequency shifts, and we
are particularly interested in the semi-regular family

G(g, (−�) × Z) = {MkT−λg : k ∈ Z, λ ∈ �},

associated with the window function g and a set � ⊆ R. By definition, this
family is a Gabor frame, if there exist constants A, B > 0, such that

A‖ f ‖22 ≤
∑

k∈Z

∑

λ∈�

|〈 f, MkT−λg〉|2 ≤ B‖ f ‖22 for all f ∈ L2(R). (2.3)

We next formulate several characterizations of Gabor frames that establish
the connection to sampling in shift-invariant spaces.We recall the definition of
the Zak transform Zg(x, ξ) = ∑

k∈Z g(x + k)e2π ikξ of a function g ∈ L1(R).

Theorem 2.3 Assume that g ∈ W0 has stable integer shifts and that � ⊆ R

is relatively separated. The following are equivalent.

(a) The family G(g, (−�) × Z) is a frame for L2(R).
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1130 K. Gröchenig et al.

(b) The set�+ x is a sampling set of V 2(g) for every x ∈ [0, 1), i.e., for each
x ∈ [0, 1), there exist Ax , Bx > 0 such that

Ax‖c‖22 ≤
∑

λ∈�

∣
∣
∣
∑

k∈Z
ckg(λ + x − k)

∣
∣
∣
2 ≤ Bx‖c‖22 for all c ∈ 	2(Z).

(c) There exist A, B > 0 such that, for all x ∈ [0, 1),

A‖c‖22 ≤
∑

λ∈�

∣
∣
∣
∑

k∈Z
ckg(λ + x − k)

∣
∣
∣
2 ≤ B‖c‖22 for all c ∈ 	2(Z). (2.4)

(d) There exist constants A, B > 0 such that

A‖h‖22 ≤
∑

λ∈�

∣
∣
∣

∫ 1

0
h(ξ)Zg(x + λ, ξ) dξ

∣
∣
∣
2 ≤ B‖h‖22 (2.5)

for all h ∈ L2([0, 1]) and x ∈ [0, 1).
Moreover, the optimal constants in (2.3), (2.4), and (2.5) coincide.

The proof is postponed to the Appendix.

Remark 2.4 (i) For the case � = αZ, the equivalence of (a), (c), and (d) is
Janssen’s version of the duality theory [35]. It is one of the most useful
tools for deriving concrete and strong results about Gabor frames [29,36].
The extension of the equivalences to nonuniform sampling sets is new and
is derived by a suitable modification of the known proofs.

(ii) Condition (d) can be reformulated by saying that for every x ∈ [0, 1) the
set of functions {Zg(x + λ, ξ) : λ ∈ �} is a frame for L2([0, 1], dξ).

Interpolation problems in shift-invariant spaces can similarly be related to
Gabor systems. We state the following theorem, whose proof is given in the
Appendix, together with the one of Theorem 2.3.

Theorem 2.5 Let g ∈ W0 have stable integer shifts and � ⊆ R be relatively
separated. Then the following are equivalent.

(a) G(g, (−�) × Z) is a Riesz sequence in L2(R).
(b) For each x ∈ [0, 1), � + x is an interpolating set for V 2(g).
(c) The sets � + x, x ∈ [0, 1), are interpolating sets for V 2(g) with uni-

form constants, i.e., for all a ∈ 	2(�) there exists fx ∈ V 2(g) such that
fx (λ + x) = aλ, for all λ ∈ �, and ‖ fx‖2 ≤ C‖a‖2, with a constant C
independent of x.
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Sampling theorems for shift-invariant spaces 1131

The following theorem relates Gabor systems and shift-invariant spaces, but
this time it concerns L∞-uniqueness. It serves as one of our main tools in the
following sections.

Theorem 2.6 Let g ∈ W0(R) and let � ⊆ R be arbitrary. Suppose that
G(g, (−�) × Z) spans a dense subspace in W0(R). Then for every x ∈ R,
� + x is a uniqueness set for V∞(g).

Proof Suppose that span G(g, (−�) × Z) is dense in W0(R). For simplicity,
we assume that x = 0 (otherwise, we shift � suitably). We need to show
that the matrix P�(g) is one-to-one from 	∞(Z) to 	∞(�). By duality, this is
equivalent to saying that the matrix P�(g)′ = (g(λ − k))k∈Z,λ∈� viewed as
an operator from 	1(�) → 	1(Z) has dense range in 	1(Z). Thus we need to
show that for every c ∈ 	1(Z) and ε > 0 there is a sequence a ∈ 	1(�) such
that ‖P�(g)′a − c‖1 < ε. Let η ∈ C∞(R) be supported on [−1/4, 1/4] and
η(x) = 1 in a neighborhood of the origin, and let

h =
∑

k∈Z
ckη(· + k).

Then h ∈ W0 and h(−k) = ck for all k ∈ Z.
Given ε > 0, by assumption, there exists a finite linear combination

f (x) :=
∑

λ∈�

∑

j∈Z
bλ, j e

2π i j x g(x + λ)

with coefficients b ∈ 	1(�×Z) (with finite support), such that ‖ f −h‖W0 < ε.
Let aλ := ∑

j bλ, j , and note that ‖a‖	1(�) ≤ ‖b‖	1(�×Z) < ∞. In addition,
f (−k) = ∑

λ∈�

∑
j∈Z bλ, j g(λ − k) = (P�(g)′a)k . Finally, we estimate

‖c − P�(g)′a‖	1(Z) = ‖( f − h)|Z‖	1(Z) ≤ ‖ f − h‖W0 < ε.

Hence the desired approximation holds. ��

3 Characterization of Beurling type for sampling sets and Gabor frames

3.1 Characterization of sampling sets for shift-invariant spaces

According to (2.1), a sampling set for V p(g) is also a uniqueness set for
V p(g). The sampling inequalities in (2.1) are stronger than mere uniqueness:
they quantify the stability of the map f |� �→ f . It is a remarkable insight due
to Beurling [10], [11, p. 351–365] that sampling sets for bandlimited functions
can be characterized in terms of uniqueness sets for a larger space of functions.
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1132 K. Gröchenig et al.

We now develop an instance of this principle in the context of shift-invariant
spaces and relate a sampling problem on V 2(g) to a collection of uniqueness
problems on V∞(g). Analogous results hold for Gabor frames [25,28].

For the formulation,we recallBeurling’s notionof aweak limit of a sequence
of sets. A sequence {�n : n ≥ 1} of subsets of R is said to converge weakly to
a set � ⊆ R, denoted �n

w−→ �, if for every open bounded interval (a, b) and
every ε > 0, there exist n0 ∈ N such that for all n ≥ n0:

�n ∩ (a, b) ⊆ � + (−ε, ε) and � ∩ (a, b) ⊆ �n + (−ε, ε).

The notion of weak convergence of sets is closely related to local convergence
in the Hausdorff metric, but the precise relation is slightly technical (see [28,
Section 4].

Given a set � ⊆ R, we let WZ(�) denote the collection of all weak limits
of integer translates of �, i.e., � ∈ WZ(�), if there exists a sequence {kn :
n ≥ 1} ⊆ Z such that � + kn

w−→ �. If � is relatively separated, each set in
WZ(�) is also relatively separated (see, e.g., [28, Lemma 4.5]).

The following characterization of sampling sets for V p(g) is new and should
be compared with Theorem 2.1.

Theorem 3.1 Let g ∈ W0 have stable integer shifts and let � ⊆ R be a
relatively separated set. The following are equivalent:

(a) � is a sampling set of V p(g) for some p ∈ [1, ∞].
(b) � is a sampling set of V p(g) for all p ∈ [1, ∞].
(c) Every � ∈ WZ(�) is a sampling set for V∞(g).
(d) Every � ∈ WZ(�) is a uniqueness set for V∞(g).
(e) For every � ∈ WZ(�), the matrix P�(g) = (g(γ − k))γ∈�, k∈Z defines a

bounded injective operator from 	∞(Z) to 	∞(�).
(f) For every � ∈ WZ(�), the matrix P�(g)′ = (g(γ − k))k∈Z,γ∈� defines

an operator 	1(�) → 	1(Z) with dense range.

The Proof of Theorem 3.1 relies on the theory of localized frames [24] and
combines facts about spectral invariance with manipulations with weak limits.
As we have proved a similar characterization without inequalities for Gabor
frames in [28, Section 5], we postpone the proof to the Appendix.

Remark 3.2 (i) Theorem 3.1 says that instead of proving an inequality of
type (1.1) or the left-invertibility of the matrix P�(g), it suffices to ver-
ify that P�(g) has trivial kernel on the larger space 	∞(Z) for every
� ∈ WZ(�). This is conceptually easier.

(ii) The 	∞-injectivity in (d) cannot be replaced by 	2-injectivity. This
is in accordance with Theorem 2.1 where 	p-injectivity of c �→∑

k∈Z ckg(· − k) is a much weaker condition for p < ∞. Also note
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Sampling theorems for shift-invariant spaces 1133

that the equivalence can hold only for g ∈ W0, otherwise some of the
conditions do not even make sense.

(iii) We emphasize that Theorem 3.1 does not say that every uniqueness set for
V∞(g) is a sampling set. See Remark 4.2 below for a concrete example.

(iv) The exact analog of Theorem 3.1 is not valid for the Paley–Wiener space,
because the sampling problems associated with different L p-norms are
not equivalent. In our case, the assumption g ∈ W0 allows us to invoke a
matrix variant of Wiener’s 1/ f lemma due to Sjöstrand [58].

3.2 Characterization of Gabor frames

Although not needed for the main results, we formulate a new characterization
of Gabor frames. In the formulation we again need weak limits of sequences of
sets. For a set� ⊆ R,wedefineW (�) as the set ofweak limits of translates�+
x , i.e., � ∈ W (�), if and only if there exists a sequence of real numbers {xn :
n ≥ 1} ⊆ R, such that �+ xn

w−→ �. We note thatW (�) = ⋃
x∈[0,1] WZ(�+

x).

Theorem 3.3 Assume that g ∈ W0 has stable integer shifts and that � ⊆ R

is relatively separated. The following are equivalent.

(a) The family G(g, (−�) × Z) is a frame for L2(R).
(b) For every � ∈ W (�), the matrix P�(g) = (g(γ − k))γ∈�, k∈Z defines a

bounded injective operator from 	∞(Z) to 	∞(�).
(c) For every � ∈ W (�), the matrix P�(g)′ = (g(γ − k))k∈Z, γ∈� defines an

operator 	1(�) → 	1(Z) with dense range.

Theorem 3.3 is a direct consequence of Theorems 2.3 and 3.1.

4 Nonuniform sampling and Gabor families with Gaussian generators

Let ϕ(x) = e−cx2 , c > 0, be a scaled centered Gaussian. Lyubarskii [47] and
Seip [56] proved the following.

Theorem 4.1 (Lyubarskii, Seip) Let � ⊆ R
2 be separated. Then

(a) G(ϕ, �) := {Mξ2Tξ1ϕ : (ξ1, ξ2) ∈ �} is a frame for L2(R) if and only if

D−
2 (�) := liminf

R→∞ inf
z∈R2

#(� ∩ (z + [−R, R]2))
4R2 > 1,

and
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1134 K. Gröchenig et al.

(b) G(ϕ, �) is a Riesz sequence if and only if

D+
2 (�) := limsup

R→∞
sup
z∈R2

#(� ∩ (z + [−R, R]2))
4R2 < 1.

Remark 4.2 While a set � generating a Gabor Riesz sequence is necessar-
ily separated, a set generating a frame may be only relatively separated, and
Theorem 4.1 (a) does not directly apply to non-separated sets. The exact char-
acterization is the following: G(ϕ, �) is a frame of L2(R) if and only if � is
relatively separated and contains a separated subset of density > 1.

To see the relevance of this subtle distinction, we consider the set � =
{(k, j), (k + 2−|k|, j) : k, j ∈ Z}. Then clearly � is relatively separated and
D−(�) = 2, but G(ϕ, �) is not a frame of L2(R). Indeed, if G(ϕ, �) were
a frame of L2(R), then by [28, Theorem 5.1] (equivalence of (i) and (v))
G(ϕ, �′) would be a frame for every �′ ∈ W (�). However, it is easy to see
that Z2 ∈ W (�) and it is well-known that G(ϕ,Z2) is not a frame [9,32].

In spite of the previous remark, we have the following result.

Theorem 4.3 Let� ⊆ R
2 be an arbitrary set with D−(�) > 1. Then G(ϕ, �)

spans a dense subspace of W0(R).

The Proof of Theorem 4.3 uses (i) the connection between Gabor systems
with a Gaussian generator and sampling in the Bargmann–Fock space of entire
functions, provided by the Bargmann transform [6,16], and (ii) a complex
analysis argument that compares growth and density of zeros that goes back
to Beurling [10,11], and in the form required here was given by Brekke and
Seip [14]. Since the claim that the result is valid for possibly non-separated
sets is an essential technical point not explicitly stated in the references, we
sketch a self-contained argument in the appendix.

We have now assembled all tools to prove a general result for the shift-
invariant spaces V p(ϕ) in the style of Beurling. As a consequence of
Theorem 2.3, we obtain the following statement, which implies Theorem 1.3
(announced in the Introduction).

Theorem 4.4 Let ϕ(x) = e−cx2 with c > 0.

(a) If � ⊆ R has density D−(�) > 1, then � is a uniqueness set for V∞(ϕ).
(b) If � is separated and D−(�) > 1, then � is a sampling set for V p(ϕ) for

1 ≤ p ≤ ∞.
(c) If � is separated and D+(�) < 1, then � is an interpolating set for

V 2(ϕ).

Proof (a) Assume that D−(�) > 1. Then the set � = (−�) × Z ⊆ R
2 has

lower Beurling density
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Sampling theorems for shift-invariant spaces 1135

D−
2 ((−�) × Z) = D−(−�) = D−(�) > 1

(where as before D−
2 is the Beurling density of a subset in R

2, and D− is
the Beurling density of a subset in R).
By Theorem 4.3, G(ϕ, (−�) ×Z) spans a dense subspace ofW0(R). The-
orem 2.6 now implies that x + � is a uniqueness set for V∞(ϕ) for all
x ∈ R.

(b) If D−(�) > 1 and, in addition, � is separated, then, by Theorem 4.1,
G(ϕ, (−�) × Z) is a frame for L2(R). Hence � is a sampling set for
V 2(ϕ) by Theorem 2.3.
Part (c) follows similarly, this time we invoke Theorem 2.5. ��

Remark 4.5 (i) The functions inV 2(ϕ) andV∞(ϕ) are certain entire functions
of order 2. It would be interesting to find a direct proof without the detour
to Gabor frames in Theorem 4.3.

(ii) The critical case � = x + Z (hence D−(�) = 1) for arbitrary generator
g ∈ W0 is easy to understand with characterization (d) of Theorem 2.3.
The quasi-periodicity of the Zak transform implies that Zg(x + k, ξ) =
e−2π ikξ Zg(x, ξ). It follows that x +� is a sampling set, if and only if the
set {e2π ikξ Zg(x, ξ) : k ∈ Z} is a frame for L2(T, dξ). This is the case,
if and only if Zg(x, ξ) �= 0 for all ξ ∈ R. However, since g ∈ W0 has
a continuous Zak transform, there exists at least one point (x0, ξ0) such
that Zg(x0, ξ0) = 0 (see e.g. [9]). Consequently, x0 +� is not a sampling
set. This case was investigated and understood early on by Janssen [33],
Walter [61], and Baxter and Sivakumar [8].

5 Nonuniform sampling with totally positive generator

Next we study the sampling problem in shift-invariant spaces with a totally
positive function of Gaussian type as a generator. As explained in the intro-
duction, these are all (totally positive) functions g whose Fourier transform
factors as

ĝ(ξ) =
n∏

j=1

(1 + 2π iδ jξ)−1 e−cξ2, δ1, . . . , δn ∈ R, c > 0. (5.1)

By Schoenberg’s characterization [52], every g of this form is totally positive,
and every totally positive function in L1(R) is a limit of totally positive func-
tions of Gaussian type. In addition, we note that g has stable integer shifts.
This can be easily verified using condition (d) of Theorem 2.1 and the fact that
the Fourier transform of g in (5.1) has no real zeros.
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1136 K. Gröchenig et al.

Next, we denote the zero set of a continuous function f by

N f := {x ∈ R : f (x) = 0}.
The identity operator is denoted by I as usual.

The following lemma is the crucial insight that allows us to go from the
Gaussian to totally positive functions of Gaussian type as generators.

Lemma 5.1 Let f ∈ C1(R) be real-valued. For a ∈ R, a �= 0, let g =(
I + a d

dx

)
f . Then

D−(Ng) ≥ D−(N f ).

Proof Note that I + a d
dx = ae−x/a d

dx e
x/a . We define h ∈ C1(R) by h(x) =

aex/a f (x) and note that Nh = N f . Furthermore, since

g(x) =
(

I + a
d

dx

)

f (x) = e−x/ah′(x),

we conclude that Ng = Nh′ . It remains to show that D−(Nh′) ≥ D−(Nh).
Let x ∈ R, R > 0, and F ⊆ Nh ∩ [x − R, x + R] a finite subset. By Rolle’s

theorem,
#(Nh′ ∩ [x − R, x + R]) ≥ #F − 1.

Since this holds for every finite subset F ⊆ Nh ∩ [x − R, x + R], it follows
that #(Nh′ ∩ [x − R, x + R]) ≥ #(Nh ∩ [x − R, x + R]) − 1. Therefore,
D−(Nh′) ≥ D−(Nh), and

D−(Ng) = D−(Nh′) ≥ D−(Nh) = D−(N f ),

as claimed. ��
We now state our main results on sampling, which are an extended form of

Theorems 1.2 and 1.6 in the introduction.

Theorem 5.2 Let g be a totally positive function of Gaussian type.

(a) If � ⊆ R has density D−(�) > 1, then � is a uniqueness set for V∞(g).
(b) If � is separated and D−(�) > 1, then � is a sampling set for V 2(g).

Proof Recall that g is real-valued and has stable integers shifts.

(a) Let c ∈ 	∞(Z) and assume that f = ∑
k∈Z ckg(· − k) ∈ V∞(g) vanishes

on � with D−(�) > 1. We want to show that f ≡ 0. Note that f ∈
C∞(R). Since g is real-valued, we may assume without loss of generality
that f is also real-valued (by replacing ck by �(ck) or �(ck) if necessary).
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Sampling theorems for shift-invariant spaces 1137

The representation of ĝ in (5.1) implies that

n∏

j=1

(

I + δ j
d

dx

)

g = ϕ,

where ϕ̂(ξ) = e−cξ2 . Now set

� =
∑

k∈Z
ckϕ(· − k).

Since ϕ, g and their derivatives decay exponentially, we may interchange
summation and differentiation in f , and obtain that

� =
n∏

j=1

(

I + δ j
d

dx

)

f.

We are now in a position to apply Lemma 5.1 repeatedly and conclude
that

D−(N�) ≥ D−(N f ) ≥ D−(�) > 1.

ByTheorem4.4, the set N� is a uniqueness set forV∞(ϕ). Since obviously
� ≡ 0 on N�, we conclude that� ≡ 0. Hence c = 0 and therefore f ≡ 0.
Thus � is a uniqueness set for V∞(g).

(b) Now assume that � is separated. By Theorem 3.1, in order to show that
� is a sampling set for V 2(g), it suffices to show that every � ∈ WZ(�)

is a uniqueness set for V∞(g). Let � ∈ WZ(�). Since � is separated, the
weak-limit � is also separated and it satisfies D−(�) ≥ D−(�) > 1 (by
Lemma 7.1 in the appendix). Part (a) now asserts that � is a uniqueness
set for V∞(g). Therefore, by Theorem 3.1, � is a sampling set for V 2(g).

��
Remark 5.3 In the above proof, we do not know if the set N� is separated,
even if the original set � is. Therefore we cannot conclude directly that N� is
a sampling set for V 2(ϕ), but only that N� is a uniqueness set for V∞(ϕ). In
this way, the proof exploits the full strength of Theorems 3.1 and 4.3.

Using a clever trick by Janssen and Strohmer [38], we obtain the follow-
ing generalization of Theorem 5.2. Let g be a totally positive function of
Gaussian type and let c, d ∈ 	1(Z) be two sequences with Fourier series
ĉ(ξ) = ∑

k∈Z cke2π ikξ and d̂, such that

inf
ξ∈R |ĉ(ξ)| > 0 and inf

ξ∈R |d̂(ξ)| > 0.
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Now set
γ =

∑

k,l∈Z
ckdlTkMlg. (5.2)

Corollary 5.4 Let γ be defined as in (5.2) and � ⊆ R be a separated set with
density D−(�) > 1. Then � is a sampling set for V 2(γ ).

In particular, if γ (x) = sech(νx) = 2(eνx + e−νx )−1 and D−(�) > 1,
then � is a sampling set for V 2(γ ).

Proof Since c, d ∈ 	1(Z), it is easy to see that γ ∈ W0. Therefore the charac-
terization in Theorem 3.1 is applicable. From the quasi-periodicity of the Zak
transform we obtain that

Zγ (x, ξ) = ĉ(−ξ)d̂(x) Zg(x, ξ). (5.3)

Since |ĉ|, |d̂| ≥ C > 0 and Zg satisfies the condition (2.5) of Theorem 2.3, it
follows that Zγ also satisfies condition (2.5). Therefore � is a sampling set
for V 2(γ ).

Finally, Janssen and Strohmer [38] showed that the hyperbolic secant
sech(νx) possesses a representation (5.2) with respect to the Gaussian for
all ν > 0, whence the statement follows. ��

6 Gabor frames with totally positive generator

We now use the relation between sampling sets for shift-invariant spaces and
Gabor frames to derive a new result about Gabor frames with totally positive
windows.

Despite intensive research about Gabor frames, the only complete results
cover the Gaussian ϕ(x) = e−cx2 , the hyperbolic secant g(x) = (ecx +
e−cx )−1, and totally positive functions of finite type, which are defined by
their Fourier transform as ĝ(ξ) = ∏n

j=1(1+ 2π iδ jξ)−1, δ1, . . . , δn ∈ R\{0}.
Our current knowledge can be summarized as follows:

Theorem 6.1 Let g be a Gaussian, the hyperbolic secant, or a totally positive
function of finite type n ≥ 2, n ∈ N. Then the Gabor family G(g, αZ× βZ) is
a frame for L2(R) if and only if αβ < 1.

The result goes back to [34,38,47,56], the case of totally positive functions
of finite type was settled in [29] with a new proof in [41]. The case n = 1
corresponds to the one-sided exponential function h(x) = e−δxχ[0,∞)(δx) and
was already settled by Janssen [36]: G(h, αZ × βZ) is a frame, if and only if
αβ ≤ 1.

Themethod for the proof in [29] uses techniques fromapproximation theory,
namely the Schoenberg-Whitney conditions in [29,55] for the invertibility of
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Sampling theorems for shift-invariant spaces 1139

certain submatrices of the pre-Gramian P�(g). Note that the lattice � =
αZ× βZ has Beurling density D−(�) = (αβ)−1, so that αβ < 1 is precisely
the density condition D−(�) > 1.

We extend Theorem 6.1 in two ways: we use totally positive functions of
Gaussian type as window functions, andwe study semi-regular sets of the form
� × βZ instead of lattices αZ × βZ. The following implies Theorem 1.4 of
the introduction.

Theorem 6.2 Let g be a totally positive function of Gaussian type and let
� ⊆ R be a separated set. Then the Gabor family G(g, � × βZ) is a frame
for L2(R) if and only if 0 < β < D−(�).

Proof We use the scaling invariance of the class of totally positive functions
of Gaussian type: if g is of the form (5.1), then the function gβ(x) = g(x/β) is
of the same form (5.1) with different parameters and a positive normalization
factor. By the usual dilation argument G(g, � × βZ) is a frame if and only if
G(gβ, β� × Z) is a frame. Moreover, simple geometric facts yield

D−
2 (β� × Z) = D−

2 (� × βZ) = D−(βZ) D−(�) = D−(�)

β
.

The combination of Theorems 2.3 and 5.2 implies that the Gabor family
G(gβ, β� × Z) is a frame for L2(R), whenever 0 < β < D−(�).

The necessity of the condition D−(� × βZ) > 1 follows from recent
nonuniform versions of the Balian–Low theorem [4,28], which are applicable
because g satisfies the decay and integrability condition

∫

R2

∣
∣
∣
〈
g, MξTxg

〉 ∣∣
∣dxdξ < ∞.

(In the standard jargon of time–frequency analysis, this condition means that
g belongs to the modulation space M1(R).) This completes the proof. ��

7 Appendix

7.1 Density, separation and weak convergence

In the following we need the dual space W ∗
0 . We can identify the dual space

of W0 with the space of complex-valued Radon measures μ such that

sup
x∈R

‖μ‖C∗([x,x+1]) = sup
x∈R

|μ|([x, x + 1]) < ∞.

In the usual notation of amalgam spaces the dual isW ∗
0 = W (M, 	∞) [19,31].

For completeness, we prove the following folklore lemma.
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Lemma 7.1 Let � ⊆ R be separated and � ∈ W (�). Then � is separated
and D−(�) ≥ D−(�).

Proof Let {xn : n ≥ 1} ⊆ R be such that � + xn
w−→ �. It is easy to see

that � is separated because � is, and that the measures μn := ∑
λ∈� δλ+xn

are inW ∗
0 and converge to μ := ∑

γ∈� δγ in the σ(W ∗
0 (R),W0(R)) topology.

(Here it is important that � is separated; See Remark 7.2.) Let ε ∈ (0, 1/2)
and η ∈ C∞(R) be such that 0 ≤ η ≤ 1, supp (η) ⊆ [−1, 1] and η ≡ 1 on
[−1 + ε, 1 − ε].

There is nothing to prove if D−(�) = 0. If D−(�) > 0, choose ρ ∈ R

such that 0 < ρ < D−(�). Then there exists r0 > 0 such that for all r ≥ r0
and all x ∈ R we have #(� ∩ [x − r, x + r ]) ≥ 2rρ. For x ∈ R and r ≥ 2r0,

#(� ∩ [x − r, x + r ]) ≥
∫

R

η
( y − x

r

)
dμ(y) = lim

n→∞

∫

R

η
( y − x

r

)
dμn(y)

≥ lim inf
n→∞ #((� + xn) ∩ [x − r(1 − ε), x + r(1 − ε)])

= lim inf
n→∞ #(� ∩ [x − xn − r(1 − ε), x − xn + r(1 − ε)])

≥ 2rρ(1 − ε).

Hence D−(�) ≥ ρ(1− ε). As this holds for arbitrary ε > 0 and ρ < D−(�),
we conclude that D−(�) ≥ D−(�). ��
Remark 7.2 Lemma 7.1 is false for non-separated sets �. For example, if
� = {k, k + 2−|k| : k ∈ Z}, then D−(�) = 2, but � − n

w−→ Z, as n −→ ∞
with n ∈ N, and D−(Z) = 1. In this case, the measure μ in the proof is
μ = ∑

k∈Z 2δk .

7.2 Gabor and sampling: postponed proofs

Proofs of Theorems 2.3 and 2.5
Step 1: Relation between the relevant operators

The spanning properties of the Gabor system G(g, (−�) × Z) on L2(R)

are encoded in the spectrum of the synthesis operator

C : 	2(� × Z) −→ L2(R)
(
cλ,k

)
λ∈�,k∈Z �→

∑

λ∈�

∑

k∈Z
cλ,ke

2π ik·g(· + λ).

Indeed, G(g, (−�)×Z) is a Riesz sequence if and only ifC is bounded below,
and G(g, (−�) ×Z) is a frame if and only if C is surjective, if and only if C∗
is bounded below.
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Similarly, the properties of the sets�+ x as sampling and interpolating sets
for V 2(g) are determined by the operators P�+x (g) : 	2(Z) → 	2(�) repre-
sented by the matrices P�+x (g) = (

g(x + λ − k)
)
λ∈�,k∈Z, or, equivalently,

by the spectral properties of their Banach adjoints

P�+x (g)
′ : 	2(�) −→ 	2(Z)

(cλ)λ∈� �→
∑

λ∈�

cλg(x + λ − k).

More precisely, according to Lemma 2.2, � + x is a sampling set for V 2(g)
if and only if P�+x (g) is bounded below and it is an interpolating set if and
only if P�+x (g)′ is bounded below.

It remains to clarify the relation between the operators C and P�+x (g). We
consider the following unitary maps between Hilbert spaces. Let I = [0, 1)
and U : 	2(� × Z) → L2(I, 	2(�)) be given by U

(
(aλ,k)(λ,k)∈�×Z) =

(
mλ(x))λ∈� with mλ(x) = ∑

k∈Z aλ,ke2π ikx and V : L2(R) → L2(I, 	2(Z))

be given by V f (x) = ( f (x − k))k∈Z) for x ∈ I . Now consider the map

Ĉ : L2(I, 	2(�)) −→ L2(I, 	2(Z))

Ĉ
(
x �→ (mλ(x))λ∈�

) =
(

x �→
( ∑

λ∈�

mλ(x)g(x + λ − k)

)

k∈Z

)

.

In technical jargon, Ĉ is the direct integral

Ĉ =
∫ ⊕

I
P�+x (g)

′ dx .

These definitions imply that
VC = ĈU, (7.1)

and thus C and Ĉ have the same spectral properties. It is a standard fact about
direct integrals that Ĉ is boundedbelow if andonly if ess infxσmin(P�+x (g)′) >

0—where σmin(T ) := inf{‖T x‖ : ‖x‖ = 1}. Similarly, Ĉ∗ is bounded below
if and only if ess infxσmin(P�+x (g)) = ess infxσmin(P�+x (g)) > 0 (see [17,
Chapter 1, Part II] for a general reference on direct integrals or [26,35] for
direct computations in related contexts).
Step 2: Conclusions. We only argue for Theorem 2.3, Theorem 2.5 follows in
the same manner.

Assumption (c) says that P�+x(g) is boundedbelowwith uniformconstants.
The direct integral decomposition (7.1) now implies the equivalence between
(a) and (c). The implication (b) ⇒ (c) follows from the fact that the map
x �→ P�+x (g) is continuous from R to B(	2(Z), 	2(�)) with respect to the
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operator norm. The continuity is a special case of various jitter error bounds
in the sampling literature, see e.g. [20, Lemma 2.2 and Theorem 2.3], and
holds precisely when g ∈ W0. Finally, the equivalence of (c) and (d) is a
straightforward application of Parseval’s identity with h(ξ) = ∑

k∈Z cke2π ikξ
and the definition of the Zak transform. ��
Remark 7.3 Common signal processing proofs of Theorems 2.3 and 2.5 for the
uniform case � = αZ use the Poisson summation formula and are therefore
not applicable to non-lattice sets �. The fact that these theorems are true in
the stated generality seems to have gone so far unnoticed.

Proof of Theorem 4.3 Without loss of generality we consider the standard
Gaussian ϕ(x) := e−πx2 . The general case e−cx2 follows then by applying the

following change of variables: f (x) �→ f (ax),� �→
[
a−1 0
0 a

]
·�, a = √

c/π ,

which preserves the density of �.
In order to show that G(ϕ, �) spans a dense subspace of W0, we show that

the only linear functional onW0 that annihilatesG(ϕ, �) is the zero functional.
In the following

Vϕμ(x, ξ) :=
∫

R

ϕ(t − x)e−2π iξ t dμ(t) (x, ξ) ∈ R
2 (7.2)

denotes the short-time Fourier transform of a (Radon) measureμ (with respect
to the Gaussian window ϕ).

Now suppose that μ ∈ W ∗
0 is a measure such that Vϕμ(ν1, ν2) = 0 for all

(ν1, ν2) ∈ �. We want to show that μ ≡ 0. By the properties of the short-
time Fourier transform Vϕμ is bounded for μ ∈ W ∗

0 and satisfies the identity

Vϕμ(x, −ξ) = F(z)e−π i xξe−π
2 |z|2 , where z = x + iξ ∈ C and F is the

Bargmann transform of μ. Hence F is analytic and satisfies

‖F‖F∞ := sup
z∈C

∣
∣
∣F(z)e−π

2 |z|2∣∣
∣ < ∞.

Moreover, F ≡ 0 if and only ifμ = 0. (See for example [6,21], or [23, Section
3.4].)

With these identifications, we reduce the problem to the following. Let F :
C → C be an analytic function such that F ≡ 0 on� = {x − iξ : (x, ξ) ∈ �}
and ‖F‖F∞ < ∞. We want to show that F ≡ 0. Suppose not. We can assume
that ‖F‖F∞ = 1 and that F(0) �= 0. (If F(0) = 0, consider F(z)/zk for a
suitable power and normalize.) Then F : C → C is an entire function that
satisfies

|F(z)| ≤ e
π
2 |z|2

. (7.3)
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Let N (r) be the number of zeros of F inside the open disk Dr counted with
multiplicities. By Jensen’s formula,

∫ r

0

N (t)

t
dt = 1

2π

∫ 2π

0
log|F(reiθ )|dθ − log|F(0)|.

By (7.3), log|F(reiθ )| ≤ π
2 r

2. Therefore,

∫ r

0

N (t)

t
dt ≤ π

2
r2 − log|F(0)|. (7.4)

On the other hand, since D− (
�

) = D−(�) > 1, we can choose ν > 1 and
r0 > 0 such that, for r ≥ r0, N (r) ≥ νπr2. As a consequence,

∫ r

0

N (t)

t
dt ≥ ν

π

2
r2 − C,

for some constant C > 0. Since ν > 1, this contradicts (7.4) for r � 0, and
hence F ≡ 0, as desired. ��
Remark 7.4 The Proof of Theorem 4.3 actually shows that G(g, �) spans a
dense subspace of the spaceM1(R),which consists of functionswith integrable
short-time Fourier transform. M1(R) embeds continuously into W0(R).

7.3 Beurling-type characterization of sampling: postponed proof

Proof of Theorem 3.1 (a) ⇔ (b) We consider the matrix P�(g) = (g(λ −
k))λ∈�,k∈Z as an operator 	p(Z) → 	p(�). To show that (a) ⇔ (b), we invoke
the following non-commutative version of Wiener’s Lemma taken from [28,
Proposition 8.1]:

Proposition 7.5 Let � and � be relatively separated subsets of R and A ∈
C

�×� be a matrix such that

|Aλ,γ | ≤ �(λ − γ ) λ ∈ �, γ ∈ �, for some � ∈ W0.

Then A is bounded below on some 	p0(�), 1 ≤ p0 ≤ ∞, i.e., ‖Ac‖p0 ≥
C0‖c‖p0 for all c ∈ 	p0(�), if and only if A is bounded below on all 	p(�),
1 ≤ p ≤ ∞.

Since g ∈ W0, the envelope for P�(g) can be chosen to be �(x) = |g(x)|.
Then P�(g) is bounded below on some 	p0 , if and only if it is bounded below
on all 	p. This gives the desired conclusion.
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The statement in [28] actually covers more general matrices that are con-
centrated away from a collection of lines; with the notation of [28, Proposition
A.1] we apply it with G = {1}. For related versions of Wiener’s Lemma we
refer to Sjöstrand’s fundamental work [58] and [1,7,59].

(b) ⇒ (c) Suppose that� is a sampling set for V∞(g) and let � ∈ WZ(�),
so that there exist kn ∈ Z such that � − kn

w−→ �. Since � is a sampling set,
the operator P�(g) : 	∞(Z) → 	∞(�) is bounded below, so its (pre) adjoint
P�(g)′ : 	1(�) → 	1(Z), represented by the matrix

P�(g)′ = (g(λ − k))k∈Z,λ∈�,

is onto by the closed range theorem. This means that for every sequence c ∈
	1(Z) there exists an a ∈ 	1(�) such that

ck =
∑

λ∈�

aλg(λ − k), k ∈ Z, (7.5)

and ‖a‖1 � ‖c‖1. For c ∈ 	1(Z) fixed, we apply this observation to every
sequence (ck−kn )k∈Z and find a corresponding sequence an ∈ 	1(�) with
‖an‖1 � ‖c‖1 and

ck−kn =
∑

λ∈�

anλg(λ − k), k ∈ Z. (7.6)

Consider the shifted sequence bn ∈ 	1(� − kn) defined by bnλ−kn
= anλ . We

can rewrite (7.6) as

ck =
∑

ν∈�−kn

bnνg(ν − k), k ∈ Z. (7.7)

Consider the measure μn := ∑
ν∈�−kn b

n
ν δν . Then μn is a bounded measure,

i.e., μ ∈ C∗
0 (R), and ‖μn‖C∗

0 (R) = ‖bn‖1 = ‖an‖1 � ‖c‖1. By passing to
a subsequence, we may choose a measure μ ∈ C∗

0 (R) such that μn −→ μ

in the weak∗ topology σ(C∗
0 (R),C0(R)). Since � − kn

w−→ �, it follows that
� is relatively separated and supp (μ) ⊆ � (see [28, Lemmas 4.3 and 4.5]).
Henceμ = ∑

γ∈� bγ δγ , for some sequence b. Moreover ‖b‖1 = ‖μ‖C∗
0 (R) �

lim infn‖μn‖C∗
0 (R) � 1. Finally, for each k ∈ Z,

∑

γ∈�

bγ g(γ − k) =
∫

R

g(x − k) dμ(x) = lim
n

∫

R

g(x − k)dμn(x)

= lim
n

∑

ν∈�−kn

bnνg(ν − k) = ck .
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Since c ∈ 	1(Z) was arbitrary, this shows that P�(g)′ : 	1(�) → 	1(Z) is
onto and therefore P�(g) : 	∞(Z) → 	∞(�) is bounded below. Hence � is a
sampling set for V∞(g).

The implication (c) ⇒ (d) is obvious, the equivalence (d) ⇔ (e) is just
language, and the equivalence (e) ⇔ ( f ) is standard functional analysis.

(d) ⇒ (b) Assume on the contrary that � is not a sampling set for p = ∞.
Then there exist sequences cn ∈ 	∞(Z) with ‖cn‖∞ = 1 such that

sup
λ∈�

|
∑

k∈Z
cnk g(λ − k)| → 0, as n → ∞. (7.8)

Since ‖cn‖∞ = 1, there exist kn ∈ Z such that |cnkn | ≥ 1/2. Let dn ∈ 	∞(Z) be
the shifted sequence dnk := cnk+kn

. By passing to a subsequencewemay assume

that (i) dn → d ∈ 	∞(Z) in the σ(	∞, 	1) topology, and (ii) � − kn
w−→ �

for some (relatively separated) set � ∈ WZ(�) (see [28, Lemma 4.5]). Let
f := ∑

k∈Z dkg(· − k) ∈ V∞(g). Since cnkn = dn0 −→ d0, we must have
d0 �= 0, and therefore f �≡ 0.

We next show that f ≡ 0 on �. Given γ ∈ �, there exists a sequence
{λn : n ≥ 1} ⊆ � such that λn − kn −→ γ . Since g ∈ W0, it follows
that (g(λn − kn − k))k∈Z −→ (g(γ − k))k∈Z in 	1(Z). Since dn −→ d in
σ(	∞, 	1), we conclude from (7.8) that

| f (γ )| = ∣
∣
∑

k∈Z
dkg(γ − k)

∣
∣ = lim

n

∣
∣
∑

k∈Z
dnk g(λn − kn − k)

∣
∣

= lim
n

∣
∣
∑

k∈Z
cnk g(λn − k)

∣
∣ = 0.

Hence f ≡ 0 on �, which contradicts (d). This completes the proof. ��
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