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Abstract This paper shows that every totally-geodesic isometry from the unit
disk to a finite-dimensional Teichmüller space for the intrinsic Kobayashi met-
ric is either holomorphic or anti-holomorphic; in particular, it is a Teichmüller
disk. Additionally, a similar result is proved for a large class of disk-rigid
domains, which includes strictly convex domains, aswell as finite-dimensional
Teichmüller spaces.
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1 Introduction

Let CH1 denote the unit disk � = { z ∈ C : |z| < 1 } equipped with
its Poincaré metric |dz|/(1 − |z|2) and let Tg,n denote a finite-dimensional
Teichmüller space equipped with its intrinsic Kobayashi metric, which is the
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1290 S. M. Antonakoudis

largest (Finsler) metric such that every holomorphic map f : CH1 → Tg,n is
non-expanding: ||d f || ≤ 1.

An important feature of the Kobayashi metric of Tg,n is that every holo-
morphic map f : CH

1 → Tg,n , for which d f is an isometry on tangent
spaces, is totally geodesic: it sends real geodesics to real geodesics preserving
their length. Moreover, there are such isometries through every point in every
direction, known as Teichmüller disks.

Holomorphic rigidity for Teichmüller spacesOurmain result in this paper
is the following:

Theorem 1.1 Let Tg,n be a finite-dimensional Teichmüller space equipped
with its intrinsic Kobayashi metric. Every totally geodesic isometry f :
CH

1 ↪→ Tg,n is either holomorphic or anti-holomorphic; in particular, it
is a Teichmüller disk.

Remark Theorem 1.1 settles a long standing problem in Teichmüller theory.1

The proof is geometric and rests on the idea of complexification; see Sect. 3.
Informally, the theorem shows that the intrinsic Kobayashi metric of Tg,n
determines its natural structure as a complex manifold.

As a corollary, we obtain the following general result about Teichmüller
spaces.

Corollary 1.2 Let Tg,n, Th,m be two finite-dimensional Teichmüller spaces
equippedwith their intrinsicKobayashimetric. Every totally geodesic isometry
f : Tg,n ↪→ Th,m is either holomorphic or anti-holomorphic.

We note that there are many holomorphic isometries f : Tg,n ↪→ Th,m
between Teichmüller spaces for their Kobayashi metric. [6, See discussion in
Section 13.2.1].

Holomorphic rigidity for convex domains In addition to Theorem 1.1, we
prove a similar result for a large class of disk-rigid domains, which include
strictly convex domains, as well as finite-dimensional Teichmüller spaces. We
discuss the general statement in Sect. 4; as a special case, we obtain:

Theorem 1.3 Let B1, B2 be two strictly convex bounded domains equipped
with their intrinsic Kobayashi metric. Every totally geodesic isometry f :
B1 ↪→ B2 is either holomorphic or anti-holomorphic.

This result need not be true for convex domains in general. For example,
the diagonal map δ(z) = (z, z) is a totally-real embedding δ : CH

1 ↪→
CH

1 × CH
1, which is a totally geodesic isometry for the Kobayashi metric.

In particular, the result is not true for bounded symmetric domains with rank
two or more.

1 See problem 5.3 in [8].
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Isometric disks are holomorphic 1291

Notes and references

For an introduction to Teichmüller spaces and the Kobayashi metric on com-
plex manifolds, we refer to [9,12,14], respectively.

Royden proved that the Kobayashi metric of Tg,n coincides with its classical
Teichmüller metric [19]. When dimCTg,n = 1, we can identify Tg,n equipped
with its Kobayashi-Teichmüller metric with the unit disk CH

1 equipped with
its Poincaré metric. In particular, the first instance of Theorem 1.1 is implicit
in the natural isomorphism Aut(CH1) ∼= Isom+(CH1) between the group of
holomorphic automorphisms of the unit disk and the group of orientation-
preserving isometries of its Poincaré metric, which is classically known as the
Schwarz-Pick lemma [14, Section 2].

There is a natural action of SL2(R) on the sphere bundle of unit-area
quadratic differentials Q1Tg,n over Tg,n , so that every orbit projects to a holo-
morphic totally geodesic isometry CH

1 ∼= SO2(R)\SL2(R) ↪→ Tg,n , which
is known as a Teichmüller disk. It is a classical result (see Theorem 2.1 in Sec-
tion 2) that every holomorphic isometryCH1 ↪→ Tg,n into a finite-dimensional
Teichmüller space is a Teichmüller disk. However, neither this result, nor The-
orem 1.1 remain true for infinite dimensional Teichmüller spaces, since they
contain [5] holomorphic isometric copies of the bi-disk, for which these two
results are not true.

A complex analytic proof that totally geodesic disks are holomorphic for
strictly convex domains with C3-smooth boundary appears in [10]. Theo-
rem 1.3 gives an optimal result for maps between convex domains. In a
follow-up paper (to appear),we show that Teichmüller spaceswith dimCTg,n ≥
2 cannot be realised as convex domains.

2 Preliminary results

The Kobayashi metric [14] Let B ⊂ C
N be a bounded domain. The intrinsic

Kobayashi metric of B is the largest complex Finsler metric such that every
holomorphic map f : CH1 → B is non-expanding: ||d f ||B ≤ 1. It determines
both a family of norms || · ||B on tangent spaces and a distance function dB(·, ·)
on pairs of points.

We recall that the Schwarz-Pick lemma [14, Section 2] implies that every
holomorphic map f : CH1 → CH

1 is non-expanding. The Kobayashi metric
provides a natural generalisation—it has the fundamental property that every
holomorphic map between complex domains is non-expanding. In particu-
lar, a holomorphic automorphism is always an isometry and the Kobayashi
metric of a complex domain depends only on its structure as a complex man-
ifold.
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1292 S. M. Antonakoudis

Examples

(1) CH
1 ∼= { z ∈ C : |z| < 1 } with its Poincaré metric |dz|/(1 − |z|2) coin-

cideswith theKobayashimetric, bySchwarz’s lemma.Moregenerally, the
Kobayashi metric of the ballCHN ∼= { (zi )Ni=1 ∈ C

N : ∑N
i=1 |zi |2 < 1 }

coincideswith its complete invariant (Kähler)metric of constant holomor-
phic curvature -4. See [14, Example 3.1.24].

(2) The Kobayashi metric of the bi-disk CH1 ×CH
1 is the maximum metric

of the two factors. It is a complex Finsler metric, which is not Her-
mitian. The distance function is given by d

CH
1×CH

1((z1, z2), (w1, w2)) =
max{d

CH
1(z1, w1), dCH1(z2, w2)} for all points (z1, z2), (w1, w2) ∈

CH
1 × CH

1. See [14, Corollary 3.1.10].
(3) The Kobayashi metric of Tg,n coincides with its classical Teichmüller

metric, which endows Tg,n with the structure of a complete geodesic
metric space [19]. We discuss this example in more detail below.

Complex geodesics Let γC : CH
1 → B be a holomorphic (or anti-

holomorphic) map; we call γC a complex geodesic if it is locally distance
preserving for the Kobayashi metric; or equivalently, if it is a totally geodesic
isometry: γC sends real geodesics to real geodesics preserving their length.
We note that, in this case, the map given by γ (t) = γC(eiθ tanh(t)) for t ∈ R,
defines a complete, unit-speed, real geodesic line, for every θ ∈ R/2πZ.
When it is clear from the context, we will often identify the real and complex
geodesics with their image in B.
Teichmüller space [9,12] Let �g,n be a connected, oriented surface of genus
g and n punctures and Tg,n denote the Teichmüller space of Riemann surfaces
marked by �g,n . A point in Tg,n is specified by an equivalence class2 of ori-
entation preserving homeomorphisms φ : �g,n → X , where X is a Riemann
surface of finite type.

Teichmüller space Tg,n is the orbifold universal cover of themoduli space of
Riemann surfacesMg,n and is naturally a complex manifold with dimension
3g − 3 + n. It is known [3] that Teichmüller space can be realized as a
contractible bounded domain of holomorphy Tg,n ⊂ C

3g−3+n by the Bers
embeddings.
Teichmüller metric For each X ∈ Tg,n , we let Q(X) denote the space of
holomorphic quadratic differentials q = q(z)(dz)2 on X with finite total mass:
||q||1 = ∫

X |q(z)||dz|2 < +∞, which means that q has at worse simple poles
at the punctures of X . The tangent and cotangent spaces to Teichmüller space
at X ∈ Tg,n are described in terms of the natural pairing (q, μ) 	→ ∫

X qμ

2 Two marked Riemann surfaces φ : �g,n → X , ψ : �g,n → Y are equivalent if ψ ◦ φ−1 :
X → Y is isotopic to a holomorphic bijection.
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Isometric disks are holomorphic 1293

between the space Q(X) and the space M(X) of L∞-measurable Beltrami
differentials on X ; in particular, the tangent TXTg,n and cotangent T ∗

XTg,n
spaces are naturally isomorphic to M(X)/Q(X)⊥ and Q(X), respectively.

The Teichmüller-Kobayashi metric on Tg,n is given by norm duality on
the tangent space TXTg,n from the norm ||q||1 = ∫

X |q| on the cotan-
gent space Q(X) at X . The corresponding distance function is given
by the formula dTg,n (X, Y ) = inf 1

2 log K (φ) and measures the minimal
dilatation K (φ) of a quasiconformal map φ : X → Y respecting their
markings.

TheTeichmüllermetric is complete and coincideswith theKobayashimetric
of Tg,n as a complexmanifold [19]. In particular, it has the remarkable property
that every holomorphicmap f : CH1 → Tg,n is non-expanding: ||d f ||Tg,n ≤1.
Holomorphic disks We summarise below the main results about holomorphic
disks in Teichmüller space whichwe shall employ in the proof of Theorem 1.1.

Complex geodesics in Teichmüller space are abundant: there is one through
every point in Tg,n in every complex direction, classically known as Teich-
müller disks.

In particular, every complex geodesic γC : CH
1 ↪→ Tg,n gives rise to a

unit-speed real geodesic γ : R ↪→ Tg,n by γ (t) = γC(tanh(t)), for t ∈ R.
Conversely, every unit-speed real geodesic γ : R ↪→ Tg,n extends uniquely
to a complex geodesic γC : � ∼= CH

1 ↪→ Tg,n such that γ (t) = γC(tanh(t)),
for t ∈ R.

The following classical result characterises the holomorphic disks in Teich-
müller space which are complex geodesics for the Kobayashi metric. See [4],
for a simple proof based on Slodkowski’s theorem [20].

Theorem 2.1 Let f : � ∼= CH
1 → Tg,n be a holomorphic map with

|| f ′(0)||Tg,n = 1, then f is a totally geodesic isometry for the Kobayashi
metric; in particular, it is a Teichmüller disk.

The following important result, which is a consequence of Sullivan’s rigid-
ity theorem [21], shows that there are no non-trivial holomorphic families
of essentially proper (see Sect. 4) holomorphic disks in Teichmüller space.
See [22, Theorem 1] for a simple proof and [16] for further applications and
related ideas.

Theorem 2.2 Let { ft }t∈� be a holomorphic family of holomorphic maps ft :
� ∼= CH

1 → Tg,n and B f0 ⊂ ∂� denote the set of bounded rays of f0, i.e.
B f0 = { eiθ ∈ ∂� : supt∈[0,1) dTg,n ( f0(0), f0(teiθ )) < +∞ }. If ∂�\B f0
has positive (Lebesgue) measure, then the family is trivial: ft = f0 for all
t ∈ �.

We discuss a more general class of disk-rigid domains satisfying Theo-
rem 2.2 and formulate a generalisation of Theorem 1.1 in Sect. 4.
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1294 S. M. Antonakoudis

3 Holomorphic rigidity for Teichmüller spaces

In this section we prove:

Theorem 3.1 Every totally geodesic isometry f : CH
1 ↪→ Tg,n for the

Kobayashi metric is either holomorphic or anti-holomorphic. In particular,
it is a Teichmüller disk.

The proof of the theorem rests on the idea of complexification and leverages the
following two facts. Firstly, a complete real geodesic in Tg,n is contained in a
unique holomorphic Teichmüller disk; and secondly, Theorem 2.2: a holomor-
phic family { ft }t∈� of essentially proper holomorphic maps ft : CH1 → Tg,n
is trivial: ft = f0.

Outline of the proofLet γ ⊂ CH
1 be a complete (real) geodesic and denote

by γC ⊂ CH
1 × CH

1 the maximal holomorphic extension of the diagonal
embedding of γ to the bi-disk. We note that γC ∼= CH

1 and we define F |γC to
be the unique holomorphic extension of f |γ which is a Teichmüller disk.

Applying this construction to all real geodesics in CH1, we deduce that the

isometry f : CH1 → Tg,n extends to a map F : CH1 × CH
1 → Tg,n such

that f (z) = F(z, z), for z ∈ � ∼= CH
1, and prove that F is holomorphic.

Using that f is a totally geodesic isometry, we show that the map F is essen-
tially proper and conclude, by Theorem 2.2, that either F(z, w) = F(z, z) or

F(z, w) = F(w, w) for (z, w) ∈ CH
1 × CH

1. ��

CH
1 × CH

1

F

CH
1

δ

f Tg,n

We start with some preliminary constructions.

The totally real diagonal Let CH1 be the complex hyperbolic line with its
conjugate complex structure. The identitymap is a canonical anti-holomorphic

isomorphism CH
1 ∼= CH

1 and its graph is a totally real embedding δ :
CH

1 ↪→ CH
1 × CH

1, given by δ(z) = (z, z) for z ∈ � ∼= CH
1. We call

δ(CH1) the totally real diagonal.
Geodesics and graphs of reflections Let G denote the set of all real, unori-

ented, complete geodesics γ ⊂ CH
1. In order to describe their maximal

holomorphic extensions γC ⊂ CH
1 ×CH

1, such that γC ∩ δ(CH1) = δ(γ ), it
is convenient to parametrize G in terms of the set R of hyperbolic reflections
ofCH1—or equivalently, the set of anti-holomorphic involutions ofCH1. The
map that associates a reflection r ∈ R with the set γ = Fix(r) ⊂ CH

1 of its
fixed points gives a bijection betweenR and G.
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Isometric disks are holomorphic 1295

Let r ∈ R and denote its graph by �r ⊂ CH
1 × CH

1; there is a natural
holomorphic isomorphism CH

1 ∼= �r , given by z 	→ (z, r(z)) for z ∈ � ∼=
CH

1.We note that�r is themaximal holomorphic extension γC of the geodesic
γ = Fix(r) to the bi-disk and it is uniquely determined by the property γC ∩
δ(CH1) = δ(γ ).

The foliation by graphs of reflectionsTheunion of the graphs of reflections
⋃

r∈R �r gives rise to a (singular) foliation of CH1 ×CH
1 with holomorphic

leaves �r parametrized by the set R. We have �r ∩ δ(CH1) = δ(Fix(r)) for
all r ∈ R, and

�r ∩ �s = δ(Fix(r) ∩ Fix(s)) (3.1)

which is either empty or a single point for all r, s ∈ Rwith r �= s. In particular,
the foliation is smooth in the complement of the totally real diagonal δ(CH1).

We emphasize that the following simple observation plays a key role in the
proof of the theorem. For all r ∈ R:

(z, w) ∈ �r ⇐⇒ (w, z) ∈ �r (3.2)

Geodesics and the Klein model The Klein model gives a real-analytic
identification CH

1 ∼= RH
2 ⊂ R

2 with an open disk in R
2. It has the nice

property that the hyperbolic geodesics are affine straight lines intersecting the
disk [18].

Remark Theholomorphic foliation bygraphs of reflections defines a canonical
complex structure in a neighborhood of the zero section of the tangent bundle
of RH2.

The description of geodesics in the Klein model is convenient in the light
of the following theorem.

Theorem 3.2 (S. Bernstein) Let f : [0, 1]2 → C be a function on the square
[0, 1]2 ⊂ R

2 ⊂ C
2 and let E ⊂ C denote a fixed ellipse with foci at 0 and 1.

If for every vertical and every horizontal unit line segment 
 ∼= [0, 1], there
is a holomorphic function F
 : E
 → C, defined on the ellipse E
 with foci
at the end-points of 
 and congruent to E, that agrees with f along the line
segment 
: f |
 ∼= F
|
, then the function f has a (unique germof) holomorphic
extension in a neighborhood of [0, 1]2 in C

2.

See [1] for a simple proof of the theorem;3 and [13, Theorem 5.6.5], [2,
Theorem 3.4 and Corollary 3.6] for a more general result and discussion of
related ideas.

We use Theorem 3.2 to prove:

3 Bernstein’s clever proofwas to consider this as problem on the torus obtained from a branched
covering S1 × S1 → [0, 1] × [0, 1] with Galois group Z/2Z × Z/2Z, and use the symmetries
of the pull back function to show that its Fourier coefficients vanish outside the first quadrant.
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1296 S. M. Antonakoudis

Lemma 3.3 Every totally geodesic isometry f : CH
1 ↪→ Tg,n admits a

unique holomorphic extension in a neighborhood of the totally real diago-

nal δ(CH1) ⊂ CH
1 × CH

1.

Proof of 3.3 Using the fact that analyticity is a local property and the descrip-
tion of geodesics in the Klein model of RH2, we can assume—without loss
of generality—that the map f is defined in a neighborhood of the unit square
[0, 1]2 in R

2 and has the property that its restriction on every horizontal and
vertical line segment 
 ∼= [0, 1] is a real-analytic parametrization of a Teich-
müller geodesic segment. Moreover, we can also assume that the lengths of all
these segments, measured in the Teichmüller metric, are uniformly bounded
from above and from below away from zero.

Since every segment of a Teichmüller geodesic extends to a holomorphic
Teichmüller disk in Tg,n , there exists an ellipse E ⊂ C with foci at 0,1 such
that the restrictions f |
 extend to holomorphic maps F
 : E → Tg,n for all
horizontal and vertical line segments 
 ∼= [0, 1] of [0, 1]2. Hence, the proof of
the lemma follows from Theorem 3.2. ��

3.1 Proof of Theorem 3.1

Let f : CH1 ↪→ Tg,n be a totally geodesic isometry. Applying Lemma 3.3,
we deduce that f has a unique holomorphic extension in a neighborhood of

the totally real diagonal δ(CH1) ⊂ CH
1 ×CH

1. We will show that f extends

to a holomorphic map from CH
1 × CH

1 to Tg,n .
We start by defining a new map F : CH1 × CH

1 → Tg,n , satisfying:
1. F(z, z) = f (z) for all z ∈ � ∼= CH

1.
2. F |�r is the unique holomorphic extension of f |Fix(r) for all r ∈ R.

Let r ∈ R be a reflection. There is a unique (holomorphic) Teichmüller disk
φr : CH

1 ↪→ Tg,n such that the intersection φr (CH
1) ∩ f (CH1) ⊂ Tg,n

contains the Teichmüller geodesic f (Fix(r)) and φr (z) = f (z) for all z ∈
Fix(r).

We define F by F(z, r(z)) = φr (z) for z ∈ CH
1 and r ∈ R; Eq. (3.1)

shows that F is well-defined and satisfies conditions (1) and (2) above.
We claim that F : CH1×CH

1 → Tg,n is the unique holomorphic extension
of f : CH1 ↪→ Tg,n such that F(z, z) = f (z) for z ∈ CH

1.

Proof of claim We note that the restriction of F on the totally real diagonal
δ(CH1) agreeswith f and that there is auniquegermof holomorphicmapsnear
δ(CH1) whose restriction on δ(CH1) coincides with f . Let us fix an element

of this germ F̃ defined on a neighborhood U ⊂ CH
1 × CH

1 of δ(CH1). For
every r ∈ R, the restrictions of F and F̃ on the intersection Ur = U ∩ �r
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Isometric disks are holomorphic 1297

are holomorphic and equal along the real-analytic arc Ur ∩ δ(CH1) ⊂ Ur ;

hence they are equal onUr . Since CH1 ×CH
1 = ⋃

r∈R �r , we conclude that
F |U = F̃ and, in particular, F is holomorphic near the totally real diagonal
δ(CH1). Since, in addition to this, F is holomorphic along all the leaves �r of

the foliation, we deduce4 that it is holomorphic at all points of CH1 ×CH
1.��

In order to complete the proof, we recall the key observation (3.2) as follows:
the points (z, w) and (w, z) are always contained in the same leaf �r of the
foliation; and since the restriction of F on every leaf �r is a Teichmüller disk,
we conclude that: dTg,n (F(z, w), F(w, z)) = d

CH
1(z, w) for all z, w ∈ � ∼=

CH
1. In particular, at least one of F(ρeiθ , 0) and F(0, ρeiθ ) diverges in Tg,n ,

as ρ → 1, for every θ ∈ R/2πZ.
It follows that there is a subset I ⊂ R/2πZ with (positive) Lebesgue mea-

sure at least 1/2, so that either F(ρeiθ , 0) diverges as ρ → 1, for all θ ∈ I ,
or F(0, ρeiθ ) diverges as ρ → 1, for all θ ∈ I . If we assume that the for-
mer of the two is true, we deduce from Theorem 2.2 that the holomorphic
family {F(z, w)}w∈� of holomorphic maps F(·, w) : � ∼= CH

1 → Tg,n is
trivial; therefore, F(z, 0) = F(z, z) = f (z) for all z ∈ � and, in particular,
f is holomorphic. If we assume that the latter of the two is true, we similarly
deduce that F(0, z) = F(z, z) = f (z) for all z ∈ � and, in particular, f is
anti-holomorphic. ��

4 The class of disk-rigid domains

In this section we formulate a general theorem that applies to a large class of
bounded domains, which we apply to deduce Corollary 1.2 and Theorem 1.3.

Let B ⊂ C
N be a bounded domain and f : � → B a holomorphic map.

We call the map f essentially proper if ∂�\B f has positive (Lebesgue)
measure, where B f denotes the set of bounded rays, i.e. B f = { eiθ ∈
∂� : supt∈[0,1) dB( f (0), f (teiθ )) < +∞ }.

Definition 4.1 A bounded domain B ⊂ C
N is disk-rigid, if it satisfies:

1. every unit-speed geodesic γ : R ↪→ B, for the Kobayashi metric, extends
to a complex geodesic γC : � ∼= CH

1 ↪→ B such that γ (t) = γC(tanh(t)),
for t ∈ R,

2. every holomorphic family { ft }t∈� of holomorphicmaps ft : � ∼= CH
1 →

B, with f0 an essentially proper map, is trivial ie. ft = f0 for all t ∈ �.

4 For a simple proof of this, using the power series expansion of F at (0, 0) ∈ CH
1 × CH

1,
see [11, Lemma 2.2.11].
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Examples

1. Teichmüller spaces Tg,n of finite dimension are disk-rigid. See Sect. 2,
Theorems 2.1, 2.2.

2. The bi-disk CH
1 × CH

1 is a convex domain that is not disk-rigid. A
bounded symmetric domainB ⊂ C

N is disk-rigid if and only if it has rank
one: B ∼= CH

N .
3. All strictly convex bounded domainsB ⊂ C

N are disk-rigid.We recall that
a domainB ⊂ C

N is strictly convex if { t ·P+(1−t)·Q : t ∈ (0, 1) } ⊂ B
for every pair of distinct points P �= Q in the closure B ⊂ C

N . See [17].

The proof of Theorem3.1 in Sect. 3 used only those features ofTg,n captured
in the definition of a disk-rigid domain. In particular, the following result
follows as well.

Theorem 4.2 Let B ⊂ C
N be a disk-rigid domain. Every totally geodesic

isometry f : CH1 ↪→ B for the Kobayashi metric is either holomorphic or
anti-holomorphic.

We also have the following generalisation, which implies Corollary 1.2 and
Theorem 1.3. The proof follows from Theorem 4.2 and Weyl’s regularity
lemma.

Theorem 4.3 Let B1, B2 be two complete disk-rigid domains for the
Kobayashi metric. Every totally geodesic isometry f : B1 ↪→ B2 is either
holomorphic or anti-holomorphic.

Proof In a sufficiently small neighborhood of a point, the Kobayashi metric
is bi-Lipschitz to a Hermitian metric [14]. It follows that a totally geodesic
isometry f : B1 ↪→ B2 is locally Lipschitz and hence it is differentiable at
almost all points of B1, by Rademacher’s theorem (see Theorem 3.1.6 in [7]).

Let p ∈ B1 such that the (real) linearmap d f p : TpB1 → TpB2 exists. Using
Theorem 4.2, we conclude that f sends complex geodesics in B1 through p to
complex geodesics in B2 through f (p) and, in particular, the linear map d f p
sends complex lines in TpB1 to complex lines in TpB2. We conclude that d f p
is either a complex linear map or complex anti-linear map.

The assumption that the Kobayashi metric of B1 and B2 is complete implies
that there is a complex geodesic between any pair of distinct points in B1 and
B2. Hence, d f p is either complex linear for almost every p ∈ B1 or complex
anti-linear for almost every p ∈ B1. In particular, up to conjugation, f is
holomorphic as a distribution and the theorem follows from Weyl’s regularity
Lemma [15]. ��
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