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Abstract We prove Bogomolov’s inequality for Higgs sheaves on varieties
in positive characteristic p that can be lifted modulo p2. This implies the
Miyaoka–Yau inequality on surfaces of non-negative Kodaira dimension
liftable modulo p2. This result is a strong version of Shepherd-Barron’s con-
jecture. Our inequality also gives the first algebraic proof of Bogomolov’s
inequality for Higgs sheaves in characteristic zero, solving the problem posed
by Narasimhan.

Mathematics Subject Classification (2010) 14G17 · 14J60 · 14F05

1 Introduction

Let X be a smooth projective variety of dimension n ≥ 2 defined over an
algebraically closed field k. Let us fix an ample divisor H on X . In [3] Bogo-
molov proved a celebrated inequality saying that in case n = 2 and k = C,
the discriminant �(E) = 2rc2(E) − (r − 1)c2

1(E) of any slope H -semistable
rank r vector bundle E is non-negative. Together with the Mehta–Ramanathan
restriction theorem this implies that for k = C and any n ≥ 2 we have
�(E)Hn−2 ≥ 0 for any slope H -semistable torsion free sheaf E of rank r on
X .

In [21] we proved that in positive characteristic the same inequality holds
for strongly H -semistable sheaves. On the other hand, it is well known that
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890 A. Langer

in general this inequality fails. For example, any counterexample to Kodaira’s
vanishing on surfaces (see [30,33]) leads to a slope H -semistable vector bundle
violating Bogomolov’s inequality. However, we prove the following surprising
theorem:

Theorem 1 Assume that X can be lifted to the ring W2(k) of Witt vectors of
length 2. Then for any slope H-semistable sheaf E of rank r ≤ p = char k
we have

�(E)Hn−2 ≥ 0.

This theorem was known only in the surface case for rank 2 vector bundles in
characteristic 2 (see [34, Corollary 11]). Let us recall that such an inequality has
many applications, for example to adjoint linear systems via Reider’s method
(see [2, IV, Section 11] and Sect. 7).

In case of complex varieties there exist several proofs of Bogomolov’s
inequality. Roughly, there are three different proofs of this inequality. The
first one, due to Bogomolov (see [3,12]), is algebraic, using the fact that sym-
metric powers of a semistable bundle have few sections. The second one, due
to Gieseker (see [11]), is also algebraic, using reduction to positive character-
istic and studying sections of the Frobenius pull back of the bundle. The third
proof is analytic, using the Kobayashi–Hitchin correspondence.

Unfortunately, none of these proofs works in positive characteristic and we
do not know how to prove the above theorem without proving a much stronger
result for Higgs bundles.

Let us recall that one of the starting points of Simpson’s work on non-
abelian Hodge theory was his paper [35] in which he proved the generalized
Kobayashi–Hitchin correspondence: on a compact complex Kähler manifold
every stable Higgs bundle has a Hermitian–Yang–Mills metric. As a corollary,
Simpson proved Bogomolov’s inequality for stable Higgs bundles on such
manifolds. This inequality played an important role in further development of
the subject (see, e.g., [28,29]).

To the author one of the most intriguing and eluding problems was how
to prove Bogomolov’s inequality for Higgs sheaves using algebraic meth-
ods. This problem was posed by Narasimhan in late 1990s. Early attempts
to solve this problem worked only in low rank and used vanishing theorems
to reduce the problem to the usual Bogomolov’s inequality (see [1,20]). The
first algebraic approach to Bogomolov’s inequality via bounding the num-
ber of sections of symmetric powers does not seem to work in the Higgs
case. This motivated the author to work on the positive characteristic case
and resulted in a proof of Bogomolov’s inequality for strongly semistable
sheaves (see [21]). Unfortunately, this did not shed light on the original
problem.
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Bogomolov’s inequality for Higgs sheaves in positive characteristic 891

An algebraic proof of Bogomolov’s inequality for Higgs sheaves became
possible only after the appearance of Ogus and Vologodsky’s non-abelian
Hodge theory in positive characteristic (see [31]). We also use in a crucial
way the results of [21] to prove a weak version of Bogomolov’s inequality for
semistable modules with generalized connections. Bogomolov’s inequality
for Higgs sheaves in characteristic zero is then proven by reducing to positive
characteristic and applying the above inequality to the vector bundle with a
connection corresponding to the Higgs bundle. This argument needs a small
adjustment as Ogus and Vologodsky prove Simpson’s correspondence only for
Higgs bundles satisfying some nilpotence conditions which are not satisfied
in our case.

But the real main aim of this paper is to establish the following Bogomolov’s
inequality for Higgs sheaves in positive characteristic:

Theorem 2 Assume that X be can be lifted to the ring W2(k) of Witt vectors
of length 2. Then for any slope H-semistable Higgs sheaf (E, θ) of rank r ≤ p
we have

�(E)Hn−2 ≥ 0.

The strategy of proof of the above theorem is the following. First we use the
results of [21] to prove a weak version of Bogomolov’s inequality for vector
bundles with generalized connections (see Theorem 6). Then we deform (E, θ)

to a slope semistable system of Hodge sheaves and we recall a construction of
a Higgs–de Rham sequence for such systems. Existence of such sequences for
semistable Higgs sheaves was conjectured by Lan et al. in [18] and we prove
their conjecture in a separate paper (see [25]; after this paper was submitted
there also appeared another proof of this result in [17]).

The sequence is constructed by means of Ogus and Vologodsky’s inverse
Cartier transform. This transform changes a slope semistable system of Hodge
sheaves into a slope semistable coherent sheaf with an integrable connection
with “larger Chern classes”. Then we can deform this sheaf into another slope
semistable system of Hodge sheaves and we repeat the process constructing a
sequence of slope semistable systems of Hodge bundles. If the discriminant of
the original sheaf were negative then this process would make the discriminants
of further terms in this sequence more and more negative. But by the above
weak Bogomolov’s inequality, the discriminants in the constructed sequence
are bounded below, so we get a contradiction.

In [3, Theorem 5] Bogomolov proved that on a complex projective surface of
general type we have 4c2 ≥ c2

1. Later, Miyaoka [27] and Yau [38], proved the
optimal inequality 3c2 ≥ c2

1. It is well known that both these inequalities fail in
positive characteristic (see, e.g., [7,15,30,33,37]). In 1989 Shepherd-Barron
conjectured (see [34, p. 244]) that the crucial theorem in algebraic proofs of the
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Bogomolov–Miyaoka–Yau inequality (see [3, Theorem 4] and [27, Theorem
2”]) holds for surfaces liftable to W2(k). We recall an unpublished example of
Ekedahl et al. (see [8, p. 23, Remark ii]) showing that this conjecture is false.
It is therefore very surprising that in characteristic p ≥ 3 the Miyaoka–Yau
inequality 3c2 ≥ c2

1 holds for surfaces of non-negative Kodaira dimension
liftable to W2(k) (see Theorem 13). This is a strong version of the inequality
conjectured by Shepherd–Barron (see [34, p. 244]). In characteristic 2 we
reprove the weaker inequality 4c2 ≥ c2

1 known from [34].
Another interesting result says that semistable Higgs sheaves with vanish-

ing Chern classes are locally free (see Theorem 11). The analogous result [36,
Theorem 2] was proven by Simpson using analytic methods and the (topo-
logical) Lefschetz hyperplane theorem. We obtain his result as a corollary by
purely algebraic methods.

Other applications of Theorem 2 include an effective restriction theorem
for Higgs sheaves (see Theorem 10) and an analogue in positive characteristic
of the new restriction theorem of Bruzzo and Hernández Ruipérez [5] (see
Theorem 12). As a corollary, we also obtain a new proof of the original theorem
in characteristic zero.

In the final section we give a quick proof by Bhargav Bhatt of the fact that
Frobenius split varieties are liftable to the ring of Witt vectors of length 2. In
particular, all the obtained results are valid for sheaves on such varieties.

For simplicity, we deal in this paper only with the usual Higgs sheaves.
However, very similar methods work also for sheaves with λ-connections and
in case of logarithmic Higgs bundles. The parabolic version is more compli-
cated and requires a quite heavy notation. All these generalizations will be
treated elsewhere.

The paper is organized as follows. In Sect. 2 we gather several preliminary
results. Section 3 contains proofs of various Bogomolov type inequalities. In
Sect. 4 we apply these inequalities to prove restriction theorems for Higgs
sheaves. Then in Sect. 5 we study semistable Higgs sheaves with vanishing
Chern classes. In Sect. 6 we prove the Bogomolov–Miyaoka–Yau inequality
in positive characteristic. In Sect. 7 we quickly recall applications of Bogo-
molov’s inequality to adjoint linear systems. In Sect. 8 we prove that Frobenius
split varieties are liftable to W2.

1.1 Notation

If x is a real number then we set [x]+ := max(x, 0).

Let S be a scheme of characteristic p (i.e., OS is an Fp-algebra). By
Fr

S : S → S we denote the r -th absolute Frobenius morphism of S which
corresponds to the pr -th power mapping on OS . If X is an S-scheme, we
denote by X ′ the fiber product of X and S over the first absolute Frobenius
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Bogomolov’s inequality for Higgs sheaves in positive characteristic 893

morphism of S. The absolute Frobenius morphism of X induces the relative
Frobenius morphism FX/S : X → X ′.

For a rank r torsion free sheaf E on a smooth projective variety X we set

�(E) := 2rc2(E) − (r − 1)c1(E)2.

2 Preliminaries

2.1 Semistability

Let k be an algebraically closed field of any characteristic. Let X be a smooth
projective variety of dimension n ≥ 1 over k and let D1, . . . , Dn−1 be nef
divisors on X such that the 1-cycle D1 . . . Dn−1 is numerically nontrivial, i.e.,
there exists a divisor D such that DD1 . . . Dn−1 �= 0.

Let E be a rank r torsion free sheaf on X . We define the slope of E by

μ(E) = μD1,...,Dn−1(E) = c1(E)D1 . . . Dn−1

r
.

We say that E is slope (D1, . . . , Dn−1)-semistable if for every subsheaf E ′ ⊂
E we have

μD1,...,Dn−1(E ′) ≤ μD1,...,Dn−1(E).

If H is an ample divisor then we say that E is slope H -semistable, if it is slope
(H, . . . , H)-semistable.

For simplicity, in the following we usually omit in notation dependence
of slopes on the collection (D1, . . . , Dn−1). The maximal (minimal) slope in
the Harder–Narasimhan filtration of E (with respect to (D1, . . . , Dn−1)) is
denoted by μmax(E) (μmin(E), respectively). If k has positive characteristic
then we set

Lmax(E) = lim
m→∞

μmax((Fm
X )∗E)

pm

and

Lmin(E) = lim
m→∞

μmin((Fm
X )∗E)

pm
.

By [21, Theorem 2.7] Lmax(E) and Lmin(E) are well defined rational numbers.
We say that E is strongly slope semistable if all the Frobenius pull backs

(Fm
X )∗E of E for m ≥ 0 are slope semistable. This is equivalent to saying that

Lmax(E) = μ(E) (or, equivalently, to Lmin(E) = μ(E)).
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894 A. Langer

2.2 Higgs sheaves

A Higgs sheaf (E, θ) is a pair consisting of a coherent OX -module E and
an OX -linear map θ : E → E ⊗OX �X satisfying the integrability condition
θ ∧ θ = 0.

We say that (E, θ) is slope semistable if the inequality μ(E ′) ≤ μ(E) is
satisfied for every Higgs subsheaf (E ′, θ ′) of (E, θ).

A system of Hodge sheaves is a Higgs sheaf (E, θ) with decomposition
E = ⊕

E j such that θ : E j → E j−1 ⊗OX �X .
As above, a system of Hodge sheaves (E, θ) is slope semistable if the

inequality μ(E ′) ≤ μ(E) is satisfied for every subsystem of Hodge sheaves
(E ′, θ ′) ⊂ (E, θ). It is easy to check that then (E, θ) is slope semistable as a
Higgs sheaf (see [25, Corollary 3.5]).

Using properness of the Hitchin morphism one can show the following
lemma (see [25, Corollary 5.7]):

Lemma 1 Let (E, θ) be a torsion free, slope semistable Higgs sheaf on X.
Then there exists an A

1-flat family of Higgs sheaves (Ẽ, θ̃ ) on X × A
1 such

that for any closed k-point t ∈ A
1 −{0} the restriction (Ẽt , θ̃t ) to the fiber over

t is isomorphic to (E, θ) and (Ẽ0, θ̃0) is a slope semistable system of Hodge
sheaves.

Let (E, ∇) be a coherent sheaf with an integrable connection. Similarly
to the above, one can define slope semistability for coherent sheaves with
integrable connections. In [25, Theorem 5.5] (see also [17, Theorem 2.2]) we
prove the following theorem:

Theorem 3 If (E, ∇) is slope semistable then there exists a canonical Griffiths
transverse filtration N 0 = 0 ⊂ N 1 ⊂ · · · ⊂ N m = E such that the associated
graded system of Hodge sheaves is slope semistable. This filtration is preserved
by the automorphisms of (E, ∇).

The canonical filtration N • from Theorem 3 is called Simpson’s filtration
of (E, ∇) and denoted by N •

S .

2.3 Simpson’s correspondence in positive characteristic

In this subsection we recall the main results of Ogus and Vologodsky [31].
Let f : X → S be a morphism of schemes in characteristic p. A lifting

of X/S modulo p2 is a morphism X̃ → S̃ of flat Z/p2
Z-schemes such that

X → S is equal to the base change of X̃ → S̃ by the closed embedding S → S̃
defined by p.

Let MICp−1(X/S) be the category of OX -modules with an integrable con-
nection whose p-curvature is nilpotent of level less or equal to p−1. Similarly,
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Bogomolov’s inequality for Higgs sheaves in positive characteristic 895

let HIGp−1(X/S) denote the category of Higgs OX ′-modules with a nilpotent
Higgs field of level less or equal to p − 1. The following theorem is one of the
main results of Ogus and Vologodsky (see [31, Theorem 2.8]):

Theorem 4 Let X /S := (X/S, X̃ ′/S̃) be a smooth morphism with a lifting
X̃ ′/S̃ of X ′/S modulo p2. Then the Cartier transform

CX /S : MICp−1(X/S) → HIGp−1(X ′/S)

defines an equivalence of categories with quasi-inverse

C−1
X /S : HIGp−1(X/S) → MICp−1(X ′/S).

A small variant of the following lemma can be found in proof of [31, The-
orem 4.17]:

Lemma 2 Let (E, θ) ∈ HIGp−1(X ′/S). Then

[C−1
X /S (E)] = F∗

X/S[E],
where [·] denotes the class of a coherent OX -module in Grothendieck’s K -
group K0(X).

Proof By assumption there exists a filtration N m = 0 ⊂ N m−1 ⊂ · · · ⊂
N 0 = (E, θ) of length m < p by Higgs subsheaves such that Ni = N i/N i−1

has zero Higgs field. Then C−1
X /S (Ni ) = F∗

X/S Ni and therefore

[C−1
X /S (E)] =

∑
[C−1

X /S (Ni )] =
∑

[F∗
X/S Ni ] = F∗

X/S[E].
��

As a corollary to Theorem 4 and Lemma 2 we get the following:

Corollary 1 Assume that S is the spectrum of an algebraically closed field
and X is projective. Let (E, θ) be a torsion free Higgs sheaf with nilpotent
Higgs field of level less than p. Then it is slope semistable if and only if the
corresponding sheaf with integrable connection C−1

X /S (E, θ) is slope semi-
stable.

Proof Let (V ′, ∇′) ⊂ (V, ∇) = C−1
X /S (E, θ). Then by Theorem 4 (E, θ) �

CX /S (V, ∇) contains (E ′, θ ′) � CX /S (V ′, ∇′). So if (E, θ) is slope semi-
stable then by Lemma 2 we have

μ(V ′) = pμ(E ′) ≤ pμ(E) = μ(V ),

which proves slope semistability of C−1
X /S (E, θ).

Implication in the opposite direction is completely analogous.
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2.4 Higgs–de Rham sequences

Let k be an algebraically closed field of characteristic p > 0. Let X be a
smooth projective k-variety of dimension n that can be lifted to a smooth
scheme over the ring W2(k) of Witt vectors of length 2. Let us set S = Spec k
and S̃ = Spec W2(k). Since X ′ is isomorphic to X , this provides the lifting
needed in Ogus’ and Vologodsky’s version of Simpson’s correspondence.

Let (E, θ) be a rank r torsion free Higgs sheaf with nilpotent Higgs field.
Let us assume that r ≤ p so that level of nilpotence of (E, θ) is less than p.
The following definition is taken from [18]:

Definition 1 A Higgs–de Rham sequence of (E, θ) is an infinite sequence

(V0, ∇0)
GrN0

������������ (V1, ∇1)
GrN1

���
���������

(E0, θ0) = (E, θ)

C−1
��������������

(E1, θ1)

C−1
������������

...

in which C−1 = C−1
X /S is the inverse Cartier transform, N •

i is a Griffiths
transverse filtration of (Vi , ∇i ) and (Ei+1 := GrNi (Vi ), θi+1) is the associated
Higgs sheaf.

Let us note the following lemma:

Lemma 3 If in a Higgs–de Rham sequence of (E, θ) there exists i such that
Ei is locally free then E j and Vj are locally free for j ≤ i .

Proof Note that local freeness of Vi follows from the construction of the inverse
Cartier transform. Indeed, locally Vi is isomorphic to the Frobenius pull back
of Ei (see [31, Theorem 2.8, 3]), so it is locally free.

Now note that there exists a family whose general member is isomorphic
to Vi−1 and the special one is Ei . By openness of local freeness we see that
Vi−1 is locally free. At this point one can also use the following argument due
to the referee: if a sheaf admits a finite exhaustive filtration whose associated
graded is locally free, then it is locally free (proof by induction on the length
of the filtration). Therefore if Ei is locally free then Vi−1 is locally free.

This implies that Ei−1 is locally free by descent of flatness under the Frobe-
nius morphism (again we use this locally using the construction of the inverse
Cartier transform). This last fact is a special case of Ferrand’s theorem (see
[10]). Now the assertions follow by induction on decreasing j . ��

The following theorem was conjectured by Lan–Sheng–Zuo [18, Conjecture
2.8] and it follows from Theorem 3 (see [25, Theorem 5.12]; see also [17,
Theorem 3.2] for a slightly weaker statement):
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Theorem 5 If (E, θ) is slope semistable then there exists a canonically defined
Higgs–de Rham sequence

(V0, ∇0)
GrNS

������������ (V1, ∇1)
GrNS

���
���������

(E0, θ0) = (E, θ)

C−1
��������������

(E1, θ1)

C−1
������������

...

in which each (Vi , ∇i ) is slope semistable and (Ei+1, θi+1) is the slope semi-
stable Higgs sheaf associated to (Vi , ∇i ) via Simpson’s filtration.

As usual, in the above theorem slope semistability is defined with respect
to an arbitrary fixed collection (D1, . . . , Dn−1) of nef divisors on X .

3 Bogomolov type inequalities

In this section we use the same notation as in Sect. 2.1. Namely, k is an
algebraically closed field of any characteristic and X is a smooth projec-
tive k-variety of dimension n ≥ 1. We also fix a collection of nef divisors
(D1, . . . , Dn−1) on X such that the 1-cycle D1 . . . Dn−1 is numerically non-
trivial.

3.1 Bogomolov’s inequality for sheaves with generalized connections

Let us fix a torsion free, coherent OX -module M with a k-derivation dM :
OX → M . A dM -connection (or simply an M-connection if dM is clear from
the context) on a coherent OX -module E is a k-linear map ∇ : E → E ⊗OX M
satisfying the Leibniz rule

∇( f e) = f ∇(e) + e ⊗ dM( f )

for all sections f ∈ OX and e ∈ E .
A useful feature of a sheaf E with a dM -connection, used below, is that if

E ′ ⊂ E is an OX -submodule then the induced map E ′ → (E/E ′) ⊗ M is
OX -linear.

From now on in this subsection we assume that k has characteristic p > 0.

Lemma 4 Let (E, ∇)be a rankr slope semistable sheaf with a dM-connection.
Let us set

Mt = (Ft
X )∗M ⊕ (Ft−1

X )∗�X ⊕ ... ⊕ �X
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for t = 0, 1, . . . If E ′ ⊂ (Ft
X )∗E is a saturated OX -submodule destabilizing

(Ft
X )∗E then there exists a non-zero OX -linear map E ′ → ((Ft

X )∗E/E ′)⊗Mt .

Proof The proof is by induction on t . If t = 0 then E ′ is not preserved
by ∇ as this would contradict semistability of (E, ∇). Then we get the
required map as the one induced by ∇. Now let us take t ≥ 1 and assume
the assertion holds for OX -submodules of the (t − 1)-th Frobenius pull-
back of E . If E ′ ⊂ (Ft

X )∗E is not preserved by the canonical connection
∇can on (FX )∗((Ft−1

X )∗E) then ∇can induces a non-zero OX -linear map
E ′ → ((Ft

X )∗E/E ′) ⊗ �X and we obtain the required map by embedding
�X into Mt . Otherwise, E ′ is preserved by ∇can and by Cartier’s descent
there exists an inclusion E ′′ ⊂ (Ft−1

X )∗E whose Frobenius pull back is
E ′ ⊂ (Ft

X )∗E . Since E ′′ destabilizes (Ft−1
X )∗E , by the induction assumption

there exists a non-zero OX -linear map E ′′ → ((Ft−1
X )∗E/E ′′)⊗Mt−1. Pulling

back this map by FX and setting 0 on the last component, we get the required
map. ��
Lemma 5 Let (E, ∇) be a rank r torsion free sheaf with a dM -connection.
Let us set

γ (M) := max

(

Lmax(M),
Lmax(�X )

p
, 0

)

.

If the collection (D1, . . . , Dn−1) consists of ample divisors then

max(Lmax(E) − μmax(E), μmin(E) − Lmin(E)) ≤ (r − 1)γ (M).

Moreover, if (E, ∇) is slope semistable then

Lmax(E) − Lmin(E) ≤ (r − 1)γ (M).

Proof Let us assume that (E, ∇) is semistable. By [21, Theorem 2.7] we
can find m such that quotients of the Harder–Narasimhan filtration for
(Fm

X )∗E, (Fm
X )∗M and (Fm

X )∗�X are strongly semistable. Let 0 = E0t ⊂
E1t ⊂ · · · ⊂ Est = (Ft

X )∗E be the Harder–Narasimhan filtration of (Ft
X )∗E

for t ≥ m. Let μi t be the corresponding slopes of quotients of this filtration.
By Lemma 4 there exists a non-zero OX -linear map

Eit → ((Ft
X )∗E/Eit ) ⊗ Mt .

Let us choose an ample divisor A such that TX (A) is globally generated.
Then for some N we have an inclusion �X ⊂ OX (A)N which gives a sim-
ilar inclusion after pulling-back by the Frobenius morphisms. Hence, using
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the fact that tensor product of strongly semistable sheaves is strongly semi-
stable (see [32, Theorem 3.23] and [22, Corollary A.3.1]), for any t ≥ m we
have

μmin(Eit ) ≤ μmax((Ft
X )∗E/Eit ) + max(μmax((Ft

X )∗M), pm AD1 . . . Dt−1,

{μmax((F j
X )∗�X ) : m ≤ j ≤ t − 1}).

After dividing by pt−m this gives

μim ≤ μ(i+1)m +max(pm Lmax(M), pm−2t AD1 . . . Dn−1, pm−1[Lmax(�X )]+).

Summing all these inequalities for i = 1, . . . , s − 1 we get

μ1m ≤ μsm + (s − 1) max(pm Lmax(M), pm−2t AD1 . . . Dn−1,

pm−1[Lmax(�X )]+).

But by definition we have μ1m = pm Lmax(E) and μsm = pm Lmin(E) so
dividing by pm and passing with t to infinity gives the second inequality.

In particular, we proved that if (E, ∇) is semistable then

max(Lmax(E) − μ(E), μ(E) − Lmin(E)) ≤ (r − 1)γ (M).

In general, applying this inequality to the quotients of the Harder-Narasimhan
filtration of (E, ∇), we obtain the first inequality. ��
Theorem 6 Let (E, ∇) be a rank r torsion free sheaf with a dM -connection.
Assume that the collection (D1, . . . , Dn−1) consists of ample divisors. If
(E, ∇) is slope (D1, . . . , Dn−1)-semistable then

D2
1 D2 . . . Dn−1 · �(E)D2 . . . Dn−1 + r2(r − 1)2γ (M)2 ≥ 0.

In particular, if we have slope semistable (E, θ) ∈ HIG(X/k) or (E, ∇) ∈
MIC(X/k) then

D2
1 D2 . . . Dn−1 · �(E)D2 . . . Dn−1 + r2(r − 1)2[Lmax(�X )]2+ ≥ 0.

Proof If E is any torsion free sheaf then by [21, Theorem 5.1]

D2
1 D2 . . . Dn−1 · �(E)D2 . . . Dn−1 + r2(Lmax(E) − μ(E))(μ(E)

−Lmin(E)) ≥ 0.

Therefore the theorem follows immediately from Lemma 5. ��
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The above theorem plays an important role in establishing Bogomolov type
inequalities for semistable Higgs sheaves.

3.2 Bogomolov’s inequality for Higgs sheaves in characteristic zero

The following Bogomolov’s inequality for Higgs bundles was proven in [35,
Proposition 3.4] using analytic methods. We give the first algebraic proof of
this fact. For simplicity we deal only with one ample polarization although the
proof works also for collections of ample polarizations.

Theorem 7 Let k be a field of characteristic 0. Let H be an ample divisor on
X. Then for any slope H-semistable Higgs sheaf (E, θ) we have

�(E)Hn−2 ≥ 0.

Proof Deforming (E, θ) to a system of Hodge sheaves (see Lemma 1) we can
assume that (E, θ) is nilpotent.

Now we use a standard spreading out technique, which we recall for the
convenience of the reader (cf. proof of [6, Corollaire 2.7]). There exists a
subring R ⊂ k, finitely generated over Z and a smooth projective scheme
X → S = Spec R such that X = X ⊗R k. We can also assume that
H and (E, θ) are defined over R and on X there exists a relatively ample
divisor H extending H and an S-flat family of Higgs sheaves (E , θ̃ ) extending
(E, θ). Further shrinking S, by openness of semistability we can assume that
(Es, θ̃s) is slope Hs-semistable for every s ∈ S. For any closed point of
S ⊗Z Q its schematic closure T in S is generically étale over Spec Z. Let
us choose a closed point s ∈ T such that T is étale at s over Z and the
characteristic of the residue field k(s) is ≥ r = rk E . Then the scheme X ⊗R
(OX ,s/m2

s ) is a lifting of Xs modulo p2. So by Corollary 1 we can associate
to (Es, θ̃s) a slope Hs-semistable sheaf with integrable connection (Vs, ∇s).
By Lemma 2 we have �(Vs)H

n−2
s = p2�(Es)H

n−2
s . By Theorem 6 we

have

H n
s · �(Vs)H

n−2
s + r2(r − 1)2[Lmax(�Xs̄/k(s̄))]2+ ≥ 0,

where s̄ is the geometric point lying over s. But for some a ≥ 0 a suitably
twisted relative tangent bundle TX /S(aH ) is relatively globally generated, so
we can embed �Xs̄/k(s̄) into a direct sum of some copies of OXs̄ (aHs̄). This
shows that we have Lmax(�Xs̄/k(s̄)) ≤ a Hn , where a is independent of the
choice of s. So the above inequality implies that

p2 Hn · �(E)Hn−2 + r2(r − 1)2(aHn)2 ≥ 0.
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Bogomolov’s inequality for Higgs sheaves in positive characteristic 901

Therefore dividing by p2 and taking sufficiently large p we get �(E)Hn−2 ≥
0. ��

Remark 1 The above inequality works also for collections of nef divisors
(D1, . . . , Dn−1) such that the 1-cycle D1 . . . Dn−1 is numerically nontrivial.
However, proof of this fact requires different techniques (cf. proof of Theo-
rem 8).

Remark 2 Note that Theorem 7 follows from Theorem 8 by the spreading out
technique. We include another proof as it is much simpler and it motivates the
more complicated proof of Theorem 8.

3.3 Bogomolov’s inequality for Higgs sheaves in positive characteristic

Assume that k has characteristic p > 0 and that X can be lifted to W2(k).

Theorem 8 For any slope (D1, . . . , Dn−1)-semistable Higgs sheaf (E, θ) of
rank r ≤ p we have

�(E)D2 . . . Dn−1 ≥ 0.

Proof By Lemma 1 we can deform (E, θ) to a system of Hodge sheaves
preserving semistability and Chern classes. So we can assume that (E, θ) is
nilpotent of level less than r ≤ p. In this case we can consider the canonical
Higgs–de-Rham sequence of (E, θ) provided by Theorem 5. By Lemma 2 we
know that c j (Vi ) = p j c j (Ei ) for i = 0, . . . On the other hand, it is clear that
c j (Ei+1) = c j (Vi ), so we have

�(Ei )D2 . . . Dn−1 = p2i�(E)D2 . . . Dn−1.

Let us set d = D2
1 D2 . . . Dn−1 ≥ 0.

First, let us consider the case in which all the divisors D1, . . . , Dn−1 are
ample. Then by Theorem 6 we have

d · �(Ei )D2 . . . Dn−1 + r2(r − 1)2[Lmax(�X )]2+ ≥ 0.

So
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�(E)D2 . . . Dn−1 ≥ −r2(r − 1)2[Lmax(�X )]2+
dp2i

and we get the required inequality passing with i to infinity. Note that this
implies that if D1, . . . , Dn−1 are ample then

D2
1 D2 . . . Dn−1 · �(E)D2 . . . Dn−1 + r2(μmax(E, θ)

−μ(E))(μ(E) − μmin(E, θ)) ≥ 0

(see Corollary 3).
Now let us consider the general case. The strategy is the same as that in proof

of [21, 3.6 and 3.8] and we just sketch the arguments. First, let us assume that
d > 0. In this case we fix an ample divisor H and set Hi (t) = Di+t H . Then the
Harder–Narasimhan filtration of (E, θ) with respect to (H1(t), . . . , Hn−1(t))
is independent of t for small positive t (this is a not-trivial assertion; see [21,
3.6] for proof in the case of usual sheaves; the proof in our case is the same).

Let 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = (E, θ) be the corresponding filtration.
Since (E, θ) is slope (D1, . . . , Dn−1)-semistable, we have

lim
t→0

μmax,H1(t),...,Hn−1(t)(E, θ) = lim
t→0

μH1(t),...,Hn−1(t)(F1) = μD1,...,Dn−1(E)

and

lim
t→0

μmin,H1(t),...,Hn−1(t)(E, θ) = μD1,...,Dn−1(E).

But we know that

H1(t)
2 H2(t) . . . Hn−1(t) · �(E)H2(t) . . . Hn−1(t)

+r2(μmax,H1(t),...,Hn−1(t)(E, θ)−μH1(t),...,Hn−1(t)(E)) · (μH1(t),...,Hn−1(t)(E)

−μmin,H1(t),...,Hn−1(t)(E, θ)) ≥ 0,

so passing with t to 0 yields the required inequality.
Now consider the remaining case d = 0 and assume that �(E)D2 . . . Dn−1

< 0. Let us choose an ample divisor H1 such that H2
1 D2 . . . Dn−1 > 0. Then

(E, θ) is not slope (H1, D2, . . . , Dn−1)-semistable and as in [21, 3.7] (see also
[12, Theorem 7.3.3]) one can show that there exists a saturated Higgs subsheaf
(E ′, θ ′) ⊂ (E, θ) such that (c1(E ′)/r ′−c1(E)/r)D′

1 D2...Dn−1 > 0 for every
nef divisor D′

1 such that D′
1 D2...Dn−1 is numerically nontrivial. In particular,

for D′
1 = D1 we get a contradiction with our assumption on (D1, . . . , Dn−1)-

semistability of (E, θ). ��
The following corollary is a generalization of Theorem 1:
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Bogomolov’s inequality for Higgs sheaves in positive characteristic 903

Corollary 2 For any (D1, . . . , Dn−1)-semistable sheaf E of rank r ≤ p we
have

�(E)D2 . . . Dn−1 ≥ 0.

The above corollary was known only in the surface case for rank 2 vector
bundles in characteristic 2 (see [34, Corollary 11]).

Corollary 3 If (E, θ) is a torsion free Higgs sheaf of rank r ≤ p then

D2
1 D2 . . . Dn−1 · �(E)D2 . . . Dn−1 + r2(μmax(E, θ)

−μ(E))(μ(E) − μmin(E, θ)) ≥ 0.

Proof Let 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = (E, θ) be the Harder–Narasimhan fil-
tration (in the category of Higgs sheaves). Set Fi = Fi/Fi−1, ri = rk Fi , μi =
μ(Fi ). We can assume that d = D2

1 D2 . . . Dn−1 > 0. Then by the Hodge index
theorem we have

�(E)D2 . . . Dn−1

r
=

∑ �(Fi )D2 . . . Dn−1

ri

−1

r

∑

i< j

ri r j

(
c1 Fi

ri
− c1 F j

r j

)2

D2 . . . Dn−1

≥
∑ �(Fi )D2 . . . Dn−1

ri
− 1

rd

∑

i< j

ri r j (μi − μ j )
2.

Since �(Fi )D2 . . . Dn−1 ≥ 0 by Theorem 8, the required inequality follows
from the following easy inequality (see [21, Lemma 1.4])

∑

i< j

rir j (μi − μ j )
2 ≤ r2(μ1 − μ(E)(μ(E) − μm).

��

4 Restriction theorems

In this section we assume that k has characteristic p > 0 and that X can be lifted
to W2(k). We recall how Bogomolov’s inequality implies effective restriction
theorems. Originally, this method was invented by F. Bogomolov with further
improvements by the author (see [21, Theorem 5.2]). We give all the details
as we feel that this approach is not as known as it should be and some people
still reprove much weaker restriction theorems in a more complicated way.
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904 A. Langer

Note that in the characteristic zero case a non-effective version of restriction
theorem (the so called Mehta–Ramanathan restriction theorem) together with
Bogomolov’s inequality in the surface case implies Bogomolov’s inequality
in higher dimensions. This is a classical approach and it was also used by
Mochizuki in [28,29] to deduce Bogomolov’s inequality for semistable (loga-
rithmic) Higgs sheaves in higher dimensions. Our approach is exactly opposite:
first we prove Bogomolov’s inequality in all dimensions and then we deduce
(strong) restriction theorems.

4.1 Restriction theorem for sheaves with operators

First, we repeat arguments from proof of [21, Theorem 5.2] to prove a strong
restriction theorem for sheaves with operators:

Theorem 9 Let (E, θ) be a torsion free Higgs sheaf of rank r ≤ p. Assume
that (E, θ) is slope (D1, . . . , Dn−1)-stable and d = D2

1 D2 . . . Dn−1 > 0. Let
D ∈ |m D1| be a normal divisor such that E |D has no torsion. If

m >
r − 1

r
�(E)D2 . . . Dn−1 + 1

dr(r − 1)

then (E |D, θ |D) is a slope (D2|D, . . . , Dn−1|D)-stable sheaf with an �X |D-
valued operator.

Proof Let us assume that (E |D, θ |D) is not slope (D2|D, . . . , Dn−1|D)-stable.
Let (T, θT : T → T ⊗ �X |D) be the minimal destabilizing quotient of
(E |D, θ |D). Let us set ρ = rk T and let E ′ be the kernel of the composition
E → E |D → T . Note that E ′ has a natural structure of a Higgs subsheaf of
(E, θ) with Higgs field θ ′ = θ |E ′ . Since (T, θT ) destabilizes (E |D, θ |D) we
have

�(E ′)D2 . . . Dn−1 = �(E)D2 . . . Dn−1 − ρ(r − ρ)D2 D2 . . . Dn−1

+2(rc1(T )−ρc1(E |D))D2 . . . Dn−1 ≤ �(E)D2 . . . Dn−1−ρ(r − ρ)m2d.

Since (E ′, θ ′) ⊂ (E, θ) and (E, θ) is slope (D1, . . . , Dn−1)-stable we have

μmax(E ′, θ ′) − μ(E ′) = ρ

r
DD1 . . . Dn−1 + μmax(E ′, θ ′) − μ(E)

≤ ρ

r
md − 1

r(r − 1)
.
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Similarly, since (E(−D), θ(−D)) ⊂ (E ′, θ ′) we have

μ(E ′) − μmin(E ′, θ ′) = r − ρ

r
DD1 . . . Dn−1 + μ(E(−D)) − μmin(E ′, θ ′)

≤ r − ρ

r
md − 1

r(r − 1)
.

Hence by Corollary 3 we obtain

0 ≤ d · �(E ′)D2 . . . Dn−1+r2(μmax(E ′, θ ′)−μ(E ′))(μ(E ′)−μmin(E ′, θ ′))

≤ d · �(E)D2 . . . Dn−1 − ρ(r − ρ)m2d2 +
(

ρmd − 1

r − 1

)

×
(

(r − ρ)md − 1

r − 1

)

.

Therefore

m
dr

r − 1
≤ d · �(E)D2 . . . Dn−1 + 1

(r − 1)2 ,

which contradicts our assumption on m. ��

4.2 Restriction theorem for Higgs sheaves

Note that up to now even in characteristic zero there were no effective vanishing
theorems for Higgs semistability1. Here we use Simpson’s arguments from
proof of [36, Lemma 3.7] to prove the first such result:

Theorem 10 Let (E, θ) be a torsion free Higgs sheaf of rank r ≤ p. Let m0
be a non-negative integer such that TX (m0 D1) is globally generated. Assume
that (E, θ) is slope (D1, . . . , Dn−1)-stable and d = D2

1 D2 . . . Dn−1 > 0. Let
D ∈ |m D1| be a normal divisor such that E |D has no torsion. Let us take an
integer

m >
r − 1

r
�(E)D2 . . . Dn−1 + 1

dr(r − 1)
.

1 The only published result in this direction, due to Biswas and Dey (in Bull. Sci. Math. 135
(2011), 178–186) is incorrect. The proof does not show any restriction theorem for Higgs sheaves
but only a restriction theorem for sheaves with operators, which is a weak form of Theorem 9
in the characteristic zero case.
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Moreover, if r > 2 let us also assume that m > 2(r − 1)2m0. Then the
Higgs sheaf (E |D, θD), induced from (E |D, θ |D) via composition E |D →
E |D ⊗ �X |D → E ⊗ �D, is slope (D2|D, . . . , Dn−1|D)-stable.

Proof Let us assume that (E |D, θD) is not slope (D2|D, . . . , Dn−1|D)-stable
and let (E ′, θ ′) ⊂ (E |D, θD) be the maximal destabilizing Higgs subsheaf. By
Theorem 9 (E |D, θ |D) is slope (D2|D, . . . , Dn−1|D)-stable. Therefore E ′ is
not preserved by θ |D and we have a non-zero map E ′ → E ′′ ⊗ �X |D , where
E ′′ = E/E ′. This induces a non-zero map ϕ : E ′ → E ′′(−D). In particular,
if r = 2 then E ′ and E ′′ have rank one and we have a contradiction with
μ(E ′) ≥ μ(E ′′) > μ(E ′′(−D)).

If r ≥ 3 we need more subtle arguments. Let G = ker ϕ and let M be the
preimage of (E ′/G)(D) ⊂ E ′′ under the canonical projection E |D → E ′′.
Then

deg M =deg E ′+deg(E ′/G)(D)=2 deg E ′−deg G+rk(E ′/G) deg OD(D).

Therefore

deg M + deg G = 2 deg E ′ + rk(E ′/G) deg OD(D) ≥ 2r ′μ(E) + m2d.

But M and G are subsheaves of E |D , so

deg M + deg G ≤ (rk M + rk G)μmax(E |D) = 2r ′μmax(E |D).

Since (E |D, θ |D) is slope (D2|D, . . . , Dn−1|D)-stable, by Lemma 5 we have

μmax(E |D) − μmin(E |D) ≤ (r − 1)[Lmax(�X |D)]+.

But TX (m0 D1) is globally generated, so �X |D ⊂ OD(m0 D1)
⊕N for some N .

This shows that Lmax(�X |D) ≤ m0md and hence

2r ′μ(E) + m2d ≤ deg M + deg G ≤ 2r ′(μ(E) + (r − 1)m0md).

This contradicts our assumption that m > 2(r − 1)2m0. ��
Let us remark that in both Theorems 9 and 10 we do not assume that the

divisor D, to which we restrict the Higgs bundle, lifts to W2(k). Moreover,
both theorems (and their proofs) work also in the characteristic zero case.

5 Semistable Higgs sheaves with vanishing Chern classes

We keep the same notation and assumptions as in the previous section (unless
otherwise explicitly stated).
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Bogomolov’s inequality for Higgs sheaves in positive characteristic 907

In this section we study semistable Higgs sheaves with vanishing Chern
classes. In the characteristic zero case such sheaves correspond to representa-
tions of the topological fundamental group. Here they also exhibit analogous
interesting properties. For example, we prove that they are locally free and
satisfy a strong restriction theorem. It is also interesting to note that one can
define on them certain discrete dynamical systems (even in characteristic zero).
This fact seems to be unnoticed in the characteristic zero case and the corre-
sponding systems were not yet studied. In positive characteristic we make the
first steps in this direction.

5.1 Local freeness

In this subsection we prove that semistable Higgs sheaves with vanishing
Chern classes are locally free. This is a positive characteristic version of [36,
Theorem 2] (see also [23, Theorem 4.1] for another version for strongly semi-
stable sheaves). This fact can be also considered as a vast generalization of
[18, Corollary 3.11], which was proven by a completely different method using
Faltings’ [9, Theorem 2.1]. Actually, [18, Corollary 3.11] implies that prepe-
riodic Higgs sheaves (see Sect. 5.3) are locally free. Indeed, by [18, Corollary
3.11] there exists i such that Ei in the Higgs–de Rham sequence of prepe-
riodic (E, θ) is locally free. So by Lemma 3 E is locally free. In particular,
Theorem 5 implies Theorem 11 for an algebraic closure of a finite field.

This theorem has many interesting applications. In particular, it implies that
moduli spaces of semistable Higgs bundles with vanishing Chern classes are
projective. This is important as it is much easier to deal with locally free sheaves
than torsion free ones, e.g., if one needs to study moduli spaces of principal
Higgs bundles. Another corollary says that the category of slope semistable
Higgs bundles of rank r ≤ p with vanishing Chern classes behaves similarly
to the category of representations of the fundamental group (cf. Corollary 5).

Theorem 11 Let H be an ample divisor on X and let (E, θ) be a rank r ≤ p
slope H-semistable Higgs sheaf with ch1(E)Hn−1 = 0 and ch2(E)Hn−2 = 0.
Assume that either E is reflexive or the normalized Hilbert polynomial of E
is the same as that of OX . Then E has a filtration whose quotients are locally
free slope H-stable Higgs sheaves with vanishing Chern classes.

Note: We say that E has vanishing Chern classes if the Chern classes ci (E)

vanish in H2i
ét (X, Ql(i)) for i > 0 and any l �= p. It also implies that numeri-

cally Chern classes are trivial (in particular, ci (E)Hn−i = 0).

Proof In the curve case the theorem follows from existence of a Jordan–Hölder
filtration. In general, the proof is by induction on the dimension n starting with
n = 2.
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If X is a surface then the Higgs field θ extends to a Higgs field θ̃ on the
reflexivization E∗∗ of E . Note that E∗∗ is locally free and (E∗∗, θ̃ ) is slope H -
semistable. Hence �(E∗∗) ≥ 0 by Theorem 8. By the Hodge index theorem
we have

0 = 2r ch2(E) = c1(E)2 − �(E) ≤ c1(E)2 ≤ (c1(E)H)2

H2 = 0,

so c1(E)2 = �(E) = 0. But �(E∗∗) ≤ �(E) so also �(E∗∗) = 0. Since
E∗∗/E is supported on a finite set of points and its second Chern class vanishes,
we must have E = E∗∗. Hence the required assertion can be obtained by taking
a Jordan–Hölder filtration of (E, θ).

Now fix n ≥ 3 and assume that the theorem holds for varieties of dimension
less than n. First, let us assume that E is reflexive. By the same argument as
above, we see that c1(E)Hn−1 = 0 and �(E)Hn−2 = 0. Let us consider
the canonical Higgs–de Rham sequence of (E, θ) provided by Theorem 5. By
[21, Theorem 4.4] the family of Higgs sheaves (Ei , θi ) is bounded. Therefore
there are only finitely many possibilities for Chern classes c j (Ei ) = pi j c j (E).
This implies that the Chern classes of E must vanish. In particular, for any
smooth divisor D on X , the reduced Hilbert polynomial of ED is equal to
the Hilbert polynomial of OD . Moreover, ED is torsion free (see, e.g., [12,
Corollary 1.1.14]).

Let us assume that (E, θ) is slope H -stable. Without loss of generality we
can assume that H1(X, OX (m H)) = 0 for m ≥ 1 and OX (H) lifts to a line
bundle OX̃ (H̃) on a lifting X̃ of X to W2(k). Then a short exact sequence

0 → pOX̃ → OX̃ → OX → 0

implies that H0(OX̃ (m H̃)) → H0(OX (m H)) is surjective for all m ≥ 1
(note that pOX̃ � OX as OX -modules). By Theorem 10 the restriction ED
is also slope H -stable for any smooth divisor D ∈ |m H |, m ≥ 1. Since by
the above D can be lifted to W2(k), the restriction ED is locally free by the
induction assumption. It follows that E is locally free along every smooth
divisor D ∈ |m H |. Since such divisors cover X (when we vary m) it follows
that E is locally free.

The general case can be proven by induction on the rank r of E . Let us
take any saturated proper Higgs subsheaf (E ′, θ ′) ⊂ (E, θ) which is slope
H -stable with c1(E ′)Hn−1 = 0. Let us set (E ′′, θ ′′) = (E, θ)/(E ′, θ ′). By
the Hodge index theorem and Theorem 8 we have

0 = �(E)Hn−2

r
= �(E ′)Hn−2

r ′ +�(E ′′)Hn−2

r ′′ − r ′r ′′

r

(
c1 E ′

r ′ − c1 E ′′

r ′′

)2

Hn−2
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≥ �(E ′)Hn−2

r ′ + �(E ′′)Hn−2

r ′′ ≥ 0.

So �(E ′)Hn−2 = 0 and �(E ′′)Hn−2 = 0 and hence

0 = ch2(E)Hn−2 = ch2(E ′)Hn−2 + ch2(E ′′)Hn−2

= c1(E ′)2 Hn−2 + c1(E ′′)2 Hn−2.

By the Hodge index theorem

c1(E ′)2 Hn−2 ≤ (c1(E ′)Hn−1)2

Hn
= 0

and

c1(E ′′)2 Hn−2 ≤ (c1(E ′′)Hn−1)2

Hn
= 0.

It follows that ch1(E ′)Hn−1 = 0 and ch2(E ′)Hn−2 = 0. Since E ′ is reflexive,
by the induction assumption it is locally free with vanishing Chern classes.
But then E ′′ also has vanishing Chern classes. Therefore the reduced Hilbert
polynomial of E ′′ is equal to the Hilbert polynomial of OX . Since (E ′′, θ ′′)
is slope H -semistable, by the induction assumption it has a filtration whose
quotients are locally free slope H -stable Higgs sheaves with vanishing Chern
classes.

Now we assume that the reduced Hilbert polynomial of E is equal to the
Hilbert polynomial of OX without assuming that E is reflexive. By what we
already proved the reflexivization E∗∗ of E is locally free with vanishing
Chern classes. Therefore the reduced Hilbert polynomial of E∗∗ is also equal
to the Hilbert polynomial of OX . This implies that the Hilbert polynomial of
the quotient E∗∗/E is trivial, which proves the required assertion. ��
Corollary 4 Let H be an ample divisor on X and let (E, θ) be a rank r ≤ p
slope H-semistable Higgs sheaf with vanishing Chern classes. Then (E, θ) is
locally free and Gieseker semistable (and hence also slope semistable) with
respect to every ample polarization.

Proof Since by assumption the normalized Hilbert polynomial of E is the
same as that of OX , Theorem 11 implies that E is locally free. Let us recall
that the family of Higgs sheaves {(Ei , θi )}i∈Z≥0 in the canonical Higgs–de
Rham sequence of (E, θ) is bounded (see proof of Theorem 11).

Assume that (E, θ) is not slope A-semistable for some ample polarization A
and consider the maximal A-destabilizing Higgs subsheaf (E ′, θ ′) ⊂ (E, θ).
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Then by Lemma 2 the slopes (counted with respect to A) of images of (E ′, θ ′)
under iterations of GrNS ◦ C−1 grow to infinity. But this contradicts bounded-
ness of the family {(Ei , θi )}i∈Z≥0 .

Hence (E, θ) is slope A-semistable. By Theorem 11 it has a filtration whose
quotients are locally free slope A-stable Higgs sheaves with vanishing Chern
classes, so it is also Gieseker A-semistable. ��
Corollary 5 Let C be the full subcategory of the category of coherent Higgs
sheaves on X, whose objects are slope semistable Higgs bundles of rank r ≤
p with vanishing Chern classes. Then C contains all kernels, images and
cokernels.

Proof Let (E1, θ1) and (E2, θ2) be two objects of C . By Theorem 11 both
(E1, θ1) and (E2, θ2) have filtrations by slope stable objects of C . Since the
only maps of Higgs sheaves between such slope stable objects are either zero
or isomorphisms, it is easy to see that the kernel, image and cokernel of any
morphism of Higgs sheaves (E1, θ1) → (E2, θ2) are objects of C .

Note that Theorem 11 also implies [36, Theorem 2] using a standard spread-
ing out argument (or following proof of Theorem 11). This gives the first alge-
braic proof of Simpson’s result (original Simpson’s arguments use Lefschetz’s
hyperplane theorem for the topological fundamental group).

Corollary 6 Let X be a smooth projective variety defined over a field of char-
acteristic zero. Let H be an ample divisor on X and let (E, θ) be a slope
H-semistable Higgs sheaf with ch1(E)Hn−1 = 0 and ch2(E)Hn−2 = 0.
Assume that either E is reflexive or the normalized Hilbert polynomial of E
is the same as that of OX . Then E has a filtration whose quotients are locally
free slope H-stable Higgs sheaves with vanishing Chern classes.

5.2 Bruzzo–Hernández Ruipérez’ strong restriction theorem

It is well known that on a smooth complex variety, a slope semistable locally
free sheaf with vanishing Chern classes is numerically flat, i.e., its restriction to
every curve is nef of degree 0. A similar theorem for Higgs sheaves was proven
by Bruzzo and Hernández Ruipérez in [5]. The known proofs of these theorems
use the fact that a vector bundle of degree 0 on a smooth complex projective
curve is semistable if and only if it is nef. This is no longer true in positive
characteristic as nefness characterizes strong semistability. However, we can
prove that the same restriction theorem holds also in positive characteristic.
Note that this theorem immediately implies the characteristic zero version by
standard reduction to positive characteristic (cf. proof of Theorem 7).
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Theorem 12 Let E be a locally free OX -module of rank r ≤ p = char k
with vanishing Chern classes. Assume that a Higgs sheaf (E, θ) is slope H-
semistable for some ample polarization H. Let ν : C̃ → C ⊂ X be a normal-
ization of some projective curve. Then the induced Higgs bundle (ν∗E, θC̃) is
(slope) semistable.

Proof Let us consider the canonical Higgs–de Rham sequence of (E, θ) from
Theorem 5. By Theorem 11 all the involved sheaves Vi and Ei are locally free
and have vanishing Chern classes (note that we need this theorem even though
we assume that E is locally free with vanishing Chern classes!). Therefore
by functoriality of the Cartier transform we have the induced Higgs–de Rham
sequence for (ν∗E, θC̃):

(ν∗V0, ∇C̃,0)

Grν∗ S

��������������
(ν∗V1, ∇C̃,1)

Grν∗ S

��������������

(ν∗ E0, θC̃,0)

C−1

��������������
(ν∗ E1, θC̃,1)

C−1

��������������
...

Since the Higgs sheaves {(Ei , θi )}i≥0 are all locally free with vanishing Chern
classes and they are all slope H -semistable, they form a bounded set of sheaves.
Therefore {ν∗Ei }i≥0 also forms a bounded set of sheaves on C̃ . Assume that
(ν∗E, θC̃) is not semistable and let (E ′, θ ′) denote its maximal destabilizing
Higgs subsheaf. In particular, μ(E ′) > μ(ν∗E) = 0. Then the filtration ν∗S
induces on C−1(E ′, θ ′) ⊂ (ν∗V0, ∇C̃,0) a Griffiths transverse filtration such
that the associated Higgs sheaf is a Higgs subsheaf of (ν∗E1, θC̃,1) of slope

pμ(E ′). Analogously, ν∗Ei contains a subsheaf of slope piμ(E ′), which is
impossible for large i . ��

5.3 Discrete dynamical systems on Higgs bundles

Let (E, θ) be a rank r ≤ p torsion free Higgs sheaf with nilpotent Higgs field.

Definition 2 We say that (E, θ) is periodic if there exists some positive i such
that in the canonical Higgs–de Rham sequence of (E, θ) we have (Ei , θi ) �
(E, θ). We say that (E, θ) is preperiodic if there exists some i such that (Ei , θi )

is periodic.

The following proposition strengthens (and corrects) [18, Theorem 2.5] and
[18, Corollary 3.11]:

Proposition 1 1. If (E, θ) is preperiodic then it is locally free with vanishing
Chern classes. Moreover, (E, θ) is slope semistable with respect to every
ample polarization.
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2. If k = F̄p and (E, θ) is slope semistable with vanishing Chern classes then
it is preperiodic.

Proof If (E, θ) is preperiodic then by Lemma 2 its Chern classes vanish. Then
Theorem 11 implies that E is locally free (for another argument in case k = F̄p
see the beginning of Sect. 5.1). Slope semistability can be proven in the same
way as Corollary 4.

The second part of the proposition follows from Theorem 5 and [18, The-
orem 2.5]. For the convenience of the reader we repeat a simplified version
of proof of [18, Theorem 2.5]. Let us consider the canonical Higgs–de Rham
sequence of (E, θ). Note that GrS ◦ C−1 does not enlarge the field of defi-
nition of (Ei , θi ) (this requires the fact that Simpson’s filtration is preserved
by the action of the Galois group). So we can assume that X and all the
bundles (Ei , θi ) are defined over the same finite field. But the Higgs bun-
dles {(Ei , θi )}i∈Z≥0 are slope semistable with vanishing Chern classes so by
Lemma 5 and [21, Theorem 4.4] they form a bounded family. Since any
scheme of finite type over a finite field has only finitely many points, there
exists a repetition (Ei , θi ) � (E j , θ j ) with j > i . This gives periodicity
of (Ei , θi ). ��

In general, a slope semistable Higgs bundle with vanishing Chern classes
do not need to be preperiodic. For example any non-torsion line bun-
dle L ∈ Pic 0(X) with trivial Higgs field is not preperiodic. The sec-
ond part of the above corollary is analogous to the fact that over F̄p
strongly semistable vector bundles with vanishing Chern classes become
étale trivializable after taking some Frobenius pull-back (see [4, Proposi-
tion 2.5]). This last fact can be also interpreted as saying that for X/F̄p
Nori’s fundamental group scheme is equal to the S-fundamental group
scheme.

Let M0
Hodge(X, r) be the set of isomorphism classes of slope semistable sys-

tems of Hodge bundles of rank r ≤ p and with vanishing Chern classes. This
set does not depend on the choice of ample polarization and it forms a bounded
family. We can define the function 
 : M0

Hodge(X, r) → M0
Hodge(X, r)

which maps (E, θ) to the associated graded of Simpson’s filtration of
C−1(E, θ). This defines a discrete dynamical system. Note that (E, θ) is peri-
odic (preperiodic) if and only if the point of M0

Hodge(X, r) corresponding to
(E, θ) is periodic (respectively, preperiodic) for the above defined dynamical
system.

In the characteristic zero case one can also construct an analogous discrete
dynamical system by taking the associated graded of Simpson’s filtration of
the flat bundle corresponding to a system of Hodge bundles via the Kobayashi–
Hitchin correspondence. However, in the characteristic zero case this system
is less interesting as it carries much less information.
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6 The Bogomolov–Miyaoka–Yau inequality in positive characteristic

Let X be a smooth projective surface over an algebraically closed field k of
characteristic p. Let us fix an ample divisor H on X . Let N 1(X) = NS(X)⊗R,
where NS(X) is the Néron–Severi group of X . By the Hodge index the-
orem the intersection pairing on N 1(X) has signature (1, ρ − 1), where
ρ = dimR N 1(X). Therefore the open cone D2 > 0 has two components
separated by the hyperplane DH = 0. Let C+ denote the positive component
of this cone:

C+ := {D ∈ N 1(X) : D2 > 0 and DH > 0}.
The following proposition generalizes to arbitrary characteristic [34, The-

orem 9], proven by Shepherd-Barron in characteristic 2:

Proposition 2 Let X be a smooth projective surface that can be lifted to W2(k).
Then �1

X does not contain a line bundle M with M ∈ C+.

Proof Assume that M ∈ C+ and consider a system of Hodge bundles (E :=
E1 ⊕ E0, θ) with E1 = M, E0 = OX and θ : E1 = M → E0 ⊗ �X = �X
given by the inclusion. Note that (E, θ) is slope H -stable since the only rank
1 Hodge subsystem of (E, θ) is of the form (OX , 0). Therefore by Theorem 8
we have

0 = 4c2(E) ≥ c2
1(E) = M2,

a contradiction. ��
In [3, Theorem 4] Bogomolov proved that the cotangent bundle of a smooth

complex projective surface does not contain big line bundles. Below we present
an example showing that this is no longer true for smooth projective surfaces
liftable to the Witt ring. So Proposition 2 is the best result one can expect in
this situation.

Example 1 Let us recall the following example due to Ekedahl et al. (see [8,
p. 23, Remark ii]). Let X be a smooth projective Shimura surface, which is
the moduli space of abelian 4-folds with multiplication by a totally indefinite
quaternion algebra over a real quadratic field F . X can be also obtained as a
quotient of H × H by an irreducible arithmetic group (see [24, Example 4.4
and Example 5.6] for details). So �X = L ⊕ M where L and M are strictly nef
line bundles with L2 = M2 = 0 and L M > 0. X is defined over F and it has
a smooth projective model X → Spec OF,S , where OF,S is a localization of
the ring of integers of F along a finite set of places S. For all the unramified
prime ideals p ⊂ OF,S we can base change X to the Witt ring W (k) of the
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algebraic closure k of OF,S/p. For all the rational primes p that are inert in F
the reduction L p ⊂ �X p of L ⊂ �X is a big line bundle whereas X p lifts to
the Witt ring of the algebraic closure of the residue field.

Corollary 7 Let X be a smooth projective surface of non-negative Kodaira
dimension. Assume that X can be lifted to W2(k). Then 4c2(X) ≥ c2

1(X).
Moreover, if 4c2(X) = c2

1(X) then one of the following conditions is satisfied:

1. K 2
X = 0,

2. K 2
X > 0 and p = 2. In this case �X is slope stable with respect to every

ample polarization.

Proof Let us note that if X → Y is a blow up at a smooth point and X
can be lifted to W2(k) then also Y can be lifted to W2(k). Therefore, since
blowing up a smooth surface increases c2 and decreases c2

1, we can assume
that X is minimal. In this case K X is nef and in particular K X ∈ C+. If �X is
slope stable with respect to every ample polarization then the assertions follow
from Corollary 2. So we can assume that �X is not slope H -stable. Let M
be the maximal destabilizing subsheaf of �X . Since the quotient �X/M is a
rank 1 torsion free sheaf, we can write it as IZ L , where Z is a 0-dimensional
subscheme and L is a line bundle such that L + M = K X . By assumption we
have (2M − K X )H ≥ 0. Then

c2(X) = M L + deg Z ≥ M L = M(K X − M).

If (2M − K X )2 > 0 then (2M − K X ) ∈ C+ and hence 2M = (2M − K X ) +
K X ∈ C+, which contradicts Proposition 2. Therefore

4c2(X) − c2
1(X) ≥ 4M(K X − M) − K 2

X = −(2M − K X )2 ≥ 0,

which proves the required inequality.
If 4c2(X) = c2

1(X) > 0 then K X ∈ C+. So if �X is not slope H -stable
then (2M − K X )2 = 0. This implies that (2M − K X ) ∈ C+ and hence
2M = (2M − K X ) + K X ∈ C+, a contradiction. The fact that in this case
p = 2 follows from Theorem 13. ��

Note that Shepherd-Barron proved the above inequality in case p = 2
([34, Theorem 9 and Corollary 11]) and he conjectured that it remains true in
general (see [34, p. 244]). In fact, we show the following stronger version of
this inequality:

Theorem 13 Let X be a smooth projective surface of non-negative Kodaira
dimension. Assume that X can be lifted to W2(k). If p ≥ 3 then 3c2(X) ≥
c2

1(X).
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Proof As in the proof of Corollary 7 we can assume that K X ∈ C+. There
exists a canonical system of Hodge bundles (E := E1⊕E0, θ) with E1 = �X ,
E0 = OX and θ := id�X . If (E, θ) is slope H -semistable then by Theorem 8

3c2(E) = 3c2(X) ≥ c2
1(E) = c2

1(X).

So we can assume that (E, θ) is not slope H -semistable. Let (E ′, θ ′) be the
maximal destabilizing Hodge subsystem. The only rank 1 Hodge subsystem
is of the form (OX , 0) and it does not destabilize (E, θ) so E ′ has rank 2 (and
(E ′, θ ′) is slope H -stable). In this case E ′ = OX ⊕ M , where M is a line
bundle contained in �X . Since (E ′, θ ′) destabilizes (E, θ) we have

μ(E ′) = M H

2
> μ(E) = K X H

3
.

Therefore (3M−2K X )H > 0. If 3M−2K X ∈ C+ then 3M = (3M−2K X )+
2K X ∈ C+, which contradicts Proposition 2. This shows that (3M −2K X )2 ≤
0.

As before we write �X/M as IZ L , where Z is a 0-dimensional subscheme
and L is a line bundle such that L + M = K X . Then

c2(X) = M L + deg Z ≥ M L = M(K X − M).

Therefore, since M2 ≤ 0 by Proposition 2, we have

3c2(X) − c2
1(X) ≥ 3M(K X − M) + 3

4
M2 − K 2

X = −1

4
(3M − 2K X )2 ≥ 0.

��
The above proof of Theorem 13 follows quite closely proof of [35, Propo-

sition 9.9] but in the dual setting.

Remark 3 Note that passing to Simpson’s filtration can increase the level of
nilpotence. This is the reason why proof of Theorem 13 does not work in
characteristic 2 even though the level of nilpotence of the canonical system of
Hodge bundles is only one.

Proposition 3 Under the assumptions of Theorem 13, the equality 3c2(X) =
c2

1(X) holds if and only if X is minimal and one of the following conditions is
satisfied:

1. the canonical system of Hodge bundles (E = OX ⊕ �X , θ) is slope H-
stable and �(E) = 0,

2. K X ≡ 0 and there exists a line subbundle M ⊂ �X such that M2 = 0 and
M H > 0 for an ample divisor H,
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3. K 2
X = 0, K X �≡ 0 and there exists a line subbundle M ⊂ �X such that

M ≡ aK X for some positive rational number a,
4. �X is numerically flat (in particular, K X ≡ 0).

Proof Minimality of X is clear. First consider the case in which (E, θ) is not
slope H -semistable. Then the proof of Theorem 13 shows that 3c2(X) = c2

1(X)

implies that M2 = (3M − 2K X )2 = 0 and deg Z = 0 (which implies that
M is a line subbundle of �X ). Therefore (3M − 2K X ) ∈ C+, which implies
that K 2

X = 0 (otherwise K X ∈ C+ and 3M = (3M − 2K X ) + 2K X ∈ C+,
a contradiction). Hence M K X = 0 and by the Hodge index theorem either
K X ≡ 0 or K X �≡ 0 and there exists some positive rational number a such that
M ≡ aK X .

Now consider the case when (E, θ) is slope H -semistable but it is not slope
H -stable. Then there exists a saturated slope H -stable subsystem of Hodge
bundles (E ′, θ ′) such that μ(E ′) = μ(E).

If (E ′, θ ′) = (OX , 0) then K X H = 0. So K X is numerically trivial by the
Hodge index theorem. In this case the quotient (E, θ)/(E ′, θ ′) = (�X , 0)

is slope H -semistable. But then �X is strongly slope H -semistable (see [26,
Theorem 2.1]) and hence it is numerically flat (see [23, Proposition 5.1]).

If E ′ has rank 2 then E ′ = OX ⊕ M , where M is a line bundle contained
in �X . By assumption (3M − 2K X )H = 0. The same arguments as before
show that M is a line subbundle of �X and M2 = (3M − 2K X )2 = 0. But
then 3M ≡ 2K X , which also implies that K 2

X = 0. ��
Remark 4 It is easy to see that cases 1, 3 and 4 of the above proposition can
occur in every characteristic (including characteristic zero). Assume that we
are in the second case. Looking at the classification of surfaces one can easily
see that K X ≡ 0 and c2 = 0 can occur only if X is abelian or hyperelliptic or
quasi-hyperelliptic. In the first two cases we have a short exact sequence

0 → OX → �X → ωX → 0,

which easily gives a contradiction. This shows that X is quasi-hyperelliptic.
This can only occur in characteristics 2 and 3. Then we have a short exact
sequence

0 → OX (m�) → �X → ωX (−m�) → 0,

where � is the curve of cusps with �2 = 0 and m = 2 in characteristic 2 and
m = 1 in characteristic 3. The above sequence implies that M = OX (m�).
There are examples of quasi-hyperelliptic surfaces with vanishing H2(TX )

(see [19, Theorem 4.2]). Since H2(TX ) is the obstruction space to lifting, such
surfaces lift to W2(k). On the other hand, not all quasi-hyperelliptic surfaces
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lift to W2(k) as in some cases the Hodge to de Rham spectral sequence does
not degenerate at E1 (see [19, Theorem 4.4]) and we would get a contradiction
with [6, Corollaire 2.4].

7 Adjoint linear systems on surfaces

Existence of Bogomolov’s inequality for semistable sheaves on varieties
liftable to W2 has many interesting applications. In this subsection we state
just two results on adjoint linear systems on surfaces. The first one generalizes
Mumford’s vanishing theorem (see [2, IV, Theorem 12.1]) and it was already
known with a different proof (see [6, Corollaire 2.8]):

Theorem 14 Let X be a smooth projective surface liftable to W2(k). Let D
be a nef and big line bundle on X. Then H1(X, K X + D) = 0.

The vanishing follows immediately by replacing in proof of [2, IV, Theorem
12.1] usual Bogomolov’s inequality with Corollary 2.

Note that the same arguments show a counterexample to Bogomolov’s
inequality for semistable sheaves in positive characteristic. More precisely, let
X be a smooth projective surface in positive characteristic for which Kodaira’s
vanishing fails (see [33] or [30]). Then there exists an ample divisor H such
that H1(X, K X + H) �= 0. By Serre’s duality Ext1(OX (H), OX ) �= 0, so
there exists a non-trivial extension

0 → OX → E → OX (H) → 0.

Then the sheaf E is slope H -semistable, but �(E) < 0.
Similarly to the above, the usual characteristic zero proof can be used to

show the following Reider’s type theorem (cf. [2, IV, Section 11]). Details are
left to the reader.

Theorem 15 Let X be a smooth projective surface liftable to W2(k). Let D
be a nef line bundle on X and let Z be a zero-dimensional locally complete
intersection subscheme of X. Assume that D2 > 4 deg Z. Then Z is in special
position with respect to K X + D if and only if there there exists an effective
curve C containing Z such that Z is in (very) special position with respect to
OC (K X +D). Moreover, we can choose C so that D−2C is big, DC−deg Z ≤
C2 and 0 ≤ DC < 2 deg Z.

The above theorem has many applications to studying n-very ampleness and
n-jet ampleness of adjoint linear systems, to pluricanonical maps on surfaces
of general type, linear systems on surfaces of Kodaira dimension 0, etc.
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8 Lifting of Frobenius split varieties

Let f : X → S be a flat morphism of schemes in characteristic p and let
FX/S : X → X ′ be the relative Frobenius morphism. Let us fix a flat Z/p2

Z-
scheme S̃ such that S → S̃ is the closed subscheme defined by p. Then
pOS̃ � OS .

We say that an S-scheme X/S is F-split is the canonical map OX ′ →
FX/S,∗OX can be split by some OX ′-linear map FX/S,∗OX → OX ′ .

The following proposition was pointed out to the author by Bhargav Bhatt:

Proposition 4 If X/S is F-split then X ′ can be lifted to S̃.

Proof Let L X/S be the cotangent complex of X/S. By definition of the cotan-
gent complex it is easy to see that the map F∗

X/S L X ′/S → L X/S induced by
the relative Frobenius morphism is the zero map.

There exists a canonical obstruction obX/S : L X/S → OX [2] to lifting X/S
to S̃ (see [13, Chapitre III, Théorème 2.1.7]). By functoriality of obstructions
we have the following commutative diagram

L X ′/S

		 ��												 obX ′/S



 OX ′ [2]

		

FX/S,∗L X/S
FX/S,∗obX/S



 FX/S,∗OX [2]

��

But the vertical map L X ′/S → FX/S,∗L X/S is adjoint to F∗
X/S L X ′/S → L X/S ,

so it is zero. This implies that obX ′/S = 0 and X ′ can be lifted to S̃. ��
In the smooth case this proposition was proven in [14, p. 164] (see also [16,

Corollary 9.2]).
Let us recall that X/S is F-pure if the Frobenius map OX ′ → FX/S,∗OX is

locally split as a map of OX ′-modules. Proposition 4 immediately implies the
following corollary:

Corollary 8 If X/S is F-pure then locally in the Zariski topology X can be
lifted modulo p2.

Together with Theorem 8, Proposition 4 implies also the following corollary:

Corollary 9 Let X be a smooth projective variety defined over an alge-
braically closed field of positive characteristic p. Let H be an ample divisor
on X. Assume that X is F-split. Then for any slope H-semistable Higgs sheaf
(E, θ) on X of rank r ≤ p we have �(E)Hn−2 ≥ 0.
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