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Abstract We prove that if a countable group � contains a copy of F2, then it
admits uncountably many non orbit equivalent actions.

0 Introduction

Throughout this paper we consider free, ergodic, measure preserving (m.p.)
actions � � (X,μ) of countable, discrete groups � on standard probability
spaces (X,μ). Measurable group theory is roughly the study of such group
actions from the viewpoint of the induced orbit equivalence relation. A basic
question in measurable group theory is to find groups � which admit many
non-orbit equivalent actions (see the survey [35]). In this respect, recall that
two free, ergodic, m.p. actions � � (X,μ) and � � (Y, ν) are said to be
orbit equivalent (OE) if they induce isomorphic equivalence relations, i.e.
if there exists a measure space isomorphism θ : (X,μ) → (Y, ν) such that
θ(�x) = �θ(x), for almost every x ∈ X.

The striking lack of rigidity manifested by amenable groups (any two free,
ergodic m.p. actions of any two infinite amenable groups � and � are orbit
equivalent–a result proved by Dye in the case � and � are Abelian [8] and by
Ornstein–Weiss in general ([29], see also [6])) implies that the above question
is well-posed only for non-amenable groups. For a non-amenable group �, it
is known that � admits at least two non-OE actions [5, 18, 36]. Moreover, re-
cently, the following classes of non-amenable groups have been shown to ad-
mit uncountably many non-OE actions: property (T) groups [18], free groups
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([17], see also [20, 38]), weakly rigid groups [31], non-amenable products of
infinite groups ([33], see also [19, 26]) and mapping class groups [23]. These
classes of groups added to the already known ones [1, 15, 39].

In this paper, we prove that the same is true for a new, large class of non-
amenable groups.

Main Result Let � be a countable discrete group which contains a copy of
the free group F2. Then � has uncountably many non-OE actions.

Note that this result covers most non-amenable groups. The question of
whether every non-amenable � contains a copy of F2, known as von Neu-
mann’s problem, was open for a long time, until it was settled in the negative
by Ol’shanskii [28].

Remark In Sect. 3, we prove moreover that the main result remains true under
the weaker assumption that � is measure equivalent to a group containing a
copy of F2. Subsequently, a combination of results, ideas from [9, 16] and the
present paper has been used to show that the above result holds true for any
non-amenable group � [9]. This development led us to several applications:

Corollary 1 A countable group � is non-amenable if and only if we can
find a free, ergodic, m.p. action � � (X,μ) and a von Neumann subalgebra
Q ⊂ L∞(X,μ) such that

• Q′ ∩ L∞(X,μ) � � = L∞(X,μ) and
• the inclusion Q ⊂ L∞(X,μ) � � has relative property (T) (in the sense

of [30]).

Corollary 2 A countable group � is HT (in the sense of [30]) if and only if is
non-amenable and has Haagerup’s property.

Corollary 3 Any countable, non-amenable group � admits continuum many
non-von Neumann equivalent actions.

For the proofs and the definitions of the notions involved above we refer
the reader to Sect. 4. Note that Corollary 3 strengthens the main result of [9].

To outline the proof of the main result, recall that if we view F2 as a fi-
nite index subgroup of SL2(Z), then the pair (F2 � Z

2,Z
2) has the relative

property (T) of Kazhdan-Margulis [21, 25]. This fact implies that the induced

m.p. action F2 �
α

T
2 = Ẑ2 is rigid, in the sense of Popa [30]. The main idea

of the proof is then to consider the class F of actions � � X for which the
restriction F2 � X admits α as a quotient. Note that the rigidity of α has been
successfully used before by Gaboriau and Popa to show that non-Abelian free
groups admit continuum many non-OE actions [17].
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Using a separability argument (in the spirit of [4, 17, 30]) in connection
with the rigidity of α, we prove that in every uncountable set S ⊂ F con-
sisting of mutually orbit equivalent actions we can find two actions whose
restrictions to F2 are conjugate. On the other hand, using the co-induced con-
struction (see Sect. 2) we provide continuum many actions in F for which
the restrictions to F2 are mutually non-conjugate. Altogether, we deduce that
continuum many actions from F are non-orbit equivalent.

1 A separability argument

1.1 Conventions

We start this section by recalling some of the notions that we will use further.
For this, fix two m.p actions � �

σ (X,μ) and � �
α (Z, ν) of a countable

group �.

(i) The unitary representation πσ : � → U ((L2(X,μ)) induced by σ is de-
fined by πσ (γ )(f ) = f ◦ σ(γ −1), for all f ∈ L2(X,μ) and γ ∈ �. We
denote by π0

σ the restriction of πσ to L2(X,μ) 	 C1.
(ii) If Y ⊂ X is a measurable σ(�)-invariant set, then we call the action

� �
σ (Y,

μ|Y
μ(Y )

) the restriction of σ to Y and we denote it σ|Y . In this
case, we have that πσ = πσ|Y ⊕ πσ|X\Y .

(iii) We say that α is a quotient of σ if there exists a measurable, measure
preserving, onto map p : X → Z (called the quotient map) such that
p ◦ σ(γ ) = α(γ ) ◦ p, for all γ ∈ �. In this case, we have that πα ⊂ πσ .

(iv) We say that α and σ are conjugate if there exists a measure space iso-
morphism p : X → Z satisfying the condition in (iii). In this case, we
have that πα = πσ .

(v) The diagonal product of α and σ is the action of � on (Z, ν) × (X,μ)

given by (α × σ)(γ ) = α(γ ) × σ(γ ) for all γ ∈ �.

1.2 Relative property (T)

For an inclusion �0 ⊂ � of countable, discrete groups we say that the pair
(�,�0) has relative property (T) if for all ε > 0, there exists δ > 0 and F ⊂ �

finite such that if π : � → U (H) is a unitary representation and ξ ∈ H is a
unit vector satisfying

‖π(g)(ξ) − ξ‖ < δ, ∀g ∈ F,

then there exists ξ0 ∈ H such that

‖ξ0 − ξ‖ < ε, π(h)(ξ0) = ξ0, ∀h ∈ �0.



58 A. Ioana

Following Kazhdan-Margulis, the pair (SL2(Z)�Z
2,Z

2), where SL2(Z) acts
on Z

2 by matrix multiplication, has relative property (T) [21, 25]. In fact, for
any non-amenable subgroup � of SL2(Z), the pair (� � Z

2,Z
2) has relative

property (T) [2]. For more examples of pairs of groups with relative property
(T), see [10, 34].

From now on, we fix a countable group � which contains a copy of F2.
We also fix a free subgroup F2 ⊂ �. Next, we view F2 as a finite index sub-
group of SL2(Z). In particular, we get that the pair (F2 � Z

2,Z
2) has relative

property (T). Also, we denote by α the action of F2 on T
2 = Ẑ2 induced

by the action of F2 on Z
2. Note that this action preserves the Haar mea-

sure λ2 of T
2 and is free and weakly mixing. Finally, we represent the group

F2 � Z
2 as {(a, γ )|a ∈ Z

2, γ ∈ F2} with the group multiplication given by
(a1, γ1) ◦ (a2, γ2) = (a1γ1(a2), γ1γ2).

Theorem 1.3 Let F be the class of free, ergodic, m.p. actions � �
σ (X,μ)

on a fixed standard probability space (X,μ) satisfying the following:

(i) α is a quotient of σ|F2 , with the quotient map pσ : X → T
2.

(ii) ∀γ ∈ � \ {e}, the set {x ∈ X|pσ (γ x) = pσ (x)} has zero measure.

Let {σi}i∈I ⊂ F be an uncountable family of mutually orbit equivalent ac-
tions. Then there exists an uncountable set J ⊂ I with the following property:
for every i, j ∈ J , there exist two measurable sets Xi,Xj ⊂ X of positive
measure such that Xi is σi(F2)-invariant, Xj is σj (F2)-invariant and the re-
striction of σi |F2 to Xi is conjugate to the restriction of σj |F2

to Xj .

Proof Using the hypothesis we can actually assume that all σi generate the
same measurable equivalence relation R ⊂ X × X, i.e.

R = {(x, σi(γ )(x))|x ∈ X,γ ∈ �}, ∀i ∈ I.

Following [11], we endow R with the measure μ̃ given by

μ̃(A) =
∫

X

|A ∩ ({x} × X)|dμ(x),

for every Borel subset A ⊂ R.

By condition (i), for every j ∈ I , we can find a quotient map pj : (X,μ) →
(T2, λ2) a such that pj ◦ σj (γ ) = α(γ ) ◦ pj , for all γ ∈ F2. If a ∈ Z

2, then

we view a as a character on T
2 and we define η

j
a = a ◦ pj ∈ L∞(X,μ), for

all j ∈ I. It is easy to see that for all a ∈ Z
2, γ ∈ F2 and j ∈ I we have that

η
j

γ (a) = η
j
a ◦ σj (γ

−1). Using this relation it follows that the formula

πi,j (a, γ )(f )(x, y) = ηi
a(x)η

j
a(y)f (σi(γ

−1)(x), σj (γ
−1)(y)),
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for all f ∈ L2(R, μ̃), (x, y) ∈ R and (a, γ ) ∈ F2 � Z
2, defines a unitary

representation πi,j : F2 � Z
2 → U (L2(R, μ̃)), for every i, j ∈ I .

Let ξ = 1�, where � = {(x, x), x ∈ X}, then ξ ∈ L2(R, μ̃) and
‖ξ‖L2(R,μ̃) = 1. Given two functions φ1, φ2 : X → X, we denote by 1{φ1=φ2}
the characteristic function of the set of all x ∈ X such that φ1(x) = φ2(x). For
every i, j ∈ I and all (a, γ ) ∈ F2 � Z

2 we have that

‖πi,j (a, γ )(ξ) − ξ‖2
L2(R,μ̃)

= 2 − 2〈πi,j (a, γ )(ξ), ξ〉L2(R,μ̃)

= 2 − 2
∫

X

ηi
a(x)η

j
a(x)1{σi(γ

−1)=σj (γ −1)}(x)dμ(x)

(
if ‖f ‖∞,‖g‖∞ ≤ 1, then 

∫
X

(1 − fg) ≤ ‖1 − f ‖2 + ‖1 − g‖2

)

≤ 2‖1 − 1{σi(γ
−1)=σj (γ −1)}‖L2(X,μ) + 2‖1 − ηi

aη
j
a‖L2(X,μ)

= 2‖1{(x,σi (γ
−1)(x))|x∈X} − 1{(x,σj (γ −1)(x))|x∈X}‖L2(R,μ̃)

+ 2‖ηi
a1� − η

j
a1�‖L2(R,μ̃). (1)

Now, since the pair (F2 � Z
2,Z

2) has relative property (T), we can find
δ > 0 and A ⊂ Z

2,B ⊂ F2 finite sets such that if π : F2 � Z
2 → U (H) is a

unitary representation and ξ ∈ H is a unit vector which satisfies

‖π(a, γ )(ξ) − ξ‖ ≤ δ, ∀(a, γ ) ∈ A × B,

then there exists a π(Z2)-invariant vector ξ0 ∈ H such that ‖ξ0 − ξ‖ ≤ 1/2.
Next, since the Hilbert space L2(R, μ̃) is separable and I is uncountable,

we can find J ⊂ I uncountable such that

‖ηi
a1� − η

j
a1�‖L2(R,μ̃) ≤ δ2/4, ∀a ∈ A

and

‖1{(x,σi (γ
−1)(x))|x∈X} − 1{(x,σj (γ −1)(x))|x∈X}‖L2(R,μ̃) ≤ δ2/4, ∀γ ∈ B,

for all i, j ∈ J . When combined with inequality (1), this gives that

‖πi,j (a, γ )(ξ) − ξ‖L2(R,μ̃) ≤ δ, ∀(a, γ ) ∈ A × B, ∀i, j ∈ J (2)

Fix i, j ∈ J . Then by using relative property (T) together with (2) we can find
f ∈ L2(R, μ̃) such that ‖f − 1�‖L2(R,μ̃) ≤ 1/2 and f is πi,j (Z

2)-invariant,
i.e.

f (x, y) = ηi
a(x)η

j
a(y)f (x, y), ∀a ∈ Z

2 (3)

μ̃ almost everywhere (x, y) ∈ R.
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Define

S = {(x, y) ∈ R|ηi
a(x) = η

j
a(y),∀a ∈ Z

2}.
Then S ⊂ R is measurable and since f �= 0, (3) implies that μ̃(S) > 0. We
claim that for almost every x ∈ X, there is at most one y ∈ X such that
(x, y) ∈ S. If not, then we can find X0 ⊂ X a set of positive measure and
γ �= γ ′ ∈ � such that

(x, σj (γ )(x)), (x, σj (γ
′)(x)) ∈ S, ∀x ∈ X0.

Thus, in particular, we get that

η
j
a(σj (γ )(x)) = η

j
a(σj (γ

′)(x)), ∀x ∈ X0,∀a ∈ Z
2,

or, equivalently,

a(pj (σj (γ )(x))) = a(pj (σj (γ
′)(x))), ∀a ∈ Z

2,∀x ∈ X0.

Since characters separate points, we deduce that pj (σj (γ )(x)) =
pj (σj (γ

′)(x)), for all x ∈ X0. However, since X0 is assumed to have pos-
itive measure, this contradicts condition (ii), thus proving the claim. Now,
define Xi to be the set of x ∈ X with the property that there exists a unique
y ∈ X such that (x, y) ∈ S. The above claim and the fact that μ̃(S) > 0 imply
that μ(Xi) > 0.

If (x, y) ∈ S, then ηi
a(x) = η

j
a(y), for all a ∈ Z

2, thus

ηi
γ (a)(x) = η

j

γ (a)(y), ∀a ∈ Z
2,∀γ ∈ F2.

Since ηi
γ (a) = ηi

a ◦ σi(γ
−1), for all a ∈ Z

2 and γ ∈ F2, we deduce that

(σi(γ )(x), σj (γ )(y)) ∈ S, ∀γ ∈ F2. (4)

In particular, we get that Xi is σi(F2)-invariant. If we denote Xj = {y ∈
X|∃x ∈ Xi, (x, y) ∈ S}, then Xj is a measurable σj (F2)−invariant set. Define
φ : Xi → Xj by y = φ(x) iff (x, y) ∈ S. Then φ is a measure preserving
isomorphism. Indeed, as above, it follows that for almost every y ∈ X, there
exists at most one x ∈ X such that (x, y) ∈ S, hence φ is an isomorphism.
Moreover, since φ(x) lies in the orbit of x for almost every x ∈ X, we get that
φ is measure preserving.

Finally, note that relation (4) implies that σj (γ )(φ(x)) = φ(σi(γ )(x)) al-
most everywhere x ∈ Xi and for all γ ∈ F2, which gives the desired conju-
gacy. �

Note that up to this point we have no examples of class F actions. This will
be done in the next section by using a co-inducing construction for actions.
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2 The co-induced action

Let �0 ⊂ � be two countable groups and let �0 �
α (Y, ν) be a m.p. action.

Then there is a natural way to construct a m.p. action of � whose restriction
to �0 admits α as a quotient. We initially learned of this construction from
Sect. 3.4 in [14], but it has been known for a while, being used for example
in [7, 24]. Start by defining

X = {f : � → Y |f (γ γ0) = α(γ0)(f (γ )),∀γ0 ∈ �0,∀γ ∈ �}
and note that � acts on X by the formula (γf )(γ ′) = f (γ −1γ ′), for all γ and
γ ′ ∈ �.

Let e ∈ S ⊂ � be a set such that � = �s∈Ss�0. We observe that X can
be identified with YS = ∏

s∈S Y via f → (f (s))s∈S. Using this identifica-
tion we get an action α̃ (called the co-induced action) of � on YS given
by α̃(γ )((xs)s) = (ys′)s′, where ys′ = α(γ −1

0 )(xs) for the unique s ∈ S

and γ0 ∈ �0 such that γ −1s′ = sγ0. Then α̃ preserves the product measure
νS = ⊗

s∈S ν on YS .
In the next two lemmas we discuss the freeness and ergodicity of α̃. Before

this, we remark that p : YS → Y given by p((xs)s) = xe is a quotient map and
that p realizes α as a quotient of α̃|�0 .

Lemma 2.1 Assume that α is a free action and that (Y, ν) is a non-atomic
probability space. Then the set Aγ = {x ∈ YS |p(γ x) = p(x)} has zero mea-
sure, for all γ ∈ � \ {e}. In particular, α̃ is free.

Proof Note that if γ ∈ �0 \ {e}, then Aγ = {x ∈ YS |γ xe = xe}, hence the
freeness of α implies that Aγ has measure zero. On the other hand, if γ ∈
� \ �0, let s ∈ S \ {e} and γ0 ∈ �0 such that γ −1 = sγ0. Then Aγ = {x ∈
YS |xe = γ0

−1xs}, and since Y is non-atomic, we get that νS(Aγ ) = 0. �

Lemma 2.2 In the above setting, let � ⊂ � be a subgroup. Then

(i) If |�/�0| = ∞, then α̃ is weakly mixing. If |�/�0| < ∞, then α̃ is
weakly mixing iff α is weakly mixing.

(ii) α̃ is mixing iff α is mixing.
(iii) α̃|� is weakly mixing iff α|s�s−1∩�0

is weakly mixing for any s ∈ � such
that s�s−1 ∩ �0 ⊂ s�s−1 is of finite index.

(iv) α̃|� is mixing iff α|s�s−1∩�0
is mixing for any s ∈ �.

Proof Since (i) and (ii) follow by applying (iii) and (iv) to � = �, we only
need to prove (iii) and (iv).

(iii) Consider the action of � on S given by

γ · s′ = s ⇔ γ s′ ∈ s�0.



62 A. Ioana

For every t ∈ S and γ ∈ �, let βt be the m.p. action of � on
∏

s∈�·t (Y, ν)s

given by βt (γ )((xs)s) = (ys′)s′, where ys′ = α(γ −1
0 )(xs), for the unique s ∈

� · t and γ0 ∈ �0 such that γ −1s′ = sγ0. Note that if T ⊂ S is such that
S = ⊔

t∈T � · t , then α̃|� is the diagonal product of the actions βt with t ∈ T ,
i.e.

α̃|� = ×t∈T βt .

Claim 1 If t ∈ T and � · t is infinite, then βt is weakly mixing.

Proof To prove that βt is weakly mixing we need to show that if ξ1, . . . , ξn ∈
L2(

∏
s∈�·t (Y, ν)s) are functions of zero integral, then for every ε > 0 we can

find γ ∈ � such that |〈βt (γ )(ξi), ξj 〉| ≤ ε for all i, j . Note that in order to
prove this condition, we can assume that there exists a finite set F ⊂ � · t

such that ξi ∈ L2(
∏

s∈F (Y, ν)s) for all i = 1, . . . , n.
Now, since � · t is infinite, we can find γ ∈ � such that γF ∩ F = ∅.

This implies that βt(γ )(ξi) and ξj are independent for all i, j . Thus,
〈βt (γ )(ξi), ξj 〉 = 0 for all i, j , hence βt is weakly mixing. �

Using Claim 1 we get that α̃|� is weakly mixing iff βt is weakly mixing
for every t ∈ T such that � · t is finite. Let t ∈ T such that � · t is finite. Then

�t = {γ ∈ �|γ · t ′ = t ′,∀t ′ ∈ � · t}
is a finite index subgroup of �. Thus, βt is weakly mixing iff βt |�t

is weakly
mixing. Since

βt (γ ) = ×s∈�·tα(s−1γ s), ∀γ ∈ �t,

we further deduce that βt is weakly mixing iff α|s−1�ts
is weakly mixing for

every s ∈ � · t . Next, note that the inclusions

s−1�ts ⊂ s−1�s ∩ �0 ⊂ s−1�s

are of finite index for every s ∈ � · t . This implies that βt is weakly mixing iff
α|s−1�s∩�0

is weakly mixing for every s ∈ � · t . Altogether, we get that α̃|�
is weakly mixing iff α|s−1�s∩�0

is weakly mixing for all s ∈ � such that � · s
is finite.

Since � · s is finite iff � ∩ s�0s
−1 = {γ ∈ �|γ · s = s} ⊂ � is of finite

index, we get the conclusion.
(iv) Assume that α|s�s−1∩�0

is mixing for any s ∈ �. To prove that α̃|� is
mixing it suffices to show the following:

Claim 2 For any finitely supported vectors f = ⊗
s∈A fs, g = ⊗

s∈B gs ∈
L∞(Y S, νS), where A,B ⊂ S are finite and fs, gt ∈ L∞(Y, ν) have zero in-



Orbit inequivalent actions 63

tegral, for all s ∈ A and t ∈ B , we have that

lim
��γ→∞〈α̃(γ )(f ), g〉 = 0.

Proof Note that the induced action α̃ : � → Aut(L∞(Y S)) is given by
α̃(γ )(

⊗
s fs) = ⊗

s′ gs′, where gs′ = α(γ0)(fs) for the unique s ∈ S

and γ0 ∈ �0 such that γ s = s′γ0. Using this we get that if γ ∈ �, then
〈α̃(γ )(f ), g〉 = 0 unless |A| = |B| and there exists a bijection π : A → B

such that π(s)−1γ s ∈ �0 for all s ∈ A. In the latter case, we have that

〈α̃(γ )(f ), g〉 =
∏
s∈A

〈α(π(s)−1γ s))(fs), gπ(s)〉.

For a bijection π : A → B , let �π = {γ ∈ �|π(s)−1γ s ∈ �0,∀s ∈ A}. Then,
proving the claim is equivalent to proving that

lim
�π�γ→∞〈α̃(γ )(f ), g〉 = 0,

for all bijections π : A → B . Fix a bijection π : A → B , λ ∈ �π and s ∈ A.
Then for all γ ∈ �π we have that s−1(λ−1γ )s ∈ s−1�s ∩ �0 and that

〈α(π(s)−1γ s))(fs), gπ(s)〉 = 〈α((π(s)−1λs)(s−1(λ−1γ )s))(fs), gπ(s)〉
= 〈α(s−1(λ−1γ )s)(fs), α(s−1λ−1π(s))(fπ(s))〉.

Now, if we let �π � γ → ∞, then s−1�s ∩ �0 � s−1(λ−1γ )s → ∞. Since
α|s−1�s∩�0

is mixing by our assumption, we get that

lim
�π�γ→∞〈α(π(s)−1γ s))(fs), gπ(s)〉 = 0,

which ends the proof of the claim. �

The other implication follows easily and we omit its proof. �

For the next result, we assume the notations and assumptions of Sect. 1.
Thus, � is a countable group which contains �0 = F2 and α denotes the action
F2 � T

2.

Corollary 2.3 α̃ is weakly mixing and belongs to F . Moreover, for any er-
godic action ρ of �, the diagonal product action α̃ × ρ also belongs to F .

Proof Since α is weakly mixing (see for example [31]), Lemma 2.2(ii) im-
plies that α̃ is weakly mixing. When combined with Lemma 2.1. this gives
that α̃ ∈ F . The second assertion follows easily since α̃ is weakly mixing and
thus the diagonal product with any ergodic action is still ergodic. �
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3 Proof of the Main Result

Let � be a countable group containing a fixed copy of F2. Let {πi : F2 →
U (Hi )}i∈I be an uncountable family of mutually non-equivalent, irreducible,
c0-representations of F2, i.e. such that limg→∞〈πi(g)ξ, η〉 = 0 for all ξ, η ∈
Hi and i ∈ I [37].

Claim 1 For every i ∈ I , there exists a free, mixing, m.p. action � �
ρi

(Xi,μi) such that

πi ⊂ π0
ρi |F2

.

Proof For every i ∈ I , let π̃i : � → U (H̃i ) be the induced representation.
Then we can find a free, m.p., Gaussian action � �

ρi (Xi,μi) (see for exam-
ple [5, 13, 22]) such that

π̃i ⊂ π0
ρi

⊂
⊕
n≥1

π̃
⊗n

i .

Now, since πi is c0, we get that π̃i is also c0, thus ρi is a mixing action. Also,
since πi ⊂ π̃i |F2 we get the second assertion.

Next, for every i ∈ I , consider the diagonal product action σi = α̃ × ρi of
� on

(Zi, ηi) :=
∏

s∈�/F2

(T2, λ2)s × (Xi,μi),

where α̃ denotes the action � �
∏

s∈�/F2
(T2, λ2)s obtained by co-inducing α.

Since α̃ is free, weakly mixing and ρi is mixing, we deduce that σi is a free,
ergodic action, for all i ∈ I . �

Claim 2 Let i ∈ I and let Z′
i ⊂ Zi be a σi(F2)-invariant set of positive mea-

sure. Then the representation induced by the restriction of σi |F2 to Z′
i con-

tains πi .

Proof Since ρi is mixing, we derive that ρi |F2
is weakly mixing. Thus, since

Z′
i is σi(F2)-invariant, we get that Z′

i = B × Xi, for some measurable set
B ⊂ ∏

s∈�/F2
T

2 × Y . This implies that the restriction of σi |F2 to Z′
i admits

ρi |F2
as a quotient. Thus, the representation induced by the restriction of σi |F2

to Z′
i contains π0

ρi |F2
. Since, by Claim 1, the latter contains πi , we are done. �

Claim 3 For every i ∈ I , the set Ii of j ∈ I such that a restriction of σj |F2
is

conjugate to a restriction of σi |F2 is countable.
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Proof Let π be the unitary representation of F2 induced by σi |F2 . If j ∈ Ii ,
then π contains the representation induced by a restriction of σj |F2

. Now, by
Claim 2, the latter contains πj as a subrepresentation. Combining these two
inclusions, we get that πj ⊂ π, for all j ∈ Ii. Since a separable unitary rep-
resentation can only have countably many non-equivalent irreducible subrep-
resentations and since the π ′

j s are irreducible and mutually non-equivalent, it
follows that Ii is countable. �

Claim 4 Continuum many of the actions {σi}i∈I are mutually non-OE.

Proof If we assume the contrary, then we can find an uncountable set J ⊂ I

such that the actions {σj }j∈J are mutually orbit equivalent. Now, since β ×ρi

is ergodic, Corollary 2.3. implies that σi ∈ F , for all i ∈ I. Thus, by applying
Theorem 1.3. to the family of actions {σj }j∈J ⊂ F , we can find an uncount-
able subset K ⊂ J such that for all k, l ∈ K , a restriction of σk |F2 is conjugate
to a restriction of σl |F2 . This, however, implies that Ik is uncountable, for
every k ∈ K , in contradiction with Claim 3. This finishes the proof of our
main result. �

Let us show moreover that if � is a group containing F2 and if � is measure
equivalent to �, then � admits a continuum of free, ergodic, non-OE actions.
To this end, we first recall the definition of measure equivalence (see [12]).
Let � �

β (Y,μ) be a free, ergodic, m.p. action and let t > 0. Let n > t be a
natural number and set Yn = Y × {1, . . . , n} endowed with the natural mea-
sure. Next, let Y t ⊂ Yn be a measurable set of measure t and define Rt

β be
the equivalence relation on Y t given by: (x, i) ∼ (y, j) iff there exists γ ∈ �

such that y = β(γ )(x). Note that the isomorphism class of Rt
β depends on t

but not on the particular choice of Y t (since β is ergodic). If t = 1, then we
use the notation Rβ . Two groups � and � are measure equivalent (ME) if we
can find an action β as above, t > 0 and a free, ergodic, m.p. action δ of � on
Y t such that

Rt
β = Rδ.

Now, let � �
θ (S,m) be a weakly mixing, m.p. action. Then the diagonal

product action θ × β is ergodic and the equivalence relation Rt
θ×β can be re-

alized as the equivalence relation on S×Y t given by: (s, ((x, i)) ∼ (s′, (y, j))

iff there exists γ ∈ � such that s′ = θ(γ )(s) and y = β(γ )(x). Next, we note
the following claim due to Gaboriau [14]:

Claim 5 In the context from above, there exists a free, ergodic, m.p. action τ

of � on S × Y t such that

Rt
θ×β = Rτ .
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Proof Let λ ∈ �, then for almost every (x, i) ∈ Y t we can find a unique (by
the freeness of β) γ = w(λ, (x, i)) ∈ � such that δ(λ)(x, i) = (β(γ )(x), i).
Then w : � × Y t → � gives a cocycle for δ. This implies that the formula

τ(λ)(s, (x, i)) = (θ(w(λ, (x, i)))(s), δ(λ)(x, i))

for all λ ∈ �, s ∈ S, (x, i) ∈ Y t defines a m.p. �-action on S ×Y t . Moreover,
it is clear that Rt

θ×β = Rτ , hence, since θ ×β is ergodic, we get that τ is also
ergodic. Also, since τ admits δ as a quotient and since δ is free, we deduce
that τ is free. �

Finally, let β (resp. δ) be a free, ergodic, m.p. action of � (resp. of �)
such that Rt

β = Rδ, for some t > 0. For all i ∈ I , denote θi = α̃ × ρi and
σi = θi × β . From the proofs of Claims 1–4 it follows that continuum many
of the actions {σi}i∈I are non-orbit equivalent. On the other hand, by applying
Claim 5, we get that for every i ∈ I there exists a free, ergodic, m.p. action
τi of � such that Rt

σi
= Rτi

. Recall that two actions are orbit equivalent iff
they generate isomorphic equivalence relations. Thus, continuum many of the
actions {τi}i∈I are mutually non-orbit equivalent. This proves our moreover
assertion.

4 Applications to von Neumann algebras

(I) After the first draft of this paper was posted on the arxiv (January 2007),
there have been two important developments, in [9, 16]. To briefly present
these results, recall first that, in general, a non-amenable group � need not
contain a copy of F2 [28]. Nevertheless, D. Gaboriau and R. Lyons proved
in [16] that any non-amenable group � admits F2 as a measurable subgroup:

Theorem 4.1 [16] Let � be a countable non-amenable group. Then there
exist free, ergodic, m.p. actions � � (Z,η) and F2 � (Z,η) such that F2z ⊂
�z, a.e. z ∈ Z.

This result opened up the possibility that the condition � contains a copy
of F2 in the statement of our main theorem could be replaced by the more
general, natural condition � is non-amenable. To do this, by analogy with the
proof of our main result, a co-inducing construction in a group/measurable
subgroup situation rather than in a group/subgroup one, was needed.

Recently, I. Epstein obtained such a construction in [9] (see Lemma 4.2).
Using this construction, she was able to push our arguments in the case that
� is an arbitrary non-amenable group and to show that indeed any such �

admits continuum many non-OE actions [9].
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Lemma 4.2 [9] Let �0,� be two countable groups and assume that there
exist free, ergodic, m.p. actions � � (Z,η) and �0 � (Z,η) such that
�0z ⊂ �z, a.e. z ∈ Z. Let �0 �

α (Y, ν) be a free, ergodic, m.p. action. Then
there exist a probability space (X,μ), a quotient map pα : X → Y and free,
ergodic, m.p. actions �0 �

β (X,μ), � �
α̃ (X,μ) such that

(i) α as a quotient of β with pα as the quotient map.
(ii) ∀γ ∈ � \ {e}, the set {x ∈ X|pα(γ x) = pα(x)} has zero measure.

(iii) �0x ⊂ �x, a.e. x ∈ X.

Below, we obtain some consequences of Theorem 4.1 and Lemma 4.2. in
the theory of von Neumann algebras. We note that in the first draft of this
paper, we obtained these corollaries under the additional assumption that �

contains a copy of F2.
(II) We begin by observing that one can characterize the non-amenability

of a group � in terms of Popa’s notion of relative property (T) for von
Neumann algebras. For this, let M be a finite von Neumann algebra with
a faithful, normal trace τ and let B ⊂ M be a von Neumann subalgebra.
The inclusion (B ⊂ M) is rigid (or has relative property (T)) if when-
ever φn : M → M is a sequence of unital, tracial, completely positive (c.p.)
maps such that φn → idM in the pointwise ‖.‖2-topology, we must have
that limn→∞ supx∈B,‖x‖≤1 ‖φn(x) − x‖2 = 0 [30]. In the case (B ⊂ M) =
(L(�0) ⊂ L(�)), for two countable groups �0 ⊂ �, the inclusion (B ⊂ M) is
rigid iff the pair (�,�0) has relative property (T) [30].

Also, recall that the group measure space construction associates to every
free, ergodic, m.p. action � �

σ (X,μ) a II1 factor, L∞(X,μ)�σ �, together
with a Cartan subalgebra, L∞(X,μ) [27]. In [30], Popa asked to characterize
the countable groups � which admit a rigid action σ , i.e. such that the inclu-
sion L∞(X,μ) ⊂ L∞(X,μ) �σ � is rigid. The following result is motivated
by this question.

Theorem 4.3 A countable group � is non-amenable if and only if there exists
a free, ergodic, m.p. action � � (X,μ) and a diffuse von Neumann subalge-
bra Q ⊂ L∞(X,μ) such that

(i) Q′ ∩ L∞(X,μ) � � = L∞(X,μ) and
(ii) the inclusion Q ⊂ L∞(X,μ) � � is rigid.

Proof If � is amenable, then L∞(X,μ) � � is isomorphic to the hyperfinite
II1 factor, R, for any free, ergodic, m.p. action � � (X,μ) [3, 29]. Since
R does not contain any diffuse von Neumann subalgebra with the relative
property (T), we get the “if” part of the conclusion.

For the converse, let � be a non-amenable group. As before, denote by α

the action F2 � (T2, λ2). Then, by combining Theorem 4.1 and Lemma 4.2
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we can find a probability space (X,μ), a quotient map p : X → Y = T
2 and

two free, ergodic, m.p. actions F2 �
β (X,μ), � �

α̃ (X,μ) which satisfy
conditions (i)–(iii) in Lemma 4.2.

Denote by θ : L∞(T2, λ2) ↪→ L∞(X,μ) the embedding given by θ(f ) =
f ◦ p, for all f ∈ L∞(T2, λ2), and let Q = θ(L∞(T2, λ2)). We claim that
α̃ and Q verify the conclusion. For this, denote by {uγ }γ∈� the canonical
unitaries implementing the action of � on L∞(X,μ). Then it is easy to see
that Q′ ∩ L∞(X,μ) �α̃ � is generated by L∞(X,μ) and {1Aγ uγ |γ ∈ �},
where Aγ = {x ∈ X|p(γ −1x) = p(x)}, for all γ ∈ �. As μ(Aγ ) = 0, for all
γ ∈ � \ {e}, we deduce that Q′ ∩ L∞(X,μ) �α̃ � = L∞(X,μ).

Next, since p realizes α as a quotient of β , we get that θ extends to an
embedding

θ : L∞(T2, λ2) �α F2 ↪→ L∞(X,μ) �β F2.

Now, by [30], the inclusion L∞(T2, λ2) ⊂ L∞(T2, λ2) �α F2 is rigid, hence
the inclusion Q ⊂ L∞(X,μ) �β F2 is rigid. Finally, since F2x ⊂ �x, a.e.
x ∈ X, we have that L∞(X,μ) �β F2 ⊂ L∞(X,μ) �α̃ � and we deduce that
the inclusion Q ⊂ L∞(X,μ) �α̃ � is rigid [30]. �

Remark 4.4 Theorem 4.3 implies that every countable non-amenable group �

admits an almost rigid action. To make this precise, let σ be the action given
by Theorem 4.3 and let {pn}n≥1 be a sequence of projections which generate
L∞(X,μ). For every n, define Qn = (Q∨{p1, . . . , pn})′′. Then the inclusion
Qn ⊂ L∞(X,μ) �σ � is rigid and Q′

n ∩ L∞(X,μ) �σ � = L∞(X,μ), for
all n. Moreover, we have that

⋃
n≥1 Qn

w = L∞(X,μ).

Next, we denote by A = ⊕∞
1 Z and we note that if � contains s copy F2

then the action σ from Theorem 4.3 can be taken to come from an action of
� by automorphisms on A.

Proposition 4.5 Let � be a countable group which contains F2. Then there
exists a homomorphism ρ : � → Aut(A) and an infinite subgroup B ⊂ A

such that the pair (� �ρ A,B) has relative property (T) and that the set
{γ (b)b−1|b ∈ B} is infinite, for all γ ∈ � \ {e}.
Proof First, remark that F2 contains a copy of itself which has infinite index.
Indeed, if F2 = 〈a, b〉, then the subgroup generated by a and bab−1 has infi-
nite index and is isomorphic to F2. Thus, we can assume that F2 has infinite
index in �.

Next, let e ∈ S ⊂ � be a set such that � = ⊔
s∈S sF2 and identify A with⊕

s∈S Z
2. Then the co-induced construction from Sect. 2 shows the action

α : F2 → Aut(Z2) co-induces to an action ρ : � → Aut(A). Moreover, we
have that ρ(F2) invaries B = (Z2)e and that the inclusions of groups (B ⊂
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F2 �ρ|F2
B) and (Z2 ⊂ F2 �α Z

2) are isomorphic. Since the latter inclusion
has relative property (T), we deduce that the pair (� �ρ A,B) has relative
property (T). The second assertion is easy and we leave it to the reader. �

In connection with the statements of Theorem 4.3 and Proposition 4.5,
note that T. Férnos proved that a countable group � can act on a non-trivial
Abelian group A of finite Q-rank such that the pair (� � A,A) has relative
property (T) if and only if it admits a linear representation φ : � → SLn(R)

with non-amenable Zariski closure, φ(�) [10].
In the context of Proposition 4.5, it now follows that the induced action

� �
σ (Â,μ) verifies Theorem 4.3, where μ is the Haar measure on the dual

of A. We note that we do not know whether the converse of Proposition 4.5
is true, i.e. if any countable group � which has an action on A with the above
properties must necessarily contain F2.

The class of H T factors has been introduced by Popa, who used it to pro-
vide the first examples of II1 factors with trivial fundamental group [30]. A II1
factor M is in the H T class if it has a Cartan subalgebra A (called an HT Car-
tan subalgebra) such that:

(i) M has the property H relative to A and
(ii) there exists a von Neumann subalgebra B ⊂ A such that B ′ ∩M ⊂ A and

the inclusion B ⊂ M is rigid.

In [30], Popa raised the question of characterizing HT groups, i.e.
groups which admit a free, ergodic, m.p. action � �

σ (X,μ) such that
the corresponding Cartan subalgebra inclusion (A ⊂ M) = (L∞(X,μ) ⊂
L∞(X,μ) �σ �) is HT. Since in this case, M has property H relative to
A if and only if � has Haagerup’s property [30], Theorem 4.3 implies the
following:

Corollary 4.6 A countable group � is HT if and only if is non-amenable and
has Haagerup’s property.

(III) Recall that two actions � � (X,μ) and � � (Y, ν) are called von
Neumann equivalent (vNE) if the associated II1 factors are isomorphic, i.e. if
L∞(X,μ) � � � L∞(Y, ν) � � [32]. Next, we show that any non-amenable
group admits continuum many non-von Neumann equivalent actions. Since
von Neumann equivalence of actions is weaker than orbit equivalence [11]
this result generalizes Theorem 1.3 as well as the main result of [9]. For
� = Fn, n ≥ 2, this result has been first obtained in [GP].

Theorem 4.7 Any countable, non-amenable group � admits continuum many
non-vNE free, ergodic m.p. actions.
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Proof Let F̃ be the class of free, ergodic, m.p. actions � �
σ (X,μ) such that

there exists a free, ergodic, m.p. action F2 �
β (X,μ) satisfying the follow-

ing

(i) α is a quotient of β , with the quotient map pσ : X → T
2,

(ii) ∀γ ∈ � \ {e}, the set {x ∈ X|pσ (γ x) = pσ (x)} has zero measure and
(iii) F2x ⊂ �x, a.e. x ∈ X.

It is then proven in [9], by using Theorem 1.3, that there exists an uncount-
able family of actions � �

σi (Xi,μi) (i ∈ I ) from F̃ which are mutually
non-orbit equivalent. For every i ∈ I , denote Mi = L∞(Xi,μi) �σi

� and
Ai = L∞(Xi,μi).

Claim For every i0 ∈ I , the set J = {i ∈ I |Mi � Mi0} is countable.

Note that since I is uncountable, this claim implies that continuum many
of the actions {σi}i∈I are non-von Neumann equivalent.

Proof Start by denoting Q = L∞(T2, λ2) and N = L∞(T2, λ2)�α F2. Since
σi ∈ F̃ , the proof of Theorem 4.3. shows that there exists an embedding of
N into Mi such that under this embedding Q ⊂ Ai and Q′ ∩ Mi = Ai . Also,
since the inclusion Q ⊂ N is rigid [30], we can find F ⊂ N finite and δ > 0
such that if a unital, tracial, c.p. map φ : N → N satisfies ‖φ(x) − x‖2 ≤ δ,
for all x ∈ F , then

‖φ(b) − b‖2 ≤ 1/4, ∀b ∈ (Q)1. �

To prove the claim, assume by contradiction that J is uncountable. For
every i ∈ J , let θi : Mi → Mi0 be an isomorphism and consider the set
{θi(x)|x ∈ F } ⊂ L2(Mi0)

⊕|F | . Since L2(Mi0) is a separable Hilbert space and
since J is uncountable, we can find i �= j ∈ J such that

‖θi(x) − θj (x)‖2 ≤ δ, ∀x ∈ F.

Thus, the isomorphism θ = θj
−1 ◦ θi : Mi → Mj satisfies ‖θ(x) − x‖2 ≤ δ,

for all x ∈ F .
Further, if we let φ = (EN ◦ θ)|N : N → N (where EN : Mj → N is the

conditional expectation onto N ), then φ is a unital, tracial, c.p. map and

‖φ(x) − x‖2 = ‖EN(θ(x)) − x‖2 = ‖EN(θ(x) − x)‖2 ≤ δ, ∀x ∈ F. (5)

Using the fact that the inclusion Q ⊂ N is rigid, (1) implies that

‖EN(θ(u)) − u‖2 = ‖φ(u) − u‖2 ≤ 1/4, ∀u ∈ U (Q). (6)
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Since Q ⊂ N , (6) implies that

‖θ(u)u∗ − 1‖2
2

= 2 − 2τ(θ(u)u∗)

= 2 − 2τ(EN(θ(u))u∗) = 2τ((u − EN(θ(u)))u∗)

≤ 2‖u − EN(θ(u))‖2 ≤ 1/2, ∀u ∈ U (Q). (7)

Next, we use a standard averaging trick. For this, let K denote the ‖.‖2-
closure of the convex hull of the set {θ(u)u∗|u ∈ U (Q)} and let ξ ∈ K be the
element of minimal norm. Using (7) and the fact that K ⊂ (Mj )1, we deduce
that ‖ξ‖ ≤ 1 and that ‖ξ −1‖2 ≤ 1/2, so, in particular, ξ �= 0. Moreover, since
K is invariant under the ‖.‖2–preserving transformations K � η → θ(u)ηu∗,
for all u ∈ U (Q), the uniqueness of ξ implies that θ(u)ξu∗ = ξ, for all
u ∈ U (Q). Furthermore, it is easy to see that this relation is still verified if
we replace ξ by the partial isometry v in its polar decomposition and the uni-
tary u ∈ Q by an arbitrary element x ∈ Q (since any element in C∗-algebra is
a linear combination of 4 unitaries), i.e.

θ(x)v = vx, ∀x ∈ Q. (8)

Using (8) it follows immediately that v∗v ∈ Q′ ∩ Mj and that vv∗ ∈ θ(Q)′ ∩
Mj = θ(Q′ ∩ Mi). Denote q = vv∗,pi = θ−1(q) and pj = v∗v. Since Q′ ∩
Mk = Ak , for every k ∈ I , we get that pi ∈ Ai and pj ∈ Aj .

Now, if we define δ(x) = v∗θ(x)v, for all x ∈ piMipi , then δ : piMipi →
pjMjpj is an isomorphism. Moreover, (8) implies that for all x ∈ Q we have
that

δ(xpi) = v∗θ(xpi)v = v∗θ(x)v = v∗vx = xpj . (9)

In particular, (9) implies that δ((Qpi)
′ ∩piMipi) = (Qpj )

′ ∩pjMjpj , or,
equivalently, that δ(Aipi) = Ajpj . Altogether, we get that δ gives an isomor-
phism of the inclusions (Api ⊂ piMipi) � (Apj ⊂ pjMjpj ). Finally, since
pi and pj have the same trace, we would get that (Ai ⊂ Mi) � (Aj ⊂ Mj),
i.e. the actions σi and σj are orbit equivalent [11], a contradiction. �
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