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Abstract In this paper we investigate the 2-Selmer rank in families of
quadratic twists of elliptic curves over arbitrary number fields. We give suffi-
cient conditions on an elliptic curve so that it has twists of arbitrary 2-Selmer
rank, and we give lower bounds for the number of twists (with bounded con-
ductor) that have a given 2-Selmer rank. As a consequence, under appropri-
ate hypotheses we can find many twists with trivial Mordell-Weil group, and
(assuming the Shafarevich-Tate conjecture) many others with infinite cyclic
Mordell-Weil group. Using work of Poonen and Shlapentokh, it follows from
our results that if the Shafarevich-Tate conjecture holds, then Hilbert’s Tenth
Problem has a negative answer over the ring of integers of every number field.

1 Introduction and main results

In this paper we investigate the 2-Selmer rank in families of quadratic twists
of elliptic curves over arbitrary number fields. We give sufficient conditions
on an elliptic curve so that it has twists of 2-Selmer rank r for every r ≥ 0,
and discuss other conditions under which the 2-Selmer ranks of all quadratic

This material is based upon work supported by the National Science Foundation under
grants DMS-0700580 and DMS-0757807.

B. Mazur (�)
Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
e-mail: mazur@math.harvard.edu

K. Rubin
Department of Mathematics, UC Irvine, Irvine, CA 92697, USA
e-mail: krubin@math.uci.edu

mailto:mazur@math.harvard.edu
mailto:krubin@math.uci.edu


542 B. Mazur, K. Rubin

twists have the same parity. We also give lower bounds for the number of
twists (with bounded conductor) that have a given 2-Selmer rank.

Since the 2-Selmer rank is an upper bound for the Mordell-Weil rank,
our results have consequences for the Mordell-Weil rank. Under appropri-
ate hypotheses we can find many twists with trivial Mordell-Weil group, and
(assuming the Shafarevich-Tate conjecture below) many others with infinite
cyclic Mordell-Weil group.

Here are two applications of our results. The first settles an open question
mentioned to us by Poonen.

Theorem 1.1 If K is a number field, then there is an elliptic curve E over K

with E(K) = 0.

The second application combines our results with work of Poonen and
Shlapentokh. It relies on a weak version of the Shafarevich-Tate conjecture,
Conjecture XT2(K) below.

Theorem 1.2 Suppose Conjecture XT2(K) holds for every number field K .
Then for every number field K , Hilbert’s Tenth Problem is undecidable (i.e.,
has a negative answer) over the ring of integers of K .

We now discuss our methods and results in more detail. If K is a number
field and E is an elliptic curve over K , let Sel2(E/K) be the 2-Selmer group
of E/K (see Sect. 2 for the definition) and

d2(E/K) := dimF2 Sel2(E/K).

Then rank(E(K)) ≤ d2(E/K), so

d2(E/K) = 0 =⇒ rank(E(K)) = 0.

If F/K is a quadratic extension, let EF denote the quadratic twist of E by
F/K . We will allow the “trivial quadratic extension” F = K , in which case
EF = E. For X ∈ R+ define

Nr(E,X) := |{quadratic F/K : d2(E
F /K) = r and NK/Qf(F/K) < X}|

where f(F/K) denotes the finite part of the conductor of F/K .

1.1 Controlling the Selmer rank

Not all elliptic curves have twists of every 2-Selmer rank. For example, some
elliptic curves have “constant 2-Selmer parity”, meaning that d2(E

F /K) ≡
d2(E/K) (mod 2) for all quadratic extensions F/K . A theorem of Dok-
chitser and Dokchitser [7, Theorem 1] (see Theorem 9.3 below), combined



Ranks of twists of elliptic curves and Hilbert’s tenth problem 543

with standard conjectures, predicts that E/K has constant 2-Selmer parity if
and only if K is totally imaginary and E acquires everywhere good reduction
over an abelian extension of K . See Sect. 9 for a discussion of the phenom-
enon of constant 2-Selmer parity, and some examples.

We expect that constant parity and the existence of rational 2-torsion are
the only obstructions to having twists of every 2-Selmer rank. We also expect
that Nr(E,X) should grow like a positive constant times X, whenever it is
nonzero. Namely, we expect the following.

Conjecture 1.3 Suppose K is a number field and E is an elliptic curve
over K .

(i) If r ≥ dim2 E(K)[2] and r ≡ d2(E/K) (mod 2), then Nr(E,X) � X.
(ii) If K has a real embedding, or if E/K does not acquire everywhere good

reduction over an abelian extension of K , then Nr(E,X) � X for every
r ≥ dimF2 E(K)[2].

When K = Q and E is y2 = x3 − x, Heath-Brown [10] has shown that
limX→∞ Nr(E,X)/X = αr for every r ≥ 2, with an explicit positive con-
stant αr . Related results have been obtained by Swinnerton-Dyer [27] when
K = Q and E is an elliptic curve with all 2-torsion points rational.

In the direction of Conjecture 1.3, we have the following results.

Theorem 1.4 Suppose K is a number field, E is an elliptic curve over K ,
r ≥ 0, and E has a quadratic twist E′/K with d2(E

′/K) = r . Then:

(i) If Gal(K(E[2])/K) ∼= S3, then Nr(E,X) � X/(logX)2/3.
(ii) If Gal(K(E[2])/K) ∼= Z/3Z, then Nr(E,X) � X/(logX)1/3.

Note that Gal(K(E[2])/K) is isomorphic to S3 or Z/3Z if and only if
E(K)[2] = 0.

When K = Q, a version of Theorem 1.4 was proved by Chang in [3, The-
orem 4.10]. Also in the case K = Q, Chang has proved (slightly weaker)
versions of Theorem 1.7 and Corollary 1.12 below, namely [4, Theorem 1.1]
and [4, Corollary 1.2], respectively.

In the statements below, we will use the phrase “E has many twists”
with some property to indicate that the number of such twists, ordered by
NK/Qf(F/K), is � X/(logX)α for some α ∈ R.

Theorem 1.5 Suppose K is a number field, and E is an elliptic curve over K

such that E(K)[2] = 0. Suppose further that either K has a real embedding,
or that E has multiplicative reduction at some prime of K .

If r = 0, 1, or r ≤ d2(E/K), then E has many quadratic twists E′/K with
d2(E

′/K) = r.
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Theorem 1.6 Suppose K is a number field, and E is an elliptic curve over K

such that Gal(K(E[2])/K) ∼= S3. Let �E be the discriminant of some model
of E, and suppose further that K has a place v0 satisfying one of the following
conditions:

• v0 is real and (�E)v0 < 0, or
• v0 � 2∞, E has multiplicative reduction at v0, and ordv0(�E) is odd.

Then for every r ≥ 0, E has many quadratic twists E′/K with d2(E
′/K) = r.

Theorem 1.7 Suppose K is a number field, and E is an elliptic curve over
K such that E(K)[2] = 0. If 0 ≤ r ≤ d2(E/K) and r ≡ d2(E/K) (mod 2),
then E has many quadratic twists E′/K such that d2(E

′/K) = r .

Corollary 1.8 Suppose K is a number field, and E is an elliptic curve over
K with constant 2-Selmer parity such that Gal(K(E[2])/K) ∼= S3. Let j (E)

be the j -invariant of E, and suppose further that j (E) �= 0 and K has an
archimedean place v such that (j (E))v ∈ R and (j (E))v < 1728. Then for
every r ≡ d2(E/K) (mod 2), E has many quadratic twists E′/K such that
d2(E

′/K) = r .

For every number field K , there are elliptic curves E over K satisfying the
hypotheses of Theorem 1.6. In fact, E can be taken to be the base change of
an elliptic curve over Q (see Lemma 5.4).

Corollary 1.9 Suppose K is a number field. There are elliptic curves E over
K such that for every r ≥ 0, E has many twists E′/K with d2(E

′/K) = r .

1.2 Controlling the Mordell-Weil rank

Using the relation between d2(E/K) and rank(E(K)) leads to the following
corollaries.

Corollary 1.10 Suppose K is a number field, and E is an elliptic curve over
K such that E(K)[2] = 0. Suppose further that either K has a real embed-
ding, or that E has multiplicative reduction at some prime of K . Then E has
many twists E′/K with E′(K) = 0.

When K = Q, Corollary 1.10 was proved by Ono and Skinner ([19,
Sect. 1], [18, Corollary 3]), using methods very different from ours (mod-
ularity and special values of L-functions).

Theorem 1.1 is an immediate consequence of the following corollary.

Corollary 1.11 Suppose K is a number field. There are elliptic curves E

over K such that E has many twists E′/K with E′(K) = 0.
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If E is an elliptic curve over a number field K , let X(E/K) de-
note the Shafarevich-Tate group of E over K (see Sect. 2). A conjec-
ture that is part of the folklore (usually called the Shafarevich-Tate Con-
jecture [1, p. 239, footnote (5)]) predicts that X(E/K) is finite. If the
2-primary subgroup X(E/K)[2∞] is finite, then the Cassels pairing shows
that dimF2 X(E/K)[2] is even. We record this 2-parity conjecture as follows.

Conjecture XT2(K) For every elliptic curve E/K , dimF2 X(E/K)[2] is
even.

Corollary 1.12 Suppose K is a number field, and E is an elliptic curve over
K such that E(K)[2] = 0. Suppose further that either K has a real embed-
ding, or that E has multiplicative reduction at some prime of K . If Conjec-
ture XT2(K) holds, then E has many quadratic twists with infinite cyclic
Mordell-Weil group.

Skorobogatov and Swinnerton-Dyer [26] obtained results related to Corol-
lary 1.12 in the case where all the 2-torsion on E is rational over K .

1.3 Controlling the rank over two fields simultaneously

Suppose L/K is a cyclic extension of prime degree of number fields. With
care, we can simultaneously control the 2-Selmer rank of twists of E over K

and over L, leading to the following result.

Theorem 1.13 Suppose L/K is a cyclic extension of prime degree of num-
ber fields. Then there is an elliptic curve E over K with rank(E(L)) =
rank(E(K)).

If Conjecture XT2(K) is true, then there is an elliptic curve E over K

with rank(E(L)) = rank(E(K)) = 1.

Assuming standard conjectures, the second assertion of Theorem 1.13 can
fail when L/K is not cyclic. See Remark 7.7 for more about this.

By using the final assertion of Lemma 5.4 in the proof of Theorem 1.13,
we can take the elliptic curve E in Theorem 1.13 to be a twist over K of an
elliptic curve defined over Q. Similarly, in Corollaries 1.9 and 1.11 we can
conclude that there are elliptic curves E/Q that have many quadratic twists
E′/K having d2(E

′/K) = r or E′(K) = 0, respectively.
Poonen and Shlapentokh showed how to use Theorem 1.13 together with

ideas from [20, Theorem 1 and Corollary 2], [5], and [24] to prove Theo-
rem 1.2 about Hilbert’s Tenth Problem. In fact one can be more precise about
how much of Conjecture XT2 is required; see Theorem 8.1.

A theorem of Eisenträger [8, Theorem 7.1] gives the following corollary
of Theorem 1.2.
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Corollary 1.14 Suppose Conjecture XT2(K) holds for every number
field K . Then Hilbert’s Tenth Problem has a negative answer over every infi-
nite ring A that is finitely generated over Z.

1.4 Some remarks about the proofs

Our methods are different from the classical 2-descent, and are more in the
spirit of the work of Kolyvagin, especially as described in [14]. If F is a
quadratic extension of K , the 2-Selmer group Sel2(EF /K) is defined as a
subgroup of H 1(K,EF [2]) cut out by local conditions (see Definition 2.3).
The GK -modules E[2] and EF [2] are canonically isomorphic, so we can
view Sel2(EF /K) ⊂ H 1(K,E[2]) for every F . In other words, all the dif-
ferent 2-Selmer groups are subgroups of H 1(K,E[2]), cut out by different
local conditions. Our method is to try to construct F so that the local condi-
tions defining Sel2(E/K) and Sel2(EF /K) agree everywhere except at most
one place, and to use that one place to vary the 2-Selmer rank in a controlled
manner.

For example, to prove Theorem 1.4 we find many different quadratic ex-
tensions F for which all of the local conditions defining Sel2(E/K) and
Sel2(EF /K) are the same, so in fact Sel2(EF /K) = Sel2(E/K).

For another example, suppose the hypotheses of Theorem 1.6 are satisfied.
We will take F = Q(

√
π), where π is a generator of a prime ideal p chosen

using the Cebotarev theorem, so that the local conditions defining Sel2(E/K)

and Sel2(EF /K) are the same for all places different from p. By choosing the
prime p appropriately, we will also ensure that Sel2(EF /K) ⊂ Sel2(E/K)

with codimension one, so d2(E
F /K) = d2(E/K) − 1.

Similarly, we can choose a different F such that Sel2(E/K) ⊂ Sel2(EF /K)

with codimension one, so d2(E
F /K) = d2(E/K)+ 1. Now Theorem 1.6 fol-

lows by induction.
Theorems 1.5, 1.7, and 1.13 are proved in the same general manner.
A key tool in several of our arguments is a theorem of Kramer [11, Theo-

rem 1] that gives a formula for the parity of d2(E/K) + d2(E
F /K) in terms

of local data. See Theorem 2.7 below.

1.5 Layout of the paper

In the next section we define the 2-Selmer group and study the local sub-
groups that occur in the definition. In Sect. 3 we give a general result (Propo-
sition 3.3) comparing the 2-Selmer ranks of quadratic twists, and lay the
groundwork (Lemma 3.5) for using the Cebotarev theorem to construct useful
twists.

Theorem 1.4 is proved in Sect. 4. Theorems 1.5, 1.6 and 1.7, and Corol-
laries 1.8, 1.9, 1.10, 1.11, and 1.12, are all proved in Sect. 5. In Sect. 6 we
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prove Theorem 1.13 in the case [L : K] = 2, and the rest of Theorem 1.13
is proved in Sect. 7. Theorem 1.2 is proved in Sect. 8. In Sect. 9 we discuss
elliptic curves with constant 2-Selmer parity.

2 Local conditions

Fix for this section a number field K .

Definition 2.1 Suppose E is an elliptic curve over K . For every place v of K ,
let H 1

f (Kv,E[2]) denote the image of the Kummer map

E(Kv)/2E(Kv) −→ H 1(Kv,E[2]).
(Note that H 1

f (Kv,E[2]) depends on E, not just on the Galois module E[2].)
Lemma 2.2

(i) If v � 2∞ then dimF2(H
1
f (Kv,E[2])) = dimF2(E(Kv)[2]).

(ii) If v � 2∞ and E has good reduction at v, then

H 1
f (Kv,E[2]) ∼= E[2]/(Frobv − 1)E[2]

with the isomorphism given by evaluating cocycles at the Frobenius au-
tomorphism Frobv .

Proof Suppose v � 2∞, and let � > 2 be the residue characteristic of v. Then
E(Kv) is a commutative profinite group with a pro-� subgroup of finite index,
so H 1

f (Kv,E[2]) ∼= E(Kv)/2E(Kv) and E(Kv)[2] are (finite dimensional)
F2-vector spaces of the same dimension.

If in addition E has good reduction at v, then (see for example [2])

H 1
f (Kv,E[2]) = H 1(Kur

v /K,E[2]) ⊂ H 1(Kv,E[2])
and (ii) follows. �

Definition 2.3 Suppose E is an elliptic curve over K . The 2-Selmer group
Sel2(E/K) ⊂ H 1(K,E[2]) is the (finite) F2-vector space defined by the ex-
actness of the sequence

0 −→ Sel2(E/K) −→ H 1(K,E[2]) −→ ⊕

v

H 1(Kv,E[2])/H 1
f (Kv,E[2]).

The Kummer map E(K)/2E(K) → H 1(K,E[2]) induces an exact se-
quence

0 −→ E(K)/2E(K) −→ Sel2(E/K) −→ X(E/K)[2] −→ 0 (1)
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where X(E/K)[2] is the kernel of multiplication by 2 in the Shafarevich-
Tate group of E/K .

Recall that d2(E/K) := dimF2 Sel2(E/K).

Remark 2.4 If E is an elliptic curve over K and EF is a quadratic twist, then
there is a natural identification of Galois modules E[2] = EF [2]. This allows
us to view Sel2(E/K),Sel2(EF /K) ⊂ H 1(K,E[2]), defined by different
sets of local conditions. By choosing F carefully, we can ensure that the local
conditions H 1

f (Kv,E[2]),H 1
f (Kv,E

F [2]) ⊂ H 1(Kv,E[2]) coincide for all
but at most one v, and then using global duality we will compare d2(E/K)

and d2(E
F /K).

Lemma 2.5 If F is a quadratic extension of K , then

d2(E/K) + d2(E
F /K) ≡ d2(E/F) + dimF2(E(F )[2]) (mod 2).

Proof Let Sel2∞(E/K) denote the 2-power Selmer group of E/K , the di-
rect limit over n of the 2n-Selmer groups Sel2n(E/K) defined analogously
to Sel2(E/K) above. Using the Cassels pairing it is straightforward to show
(see for example [15, Proposition 2.1])

corankZ2(Sel2∞(E/K)) ≡ d2(E/K) + dimF2 E(K)[2] (mod 2). (2)

The natural map

Sel2∞(E/K) ⊕ Sel2∞(EF /K) −→ Sel2∞(E/F)

has finite kernel and cokernel, so

corankZ2(Sel2∞(E/K)) + corankZ2(Sel2∞(EF /K))

= corankZ2(Sel2∞(E/F)).

Combining this with (2), and observing that E(K)[2] ∼= EF (K)[2], proves
the congruence of the lemma. �

Fix for the rest of this section an elliptic curve E/K and a quadratic exten-
sion F/K . Recall that EF is the twist of E by F/K . Let �E be the discrimi-
nant of some model of E.

Definition 2.6 If v is a place of K , let EN(Kv) ⊂ E(Kv) denote the image
of the norm map E(Fw) → E(Kv) for any choice of w above v (this is inde-
pendent of the choice of w), and define

δv(E,F/K) := dimF2(E(Kv)/EN(Kv)).
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The following theorem of Kramer will play an important role in many of
our proofs below.

Theorem 2.7 (Kramer) We have

d2(E
F /K) ≡ d2(E/K) +

∑

v

δv(E,F/K) (mod 2).

Proof This is a consequence of [11, Theorem 1]. Combining Theorems 1
and 2 of [11] shows that

rank(E(F )) + dimF2(X(E/F)[2]) ≡
∑

v

δv(E,F/K) (mod 2).

By (1), the left-hand side of this congruence is d2(E/F) − dimF2(E(F )[2]),
and by Lemma 2.5 this is congruent to d2(E/K) + d2(E

F /K). �

Remark 2.8 A key step in Kramer’s proof is the following remarkable con-
struction. There are alternating Cassels pairings hE on Sel2(E/K) and hEF

on Sel2(EF /K). Their sum is a new alternating pairing on the intersection
Sel2(E/K) ∩ Sel2(EF /K), and Kramer shows [11, Theorem 2] that the ker-
nel of hE + hEF is NF/KSel2(E/F). Therefore

dimF2(Sel2(E/K) ∩ Sel2(E
F /K)) ≡ dimF2(NF/KSel2(E/F)) (mod 2).

Lemma 2.9 Under the identification H 1
f (Kv,E[2]) = E(Kv)/2E(Kv), we

have

H 1
f (Kv,E[2]) ∩ H 1

f (Kv,E
F [2]) = EN(Kv)/2E(Kv).

Proof This is [11, Proposition 7] or [15, Proposition 5.2] (the proof given
in [15] works even if p = 2, and even if v | ∞). �

Lemma 2.10 (Criteria for equality of local conditions after twist) If at least
one of the following conditions (i)–(v) holds:

(i) v splits in F/K , or
(ii) v � 2∞ and E(Kv)[2] = 0, or

(iii) E has multiplicative reduction at v, F/K is unramified at v, and
ordv(�E) is odd, or

(iv) v is real and (�E)v < 0, or
(v) v is a prime where E has good reduction and v is unramified in F/K ,

then H 1
f (Kv,E[2]) = H 1

f (Kv,E
F [2]) and δv(E,F/K) = 0.
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Proof By Lemma 2.9, we have

H 1
f (Kv,E[2]) = H 1

f (Kv,E
F [2]) ⇐⇒ EN(Kv) = E(Kv)

⇐⇒ δv(E,F/K) = 0.

If v splits in F/K then EN(Kv) = E(Kv).
If v � 2∞ and E(Kv)[2] = 0, then H 1

f (Kv,E[2]) = H 1
f (Kv,E

F [2]) = 0
by Lemma 2.2(i).

If E has multiplicative reduction at v, F/K is unramified at v, and
ordv(�E) is odd, then [11, Propositions 1 and 2(a)] shows that
δv(E,F/K) = 0.

If v is real and (�E)v < 0, then E(Kv) is connected and δv(E,F/K) = 0.
If E has good reduction at v and v is unramified in F/K , then

δv(E,F/K) = 0 by [13, Corollary 4.4]. This completes the proof. �

Lemma 2.11 (Criterion for transversality of local conditions after twist) If
v � 2∞, E has good reduction at v, and v is ramified in F/K , then

H 1
f (Kv,E[2]) ∩ H 1

f (Kv,E
F [2]) = 0, δ(E,F/K) = dimF2(E(Kv)[2]).

Proof For such v, [13, Corollary 4.6] or [15, Lemma 5.5] show that
EN(Kv) = 2E(Kv). Now the first assertion of the lemma follows from
Lemma 2.9, and the second from Lemma 2.2(i). �

3 Comparing Selmer groups

We continue to fix a number field K , an elliptic curve E/K , and a quadratic
extension F/K .

Definition 3.1 If T is a finite set of places of K , let

locT : H 1(K,E[2]) −→
⊕

v∈T

H 1(Kv,E[2])

denote the sum of the localization maps. Define strict and relaxed 2-Selmer
groups ST ⊂ S T ⊂ H 1(K,E[2]) by the exactness of

0 S T H 1(K,E[2])
⊕

v /∈T

H 1(Kv,E[2])/H 1
f (Kv,E[2]),

0 ST S T
locT ⊕

v∈T

H 1(Kv,E[2]).
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Then by definition ST ⊂ Sel2(E/K) ⊂ S T , and we define

VT := locT (Sel2(E/K)) ⊂
⊕

v∈T

H 1
f (Kv,E[2]).

Lemma 3.2 dimF2 S T − dimF2 ST = ∑
v∈T dimF2 H 1

f (Kv,E[2]).
Proof We have exact sequences

0 Sel2(E/K) S T
locT ⊕

v∈T

(H 1(Kv,E[2])/H 1
f (Kv,E[2]))

0 ST Sel2(E/K)
locT ⊕

v∈T

H 1
f (Kv,E[2]).

By Poitou-Tate global duality (see for example [17, Theorem I.4.10], [28,
Theorem 3.1], or [22, Theorem 1.7.3]), the images of the right-hand maps
are orthogonal complements under the (nondegenerate) sum of the local
Tate pairings, so their F2-dimensions sum to

∑
v∈T dimF2 H 1

f (Kv,E[2]). The
lemma follows directly. �

Proposition 3.3 Suppose that all of the following places split in F/K :

• all primes where E has additive reduction,
• all v of multiplicative reduction such that ordv(�E) is even,
• all primes above 2,
• all real places v with (�E)v > 0,

and suppose in addition that all v of multiplicative reduction such that
ordv(�E) is odd are unramified in F/K .

Let T be the set of (finite) primes p of K such that F/K is ramified at p

and E(Kp)[2] �= 0. Then

d2(E
F /K) = d2(E/K) − dimF2 VT + d

for some d satisfying

0 ≤ d ≤ dimF2

(⊕

p∈T

H 1
f (Kp,E[2])/VT

)
,

d ≡ dimF2

(⊕

p∈T

H 1
f (Kp,E[2])/VT

)
(mod 2).

Proof Let V F
T := locT (Sel2(EF /K)) ⊂ ⊕

p∈T H 1
f (Kp,E[2]).
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By Lemma 2.10, H 1
f (Kv,E[2]) = H 1

f (Kv,E
F [2]) if v /∈ T . Therefore we

have ST ⊂ Sel2(EF /K) ⊂ S T , and we have exact sequences

0 ST Sel2(E/K)
locT

VT 0

0 ST Sel2(EF /K)
locT

V F
T 0.

We deduce that

d2(E
F /K) = d2(E/K) + dimF2 V F

T − dimF2 VT . (3)

Let

t :=
∑

p∈T

dimF2 H 1
f (Kp,E[2]).

By Lemma 2.11 we have Sel2(E/K)∩Sel2(EF /K) = ST , and by the remark
above we also have Sel2(E/K) + Sel2(EF /K) ⊂ S T . Hence

dimF2 VT + dimF2 V F
T = dimF2(Sel2(E/K)/ST ) + dimF2(Sel2(E

F /K)/ST )

≤ dimF2(S T /ST ) = t, (4)

where the final equality holds by Lemma 3.2.
Recall the local norm index δv(E,F/K) of Definition 2.6. By Lemma 2.10,

δv(E,F/K) = 0 if v /∈ T , and by Lemma 2.11,
∑

p∈T

δv(E,F/K) = t,

so d2(E
F /K) ≡ d2(E/K) + t (mod 2) by Kramer’s congruence (Theo-

rem 2.7). Comparing this with (3) we see that

dimF2 V F
T ≡ t − dimF2 VT = dimF2

(⊕

p∈T

H 1
f (Kp,E[2])/VT

)
(mod 2). (5)

By (4) we have

0 ≤ dimF2 V F
T ≤ t − dimF2 VT = dimF2

(⊕

p∈T

H 1
f (Kp,E[2])/VT

)
. (6)

If we let d = dimF2 V F
T , then the conclusion of the proposition follows

from (3), (5), and (6). �
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Corollary 3.4 Suppose E, F/K , and T are as in Proposition 3.3.

(i) If dimF2(
⊕

p∈T H 1
f (Kp,E[2])/VT ) ≤ 1, then

d2(E
F /K) = d2(E/K) − 2 dimF2 VT +

∑

p∈T

dimF2 H 1
f (Kp,E[2]).

(ii) If E(Kp)[2] = 0 for every p ∈ T , then d2(E
F /K) = d2(E/K).

Proof The first assertion follows directly from Proposition 3.3. For (ii), note
that T is empty in this case, so (ii) follows from (i). �

Let M := K(E[2]). If c ∈ H 1(K,E[2]) and σ ∈ GK , let

c(σ ) ∈ E[2]/(σ − 1)E[2]
denote the image of σ under any cocycle representing c. This is well-defined.

Lemma 3.5 Suppose Gal(M/K) ∼= S3 and σ ∈ GK . Suppose that C is a
finite subgroup of H 1(K,E[2]), and φ : C → E[2]/(σ − 1)E[2] is a homo-
morphism.

Then there is a γ ∈ GK such that γ |MKab = σ |MKab and c(γ ) = φ(c) for
all c ∈ C.

Proof Let 
 := Gal(M/K) ∼= Aut(E[2]). Then H 1(
,E[2]) = 0, so the re-
striction map

H 1(K,E[2]) ↪→ Hom(GM,E[2])


is injective.
Fix cocycles {c1, . . . , ck} representing an F2-basis of C. Then c1, . . . , ck re-

strict to linearly independent homomorphisms c̃1, . . . , c̃k ∈ Hom(GM,E[2])
 .
Let N ⊂ K̄ be the (abelian) extension of M fixed by

⋂
i ker(c̃i) ⊂ GM . Put

W := GM/
⋂

i ker(c̃i) = Gal(N/M). Then W is an F2-vector space with an
action of 
, c̃1, . . . , c̃k are linearly independent in Hom(W,E[2])
 , and

c̃1 × · · · × c̃k : W ↪→ E[2]k (7)

is a 
-equivariant injection. Thus W is isomorphic to a 
-submodule of
the semisimple module E[2]k , so W is also semisimple. But if U is an
irreducible constituent of W , then U is also an irreducible constituent of
E[2]k , so U ∼= E[2]. Therefore W ∼= E[2]j for some j ≤ k. But then j =
dimF2 Hom(W,E[2])
 ≥ k, so j = k and (7) is an isomorphism.

The group 
 acts trivially on Gal((MKab ∩ N)/M) by conjugation, but
Gal(N/M) = W ∼= E[2]k has no nonzero quotients on which 
 acts trivially,
so MKab ∩ N = M .
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Since (7) is surjective and MKab ∩ N = M , we can choose τ ∈ GM such
that ci(τ ) = φ(ci) − ci(σ ) for 1 ≤ i ≤ k, and τ |MKab = 1. Then ci(τσ ) =
ci(τ ) + τ(ci(σ )) = φ(ci) for every i. Since the ci represent a basis of C, the
proposition is satisfied with γ := τσ . �

Lemma 3.6 Suppose E(K)[2] = 0, and c1, c2 are cocycles representing dis-
tinct nonzero elements of H 1(K,E[2]). Then there is a γ ∈ GK such that
γ |MKab = 1 and c1(γ ), c2(γ ) are an F2-basis of E[2].

Proof Let 
 := Gal(M/K), so either 
 ∼= S3 or 
 ∼= Z/3Z. In either case
E[2] is an irreducible 
-module, and H 1(
,E[2]) = 0, so the restriction map

H 1(K,E[2]) ↪→ Hom(GM,E[2])


is injective. Let c̃1, c̃2 be the distinct nonzero elements of Hom(GM,E[2])

obtained by restricting c1, c2 to GM .

For i = 1,2 let Ni be the fixed field of ker(c̃i). Then c̃i : Gal(Ni/M) →
E[2] is nonzero and 
-equivariant, so it must be an isomorphism.

Let N = N1 ∩N2. Since c̃i identifies Gal(Ni/N) with a 
-stable subgroup
of E[2], we either have N1 = N2 or N1 ∩ N2 = M .

If N1 = N2, then c̃1, c̃2 : Gal(N/M) → E[2] are different isomorphisms,
so we can find τ ∈ Gal(N/M) such that c̃1(τ ) and c̃2(τ ) are distinct and
nonzero.

If N1 ∩N2 = M , then again we can find τ ∈ Gal(N1N2/M) such that c̃1(τ )

and c̃2(τ ) are distinct and nonzero.
Since 
 acts trivially on Gal((MKab ∩ N1N2)/M), but Gal(N1N2/M) ∼=

E[2] or E[2]2 has no nonzero quotients on which 
 acts trivially, we have
MKab ∩ N1N2 = M . Thus we can choose γ ∈ GM such that γ |MKab = 1 and
γ |N1N2 = τ . This γ has the desired properties. �

4 Proof of Theorem 1.4

In this section we will prove Theorem 1.4. Suppose K is a number field, N is
a finite abelian extension of K , and M is another Galois extension of K .

Fix a nonempty union of conjugacy classes S ⊂ Gal(M/K). If p is a prime
of K unramified in M/K , let Frobp(M/K) denote the Frobenius (conjugacy
class) of p in Gal(M/K). Define a set of primes of K

P := {p : p is unramified in NM/K and Frobp(M/K) ⊂ S}

and two sets of ideals N1 ⊂ N of K
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N := {a : a is a squarefree product of primes in P},
N1 := {a ∈ N : [a,N/K] = 1},

where [ · ,N/K] is the global Artin symbol.

Lemma 4.1 There is a positive real constant C such that

|{a ∈ N1 : NK/Qa < X}| = (C + o(1))
X

(logX)1−|S|/[M:K] .

Proof The proof is a straightforward adaptation of a result of Serre [23,
Théorème 2.4], who proved this when K = N = Q.

Let G = Gal(N/K). If χ : G → C× is a character, let

fχ(s) :=
∑

a∈N
χ(a)Na

−s =
∏

p∈P
(1 + χ(p)Np

−s)

where χ(a) = χ([a,N/K]). Then standard methods show that

logfχ(s) =
∑

p∈P
log(1 + χ(p)Np

−s) ∼
∑

p∈P
χ(p)Np

−s ∼ δχ log

(
1

s − 1

)

where

δχ :=
{

0 if χ is not the trivial character,

|S|/[M : K] if χ is trivial,

and we write g(s) ∼ h(s) for functions g,h defined on the half-plane
�(s) > 1 to mean that g(s) − h(s) extends to a holomorphic function on
�(s) ≥ 1. It follows that

∑

a∈N1

Na
−s = 1

[N : K]
∑

χ

fχ(s) = (s − 1)−|S|/[M:K]g(s)

with a function g(s) that is holomorphic and nonzero on �(s) ≥ 1. The lemma
now follows from a variant of Ikehara’s Tauberian Theorem [29, p. 322]. �

Now fix an elliptic curve E over K with E[2] = 0, and let � be the dis-
criminant of an integral model of E. Let N = K(8�∞), the ray class field of
K modulo 8� and all archimedean places, and let M := K(E[2]). Let P and
N1 be as defined above, with this N and M and with S the set of elements of
order 3 in Gal(M/K). Since E(K)[2] = 0 we have |S| = 2.

Proposition 4.2 Suppose a ∈ N1. Then there is a quadratic extension F/K

of conductor a such that d2(E
F ) = d2(E).
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Proof Fix a ∈ N1. Then a is principal, with a totally positive generator
α ≡ 1 (mod 8�). Let F = K(

√
α). Then all primes above 2, all primes of

bad reduction, and all infinite places split in F/K . If p ramifies in F/K

then p | a, so p ∈ P . Thus the Frobenius of p in Gal(M/K) has order 3,
which shows that E(Kp)[2] = 0. Now the proposition follows from Corol-
lary 3.4(ii). �

Proof of Theorem 1.4 Recall that S is the set of elements of order 3 in
Gal(M/K), so

|S|
[M : K] =

{
1/3 if Gal(M/K) ∼= S3,

2/3 if Gal(M/K) ∼= Z/3Z.

Case 1: d2(E/K) = r . By Proposition 4.2,

Nr(E,X) ≥ |{a ∈ N1 : NK/Qa < X}|.
The estimate of Lemma 4.1 for the right-hand side of this inequality proves
Theorem 1.4 in this case.

Case 2: d2(E/K) arbitrary. We have assumed that E has a twist EL with
d2(E

L/K) = r . Every twist (EL)F
′

of EL is also a twist EF of E, and

f(F/K) | f(L/K)f(F ′/K)

so Nr(E,X) ≥ Nr(E
L,X/NK/Qf(L/K)). Now Theorem 1.4 for E follows

from Theorem 1.4 for EL, which is proved in Case 1. �

5 Twisting to lower and raise the Selmer rank

In this section we will use Corollary 3.4 and Lemmas 3.5 and 3.6 to prove
Theorems 1.5, 1.6, and 1.7:

(1) Lemmas 3.5 or 3.6 will provide us with Galois automorphisms that eval-
uate Selmer cocycles in some useful way,

(2) the Cebotarev Theorem will provide us with primes whose Frobenius au-
tomorphisms are the Galois automorphisms we chose in (1),

(3) Corollary 3.4 will enable us to calculate d2(E
F /K), where F is a

quadratic extension ramified at one of the primes chosen in (2).

We use Proposition 5.1 below to prove Theorem 1.6, Proposition 5.2 to prove
Theorem 1.7, and Proposition 5.3 to prove Theorem 1.5. We also prove Corol-
laries 1.8, 1.9, 1.10, 1.11, and 1.12.
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Proposition 5.1 Suppose E/K satisfies the hypotheses of Theorem 1.6. Sup-
pose L/K is a quadratic extension (or L = K) such that the place v0 of
Theorem 1.6 is unramified in L/K , L′/K is a cyclic extension of odd degree,
and � is a finite set of places of K .

(i) There is a quadratic twist A of E such that d2(A/K) = d2(E/K) + 1
and d2(A

L/K) = d2(E
L/K) + 1.

(ii) If d2(E/K) > 0 and d2(E
L/K) > 0, then there is a quadratic twist A of

E such that d2(A/K) = d2(E/K)−1 and d2(A
L/K) = d2(E

L/K)−1.
(iii) If Sel2(EL/K) �⊂ Sel2(E/K) inside H 1(K,E[2]), then there is a

quadratic twist A of E such that d2(A/K) = d2(E/K) + 1 and
d2(A

L/K) = d2(E
L/K) − 1.

In all three cases we can take A = EF , where the quadratic extension F/K

satisfies:

• all places in � − {v0} split in F/K ,
• F/K ramifies at exactly one prime p, and that prime satisfies p /∈ �, p is

inert in L′, and E(Kp)[2] ∼= Z/2Z.

Proof Let � be the discriminant of (some integral model of) E. Let M :=
K(E[2]) = K(EL[2]), so M is an S3-extension of K containing the quadratic
extension K(

√
�). Enlarge � if necessary so that it includes all infinite

places, all primes above 2, and all primes where either E or EL has bad
reduction. Let v0 � 2 be the distinguished place of Theorem 1.6, either real
with �v0 < 0, or of multiplicative reduction with ordv0(�) odd.

Let d be the (formal) product of all places in � − {v0}. Let K(8d) denote
the ray class field of K modulo 8d, and let K[8d] denote the maximal 2-
power extension of K in K(8d). Note that K(

√
�)/K is ramified at v0 but

K[8d]/K is not, and [L′ : K] is odd, so the fields K[8d],L′,M are linearly
disjoint. Therefore we can fix an element σ ∈ GK such that

• σ |M ∈ Gal(M/K) ∼= S3 has order 2,
• σ |K[8d] = 1,
• σ |L′ is a generator of Gal(L′/K).

It follows in particular that E[2]/(σ − 1)E[2] ∼= Z/2Z.
Let C = Sel2(E/K)+Sel2(EL/K) ⊂ H 1(K,E[2]), and suppose φ : C →

E[2]/(σ − 1)E[2] is a homomorphism. By Lemma 3.5 we can find γ ∈ GK

such that

• γ |ML′K[8d] = σ ,
• c(γ ) = φ(c) for every c ∈ C.

Let N be a Galois extension of K containing ML′K[8d], large enough
so that the restriction of C to N is zero. (For example, one can take the
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compositum of L′K(8d) with the fixed field of the intersection of the ker-
nels of the restrictions of c ∈ C ↪→ Hom(GM,E[2]).) Let p be a prime of K

not in �, whose Frobenius in Gal(N/K) is the conjugacy class of γ . Since
γ |K[8d] = σ |K[8d] = 1, and [K(8d) : K[8d]] is odd, there is an odd positive
integer h such that γ h|K(8d) = 1. Thus ph is principal, with a generator π ≡ 1
(mod 8d), positive at all real embeddings different from v0. Let F = K(

√
π).

Then all places v ∈ � − {v0} split in F , F/K is ramified at p and nowhere
else, p is inert in L′/K because γ |L′ generates Gal(L′/K), and E(Kp)[2] �= 0
because Frobp|E[2] = σ |E[2] has order 2.

We will apply Corollary 3.4, with T = {p}. Since E has good reduction
at p, it follows from Lemma 2.2(ii) that

H 1
f (Kp,E[2]) ∼= E[2]/(Frobp − 1)E[2] = E[2]/(σ − 1)E[2], (8)

and similarly with E replaced by EL, so

dimF2 H 1
f (Kp,E[2]) = dimF2 H 1

f (Kp,E
L[2]) = 1.

Further, the localization maps

locT : Sel2(E/K),Sel2(E
L/K) −→ H 1

f (Kp,E[2]) ∼−→ E[2]/(σ − 1)E[2]
are given by evaluation of cocycles at Frobp = γ . Hence by our choice of γ ,
(8) identifies

locT (Sel2(E/K)) = φ(Sel2(E/K)),

locT (Sel2(E
L/K)) = φ(Sel2(E

L/K)).

Thus by Corollary 3.4(i) we conclude that

d2(E
F /K) =

{
d2(E/K) + 1 if φ(Sel2(E/K)) = 0,

d2(E/K) − 1 if φ(Sel2(E/K)) �= 0,

d2((E
F )L/K) = d2((E

L)F /K)

=
{

d2(E
L/K) + 1 if φ(Sel2(EL/K)) = 0,

d2(E
L/K) − 1 if φ(Sel2(EL/K)) �= 0.

For assertion (i), let φ = 0. For (ii), if d2(E/K) > 0 and d2(E
L/K) > 0,

then we can choose a φ that is nonzero on both Sel2(E/K) and Sel2(EL/K).
For (iii), if Sel2(EL/K) �⊂ Sel2(E/K), then we can choose a φ that is zero on
Sel2(E/K) and nonzero on Sel2(EL/K). In all three cases, the proposition
holds with A = EF . �
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Proof of Theorem 1.6 Note that if E satisfies the hypotheses of Theorem 1.6,
then so does every quadratic twist of E.

If r ≥ d2(E/K), then applying Proposition 5.1(i) r −d2(E/K) times (with
L = L′ = K) shows that E has a twist E′ with d2(E

′/K) = r .
If 0 ≤ r ≤ d2(E/K) then applying Proposition 5.1(ii) d2(E/K) − r times

shows that E has a twist E′ with d2(E
′/K) = r .

Now Theorem 1.4 shows that for every r ≥ 0, E has many twists E′ with
d2(E

′/K) = r . �

Proposition 5.2 Suppose E/K is an elliptic curve such that E(K)[2]
= 0. If d2(E/K) > 1, then E has a quadratic twist EF over K such that
d2(E

F /K) = d2(E/K) − 2.

Proof The proof is similar to that of Proposition 5.1(ii). Let M := K(E[2]),
and let � be the discriminant of (some integral model of) E. Let K(8�∞)

denote the ray class field of K modulo the product of 8� and all infinite
places.

Since d2(E/K) > 1, we can choose cocycles c1, c2 representing F2-
independent elements of Sel2(E/K). By Lemma 3.6 we can find γ ∈ GK

such that

• γ |MK(8�∞) = 1,
• c1(γ ), c2(γ ) are an F2-basis of E[2].

Let N be a Galois extension of K containing MK(8�∞), large enough
so that the restriction of Sel2(E/K) to N is zero. Let p be a prime of K

where E has good reduction, not dividing 2, whose Frobenius in Gal(N/K)

is the conjugacy class of γ . Then p has a totally positive generator π ≡ 1
(mod 8�). Let F = K(

√
π). Then all places v dividing 2�∞ split in F/K ,

and p is the only prime that ramifies in F/K .
We will apply Corollary 3.4 with T = {p}. Since E has good reduction

at p, it follows from Lemma 2.2(ii) that

H 1
f (Kp,E[2]) = E[2]/(Frobp − 1)E[2] = E[2]/(γ − 1)E[2] = E[2].

The localization map locT : Sel2(E/K) → H 1
f (Kp,E[2]) is given by evalu-

ation of cocycles at Frobp = γ , so by our choice of γ , the classes locT (c1)

and locT (c2) generate H 1
f (Kp,E[2]). In particular locT is surjective, so in

the notation of Corollary 3.4 we have dimF2 VT = dimF2 H 1
f (Kp,E[2]) = 2.

Corollary 3.4(i) now yields d2(E
F /K) = d2(E/K) − 2, as desired. �

Proof of Theorem 1.7 Suppose 0 ≤ r ≤ d2(E/K). Applying Proposition 5.2
(d2(E/K) − r)/2 times shows that E has a twist E′ with d2(E

′/K) = r , and
then Theorem 1.4 shows that E has many such twists. �
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Proof of Corollary 1.8 Let k = Q(j (E)) ⊂ K . Fix an elliptic curve E0
over k with j (E0) = j (E). Since j (E) �= 0,1728, E0 is a quadratic twist
of E over K . Thus [k(E0[2]) : k] ≥ [K(E0[2]) : K] = [K(E[2]) : K], so
Gal(k(E0[2])/k) ∼= S3. Also

j (E) − 1728 = j (E0) − 1728 = c6(E0)
2/�E0

so (�E0)v < 0 at the real embedding v of k. Therefore E0/k satisfies
the hypotheses of Theorem 1.6, so Theorem 1.6 shows that d2(E

F
0 /k) can

be arbitrarily large as F varies through quadratic extensions of k. Since
E(K)[2] = 0, the map Sel2(EF

0 /k) → Sel2(EF
0 /K) is injective, and so

d2(E
F /K) can be arbitrarily large as F varies through quadratic extensions

of K . Now the corollary follows from Theorem 1.7. �

Proposition 5.3 Suppose E/K is an elliptic curve such that E(K)[2] = 0,
and either K has a real embedding, or E has multiplicative reduction at some
prime of K . Then E has a quadratic twist EF /K such that d2(E

F /K) �≡
d2(E/K) (mod 2) and d2(E

F /K) ≥ d2(E/K) − 1.

Proof Let M := K(E[2]), and let � be the discriminant of (some integral
model of) E. Let d be the (formal) product of � and all infinite places, let
K(8d) denote the ray class field of K modulo 8d, and let K[8d] denote the
maximal 2-power extension of K in K(8d). We have M ∩ K[8d] = K(

√
�).

Let v0 be the distinguished place, either real or of multiplicative reduction.
Let x = (xv) be an idele of K defined by:

• xv = 1 if v �= v0,
• xv0 = −1 if v0 is real, xv0 is a unit at v0 such that Kv0(

√
xv0) is the unram-

ified quadratic extension of Kv0 if v0 is nonarchimedean.

Let σ = [x,K[8d]/K] ∈ Gal(K[8d]/K) be the image of x under the global
Artin map. We consider two cases.

Case 1: σ(
√

�) = √
�. In this case we can choose γ ∈ Gal(MK[8d]/K)

such that γ |K[8d] = σ and γ |M has order 3.

Case 2: σ(
√

�) = −√
�. In this case Gal(M/K) ∼= S3, and σ is nontrivial

on M ∩ K[8d] = K(
√

�). By Lemma 3.5 we can find γ ∈ GK such that
γ |K[8d] = σ , γ |M has order 2, and c(γ ) ∈ (γ − 1)E[2] for every cocycle c

representing an element of Sel2(E/K).

In either case, let p be a prime of K not dividing 2�, whose Frobenius
in Gal(MK[8d]/K) is γ . Then some odd power ph is principal, with a gen-
erator π such that π ∈ (K×

v )2 if v | 2�∞ and v �= v0, Kv0(
√

π) = C if v0
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is real, and Kv0(
√

π) is the unramified quadratic extension of Kv0 if v0 is
nonarchimedean.

Let F = K(
√

π), and recall the local norm index δv(E,F/K) of De-
finition 2.6. All places v | 2�∞ different from v0 split in F/K , so by
Lemma 2.10, δv(E,F/K) = 0 and H 1

f (Kv,E[2]) = H 1
f (Kv,E

F [2]) if v �=
v0, p. It follows (using Kramer’s congruence Theorem 2.7 for (9)) that

d2(E
F /K) ≡ d2(E/K) + δv0(E,F/K) + δp(E,F/K) (mod 2), (9)

and

ker
[
Sel2(E/K) −→ H 1

f (Kv0,E[2]) ⊕ H 1
f (Kp,E[2])] ⊂ Sel2(E

F /K). (10)

Consider the Hilbert symbol (�,π)v , which is 1 if � is a norm from
(F ⊗ Kv)

× to K×
v , and −1 if not. Then (�,π)v = 1 if v �= v0, p, and∏

v(�,π)v = 1, so (�,π)v0 = (�,π)p. By [11, Proposition 6] if v0 is real,
and by [11, Propositions 1, 2] if v0 is multiplicative, we have

δv0(E,F/K) =
{

1 if (�,π)v0 = 1,
0 if (�,π)v0 = −1.

By [11, Proposition 3], and using that γ acts nontrivially on E[2] in both
Case 1 and Case 2, we have

δp(E,F/K) =
{

0 if (�,π)p = 1,
1 if (�,π)p = −1.

Thus δv0(E,F/K) + δp(E,F/K) = 1, so (9) shows that d2(E
F /K) and

d2(E/K) have opposite parity.
In Case 1, E[2]/(γ −1)E[2] = 0, so H 1

f (Kp,E[2]) = 0 by Lemma 2.2(ii).
In Case 2, the restriction map

Sel2(E/K) → H 1
f (Kp,E[2]) ∼= E[2]/(γ − 1)E[2]

is given by evaluating cocycles at γ , so by our choice of γ this image is zero.
In both cases, dimF2 H 1

f (Kv0,E[2]) ≤ 2, so by (10) we have d2(E
F /K) ≥

d2(E/K) − 2. This completes the proof. �

Proof of Theorem 1.5 Let EF be a twist of E as in Proposition 5.3. Theo-
rem 1.5 follows directly from Theorem 1.7 applied to E and to EF . �

Lemma 5.4 Suppose p is a prime of K not dividing 2. Then there is an elliptic
curve E/K with all of the following properties:

(i) E is semistable at all primes,
(ii) E has multiplicative reduction at p and ordp(�E) = 1,

(iii) Gal(K(E[2])/K) ∼= S3.
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If in addition the rational prime p below p is unramified in the Galois closure
of K/Q, then E can be taken to be the base change of an elliptic curve over Q.

Proof Let Et be the elliptic curve y2 + y = x3 − x2 + t over K(t). Then

j (Et ) = − 212

(4t + 1)(108t + 11)
, �(Et) = −(4t + 1)(108t + 11),

c4(Et ) = 16.

It follows from [25, Proposition VII.5.1] that for every t ∈ OK , Et has semi-
stable reduction at all primes of K .

Let η ∈ OK be such that ordp(4η + 1) = 1, and let g(t) := η +
(4η + 1)2t . Then for every t ∈ OK we have ordp(4g(t) + 1) = 1. The split-
ting field of ft (x) := x3 − x2 + g(t) + 1/4 over K(t) has Galois group S3,
since ft is irreducible and its discriminant −(4g(t) + 1)(108g(t) + 11)/16
is not a square. Hence by Hilbert’s Irreducibility Theorem, there is an integer
t0 ∈ OK such that the splitting field of ft0(x) over K is an S3-extension.

Let E be the elliptic curve Eg(t0). Then K(E[2]) is the splitting field of
ft0(x), so Gal(K(E[2])/K) ∼= S3, and

�(E) = −(4g(t0) + 1)(108g(t0) + 11)

= −(4g(t0) + 1)(27(4g(t0) + 1) − 16).

Thus E satisfies (i), (ii), and (iii).
Let K ′ be the Galois closure of K/Q, and p the rational prime below p,

and suppose p is unramified in K ′/Q. We can apply the lemma with p and
Q in place of p and K to produce a semistable elliptic curve E/Q such that
ordp(�E) = 1 and Gal(Q(E[2])/Q) ∼= S3.

Then E/K satisfies (i) and (ii). Further, Q(E[2])∩K ′ is a Galois extension
of Q that does not contain Q(

√
�E) (since the latter is ramified at p). There-

fore Q(E[2])∩K = Q, and so Gal(K(E[2])/K) ∼= Gal(Q(E[2])/Q) ∼= S3. �

Proof of Corollary 1.9 By Lemma 5.4, we can find an elliptic curve E

over K and a prime p � 2 such that E has multiplicative reduction at p,
ordp(�E) = 1, and Gal(K(E[2])/K) ∼= S3. By Theorems 1.6 and 1.4, this
E has many quadratic twists E′ with d2(E

′/K) = r , for every r ≥ 0. �

Lemma 5.5 Suppose E is an elliptic curve over K . Then for all but finitely
many quadratic twists E′ of E, E′(K) has no odd-order torsion.

Proof This is proved in [9, Proposition 1] when K = Q; we adapt the proof
given there. By Merel’s Uniform Boundedness Theorem for torsion on elliptic
curves [16], the set

{primes p : EF (K)[p] �= 0 for some quadratic extension F/K}
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is finite. On the other hand, if p is odd and ρp : GK → Aut(E[p]) ∼= GL2(Fp)

denotes the mod-p representation attached to E, then there are at most two
characters χ of GK such that ρp ⊗ χ contains a copy of the trivial represen-
tation. Therefore for fixed odd p, the set

{F/K quadratic : EF (K)[p] �= 0}
has order at most 2. This completes the proof. �

Proof of Corollary 1.10 By Theorems 1.5 and 1.4, E has many quadratic
twists E′ with d2(E

′/K) = 0, and hence rank(E′(K)) = 0 by (1). Since
E(K)[2] = 0, none of these twists have rational 2-torsion, and by Lemma 5.5,
only finitely many of these twists have odd-order torsion. This proves the
corollary. �

Proof of Corollary 1.11 (and Theorem 1.1) By Lemma 5.4 there is an ellip-
tic curve E over K with multiplicative reduction at a prime p � 2, and with
E[2] = 0. Now the Corollary 1.11 follows from Corollary 1.10. �

Proof of Corollary 1.12 By Theorems 1.5 and 1.4, E has many quadratic
twists E′ with d2(E

′/K) = 1. Since E(K)[2] = 0, it follows from (1) that
either rank(E′(K)) = 1 or dimF2 X(E′/K)[2] = 1. But Conjecture XT2(K)

says that dimF2 X(E′/K)[2] is even, so rank(E′(K)) = 1. By Lemma 5.5,
all but finitely many of these twists have E′(K)tors = 0, and this proves the
corollary. �

6 Proof of Theorem 1.13 when [L : K] = 2

Proposition 6.1 Suppose L/K is a quadratic extension. Then there is
an elliptic curve E/K such that Gal(K(E[2])/K) ∼= S3 and d2(E/K) +
d2(E

L/K) is odd.

Proof We thank the referee for pointing out the following simple proof of this
proposition.

Fix a prime p � 6 that remains prime in L/K . Using Lemma 5.4, fix an
elliptic curve E over K with Gal(K(E[2])/K) ∼= S3, with multiplicative re-
duction at p, and with ordp(�E) = 1. Fix also a quadratic extension M/K

that is ramified at p, and split at all of the following places: all primes differ-
ent from p where E has bad reduction, all primes above 2, all infinite places,
and all places ramified in L/K .

Recall the local norm index δv(E,L/K) of Definition 2.6. By Kramer’s
congruence (Theorem 2.7) we have

d2(E/L) + d2(E
M/L) ≡

∑

w

δw(E,LM/L) (mod 2), (11)

summing over all places w of L. We will show that the sum in (11) is odd.
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If w divides 2∞, or w �= p is a prime where E has bad reduction, then
w splits in LM/L, so Lemma 2.10(i) shows that δw(E,LM/L) = 0. If w

is a prime where E has good reduction and w is unramified in LM/L, then
δw(E,LM/L) = 0 by Lemma 2.10(v).

Suppose w � 2∞, E has good reduction at w, and w ramifies in LM/L. Let
v denote the prime of K below w. If v splits in L/K into two places w,w′,
then δw(E,LM/L) = δw′(E,LM/L) so the contribution δw(E,LM/L) +
δw′(E,LM/L) in (11) is even. If v is inert in L/K , then either E(Kv)[2] = 0,
in which case E(Fw)[2] = 0 as well, or E(Kv)[2] �= 0, in which case
E(Fw)[2] = E[2]. In either case Proposition 2.11 shows that δ(E,LM/L) =
dimF2(E(Fw)[2]) is even.

We conclude now from (11) that

d2(E/L) + d2(E
M/L) ≡ δp(E,LM/L) (mod 2).

Since Lp is the unramified quadratic extension of Kp, E has split mul-
tiplicative reduction over Lp. It follows from [11, Proposition 1] that
δp(E,LM/L) = 1.

Therefore d2(E/L) + d2(E
M/L) is odd. Replacing E by EM if neces-

sary, we may suppose that d2(E/L) is odd. Since E(K)[2] = 0, we have
E(L)[2] = 0 as well, so d2(E/L) ≡ d2(E/K) + d2(E

L/K) (mod 2) by
Lemma 2.5, and the proof is complete. �

Theorem 6.2 Suppose L/K is a quadratic extension of number fields. There
is an elliptic curve E over K such that d2(E/K) = 0 and d2(E

L/K) = 1. In
particular rank(EL(K)) = rank(EL(L)), and if Conjecture XT2(K) holds
then rank(EL(K)) = rank(EL(L)) = 1.

Proof Fix an elliptic curve A over K satisfying the conclusion of Proposi-
tion 6.1: Gal(K(A[2])/K) ∼= S3 and d2(A/K), d2(A

L/K) have opposite par-
ity.

Now apply Proposition 5.1(ii) repeatedly (with L′ = K), twisting A until
we produce a twist B with either d2(B/K) = 0 or d2(B

L/K) = 0. Switch-
ing B and BL if necessary, we may suppose that d2(B/K) = 0.

Note that d2(B/K) and d2(B
L/K) still have opposite parity, so

d2(B
L/K) ≥ 1. If d2(B

L/K) = 1 we stop. If d2(B
L/K) > 1 we apply

Proposition 5.1(iii) and then Proposition 5.1(ii), to obtain at twist C with
d2(C/K) = 0 and d2(C

L/K) = d2(B
L/K) − 2. Continuing in this way we

eventually obtain a twist E with d2(E/K) = 0 and d2(E
L/K) = 1.

We have rank(E(K)) = 0, so

rank(EL(L)) = rank(E(K)) + rank(EL(K)) = rank(EL(K)),

and if Conjecture XT2(K) holds then rank(EL(K)) = 1. �
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7 Two-descents over cyclic extensions of odd prime degree

Fix for this section a number field K , and a cyclic extension L/K of prime
degree p > 2. Let G = Gal(L/K). If R is a commutative ring, let R[G]0

denote the augmentation ideal in the group ring R[G].
Since |G| is odd, the group ring F2[G] is an étale F2-algebra. Concretely,

if we fix a generator of G we have G-isomorphisms

F2[G] ∼= F2[X]/(Xp − 1) ∼= F2 ⊕
(∏

π

F2[X]/π(X)

)
(12)

where π runs through the irreducible factors of Xp−1 +· · ·+ 1 in F2[X], and
the chosen generator of G acts on F2[X] as multiplication by X. The sub-
module of F2[G] corresponding to the summand F2 in (12) is F2[G]G, and
the submodule of F2[G] corresponding to

∏
π F2[X]/π(X) is the augmenta-

tion ideal F2[G]0. Thus (12) corresponds to the decomposition (independent
of choice of generator of G)

F2[G] = F2[G]G ⊕ F2[G]0 = F2 ⊕
(⊕

k∈�

k

)

where � is the set of simple submodules of F2[G] on which G acts nontriv-
ially.

If B is an F2[G]-module, then B ⊗F2[G] F2 = BG, and we define

Bnew = B ⊗F2[G] F2[G]0 =
⊕

k∈�

(B ⊗F2[G] k).

This gives a canonical decomposition B = BG ⊕ Bnew.
Suppose now that E is an elliptic curve over K . The 2-Selmer group

Sel2(E/L) has a natural action of F2[G]. Since |G| is odd, it is straight-
forward to check that Sel2(E/L)G = Sel2(E/K), so

Sel2(E/L) = Sel2(E/K) ⊕ Sel2(E/L)new.

For k ∈ � we define a non-negative integer

dk(E/L) := dimF2(Sel2(E/L) ⊗F2[G] k)/dimF2 k,

the multiplicity of k in the F2[G]-module Sel2(E/L).

Remark 7.1 Our proof of Theorem 1.13 for L/K goes as follows. We show
that if E satisfies the hypotheses of Theorem 1.6, then:
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(1) There is a twist E′ of E over K such that dk(E
′/L) = 0 for some k (see

Proposition 7.4).
(2) For every r ≥ 0, there is a twist E′ of E over K such that d2(E

′/K) = r

and Sel2(E′/L)new = Sel2(E/L)new (see Proposition 7.5). In other
words, we can twist to get whatever size we want for the “old part” of
Selmer, while keeping the “new part” of Selmer unchanged.

Replacing E by a quadratic twist as necessary, by (1) we may assume
dk(E/L) = 0 for some k. Then by (2) we may assume that both d2(E/K) = 1
and dk(E/L) = 0. Since dk(E/L) = 0 for some k, we have rank(E(L)) =
rank(E(K)) (see Lemma 7.2), and if Conjecture XT2(K) holds, then
rank(E(K)) = 1.

Lemma 7.2 Suppose E is an elliptic curve over K . If dk(E/L) = 0 for some
k ∈ �, then rank(E(L)) = rank(E(K)).

Proof Since G is cyclic of prime order, it has only 2 irreducible rational rep-
resentations, namely Q (the trivial representation) and the augmentation ideal
Q[G]0. Therefore we have an isomorphism of G-modules

E(L) ⊗ Q ∼= Qa × (Q[G]0)b

for some a, b ≥ 0. Then E(L) has a submodule isomorphic to (Z[G]0)b, so
E(L) ⊗ Z2 has a direct summand isomorphic to (Z2[G]0)b, so E(L) ⊗ F2
has a submodule isomorphic to (F2[G]0)b, which implies that dk(E/L) ≥ b.
Since dk(E/L) = 0 we have b = 0, and so rank(E(L)) = rank(E(K)) = a. �

We will need the following G-equivariant version of Proposition 3.3.

Proposition 7.3 Suppose F/K is a quadratic extension and the hypotheses
of Proposition 3.3 are satisfied. Let T be the set of primes of K where F/K

is ramified, and let TL be the set of primes of L above T .

(i) If the localization map

locTL
: Sel2(E/L)new →

( ⊕

P∈TL

H 1
f (LP,E[2])

)new

is surjective, then there is an exact sequence

0 −→ Sel2(E
F /L)new −→ Sel2(E/L)new

locTL−−−→
( ⊕

P∈TL

H 1
f (LP,E[2])

)new

−→ 0.



Ranks of twists of elliptic curves and Hilbert’s tenth problem 567

(ii) Suppose that for every prime p ∈ T , p is inert in L/K and E(Kp)[2] �= 0.
Then Sel2(EF /L)new = Sel2(E/L)new.

Proof The proof is identical to that of Proposition 3.3, using that the functor
B �→ Bnew is exact on F2[G]-modules. As in the proof of Proposition 3.3, we
have (G-equivariant) exact sequences

0 → S new
TL

→ Sel2(E/L)new locTL−−−→
( ⊕

P∈TL

H 1
f (LP,E[2])

)new

(13)

0 → S new
TL

→ Sel2(E
F /L)new →

( ⊕

P∈TL

H 1
f (LP,EF [2])

)new

(14)

either of which can be taken as the definition of S new
TL

. The proof of Proposi-
tion 3.3 showed that if locTL

is surjective, then the right-hand map of (14) is
zero, and then (13) is the exact sequence of (i).

Suppose p ∈ T is inert in L/K . Let Frobp ∈ Gal(Kur
p /Kp) be the Frobenius

of p, so FrobP = Frobp
p is the Frobenius of the prime P above p. Since p ∈ T ,

the hypotheses of Proposition 3.3 require that E has good reduction at p, so by
Lemma 2.2(ii) there is a commutative diagram with horizontal isomorphisms

H 1
f (LP,E[2]) ∼

E[2]/(FrobP − 1)E[2]

H 1
f (Kp,E[2]) ∼

Res

E[2]/(Frobp − 1)E[2].

(15)

If E(Kp)[2] �= 0, then Frobp acts on E[2] as an element of order 1 or 2, so
FrobP|E[2] = Frobp|E[2] and the groups on the right have the same order. The
left-hand vertical map is injective since [LP : Kp] is odd. Therefore the left-
hand map is an isomorphism, so G acts trivially on H 1

f (LP,E[2]), and we
have H 1(LP,E[2])new = 0.

If every p ∈ T has these properties, then (
⊕

P∈TL
H 1

f (LP,E[2]))new = 0,

so (ii) follows from (i). �

Proposition 7.4 Suppose E is an elliptic curve over K satisfying the hypothe-
ses of Theorem 1.6. If dk(E/L) > 0 for every k ∈ �, then there is a quadratic
twist E′ of E over K such that

dk(E
′/L) = dk(E/L) − 1

for every k ∈ �.
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Proof Let � be the discriminant of (some integral model of) E. Let M :=
K(E[2]), so M is an S3-extension of K containing the quadratic extension
K(

√
�). Let � be the set of all infinite places and all primes where E has

bad reduction.
Let d be the (formal) product of all places in � − {v0}, where v0 � 2 is

the distinguished place of Theorem 1.6, either real with �v0 < 0, or of multi-
plicative reduction with ordv0(�) odd. Let K(8d) denote the ray class field of
K modulo 8d, and let K[8d] denote the maximal 2-power extension of K in
K(8d). Note that K(

√
�)/K is ramified at v0, but LK[8d]/K is unramified at

v0, so M ∩LK[8d] = K(
√

�)∩LK[8d] = K . Fix an element σ ∈ GK , trivial
on LK[8d], whose projection to Gal(MLK[8d]/LK[8d]) ∼= Gal(M/K) ∼= S3

has order 2. Since σ has order 2 on M , we have E[2]/(σ − 1)E[2] ∼= Z/2Z.
Since dk(E/L) ≥ 1 for every k ∈ �, it follows that Sel2(E/L)new has a

submodule free of rank one over F2[G]0. Let C ⊂ Sel2(E/L)new be such
a submodule, fix an isomorphism η : C → F2[G]0, and define φ : C →
E[2]/(σ −1)E[2] by φ(c) = f1(η(c))x, where f1 : F2[G] → F2 is projection
onto the first coefficient, i.e., f1(

∑
agg) = a1, and x is the nonzero element

of E[2]/(σ − 1)E[2].
By Lemma 3.5 we can find γ ∈ GK such that

• γ |LMK[8d] = σ ,
• c(γ ) = φ(c) for all c ∈ C.

Let N be a Galois extension of K containing MLK[8d], large enough
so that the restriction of c to N is zero. Let p be a prime of K where E

has good reduction, not dividing 2, unramified in L/K , whose Frobenius
in Gal(N/K) is in the conjugacy class of γ . Since γ |K[8d] = σ |K[8d] = 1,
and [K(8d) : K[8d]] is odd, there is an odd positive integer h such that
γ h|K(8d) = 1. Therefore ph is principal, with a generator π ≡ 1 (mod 8d),
positive at all real embeddings different from v0. Let F = K(

√
π). Then all

places v dividing 2 and all places in � −{v0} split in F , and F/K is ramified
only at p. Let E′ be the quadratic twist of E by F . We will show that E′ has
the desired properties.

We will apply Proposition 7.3. Let T = {p}, and TL the set of primes of L

above p. For every P ∈ TL,

H 1
f (LP,E[2]) = H 1(Lur

P/LP,E[2]) = E[2]/(FrobP − 1)E[2]
= E[2]/(σ − 1)E[2]

is a one-dimensional F2-vector space. Fix a prime of N above p whose Frobe-
nius in Gal(N/K) is equal to γ , and let P0 be the corresponding prime of L.
Then TL = {Pτ

0 : τ ∈ G}, and FrobPτ
0/p(N/K) = τγ τ−1. The localization
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map

locTL
: Sel2(E/L) →

⊕

P∈TL

H 1
f (LP,E[2]) ∼= F2[G] ⊗Z (E[2]/(σ − 1)E[2])

is given on c ∈ C ⊂ Sel2(E/L)new by

locTL
(c) =

∑

τ

τ ⊗ c(τγ τ−1) =
∑

τ

τ ⊗ cτ−1
(γ ) =

∑

τ

τ ⊗ φ(cτ−1
)

=
∑

τ

τ ⊗ f1(τ
−1η(c))x =

∑

τ

τ ⊗ fτ (η(c))x = η(c) ⊗ x

where fτ : F2[G] → F2 is the map fτ (
∑

agg) = aτ . Since the image of η is
F2[G]0, this shows that the localization map C → (

⊕
P∈TL

H 1
f (LP,E[2]))new

is surjective. Now Proposition 7.3(i) shows that Sel2(EF /L)new sits inside
Sel2(E/L)new with cokernel containing a copy F2[G]0, so dk(E

F /L) <

dk(E/L) for every k ∈ �. �

Proposition 7.5 Suppose E is an elliptic curve over K satisfying the hy-
potheses of Theorem 1.6. Then:

(i) There is a quadratic twist E′ of E/K such that d2(E
′/K) = d2(E/K)+1

and Sel2(E′/L)new = Sel2(E/L)new.
(ii) If Sel2(E/K) �= 0, then there is a quadratic twist E′ of E/K such that

d2(E
′/K) = d2(E/K) − 1 and Sel2(E′/L)new = Sel2(E/L)new.

Proof Let � be the set of all places v | 2∞ of K and all v of bad reduction,
and let v0 be the distinguished place of Theorem 1.6, either real with �v0 < 0,
or of multiplicative reduction with ordv0(�) odd. By Proposition 5.1, for (i)
or (ii) we can find a quadratic extension F/K satisfying

• d2(E
F /K) = d2(E/K) + 1 in (i), d2(E

F /K) = d2(E/K) − 1 in (ii),
• all v ∈ � − {v0} split in F/K , and v0 is unramified in F/K ,
• F/K is ramified at exactly one prime p, p � 2, p is inert in L/K , and

E(Kp)[2] ∼= Z/2Z.

By Proposition 7.3(ii) applied with T = {p}, Sel2(EF /L)new = Sel2(E/L)new

in both cases. �

Corollary 7.6 Suppose E/K satisfies the hypotheses of Theorem 1.6, and
r ≥ 0. Then there is a twist E′ of E such that

d2(E
′/K) = r, rank(E′(L)) = rank(E′(K)).
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Proof Using Proposition 7.4 repeatedly, we can find a twist E′′ of E such that
dk(E

′′/L) = 0 for at least one k. Then applying Proposition 7.5 repeatedly,
we can find another twist E′ of E such that dk(E

′/L) = 0 and d2(E
′/K) = r .

Now the corollary follows from Lemma 7.2. �

Proof of Theorem 1.13 Let p = [L : K]. If p = 2, Theorem 1.13 is Theo-
rem 6.2, so we may assume that p is odd. By Lemma 5.4, we can find an
elliptic curve E over K and a prime p � 2 such that E has multiplicative re-
duction at p, ordp(�E) = 1, and Gal(K(E[2])/K) ∼= S3. Then E satisfies
the hypotheses of Theorem 1.6, so by Corollary 7.6, E has a twist with the
desired properties. �

Remark 7.7 Assuming standard conjectures, there are noncyclic extensions
L/K for which the second part of Theorem 1.13 fails to hold. For example,
suppose F1 and F2 are distinct quadratic extensions of K such that every
prime that ramifies in F1/K splits in F2/K , and vice-versa. Let L = F1F2.
It is not difficult to show that for every elliptic curve E over K , the global
root number of E over L is +1. Thus (conjecturally) every elliptic curve E

over K has even rank over L, so (conjecturally) there is no elliptic curve E

over K with rank(E(L)) = rank(E(K)) = 1.

8 Proof of Theorem 1.2

In this section we prove the following slightly stronger version of Theo-
rem 1.2. The proof of Theorem 8.1 from Theorem 1.13 is due to Bjorn Poonen
and Alexandra Shlapentokh. We thank them for allowing us to include their
ideas here.

Theorem 8.1 Suppose K is a number field and Conjecture XT2(L) holds for
all subfields L of the Galois closure of K/Q. Then Hilbert’s Tenth Problem
has a negative answer over the ring of integers of K .

Definition 8.2 Suppose that R is a commutative ring with identity. Following
[5, 6], we say that a subset D of R is diophantine over R if there is a finite set
of polynomials f1, . . . , fk ∈ R[X,Y1, . . . , Ym] for some m such that for every
x ∈ R,

x ∈ D ⇐⇒ for 1 ≤ i ≤ k there are y1,i , . . . , ym,i ∈ R

such that fi(x, y1,i , . . . , ym,i) = 0 for 1 ≤ i ≤ k.

Lemma 8.3 [6] Suppose K ⊂ L are number fields. Then:

(i) If D1,D2 ⊂ OL are diophantine over OL, then so is D1 ∩ D2.
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(ii) If D ⊂ OK is diophantine over OK , and OK is diophantine over OL,
then D is diophantine over OL.

(iii) If Z is diophantine over OL, then Z is diophantine over OK .

Proof This is Proposition 1(a), (c), and (d) of [6]. �

Corollary 8.4 Suppose L/K is a cyclic extension of number fields. If Conjec-
ture XT2(F ) holds for all subfields F ⊂ L, then OK is diophantine over OL.

Proof We have K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L, where each Ki+1/Ki is
cyclic of prime degree. If Conjecture XT2(Ki) holds for every i, then by The-
orem 1.13 for every i there is an elliptic curve E/Ki such that rank(E(Ki)) =
rank(E(Ki+1)) = 1. By Theorem 1 of [20], it follows that OKi

is diophantine
over OKi+1 . Now the corollary follows from Lemma 8.3(ii) by induction. �

Proof of Theorem 8.1 Fix a number field K , and let L be the Galois closure
of K/Q. For every g ∈ Gal(L/Q), let L〈g〉 denote the fixed field of g in L.
Then L/L〈g〉 is cyclic, so O

L〈g〉 is diophantine over OL by Corollary 8.4. But

then by Lemma 8.3(i),
⋂

g O
L〈g〉 = OGal(L/Q)

L = Z is diophantine over OL,
so by Lemma 8.3(iii), Z is diophantine over OK . Now the theorem follows
from Matiyasevich’s Theorem [12]. �

9 Elliptic curves with constant parity

In this section we discuss briefly the phenomenon of “constant parity”.

Definition 9.1 Suppose E is an elliptic curve defined over a number field
K . We will say that E/K has constant 2-Selmer parity if the parity of
d2(E

F /K) is constant as F ranges over all quadratic extensions of K , i.e.,
if d2(E

F /K) ≡ d2(E/K) (mod 2) for all quadratic extensions F/K .
Similarly, we can say that E has constant Mordell-Weil parity if the parity

of rank(EF (K)) is independent of the quadratic extension F/K , and E has
constant analytic parity if the global root number of EF /K is independent
of F . Standard conjectures imply that all three notions of constant parity are
the same.

Example 9.2 Suppose E has complex multiplication by an imaginary
quadratic field k ⊂ K . Then E has constant (even) 2-Selmer parity, constant
(even) Mordell-Weil parity, and constant (even) analytic parity.

The question of constant analytic parity was studied by Dokchitser and
Dokchitser in [7]. They proved the following.
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Theorem 9.3 (Theorem 1 of [7]) An elliptic curve E over a number field
K has constant analytic parity if and only if K is totally imaginary and E

acquires good reduction over an abelian extension of K .

The following example from [7] shows that constant parity can be odd.

Example 9.4 Suppose K is totally imaginary, E/K has good reduction every-
where, and [K : Q]/2 is odd. Then E/K has constant odd analytic parity (see
[21, Theorem 2(i) and Proposition 8(i)]).

This applies in particular to the elliptic curve

E : y2 + xy = x3 + x2 − 2x − 7

(labeled 121C1 in Cremona’s tables) and K the splitting field of
x3 − 11.

From now on we will only consider constant 2-Selmer parity. The follow-
ing theorem will be proved at the end of this section.

Theorem 9.5 If E/K has constant 2-Selmer parity, then K is totally imagi-
nary and E has no primes of multiplicative reduction.

Definition 9.6 Suppose E is an elliptic curve defined over a local field K . If
F is a quadratic extension of K (or F = K), define

δ(E,F/K) = dimF2 E(K)/NF/KE(F).

We will say that E/K has constant local parity if δ(E,F/K) is even for
every quadratic extension F/K .

If D ∈ K×/(K×)2, we will say that E/K has D-parity if

δ(E,F/K) is even ⇐⇒ D ∈ NF/KF×.

Note that if D is a square in K×, then E/K has D-parity if and only if it has
constant local parity.

Lemma 9.7 Suppose E is an elliptic curve defined over a local field K , and
�E ∈ K×/(K×)2 is its discriminant.

(i) If v is nonarchimedean with residue characteristic different from 2, and
E has good reduction, then E has �E-parity.

(ii) If K is nonarchimedean and E has multiplicative reduction, then E does
not have �E-parity.

(iii) If K = R, then E does not have �E-parity.
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Proof Assertions (i), (ii), and (iii) are [13, Corollary 4.4] and [11, Proposi-
tion 3], [11, Propositions 1 and 2], and [11, Proposition 6], respectively. �

For the rest of this section, fix an elliptic curve E defined over a number
field K , and let �E be the discriminant of some model of E.

Theorem 9.8

(i) If E/Kv has constant local parity for every place v of K , then E/K has
constant 2-Selmer parity.

(ii) E/K has constant 2-Selmer parity if and only if E/Kv has �E-parity
for every v.

Proof Suppose F is a quadratic extension of K . Kramer’s congruence (The-
orem 2.7) says

d2(E
F /K) ≡ d2(E/K) +

∑

v

δ(E,Fv/Kv) (mod 2) (16)

where Fv is the completion of F at some place above v. Assertion (i) follows
directly from this.

Now suppose E/Kv has �E-parity for every v. Then, if τ is the nontrivial
automorphism of Gal(F/K),

τ δ(E,Fv/Kv) = [�E,Fv/Kv]
where [ · ,Fv/Kv] is the local Artin symbol. The global reciprocity law
shows that

∏
v[�E,Fv/Kv] = 1, so

∑
v δ(E,Fv/Kv) is even and it follows

from (16) that E/K has constant 2-Selmer parity.
Finally, suppose that for some v0, E/Kv0 does not have �E-parity. By

Lemma 9.7(i), E/Kv has �E-parity for almost all v. Fix a quadratic extension
F/K such that

• τ δ(E,Fv0/Kv0 ) = τ · [�E,Fv0/Kv0],• every v �= v0 where E/Kv does not have �E-parity splits in F/K .

Then τ δ(E,Fv/Kv) = [�E,Fv/Kv] for every v �= v0, so

τ
∑

v δ(E,Fv/Kv) = τ ·
∏

v

[�E,Fv/Kv] = τ,

so by (16), d2(E/K) and d2(E
F /K) have opposite parity. �

Proof of Theorem 9.5 Theorem 9.5 follows directly from Theorem 9.8(ii) and
Lemma 9.7(ii, iii). �
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Corollary 9.9 If �E is a square, then E/K has constant 2-Selmer parity if
and only if E/Kv has constant local parity for every v.

Proof This is immediate from Theorem 9.8(ii). �
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