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Abstract We prove that the moduli space of plane curves of degree d is rational for all
sufficiently large d.

1 Introduction

It is a classical question, which can be traced back to works of Hilbert and Emmy Noether,
whether the orbit spaces P/G are rational where P is a projective space and G is a reductive
algebraic group acting linearly in P. If G is not assumed connected, in fact for G a finite
solvable group, D. Saltman has shown in [21] that the answer to this question is negative in
general (Emmy Noether had apparently conjectured that the quotient should be rational in
this case). No counterexamples are known for connected complex reductive groups G.

For simply connected classical groups except Spinn(C) for n > 12, the quotients P/G

are known to be stably rational, cf. [4, 9]. Bogomolov [4] claims the result for all Spinn(C)

but the proof contains a mistake pointed out by P. Katsylo. The question whether stably
rational varieties are always rational is the well-known Zariski problem which Beauville,
Colliot-Thélène, Sansuc and Swinnerton-Dyer [2] answered in the negative as well: There
are three-dimensional conic bundles X over rational surfaces which are irrational, but X×P

3

is rational. This uses the method of intermediate Jacobians by Clemens-Griffiths [8] which,
however, seems to work only for threefolds. In general, it is rather hard to distinguish sta-
bly rational and rational varieties. The method connected with the birational invariance of
the Brauer-Grothendieck group used previously by Artin and Mumford [1] to obtain more
elementary examples of unirational non-rational threefolds, is insensitive to this distinction
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(unirational varieties constitute a strictly bigger class than stably rational ones; e.g. Salt-
man’s counterexamples mentioned above are not even stably rational). The reader may find
these and other methods to prove irrationality, including the use of Noether-Fano inequalities
via untwisting of birational maps and Kollár’s method of differential forms in characteristic
p to prove non-rationality of some general hypersurfaces, in the survey by V.A. Iskovskikh
and Yu.G. Prokhorov [15].

The geometrically most relevant case of the general question discussed above seems to
be the case of the moduli space of projective hypersurfaces of degree d in P

n, which we
denote by Hyp(d,n). Here rationality is known in the following cases:

• n = 1 (the classical case of binary forms resp. sets of points on the projective line),
d odd [16], d even [5, 6]

• n = 2, d ≤ 3 (well known), d = 4 ([18, 19]), d ≡ 1 (mod 4) ([22]), d ≡ 1 (mod 9) and
d ≥ 19 [22]; d ≡ 0 (mod 3) and d ≥ 1821 [17] (this article contains the remark that
the author obtained the result also for d ≥ 210, unpublished); the same paper also gives
some results for congruences to the modulus 39; furthermore, there are some unpublished
additional cases in the case of plane curves which we do not try to enumerate.

• n = 3, d ≤ 2 (obvious), d = 3 (Clebsch and Salmon; but see [3]).
• n > 3, d ≤ 2 (obvious).

This represents what we could extract from the literature. It is hard to say if it is exhaustive.
The reader may consult the very good (though not recent) survey article [10] for much more
information on the rationality problem for fields of invariants.

The main theorem of the present article is:

Theorem 1.1 The moduli space of plane curves of sufficiently large degree d � 0 under
projective equivalence is rational.

More precisely, for d = 3n, d ≥ 1821, this was proven by Katsylo [17] as a glance back
at the preceding summary shows. We use this result and don’t improve the bound for d . For
d ≡ 1 (mod 3), we obtain rationality for d ≥ 37. For d ≡ 2 (mod 3), we need d ≥ 65.

Let us turn to some open problems. First of all, the method used in this paper seems
to generalize and -provided the required genericity properties hold and can be verified
computationally- could yield a proof of the rationality of Hyp(d,n) for fixed n if the de-
gree d is large enough and n + 1 does not divide d . The latter case might be amenable to
the techniques of [17] in general. Thus the case of the moduli spaces of surfaces of degree d

in P
3 seems now tractable with some diligence and effort. But we do not see how one could

obtain results on Hyp(d,n) for all n (and d sufficiently large compared to n).
More importantly, whereas we think that it is highly plausible that Hyp(d,n) is always

rational if d is sufficiently large compared to n, we do not want to hazard any guess in the
case where d is small. In fact, we do not know any truly convincing philosophical reason
why Hyp(d,n) should be rational in general; the present techniques of proving rationality
always seem to force one into assuming that d is sufficiently large if one wants to obtain an
infinite series of rational examples by a uniform method. Moreover, it can be quite painstak-
ing and tricky to get a hold of the situation if d is small as Katsylo’s tour de force proof
for M3 (i.e. Hyp(4,2)) in [18, 19] amply illustrates. The maybe easiest unsolved cases are
Hyp(6,2) (plane sextics) and Hyp(4,3) (quartic surfaces). Note that the former space is
birational to the moduli space of polarized K3 surfaces (S,h) of degree 2 (thus S is a non-
singular projective K3 surface and h ∈ Pic(S) is the class of an ample divisor with h2 = 2),
and the latter space is birational to the moduli space of polarized K3 surfaces of degree 4.
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2 Outline of proof

The structural pattern of the proof is similar to [22]; there the so called method of covariants
is introduced, and we learnt a lot from studying that source.

We fiber the space P(Symd(C3)∨) of degree d plane curves over the space of plane
quartics, if d ≡ 1 (mod 3), and over the space of plane octics, if d ≡ 2 (mod 3), i.e. we
construct SL3(C)-equivariant maps

Sd : Symd(C3)∨ → Sym4(C3)∨

and

Td : Symd(C3)∨ → Sym8(C3)∨

(Sd coincides with the covariant used in [22] for the case d = 9n + 1). These maps are of
degree 4 as polynomials in the coordinates on the source spaces, i.e. of degree 4 in the curve
coefficients. They are constructed via the symbolic method recalled in section 3. Further-
more they induce dominant rational maps on the associated projective spaces. We remark
here that the properties of Sd and Td essential for the proof are that they are of fixed low
degree in the curve coefficients, take values in spaces of curves of fixed low degree, and are
sufficiently generic.

We now focus on the case d ≡ 1 (mod 3). The proof has three main steps:

(1) Hyp(4,2) is stably rational, more precisely its product with P
8 is rational; cf. [6], The-

orem 1.1 for this.
(2) We find a linear subspace LS ⊂ Symd(C3)∨ such that P(LS) is contained in the base

locus BSd
of Sd with a full triple structure, i.e. I 3

P(LS) ⊃ IBSd
, and consider the projection

πLS
away from P(LS) onto P(Symd(C3)∨/LS). We show that a general fibre of Sd is

birationally a vector bundle over a rational base.
(3) The quotient map

PSym4(C3)∨ ���
(
PSym4(C3)∨)

/PGL3(C)

has a section σ4. Pulling back the linear fibrations constructed in (2) via σ4 we show
that the moduli space of plane curves of degree d is birational to Hyp(4,2)×P

N , where
N is large, whence we conclude by (1).

The main computational difficulty occurs in (2) where we have to establish that LS is
sufficiently generic. Projecting from P(LS) we obtain a diagram

PSymd(C3)∨
Sd

πLS

PSym4(C3)∨

P(Symd(C3)∨/LS)

We show that

(∗) for a particular (hence a general) ḡ ∈ P(Symd(C3)∨/LS) the map

Sd |P(LS+Cg) : P(LS + Cg) ��� PSym4(C3)∨

is surjective.
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Fig. 1 A non-generic L

Note that Sd |P(LS+Cg) is linear since LS is contained in the base locus with full triple structure
and Sd is of degree 4 in the curve coefficients. It is therefore enough to explicitly construct
points in the image that span PSym4(C3)∨. From this it follows at once that a general fibre of
Sd is mapped dominantly by πLS

whence we may view such a fibre birationally as a vector
bundle over a rational base. To understand better why the dominance of Sd is not sufficient
here, it is instructive to keep the following example in mind:

Example 1 Consider the rational map

S : P
3 ��� P

1, x �→ (Q1(x) : Q2(x))

where Q1,Q2 are quadric cones with vertex L. S is dominant. Projection from the vertex
L to P

2 is also dominant, but the quadric cones (i.e. the fibers of S) do not map dominantly
to P

2 (see Fig. 1). The projection fibers are the lines through L and indeed each such line is
contained completely in one cone in the pencil λQ1 + μQ2.

The base locus B of S consists of 4 lines that meet in L. If on the other hand we project
from a smooth point L′ ⊂ B then a general fiber of S maps dominantly to P

2. Indeed a
general line through L′ intersects all cones.

The complications in proving (∗) arise due to the fact that the natural description of LS is
in terms of the monomials which span it, whereas Sd can be most easily evaluated on forms
which are written as sums of powers of linear forms, see for example [20]. These two points
of view do not match, and we cannot repose on methods in [22]. Instead we introduce new
techniques in Sect. 5 to solve this difficulty:

• We use interpolation polynomials to write down elements in LS as sums of powers of
linear forms.

• Next we employ considerations of leading terms (or, geometrically, jets at infinity) to
eliminate the interpolation polynomials, from our formulae.

• For large enough d = 3n + 1, we finally reduce (∗) to the property that a certain matrix
M(n) has full rank. The size of M(n) is independent of n while (and this is the main
point) its entries are of the form

∑

ν

ρn
ν Pν(n)

where Pν are polynomials of fixed degree (i.e. independent of n), ρν are constants, and the
number of summands in the expression is independent of n. This is possible only because
we eliminated the interpolation polynomials in the previous step.
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• By choosing a point g with integer coefficients we can arrange that ρν and Pν(n) are
defined over Q with denominators that are not divisible by a small prime ℘ which we call
the precision of our calculation. Thus if we work over the finite field F℘ , the matrix M(n)

is periodic in n with period ℘(℘ − 1). A computer algebra program is then used to check
that these matrices all have full rank. By semicontinuity, this proves that M(n) has full
rank for all n in characteristic 0.

In a rather round-about sense, we have also been guided by the principle that evaluation of
a polynomial at a special point can be much cheaper than computing the polynomial.

3 Notation and definition of the covariants

For definiteness, the base field will be C, the field of complex numbers, though one might
replace it by any (not necessarily algebraically closed) field of characteristic 0 throughout.

Let G := SL3(C), and let Ḡ := PGL3(C) be the adjoint form of G. We denote by V (k)

the irreducible G-representation Symk(C3)∨. We fix a positive integer d not divisible by 3,
d = 3n + 1 or d = 3n + 2, n ∈ N.

The symbol [k], k ∈ N, denotes the set of integers from 0 (incl.) to k (incl.). Let
x1, x2, x3 ∈ (C3)∨ denote the basis dual to the standard basis in C

3 and put x := (x1, x2, x3).
We will use Schwartz’s multi-index notation and denote multi-indices by lower case bold-
face letters. Thus we write a general homogeneous form f ∈ V (d) of degree d as

f =
∑

i∈[d]3,|i|=d

d!
i! Aixi, (1)

where i! = i1!i2!i3!, |i| := i1 + i2 + i3, Ai = Ai1i2i3 , xi = x
i1
1 x

i2
2 x

i3
3 . We will use the symbolical

method introduced by Aronhold and Clebsch to write down G-equivariant maps (covariants)
from V (d) to V (4) (if d = 3n+1) or to V (8) (if d = 3n+2). It is explained in [14] and, from
a modern point of view, in [11], Chap. 1. We denote by α = (α1, α2, α3) a vector of symbolic
variables, and also introduce vectors β , γ , δ, similarly. We write αx = α1x1 + α2x2 + α3x3,
and similarly βx, γx, δx. Moreover we define the bracket factor (αβγ ) by

(αβγ ) := det

⎛

⎜
⎝

α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

⎞

⎟
⎠

and write (αβδ) etc. similarly. The idea in this calculus is to write f ∈ V (d) symbolically
as a power of a linear form in several ways:

f = αd
x = βd

x = γ d
x = δd

x , (2)

whence the identities

Ai = αi = β i = γ i = δi. (3)

If d = 3n+1, define a covariant Sd : V (d) → V (4) of order 4 and degree 4 by the following
prescription:

I (α,β, γ, δ) := (αβγ )(αβδ)(αγ δ)(βγ δ), (4)

Sd(α,β, γ, δ) := I nαxβxγxδx. (5)
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The formula for Sd should be read in the following way: The right-hand side of (5), when
we multiply it out formally, is a sum of monomials αiβ jγ kδlxe, i, j,k, l ∈ [d]3, e ∈ [4]3,
and |i| = · · · = |l| = d , |e| = 4. Thus one can use (1) and (3) to rewrite the right-hand side
unambiguously in terms of the coefficients Ai of f ∈ V (d). Hence Sd may be viewed as a
map from V (d) to V (4), homogeneous of degree 4 in the coefficients Ai, which is clearly
G-equivariant. By abuse of notation, we denote the induced rational map

Sd : PV (d) ��� PV (4) (6)

by the same letter. Note that I defined by (4) may be viewed as an invariant of plane cubics
I : V (3) → C of degree 4 in the coefficients of the cubic. In fact, this is the famous Clebsch
invariant, vanishing on the locus of Fermat cubics, or vanishing on the equi-anharmonic
cubics, i.e. nonsingular plane cubics which can be written as a double cover of P

1 branched
in four points with equi-anharmonic cross-ratio. Equi-anharmonic cross-ratio means cross-
ratio equal to minus a cube root of 1. Equi-anharmonic quadruples of points in P

1 are one of
the two possible PGL2C-orbits of 4 points in P

1 with non-trivial isotropy group (the other
orbit being quadruples with harmonic cross-ratio, i.e. equal to −1, 1/2 or 2). See (5.13)
of [13], for details.

The letter S in Sd was chosen in honor of the 19th century Italian geometer Gaetano
Scorza, who studied in detail the map S4, called the Scorza map (cf. [13], Sects. 6 and 7,
and [12], Sect. 6.4.1).

Similarly, for d = 3n+2, we define a covariant Td : V (d) → V (8) of order 8 and degree 4
by

Td(α,β, γ, δ) := I nα2
xβ

2
xγ 2

x δ2
x . (7)

and denote the induced rational map Td : PV (d) → PV (8) by the same letter.
We remark that it is hard to calculate the values of Sd (or Td ) on a general homogeneous

form f of degree d without knowing the entire expression of Sd (resp. Td ) as a polynomial
in the coefficients Ai, which is awkward. One can, however, work directly with the symbolic
expressions given in (5) and (7) if one writes f as a linear combination of d-th powers of
linear forms:

f = λ1l
d
1 + · · · + λNldN , some N ∈ N. (8)

For linear forms li , lj , lk , lp ∈ C[x1, x2, x3]1 we use the notation

I (li , lj , lk, lp), Sd(li , lj , lk, lp), Td(li , lj , lk, lp) (9)

which is defined via formulas (4), (5), (7), but where for the vectors α, β , γ , δ of symbolic
variables we substitute the vectors of coordinates w.r.t. x1, x2, x3 of li , lj , lk , and lp . One
then has the following easy, but fundamental multi-linearity properties of Sd and Td whose
proof is a straight-forward computation and therefore omitted.

Lemma 3.1 We have

Sd(f ) = 24
∑

λiλjλkλpSd(li , lj , lk, lp), (10)

Td(f ) = 24
∑

λiλjλkλpTd(li , lj , lk, lp). (11)

The right-hand sums run over all (i, j, k,p) with 1 ≤ i < j < k < p ≤ N .
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4 Special linear subspaces of the base loci

The group G = SL3C is a rank 2 complex semisimple algebraic group, and choosing the
standard torus T of diagonal matrices as maximal torus, and the group of upper-triangular
matrices as Borel subgroup, one has the notions of roots, positive and simple roots, and
simple coroots H1, H2 available. Corresponding to H1, H2 one has one-parameter subgroups
λH1 , λH2 : C

∗ → T given by

λH1(t) =
⎛

⎜
⎝

t 0 0

0 t−1 0

0 0 1

⎞

⎟
⎠ , λH2(t) =

⎛

⎜
⎝

1 0 0

0 t 0

0 0 t−1

⎞

⎟
⎠ . (12)

For d = 3n + 1, we may view the covariant Sd as an element in

(
Sym4V (d)∨ ⊗ V (4)

)G
, (13)

a G-invariant polynomial of degree 4 in the curve coefficients Ai, i ∈ [d]3, |i| = d , with
values in V (4). As such it is a linear combination of monomials

AiAjAkAlxe, (14)

where i, j, k, l ∈ [d]3, |i| = · · · = |k| = d , e ∈ [4]3, |e| = 4.
Similarly, for d = 3n + 2, Td can be viewed as an element of

(
Sym4V (d)∨ ⊗ V (8)

)G
, (15)

i.e. a G-invariant polynomial of degree 4 in the curve coefficients Ai, i ∈ [d]3, |i| = d , with
values in V (8). It is a linear combination of monomials

AiAjAkAlxe, (16)

where i, j, k, l ∈ [d]3, |i| = · · · = |k| = d , e ∈ [8]3, |e| = 8.
The following proposition is an important ingredient in the proof of rationality.

Proposition 4.1 For d = 3n + 1, the projectivization of the linear space

LS = x2n+3
1 · C[x1, x2, x3]n−2 ⊂ V (d) (17)

is contained in the base scheme BS of the rational map

Sd : PV (d) ��� PV (4)

with a full triple structure, i.e.

I 3
P(LS) ⊃ IBS

.

Similarly, for d = 3n + 2, the projectivization of the linear space

LT = x2n+5
1 · C[x1, x2, x3]n−3 ⊂ V (d) (18)

is contained in the base scheme BT of

Td : PV (d) ��� PV (8)

with a full triple structure.
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Proof Regardless of whether d = 3n + 1 or d = 3n + 2, the conditions that the monomials
in (14) or (16) are invariant under the actions of the one-parameter subgroups λH1 resp. λH2

read

i1 + j1 + k1 + l1 − i2 − j2 − k2 − l2 − e1 + e2 = 0, resp. (19)

i2 + j2 + k2 + l2 − i3 − j3 − k3 − l3 − e2 + e3 = 0. (20)

Now for d = 3n + 1 we get

4(3n + 1) = |i| + |j| + |k| + |l|
= 3(i2 + j2 + k2 + l2) + (e1 − e2) + (e3 − e2)

= 3(i2 + j2 + k2 + l2) + 4 − 3e2, (21)

and for d = 3n + 2 one has

4(3n + 2) = |i| + |j| + |k| + |l|
= 3(i2 + j2 + k2 + l2) + (e1 − e2) + (e3 − e2)

= 3(i2 + j2 + k2 + l2) + 8 − 3e2. (22)

In both cases then it follows that

i1 + j1 + k1 + l1 = 4n + e1,

i2 + j2 + k2 + l2 = 4n + e2, (23)

i3 + j3 + k3 + l3 = 4n + e3.

In particular, for d = 3n + 1, i1 + j1 + k1 + l1 ≤ 4n + 4, which means that at most 1 out of
the 4 indices i1, j1, k1, l1 can be ≥ (4n+ 4)/2 + 1 = 2n+ 3. Since ILS

is generated by those
Ai with i1 < 2n + 3, this proves the first assertion.

For d = 3n + 2, i1 + j1 + k1 + l1 ≤ 4n + 8, whence at most 1 out of i1, j1, k1, l1 can be
≥ (4n + 8)/2 + 1 = 2n + 5, which proves the proposition. �

Remark 4.2 By construction, LS (resp. LT ) have the following basic property: For g ∈
V (d)\LS (resp. g ∈ V (d)\LT ), the restriction Sd |P(LS+Cg) (resp. Td |P(LT +Cg)) is linear.

5 Fiberwise surjectivity of the covariants

To begin with, we will show how some elements of LS (resp. LT ) can be written as sums of
powers. For this let K be a positive integer.

Definition 5.1 Let b = (b1, . . . , bK) ∈ C
K be given. Then we denote by

pb
i (c) :=

∏

j �=i,1≤j≤K

c − bj

bi − bj

(24)

for i = 1, . . . ,K the interpolation polynomials of degree K −1 w.r.t. b in the one variable c.
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Lemma 5.2 Let b = (b1, . . . , bK) ∈ C
K , bi �= bj for i �= j , and set x = x1, y = λx2 + μx3,

(λ,μ) �= (0,0). Suppose d > K and put li := bix + y. Then for each c ∈ C with c �= bi , ∀i,

f (c) = pb
1 (c)ld1 + · · · + pb

K(c)ldK − (cx + y)d (25)

is nonzero and divisible by xK .

Proof The coefficient of the monomial xAyB in f (c) is equal to
(

d

A

)
(pb

1 (c)bA
1 + · · · + pb

K(c)bA
K − cA).

For A ≤ K − 1 one has

cA = pb
1 (c)bA

1 + · · · + pb
K(c)bA

K

for all c by interpolation. �

Choosing K = 2n + 3, we obtain elements f (c) ∈ LS , and for K = 2n + 5 elements
f (c) ∈ LT . Now for d = 3n + 1 consider the diagram

P(LS + Cg) ⊂ PV (d)
Sd

πLS

PV (4)

ḡ ∈ P(V (d)/LS)

or for d = 3n + 2 the diagram

P(LT + Cg) ⊂ PV (d)
Td

πLT

PV (8)

ḡ ∈ P(V (d)/LT ).

The aim of this section is to prove:

Proposition 5.3 Let d = 3n + 1 ≥ 37. Then there exists a g ∈ V (d) such that

Sd |P(LS+Cg) : P(LS + Cg) ��� PV (4)

is surjective. For d = 3n + 2 ≥ 65 there exists a g ∈ V (d) such that

Td |P(LT +Cg) : P(LT + Cg) ��� PV (8)

is surjective.

We will prove the case d = 3n + 1 first. The case d = 3n + 2 is very similar, and we will
deal with it afterwards.

We start by constructing points in the image of Sd :
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Lemma 5.4 Consider Sd(f (c) + g) as an element of C[x1, x2, x3, c] and write

Sd(f (c) + g) = Qdc
d + · · · + Q0 (26)

with Qi ∈ C[x1, x2, x3]4. Then [Qi] ∈ Sd(P(LS + Cg)) for all i.

Proof The map

ϕ : A
1 → PV (4)

c �→ Sd(f (c) + g)
(27)

gives a rational curve X in Sd(P(LS + Cg)). Since by Remark 4.2, Sd |P(LS+Cg) is linear, the
linear span of X is contained in Sd(P(LS + Cg)). Now 〈X〉 = 〈Q0, . . . ,Qd〉 which proves
the claim. �

Surprisingly, for i large enough, the Qi do not depend on the vector b = (b1, . . . , bK)

chosen to construct f (c):

Proposition 5.5 If

Sd(f (c) + g) = Qdc
d + · · · + Q0, Qi ∈ C[x1, x2, x3]4

and

Sd(−(cx + y)d + g) = Q′
dc

d + · · · + Q′
0, Q′

i ∈ C[x1, x2, x3]4,

then Qi = Q′
i for i ≥ K .

Proof Write g as a sum of d th powers of linear forms

g = md
1 + · · · + md

const, (28)

where const is a positive integer that will be fixed (independently of n) in the later discussion.
Then (using IBS

⊂ I 3
P(LS) and Lemma 3.1)

Sd(f (c) + εg) = Sd

(
pb

1 (c)ld1 + · · · + pb
K(c)ldK − (cx + y)d

+ εmd
1 + · · · + εmd

const

)

= 24

(
ε3

∑

i
j<k<p

pb
i (c)I (li ,mj ,mk,mp)nlimjmkmp

− ε3
∑

j<k<p

I (cx + y,mj ,mk,mp)n(cx + y)mjmkmp

+ ε4
∑

i<j<k<p

I (mi,mj ,mk,mp)nmimjmkmp

)
(29)

For ε = 1 we find

Sd(f (c) + g) =
∑

i,j,k,p

pb
i (c)I (li ,mj ,mk,mp)nlimjmkmp + Sd(−(cx + y)d + g). (30)
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Since degpb
i = K − 1, the assertion follows. �

Next we will investigate the dependence of Qt on n for t ≥ K . We choose a fixed constant
℘ ∈ N (the “precision”) with d − ℘ + 1 ≥ K and ℘ ≤ n (later ℘ will be a prime number).

Lemma 5.6 For 3n + 1 − ℘ ≤ s ≤ 3n, the coefficient of cs in I (cx + y,mi,mj ,mk)
n is of

the form

�nP (n) (31)

where � ∈ C (independent of n and s) and P (n) is a polynomial of degree 3n− s < ℘. P (n)

is, as a polynomial in C[n] divisible by

(
n

n − � s
3�

)
.

If the coefficients of the mi are integers and ℘ is a prime number, then the reduction of
the coefficient of cs in I (cx + y,mi,mj ,mk)

n modulo ℘ is still of the form

�nP (n) (32)

with � ∈ F℘ and P (n) ∈ F℘[n] satisfying the same independence and divisibility conditions
as above.

Proof Calculating either over C or over F℘ , we have

I (cx + y,mi,mj ,mk)
n

= (cx + y,mi,mk)
n(cx + y,mi,mj )

n(cx + y,mj ,mk)
n(mi,mj ,mk)

n

= (ξikc + ηik)
n(ξij c + ηij )

n(ξjkc + ηjk)
n(mi,mj ,mk)

n (33)

where the ξ ’s and η’s are constants (fixed once the m’s are fixed). If any of the ξ ’s vanishes
the polynomial I (cx + y,mi,mj ,mk)

n is of degree ≤ 2n in c. Since s > 3n − ℘ ≥ 2n, in
this situation the coefficient of cs is 0 and we are finished. Assume therefore that the ξ ’s are
invertible.

The above expression expands to

⎛

⎝
n∑

p=1

(
n

p

)
ξ

p

ikc
pη

n−p

ik

⎞

⎠ ·
⎛

⎝
n∑

q=1

(
n

q

)
ξ

q

ij c
qη

n−q

ij

⎞

⎠ ·
(

n∑

r=1

(
n

r

)
ξ r
jkc

rηn−r
jk

)

· (mi,mj ,mk)
n

and the coefficient of cs is

(mi,mj ,mk)
n

∑

p+q+r=s

(
n

p

)(
n

q

)(
n

r

)
ξ

p

ikξ
q

ij ξ
r
jkη

n−p

ik η
n−q

ij ηn−r
jk .

Put p′ = n − p, q ′ = n − q , r ′ = n − r and rewrite this as

(
(mi,mj ,mk)ξikξij ξjk

)n
∑

p′+q ′+r ′=3n−s

(
n

p′

)(
n

q ′

)(
n

r ′

)
ξ

−p′
ik ξ

−q ′
ij ξ−r ′

jk η
p′
ik η

q ′
ij ηr ′

jk.
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The first claim of the lemma over C is obvious now. The reductions of the binomial coeffi-
cients modulo ℘ are polynomials in n over F℘ if p′, q ′, r ′ < ℘. Our conditions on s imply
this, since

p′, q ′, r ′ ≤ p′ + q ′ + r ′ = 3n − s < ℘.

As for the stated divisibility property in C[n] and F℘[n], remark that in

(
n

p′

)(
n

q ′

)(
n

r ′

)

with p′ + q ′ + r ′ = 3n − s, at least one of p′, q ′, q ′ is ≥ n − � s
3�. �

Proposition 5.7 For d − ℘ + 1 ≤ t ≤ d , the coefficient of each monomial xi in Qt is of the
form

(const
3 )∑

ν=1

�n
νPν(n) (34)

where �ν ∈ C are constants (independent of n), and Pν(n) are polynomials of degree
≤d − t < ℘, which are divisible by

(
n

n − � t
3�

)
.

If g can be written as sum of powers with integer coefficients and ℘ is a prime number,
the same is true for the reduction of Qt mod ℘.

Proof Qt is the coefficient of ct in

(−24)
∑

1≤i<j<k≤const

I (cx + y,mi,mj ,mk)
n(cx + y)mimjmk (35)

(cf. (29)), so we may apply Lemma 5.6 with s = t and s = t − 1. �

Definition 5.8 For d − ℘ + 1 ≤ t ≤ d , we put

Rt := Qt(
n

n−� t
3 �

) . (36)

Proof of Proposition 5.3 (For d = 3n + 1) Let const = 9 and consider

g = md
1 + · · · + md

const

with

m1 = x1 + 3x2 + 9x3 m4 = x1 + 6x2 − 10x3 m7 = −3x2 + 2x3

m2 = −10x1 + x2 + 4x3 m5 = 4x1 − 8x2 − 10x3 m8 = 8x1 − 4x2 − 4x3

m3 = 8x1 + 4x2 + 6x3 m6 = −3x1 + 7x2 − 4x3 m9 = −10x1 + 4x2 + 6x3.
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For ℘ = 11 we perform our construction with x = x1 and two different values for y,
namely y1 = x2 and y2 = x3. We obtain 22 quartics R

y1
d , . . . ,R

y1
d−10,R

y2
d , . . . ,R

y2
d−10. By

Lemma 5.4 and Proposition 5.5 these quartics are in the image of Sd |P(LS+Cg) if

d − 10 ≥ K ⇐⇒ 3n + 1 − 10 ≥ 2n + 3 ⇐⇒ n ≥ 12.

The coefficients of the R
yi

j form a 15 × 22 matrix M(n) with entries of the form
∑84

ν=1 �n
νPν(n) by Proposition 5.7. Modulo 11 this matrix becomes periodic in n with period

11 · 10 = 110. With a computer algebra program it is straightforward to check that all these
matrices have full rank 15. A Macaulay2 script doing this can be found at [7]. This proves
the claim for d = 3n + 1. �

Let us turn to the case d = 3n + 2. The whole procedure is similar in this case. If we
take K = 2n + 5 Lemma 5.2, Proposition 5.5, Lemma 5.6 and Proposition 5.7 remain true
as stated and Definition 5.8 still makes sense.

Proof of Proposition 5.3 (For d = 3n + 2) Let const = 9 and consider

g = md
1 + · · · + md

const

with mi as above.
For ℘ = 19 we perform our construction with x = x1 and three different values for y,

namely y1 = x2, y2 = x3 and y3 = x2 + x3. We obtain 57 octics R
y1
d , . . . ,R

y1
d−18,R

y2
d , . . . ,

R
y2
d−18,R

y3
d , . . . ,R

y3
d−18. By Lemma 5.4 and Proposition 5.5 these octics are in the image of

Sd |P(LT +Cg) if

d − 18 ≥ K ⇐⇒ 3n + 2 − 18 ≥ 2n + 5 ⇐⇒ n ≥ 21.

The coefficients of the R
yi

j from a 45 × 57 matrix M(n) with entries of the form
∑84

ν=1 �n
νPν(n) by Proposition 5.7. Modulo 19 this matrix becomes periodic in n with period

19 · 18 = 342. With a computer algebra program it is straightforward to check that all these
matrices have full rank 45. A Macaulay2 script doing this can be found in [7]. This proves
the claim for d = 3n + 2. �

6 Sections of principal bundles and proof of rationality

We will now show how to conclude the proof in the case d = 3n + 1. We make some com-
ments on the case d = 3n + 2 when they are in order, but otherwise leave the obvious
modifications to the reader. Let

(
PV (4)

)
vs

⊂ PV (4) be the open subset of very stable points
with respect to the action of Ḡ and the Ḡ-linearized line bundle O(3) (very stable means
stable with trivial stabilizer). Now the essential point is:

Proposition 6.1 The quotient morphism

(
PV (4)

)
vs

→ (
PV (4)

)
vs
/Ḡ

is a principal Ḡ-bundle in the Zariski topology.



172 C. Böhning, H.-C. Graf von Bothmer

Proof See [22], Proposition 2. This holds also true with V (4) replaced with V (8). �

It follows that this Ḡ-bundle has a section defined generically which we will denote
by σ4.

Proof of Theorem 1.1 Consider the graph

X = {(g, ḡ, f )|πLS
(g) = ḡ, Sd(g) = f } ⊂ PV (d) × P

(
V (d)/LS

) × PV (4)

and the diagram

X

pr23

1:1
pr1

PV (d) PV (d)/Ḡ

S̄dP
(
V (d)/LS

) × PV (4)

PV (4) PV (4)/Ḡ.

σ4

By Proposition 5.3 the projection pr23 is dominant. It follows then from Remark 4.2 that
X is birational to a vector bundle over P

(
V (d)/LS

) × PV (4) and hence also over PV (4).
After replacing σ4 by a translate, we can assume that σ4 meets an open set U ⊂ PV (4)

over which this vector bundle is trivial. Since Ḡ acts generically freely on PV (4), we can
pull back the above vector bundle structure via σ4 and obtain that PV (d)/Ḡ is birational
to PV (4)/Ḡ × P

N with N = dimV (d) − dimV (4). If d ≥ 37 as in Proposition 5.3, then
certainly N ≥ 8 and since (PV (4)/Ḡ) × P

8 is rational, PV (d)/Ḡ is rational. In the case
d = 3n + 2 the same argument works since the space of octics is also stably rational of
level 8. This proves Theorem 1.1. �
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do not only show rationality over C but even over Q. We would like to thank Fedor Bogomolov and Yuri
Tschinkel for suggesting this problem and helpful discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc.
Lond. Math. Soc. 25(3), 75–95 (1972)

2. Beauville, A., Colliot-Thélène, J.-L., Sansuc, J.-J., Swinnerton-Dyer, S.P.: Variétés stablement ra-
tionnelles et non-rationnelles. Ann. Math. 121, 283–318 (1985)

3. Beklemishev, N.: Invariants of cubic forms in four variables. Vestnik Moscov. Univ. Ser. I Mat. Mekh.
2, 42–49 (1982)

4. Bogomolov, F.: Stable rationality of quotient varieties by simply connected groups. Mat. Sbornik 130,
3–17 (1986)



Rationality of moduli spaces of plane curves 173

5. Bogomolov, F.: Rationality of the moduli of hyperelliptic curves of arbitrary genus. In: Conference on
Algebraic Geometry, Vancouver, 1984. CMS Conference Proceedings, vol. 6, pp. 17–37. Amer. Math.
Soc., Providence (1986)

6. Bogomolov, F., Katsylo, P.: Rationality of some quotient varieties. Mat. Sbornik 126, 584–589 (1985)
7. Böhning, C., Graf von Bothmer, H.-C.: Macaulay2 scripts to check the surjectivity of the Scorza and

Octa maps. Available at http://www.uni-math.gwdg.de/bothmer/rationality (2008)
8. Clemens, H., Griffiths, P.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95, 281–356

(1972)
9. Colliot-Thélène, J.-L., Sansuc, J.-J.: The rationality problem for fields of invariants under linear algebraic

groups (with special regards to the Brauer group). In: Algebraic Groups and Homogeneous Spaces. Tata
Institute of Fundamental Research Studies in Mathematics, pp. 113–186. Tata Inst. Fund. Res., Mumbai
(2007)

10. Dolgachev, I.: Rationality of fields of invariants. In: Proceedings of Symposia in Pure Mathematics, vol.
46, pp. 3–16 (1987)

11. Dolgachev, I.: Lectures on Invariant Theory. London Mathematical Society Lecture Note Series, vol.
296. Cambridge Univ. Press, Cambridge (2003)

12. Dolgachev, I.: Topics in classical algebraic geometry. part I. Available at http://www.math.lsa.umich.
edu/~idolga/lecturenotes.html

13. Dolgachev, I., Kanev, V.: Polar covariants of plane cubics and quartics. Adv. Math. 98, 216–301 (1993)
14. Grace, J.H., Young, W.H.: The Algebra of Invariants. Cambridge Univ. Press, Cambridge (1903).

Reprinted by Chelsea, New York (1965)
15. Iskovskikh, V.A., Prokhorov, Yu.G.: Fano Varieties. In: Parshin, A.N., Shafarevich, I.R. (eds.) Algebraic

Geometry V. Encyclopedia of Mathematical Sciences, vol. 47. Springer, Berlin/Heidelberg (1999)
16. Katsylo, P.I.: Rationality of the moduli spaces of hyperelliptic curves. Izv. Akad. Nauk SSSR Ser. Mat.

48, 705–710 (1984)
17. Katsylo, P.I.: Rationality of moduli varieties of plane curves of degree 3k. Math. USSR Sbornik 64(2)

(1989)
18. Katsylo, P.I.: On the birational geometry of the space of ternary quartics. Adv. Sov. Math. 8, 95–103

(1992)
19. Katsylo, P.I.: Rationality of the moduli variety of curves of genus 3. Comment. Math. Helvetici 71,

507–524 (1996)
20. Ranestad, K., Schreyer, F.: Varieties of sums of powers. J. Reine Angew. Math. 525, 147–181 (2000)
21. Saltman, D.: Noether’s problem over an algebraically closed field. Invent. Math. 77, 71–84 (1984)
22. Shepherd-Barron, N.I.: The rationality of some moduli spaces of plane curves. Compos. Math. 67, 51–88

(1988)

http://www.uni-math.gwdg.de/bothmer/rationality
http://www.math.lsa.umich.edu/~idolga/lecturenotes.html
http://www.math.lsa.umich.edu/~idolga/lecturenotes.html

	Rationality of the moduli spaces of plane curves of sufficiently large degree
	Introduction
	Outline of proof
	Notation and definition of the covariants
	Special linear subspaces of the base loci
	Fiberwise surjectivity of the covariants
	Sections of principal bundles and proof of rationality
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


