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1. Mistake

There is a serious mistake in my paper [1] appeared in Invent. Math. 165
(2006), 267-324. The proof of the main theorem consists of three parts.
The mistake is found in the Part III (Sect. 8.1 in loc. cit.). The proof there
uses Jannsen’s Hasse theorem ([7, Thm. 3 a)]). Though it is stated for
cohomology with Z,-coefficients, I referred it as Q,-coefficients. That is
my stupid but serious mistake. The argument in Sect. 8.1 now breaks down
totally.

In the present paper, we correct the proof of the Part III (Theorem 2.1).
The method is completely different from the previous one. The idea of it
was given by Professor Kazuya Kato. I heartily thank him for the suggestion
and for teaching me a lot about Iwasawa theory. Without his help, I could
never overcome the mistake.

2. Correction

Let p be a prime number. H* = H¢ , denotes the continuous Galois
cohomology.

* The online version of the original article can be found at
http://dx.doi.org/10.1007/s00222-005-0494-4
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Theorem 2.1. Let K be a finite extension of Q, which is contained in some
cyclotomic extension Q,(¢). Let r # 1 be an integer. Let

lim H'(F, Z,(r)) —> H'(K,Z,(r)) (2.1)
F

be the natural map where F runs over all subfields of K which are finite
abelian extensions of Q (i.e. F is a subfield of some cyclotomic extension

of Q).
(1) Suppose p = 3. Then (2.1) is surjective.

(2) Suppose p = 2. If /—1 € K then (2.1) is surjective. In general it has
a finite cokernel.

The Part IIT in [1] is the case r = 2 in the above.

2.1. Local units and cyclotomic units. Let H be a finite unramified exten-
sion of Q, and Oy the ring of integers in H. We fix a generator (,»),> of
Z,(1).Put G, := Gal(H({,»)/H) and G := l(u_n G,,. We denote by Og[[G]]
the Iwasawa algebra of G:

OullG]] := lim Oy[G,].

<
n

Letx : G = Z; be the cyclotomic character defined by o(¢,n) = ¢ ;,(n(a).

We write 0, = x ! () fora € Z; . We choose isomorphisms of topological
Op-algebras
p—1 times

® : OylIG]] => OulIT1] x --- x OylIT]] 2.2)

which is uniquely determined by

q)(01+p):(T+1+p"" ,T+1+P),
(I)(O'n) = (n’ 772’ B npil) for npi] = 1

for p > 3, and
® : O4l[G1] => Oyl[TN[o]/(0” — 1) (2.3)
determined by
Do) =T+5, Do) =0
for p = 2. We put

U':=1im Oyl ], V' i= Lln H(gpn)™,



Surjectivity of p-adic regulators on K> of Tate curves 215

where the limits are taken with respect to the norm maps. Let U and V be
the p-adic completion of U’ and V' respectively so that we have

V=1im H' (H(p), Zy(1), VZEU®Z,.

n

We note that (0, 1) € U ®Z, corresponds to (1 —¢,n),>1 € V in the second
isomorphism. The group U (or V) is called the local units and it is known to
be a finitely generated Z,[[G]]-module. For an integer r, one has a natural
isomorphism

Vir = 1) = V ®g, Z,(r — 1) = lim H'(H(,). Z, (1) (2.4)

n

of Z,[[G]]-modules (G acts on the left hand side diagonally). If » # 1 and
p > 3 (resp. p = 2) we also have

H'(H(¢p), Z,() = V(r — 1) ®z,11611 Lpl Gyl (2.5)

forn > 0 (resp. n > 2). (When p = 2 and n = 1 there is a similar iso-
morphism if we neglect the torsion.)

Letting gy be the order of the residue field of H, we denote the group of
(gg — 1)-th roots of unity in H by ugy. Note that py is equal to the group
of all roots of unity in H if p > 3, but not equal if p = 2. Recall Coleman’s
exact sequence

0 —> Z,(1) ® puy —> U’ 25 04[[GT] -2 Z,(1) — 0 (2.6)

of G-modules. (See [4, Theorem 1] or [5, Theorem 3.5.1] where it is proved
in the case H = Q,. However one can check that the same proof works
for arbitrary H.) The map iy sends ((pn)n, 1) to (07" ¢pn), if p > 3 (resp.
(—n'/*" ¢30), if p = 2) where n'/?" € puy denotes the unique element whose
p"-th power is equal to 1. The map i, is the composition of the trace map
Truyq, : OullGll — Z,[[G]] with the Z,-linear map Z,[[G]] — Z,(1)
such that o, — ({;‘n)nzl. The map [, is an important map in Iwasawa
theory which is described in the following way. Let Fr, be the Frobenius
on H. We also denote by Fr, the endomorphism on Oy[[X]] given by
aX' +— Fry(@)X'. Let ¢ : Oyl[X]] — Opgl[X]] be the endomorphism
given by a(X + 1)’ > Fr,(a)(X + 1)"?. Let ¥ : U' — Oy[[X]]* be the
Coleman power series which is characterized by Fr;” (U(u))| X=tp—1 = Un
for u = (u,), € U’ ([2, Theorem A]). Let log"” : Oyx[[X]]* — Ogl[X]]
be the homomorphism defined by

1 fr
log” (f) := —1 ( )
og'”’(f) » og )

Leti : Oygl[G]] — Ogxl[X]] be the continuous Op-linear map such that
oe > (1 + X)*. Note that i is injective. Then [, is defined as the unique
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Z,[[G]]-linear map which makes the following diagram commutative:

U — > 041G

wl li
log®

OullX11* —— OullX]].

If we replace U’ with U, we get an exact sequence

0— Z,(1) -5 U = 0yllG]] > Z,(1) — 0 (2.7)
of Z,[[G]]-modules. In particular we have an isomorphism
lo(U) % (0101 + TOg([T]]) x OullT]] x -+ x Ox[[T]] (2.8)

(resp. loo(U) ~2> {A(T) + &(T)o € OylITIlo]/(6” — 1) |
f(0) — g(0) € O}) (2.9)

of Z,[[G]]-modules for p > 3 (resp. p = 2) where 0Y = ker(TrH/Qp :
OH — Zp)
For n € puy we put

C(n) := (1 _ nl/p"gpn)nzl eV (2.10)

and call it the cyclotomic unit. The Coleman power series W¥(C(n)) is
I —n(X + 1). Note that C(1) is a generator of V/U = Z, and if n # 1 then
C(n) € U. We also put

Cm) = C @ (65", = (1= 0" gp) @), € V= 1)

for an integer r. We define a Z,[[G]]-submodule V(r — 1)¢yq C V(r — 1)
in the following way. Let L/Q, be a finite unramified extension such that
L D H, and V, the p-adic completion of l<ln L(¢,)*. The norm map for
L/H induces a map Ny, : Vi (r — 1) — V(r — 1). For n, € pur, we
have the cyclotomic unit C,(n.) € V. (r — 1) and hence N,z C, (1) =
NiyuCnr) ® (¢pm)® ! € V(r — 1). We define

V(r = Deya :=Z(r) + (D Z[IG1] - NoyuCr(ny)) € Vir — 1),

Lo

where the summation runs over all L and 5, as above. We put
Ur — Deyer :=U(r — 1) N V(r — 1)eyer. We simply write Viyer = V(0)cyele
and Ugyel = U(0)¢ycle- Obviously we have V(r — D)eyel = Viya @ Z,(r — 1)
and U(r — Deyel = Uyt @ Zy(r — 1).

The following is the key result.

Theorem 2.2. Vi = V.
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We shall prove Theorem 2.2 in Sects. 2.4 and 2.5.

Remark 2.3. Let us explain Thoerem 2.2 from the viewpoint of p-adic
L-functions. Let

Dloo(Cn) = (FO(T), -+ FP(T)) e [ | OullTI].
As we shall see later (cf. (2.20) below), they correspond to the p-adic
polylogarithms in the following way:
FO((1+p) =1 +p) = —1” () forr=imodp—1. (2.11)
Then Theorem 2.2 can be stated as

OullT1] 2<i=p-1

Ly

2.12)

Let L, (s, x) denote the p-adic L-function which is characterized as a p-adic
analytic function on Z, such that

L,(1—r, xo")=(1- xp)p  HLA—r %), r>0 (2.13)

where L(s, x) is the Dirichlet L-function and w : (Z/p)* — Z; is the
Teichmiiller _Character. Due to Iwasawa’s theorem, foreach 1 <i < p —1
there is a G;”(T) € FracOg[Imagex ][[T]] such that

GS)((I +p) —(+p)=—-L,(1 —r, xo') forr=imodp— 1.
(2.14)
The p-adic polylogarithms are expressed as a linear combination of the

p-adic L-functions and vice versa. More precisely, for p + N and a primitive
N-th root ¢y of unity one has

(2@ =3 Y oo ' d xRS L, (1 — 1, xa'), 1 #0mod N
dNo=N k,x
2.15)

where k € (Z/Ny)* and x runs over all characters modulo Ny. Let N =
gy — 1. Then (2.11), (2.14) and (2.15) imply

FOT)y = 3 3 oo 'd "y (onGO(T).  ne uy — (1},
dNo=N k,x
(2.16)

Therefore we have from (2.12) that

OullT1 2<i=z<p-1

7,01 TTrenG (T
Z plImage x I[[T11Tr. n G’ (T) D {OQI+TOH[[T]] i=1

L,x

where L/ H is an unramified extension and x runs over all characters modulo
gL — L.
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2.2. Proof of Theorem 2.2 = Theorem 2.1. We first assume K = H({n)
where n > 0 and H is a finite unramified extension of Q,. It follows
from Theorem 2.2 that V(r — 1) = Viyq ® Z,(r — 1) is generated by
Z,(r) and {Ny;nC,-(n)}1,y, - Clearly the cyclotomic unit C,(nz) comes
from Lir_nH‘(Q(ML, ¢pn)s Ly(r)). It implies that Ny, C,(17,) comes from

l(ir_nH1 (FL(&p), Zy(r)) where Fp, := Q(uz) N H. Therefore

P (lim H' (FL(¢p), Z,(r))) — lim H' (H(Gp), Z,(r)) = V(r — 1)

L n n

is surjective where the second isomorphism is due to the isomorphism (2.4).
Consider a commutative diagram

@D im H' (FL(§p), Zp(r)) —lim H' (H(5), Z,y(r))

n n

l l

D H' (FL(&p), Zp(r) ——= H' (H(gp), Z,y(1)

with the surjective top arrow. Due to the isomorphism (2.5), the right vertical
arrow is surjective if » # 1 and p > 3. In case p = 2 it is also surjective
(resp. surjective modulo torsion) if ¥ % 1 andn > 2 (resp. n = 1). Therefore
so is the bottom arrow in each case. This completes the proof in the case
K = H(¢pn).

Let K C Q,(¢) be a general one. Let H C K be the maximal un-
ramified extension of Q,. There is n > 0 such that K C H({,»). Note
Gal(H(¢,n)/K) — Gal(H(¢,»)/H) = (Z/p")™ is injective. Then one can
easily check that the norm map H'(H(¢»), Z,(r)) — H' (K, Z,(r)) is sur-
jectiveif p>3andr #1lorp=2,r #1landn > 2. Incase p = 2 and
n = 1, it is also surjective modulo torsion. Therefore one can deduce the
assertion to the case H(¢,»). This completes the proof of Theorem 2.1.

2.3. p-adic polylogarithm. Let C, be the completion of the algebraic
closure Q,,. We denote the p-adic valuation by | - |,. Let Oc, = {z € C,;
|z|, < 1} be the valuation ring.
Coleman defined the i-th p-adic polylogarithm [;(z) for each i € Z
which are the analytic functions on C, — {1} and has the Taylor expansion
[e¢) Zn
li(z) = -
nl
n=I1
for |z, < 1 ([3] V). Wheni = 1, [;(z) = —log(l — z) is the Iwasawa
logarithm and when i < 0, /;(z) are rational functions which are explicitly
given by

d i
lo<z)=ﬁ, li<z>=(zd—z> lo(z), i>1.
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Let

—i "
@) =4 - p L= Y =
n>1
(p.m)=1

If |z|, < 1 and |z — 1], = 1, then it follows from [3] Lemma 7.2 that one
has the following congruence relations
Py _ i _ - m
o= [ =0 Y 5 mdpn0g, m=1
P I<n<p™-1

(p,n)=1

2.17)
on noting u.(a + p"Z,) =z/(1 — z”") (see also [6, (3.2.3)]). Note also

Z zP d\' )
l(()p)(Z) =— - —, l(,p,-)(z) = <z—) l(()”)(z), i>1.

1—z 1-—2z° dz

The relationship between /., and lfp ) (z) is described as follows.

Proposition 2.4. Let n € uy — {1} and C(n) € U the cyclotomic unit as
in (2.10). Then we have

—1 H"Gn .
loo(C(m)) = (1_npm | Z - >m>1 e lim (0n/p")[G ]
=n=p"— = m
(p.m)=1

= OyllG]].

In particular letting i be an integer and 0; : Ox[[G]] — Oy a homomorph-
ism of Oy-algebra given by o, +— o' we have

Oilso(C(n) = =1, (1).

Proof. Noting ¥(C(n)) = 1 — n(X + 1), the assertion is equivalent to

(1 (1 + X)"
im (1 — T) =1log” (1 = n(1 + X)) € OxlIX]]

I<n<p™-1

(p.m)=1

Let D be the differential operator on Ogx[[X]] given by D(f) =
(1 + X)df/dX. Noting D(1 + X)" = n(l + X)" and Dlog” (1 —
n(1+X)) =—n1+X)/(0—n(1+X)+n"(+X)/(1—n"(1+X)P),
the assertion is equivalent to saying

—1 —n(l1+X -1+ X)?

L—y" -1+ X)) T—npr(L+X)

I<n=<p™-1
(p,n)=1
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in Ox[[X11/(p™, (1 4+ X)?" — 1) and

D DT
1 —nr" n
I<n<p™-1
(p,m)=1
in Oy /p™ Oy for all m > 1. However both follow from direct calculations
(the details are left to the reader). |

Remark 2.5. We will not use /;(z) or even l;p ) (z) as analytic function on C,
in the proof of Theorem 2.2, but use values l;p ) n).

2.4. Proof of Theorem 2.2: Case p > 3. Let the notations be as in
Sect. 2.1. Suppose p > 3. We denote the residue field of H by ky.

Since V/U is generated by C(1) = (1 — {,n),>1, it is enough to show
U = Ugyq or equivalently /oo (Ucye) = loo(U). Let J := (p,014, — 1) C
Z,[[G]] be the Jacobson radical. Since U is finitely generated over Z,[[G]]
it is enough to prove

loo(U)/Jloo(U) = loo(Ucycl)/Jloo(Ucycl) (2]8)

by Nakayama’s lemma. The isomorphism (2.8) induces a commutative
diagram

loo(U) ——— (Op + TOu[[TN) x Oxl[T1] x --- x Oyl[T1]]

| |

loo(U)/ Jloo(U) ———> (kK% @ ku /KYT) x kg x -+ % kn,

(2.19)

where we put k(;, = ker(Try, /F, ky — Fp,). We want to show that
Dl (Ueyer) 1s onto the right bottom corner of (2.19). Since the image of
Dl (Ueyer) 1s a Z,[[G]]/J = F, x --- x F,-module, it is enough to see it
on each component. Namely we show the following.

(A) Letp;: OygllT]] x --- x Ogl[T]] — Oyl[T]] be the i-th projection.
Foreach2 <i < p — 1, the composition

Olog (Ueye) > [ [ OullTI = OullTN] — ku
p—1
is surjective.
(B) The image of the composition

Olog(Ueyer) ~=> [ [ OulITT = OulITI] — kyy @ ki /KT
p—1
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2.4.1. Proof of (A). Letv; : Ogx[[T]] — Op be the Og-linear map given
by T +— (1 + p)' — (1 + p). Then the composition

Vitj(p—1)

OullG1] 2> OylIT]] x --- x OxlIT]] 25 OyxlIT]] Oy

coincides with 6 j,—1) in Proposition 2.4. Therefore we have

Vi jip—1) Pi Ploo (C0)) = Oi jip—1) oo (C) = —1i”,_; 1, () € O,
(2.20)

forne uy —{1},1 <i < p—1and j € Z. In particular
Pi®loo(C(n)) mod J = v; p; Plo(C()) mod p = —1{”;(1) mod p.
Thus the following finishes the proof of (A).

Proposition 2.6. Suppose (p—1) 1 r. Then {lfm(n) 3 n € ky—{0, 1}} span
ky as a ¥,-module.

Proof. Set S := {I"(n) ; n € ky — {0, 1}} U {0} C k. It is enough to
show that the cardinality £ is greater than p?~! where d := [H : Q,]. Due
to (2.17) we have

-1
|
1P () = —  mod
S = ; pr p
for n € ky — {0, 1}. Letting h(z) = ,’:;11 7"/n" be a polynomial with

coefficients in F,, we have (1) = 0 as (p — 1) { r. Therefore there is
a polynomial #*(z) such that 2(z) = (1 — z)h*(z) and hence

h*(m)

Py = —
L =4 —

mod p.

Letting g(z) := h*(z)/(1—z)?~" and viewingitasamap g : ky — {1} — ky
of sets, we have Image(g) = S. Since the degree of h*(z) is (p — 2) we
have ig~'(a) < p — 1 fora # 0 € S and ig~'(0) < p — 2. Hence

Pr-1=) "t @< (p-DES—D+(p—2)=(p—DH(ES) -1

ae$

which implies £S5 > p?~!. O

2.4.2. Proof of (B). Let L/Q, be a finite unramified extension such that
L D H. We denote the ring of integers by O, and the residue field by k.
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We use the same notations @, p; etc. for L. Let

P1®lo(Cm) = Qy(T) = go(n) + qi(MT + -+ - € O + TOL[[T]]
for n € u; — {1}. Then
P1Ploo(NLygC(m) = Trr u(Q,(T))
=Trr uqo(m) + (Trp ugi ()T + - - - .
We want to show that the map
®log(Ueyet) —> kY ® ku/kST = K5 @ F,, (2.21)
@loo(NLyuC(m) V> (Trr nqo(n), Trriq,q1(n)
is surjective.

Lemma 2.7. Forn € u; — {1} we have

7 —n’
qo(n) = —— — €0y, (2.22)
1—n 1—n?P
qo(m) — pai(n) = —1}” () mod p* 0y, (2.23)
PTrryq,q1(n) = Tryyo 1Y (1) mod p*Z,. (2.24)

Proof. The last one follows from the above two due to the fact that
Trr/q,90(n) = 0. We show (2.22) and (2.23). It follows from (2.20) for
i = 1 that we have

Vi - P1 PLoo(C) = Q,((1 + p)' P~V — 1 — p)
=1}, 1,00 € Oy

for j € Z. We thus have

01(0) = go(m = I = 1= - 1__";,,
and
0y (1 +p)P =+ p) =g+ a1+ p)P —A+p)+---
= —11" ().
They imply (2.22) and (2.23). |

Proposition 2.8. Suppose d := [L : Q,] > 2. Then there are n, ' €
wr — {1} such that

P / 'p
T (T mod pO;,  (2.25)
Il—n 1—n? 1—n 1-—n7
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and
Try o, (17,0 — 117 () = p x (unir). (2.26)

Hence qo(n) = qo(n) and TrL/Qp(ql(n) — q1(n)) is a unit by (2.22)
and (2.24).

Proposition 2.8 together with Lemma 2.7 finish the proof of (B). In fact,
it is straightforward from (2.22) that the composition

(2.21)
cI)loo(Ucycl) - k(}{ S Fp — k(}{

is surjective. Moreover Proposition 2.8 implies that an element
®loo(NLyuC(n)—Nr/uC (') goesto (Trr u(qo(m) —qo(n')), Trrq,(q1(1n)
—q1(n))) = (0, %) € k(}i @ F, with * # 0. Hence we have the surjectivity
of (2.21).

Proof of Proposition 2.8. One has

1 ( (p) n nl’ 1 np_l —1
(4”7 - ( — = E 7" mod p
p I—n T—=—nP I —nr =

p
where n runs over the integers such that 1 < n < p?> — 1 and (p,n) = 1.

Put

. 1 nP7t—1
F@ = > S e Bla /0 -2

n

Then (2.26) is equivalent to

Try, s, (1)) # Tri, v, (" (1)). (2.27)
Letting

p—1 _

I »
@)=l "+ D)= "TZP 4 1)

1 p—1

)4 - . . —1

i=1 j=0

il - »
= ( — ip2j> P TP (7 4 )P

i=1 j=0 p

=cizt+od+ -+ C,,zz”2 € Fylz],

(2.27) is written as

77_1 n/—l
Try, /¥, (l (1 — )) # Try, /¥, (l (1 — )) . (2.28)
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On the other hand (2.25) is equivalent to

Ui noo_ P " (0 7\
l—-n 1—n 1—n 1-—n? 1—n 1-—-7n
n n 1 1
— — eF
T T L
—1 /—1
DI N — (2.29)

1 — 7771 1 — 77/7]

When 7 runs over all elements of k; — {0, 1}, the element ! /(1 —n~!) runs
over all elements of k;, — {0, —1}. Therefore Proposition 2.8 is equivalent
to saying that

Try, v, (I(v)) # Try, yp,(((v + 1)) for some v € k. — {0}. (2.30)

Note that we do not need to exclude the case v = —1 because the both sides
are zero if v = —1. The following lemma is the key to the proof.
Lemma2.9. ¢; =) =cypp1 =+ =cp=0and ¢y, = —1.

Proof. By the definition we have

-1, i+jp
cm:Z< —l”2]>( oo, ) EF
p m-—p-+1+jp

ij

where (i, j) runs over the pair of integers such that 1 < i < p — 1,
0<j<p—1landm — p>+i+jp > 0.Noting

i +jp _ i+jp
m—p*+i+jp pr—m

and the right hand side is automatically zero if m — p* +i + jp < 0, one

can write
p—1 p—1 p—1 . .
4 -1 D . 1+ jp
Cp = > Z( P i’ ]> (p2 _m>. (2.31)

i=l j=

We have ¢; = 0 directly from (2.31). To show the rest we use the following
formula.

Claim 2.10. For an indeterminate x and an integer k > 1 we put (i) =
x(x — 1)+ (x —k+ 1)/k! and () := 1. Then we have

n :
(xpk l) = (j) (k _l rp) mod pZ [x]

forl<i<p-—-1,0<r<p—-landmp<k<@E+1)p-1.
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Proof. Letk = rp + j. In the fraction

<i+xp) _pt+Dpt+i—1D--p+i—k+1)
k) k!

the divisor p appears r-times in the denominator (note r < p). In the
numerator, the divisor p appears r-times when i > j and (r + 1)-times
when i < j. This completes the proof in the case i < j. Assume i > j.

Write
kl=pr!- l_[ m,

1<m<k
(p.m)=1

p+ip+i—1) - (p+i—k+1)
=pxx—D-x—r+1- J] @p+0.

i—k+l<e<i
(p,0)=1
Therefore
i+xp\  x(x—=D--x—r+DJ],Gp+0)
k N r! m M
= (x) [, mod p
r m m
x\ (i
()
rj\J
This completes the proof in the case i > j. O

Suppose 2p — 1 < m < p®. Let r be the integer satisfying rp < p> —m <
(r+ 1)p — 1. Itimplies 0 < r < p — 2. By Claim 2.10, we have

1y {)< - _i”zf> (D(pz—;—rp)

(50(0) +51(0) ] + 5200) > + - -+ 5,11 (D) ).

E

1
-1

1

'E
I
3\

1

(=)

~.

(Note ({)) := 1 by convention.) The above is zero whenr + 1 < p — 1 due

to the fact that Y-0=) j* =0for0 < ¢ < p—2.1fr = p — 2, thenm = 2p
or 2p — 1. We have

-1
()
Crp = T S N
! i=1 ':O( p p_2 Zl

=

S|
I

hS]
N
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and
p—1 p—1 lp—l -1 o ] i
Cop—1 = i’ _2)\4
i=1 j=0 P P
S5 (),
= —-J
i=1 j=0 p p—2
=—1
This completes the proof of Lemma 2.9. O

We now prove Proposition 2.8, which is equivalent to (2.30). Put
Tl(z) = Zci(Zi NI T )

so that we have Try, /g, (/(v)) = TI(v). Due to Lemma 2.9, i ranges only
over 2 < i < 2p — 1. There is a canonical one-to-one correspondence
between F,[z]/ (z”d — z) and the set of polynomials of degree < p“. For
apolynomial f(z) we write by [ f(z)] € F,[z] the corresponding polynomial
of degree < p?. We have

d—1:

[Tl(z)] = Zci[zi _|_Zpi RS
with

[ 427 4 27
R N 2<i<p-1

= Z+Zp+"'+zpd_] l:p
d—1

2zl T T < <2p— L

In the above the maximal degree is (1 + (p — 1) p?~!) and it is only when
i =2p—1.8ince ¢;,1 = —1 (Lemma 2.9), [T(z)] is a polynomial of

degree (1 + (p — 1)p?~"). Suppose that Tr, p, (V) = Trg, p, (L(v + 1))
for all v € k; — {0}. It implies that [TI(z + 1)] — [T{(z)] = O since the
degree of [T1(z)] is less than (p? — 1). However we have

d—1

[TUz + D] = [TI2)] = —(z + DT et
—

£0.

This is a contradiction, which proves (2.30). This completes the proof of
Proposition 2.8. O

We have completed the proof of (B) and hence Theorem 2.2 for p > 3.
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2.5. Proof of Theorem 2.2: Case p = 2. Let L be a finite unramified

extension of Q, such that L D H. We denote by &, the residue field of L.

We put 02 = ker(Trz,q, : O — Z») and k% = ker(Try, v, : kp — Fr).
Recall from (2.9) the isomorphism

@ : 1o (Up) = {AT) +g(T)o € OL[[T1I[o]/(c> = 1) |
f(0) — g(0) € 07} (2.32)
of Z,[[G]] = Z[[T1l[o]/(c* — 1)-modules. Write

Pl (C(m) = Fy(T) + Gy(T)o
Fy(T) = fo) + AT +---,  Gy(T) =go(m) + (T +---

for n € up — {1}. Then
Dl (NpyuCm) = Trp g Fy(T) + Trp g G, (T)o.

Let oy € Z, satisfy

» ar\ o k ifk=1 mod4
K — 144 R
> * “k+(2)4 - {—k ifk=3 mod 4.

It follows from Proposition 2.4 and the definition of ® that we have

1 o2 =3

A= L g Ty (2.33)
1 o2 !

G,(T) = g~ Z yTa— (T + 5)%%-! (2.34)

k=1

modulo (2™, (T + 5)2" — 1) for m > 2. We have
-1
-n -n
- = 2.35
fon) = 1— g 8o = 1— oy (2.35)

775 -5
Silm) = T g1m = 1—

mod 2 (2.36)

in a similar way to the case p > 3 (cf. Lemma 2.7).

We now prove Theorem 2.2 for p = 2. We want to prove loo(Ucyel) =
l(U).Let J = (2, T, 0 — 1) be the maximal ideal of Z,[[T1][o]/(c% —1).
It is enough to show

loo(Ueye1) / Jloo (Ueyet) = loo(U) [ Jloo(U) (2.37)

by Nakayama’s lemma. Let: : O.[[T1le]1/(c*=1) = OLl[TNIxOLIIT]]
be the isomorphism of Z,[[T]][c]/(c> — 1)-modules given by f(T) +
g(T)o — (f(T)— g(T), g(T)) where the action of o on the target is given
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by o(hy, hy) := (=hy, hy + h3). Due to (2.32) we have an isomorphism
1d o (Up) = (02+T0L[[T]]) x O [[T]] and it induces a commutative
diagram

lo(Up) —2—— (09 + TOLI[T]]) x OylIT]]

| |

Loo(UL) ) Jloo(Ur) ——— kY 5 by /KO kp JKO

~

where the right vertical arrow is the map induced from (f(7), g(T)) —
(f(0), f7(0), g(0)). Let n € uy; — {1}. It follows from (2.35) and (2.36) that
we have

Ploo (C(m) = (fo(m) — go(m), fr(m) — g1(m), go(m))

_(_=n_ - !
1_774 l_n—4’1_n8 l_n—8’1_n74
1

=A+A A+ 2+ 25 0+ 2D (,\ = 1—>
-1

=+ 270+ 2700 449
in kY x ky/k9 x ki /KO . Hence

Ploo(NLaC(m) = (Tre, jiy (h 4 A7), Trg, iy h + A7), Try i, A+ 29))
(2.38)

in k9 x ky/k% x ky/kY. To show (2.37) it is enough to show that the
elements (2.38) span kY x ky/k% x kp/kY when L and n € pg — {1} run.
When 1 € u; — {1} runs, A runs over all elements of k; — {0}. Therefore it
is enough to show the following:

Proposition 2.11. Put
1) = o+ 25 A+ 230 +2%) e kY x kp x kg

for A € ky. Let W be the ¥y-submodule of k% X ky X ky generated by
{Trr, iyl (X) Yip 0 where kyp, and A run over all pairs such that ki, O ky and
A €kp. Then W — kY x ky/KS, x ky /KY, is surjective.

Proof. Since the trace maps for finite fields are surjective, we may replace
ky with an arbitrary large extension of ky. Thus we may assume d =
ky : Fa] > 5.

Claim 2.12. Thereis a A € kj, such that Try,, /r, (A%) # 0. Hence we have

IO 100 + - +1(Ag*) = (0,0,v) € W with Try,, /r, (v) # 0

where ¢ = {5 is a primitive Sth root of unity.
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Proof. Put

T@) =24+ + 2% 27 1 272 ekl

Then Try,, /v, (A%) = T()). Since T(z) is a non-zero polynomial of degree
5.2973 <29 asd > 5, there is a A € k}; such that T(1) # 0. ]

Claim 2.13. There is a A € kj; such that Try, /g, (A + A~ % 0. Hence
I +IAH +I+ 2171 = (0, v, %) € W with Try, v, (v) # 0.
Proof. Put

_2({71

T@) =2 +227 4+t 4 g
€ kylz,z7'].

Then Try, /r, (A + A7) = T(X). Suppose that 7(1) = 0 for all 1 € kj;. Put

d—2_ Hd—1 d—1 d—1 _qand—1
T*(z):=z+z" % 42T g 2
d—1_rnd—2
o T+ L

Then T*(A) = O for all A € kj,. Since T*(z) is a non-zero polynomial of
degree 2972 + 24971 <24 _ 1 asd > 5, it is impossible. ]

Due to Claims 2.12 and 2.13 we have that the image of W contains {0} x
ki /K9, x ky /K. Therefore it is enough to show that the composition W —

k(;, X ky/ k(}{ X ky/ k(;, — k(;, is surjective. However it follows from the fact

that {A + A%}, span kY. This completes the proof of Proposition 2.11.
O

We have completed the proof of (2.37) and hence Theorem 2.2 for p = 2.
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