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1. Introduction

Let us consider a unitary irreducible representation (π,H ) of a simple,
non-compact and connected algebraic Lie group G. Let us denote by K
a maximal compact subgroup of G. According to Harish-Chandra, the Lie
algebra submodule HK of K -finite vectors of π consists of analytic vectors
for the representation, i.e. for all v ∈ HK the orbit map

fv : G → H, g �→ π(g)v

is real analytic. For these functions fv we determine, and in full general-
ity, their natural domain of definition as holomorphic functions (see The-
orem 5.1 below):

Theorem 1.1. Let (π,H ) be a unitary irreducible representation of G. Let
v ∈ H be a non-zero K-finite vector and fv be the corresponding orbit map.
Then there exists a unique maximal G × KC-invariant domain Dπ ⊆ GC,
independent of v, to which fv extends holomorphically. Explicitly:

(i) Dπ = GC if π is the trivial representation.
(ii) Dπ = Ξ+KC if G is Hermitian and π is a non-trivial highest weight

representation.
(iii) Dπ = Ξ−KC if G is Hermitian and π is a non-trivial lowest weight

representation.
(iv) Dπ = ΞKC in all other cases.

In the theorem aboveΞ,Ξ+ ,Ξ− are certain G-domains in XC = GC/KC
over X = G/K with proper G-action. These domains are studied in this
paper because of their relevance for the theorem above (see [KO]). Let
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us mention that Ξ is the familiar crown domain and that the inclusion
ΞKC ⊂ Dπ traces back to our joint work with Robert Stanton [KSI,KSII].

Acknowledgement: I am happy to point out that this paper is related to joint work with Eric
M. Opdam [KO]. Also I would like to thank Joseph Bernstein who, over the years, helped
me with his comments to understand the material much better.

Finally I appreciate the work of a very good referee who made many useful remarks on
style and organization of the paper.

2. Notation

Throughout this paper G shall denote a connected simple non-compact Lie
group. We denote by GC the universal complexification of G and suppose:

• G ⊆ GC;
• GC is simply connected.

We fix a maximal compact subgroup K < G and form

X = G/K ,

the associated Riemannian symmetric space of the non-compact type. The
universal complexification KC of K will be realized as a subgroup of GC.
We set

XC = GC/KC

and call XC the affine complexification of X. Note that

X ↪→ XC, gK �→ gKC

defines a G-equivariant embedding which realizes X as a totally real form
of the Stein symmetric space XC. We write x0 = KC ∈ XC for the standard
base point in XC.

However, the natural complexification of X is not XC, but the crown
domain Ξ � XC whose definition we recall now. We shall provide the
standard definition of Ξ, see [AG].

Lie algebras of subgroups L < G will be denoted by the corresponding
lower case German letter, i.e. l < g; complexifications of Lie algebras are
marked with a C-subscript, i.e. lC is the complexification of l.

Let us denote by p the orthogonal complement to k in g with respect to
the Cartan–Killing form. We set

Ω̂ = {Y ∈ p | spec(ad Y ) ⊂ (−π/2, π/2)} .

Then

Ξ = G exp(iΩ̂) · x0 ⊂ XC

is a G-invariant neighborhood of X in XC, commonly referred to as crown
domain. Sometimes it is useful to have an alternative, although less invariant
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picture of the crown domain: if a ⊂ p is a maximal abelian subspace and
Ω := Ω̂ ∩ p, then

Ξ = G exp(iΩ) · x0 .(2.1)

The set Ω is nicely described through the restricted root system Σ=Σ(g,a):

Ω = {Y ∈ a | α(Y ) < π/2 ∀α ∈ Σ} .

If W is the Weyl group of Σ, then we note that Ω is W -invariant.
Sometimes we will employ the root space decomposition g = a⊕m⊕⊕

α∈Σ g
α with m = zk(a) as usual. We choose a positive system Σ+ ⊂ Σ

and form the nilpotent subalgebra n = ⊕
α∈Σ+ gα.

2.1. The example of G = Sl(2,R). For illustration and later use we will
exemplify the above notions at the basic case of G = Sl(2,R).

We let K = SO(2,R) be our choice for the maximal compact subgroup
and identify X = G/K with the upper half plane D+ := {z ∈ C | Im z > 0}.
We recall that

XC = P1(C) × P1(C) \ diag[P1(C)]
with GC acting diagonally by fractional linear transformations. The G-em-
bedding of X = D+ into XC is given by

z �→ (z, z) ∈ XC .

If D− denotes the lower half plane, then the crown domain is given by

Ξ = D+ × D− ⊆ XC .

In addition we record two G-domains in XC which sit above Ξ, namely:

Ξ+ = D+ × P1(C) \ diag[P1(C)] ,(2.2)

Ξ− = P1(C) × D− \ diag[P1(C)] .(2.3)

Observe that Ξ = Ξ+ ∩ Ξ−.

3. Remarks on G-invariant domains in XC with proper action

One defines elliptic elements in XC by

XC,ell = G exp(ip) · x0 = G exp(ia) · x0 .

The main result of [AG] was to show that Ξ is a maximal domain in XC,ell
with G-action proper. In particular, G acts properly on Ξ.

It was found in [KO] that Ξ in general is not a maximal domain in
XC for proper G-action: the domains Ξ+ and Ξ− from (2.2)–(2.3) yield
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counterexamples. To know all maximal domains is important for the theory
of representations [KO, Sect. 4].

That Ξ in general is not maximal for proper action is related to the
unipotent model for the crown which was described in [KO]. To be more
precise, we showed that there exists a domain Λ̂ ⊆ n containing 0 such that

Ξ = G exp(iΛ̂) · x0 .(3.1)

Now there is a big difference between the unipotent parametrization (3.1)
and the elliptic parametrization (2.1): If we enlarge Ω the result is no longer
open; in particular, XC,ell is not a domain. On the other hand, if we enlarge the
open set Λ̂ the resulting set is still open; in particular XC,u := G exp(in) · x0
is a domain. Thus, if there were a bigger domain than Ξ with proper action,
then it is likely by enlargement of Λ̂.

We need some facts on the boundary of Ξ.

3.1. Boundary of Ξ. Let us denote by ∂Ξ the topological boundary of Ξ
in XC. One shows that

∂ellΞ := G exp(i∂Ω) · x0 ⊆ ∂Ξ

(cf. [KSII]) and calls ∂ellΞ the elliptic part of ∂Ξ. We define the unipotent
part ∂uΞ of ∂Ξ to be the complement to the elliptic part:

∂uΞ = ∂Ξ \ ∂ellΞ .

The relevance of ∂uΞ is as follows. Let X ⊂ D ⊆ XC denote a G-domain
with proper G-action. Then D∩∂ellΞ = ∅ by the above cited result of [AG].
Thus if D 
⊂ Ξ, then one has

D ∩ ∂uΞ 
= ∅ .

Let us describe ∂uΞ in more detail. For Y ∈ a we define a reductive
subalgebra of gC by

gC[Y ] = {Z ∈ gC | e−2i ad(Y ) ◦ σ(Z) = Z}
with σ the Cartan involution on gC which fixes k+ ip. Then there is a partial
result on ∂uΞ, for instance stated in [FH]:

∂uΞ ⊆ {G exp(e) exp(iY ) · x0 | Y ∈ ∂Ω,(3.2)
0 
= e ∈ gC[Y ] ∩ ig nilpotent} .(3.3)

If Y is such that only one root, say α, attains the value π/2, then we
call Y and as well the elements in the boundary orbit G exp(e) exp(iY ) · x0
regular. Accordingly we define the regular unipotent boundary ∂u,regΞ =
{z ∈ ∂uΞ | z regular}. Note that gC[Y ] is of especially simple form for
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regular Y , namely

gC[Y ] = ia⊕m⊕ g[α]−θ ⊕ ig[α]θ
where g[α] = gα ⊕ g−α. Hence, in the regular situation, one can choose e
above to be in ig[α]θ + ia. We summarize our discussion:

Proposition 3.1. Let X ⊂ D ⊆ XC be a G-invariant domain with proper
G-action which is not contained in Ξ. Then D∩∂u,regΞ 
= ∅. More precisely,
there exists Y ∈ ∂Ω regular (with α ∈ Σ the unique root attaining π/2 on Y)
and a non-zero nilpotent element e ∈ ig[α]θ + ia such that

exp(e) exp(iY ) · x0 ∈ ∂u,regΞ ∩ D .

4. Maximal domains for proper action

The aim of this section is to classify all maximal G-domains in XC which
contain X and maintain proper action. The answer will depend whether G
is of Hermitian type or not.

4.1. Non-Hermitian groups. The objective is to prove the following theo-
rem:

Theorem 4.1. Suppose that G is not of Hermitian type. If X ⊂ D ⊂ XC is
a G-invariant domain with proper G-action, then D ⊂ Ξ.

Before we can give the proof of the theorem some preparation is needed.
The proof relies partly on a structural fact characterizing non-Hermitian
groups (see Lemma 4.4 below) and on a precise knowledge of the basic
case of G = Sl(2,R).

Let us begin with the relevant facts for G = Sl(2,R). With E =
(

0 1
0 0

)

and T =
(

1 0
0 −1

)

our choices for a and n are

a = R · T and n = R · E .

Note that Ω = (−π/4, π/4)T .
Then a slight modification of results in [KO, Sects. 3 and 4] yield:

Lemma 4.2. Let G = Sl(2,R) and J ⊂ R be an open subset. Then

ΞJ := G exp(iJ · E) · x0

is a G-invariant open subset of XC and the following holds:

(i) G does not act properly if {−1, 1} ⊂ J.
(ii) Ξ = Ξ(−1,1).
(iii) Ξ+ = Ξ(−1,∞).
(iv) Ξ− = Ξ(−∞,1).
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We also need that ∂Ξ is a fiber bundle over the affine symmetric space
G/H where H = SOe(1, 1). Notice that H is the stabilizer of the boundary
point

zH := exp(−iπT/4) · x0 = (1,−1) ∈ ∂ellΞ .

Write τ for the involution on G, resp. g, fixing H , resp. h, and denote by
g = h + q the corresponding eigenspace decomposition. The h-module q
breaks into two eigenspaces q = q+ ⊕ q− with

q± = R · e± where e± =
(

1 ∓1
±1 −1

)

.

Finally write

C = R≥0 · e+ ∪ R≥0 · e−

and C× = C \ {0}. Note that both C and C× are H-stable. We cite
[KO, Th. 3.1]:

Lemma 4.3. Let G = Sl(2,R). Then the map

G ×H C → ∂Ξ, [g, e] �→ g exp(ie) · zH

is a G-equivariant homeomorphism. Moreover,

(i) ∂ellΞ = G · zH � G/H,
(ii) ∂uΞ = G exp(iC×) · zH � G ×H C×,
(iii) ∂uΞ = G exp(iE) · x0 � G exp(−iE) · x0.

As a last piece of information we need a structural fact which is only
valid for non-Hermitian groups.

Lemma 4.4. Suppose that G is not of Hermitian type. Then for all α ∈ Σ
and E ∈ gα there exists an m ∈ M = ZK (a) such that

Ad(m)E = −E .

Proof. Let us remark first that we may assume that G is of adjoint type.
If G is complex, then the assertion is clear as T := exp(ia) ⊂ M provides
us with the elements we are looking for. More generally for dim gα > 1 one
knows (Kostant) that M0 = exp(m) acts transitively on the unit sphere in gα

(cf. [Kos]).
In the sequel we use the terminology and tables of the classification of

real simple Lie algebras as found in the monograph [K, App. C]. As G is
not Hermitian, Kostant’s result leaves us with the following cases for g:
sl(n,R) for n ≥ 3, so(p, q) for 0, 2 
= p, q and p + q > 2, E I , E II, E V ,
E VI, E VIII, E IX, F I and G.

Now we make the following observation. The lemma is true for G =
Sl(3,R) as a simple matrix computation shows. Suppose that α is such that
it can be put into an A2-subsystem of Σ. As dim gα is one-dimensional (by
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our reduction) this means that we can put E ∈ gα in a subalgebra isomorphic
to sl(3,R). Now it is important to recall the nature of the component group
of M, see [K, Th. 7.55]. It follows that the M-group of Sl(3,R) (isomorphic
to (Z/2Z)2) embeds into the M-group of G.

The A2-reduction described above deletes most of the cases in our list.
We remain with the orthogonal cases so(p, q) for 0, 2 
= p, q and p 
= q.
A simple matrix computation, which we leave to the reader, finishes the
proof. ��
Proof of Theorem 4.1. Suppose that G is not of Hermitian type. Let X ⊂
D ⊂ Ξ be a G-invariant domain with proper G-action which is not contained
in Ξ. We shall show that D does not exist.

According to Proposition 3.1 we find a regular Y ∈ ∂Ω and a non-zero
nilpotent e ∈ gC[Y ] ∩ ig such that

exp(e) exp(iY ) · x0 ∈ ∂u,regΞ ∩ D .

Let α ∈ Σ be the root corresponding to Y . Write Y = Yα + Y ′ with Yα,
Y ′ ∈ a such that α(Y ′) = 0. It is known that Yα ∈ ∂Ω and Y ′ ∈ Ω. Hence
we may use sl(2)-reduction which in conjunction with Lemma 4.3 implies
the existence of Eα ∈ gα such that:

• {Eα, θ(Eα), [Eα, θ(Eα)]} is an sl(2)-triple,
• exp(iEα) exp(iY ′) · x0 ∈ ∂u,regΞ ∩ D.

Now, as G is not of Hermitian type, Lemma 4.4 implies that there exists an
element m ∈ M such that Ad(m)Eα = −Eα. Hence

exp(−iEα) exp(iY ′) · x0 ∈ ∂u,regΞ

as well. But this contradicts Lemma 4.2(i). ��

4.2. Hermitian groups. Let now G be of Hermitian type and G ⊆ P−KCP+
be a Harish-Chandra decomposition of G in GC. We define flag varieties

F+ = GC/KCP+ and F− = GC/KCP−

and inside of them we declare the flag domains

D+ = GKCP+/KCP+ and D− = GKCP−/KCP− .

Then in the

XC ↪→ F+ × F−, gKC �→ (gKCP+, gKCP−)(4.1)

identifies XC as a Zariski open affine piece of F+×F−. In more detail: As G
is of Hermitian type, there exist w0 ∈ NGC(KC) such that w0 P±w−1

0 = P∓.
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In turn, this element induces a GC-equivariant biholomorphic map:

φ : F+ → F−, gKCP+ �→ gw0 KCP− .

With that the embedding (4.1) gives the following identification of XC:

XC = {(z, w) ∈ F+ × F− | φ(z) ᵀ w} ,(4.2)

where ᵀ stands for the transversality notion in the flag variety F−. We recall
what it means to be transversal. First note that the notion is GC-invariant, i.e.
for z, w ∈ F− and g ∈ GC one has z ᵀw if and only if gz ᵀ gw. Now for the
base point z− = KCP− ∈ F− one has z− ᵀ w if and only if w ∈ P−w0z−.

We keep the realization of XC in F+ × F− (cf. (4.1)) in mind and recall
the description of Ξ:

Ξ = D+ × D−

(see [KSII]).
For subsets X± ⊂ F± we write X+×ᵀ X− for those elements (x+, x−) ∈

X+ × X− which are transversal, i.e. φ(x+) ᵀ x−. With this terminology in
mind we finally define

Ξ+ = D+ ×ᵀ F−,

Ξ− = F+ ×ᵀ D− .

4.2.1. Basic structure theory of Ξ+ and Ξ−. It is obvious that both Ξ+
and Ξ− are open and G-invariant. However, as was pointed out by the
referee, it is a priori not clear that they are connected. In order to see this let
p+ : Ξ+ → D+ be the projection onto the first factor. Likewise we define
p− : Ξ− → D−.

Proposition 4.5. Let ε ∈ {−,+}. The map pε : Ξε → Dε induces the
structure of a holomorphic fiber bundle with fiber isomorphic to Pε.

Proof. We confine ourselves with the case ε = +.
As p+ is G-equivariant and D+ is G-homogeneous, it is sufficient to

determine the fiber p−1+ (z+). Recall that z+ = KCP+ ∈ F+ is the base
point. Now

p−1
+ (z+) = {(z+, w) ∈ F+ × F− | φ(z+) ᵀ w} .

Observe that φ(z+) = w0z− and that w0z− ᵀw is equivalent to z− ᵀw−1
0 w.

By the definition of transversality this means that w−1
0 w ∈ P−w0z− or

w ∈ w0 P−w0z−. It is no loss of generality to assume that w0 = w−1
0 . So

we arrive at w ∈ P+z− and this concludes the proof of the proposition. ��
Corollary 4.6. Both Ξ+ and Ξ− are contractible.

It was observed by the the referee that Proposition 4.5 allows the fol-
lowing interesting reformulation.
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Corollary 4.7. The map

G ×K P+ → Ξ+, [g, p] �→ (gz+, gpz−)

is a G-equivariant diffeomorphism. In particular Ξ+ is G-biholomorphic
to T 0,1 D+, the antiholomorphic tangent bundle of D+. Likewise, Ξ− is
G-biholomorphic to T 0,1 D−.

Corollary 4.7 combined with the Harish–Chandra decomposition implies
that Ξε � Dε × Pε as complex manifolds. In particular Ξε is Stein.

The fact that KC normalizes Pε allows us to speak of G × Pε-invariant
domains in XC. It follows from (4.1) and Corollary 4.7 that Ξε is G × Pε-
invariant.

Proposition 4.8. Let ε ∈ {−,+}. The real group G acts properly on Ξε.
Moreover Ξε is a maximal G × Pε-invariant domain in XC for proper
G-action.

Proof. As the G-action is proper on Dε, it follows that G acts properly
on Ξε. In the sequel we deal with ε = + only. It remains to show that
Ξ+ is a maximal G × P+-invariant domain in XC for proper G-action.
We argue by contradiction and suppose that D � Ξ+ is a G × P+-
domain in XC with proper G-action. Then D = (D0 × F−) ∩ XC with
D0 � D+ a G-domain with proper action. Now recall the following
facts:

• There are only finitely many G-orbits in F+.
• There are precisely two orbits with proper G-action: D+ and φ−1(D−).

The assertion follows. ��
Remark 4.9. Suppose that G is of Hermitian type. Then it can be shown
that if X ⊆ D ⊆ XC is a G-invariant domain with proper G-action, then
D ⊆ Ξ+ or D ⊆ Ξ−.

As we will not need this fact, we refrain from a proof.

If D ⊆ XC is a subset, then we write DKC for its preimage in GC under
the canonical projection GC → XC.

Proposition 4.10. The following assertions hold:

(i) Ξ+KC = GKCP+,
(ii) Ξ−KC = GKCP−.

Proof. It suffices to prove (i). Recall the embedding (4.1), and the definition
of transversality condition. We deduce that P+ ⊂ Ξ+KC. As Ξ+KC is
G × KC-invariant, it follows that GP+KC = GKCP+ ⊂ Ξ+KC.

Conversely, Corollary 4.7 implies that GP+ maps onto Ξ+ and thus
Ξ+ ⊂ GP+KC. ��
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We conclude this subsection with some easy facts on the structure of Ξ+
and Ξ− which will be used later on.

4.2.2. Unipotent model for Ξ+ and Ξ−. We begin with the unipotent pa-
rameterization of Ξ+ and Ξ−. Some terminology is needed.

According to C. Moore, Σ is of type Cn or BCn. Hence we find
a subset {γ1, . . . , γn} of long strongly orthogonal restricted roots. We fix
Ej ∈ gγ j such that {Ej, θ(Ej), [Ej , θEj ]} becomes an sl(2)-triple. Set
Tj := 1/2[Ej , θEj ] and note that

Ω =
n⊕

j=1

(−π/2, π/2)Tj .

We set V = ⊕n
j=1R · Ej and take a cube inside V by

Λ =
n⊕

j=1

(−1, 1)Ej .

In [KO, Sect. 8], we have shown that

Ξ = G exp(iΛ) · x0 .

In this parametrization of Ξ the unipotent boundary piece has a simple
description:

∂uΞ = G exp(i∂Λ) · x0 .(4.3)

The strategy now is to enlarge Ξ by enlarging Λ while maintaining that
the object stays a domain on which G acts properly. But now we have to
be a little bit careful with our choice of Ej . Replacing Ej by −Ej has no
effect for the matters cited above, but for the sequel. Our choice is such that
γ1, . . . , γn are positive roots (this determines the non-compact roots in Σ+
uniquely). We set

Λ+ =
n⊕

j=1

(−1,∞)Ej and Λ− =
n⊕

j=1

(−∞, 1)Ej .

Then, a direct generalization of Lemma 4.2(iii), (iv) yields:

Proposition 4.11. The following assertions hold:

(i) Ξ+ = G exp(iΛ+) · x0,
(ii) Ξ− = G exp(iΛ−) · x0.

Remark 4.12. If we define subcones of the nilcone N ⊆ g by

N + = Ad(K )

⎡

⎣
n⊕

j=1

[0,∞)Ej

⎤

⎦ and N − = −N + ,
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then one can show that the maps

G ×K N ± → Ξ±, [g, Y ] �→ g exp(iY ) · x0

are homeomorphic.

5. Representation theory

Let (π,H ) be a unitary representation of G and HK the underlying Harish-
Chandra module of K -finite vectors. Notice that HK is naturally a module
for KC.

We say that (π,H ) is a highest, resp. lowest, weight representation if G
is of Hermitian type and p+ = Lie(P+), resp. p−, acts on HK in a finite
manner.

We turn to the main result of this paper.

Theorem 5.1. Let (π,H ) be a unitary irreducible representation of G. Let
v ∈ H be a non-zero K-finite vector and

fv : G → H, g �→ π(g)v

the corresponding orbit map. Then there exists a unique maximal G × KC-
invariant domain Dπ ⊆ GC, independent of v, to which fv extends holo-
morphically. Explicitly:

(i) Dπ = GC if π is the trivial representation.
(ii) Dπ = Ξ+KC if G is Hermitian and π is a non-trivial highest weight

representation.
(iii) Dπ = Ξ−KC if G is Hermitian and π is a non-trivial lowest weight

representation.
(iv) Dπ = ΞKC in all other cases.

Proof. If π is trivial, then the assertion is clear. So let us assume that π is
non-trivial in the sequel. Fix a nonzero K -finite vector v and consider the
orbit map fv : G → H . We recall the following two facts:

• fv extends to a holomorphic G-equivariant map fv : ΞKC → H (see
[KSII, Th. 1.1]).

• If Dv ⊆ GC is a G × KC-invariant domain to which fv extends holomor-
phically, then G acts properly on Dv/KC (see [KO, Th. 4.3]).

We begin with the case where G is not of Hermitian type. Here the asser-
tion follows from the bulleted items above in conjunction with Theorem 4.1.

So we may assume for the remainder that G is of Hermitian type. If π
is a highest weight representation, then it is clear that fv extends to a holo-
morphic map GKCP+ → H . Thus, in this case Ξ+KC = GKCP+ (cf.
Proposition 4.10 ) is a maximal domain of definition for fv by Proposi-
tion 4.8 and the second bulleted item from above. Likewise, if (π,H ) is
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a lowest weight representation, then Ξ−KC is a maximal domain of defin-
ition of fv. As both Ξ+ and Ξ− are simply connected with sufficiently
regular boundary, it follows that these maximal domains are in fact unique.

It remains to show:

• If fv extends holomorphically on a domain D ⊃ Ξ such that D ∩
[Ξ+ \ Ξ] 
= ∅, then (π,H ) is a highest weight representation.

• If fv extends holomorphically p on a domain D ⊃ Ξ such that D ∩
[Ξ− \ Ξ] 
= ∅, then (π,H ) is a lowest weight representation.

It is sufficient to deal with the first case. So suppose that fv extends
to a bigger domain D such that D ∩ [Ξ+ \ Ξ] 
= ∅. Taking derivatives
and applying the fact that dπ(U(gC))v = HK , we see that fu extends
to D for all u ∈ HK . By Proposition 3.1, (4.3) and our assumption we
find 1 ≤ j ≤ n be such that exp(iE j) exp(iY ) · x0 ∈ D for some Y ∈ Ω
with γ j(Y ) = 0. Let Gj < G be the analytic subgroup corresponding to
the sl(2)-triple {Ej, θ(Ej), [Ej , θ(Ej)]}. Basic representation theory of type
I-groups in conjunction with [KO, Th. 4.7], yields that π|Gj breaks into
a direct sum of highest weight representations. Applying NK (a) (which in
particular permutes the Gk and preserves HK ) we see that above matters
hold for any other Gk as well (note that Y might change but this does
not matter as Ω is NK (a)-invariant). It follows that π is a highest weight
representation and completes the proof of the theorem. ��
Remark 5.2. The domains Ξ, Ξ+ and Ξ− are independent of the choice of
the connected group G. Accordingly, the above theorem holds for all simple
connected non-compact Lie groups G, i.e. we can drop the assumption that
G ⊆ GC and GC simply connected.

Problem 5.3. The above theorem should hold true for all irreducible ad-
missible Banach representations of G under the reservation that (i) gets
modified to: Dπ = GC if π is finite dimensional.

References

[AG] Akhiezer, D.N., Gindikin, S.G.: On Stein extensions of real symmetric spaces.
Math. Ann. 286, 1–12 (1990)

[FH] Fels, G., Huckleberry, A.: Characterization of cycle domains via Kobayashi hyper-
bolicity. Bull. Soc. Math. Fr. 133(1), 121–144 (2005)

[K] Knapp, A.W.: Lie Groups Beyond an Introduction, 2nd edn. Prog. Math., vol. 140.
Birkhäuser, Boston (2002)

[Kos] Kostant, B.: A branching law for subgroups fixed by an involution and a noncompact
analogue of the Borel–Weil theorem. In: Noncommutative Harmonic Analysis,
Prog. Math., vol. 220, pp. 291–353. Birkhäuser, Boston (2004)

[KO] Krötz, B., Opdam, E.M.: Analysis on the crown domain. Geom. Funct. Anal. (to
appear), math.RT/0606213

[KSI] Krötz, B., Stanton, R.: Holomorphic extensions of representations: (I) automorphic
functions. Ann. Math. 159, 641–724 (2004)

[KSII] Krötz, B., Stanton, R.: Holomorphic extensions of representations: (II) geometry
and harmonic analysis. Geom. Funct. Anal. 15, 190–245 (2005)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


