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1. Introduction

Let us consider a unitary irreducible representation (7, #) of a simple,
non-compact and connected algebraic Lie group G. Let us denote by K
a maximal compact subgroup of G. According to Harish-Chandra, the Lie
algebra submodule #g of K-finite vectors of 7 consists of analytic vectors
for the representation, i.e. for all v € Fg the orbit map

fo:G—> H, g— (v

is real analytic. For these functions f, we determine, and in full general-
ity, their natural domain of definition as holomorphic functions (see The-
orem 5.1 below):

Theorem 1.1. Let (7, #) be a unitary irreducible representation of G. Let
v € H be anon-zero K-finite vector and f, be the corresponding orbit map.
Then there exists a unique maximal G x Kc-invariant domain D, C G,
independent of v, to which f, extends holomorphically. Explicitly:

(1) Dy = Gc¢ if 7 is the trivial representation.
(i) D, = E" K¢ if G is Hermitian and 7 is a non-trivial highest weight
representation.
(iii) D, = B~ K¢ if G is Hermitian and 7 is a non-trivial lowest weight
representation.
(iv) D, = EKc in all other cases.
In the theorem above B, E', E~ are certain G-domainsin X¢ = G¢/K¢
over X = G/K with proper G-action. These domains are studied in this
paper because of their relevance for the theorem above (see [KO]). Let
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us mention that E is the familiar crown domain and that the inclusion
EK¢ C D, traces back to our joint work with Robert Stanton [KSI,KSII].

Acknowledgement: 1am happy to point out that this paper is related to joint work with Eric
M. Opdam [KO]. Also I would like to thank Joseph Bernstein who, over the years, helped
me with his comments to understand the material much better.

Finally I appreciate the work of a very good referee who made many useful remarks on
style and organization of the paper.

2. Notation

Throughout this paper G shall denote a connected simple non-compact Lie
group. We denote by G the universal complexification of G and suppose:

e G g G(c;
e G is simply connected.

We fix a maximal compact subgroup K < G and form
X=G/K,

the associated Riemannian symmetric space of the non-compact type. The
universal complexification K¢ of K will be realized as a subgroup of G.
We set

Xc = Ge/Ke
and call X the affine complexification of X. Note that
X — X([;, gK — .gK(C

defines a G-equivariant embedding which realizes X as a totally real form
of the Stein symmetric space X¢. We write xg = K¢ € X for the standard
base point in X¢.

However, the natural complexification of X is not X¢, but the crown
domain 2 C X whose definition we recall now. We shall provide the
standard definition of &, see [AG].

Lie algebras of subgroups L < G will be denoted by the corresponding
lower case German letter, i.e. [ < g; complexifications of Lie algebras are
marked with a C-subscript, i.e. [¢ is the complexification of [.

Let us denote by p the orthogonal complement to € in g with respect to
the Cartan—Killing form. We set

Q={Yep|spec(adY) C (—m/2,7/2)}.
Then
E = Gexp(iQ) - xo C Xc

is a G-invariant neighborhood of X in X, commonly referred to as crown
domain. Sometimes it is useful to have an alternative, although less invariant
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pictureA of the crown domain: if a C p is a maximal abelian subspace and

Q := Q2 Np, then

(2.1) E=Gexp(i2) - xp.

The set €2 is nicely described through the restricted root system X = ¥ (g,a):
Q={Yea|alY) <n/2Va € X}.

If ‘W is the Weyl group of X, then we note that 2 is ‘W-invariant.

Sometimes we will employ the root space decomposition g = a & m &
D, 5 g with m = 3¢(a) as usual. We choose a positive system £+ C X
and form the nilpotent subalgebra n = P, 5.+ g%

2.1. The example of G = S1(2, R). For illustration and later use we will
exemplify the above notions at the basic case of G = S1(2, R).

We let K = SO(2, R) be our choice for the maximal compact subgroup
and identify X = G/K with the upper half plane D" := {z € C | Imz > 0}.
We recall that

Xc =P'(C) x P'(C) \ diag[P' (C)]

with G¢ acting diagonally by fractional linear transformations. The G-em-
bedding of X = D™ into X¢ is given by

7> (z,2) € Xc.
If D™ denotes the lower half plane, then the crown domain is given by
E=D"xD CXc¢.
In addition we record two G-domains in X¢ which sit above E, namely:

(2.2) 2t = DT x P}(C) \ diag[P'(C)],
(2.3) 2~ =P'(C) x D™\ diag[P'(C)].

Observe that E=ET N &~.

3. Remarks on G-invariant domains in X with proper action

One defines elliptic elements in X¢ by
Xc.en = Gexp(ip) - xo = Gexp(ia) - xg .

The main result of [AG] was to show that E is a maximal domain in X¢ ey
with G-action proper. In particular, G acts properly on E.

It was found in [KO] that E in general is not a maximal domain in
X for proper G-action: the domains E% and E~ from (2.2)—~(2.3) yield
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counterexamples. To know all maximal domains is important for the theory
of representations [KO, Sect. 4].

That E in general is not maximal for proper action is related to the
unipotent model for the crown which was described in [KO]. To be more

precise, we showed that there exists a domain A C n containing 0 such that
(3.1) E = Gexp(iA) - xp.

Now there is a big difference between the unipotent parametrization (3.1)
and the elliptic parametrization (2.1): If we enlarge €2 the result is no longer
open; in particular, X¢ ¢ is notadomain. On the other hand, if we enlarge the
open set A the resulting set is still open; in particular X cu = Gexp(in)-xg
is a domain. Thus, if there were a bigger domain than E with proper action,

then it is likely by enlargement of A.
We need some facts on the boundary of E.

3.1. Boundary of E. Let us denote by dE the topological boundary of E
in X¢. One shows that

e 2 := Gexp(iof2) - xop S 0E

(cf. [KSII]) and calls 9. E the elliptic part of dE. We define the unipotent
part 3, E of 0 E to be the complement to the elliptic part:

WE = 3E \ dunE.

The relevance of 9, E is as follows. Let X C D € X¢ denote a G-domain
with proper G-action. Then DN e E = ¢ by the above cited result of [AG].
Thus if D ¢ &, then one has

DN&E#7.

Let us describe 9, E in more detail. For Y € a we define a reductive
subalgebra of g¢ by

gclY1=1{Zegc| eV 00(Z) = 7}

with o the Cartan involution on g¢ which fixes €+ ip. Then there is a partial
result on 9, &, for instance stated in [FH]:

(3.2) WE C {Gexp(e)exp(iY) -xp | Y € 092,
3.3) 0 # e € gelY]1Nig nilpotent} .

If Y is such that only one root, say «, attains the value 7/2, then we
call Y and as well the elements in the boundary orbit G exp(e) exp(iY) - xo
regular. Accordingly we define the regular unipotent boundary 0y e & =
{z € 0,E | z regular}. Note that g¢[Y] is of especially simple form for
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regular Y, namely
gelY1=ia® m @ glal™ @ iglal’

where gla] = g* & g~“. Hence, in the regular situation, one can choose e
above to be in ig[a]? + ia. We summarize our discussion:

Proposition 3.1. Let X C D C X¢ be a G-invariant domain with proper
G-action which is not contained in E. Then DN 0, 1 & # §. More precisely,
there exists Y € 02 regular (with a € X the unique root attaining t/2onY)
and a non-zero nilpotent element e € igla]’ + ia such that

exp(e) exp(iY) - xo € OyregE N D.

4. Maximal domains for proper action

The aim of this section is to classify all maximal G-domains in X¢ which
contain X and maintain proper action. The answer will depend whether G
is of Hermitian type or not.

4.1. Non-Hermitian groups. The objective is to prove the following theo-
rem:

Theorem 4.1. Suppose that G is not of Hermitian type. If X C D C X¢ is
a G-invariant domain with proper G-action, then D C E.

Before we can give the proof of the theorem some preparation is needed.
The proof relies partly on a structural fact characterizing non-Hermitian
groups (see Lemma 4.4 below) and on a precise knowledge of the basic
case of G = SI1(2, R).

Let us begin with the relevant facts for G = S1(2, R). With E = (8 (1))

and T = ((1) _01> our choices for a and n are

a=R-T and n=R:-E.

Note that Q = (—n/4, 7/4)T.
Then a slight modification of results in [KO, Sects. 3 and 4] yield:

Lemma 4.2. Let G = S1(2, R) and § C R be an open subset. Then
Bg :=Gexp(id - E) - xo
is a G-invariant open subset of X¢ and the following holds:

(1) G does not act properly if {—1,1} C 4.

(i) E=Ec 1.
(?11) E+ = E(fl,oo)-
(IV) BT = E(—oo,l)-
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We also need that 0 E is a fiber bundle over the affine symmetric space
G/H where H = SO, (1, 1). Notice that H is the stabilizer of the boundary
point

zy = exp(—inT/4) - xo = (1, —1) € I E .

Write t for the involution on G, resp. g, fixing H, resp. b, and denote by
g = b + g the corresponding eigenspace decomposition. The h-module q
breaks into two eigenspaces q = q* @ q~ with

+ _ + +_ (1 Fl
qg-=R-e- where e _(:I:l 1]

Finally write
C :R20'€+UR20'67

and C* = C \ {0}. Note that both ¢ and C* are H-stable. We cite
[KO, Th. 3.1]:

Lemma 4.3. Let G = S1(2, R). Then the map
G xyg C— 0E, [g,e] — gexp(ie) - zy

is a G-equivariant homeomorphism. Moreover,

(i) 0nE=G-zy =~ G/H,
(i) 0B = Gexp(iC*) - zyg =~ G xgy CX,
(i) 0,8 = Gexp(iE) - xo U G exp(—iE) - xo.

As a last piece of information we need a structural fact which is only
valid for non-Hermitian groups.

Lemma 4.4. Suppose that G is not of Hermitian type. Then for all « € X
and E € g* there exists anm € M = Zg(a) such that

Ad(m)E = —E .

Proof. Let us remark first that we may assume that G is of adjoint type.
If G is complex, then the assertion is clear as T := exp(ia) C M provides
us with the elements we are looking for. More generally for dim g* > 1 one
knows (Kostant) that My = exp(m) acts transitively on the unit sphere in g*
(ct. [Kos]).

In the sequel we use the terminology and tables of the classification of
real simple Lie algebras as found in the monograph [K, App. C]. As G is
not Hermitian, Kostant’s result leaves us with the following cases for g:
sl(n,R) forn > 3,s0(p,q) for0,2 #p,gand p+qg>2,EI,EILEYV,
E VI, EVII EIX, F I and G.

Now we make the following observation. The lemma is true for G =
SI(3, R) as a simple matrix computation shows. Suppose that « is such that
it can be put into an A-subsystem of X. As dim g* is one-dimensional (by
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our reduction) this means that we can put £ € g in a subalgebra isomorphic
to s[(3, R). Now it is important to recall the nature of the component group
of M, see [K, Th. 7.55]. It follows that the M-group of SI(3, R) (isomorphic
to (Z/27)?) embeds into the M-group of G.

The A,-reduction described above deletes most of the cases in our list.
We remain with the orthogonal cases so(p, g) for 0,2 # p,q and p # q.
A simple matrix computation, which we leave to the reader, finishes the
proof. m|

Proof of Theorem 4.1. Suppose that G is not of Hermitian type. Let X C
D C Ebea G-invariant domain with proper G-action which is not contained
in E. We shall show that D does not exist.

According to Proposition 3.1 we find a regular ¥ € 92 and a non-zero
nilpotent e € gc[Y] N ig such that

exp(e) exp(iY) - xo € OyregE N D
Let o € X be the root corresponding to Y. Write ¥ = Y* + Y’ with Y*,
Y’ € a such that a(Y’) = 0. It is known that Y* € 92 and Y’ € Q. Hence

we may use s[(2)-reduction which in conjunction with Lemma 4.3 implies
the existence of E* € g* such that:

o {E“ O(E%),[E*, 6(E¥)]} is an s[(2)-triple,
o exp(iE*) exp(iY’) - xo € Oy ree & N D.

Now, as G is not of Hermitian type, Lemma 4.4 implies that there exists an
element m € M such that Ad(m)E* = —E“®. Hence

exp(—iE®) exp(iY’) - xo € Oy reg &

as well. But this contradicts Lemma 4.2(i). |

4.2. Hermitian groups. Let now G be of Hermitian type and G C P~ K¢cP+
be a Harish-Chandra decomposition of G in G¢. We define flag varieties

Ft* =G¢/KcP™ and F~ = Gg¢/KcP~
and inside of them we declare the flag domains
D' = GKcP"/KcPt and D™ = GKcP /KcP™ .
Then in the
4.1) Xc <> F"' x F~, gKcr> (gKcPt, gKcP™)

identifies X¢ as a Zariski open affine piece of F™ x F~. In more detail: As G
is of Hermitian type, there exist wy € Ng.(Kc) such that wy Piwgl = PT.
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In turn, this element induces a G¢-equivariant biholomorphic map:

¢ F" — F, gKcP" = gwoKcP™.
With that the embedding (4.1) gives the following identification of X¢:
(4.2) Xc={(z,w) € F* x F~ | ¢(2) T w},

where T stands for the transversality notion in the flag variety F~. We recall
what it means to be transversal. First note that the notion is G¢-invariant, i.e.
for z, w € F~ and g € G¢ one has z T w if and only if gz T gw. Now for the
base point 7~ = Kc P~ € F~ one has z~ Twifand only if w € P"wgz".

We keep the realization of X¢ in F* x F~ (cf. (4.1)) in mind and recall
the description of E:

E=D"x D~

(see [KSII)).

For subsets X* C F* we write X* x X~ for those elements (x, x7) €
Xt x X~ which are transversal, i.e. ¢(x™) T x~. With this terminology in
mind we finally define
t=Dtx; F,

T=F"x;D".

o] ]

4.2.1. Basic structure theory of E" and E~. Tt is obvious that both
and E~ are open and G-invariant. However, as was pointed out by the
referee, it is a priori not clear that they are connected. In order to see this let
p+ . ET — D7 be the projection onto the first factor. Likewise we define
p- B8 — D.

Proposition 4.5. Let ¢ € {—,+}. The map p. : B¢ — D€ induces the
structure of a holomorphic fiber bundle with fiber isomorphic to P€.

Proof. We confine ourselves with the case € = +.

As p. is G-equivariant and D" is G-homogeneous, it is sufficient to
determine the fiber p;'(z*). Recall that z+ = KcP* € F* is the base
point. Now

Py @h) ={E" w) e FY x F~ | ¢(z") T w}.

Observe that ¢(z1) = wpz~ and that woz~ T w is equivalent to z~ T wy Tw.
By the definition of transversality this means that w,'w € P~wgz™ or

w € woP~wpz ™. It is no loss of generality to assume that wy = wal. So
we arrive at w € P*z~ and this concludes the proof of the proposition. O

Corollary 4.6. Both E" and E~ are contractible.

It was observed by the the referee that Proposition 4.5 allows the fol-
lowing interesting reformulation.
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Corollary 4.7. The map

G xg P"— EY, [g, pl (gz", gpz7)

~

is a G-equivariant diffeomorphism. In particular % is G-biholomorphic
to T"' D™, the antiholomorphic tangent bundle of D*. Likewise, B~ is
G-biholomorphic to T*'D~.

Corollary 4.7 combined with the Harish—Chandra decomposition implies
that E€ >~ D¢ x P€ as complex manifolds. In particular E€ is Stein.

The fact that K¢ normalizes P€ allows us to speak of G x P¢-invariant
domains in X¢. It follows from (4.1) and Corollary 4.7 that E€ is G x P¢-
invariant.

€

Proposition 4.8. Let € € {—, +}. The real group G acts properly on E€.
e

Moreover E€ is a maximal G x P¢-invariant domain in X¢ for proper
G-action.

Proof. As the G-action is proper on D¢, it follows that G acts properly
on Z°¢. In the sequel we deal with € = + only. It remains to show that
E* is a maximal G x P*-invariant domain in X¢ for proper G-action.
We argue by contradiction and suppose that D 2 E* is a G x P*-
domain in X¢ with proper G-action. Then D = (Dy x F~) N X¢ with
Dy 2 D' a G-domain with proper action. Now recall the following
facts:

e There are only finitely many G-orbits in F*.
e There are precisely two orbits with proper G-action: Dt and ¢~ (D).

The assertion follows. O

Remark 4.9. Suppose that G is of Hermitian type. Then it can be shown
that if X € D C X¢ is a G-invariant domain with proper G-action, then
DCETorDC E.

As we will not need this fact, we refrain from a proof.

If D C X is a subset, then we write DK for its preimage in G¢ under
the canonical projection G¢ — Xc.

Proposition 4.10. The following assertions hold:

() E*Ke=GKcP™,
(1) E-K¢c = GKcP~.

Proof. 1Tt suffices to prove (i). Recall the embedding (4.1), and the definition
of transversality condition. We deduce that Pt C ETK¢. As BT K¢ is
G x Kc-invariant, it follows that GP* K¢ = GKcPT C E* K.
Conversely, Corollary 4.7 implies that GP* maps onto E% and thus
Bt C GP* Kc. O
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We conclude this subsection with some easy facts on the structure of £
and E~ which will be used later on.

4.2.2. Unipotent model for % and E~. We begin with the unipotent pa-
rameterization of * and E~. Some terminology is needed.

According to C. Moore, ¥ is of type C, or BC,. Hence we find
a subset {yy, ..., ¥} of long strongly orthogonal restricted roots. We fix
E; € g% such that {E;, O(E;), [E;, OE;]} becomes an sl(2)-triple. Set
T, .= 1/2[E;, 0E;] and note that

Q= @(—n/z, /2)T; .

J=1

Weset V = EB;'.II R - E; and take a cube inside V by

A= @(—1, 1)E; .
j=1

In [KO, Sect. 8], we have shown that
= =Gexp(iA) - xg.

In this parametrization of E the unipotent boundary piece has a simple
description:

4.3) e = Gexp(idA) - xp.

The strategy now is to enlarge E by enlarging A while maintaining that
the object stays a domain on which G acts properly. But now we have to
be a little bit careful with our choice of E;. Replacing E; by —E; has no
effect for the matters cited above, but for the sequel. Our ch01ce is such that
Y1, ..., Y, are positive roots (this determines the non-compact roots in £+
uniquely). We set

= T (—1,00)E; and A~ = ] (—o0, DE;.
j

j=1
Then, a direct generalization of Lemma 4.2(iii), (iv) yields:
Proposition 4.11. The following assertions hold:

(i) ET =Gexp(iA™) - xop,
(i) E- = Gexp(iA™) - xop.

Remark 4.12. 1f we define subcones of the nilcone & C g by

= Ad(K) | PI0.co)E; | and N~ =-NT,

J=1
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then one can show that the maps
G xx Nt = EE [g, Y]+ gexp(iY) - xp

are homeomorphic.

5. Representation theory

Let (7, #¢) be a unitary representation of G and #x the underlying Harish-
Chandra module of K-finite vectors. Notice that #x is naturally a module
for K¢.

We say that (7, #) is a highest, resp. lowest, weight representation if G
is of Hermitian type and p* = Lie(P™), resp. p~, acts on FHx in a finite
manner.

We turn to the main result of this paper.

Theorem 5.1. Let (7w, #) be a unitary irreducible representation of G. Let
v € H be a non-zero K-finite vector and

fo:G—> FH, g+ m(gv

the corresponding orbit map. Then there exists a unique maximal G x K-
invariant domain D, C G, independent of v, to which f, extends holo-
morphically. Explicitly:

(1) Dy = Gc¢ if 7 is the trivial representation.

(i) D, = E" K¢ if G is Hermitian and 7 is a non-trivial highest weight
representation.

(i) D, = E~ K¢ if G is Hermitian and 7 is a non-trivial lowest weight
representation.

(iv) D, = EKc in all other cases.

Proof. If & is trivial, then the assertion is clear. So let us assume that 7 is
non-trivial in the sequel. Fix a nonzero K-finite vector v and consider the
orbit map f, : G — J£. We recall the following two facts:

e f, extends to a holomorphic G-equivariant map f, : EK¢ — F (see
[KSII, Th. 1.1]).

e If D, C G¢isaG x Kc¢-invariant domain to which f, extends holomor-
phically, then G acts properly on D, /K¢ (see [KO, Th. 4.3]).

We begin with the case where G is not of Hermitian type. Here the asser-
tion follows from the bulleted items above in conjunction with Theorem 4.1.

So we may assume for the remainder that G is of Hermitian type. If &
is a highest weight representation, then it is clear that f, extends to a holo-
morphic map GKc Pt — #. Thus, in this case EY K¢ = GKcP™* (cf.
Proposition 4.10 ) is a maximal domain of definition for f, by Proposi-
tion 4.8 and the second bulleted item from above. Likewise, if (7, J) is
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a lowest weight representation, then E~ K¢ is a maximal domain of defin-

ition of f,. As both E" and E~ are simply connected with sufficiently

regular boundary, it follows that these maximal domains are in fact unique.
It remains to show:

e If f, extends holomorphically on a domain D D E such that D N
ET \ E] # 0, then (7, ) is a highest weight representation.
e If f, extends holomorphically p on a domain D D & such that D N

—~—

E7\ E] # 0, then (i, #) is a lowest weight representation.

It is sufficient to deal with the first case. So suppose that f, extends
to a bigger domain D such that D N [E" \ E] # @. Taking derivatives
and applying the fact that dn(U(gc))v = Hx, we see that f, extends
to D for all u € Hg. By Proposition 3.1, (4.3) and our assumption we
find I < j < n be such that exp(iE;) exp(iY) - xo € D for some ¥ € Q
with y;(Y) = 0. Let G; < G be the analytic subgroup corresponding to
the s[(2)-triple {E;, O(E;), [E;, O(E;)]}. Basic representation theory of type
I-groups in conjunction with [KO, Th. 4.7], yields that 7|g, breaks into
a direct sum of highest weight representations. Applying Nk (a) (which in
particular permutes the G, and preserves Jfx) we see that above matters
hold for any other G; as well (note that ¥ might change but this does
not matter as €2 is Nk (a)-invariant). It follows that 7 is a highest weight
representation and completes the proof of the theorem. m|

Remark 5.2. The domains E, E" and £~ are independent of the choice of
the connected group G. Accordingly, the above theorem holds for all simple
connected non-compact Lie groups G, i.e. we can drop the assumption that
G C G¢ and G¢ simply connected.

Problem 5.3. The above theorem should hold true for all irreducible ad-
missible Banach representations of G under the reservation that (i) gets
modified to: D, = G if 7 is finite dimensional.
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