Skip to main content
Log in

Stimulus (dis)similarity can modify the effect of a task-irrelevant sandwiching stimulus on the perceived duration of brief visual stimuli

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The perceived duration of a target visual stimulus is shorter when a brief non-target visual stimulus precedes and trails the target than when it appears alone. This time compression requires spatiotemporal proximity of the target and non-target stimuli, which is one of the perceptual grouping rules. The present study examined whether and how another grouping rule, stimulus (dis)similarity, modulated this effect. In Experiment 1, time compression occurred only when the preceding and trailing stimuli (black–white checkerboard) were dissimilar from the target (unfilled round or triangle) with spatiotemporal proximity. In contrast, it was reduced when the preceding or trailing stimuli (filled rounds or triangles) were similar to the target. Experiment 2 revealed time compression with dissimilar stimuli, independent of the intensity or saliency of the target and non-target stimuli. Experiment 3 replicated the findings of Experiment 1 by manipulating the luminance similarity between target and non-target stimuli. Furthermore, time dilation occurred when the non-target stimuli were indistinguishable from the target stimuli. These results indicate that stimulus dissimilarity with spatiotemporal proximity induces time compression, whereas stimulus similarity with spatiotemporal proximity does not. These findings were discussed in relation to the neural readout model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets have been made publicly available at the OSF and can be accessed at [https://osf.io/hvmc6/]. The study design and analyses were not pre-registered.

References

  • Asaoka R (2020) Sandwiched visual stimuli are perceived as shorter than the stimulus alone. Acta Physiol (oxf) 203:102982

    Google Scholar 

  • Asaoka R, Gyoba J (2016) Sounds modulate the perceived duration of visual stimuli via crossmodal integration. Multisens Res 29(4–5):319–335

    Article  PubMed  Google Scholar 

  • Ben-Av MB, Sagi D (1995) Perceptual grouping by similarity and proximity: experimental results can be predicted by intensity autocorrelations. Vis Res 35(6):853–866

    Article  CAS  PubMed  Google Scholar 

  • Born S, Krüger HM, Zimmermann E, Cavanagh P (2016) Compression of space for low visibility probes. Front Syst Neurosci 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6(10):755–765

    Article  CAS  PubMed  Google Scholar 

  • Buonomano DV, Merzenich MM (1995) Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267(5200):1028–1030

    Article  CAS  PubMed  Google Scholar 

  • Buonomano DV, Bramen J, Khodadadifar M (2009) Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model. Philos Trans R Soc b: Biol Sci 364(1525):1865–1873

    Article  Google Scholar 

  • Burr D, Tozzi A, Morrone MC (2007) Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nat Neurosci 10(4):423–425

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale, pp 20–26

    Google Scholar 

  • Derichs C, Zimmermann E (2016) Temporal binding of interval markers. Sci Rep 6(1):38806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droit-Volet S, Wearden J (2002) Speeding up an internal clock in children? Effects of visual flicker on subjective duration. Q J Exp Psychol 55(3):193–211

    Article  Google Scholar 

  • Eagleman DM, Pariyadath V (2009) Is subjective duration a signature of coding efficiency. Philos Trans R Soc b: Biol Sci 364:1841–1851

    Article  Google Scholar 

  • Enns JT, Di Lollo V (2000) What’s new in visual masking? Trends Cogn Sci 4(9):345–352

    Article  CAS  PubMed  Google Scholar 

  • Ernst B, Reichard SM, Riepl RF, Steinhauser R, Zimmermann SF, Steinhauser M (2017) The P3 and the subjective experience of time. Neuropsychologia 103:12–19

    Article  PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72(3):561–582

    Article  PubMed  Google Scholar 

  • Han S, Humphreys GW (1999) Interactions between perceptual organization based on Gestalt laws and those based on hierarchical processing. Percept Psychophys 61(7):1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Han S, Song Y, Ding Y, Yund EW, Woods DL (2001) Neural substrates for visual perceptual grouping in humans. Psychophysiology 38(6):926–935

    Article  CAS  PubMed  Google Scholar 

  • Han S, Jiang Y, Mao L, Humphreys GW, Gu H (2005) Attentional modulation of perceptual grouping in human visual cortex: Functional MRI studies. Hum Brain Mapp 25(4):424–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi MJ, Ivry RB (2020) Duration selectivity in right parietal cortex reflects the subjective experience of time. J Neurosci 40(40):7749–7758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson JZ, Rhinelander G (1978) Geometric and semantic similarity in visual masking. J Exp Psychol Hum Percept Perform 4(2):224–231

    Article  CAS  PubMed  Google Scholar 

  • Johnston A, Arnold DH, Nishida S (2006) Spatially localized distortions of event time. Curr Biol 16(5):472–479

    Article  CAS  PubMed  Google Scholar 

  • Karmarkar UR, Buonomano DV (2007) Timing in the absence of clocks: encoding time in neural network states. Neuron 53(3):427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamme VA, Zipser K, Spekreijse H (2002) Masking interrupts figure-ground signals in V1. J Cogn Neurosci 14(7):1044–1053

    Article  PubMed  Google Scholar 

  • Li B, Chen Y, Xiao L, Liu P, Huang X (2017) Duration adaptation modulates EEG correlates of subsequent temporal encoding. Neuroimage 147:143–151

    Article  PubMed  Google Scholar 

  • Macknik SL, Livingstone MS (1998) Neuronal correlates of visibility and invisibility in the primate visual system. Nat Neurosci 1:144–149. https://doi.org/10.1038/393

    Article  CAS  PubMed  Google Scholar 

  • Mendoza JL (1980) A significance test for multisample sphericity. Psychometrika 45:495–498

    Article  Google Scholar 

  • Naish P (1980) The effects of graphemic and phonemic similarity between targets and masks in a backward visual masking paradigm. Q J Exp Psychol 32(1):57–68

    Article  CAS  PubMed  Google Scholar 

  • Nelson SB (1991) Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. J Neurosci 11(2):344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi Y, Kakigi R (2005) Neural mechanisms of visual backward masking revealed by high temporal resolution imaging of human brain. Neuroimage 27(1):178–187

    Article  PubMed  Google Scholar 

  • Ono F, Kitazawa S (2010) Shortening of subjective tone intervals followed by repetitive tone stimuli. Atten Percept Psychophys 72(2):492–500

    Article  PubMed  Google Scholar 

  • Ono F, Kitazawa S (2011) Shortening of subjective visual intervals followed by repetitive stimulation. PLoS ONE 6(12):e28722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega L, Guzman-Martinez E, Grabowecky M, Suzuki S (2012) Flicker adaptation of low-level cortical visual neurons contributes to temporal dilation. J Exp Psychol Hum Percept Perform 38(6):1380–1389. https://doi.org/10.1037/a0029495

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyama T, Watanabe T, Funakawa M (1983) Effects of test-mask similarity on forward and backward masking of patterns by patterns. Psychol Res 45(3):303–313

    Article  CAS  PubMed  Google Scholar 

  • Pariyadath V, Eagleman DM (2007) The effect of predictability on subjective duration. PLoS ONE 2(11):e1264

    Article  PubMed  PubMed Central  Google Scholar 

  • Pariyadath V, Eagleman DM (2012) Subjective duration distortions mirror neural repetition suppression. PLoS ONE 7(12):e49362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson DJ, Gözenman F, Arciniega H, Berryhill ME (2015) Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations. Atten Percept Psychophys 77(7):2270–2283

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinlan PT, Wilton RN (1998) Grouping by proximity or similarity? Competition between the Gestalt principles in vision. Perception 27(4):417–430

    Article  CAS  PubMed  Google Scholar 

  • Raftery AE (1995) Bayesian model selection in social research. In: Marsden PV (ed) Sociological methodology 1995. Blackwell, Cambridge, pp 111–196

    Google Scholar 

  • Sadibolova R, Sun S, Terhune DB (2021) Using adaptive psychophysics to identify the neural network reset time in subsecond interval timing. Exp Brain Res 239(12):3565–3572

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekuler RW (1965) Spatial and temporal determinants of visual backward masking. J Exp Psychol 70(4):401–406

    Article  CAS  PubMed  Google Scholar 

  • Shaffer JP (1986) Modified sequentially rejective multiple test procedures. J Am Stat Assoc 81(395):826–831

    Article  Google Scholar 

  • Spencer RM, Karmarkar U, Ivry RB (2009) Evaluating dedicated and intrinsic models of temporal encoding by varying context. Philos Trans R Soc b: Biol Sci 364(1525):1853–1863

    Article  Google Scholar 

  • Villalba-García C, Santaniello G, Luna D, Montoro PR, Hinojosa JA (2018) Temporal brain dynamics of the competition between proximity and shape similarity grouping cues in vision. Neuropsychologia 121:88–97

    Article  PubMed  Google Scholar 

  • Wagemans J, Elder JH, Kubovy M, Palmer SE, Peterson MA, Singh M, von der Heydt R (2012) A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychol Bull 138(6):1172–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Wearden JH, Edwards H, Fakhri M, Percival A (1998) Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. Q J Exp Psychol 51(2):97–120

    CAS  Google Scholar 

  • Zhou B, Qin J, Mao L, Han S, Pöppel E (2010) Modulations of temporal perception by consciously and unconsciously perceived stimuli. Perception 39(7):900–908

    Article  PubMed  Google Scholar 

  • Zhou B, Yang S, Mao L, Han S (2014) Visual feature processing in the early visual cortex affects duration perception. J Exp Psychol Gen 143(5):1893–1902

    Article  PubMed  Google Scholar 

  • Zhou B, Yang S, Zhang T, Zhang X, Mao L (2015) Situational context is important: perceptual grouping modulates temporal perception. Cogn Process 16(1):443–447

    Article  PubMed  Google Scholar 

  • Zimmermann E, Born S, Fink GR, Cavanagh P (2014) Masking produces compression of space and time in the absence of eye movements. J Neurophysiol 112(12):3066–3076

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to all participants. I would like to thank Dr. Haruyuki Kojima and Dr. Makoto Ichikawa for their support. Further, I would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was supported by JSPS KAKENHI (grant numbers: 18H05806, 19K20998, and 21J00537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riku Asaoka.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by Bill J Yates.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 366 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaoka, R. Stimulus (dis)similarity can modify the effect of a task-irrelevant sandwiching stimulus on the perceived duration of brief visual stimuli. Exp Brain Res 241, 889–903 (2023). https://doi.org/10.1007/s00221-023-06564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-023-06564-2

Keywords

Navigation