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Abstract
Sensorimotor delays dictate that humans act on outdated perceptual information. As a result, continuous manual tracking of 
an unpredictable target incurs significant response delays. However, no such delays are observed for repeating targets such 
as the sinusoids. Findings of this kind have led researchers to claim that the nervous system constructs predictive, probabil-
istic models of the world. However, a more parsimonious explanation is that visual perception of a moving target position 
is systematically biased by its velocity. The resultant extrapolated position could be compared with the cursor position and 
the difference canceled by negative feedback control, compensating sensorimotor delays. The current study tested whether a 
position extrapolation model fit human tracking of sinusoid (predictable) and pseudorandom (less predictable) targets better 
than the non-biased position control model, Twenty-eight participants tracked these targets and the two computational models 
were fit to the data at 60 fixed loop delay values (simulating sensorimotor delays). We observed that pseudorandom targets 
were tracked with a significantly greater phase delay than sinusoid targets. For sinusoid targets, the position extrapolation 
model simulated tracking results more accurately for loop delays longer than 120 ms, thereby confirming its ability to com-
pensate for sensorimotor delays. However, for pseudorandom targets, this advantage arose only after 300 ms, indicating that 
velocity information is unlikely to be exploited in this way during the tracking of less predictable targets. We conclude that 
negative feedback control of position is a parsimonious model for tracking pseudorandom targets and that negative feedback 
control of extrapolated position is a parsimonious model for tracking sinusoidal targets.
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Introduction

Sensorimotor delays accumulate as a result of delays in 
afferent and efferent signal transmission, and central pro-
cessing (Carlton 1981; Smith and Bowen 1980; Smith et al. 
1960). Consequently, humans act on outdated sensory inputs 
(Carlton 1981; Stepp 2009; Wolpert et al. 2001). This delay 
presents a significant issue in action control, for ‘if the sys-
tem is changing rapidly, then by the time a feedback signal 
has been used to modify the motor commands, the system 
will have evolved to a new state for which the corrective 
signal is inappropriate’ (Hollerbach 1982). The central nerv-
ous system (CNS) must therefore anticipate and compensate 
for the deleterious effect of delays to movements in time-
sensitive tasks such as object interception and avoidance 
and driving. Such compensation can be observed readily 
in the ‘flash-lag’ effect, an illusion in which a continuously 
moving target is observed to be advanced in position to a 
sudden onset target presented in-phase (Nijhawan 2002). 
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The illusion may be explained by a tendency for humans to 
extrapolate target motion to mitigate sensorimotor delays 
in perception.

Feedback delays in movement vary in magnitude through-
out the CNS, but generally increase as a function of the 
length of the feedback loop and the number of local networks 
employed. On the shortest timescales, tactile feedback in the 
form of the muscle stretch and spinal reflexes may operate 
within tens of milliseconds (Sloot et al. 2015). Feedback 
delays for visuo-manual responses are substantially longer. 
Retinal information is projected to the primary visual cor-
tex from the lateral geniculate nucleus (LGN) within about 
30 ms (Foxe and Simpson 2002) and peaks around 60 ms 
post stimulus onset (Kruse et al. 2002). Activation onsets 
in the middle temporal (MT) and medial superior tempo-
ral (MST) cells occur around 40 ms post stimulus onset. 
These areas encode stimulus direction and velocity, and are 
considered the gateway to the dorsal stream (‘where’ path-
way). In the dorsal stream, the MT and MST areas project 
to frontal areas (executive control) and the posterior parietal 
cortex (PPC), which has been implicated in coding feedback-
dependent computations of movement error, which are used 
to correct movement trajectories online (Desmurget et al. 
1999; Gréa et al. 2002). Activation onset in the PPC occurs 
at approximately 80 ms and peaks after 100 ms. The PPC 
projects to the Supplementary Motor Area (SMA) and to the 
motor cortices. Recurrent activation occurs throughout the 
dorsal stream during movement preparation and execution, 
such that “100–400 ms is commonly needed for information 
processing prior to response output in humans.” (Foxe and 
Simpson 2002). Reaching experiments in which the location 
of the target is changed during an ongoing movement toward 
it corroborate electrophysiological estimates of feedback 
delays. Trajectory corrections can be made on the basis vis-
ual feedback of the new target location within 100–150 ms 
(Brenner and Smeets 2015; Day and Lyon 2000; Foulkes and 
Miall 2000; Franklin and Wolpert 2008; Saunders and Knill 
2005). Thus, 100 ms represents a plausible minimum esti-
mate for sensorimotor feedback delay in visuo-manual tasks.

During sustained tracking of a moving target, manual 
tracking, response delays can be measured continuously as 
the phase lag between the target and cursor. Interestingly, 
these phase lags vary widely depending on target charac-
teristics. Under the right conditions, lags can be measured 
that are shorter than the minimal estimates of visuo-manual 
feedback delay and must therefore represent a mitigation 
of sensorimotor delays when tracking. For example, if tar-
gets move in a sinusoidal or elliptical pattern, cursor–target 
phase lags are significantly shortened and may be eliminated 
entirely (Poulton 1952b; Stark et al. 1961; Stepp 2009; Stepp 
and Turvey 2017; Viviani and Mounoud 1990). In contrast, 
during tracking of a pseudorandom or sum-of-sines signal 
(the addition of several sinusoids of different amplitudes 

and frequencies), delays are observed to be in the region of 
180–200 ms (Khoramshahi et al. 2014; Parker et al. 2017; 
Viviani et al. 1987; Yu et al. 2014)—considerably longer 
than the plausible minimum feedback times observed in 
reaching experiments. This phase delay difference between 
periodic and non-periodic targets likely represents the 
employment of different control strategies in the PPC, where 
target and cursor spatial and motion comparisons are thought 
to occur (Hill and Raab 2005). While the long-phase delay 
of pseudorandom target tracking appears to indicate a feed-
back control mechanism, the reduction in phase delay when 
tracking periodically repeating targets appears to indicate a 
strategy supporting the anticipation of the target position.

One of the earliest researchers of anticipatory tracking 
behavior, Poulton (1952b), distinguished between two plau-
sible mechanisms to estimate future target position: speed 
anticipation and course anticipation. Speed anticipation uses 
local velocity or acceleration to update position estimates, 
while course anticipation uses longer term regularities in 
the target pattern. Course anticipation may require an inter-
nal model of target pattern and of plant dynamics. Phase 
synchronization by phase-locked oscillators may account 
for course anticipation for sinusoidal targets with a known 
amplitude (Stepp and Frank 2009; Stepp and Turvey 2017; 
Voss 2000; Voss et al. 2007). Tracking of more complex 
pseudorandom targets can also be improved by course 
anticipation, but only if the target pattern is tracked mul-
tiple times. Repeated pseudorandom segments are tracked 
more accurately than novel segments, even in cases in which 
participants are not aware the segment has been repeated 
(Ewolds et al. 2017). Course anticipation may therefore fol-
low implicit learning of the segment rather than an explicit 
or intentional reproduction of the target pattern. However, 
as phase lags were not measured in this study, it is not 
clear whether the performance improvement was due to a 
reduction in phase lag. Unlike course anticipation, speed 
anticipation does not require an explicit or implicit internal 
model of the target pattern. Instead, local velocity infor-
mation is exploited to bias the outdated estimate of target 
position toward its future position. Speed anticipation by 
extrapolation of target velocity has been found to under-
pin oculomotor and motor behaviors such as ocular smooth 
pursuit (Khoei et al. 2013; Soechting et al. 2010), manual 
object interception (Brenner and Smeets 2015; Dessing et al. 
2005; Soechting et al. 2009), and visual and manual track-
ing across brief occlusions (Fine et al. 2014; Mrotek and 
Soechting 2007; Zago et al. 2010). Perceiving and account-
ing for target acceleration information during tracking could 
confer additional control capability when velocity is chang-
ing. Interestingly, it does not appear that target acceleration 
information is used in this way during manual interception 
(Soechting et al. 2009). This may be due to longer feedback 
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delays for acceleration than for position and velocity (Ben-
nett et al. 2007; Brouwer et al. 2002b).

Due to the dependence of course anticipation on an 
internal model of the target pattern, it cannot be utilized 
when tracking complex, non-repeating targets if they have 
not previously been observed. In contrast, speed antici-
pation does not require an internal model of the target 
pattern. As such, speed anticipation could be used irre-
spective of whether targets have any repeating or peri-
odic characteristics. Despite this potential for the univer-
sal application of speed anticipation during tracking, the 
observation of long-phase delays during pseudorandom 
target tracking appears to indicate a speed anticipation 
strategy is not employed during tracking non-periodic tar-
gets (Rohde et al. 2014). In the current study, we employed 
a model-based analysis of tracking behavior to establish 
whether participants exploit local velocity information 
during tracking (speed anticipation).

To investigate whether target velocity is exploited to help 
anticipate target movements during tracking, we fit two mod-
els to pseudorandom and sinusoid tracking data. One model 
controlled only target–cursor positional difference by nega-
tive feedback. This model is the canonical perceptual con-
trol model (Powers 1978, 2008) which has been extensively 
used in previous experiments; see Parker et al. (2020) for a 
review. The second model simulated a speed anticipation 
strategy by extrapolating target position based on its veloc-
ity, and then controlling for the difference between this esti-
mate and the cursor position. To evaluate the capacity for 
models to compensate sensorimotor delays, models were 
fit and evaluated at a range of loop delay values. This was 
the model equivalent to previous studies in which partici-
pants’ feedback delays were artificially extended by delaying 
the effect of the joystick on the on-screen cursor position 
(Foulkes and Miall 2000; Miall and Jackson 2006; Rohde 
et al. 2014; Vercher and Gauthier 1992), as loop delay deter-
mined the interval of sampling delay in estimates of position 
and velocity. We expected that comparison of the simulation 
results across the range of delay values would elucidate the 
degree to which speed anticipation is likely to have been 
utilized as a tracking strategy for the two target types. Our 
hypotheses were as follows:

1.	 Following previous experimental evidence, we expected 
sinusoid targets to be tracked with increased accuracy 
(RMSE) relative to pseudorandom as a result of a 
reduced phase lag compared with pseudorandom targets. 
We did not expect a significant difference in amplitude 
ratio between the target types.

2.	 We expected that pseudorandom tracking would be 
simulated most accurately at a loop delays greater than 
100 ms (the plausible minimum estimate of sensorimo-

tor feedback time). We were agnostic with respect to 
whether the models would differ in simulation accuracy.

3.	 We expected that the position control model would 
simulate sinusoid tracking most accurately at implausi-
bly low loop delay values. In comparison, the position 
extrapolation model should simulate sinusoid tracking 
data most accurately at delays greater than 100 ms, indi-
cating a compensation of sensorimotor delay by target 
extrapolation.

Method

Design

In the experiment, participants completed trials of a pursuit 
tracking task (Fig. 1). In the task, a joystick is used to move 
a cursor to track a target that moves in the vertical dimension 
on the screen. The target pattern was either a single sinusoid 
or continuous pseudorandom signal and the trial duration 
was 1 min. Participants completed three blocks of 15 pursuit 
tracking trials. The first block of trials were practice trials, 
aimed to stabilize participant performance. The second and 
third blocks were analyzed and are reported in this article. 
All three blocks were completed in a single experimental 
session.

Participants were randomly allocated to one of two condi-
tions that specified the volume of training in each target type 
and the order in which the targets were tracked. In the first 
condition pseudorandom–sinusoid (PS), participants tracked 
pseudorandom targets in blocks one and two, and tracked 
sinusoid targets in block three. In the second condition, 
sinusoid–pseudorandom (SP), participants tracked sinusoid 
targets in blocks one and two, and pseudorandom targets in 
block three. Each block comprised 15 trials. In the two test 
blocks, trials 1–5 were considered additional practice trials. 
Trials 6–15 were analyzed (and later used to optimize and 
validate models). Even-numbered trials (6, 8, 10, 12, and 
14) were optimization trials, while odd-numbered trials (7, 
9, 11, 13, and 15) were validation trials.

Participants

Thirty adult volunteers were recruited via the university vol-
unteer database and were reimbursed for their participation 
either monetarily or with course credits. Individuals were 
unable to participate if they had been diagnosed with neu-
rological motor impairments or uncorrected visual impair-
ments. No recruited individuals met these criteria and so 
none were excluded. Ethical approval was granted by the 
university ethics committee.

Participant data were collected within the same recruit-
ment cycle as within a previous study (Parker et al. 2017). 
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This data collection cycle recruited 80 participants to four 
experimental conditions. There was no crossover in par-
ticipant data analyzed between this study and the previous 
study. The previous study analyzed data from one condition 
(20 participants) and the current study analyzed data from 
two other conditions (40 participants). Of these 40 partici-
pants, 30 completed the practice trials at the same difficulty 
level and, therefore, similar target frequencies. These 30 par-
ticipants were included in the analysis as their models could 
be directly compared. Due to this split in the experimental 
data between two separate research articles with different 
hypotheses, no power analysis was conducted for the current 
article. However, the sample size for the current experiment 
is substantially larger than comparable and recently pub-
lished manual tracking and modeling studies which used 
between 10 and 22 participants (Gollee et al. 2017; Inoue 
and Sakaguchi 2014; Stepp and Turvey 2017).

Apparatus

Pursuit tracking task

Pursuit tracking data were collected in TrackAnalyze, 
a software program developed by Powers (2008), 

programmed in Pascal. The pursuit tracking task was 
adapted by the author Abbott for this experiment. In 
TrackAnalyze, a cursor can be controlled by a joystick or 
mouse to follow the target. Targets can move in a pseudor-
andom or single sinusoid pattern and the difficulty can be 
manipulated by the frequency of the component sinusoids. 
For each trial, target time series were generated within 
TrackAnalyze. The algorithm initialized three variables 
(D1, D2, and D3) to 0. Random numbers were generated 
between 0 and 1 (Rand), normalized around zero. These 
pseudorandom numbers were smoothed by dividing each 
component number by one of five smoothing factors (64, 
32, 16, 8, and 4, respectively). These smoothing factors 
determine the difficulty of the task by altering the rate of 
change of the target. This process is displayed in Eq. (1):

This process was repeated a further twice:

(1)D1(t) = D1(t−1) +
(Rand−0.5)

Smooth
.

(2)D2(t) = D2(t−1) +

(

D1(t)−D2(t−1)
)

Smooth
,

Fig. 1   Computerized pursuit manual tracking task set-up, adapted 
from (Parker et al. 2020). The participant was instructed to keep the 
target marks (red) and cursor marks (green) aligned during a 1 min 

trial. The participant controlled the joystick to affect cursor position. 
The target marks moved according to a target signal. The target signal 
was either sinusoidal or pseudorandom
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The D3 values were then scaled to have a range of − 500 
to 500 and mean 0. The purpose of this was to rescale the 
numbers to screen size in pixels. Sinusoid targets required 
no smoothing. Difficulty was manipulated by changing the 
frequency of the sinusoid. This is computed in the follow-
ing manner:

The slowing factors were 120, 240, 480, 960, and 1920, 
or 2, 4, 8, 16, and 32 cycles per minute. Equation (5) nor-
malized the sine wave to vary between − 500 and 500 screen 
pixels. This range of 1000 pixels accounted for 19 cm of 
on-screen displacement.

The cursor and target positions were sampled every 
1/60th of a second (~ 16.67 ms). At the end of each 1-min 
trial, the sampled cursor and target positions were saved to 
a tab delimited text file. While the TrackAnalyze program 
has a simple built-in analysis tool, we analyzed the data for 
this study in Mathworks Matlab (2019).

Joystick

The joystick that the participants controlled was a Microsoft 
Sidewinder Force Feedback 2 computerized joystick. The 
force feedback functionality was turned off, such that par-
ticipants tracked without force cantering. The angle of the 
joystick determined the position of the cursor on the screen, 
the full range of movement of the joystick was scaled the 
maximum displacement of the cursor on the screen.

Procedure

Participants first completed the Edinburgh Handedness 
Inventory (Veale 2014). Participants were first provided 
with written and oral instructions for the manual tracking 
task and were given the opportunity to ask questions. Par-
ticipants completed one practice trial on each of the tar-
get patterns. Following which they completed 15 practice 
tracking runs according to the condition to which they were 
assigned (Block 1). Participants then completed the first test 
block using the same type of target that they had tracked in 
practice (Block 2). A 5-min break followed the end of Block 
2. The second test block was then completed (Block 3). This 
involved 15 tracking trials of the target type that was not 
tracked in the previous two blocks. A new pseudorandom 

(3)D3(t) = D3(t−1) +

(

D2(t−1)−D3(t−1)
)

Smooth
.

(4)D(t) = sin

(

t × 2�

Slowing

)

,

(5)D(t) = D(t) ×
Range

2
.

pattern was generated for each trial for each participant, 
while the sinusoid differed only in start point.

Analysis

Time-series and frequency-domain analysis were used to 
generate accuracy statistics Overall tracking accuracy was 
calculated by the root-mean-square error (RMSE) in position 
and velocity. As the response delay was of primary inter-
est to our hypotheses, frequency-domain analysis was con-
ducted to disambiguate errors due to timing and those due 
to force production. We therefore calculated phase delay: 
the average delay of the cursor relative to the target across 
the trial, and amplitude ratio: the difference in displacement 
between the target and cursor (Fig. 2, panel a).

The frequency analysis was conducted according to the 
procedure of a previous paper (Cofré Lizama et al. 2013), 
with several minor adaptations. We designed custom soft-
ware for this purpose within Matlab. This software used the 
Welch algorithm with a window length of 0.25 times the 
length of the signal, and an overlap of 0.9 times the window 
length. Signals were resampled by fast Fourier transforma-
tion resampling to achieve a resolution in the frequency 
domain of 0.0017 Hz. In practice, this required a scaling fac-
tor of ten times the original target signal length, an effective 
change in the sampling rate from 1/60 to 1/600. As all sinu-
soid targets had a single frequency, the statistics were calcu-
lated at this frequency only. For pseudorandom targets, the 
signal comprised many frequencies. To analyze amplitude 
and phase across the frequencies, we followed the procedure 
of a previous study (Cofré Lizama et al. 2013). The funda-
mental elements of the procedure are displayed in Fig. 2, 
panel b. The mean of the three frequencies with the largest 
power values was calculated. The value 0.75 times this mean 
determined the lower cut-off. The frequency at which the 
power fell below the lower cut-off was the cut-off frequency. 
These constraints defined the band of frequencies over which 
the phase and amplitude measures were calculated. Phase 
and amplitudes for each trial were calculated by meaning 
the statistic across frequencies within this band. Across all 
pseudorandom trials, the mean frequency from all pseudor-
andom signals was 0.0248 Hz, range [0.0141–0.0751 Hz]. 
The frequency of the sinusoid targets was 0.0624 Hz.

The phase statistic reflects the degree of temporal asyn-
chrony between the cursor and target at their maximal val-
ues, a positive value would show that the cursor is, in gen-
eral, advanced of the target in time, while a negative value 
would represent a phase lag; the cursor lagging the target in 
time. An amplitude ratio of 1 equals an equal ratio of cursor-
to-target displacement. Values above 1 show an increase in 
cursor amplitude relative to the target. Amplitude ratios are 
not affected by phase delay.
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Following previous findings of reduced phase lag for 
sinusoid tracking, we hypothesized that participants’ track-
ing accuracy would be superior for sinusoid targets than 
for pseudorandom targets, due to reduced phase error for 
the sinusoid targets. Mixed ANOVAs were conducted to 
detect differences in tracking accuracy on each of the four 
criteria: root-mean-square error in position and velocity, 
amplitude ratio, and phase lag. The repeated-measures fac-
tor in each analysis was target type and had two levels: 
pseudorandom and sinusoid. The independent factor was 
order and had two levels: pseudorandom–sinusoid (PS) 
and sinusoid–pseudorandom (SP). Metrics were calculated 

by the mean value for each participant across 10 trials (five 
estimation and five validation trials). All data manipula-
tion and analyses were completed in Mathworks MatLab 
(2019) and JASP (0.11.1.0). Estimation and validation tri-
als were generated by the same processes and parameters 
[pseudorandom: Eqs. (1–3); sinusoid: Eqs. (4 and 5)].

Data modeling

Two computational models were developed and evaluated. 
These were tested on the optimization trial data and evalu-
ated by their fit to the validation trial data.

Fig. 2   A 9-s segment of a tracking trial showing amplitude and phase difference (a) and the spectral power of the target signal plotted over fre-
quency with the cut-offs used in the calculation of amplitude and phase displayed
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Position control model

The first computational model used for comparison in this 
experiment was the standard tracking model proposed by 
perceptual control theory (PCT; Powers 1973, 2008). A flow 
diagram of the model is displayed in Fig. 3, panel a. The model 
iteratively computed outputs every sample. The current sample 
in the equations is denoted by (t). The inputs to the model are 
the target (T) and cursor (C) positions. The perceptual signal 

(P) was the difference between the target and cursor positions, 
sampled with a loop delay (τ samples). Equation (6):

The perceptual signal was compared to the reference sig-
nal (R), which represents the intended difference to be kept 
between the target and cursor. It might be expected that the 

(6)P = C(t−�)−T(t−�).

Fig. 3   Diagram of the position control model (a) and position extrapolation model (b)
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value of the reference signal was zero as participants were 
instructed to maintain zero distance between the cursor and 
target. The comparison yields the error term (E: Eq. 7):

This error signal was fed into the output function where 
the output (O) was computed via Eq. (8):

In this equation, O(t) is the current output and O(t − 1) 
is the output at the previous iteration. The loop gain, Ko, 
is a proportional gain and accounts for gains on the input, 
output, and environment functions. S is the slowing factor 
which is the gain for the leaky integrator and determines 
the proportion of the response that is lost per iteration. The 
sample rate, dt was set to the sample rate: 1.67 ms. The loop 
delay parameter (τ) determines the temporal delay in sam-
pling input and approximates the sensorimotor delay. The 
loop delay parameter was sequentially manipulated accord-
ing to our hypotheses, but was fixed during optimizations, 
while the other parameters (K, S, R) were free parameters. 
The output of the system determined cursor position (C(t)) 
directly as the environment function gain was unity (Eq. 9):

Position extrapolation model

The position control model was adapted, such that the per-
ceptual control variable combined target velocity in target 
position. By biasing position with velocity, the model would 
control to an extrapolated target position, and reduce the 
response delay between the target and cursor (Fig. 3, panel 
b). Another PCT control model has been previously reported 
in a conference paper that may function similarly (Taylor 
1995). In the position extrapolation model, the inputs to 
the model are cursor (C) and target (T) position and target 
velocity (Tv). Cursor velocity is not included in the model as 
the phase delay is not a result of a difference in target–cur-
sor velocity, but a constant offset in position that must be 
reduced by a temporary increase in cursor velocity (exceed-
ing the target velocity). Thus, the position extrapolation 
model controls to a target position advanced of its perceived 
location.1

(7)E = R−P.

(8)O(t) = O(t−1) + S ×
[

Ko × E−O(t−1)

]

× dt.

(9)C(t) = O(t)∕1.

The perceptual signal (PV) combines these inputs with 
a gain (Kv) that determines the weighting between velocity 
and position inputs; Eq. (10):

Following this altered perceptual signal, the model loop 
functions identically to the position control model (Eqs. 7 
through 9).

Parameter estimation and validation

The loop delay parameter was manipulated sequentially 
between the values of 1.6 ms and 481.6 ms in 8 ms inter-
vals. The models were optimized at each loop delay value 
for each trial (60 optimizations per trial). Excepting the 
loop delay value (τ), all other model parameters were free 
parameters for estimation. The parameters of the model were 
estimated with the MatLab function lsqnonlin, a non-linear 
least-squares algorithm at each loop delay value. The maxi-
mum number of iterations was set to 2000, and the function 
tolerance to 1 × 10–8. The initial conditions and boundaries 
for parameter optimization were: output gain (K), 1 [1, 200]; 
slowing factor (S), 0 [0, 1]; reference value (R), 0 [− 500, 
500], and extrapolation gain (KV), 0 [0, 200].

For parameter estimation trials, the parameters of the 
models were estimated at each delay value on each trial. 
The set of model parameter values that resulted in the best 
fit to the cursor movements (lowest RMSE) was selected as 
the individual model for that specific delay value for each 
participant. These parameter combinations were used for 
model validation at each of the delay values.

Validation trial data were simulated and the accuracy of 
fit to the individual’s movements was assessed at each of 
the loop delay values. Statistical outliers in model fit were 
identified by RMSE values greater than three standard devia-
tions above the mean error rate for that participant at that 
loop delay value. For any outlying data, the next best-fitting 
model parameters from optimization would be selected and 
used to simulate the validation data again. This process 
would continue till model fit statistics were no longer outly-
ing. In practice, outliers occurred infrequently when they 
did occur, and second best parameter combinations did not 
produce outliers.

Model analysis

Our second and third hypotheses aimed to evaluate which 
of the two models simulated tracking performance more 
accurately when loop delays were greater than 100 ms. 
Model simulation accuracy was assessed by three meas-
ures, identical to those used to analyze participants’ 
tracking accuracy (see section entitled tracking analysis). 

(10)PV = C(t−�) − T(t−�) +
[

Kv × Tv(t−�)

]

.

1  A spreadsheet demonstration of a simplified position control model 
and position extrapolation model tracking a constant velocity target 
signal and a sinusoid target signal can be accessed here: https​://docs.
googl​e.com/sprea​dshee​ts/d/1_Nt5eC​apZIq​cz7KH​1n1wu​zIs2j​rDymf​
ZF5l0​TrZfB​LY/edit?usp=shari​ng.

https://docs.google.com/spreadsheets/d/1_Nt5eCapZIqcz7KH1n1wuzIs2jrDymfZF5l0TrZfBLY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1_Nt5eCapZIqcz7KH1n1wuzIs2jrDymfZF5l0TrZfBLY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1_Nt5eCapZIqcz7KH1n1wuzIs2jrDymfZF5l0TrZfBLY/edit?usp=sharing
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Root-mean-square error measured overall simulation error 
(accuracy). These errors were disambiguated by frequency 
analysis. We calculated the amplitude ratio, phase delay, 
and coherence between the simulated cursor and target, 
and the simulated cursor and participant cursor. All sta-
tistics were calculated for each model following fitting at 
each delay value. These were 60 values between 1 and 
495 ms in 8.33 ms intervals. Results for the fit to valida-
tion data are reported in this article, because validation 
trials provide a more robust test of the models as target 
signals are not identical to those that the model was trained 
on (Oberkampf et al. 2004). The model fit criteria are pre-
sented with 95% confidence intervals and optima high-
lighted, indicating the statistical robustness of the com-
parisons at each delay value.

Results

Tracking results

Two participants were excluded from the analysis as they 
had missing data, and so 28 participants’ data were ana-
lyzed. Typical target and cursor movements during track-
ing of pseudorandom trial and sinusoid trials are displayed 
in Fig. 4. Note that, in this figure, each diagram has a 
different range on the y axis. The displacement of the 
sinusoid is 1000 pixels. This was not always the case for 
pseudorandom targets. The longer phase delay for pseu-
dorandom targets is visually apparent. Finally, note the 

alternating pattern of phase delay during target accel-
eration (A in diagram) and phase advance during target 
deceleration (B in diagram), which may be indicative of 
velocity-based extrapolation. C indicates where joystick 
stickiness in the center may cause a small displacement 
when tracking across the centerline.

Differences in tracking accuracy and phase delays

The means and standard errors for the four tracking accu-
racy criteria are displayed in Fig. 5. The comparison of 
cursor–target root-mean-square (Fig. 5, panel a) error indi-
cated no overall difference in tracking accuracy between 
pseudorandom (M = 28.03, SD = 6.01) and sinusoid targets 
(M = 26.28, SD = 4.95) or between orders, nor an interac-
tion between them; target type: F(1,25) = 0.91, p = 0.348, 
η2G = 0.015; order: F(1,25) = 0.91, p = 0.349, η2G = 0.020; 
interaction: F(1,25) = 0.03, p = 0.872, η2G = 0.000. In con-
trast, frequency-domain analysis revealed differences in both 
amplitude and phase.

Comparison of target–cursor amplitudes (Fig. 5, panel b) 
was significantly reduced for pseudorandom targets relative 
to sinusoid targets; F(1,25) = 28.95, p < 0.001, η2G = 0.319. 
There was a trend toward greater cursor amplitude for partic-
ipants in the PS group, though this did not reach significance; 
F(1,25) = 3.89, p = 0.059, η2G = 0.080. There was no inter-
action of target type and order; F(1,25) = 0.32, p = 0.578, 
η2G = 0.005. As there was no effect of order, amplitudes 
were pooled across order for the one-sample t tests. These 
revealed that cursor amplitudes were significantly smaller 
than target amplitudes for both pseudorandom (M = 0.96, 

Fig. 4   Example segments of tracking trials for a pseudorandom target (top) and sinusoid target (bottom) from the same participant
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SD = 0.03) and sinusoid targets (M = 0.99, SD = 0.02); 
pseudorandom: t(27) = 7.09, p < 0.001, d = 1.34; sinusoid: 
t(27) = 2.07, p = 0.049, d = 0.39.

Comparison of the phase lag (Fig. 5, panel c) between 
the target and cursor for each target type and order revealed 
that pseudorandom targets were tracked with a signifi-
cantly greater delay than sinusoid targets; F(1,25) = 56.07, 
p < 0.001, η2G = 0.481. There was no effect of order 
nor an interaction between target type and order, order: 
F(1,25) = 1.90, p = 0.180, η2G = 0.040; interaction: 
F(1,25) = 0.96, p = 0.336, η2G = 0.016. As there was no 
effect of order on phase lag, one-sample t tests pooled 
means across order. These revealed that participant cur-
sors significantly lagged behind targets for both pseudor-
andom (M = − 220.86 ms, SD = 109.78 ms) and sinusoid 
targets (M = − 53.56 ms, SD = 28.39 ms); pseudorandom: 
t(27) = 9.47, p < 0.001, d = 1.79; sinusoid: t(27) = 7.82, 
p < 0.001, d = 1.48.

Model results

Simulation of validation data generated outlying data for 
two participants, both for pseudorandom target trials. For 
one participant, this happened on a single trial for both mod-
els and these were replaced non-outlying data produced by 
simulation with the next best-fitting model parameters from 
optimization for that participant. For the other participant, 
all five validation trials for the position control model pro-
duced highly abnormal data, and thus, the participant was 
excluded for both models and both target types.

Simulation accuracy for pseudorandom targets

On inspection of the RMSE data (Fig. 6, panel a), optima for 
the position control model and position extrapolation model 
were found at 152 and 202 ms at which points the error 
rates were equivalent at 21.62 and 21.82, respectively. How-
ever, neither the model showed a clear optimum RMS value 
as this remained almost constant from 0 ms until around 
250 ms for both models, there were no differences between 

Fig. 5   Bar graph of target–cur-
sor tracking statistics (mean 
and paired standard error) for 
each target type and order: 
a root-mean-square error in 
position (in pixels), b amplitude 
ratio, and c phase difference, 
expressed in milliseconds. An 
amplitude ratio of 1 would 
indicate that the participant 
cursor displacement is equal to 
the displacement of the target. 
A negative amplitude ratio 
indicates cursor displacements 
smaller than the target displace-
ment (undershoot). A phase dif-
ference of 0 indicates temporal 
alignment of the cursor with the 
target. Negative values indicate 
phase lags of the cursor relative 
to the target. Paired standard 
error is calculated across target 
type (within each order group-
ing)
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the models in this range. Following 250 ms, mean model 
accuracy began to diverge as simulation error increased 
for both models. However, these differences were not sig-
nificant. Amplitude ratios (Fig. 6, panel b) also remained 
equivalent for both models and never deviated significantly 
from one another. Both models began with a value greater 
than 1, indicating that the model simulated the overshot in 
participants’ cursors initially, and then, amplitude ratios 
fell to around unity at 385 ms (position control model) and 
410 ms (position extrapolation model). With regard to phase 
differences (Fig. 6, panel c), the position model produced 
an initial positive phase advance of around 50 ms; this 
decreased as a function of loop delay and best simulated 
the phase delay of the participants at 235 ms. The position 
extrapolation model also produced a phase advance relative 
to the participant cursor with a magnitude of approximately 
100 ms. This was maintained or slightly increased over the 
range of loop delays until dropping at long loop delays to 
a minimum of 76 ms phase advance at 495 ms loop delay.

Simulation accuracy for sinusoid targets

We expected that sinusoid target tracking would be simulated 
more accurately by the position extrapolation model at loop 
delays longer than 100 ms. Root-mean-square error (Fig. 6, 

panel d) was initially equivalent and began to diverge signifi-
cantly after 170 ms loop delay. At longer loop delays, the posi-
tion control model simulated participant cursor movements 
with increasingly greater error than the position extrapolation 
model. The simulation accuracy of the position extrapolation 
model remained flat across loop delay values. The optima were 
found at extreme loop delay values. For the position model, the 
optimal delay was 1.67 ms, whereas for the position extrapola-
tion model, the optimal loop delay value was found at 425 ms; 
these optima were 23.85 and 23.71, respectively. Amplitude 
ratios (Fig. 6, panel e) remained around 1 for both models and 
only significantly deviated from one another prior to 60 ms 
and later than 360 ms. In both cases, the amplitude ratio for 
the position extrapolation model was closer to 1. Phase differ-
ence (Fig. 6, panel f) differed significantly between models 
from 85 ms loop delay with the position extrapolation model 
reproducing participant cursor lags with greater accuracy. At 
the shortest loop delay values, the position control model sim-
ulated cursor movements with around 10 ms of phase delay, 
whereas the position extrapolation model simulated cursors 
with around 5 ms phase advance. The phase of the position 
extrapolation model did not deviate significantly across loop 
delay values, remaining between 6 ms of phase advance and 
1 ms of phase delay. In contrast, the phase lag of the position 
control model’s simulated cursor relative to the actual cursor 

Fig. 6   Graphs compare key model simulation accuracy statistics for 
each model and target type. The blue line indicates the position con-
trol model, while the red line is the position extrapolation model. 
Model accuracy statistics for the pseudorandom target are presented 
in the left panel and for sinusoids in the right panel. Solid lines dis-

play the value of the statistic for each model optimized at each loop 
delay value; shaded lines indicate 95% confidence interval for the sta-
tistic value. Regions of overlap therefore suggest regions of no sig-
nificant difference between models
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movements decreased substantially across the range of loop 
delay values to a maximum of 215 ms phase lag.

Discussion

Differences in tracking accuracy and phase delays

We aimed to investigate whether humans exploit local 
target velocity when tracking of pseudorandom and sinu-
soid targets. We hypothesized, based on previous find-
ings, that sinusoid targets would be tracked with supe-
rior accuracy to pseudorandom targets and that sinusoids 
would be tracked with reduced phase lag. We did not 
clearly observe that sinusoids were tracked with greater 
overall accuracy (assessed by RMSE). However, analy-
sis of errors in timing revealed that sinusoid targets were 
tracked with a shorter phase lag than pseudorandom tar-
gets, and reduced amplitude error. Thus, while overall 
model simulation accuracy was not significantly greater 
for sinusoid targets, the reduction in phase lag and ampli-
tude error when tracking sinusoids indicate participants 
were tracking with reduced timing delay and undershoot. 
Critically, the phase lag for sinusoid targets was substan-
tially shorter than the minimum estimates of sensorimotor 
feedback delays (Brenner and Smeets 2015; Day and Lyon 
2000; Foulkes and Miall 2000; Franklin and Wolpert 2008; 
Saunders and Knill 2005). In comparison, phase delays for 
pseudorandom targets were well within a range consist-
ent with visual feedback estimates. These findings suggest 
that when tracking sinusoid targets, sensorimotor delays 
are compensated, presumably by exploiting target signal 
properties, but that this may not be the case when tracking 
pseudorandom targets. Phase lags for both pseudorandom 
and sinusoid targets corroborated the previous estimates of 
phase lags (Gollee et al. 2017; Inoue and Sakaguchi 2014; 
Khoramshahi et al. 2014; Neilson et al. 1993; Parker et al. 
2017; Poulton 1952a; Stepp and Turvey 2017; Viviani 
et al. 1987; Viviani and Mounoud 1990; Yu et al. 2014).

Simulation accuracy for pseudorandom targets

We had hypothesized that pseudorandom tracking perfor-
mance would be most accurately simulated at loop delays 
longer than 100 ms. This was predicted on the basis that 
pseudorandom targets are tracked with a sufficiently long-
phase delay to suggest recruitment of feedback, and previ-
ous findings of optimal loop delay parameter values for 
position control models simulating pseudorandom tracking 
(Parker et al. 2017). While RMSE optima were greater 
than 100 ms and so appeared to confirm the hypothesis, 
RMSE did not significantly reduce or increase over the 

range of 0–250 ms for either model. This indicates that 
the parameters of both models could be altered to com-
pensate for increasing loop delays across this range with 
no decrement to fit. A better model fit for the position 
extrapolation model could indicate that participants uti-
lized target extrapolation within their control strategy. As 
no significant difference was found over the range of loop 
delays, we did not find evidence that participants’ exploit 
target velocity information in this way during pseudoran-
dom target tracking. This conclusion was supported by the 
other accuracy measures. Phase-lag optima indicated that 
the position control model simulated cursor behavior with 
less timing error than the position extrapolation model 
until around 400 ms of delay, within a plausible range of 
sensorimotor delay times. In fact, the position extrapola-
tion model consistently produced a phase lead relative to 
the cursor, indicating that the model over-compensated 
participants’ sensorimotor delays. Amplitude ratios did not 
differ between models across loop delay values.

Considering the results together, it appears that there was 
little difference in accuracy between models for pseudoran-
dom targets. Any differences in model simulation accuracy 
were accounted most by differences in timing and not dis-
placement—in which the position control model better emu-
lated participants’ cursor phase lag between 100 and 300 ms, 
and the difference reversed thereafter. Thus, it appears that 
exploiting local velocity to extrapolate target position con-
fers no additional advantage for models simulating pseudor-
andom targets unless sensorimotor delays are very long, sup-
porting previous findings that sensorimotor delays were not 
compensated during tracking of pseudorandom target signals 
(Rohde et al. 2014). It appears improbable that participants 
use such a control strategy when tracking these targets.

Simulation accuracy for sinusoid targets

We hypothesized that the position control model would suf-
fer decrement to simulation accuracy with increasing loop 
delays. This was considered likely as participants tend to 
track sinusoids with a reduced phase lag, indicative of sen-
sorimotor delay mitigation, and the position control model 
has no capability to mitigate delays. This appeared to be 
the case as the simulation accuracy decreased as a function 
of increasing loop delay for the position control model. In 
contrast, we predicted that the position extrapolation model 
would fit optimally at loop delays above the plausible mini-
mum sensorimotor delay (100 ms). This was not the case. 
Instead, the accuracy of the position extrapolation model 
remained almost constant across the whole range of loop 
delay values. However, the fit of the position extrapolation 
model was statistically superior to the position control model 
for all values above 170 ms.
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The simulated cursor of the position control model lagged 
the participants’ cursor at all loop delay values and this lag 
increased as a function of input delay, confirming that the 
position control model did not compensate feedback delay. 
In comparison, the position extrapolation model maintained 
a small (< 6 ms) phase advance relative to participants’ cur-
sors across the range of delay values, and began to signifi-
cantly outperform the position control model in emulating 
participants’ cursor lags at feedback delays of 85 ms, indi-
cating that the position extrapolation model more effectively 
mitigated feedback delays even at the shortest biologically 
feasible estimates of sensorimotor feedback delay (100 ms; 
Saunders and Knill 2005). Both models simulated the par-
ticipants’ cursor displacement (amplitude ratio) accurately 
across a broad range of loop delay values. Taken together, 
the results indicated that target velocity information may 
be exploited to benefit tracking accuracy for sinusoids by 
mitigating sensorimotor delays, and that the improvement 
in fit is driven by reduced errors in timing rather than dis-
placement. This benefit appears present from implausibly 
fast feedback delays (< 100 ms in phase-lag measure) and 
increases in magnitude as a function of feedback delay dura-
tion even long delays are mitigated with little decrement to 
model fit, supporting the interpretation that longer feedback 
delays can be compensated effectively when tracking suf-
ficiently regularly moving targets.

General discussion

We evaluated two models, a position control model and a 
model that controlled to an extrapolated position, biased by 
local velocity. The results indicated that participants may 
track regularly moving targets, such as sinusoids, by employ-
ing a ‘speed anticipation’ strategy—using the delayed target 
velocity to extrapolate target position—a strategy that has 
been identified in other motor and oculomotor tasks (Bren-
ner and Smeets 2015; Brouwer et al. 2002a, b; Dessing et al. 
2009; Lisberger et al. 1987; Mrotek and Soechting 2007; 
Pavel et al. 1992; Soechting et al. 2010). A key conclusion 
from this study is that a negative-feedback control system, 
of the kind specified by perceptual control theory, can effec-
tively compensate for sensory delay when tracking a visual 
object to a similar extent as human participants do when 
tracking sinusoids. The existence of a significant sensory 
delay is a key argument put forward that negative-feedback 
control is insufficient and requires an internal model of the 
tracked object that can be used to predict and plan actions 
ahead of their execution (Scott 2008; Wolpert et al. 1998). 
This claim has been challenged on several fronts (Mansell 
2020; Powers 1978; Taylor 1999). The current study illus-
trates that at least in the case of manual tracking of a visual 
object in one dimension, a simple negative-feedback system 

that controls a velocity-biased position input signal can miti-
gate delays and simulate human ‘anticipatory’ tracking of 
predictable targets. Future research will clarify the condi-
tions under which this parsimonious strategy is employed 
and if there exist conditions in which an internal model is 
necessary.

Interestingly, the position extrapolation strategy does not 
appear to be used when tracking targets that move in a less 
predictable pseudorandom pattern, despite the availability 
of local velocity information in this context. It is yet unclear 
why speed anticipation is not used in pseudorandom target 
irrespective of target type, as acceleration and velocity of 
the target are reliable indicators of the future position of the 
target while in motion. One possible explanation is that the 
direction of motion following a change in direction is always 
predictable for the sinusoid target, whereas for pseudoran-
dom targets, the target may change direction uncertainly fol-
lowing target stoppage, and thus cannot be determined by the 
participant in advance. This may contribute to participants’ 
inability to use of anticipatory strategies for pseudorandom 
targets. Similarly, the likelihood of target directional change 
is increased as the target approaches the edge of the screen. 
Sinusoid targets regularly approach these extrema, while 
pseudorandom targets reach these extrema less often as they 
changed direction at a randomized set of vertical positions. 
These predictable elements of the target trajectory could be 
harnessed locally, prior to a change in direction of the sinu-
soid target, to anticipate the target change point and direction 
by using local cues. This conclusion is supported by the 
findings of another study which found that when a change 
in target direction was predictable, participants showed an 
‘anticipatory’ positive peak in SMA activity that averaged 
170 ms before the target changed direction (Hill 2014; Hill 
and Raab 2005). However, when the change could not be 
determined from the target trajectory, this peak shifted to 
follow the change in direction and tracking latencies were 
increased (Hill 2009). Both local trajectory-relevant cues 
and local velocity information may be used without explicit 
representation of the target pattern.

Notably, the benefit of extrapolation was most evident 
in longer delays for both target types. This may help to 
explain the ability for participants to maintain tracking 
accuracy with artificially extended feedback delays, as has 
been observed in several studies (Foulkes and Miall 2000; 
Vercher and Gauthier 1992). It may be the case that posi-
tional feedback control may be augmented with speed antici-
pation to maintain accuracy in the presence of longer than 
human feedback delays like those experienced when operat-
ing some machinery.

While the current article advances a control strategy of 
motion extrapolation, it is also possible that participants 
use a different control strategy when tracking sinusoid tar-
gets. As stated previously, course anticipation may be used 
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to emulate the shape of target pattern in the sinusoid con-
dition. There is evidence that this is the case, particularly 
when tracking high-frequency targets (Leist et al. 1987; 
Neilson et al. 1993). With changing acceleration, delayed 
feedback sampling may become very inaccurate. Thus 
feedback strategies and speed anticipation may be pre-
ferred only at low target speeds. Beyond this point, course 
anticipation may be used instead if this is more robust to 
the inaccuracy of sampling due to delays. Alternate strate-
gies could be investigated using the test for the controlled 
variable (TCV; Mansell and Marken 2015; Marken 2009, 
2013, 2014; Runkel 1990). This method applies distur-
bances to potential control variables. Controlled variables 
will be protected from these disturbances by compensating 
action. This could be applied to human control systems 
in the tracking task. Nevertheless, the existence of a sin-
gle, generalizable solution to the tracking problem may be 
unrealistic. It is likely that humans, with their array of sen-
sory inputs, memory, and cognitive abilities, can learn and 
adapt to perform accurately under different task demands. 
Modeling of the learning process goes beyond the remit 
of the current study. In PCT, a learning algorithm known 
as reorganization develops input functions for controlled 
variables (in this case position) by adjusting the relative 
weighting of afferent signals (which in this case would 
include sensed velocity) through a random-walk process 
to reduce cumulative error during motor control (Powers 
2008).

Many contemporary models posit probabilistic infer-
ence to account for noise in inputs and noise in sensorimo-
tor processing (Gollee et al. 2017; Miall et al. 1993; Miall 
and Jackson 2006). Research on the ‘flash-lag’ effect in 
manual interception has led to a model based on a proba-
bilistic representation of velocity information to explain 
position coding (Khoei et al. 2013, 2017). However, other 
studies have refuted the contribution of probabilistic infer-
ence in tracking (Soechting et al. 2009; Zago et al. 2010). 
The current study adds to the evidence that participants 
may improve tracking performance using negative feed-
back control on a perception of extrapolated position with-
out probabilistic internal models. However, as we make 
no direct comparison between the extrapolation model 
and probabilistic models, nor test the extrapolation model 
under conditions of noise, we make no claim regarding 
the utility of probabilistic inference in manual tracking.

On a methodological note, in both tracking and model 
results, RMSE did not appear consistently sensitive to 
errors due to amplitude ratio or phase. For example, sinu-
soid targets a significant phase difference in the models 
was present from 85 ms, whereas differences in RMSE 
were only significant at 170 ms. It should be noted that, for 
the current investigation, the phase measure was a more 
suitable and precise measure of the hypothesized behavior, 

sensorimotor delay compensation, than RMSE. Experi-
menters should similarly use spectral analysis in addition 
to RMSE to disambiguate the causes of tracking error.

Conclusions

We simulated human tracking of repeating and non-repeat-
ing patterns with two control models, one using only feed-
back of target and cursor positions, and the other also utiliz-
ing target velocity information to anticipate target motion. 
Both tracking and simulation results appear to indicate that 
participants exploit local target velocity when tracking tar-
gets that move in repeating patterns. Conversely, we did not 
find evidence that participants use this strategy when non-
repeating, pseudorandom targets—despite the availability of 
velocity information in both cases.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Bennett SJ, Orban de Xivry J-J, Barnes GR, Lefèvre P (2007) Target 
acceleration can be extracted and represented within the predictive 
drive to ocular pursuit. J Neurophysiol 98(3):1405–1414. https​://
doi.org/10.1152/jn.00132​.2007

Brenner E, Smeets JBJ (2015) How people achieve their amazing 
temporal precision in interception. J Vis 15(3):1–21. https​://doi.
org/10.1167/15.3.8

Brouwer AM, Brenner E, Smeets JBJ (2002a) Hitting moving 
objects: Is target speed used in guiding the hand? Exp Brain Res 
143(2):198–211. https​://doi.org/10.1007/s0022​1-001-0980-x

Brouwer AM, Brenner E, Smeets JBJ (2002b) Perception of accelera-
tion with short presentation times: can acceleration be used in 
interception? Percept Psychophys 64(7):1160–1168. https​://doi.
org/10.3758/BF031​94764​

Carlton LG (1981) Processing visual feedback information for move-
ment control. J Exp Psychol Hum Percept Perform 7(5):1019–
1030. https​://doi.org/10.1037/0096-1523.7.5.1019

Cofré Lizama LE, Pijnappels M, Reeves NP, Verschueren SMP, 
Van Dieën JH (2013) Frequency domain mediolateral bal-
ance assessment using a center of pressure tracking task. J 
Biomech 46(16):2831–2836. https​://doi.org/10.1016/j.jbiom​
ech.2013.08.018

Day BL, Lyon IN (2000) Voluntary modification of automatic arm 
movements evoked by motion of a visual target. Exp Brain Res 
130(2):159–168. https​://doi.org/10.1007/s0022​19900​218

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1152/jn.00132.2007
https://doi.org/10.1152/jn.00132.2007
https://doi.org/10.1167/15.3.8
https://doi.org/10.1167/15.3.8
https://doi.org/10.1007/s00221-001-0980-x
https://doi.org/10.3758/BF03194764
https://doi.org/10.3758/BF03194764
https://doi.org/10.1037/0096-1523.7.5.1019
https://doi.org/10.1016/j.jbiomech.2013.08.018
https://doi.org/10.1016/j.jbiomech.2013.08.018
https://doi.org/10.1007/s002219900218


203Experimental Brain Research (2021) 239:189–204	

1 3

Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, 
Grafton ST (1999) Role of the posterior parietal cortex in updating 
reaching movements to a visual target. Nat Neurosci 2(6):563–567

Dessing JC, Peper C(E, Bullock D, Beek PJ (2005) How position, 
velocity, and temporal information combine in the prospective 
control of catching: data and model. J Cognit Neurosci 17(4):668–
686. https​://doi.org/10.1162/08989​29053​46760​4

Dessing JC, Oostwoud Wijdenes L, Peper CE, Beek PJ (2009) Visuo-
motor transformation for interception: catching while fixating. 
Exp Brain Res 196(4):511–527. https​://doi.org/10.1007/s0022​
1-009-1882-6

Ewolds HE, Bröker L, de Oliveira RF, Raab M, Künzell S (2017) 
Implicit and explicit knowledge both improve dual task perfor-
mance in a continuous pursuit tracking task. Front Psychol. https​
://doi.org/10.3389/fpsyg​.2017.02241​

Fine JM, Ward KL, Amazeen EL (2014) Manual coordination with 
intermittent targets: velocity information for prospective control. 
Acta Physiol (Oxf) 149(1):24–31. https​://doi.org/10.1016/j.actps​
y.2014.02.012

Foulkes AJM, Miall RC (2000) Adaptation to visual feedback delays 
in a human manual tracking task. Exp Brain Res 131(1):101–110. 
https​://doi.org/10.1007/s0022​19900​286

Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal 
cortex in humans: a framework for defining “early” visual pro-
cessing. Exp Brain Res 142(1):139–150. https​://doi.org/10.1007/
s0022​1-001-0906-7

Franklin DW, Wolpert DM (2008) Specificity of reflex adaptation for 
task-relevant variability. J Neurosci 28(52):14165–14175. https​://
doi.org/10.1523/JNEUR​OSCI.4406-08.2008

Gollee H, Gawthrop PJ, Lakie M, Loram ID (2017) Visuo-manual 
tracking: does intermittent control with aperiodic sampling 
explain linear power and non-linear remnant without sensorimo-
tor noise? J Physiol 595(21):6751–6770. https​://doi.org/10.1113/
JP274​288

Gréa H, Pisella L, Rossetti Y, Desmurget M, Tilikete C, Grafton S, 
Prablanc C, Vighetto A (2002) A lesion of the posterior parietal 
cortex disrupts on-line adjustments during aiming movements. 
Neuropsychologia 40:2471–2480

Hill H (2009) An event-related potential evoked by movement plan-
ning is modulated by performance and learning in visuomotor 
control. Exp Brain Res 195(4):519–529. https​://doi.org/10.1007/
s0022​1-009-1821-6

Hill H (2014) Modulation of frontal and parietal neuronal activity by 
visuomotor learning An ERP analysis of implicit and explicit pur-
suit tracking tasks. Int J Psychophysiol 91(3):212–224. https​://doi.
org/10.1016/j.ijpsy​cho.2013.12.007

Hill H, Raab M (2005) Analyzing a complex visuomotor tracking 
task with brain-electrical event related potentials. Hum Mov Sci 
24(1):1–30. https​://doi.org/10.1016/j.humov​.2004.11.002

Hollerbach JM (1982) Computers, brains and the control of movement. 
Trends Neurosci 5:189–192

Inoue Y, Sakaguchi Y (2014) Periodic change in phase relationship 
between target and hand motion during visuo-manual tracking 
task: behavioral evidence for intermittent control. Hum Mov Sci 
33(1):211–226. https​://doi.org/10.1016/j.humov​.2013.10.002

Khoei MA, Masson GS, Perrinet LU (2013) Motion-based prediction 
explains the role of tracking in motion extrapolation. J Physiol 
Paris 107(5):409–420. https​://doi.org/10.1016/j.jphys​paris​
.2013.08.001

Khoei MA, Masson GS, Perrinet LU (2017) The flash-lag effect 
as a motion-based predictive shift. PLoS Comput Biol 
13(1):e1005068. https​://doi.org/10.1371/journ​al.pcbi.10050​68

Khoramshahi M, Shukla A, Billard A (2014) Cognitive mechanism in 
synchronized motion : an internal predictive model for manual 
tracking control. In: IEEE international conference on systems, 
man and cybernetics, pp 765–771

Kruse W, Dannenberg S, Kleiser R, Hoffmann K-P (2002) Tempo-
ral relation of population activity in visual areas MT/MST and 
in primary motor cortex during visually guided tracking move-
ments. Cereb Cortex 12(5):466–476. https​://doi.org/10.1093/cerco​
r/12.5.466

Leist A, Freund H, Cohen B (1987) Comparative characteristics of 
predictive eye-hand tracking. Hum Neurobiol. https​://psycn​et.apa.
org/psyci​nfo/1988-31575​-001

Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing 
and sensory-motor integration for smooth pursuit eye movements. 
Annu Rev Neurosci 10:97–129

Mansell W (2020) Ten vital elements of perceptual control theory, 
tracing the pathway from implicit influence to scientific advance. 
The interdisciplinary handbook of perceptual control theory. Else-
vier, Amsterdam, pp 585–629. https​://doi.org/10.1016/b978-0-12-
81894​8-1.00016​-2

Mansell W, Marken RS (2015) The origins and future of control the-
ory in psychology. Rev Gen Psychol 19(4):425–430. https​://doi.
org/10.1037/gpr00​00057​

Marken RS (2009) You say you had a revolution: methodologi-
cal foundations of closed-loop psychology. Rev Gen Psychol 
13(2):137–145. https​://doi.org/10.1037/a0015​106

Marken RS (2013) Taking purpose into account in experi-
mental psychology: testing for controlled variables. Psy-
chol Rep 112(1):184–201. https​://doi.org/10.2466/03.49.
PR0.112.1.184-201

Marken RS (2014) Testing for controlled variables: a model-based 
approach to determining the perceptual basis of behavior. Atten 
Percept Psychophys 76(1):255–263. https​://doi.org/10.3758/s1341​
4-013-0552-8

MATLAB (2019) version 9.7.0 (R2019b). The MathWorks Inc., 
Natick, Massachusetts

Miall RC, Jackson JK (2006) Adaptation to visual feedback delays in 
manual tracking: evidence against the Smith predictor model of 
human visually guided action. Exp Brain Res 172(1):77–84. https​
://doi.org/10.1007/s0022​1-005-0306-5

Miall RC, Weir DJ, Stein JF (1993) Intermittency in human man-
ual tracking tasks. J Mot Behav 25(1):53–63. https​://doi.
org/10.1080/00222​895.1993.99416​39

Mrotek LA, Soechting JF (2007) Predicting curvilinear target motion 
through an occlusion. Exp Brain Res 178(1):99–114. https​://doi.
org/10.1007/s0022​1-006-0717-y

Neilson PD, Neilson MD, O’Dwyer NJ (1993) What limits high speed 
tracking performance? Hum Mov Sci 12(1–2):85–109. https​://doi.
org/10.1016/0167-9457(93)90038​-Q

Nijhawan R (2002) Neural delays, visual motion and the flash-lag 
effect. Trends Cognit Sci 6(9):387–393. https​://doi.org/10.1016/
S1364​-6613(02)01963​-0

Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, 
and predictive capability in computational engineering and phys-
ics. Appl Mech Rev 57(5):345. https​://doi.org/10.1115/1.17678​47

Parker MG, Tyson SF, Weightman AP, Abbott B, Emsley R, Mansell 
W (2017) Perceptual control models of pursuit manual tracking 
demonstrate individual specificity and parameter consistency. 
Attention Percept Psychophys 79(8):2523–2537. https​://doi.
org/10.3758/s1341​4-017-1398-2

Parker MG, Willett ABS, Tyson SF, Weightman AP, Mansell W (2020) 
A systematic evaluation of the evidence for perceptual control 
theory in tracking studies. Neurosci Biobehav Rev 112:616–633. 
https​://doi.org/10.1016/j.neubi​orev.2020.02.030

Pavel M, Cunningham H, Stone V (1992) Extrapolation of linear 
motion. Vis Res 32(11):2177–2186. https​://doi.org/10.1016/0042-
6989(92)90078​-W

Poulton EC (1952a) Perceptual anticipation in tracking with two-
pointer and one-pointer displays. Br J Psychol 43(3):222–229

https://doi.org/10.1162/0898929053467604
https://doi.org/10.1007/s00221-009-1882-6
https://doi.org/10.1007/s00221-009-1882-6
https://doi.org/10.3389/fpsyg.2017.02241
https://doi.org/10.3389/fpsyg.2017.02241
https://doi.org/10.1016/j.actpsy.2014.02.012
https://doi.org/10.1016/j.actpsy.2014.02.012
https://doi.org/10.1007/s002219900286
https://doi.org/10.1007/s00221-001-0906-7
https://doi.org/10.1007/s00221-001-0906-7
https://doi.org/10.1523/JNEUROSCI.4406-08.2008
https://doi.org/10.1523/JNEUROSCI.4406-08.2008
https://doi.org/10.1113/JP274288
https://doi.org/10.1113/JP274288
https://doi.org/10.1007/s00221-009-1821-6
https://doi.org/10.1007/s00221-009-1821-6
https://doi.org/10.1016/j.ijpsycho.2013.12.007
https://doi.org/10.1016/j.ijpsycho.2013.12.007
https://doi.org/10.1016/j.humov.2004.11.002
https://doi.org/10.1016/j.humov.2013.10.002
https://doi.org/10.1016/j.jphysparis.2013.08.001
https://doi.org/10.1016/j.jphysparis.2013.08.001
https://doi.org/10.1371/journal.pcbi.1005068
https://doi.org/10.1093/cercor/12.5.466
https://doi.org/10.1093/cercor/12.5.466
http://psycnet.apa.org/psycinfo/1988-31575-001
http://psycnet.apa.org/psycinfo/1988-31575-001
https://doi.org/10.1016/b978-0-12-818948-1.00016-2
https://doi.org/10.1016/b978-0-12-818948-1.00016-2
https://doi.org/10.1037/gpr0000057
https://doi.org/10.1037/gpr0000057
https://doi.org/10.1037/a0015106
https://doi.org/10.2466/03.49.PR0.112.1.184-201
https://doi.org/10.2466/03.49.PR0.112.1.184-201
https://doi.org/10.3758/s13414-013-0552-8
https://doi.org/10.3758/s13414-013-0552-8
https://doi.org/10.1007/s00221-005-0306-5
https://doi.org/10.1007/s00221-005-0306-5
https://doi.org/10.1080/00222895.1993.9941639
https://doi.org/10.1080/00222895.1993.9941639
https://doi.org/10.1007/s00221-006-0717-y
https://doi.org/10.1007/s00221-006-0717-y
https://doi.org/10.1016/0167-9457(93)90038-Q
https://doi.org/10.1016/0167-9457(93)90038-Q
https://doi.org/10.1016/S1364-6613(02)01963-0
https://doi.org/10.1016/S1364-6613(02)01963-0
https://doi.org/10.1115/1.1767847
https://doi.org/10.3758/s13414-017-1398-2
https://doi.org/10.3758/s13414-017-1398-2
https://doi.org/10.1016/j.neubiorev.2020.02.030
https://doi.org/10.1016/0042-6989(92)90078-W
https://doi.org/10.1016/0042-6989(92)90078-W


204	 Experimental Brain Research (2021) 239:189–204

1 3

Poulton EC (1952b) The basis of perceptual anticipation in tracking. 
Br J Psychol 43(4):296–297

Powers WT (1973) Behavior: the control of perception. Aldine de 
Gruyter, New York

Powers WT (1978) Quantitative analysis of purposive systems: some 
spadework at the foundations of scientific psychology. Psychol 
Rev 85(5):417–435

Powers WT (2008) Living control systems III: the fact of control. 
Control systems group. https​://books​.googl​e.co.uk/books​/about​
/Livin​g_Contr​ol_Syste​ms_III.html?id=hlp9P​gAACA​AJ&pgis=1

Rohde M, van Dam LCJ, Ernst MO (2014) Predictability is necessary 
for closed-loop visual feedback delay adaptation. J Vis 14(3):1–
23. https​://doi.org/10.1167/14.3.4

Runkel PJ (1990) Research method for control theory. Am Behav Sci 
34(1):14–23

Saunders JA, Knill DC (2005) Humans use continuous visual feed-
back from the hand to control both the direction and distance of 
pointing movements. Exp Brain Res 162(4):458–473. https​://doi.
org/10.1007/s0022​1-004-2064-1

Scott SH (2008) Inconvenient truths about neural processing in pri-
mary motor cortex. J Physiol 586(5):1217–1224. https​://doi.
org/10.1113/jphys​iol.2007.14606​8

Sloot LH, Van Den Noort JC, Van Der Krogt MM, Bruijn SM, Har-
laar J (2015) Can treadmill perturbations evoke stretch reflexes 
in the calf muscles? PLoS ONE 10(12):e0144815. https​://doi.
org/10.1371/journ​al.pone.01448​15

Smith WM, Bowen KF (1980) The effects of delayed and displaced 
visual feedback on motor control. J Mot Behav 12(2):91–101. 
https​://doi.org/10.1080/00222​895.1980.10735​209

Smith W, McCrary J, Smith K (1960) Delayed visual feedback and 
behavior. Science (New York, NY). https​://europ​epmc.org/abstr​
act/med/17820​673

Soechting JF, Juveli JZ, Rao HM (2009) Models for the extrapola-
tion of target motion for manual interception. J Neurophysiol 
102(3):1491–1502. https​://doi.org/10.1152/jn.00398​.2009

Soechting JF, Rao HM, Juveli JZ (2010) Incorporating prediction in 
models for two-dimensional smooth pursuit. PLoS ONE 5(9):1–
12. https​://doi.org/10.1371/journ​al.pone.00125​74

Stark L, Iida M, Willis PA (1961) Dynamic characteristics of the motor 
coordination system in man. Biophys J 1(4):279–300. https​://vibra​
tion.shef.ac.uk/doc/10174​928.pdf

Stepp N (2009) Anticipation in feedback-delayed manual tracking of 
a chaotic oscillator. Exp Brain Res 198(4):521–525. https​://doi.
org/10.1007/s0022​1-009-1940-0

Stepp N, Frank TD (2009) A data-analysis method for decomposing 
synchronization variability of anticipatory systems into stochastic 
and deterministic components. Eur Phys J B 67(2):251–257. https​
://doi.org/10.1140/epjb/e2009​-00022​-x

Stepp N, Turvey MT (2017) Anticipation in manual tracking with mul-
tiple delays. J Exp Psychol Hum Percept Perform 43(5):914–925. 
https​://doi.org/10.1037/xhp00​00393​

Taylor MM (1995) Effects of modafinil and amphetamine on tracking 
perfomrance during sleep. In: 37th annual conference of the the 
international military testing association, Toronto, pp 97–102.

Taylor MM (1999) Editorial: perceptual control theory and its applica-
tion. Int J Hum Comput Stud 50:433–444

Veale JF (2014) Edinburgh Handedness Inventory-Short Form: a 
revised version based on confirmatory factor analysis. Laterality 
19(2):164–177. https​://doi.org/10.1080/13576​50X.2013.78304​5

Vercher J-L, Gauthier GM (1992) Oculo-manual coordination control: 
ocular and manual tracking of visual targets with delayed visual 
feedback of the hand motion. Exp Brain Res 90:599–609

Viviani P, Mounoud P (1990) Perceptuomotor compatibility in pursuit 
tracking of two-dimensional movements. J Mot Behav 22(3):407–
443. https​://doi.org/10.1080/00222​895.1990.10735​521

Viviani P, Campadelli P, Mounoud P (1987) Visuo-manual pur-
suit tracking of human two-dimensional movements. J Exp 
Psychol Hum Percept Perform 13(1):62–78. https​://doi.
org/10.1037/0096-1523.13.1.62

Voss HU (2000) Anticipating chaotic synchronization. Phys Rev E Stat 
Phys Plasmas Fluids Relat Interdiscip Top 61(5):5115–5119. https​
://doi.org/10.1103/PhysR​evE.61.5115

Voss HU, McCandliss BD, Ghajar J, Suh M (2007) A quantita-
tive synchronization model for smooth pursuit target tracking. 
Biol Cybern 96(3):309–322. https​://doi.org/10.1007/s0042​
2-006-0116-2

Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cer-
ebellum. Trends Cognit Sci 2(9):338–347

Wolpert DM, Ghahramani Z, Flanagan JR (2001) Perspectives and 
problems in motor learning. Trends Cognit Sci 5(11):487–494

Yu B, Gillespie RB, Freudenberg JS, Cook JA (2014) Human control 
strategies in pursuit tracking with a disturbance input. In: Proceed-
ings of the IEEE conference on decision and control, February, pp 
3795–3800. https​://doi.org/10.1109/CDC.2014.70399​80

Zago M, Iosa M, Maffei V, Lacquaniti F (2010) Extrapolation of ver-
tical target motion through a brief visual occlusion. Exp Brain 
Res 201(3):365–384. https​://doi.org/10.1007/s0022​1-009-2041-9

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://books.google.co.uk/books/about/Living_Control_Systems_III.html?id=hlp9PgAACAAJ&pgis=1
https://books.google.co.uk/books/about/Living_Control_Systems_III.html?id=hlp9PgAACAAJ&pgis=1
https://doi.org/10.1167/14.3.4
https://doi.org/10.1007/s00221-004-2064-1
https://doi.org/10.1007/s00221-004-2064-1
https://doi.org/10.1113/jphysiol.2007.146068
https://doi.org/10.1113/jphysiol.2007.146068
https://doi.org/10.1371/journal.pone.0144815
https://doi.org/10.1371/journal.pone.0144815
https://doi.org/10.1080/00222895.1980.10735209
http://europepmc.org/abstract/med/17820673
http://europepmc.org/abstract/med/17820673
https://doi.org/10.1152/jn.00398.2009
https://doi.org/10.1371/journal.pone.0012574
http://vibration.shef.ac.uk/doc/10174928.pdf
http://vibration.shef.ac.uk/doc/10174928.pdf
https://doi.org/10.1007/s00221-009-1940-0
https://doi.org/10.1007/s00221-009-1940-0
https://doi.org/10.1140/epjb/e2009-00022-x
https://doi.org/10.1140/epjb/e2009-00022-x
https://doi.org/10.1037/xhp0000393
https://doi.org/10.1080/1357650X.2013.783045
https://doi.org/10.1080/00222895.1990.10735521
https://doi.org/10.1037/0096-1523.13.1.62
https://doi.org/10.1037/0096-1523.13.1.62
https://doi.org/10.1103/PhysRevE.61.5115
https://doi.org/10.1103/PhysRevE.61.5115
https://doi.org/10.1007/s00422-006-0116-2
https://doi.org/10.1007/s00422-006-0116-2
https://doi.org/10.1109/CDC.2014.7039980
https://doi.org/10.1007/s00221-009-2041-9

	Sensorimotor delays in tracking may be compensated by negative feedback control of motion-extrapolated position
	Abstract
	Introduction
	Method
	Design
	Participants
	Apparatus
	Pursuit tracking task
	Joystick
	Procedure

	Analysis
	Data modeling
	Position control model
	Position extrapolation model
	Parameter estimation and validation

	Model analysis

	Results
	Tracking results
	Differences in tracking accuracy and phase delays
	Model results
	Simulation accuracy for pseudorandom targets
	Simulation accuracy for sinusoid targets


	Discussion
	Differences in tracking accuracy and phase delays
	Simulation accuracy for pseudorandom targets
	Simulation accuracy for sinusoid targets
	General discussion

	Conclusions
	References




