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Abstract
Studies investigating balance control often use external perturbations to probe the system. These perturbations can be admin-
istered as randomized, pseudo-randomized, or predictable sequences. As predictability of a given perturbation can affect 
balance performance, the way those perturbations are constructed may affect the results of the experiments. In the present 
study, we hypothesized that subjects are able to adapt to short, rhythmic support surface tilt stimuli, but not to long pseudo-
random stimuli. 19 subjects were standing with eyes closed on a servo-controlled platform tilting about the ankle joint axis. 
Pre and post to the learning intervention, pseudo-random tilt sequences were applied. For the learning phase, a rhythmic and 
easy-to-memorize 8-s long sequence was applied 75 times, where subjects were instructed to stand as still as possible. Body 
kinematics were measured and whole body center of mass sway was analyzed. Results showed reduced sway and less forward 
lean of the body across the learning phase. The sway reductions were similar for stimulus and non-stimulus frequencies. 
Surprisingly, for the pseudo-random sequences, comparable changes were found from pre- to post-tests. In summary, results 
confirmed that considerable adaptations exist when exposing subjects to an 8-s long rhythmic perturbation. No indications of 
predictions of the learning tilt sequence were found, since similar changes were also observed in response to pseudo-random 
sequences. We conclude that changes in body sway responses following 75 repetitions of an 8-s long rhythmic tilt sequence 
are due to adaptations in the dynamics of the control mechanism (presumably stiffness).
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Introduction

Standing balance during unpredictable perturbations can be 
explained by feedback control mechanisms (Peterka 2002). 
In contrast, balancing in the presence of predictable per-
turbations could allow subjects to adapt the balance con-
trol mechanism and include predictive components. While 
a number of studies have used predictable perturbations 
(Corna et al. 1999; Oie et al. 2002; Mergner et al. 2003; 
Ravaioli et al. 2005; Maurer et al. 2006; Polastri et al. 2012; 
Sozzi et al. 2016), the adaptations of the balance control 
mechanism taking place while performing a series of pre-
dictable perturbations are not well understood.

Balance responses to unpredictable perturbations

One method frequently used to identify neural balance 
control mechanisms applies external perturbations, such as 
movements of the support surface (Pintelon and Schoukens 
2004; van der Kooij et al. 2005). Averaging measured body 
sway across repetitions of the stimulus sequence reduces 
the amount of sway variability (random sway) and thereby, 
extracts the body sway component that is evoked by the 
stimulus. The relation of stimulus input and body sway 
evoked by the stimulus provides insight into the dynamics of 
the control mechanism. Several studies succeeded in repro-
ducing this relation of stimulus and sway response using 
model (Peterka 2002; Mergner et al. 2003; Assländer et al. 
2015; Pasma et al. 2017), and robot simulations (Mergner 
et al. 2009; Hettich et al. 2014; Pasma et al. 2018). The iden-
tified control mechanisms are solely based on delayed sen-
sory feedback and do not contain any predictive components. 
The lack of predictive contributions is in agreement with the 
virtually unpredictable properties of the stimulus sequences 
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used in most studies including a modeling approach (Peterka 
2002). In other words, since the stimuli cannot be predicted, 
functionally relevant predictions cannot contribute to bal-
ance control. Identified models contain only a few parame-
ters that determine the dynamics of the system. Importantly, 
these parameters are assumed to be time invariant, i.e. the 
balance control mechanism is assumed to not change across 
time.

Potential adaptations of the control mechanism 
during predictable perturbations

When standing on a platform that moves with a predict-
able sequence, the balance control mechanism could adapt 
in two ways to enhance stability and reduce body sway (Van 
Ooteghem et al. 2008). One potential adaptation could be a 
change in the control dynamics, such as changes in sensory 
reweighting or in the feedback gain (the amount of torque 
generated per deviation from a desired position). Such adap-
tations would be non-sequence specific in the sense that the 
exact shape of the perturbation is not taken into account. 
Such changes in control dynamics can usually be reproduced 
by changes in model parameters (sensory weights, feedback 
gain, etc.). The second adaptation when using a predict-
able perturbation could be an explicit prediction of the tilt 
sequence. The implementation of this explicit prediction 
would be induced by learning processes (Horak et al. 1997). 
The adaptation would then be sequence specific. According 
to previous work related to the specificity of balance train-
ing, such a specific prediction should not affect the balance 
control mechanism in other perturbation sequences (Giboin 
et al. 2015, 2019).

One specific control model proposed by Mergner and 
colleagues suggests that the central nervous system esti-
mates external perturbations to maintain balance (Mergner 
et al. 2003; Mergner 2010; Assländer et al. 2015). These 
estimators are in specific feedback loops that integrate sen-
sory information of multiple sensory systems. Importantly, 
these estimates have a long time delay, undershoot the actual 
perturbation (gain < 1), and have a limited sensitivity (imple-
mented as a non-linear threshold mechanism). Mergner 
(2010) suggested that external perturbations could be 
learned, where a learned (predicted) internal representation 
of the perturbation substitutes the sensory reconstruction of 
this perturbation. The rationale is that the internal represen-
tation is superior to the sensory feedback, having reduced 
time delay, less undershooting and higher sensitivity. Thus, 
the balance control mechanism would benefit in substituting 
sensory cues with a prediction, and thereby improve time 
delay and quality of the compensation signal. The existence 
of such a mechanism would suggest sequence-specific adap-
tations when exposed to a predictable perturbation sequence. 

However, the existence of such a mechanism has not been 
experimentally confirmed.

Balance responses to predictable perturbations

Several studies used perturbation sequences that can easily 
be predicted (Corna et al. 1999; Oie et al. 2002; Mergner 
et al. 2003; Ravaioli et al. 2005; Maurer et al. 2006; Polastri 
et al. 2012; Sozzi et al. 2016). The most common exam-
ple are sinusoidal stimuli. Many of these studies did not 
report whether or not systematic changes in sway responses 
occurred across time or when repeatedly applying these 
stimuli. Furthermore, the first cycles or even trials are usu-
ally discarded and familiarization trials are used to avoid 
initial startles and adaptations. Only a few studies explicitly 
addressed the adaptation of the balance control mechanism 
to predictable perturbations. Dietz et al. (1993) used sinu-
soidal platform translations and induced sudden changes 
in stimulus frequency. Subjects required 3–4 cycles for the 
transition into a new steady state of body sway. The authors 
discussed several mechanisms including a change in the 
prediction of the stimulus. However, control mechanisms 
show a transition period when suddenly changing the stimu-
lus, even without predictive contributions (Assländer and 
Peterka 2014, 2016). Therefore, the results of Dietz et al. 
(1993) do not provide sufficient information to allow for 
inferences on predictive contributions.

To the best of our knowledge, only one group used a clas-
sic learning paradigm to investigate changes in body sway 
responses during repeated perturbation sequences. Van Oot-
egehem et al. (2008, 2009, 2010) used an implicit learning 
paradigm where subjects were exposed to support surface 
translation sequences. The sequences were constructed using 
sinusoidal stimuli with varying stimulus amplitudes. The 
amplitude modulations were randomly changing for the first 
and last 15 s of each trial and contained a 15-s long sequence 
in between that maintained the same tilt sequence across 
trial repetitions. Subjects showed a reduction in stimulus 
evoked sway across learning trials, increasingly moving with 
the platform. Furthermore, a continuous change in phase, 
i.e. in the temporal relation between stimulus and body 
sway response, was found across all learning trials. No dif-
ference in adaptations between the randomly changing and 
the repeated component was found. Based on this finding, 
the authors concluded that the adaptation was non-sequence 
specific. Using a similar setup, the same authors also showed 
that adaptations to sequences that were repeated within 
(three identical 15-s sequences per trial) and across trials 
did not differ from exposing subjects to random sequences 
(Van Ooteghem et al. 2010). Similarly, during continuous 
sinusoidal support translations, a decrease in body sway rela-
tive to the platform was found across time (Schmid et al. 
2011; Sozzi et al. 2016). In summary, some studies using 
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predictable perturbation sequences found changes in sway 
responses across sequence repetitions. Also, evidence was 
found that the adaptations were non-sequence specific. How-
ever, the effect was only observed in support surface transla-
tions and remains scarce overall.

Support surface translation vs support surface tilt 
stimuli

All previous studies addressing the role of predictive mecha-
nisms in perturbed stance used support surface translations. 
Support surface translations require subjects to shift their 
body center of mass to move with the platform. Otherwise, 
the base of support might move away from the projection 
of the center of mass, resulting in a fall. Using predictable 
(e.g. sinusoidal) support surface translations allows for two 
contradictory adaptations: (1) exploit the knowledge, that the 
support is coming back and keep the body center of mass 
stable in space or (2) exploit the knowledge where the plat-
form will be moving to shift the body in advance towards 
the new position. Both strategies have been observed in 
humans, depending on stimulus frequency and visual con-
dition (Corna et al. 1999; Buchanan and Horak 1999; Nar-
done et al. 2000). This ambiguity increases the complexity 
when investigating control dynamics and potential predictive 
components. Support surface tilts are advantageous, since 
the task of maintaining the body center of mass upright 
in space is unambiguous, irrespective of the sequence and 
visual condition.

Aim of the study

Earlier studies investigating adaptations to perturbation 
sequences used support surface translations and implicit 
learning paradigms only. In the current study, we tested 
whether sequence-specific adaptations can be observed 
during an explicit learning task using support surface tilt 
stimuli. We used virtually unpredictable pseudo-random 
sequences to characterize the balance control mechanism of 
subjects before and after a sequence-specific learning ses-
sion. The learning session consisted of 75 repetitions of an 
8-s long rhythmic and predictable surface tilt perturbation. 
We expected a sequence-specific adaptation, but no transfer 
to the pre- and post-measurements of the pseudo-random tri-
als. Two hypotheses were tested: (1) body sway in response 
to an 8-s long predictable stimulus is reduced across 75 rep-
etitions of the stimulus. (2) Responses to pseudo-random 
stimulus conditions do not change from pre- to post-tests. 
This study is the first to test adaptations of the balance con-
trol mechanism to repeated rhythmic support surface tilt 
stimuli and the first to test adaptations to repeated perturba-
tion sequences using an explicit learning paradigm.

Methods

Subjects

Twelve male and 7 female subjects (aged 24.8 ± 3.8 years, 
height 173 ± 11 cm, mass 66.8 ± 11.2 kg) participated in 
the experiments. Prior to the experiments, subjects gave 
written informed consent. All procedures were performed 
in agreement with the ethics standards of the University 
of Konstanz ethics board and with the Declaration of Hel-
sinki in its latest revision.

Apparatus

During experiments, subjects stood on a custom-made, 
servo-controlled platform that was commanded to tilt 
toes-up/down, with the center of rotation approximately 
at the ankle joint axis. Body sway was measured using 
sway rods, which rotated about attached potentiometers, 
and were guided by small hooks located at hip and shoul-
der level of the subjects. Anterior–posterior sway resulted 
in angular displacements of the sway rods, which were 
recorded via the potentiometers. In addition, the device 
contained a force sensor, measuring the forces transmitted 
between motor and tilt board. During static conditions (no 
platform tilt), the force cues were used to assess center of 
pressure shifts, which were used in a calibration routine 
to calculate body center of mass (COM) sway (see below).

Calibration routine

Angular whole body center of mass sway was used for all 
further analyses. To obtain COM sway from the sway rod 
data, anterior–posterior translations of the hooks guiding 
the sway rods were calculated from the potentiometer out-
puts using the hook heights, hook distances, and trigono-
metric calculations. We used a two-segment approximation 
for the COM calculations, where subjects were instructed 
to hold the arms crossed in front of the chest during all 
trials. Before starting experiments, subjects were asked 
to perform very slow tilt movements in the ankle and hip 
joints for 2 min on the static platform. The center of pres-
sure position is equal to the vertical projection of the body 
center of mass in static conditions (Brenière 1996). Thus, 
for this quasi-static condition, a linear regression between 
center of pressure data and hip and shoulder translations 
provides calibration factors that allow to calculate the 
center of mass translation during dynamic trials (Peterka 
2002; Assländer and Peterka 2014). Angular COM sway 
was calculated using the COM translation obtained from 
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the calibration routine and the COM height obtained from 
anthropometric tables (Winter 2009).

Stimuli

Two different stimuli were used during the experiments: (1) 
a pseudo-random ternary sequence used to identify the bal-
ance control mechanism before and after the learning phase 
and (2) a short, rhythmic stimulus for the learning phase.

One pseudo-random cycle was 20-s long and was con-
structed from 81 velocity steps, which could be either + v, 
0, or − v, where three different stimuli with velocities of 
0.44°/s, 0.89°/s, and 1.78°/s were used. The velocities were 
chosen to result in integrated (position) signals with peak-
to-peak amplitudes of 1° (pp1), 2° (pp2), and 4° (pp4). The 
final sequences contained 18 consecutive cycles, resulting 
in 3 360-s long sequences. In addition to these three stimuli, 
a 120 s warm-up sequence was created, consisting of two 
cycles from each amplitude. A detailed description of the 
construction of pseudo-random ternary sequences can be 
found in Davies (1970) and Peterka (2002).

The sequence used for the learning trials was an 8-s 
long superposition of two sine waves at 1 and 1.25 Hz. 
The sequence contained integer multiples of the sine waves 
(8 × 1 Hz and 10 × 1.25 Hz). The superposition resulted in a 
short and rhythmic waxing and waning behavior, which was 
designed to be memorable and predictable (see also “Dis-
cussion” of the predictability). Starting phase, amplitude 
and offset of both sine components were chosen, such that 
the sequence had a toes-down bias (maximum tilt 5.3° toes-
down and 2.6° toes-up), which was chosen to avoid passive 
stretch of the calf muscles.

Instructions for learning sequence and feedback

For the learning phase, subjects received written instruc-
tions describing the task to minimize tester influence. The 
task was to stand as still as possible and to minimize both, 
dynamic sway and drift. Drift was explained as the differ-
ence between starting and end positions in anterior–poste-
rior direction. Also, subjects were provided with the infor-
mation that actively following the tilt sequence may help 
to minimize sway evoked by the stimulus. Each learning 
sequence was started with the command ‘prepare—and go’. 
In the short breaks (approx. 10 s) in between the 8-s long 
individual learning sequences, subjects were provided with 
a feedback score. The feedback score was composed of a 
sway and a drift component, where higher numbers indi-
cated more sway and/or drift. If one component dominated 
the feedback (> 70% of the score), the dominant component 
was provided in addition to the score. The verbal feedback 
was (translated from German): ‘Your feedback score was 
SCORE. (Dominantly Sway/Drift)’.

The feedback score was calculated after each learning 
sequence. The drift (s) was calculated from the regression 
slope across the recorded body sway trajectory. Sway from 
the sum across sway amplitudes obtained from a Fourier 
transform (y) between 0.0125 and 2 Hz. Both scores were 
scaled, such that the feedback score was typically in the 
range of 100–500. The feedback was calculated as

Procedures

After providing written informed consent, anthropometric 
measures for the subjects’ foot placement on the platform 
and the calculation of the COM position were obtained. 
Hooks for the sway rods were attached using Velcro belts. 
Subjects’ feet were placed such that the ankle joint axis 
was aligned with the platforms’ axis of rotation. Only ante-
rior–posterior position was controlled, while subjects were 
free to choose stance width and medial/lateral rotation of the 
feet. After foot placement, subjects were asked to perform 
the 120-s long calibration routine. The protocol following 
the calibration routine is shown and described in Fig. 1.

Data analyses

Figure 2 shows the learning stimulus (top, left) and the COM 
sway during one individual sequence (bottom, left). For each 
sequence, a linear regression was calculated for the COM 
sway trajectory (indicated in red). Offset and slope were 
subtracted from the sway trajectory, before calculating the 
Fourier transform. The Fourier spectra were scaled, such that 
amplitudes represent those of sine waves in the time domain 
(Fig. 2 top and bottom right, respectively). Several param-
eters from these calculations were used for the analysis of 
the adaptations across stimulus repetitions:

1. Full-spectrum PSD (power spectral density)
2. Absolute linear drift (absolute value of the regression 

slope)
3. Feedback (as calculated above)
4. Stimulus frequency PSD
5. No stimulus, low-frequency PSD (sum of sway response 

at frequencies 0.125 and 0.250 Hz)
6. No stimulus, high-frequency PSD (sum of all frequen-

cies but stimulus and low-frequency)
7. Starting position (intercept of the regression line)
8. Sway response gain (ratio of body sway to stimulus 

amplitude at stimulus frequencies)
9. Sway response phase (temporal relation of body sway to 

stimulus at stimulus frequencies)

fb =

2∑

k=0.0125

|y(k)| × 100 + |s| × 1000
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Fig. 1  Schematic display of the experimental protocol. After the cali-
bration routine, a warm-up trial familiarized subjects with experimen-
tal setup and stimuli. The following three pseudo-random sequences 
were applied in random order of amplitudes. During warm-up and 
pseudo-random trials, subjects had their eyes closed, wore noise-
canceling headphones, and listened to non-rhythmic audio books 
to minimize auditory orientation cues and distract from the balanc-
ing task. Before the learning trials, subjects were taken out of the 
experiments, asked to sit, and were provided with written instruc-

tions for the learning sequence. Following, the learning sequences 
were started, where the sequence was always run five consecutive 
times, while subjects were asked to keep their eyes closed providing 
feedback in between trials. After five trials subjects were allowed to 
briefly open their eyes, before continuing with the next block of five 
trials. After 5 blocks (25 trials), subjects were asked to sit and have a 
longer break. After a total of 75 trials, the warm-up and the 3 longer 
pseudo-random trials were repeated as a post-measurement

Fig. 2  Platform tilt sequence 
used for the learning trials 
and representative COM sway 
during one trial (left) with 
the corresponding amplitude 
spectra (right). Vertical red 
lines indicate the stimulus 
frequencies. Horizontal red line 
in the COM sway is the linear 
regression used to determine 
the starting position (intercept) 
and linear drift. In the body 
sway response, the two smallest 
frequencies (circles) usually 
dominated the COM sway 
spectra and were analyzed as a 
separate parameter
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Since parameters were calculated for each learning 
sequence, a series of 75 points was obtained for each of the 
6 parameters and each subject. Changes of parameters across 
75 repetitions were statistically analyzed (see below).

A detailed description of the analysis of the body sway 
responses to the tilt stimuli with pseudo-random ternary 
sequences can be found elsewhere (Peterka 2002; Peterka 
et  al. 2018). In brief, the first cycle of pseudo-random 
responses was discarded to avoid transient responses. All 
remaining cycles within each stimulus amplitude and pre/
post-condition were averaged across all subjects and stimu-
lus repetitions to obtain time domain sway responses to the 
stimulus. Furthermore, the Fourier transform of measured 
stimulus and measured body sway were calculated for each 
cycle. Calculating the ratio between body sway and stimulus 
spectra and averaging across all cycle repetitions provides 
frequency response functions (FRF). A typical representa-
tion of these complex-valued functions are Bode diagrams. 
The absolute value of the FRF (gain) gives the amplitude 
ratio between body sway response and surface tilt stimulus 
across frequency. The inverse tangent of the ratio between 
real and complex component of the FRF averaged across 
all cycles gives the temporal relation between response and 
stimulus across frequency (phase). Finally, coherence was 
calculated, providing a measure of the relation between sway 
components correlated and uncorrelated with the stimulus 
sequence. Coherence was calculated from the squared cross-
power spectrum between stimulus and response divided by 
the product of the tilt stimulus and body sway power spectra, 
where each component was averaged across cycles.

Statistics

95% confidence bounds for the time domain and frequency 
domain parameters described above were obtained using 
bootstrap methods (Zoubir and Boashash 1998). 323 cycles 
were randomly drawn with replacement from the measured 
323 cycles (18–1 cycles × 19 subjects). Thus, in the new 
dataset, some of the measured cycles are contained multiple 
times, some are not contained at all. Mean sway responses, 
as well as frequency response and coherence functions were 
calculated from the re-sampled dataset. The procedure was 
repeated 400 times (400 bootstrap samples), where each new 
dataset was different from the previous one. For each param-
eter, and condition, the 400 bootstrap samples were ordered 
in descending order. The 10th and 390th samples (2.5% and 
97.5% of 400 samples) were then used as lower and upper 
confidence limits, respectively.

For the learning period, we were interested in the varia-
tion across sequence repetitions for all parameters extracted 
from the sway response to the learning sequence. For this, 
we used Bayesian linear mixed models with the R package 
brms (Brükner 2017). We used a model with the number of 

performed sequences as a population-level effect (seq effect) 
and subjects as group-level effect (i.e. random effect). We 
maximized the error structure to limit type I error (random 
intercept and slope by subject; Barr et al. 2013). The model 
used was as follows: dependent variable ~ seq + (seq|subject). 
We used weakly informative priors (normal distribution with 
a mean of 0 and a standard deviation of 10 for the beta and 
a Half Cauchy distribution with a mean of 0 and standard 
deviation of 2 for the group-level standard deviation). We 
used 4 MCMC with 4000 iterations each (including a warm-
up of 2000 iterations), and verified that each chain converged 
correctly. Note that we subtracted one to the number of per-
formed sequences, so the first sequence was zero and not 
one and, therefore, the intercept output from the model was 
not extrapolated. On top of the population estimate of the 
intercept and the slope, the model calculated the correlation 
coefficient between the intercept and the slope at group level 
(i.e. at subject level).

Results

General characteristics of body sway responses 
to the PRTS stimuli

Figure 3 shows the averaged body sway responses to the 
pseudo-random platform movement and 95% confidence 
intervals. The first and second rows show the stimulus and 
the averaged body sway in the time domain. Sway responses 
followed the general shape of the stimulus across all stimu-
lus conditions. Subjects were swaying about an offset of 
2–3° forward lean. A difference of mean body lean between 
stimulus amplitudes was found, which was expected since 
the stimulus had a toes-down bias and subjects tend to align 
with the platform orientation. Gain, Phase and Coherence 
across frequencies, shown in Fig. 3a, provide a more detailed 
analysis of body sway. Gain is the ratio of body sway 
response to stimulus amplitudes across frequency. A gain of 
one indicates that body sway and platform tilt amplitudes are 
identical. A gain smaller/larger than one indicates smaller/
larger body sway as compared to stimulus amplitudes at a 
given frequency. Gain curves showed maxima between 0.1 
and 0.3 Hz and decreased towards higher and lower frequen-
cies. Across stimulus amplitudes, gain values decreased with 
an increase in stimulus amplitude (note the different y-axis 
scales). Thus, the increase in body sway was less than the 
increase in stimulus amplitude. Phase is a measure of the 
temporal relation between body sway response and stimulus, 
where a phase of zero indicates synchronous sway and 180° 
indicates that body and platform sway are in counter phase. 
Phase curves showed a small phase lead below 0.1 Hz and an 
increasing phase lag towards higher frequencies. The phase 
lag diverged towards higher frequencies, where a smaller 
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phase lag was found for larger stimulus amplitudes. Coher-
ence provides a measure of the contribution of random body 
sway and sway in response to the tilt stimulus. Coherence 
can take values between one (only stimulus related body 
sway) and zero (only random body sway, not related to the 
stimulus). For all conditions, coherence was about 0.7–0.8 
in the frequency range below 0.1 Hz. Coherence decreased 
between 0.1–0.3 Hz, showing a plateau between approxi-
mately 0.4 and 1 Hz and a further decrease at frequencies 
above 1 Hz. The above-described sway response character-
istics for these kind of support surface tilt stimuli are well 
known and in full agreement with similar studies (Peterka 
2002; Assländer et al. 2015; Pasma et al. 2016).

Differences across pre‑ and post‑conditions

Sway responses in the time domain looked very similar in 
pre- and post-conditions. However, in post-conditions, the 
body sway response was shifted towards a more upright body 
position. Comparison of the mean body lean showed a sig-
nificant difference between pre- and post-trials for all three 
amplitudes (two-way repeated measures ANOVA; p < 0.001; 
mean body lean pp1: pre 2.9 ± 1.0; post 2.7 ± 1.0; pp2: pre 
3.0 ± 1.0; post 2.7 ± 0.9; pp4: pre 3.1 ± 0.9; post 2.9 ± 1.1). 
Gain curves did not show consistent differences between 
pre- and post-conditions below 0.5 Hz and above 1 Hz. In 
between, gain was smaller in post-conditions as compared 

to pre-conditions where confidence bounds showed little or 
no overlap, indicating reduced sway response amplitudes in 
this frequency range. The phase below 0.7 Hz was smaller in 
post-conditions and showed a distinct crossing between pre- 
and post-curves at this frequency. Below 0.7 Hz phase was 
larger for the post-conditions. Coherence showed no sys-
tematic differences above 0.3 Hz. Below 0.3 Hz, coherence 
had an overall similar shape as in the pre-conditions, but 
was consistently smaller in the post-condition. All above-
described differences between pre- and post-conditions were 
consistent across stimulus amplitudes.

In summary, the main differences in the post as compared 
to the pre-conditions were (1) a more upright position (less 
body lean), (2) reduced sway response amplitudes (gain) 
between 0.5 and 1 Hz, (3) reduced phase at frequencies 
below 0.7 Hz and higher phase values at frequencies above 
0.7 Hz, and (4) a reduced coherence at frequencies below 
0.3 Hz.

Figure 4 shows the parameters extracted from the sway 
responses during the learning phase across the 75 repeti-
tions of the learning sequence. Feedback and linear drift 
showed no significant reduction across sequence rep-
etitions. Overall body sway showed a significant reduc-
tion across the 75 repetitions of about 30% of the initial 
sway amplitudes. Sway power at the stimulus frequencies 
(Fig. 4d) showed a significant decrease across stimulus 
repetitions (overall 33% reduction). In addition to the 

Fig. 3  Pseudo-random stimulus 
and sway responses for pre- and 
post-measurements in the time 
domain (a) and in the fre-
quency domain (b) expressed as 
amplitude ratio (gain), temporal 
relation between response and 
stimulus (phase), and a measure 
for the sway response to sway 
variability ratio (coherence). 
Each stimulus amplitude (peak-
to-peak 1, 2, and 4°) is shown in 
a different column

a

b
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systematic reduction across repetitions, a very strong 
reduction of sway response amplitudes within the first 
three sequence repetitions was observed. The lowest two 
frequencies (0.125 Hz and 0.250 Hz) showed the largest 
sway amplitudes. Since these frequencies dominated the 
overall spectrum and would have masked potential changes 
at higher frequencies, sway at these two frequencies were 
analyzed separately (Fig. 4e). Sway power at these low fre-
quencies showed no significant change during the learning 
phase. In contrast, random sway at all other non-stimulus 
frequencies (Fig. 4f) showed a significant reduction of 
similar magnitude as observed for the stimulus frequen-
cies. In addition to the analysis of the drift and sway 
amplitudes at different spectral ranges, also the starting 
position of subjects was analyzed. Starting position was 
obtained from the intercept of the linear regression calcu-
lated for each trial (see Fig. 2 bottom/right). The starting 
position showed a strong reduction across sequence repeti-
tions. Subjects were leaning approximately 3.3° forward 
at the beginning and only about 2.4° at the end of the 
learning phase. A very similar result was obtained when 
taking the actual starting position (measured body lean 
at the beginning of the learning sequence; not shown). 
Sway responses at the stimulus frequencies were in addi-
tion analyzed in terms of gain and phase (compare analy-
sis of the pseudo-random stimuli). While the information 
content of gain is similar as that of the sway power at 
these frequencies, phase provides in addition insight into 
the relative timing of support surface tilt and body sway 
and its development throughout the learning phase. Gain 
(Fig. 4h) showed a reduction across stimulus repetitions, 
similar to sway power (Fig. 4d). Phase also showed a sig-
nificant reduction during the learning phase (Fig. 4i). One 
additional advantage of the display of body sway at stimu-
lus frequencies in terms of gain and phase is that it can be 
directly compared to the sway responses to the pseudo-
random trials (see “Discussion”).

Discussion

In this study, we investigated changes in sway responses 
across 75 repetitions of a rhythmic support surface tilt 
sequence. In agreement with our first hypothesis, results 
showed a systematic reduction in body sway throughout 
the learning phase (see Fig. 4a). However, in contrast to 
our second hypothesis, systematic changes in body sway 
responses after the learning phase were also found in the 
sway responses to the pseudo-random stimuli applied pre 
and post to the learning phase. Thus, our results show 
clear adaptations of the balance control mechanism, but 
no indication of sequence-specific adaptations that could 
have included predictions. Rather, it appears that subjects 
adapted the dynamics of the feedback mechanism, such that 
sway responses to the tilt perturbations were reduced. Fur-
ther details of our findings and potential adaptations of the 
control mechanism are discussed below.

Similarity of changes during learning 
and pseudo‑random stimuli

Since sway response changes were found in both, the learn-
ing phase and the pre- and post-pseudo-random tests, the 
question arises, whether the adaptations underlying both 
changes are the same. Three parameters can be directly com-
pared between pre-to-post-changes and the learning phase. 
The starting position was reduced by about 0.7° throughout 
the learning phase. Since no significant change in drift was 
found, the starting position can be qualitatively compared 
to the average body lean during pre–post-pseudo-random 
tests. Average body lean reduced by 0.2–0.3° from pre- to 
post-tests, which is a little less than half of that during the 
learning phase. Comparison of changes in gain and phase 
showed very similar changes during the learning phase 
and in pre-to-post comparisons. Gain values were gener-
ally smaller during the learning stimulus as compared to 
the pseudo-random stimuli. This can be expected, since the 
stimulus amplitudes were much larger in the learning stimu-
lus and larger stimulus amplitudes are known to be associ-
ated with smaller gain values. Despite this difference, similar 
changes in the control mechanism result in similar changes 
in gain values at a given frequency. Phase values are higher 
in post-measurements at the frequencies used in the learn-
ing stimulus (1 and 1.25 Hz), where higher phase indicates 
less phase lag. The reduced phase lag corresponded with 
the decreased phase lag across learning trials. In summary, 
all directly comparable parameters show similar changes in 
learning and pre–post-pseudo-random tests. The similarity 
of the changes across these three parameters supports the 
assumption that the main adaptations were general changes 
in the control dynamics.

Fig. 4  Learning sequence parameters as defined in Fig. 2 across the 
75 learning trials. The continuous black line corresponds to the mean 
parameter value at each trial and the grey area to the standard devia-
tion across all subjects. The red continuous line is the mean estimate 
from the Bayesian linear mixed model, and the red area its upper and 
lower 95% credible interval bounds. Correlation and model slope 
of the Bayesian model and 95% upper and lower credible interval 
boundaries are given within each plot (intercept is omitted for sim-
plicity), significant differences from zero are indicated with asterisks 
(95% credible interval that does not frame 0). Correlation represents 
the relation of intercept and slope at subject level (correlation coef-
ficient of random effects). Statistical significance of correlations and 
slopes are indicated with asterisks.  a–c show the overall sway as 
power spectral density (PSD) and drift, as well as the composite score 
of sway and drift that was used as feedback. d–f, h, i provides a more 
detailed analysis of the sway reduction. i shows the starting position 
of a subject at the begining of the rhythmic stimuli. The parameters 
displayed in each of the figures are explained in Fig. 2.

◂
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Did prediction contribute to the changes?

Humans use predictions to counteract expected perturba-
tions. The most prominent examples are anticipatory pos-
tural adjustments, where subjects change body position in 
expectation of an external or internal perturbation. This 
notion led us to assume a prediction of the predictable stimu-
lus sequence. The above-discussed similarity of body sway 
changes to the predictable and the pseudo-random stimu-
lus suggest that predictions are not required to explain the 
data. However, our data do not exclude the contribution of 
predictions.

One prerequisite for prediction is the predictive nature of 
the stimulus. Several aspects may have compromised this 
assumption. One is the variability in the sensory cues that 
are used to construct an internal representation of the stimu-
lus. Since there is no sensory receptor directly encoding sup-
port surface tilt, a wide range of proprioceptive and vestibu-
lar receptor information needs to be integrated to construct 
an internal representation of the stimulus. This problem is 
also present in other learning paradigms, but more relevant 
in the current study, since the estimation of the sequence 
depends on the ability to estimate body orientation in space 
from available vestibular cues. The resulting internal recon-
struction, therefore, always contains considerable variability, 
which may reduce the ability to learn the sequence.

Another aspect is that the stimulus may have been to com-
plex for subjects to memorize. Subjectively, however, the 
rhythmic feature appeared easy to memorize.

Reduced body sway could be caused by changes 
in the control dynamics

Subjects were standing more upright following the learn-
ing intervention. The reduction during the learning phase 
was about 20% and about 10% in the pseudo-random trials. 
The change in body lean is approximately proportional to 
the torque required to counteract gravity that is constantly 
pulling the body forward. Therefore, the reduction in lean 
is associated with a proportional reduction in torque gener-
ated by the calf muscles. Since the muscle–tendon complex 
and the neural feedback mechanisms are non-linear, such 
a change could have affected the dynamics of the control 
mechanism. For example, tendon stiffness decreases with 
decreasing force. Due to this and similar effects, the more 
upright position could be associated with reduced stiffness.

The changes observed in the frequency response func-
tions are also in agreement with a reduction in the stiffness 
of the active feedback mechanism. Especially, the reduced 
gain found at higher frequencies was reported to be related 
with smaller stiffness parameters in the control dynamics 
(compare e.g. Fig. 2 in Pasma et al. 2017). Reduced stiffness 
during toes-up or toes-down tilts of the platform would result 

in less sway, which is in full agreement with the observed 
changes in pre–post tests and during the learning phase.

Rapid reduction in sway power at stimulus 
frequency and gain after the very first trial

Body sway responses to the very first application of the 
learning stimulus showed a 65% larger sway amplitude as 
expected from the general trend of sway response amplitudes 
(Fig. 4d and g). Notable, the large evoked sway was not 
associated with a change in body lean. Thus, other changes 
in the control mechanism might have occurred after the very 
first trial. The learning sequence had a much larger stimulus 
amplitude as compared to the pseudo-random trials and sub-
jects were completely naive to the learning stimulus. Thus, 
the difference could be caused by startles at the beginning 
of the stimulus. Another explanation could be a very sudden 
adaptation of the control mechanism through either a reduc-
tion in the stiffness of the system or a sudden reweighting, 
reducing the reliance on proprioceptive cues.

Limitations

The subjects participating in this study were naive to the 
protocol and had previously not experienced support surface 
tilt stimuli in an experimental setup. The pre-to-post-changes 
and also the change across the learning period could, there-
fore, be an adaptation of the control dynamics related to 
the familiarization with the experiment rather than an effect 
of the learning task. Previous studies using support surface 
tilt stimuli did not report familiarization effects within one 
experimental session. However, to the best of our knowl-
edge, no study systematically investigated familiarization 
effects in such balance experiments. Thus, an important lim-
itation of our study design is that the results do not allow to 
separate effects from the learning task, where subjects tried 
to stand as still as possible during the predictable learning 
stimulus, and adaptations due to a general familiarization 
with the stimulus and setup.

The feedback score that was verbally provided after each 
trial did no change significantly across trials. Thus, it is 
not clear, whether subjects were able to use the feedback 
to improve performance. Statistically, the drift contribution 
to the feedback score was not changing across the learning 
trials, but added variability. The added variability probably 
prevented the feedback trend to become significant. With 
the change in feedback score, it might be possible, that sub-
jects had difficulties performing the task they were asked 
to do (standing as still as possible). However, the system-
atic changes observed across the learning period showed 
that some adaptations occurred. Without additional control 
experiments (e.g. with a similar setup without feedback), no 
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conclusions on the role of the not-changing feedback can 
be drawn.

Conclusion

Sway responses to a short and rhythmic support surface tilt 
sequence change during repeated exposures to the stimu-
lus. Similar changes in sway responses were also found in 
sway responses to pseudo-random stimuli applied pre and 
post to the learning trials. Thus, we found no evidence for 
sequence-specific adaptations and dedicate the observed 
changes to adaptations of the control dynamics, such as a 
reduced stiffness.
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