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Abstract Kinematic variability is caused, in part, by

force fluctuations. It has been shown empirically and

numerically that the effects of force fluctuations on kine-

matics can be suppressed by increasing joint impedance.

Given that force variability increases with muscular fati-

gue, we hypothesized that joint impedance would increase

with fatigue to retain a prescribed accuracy level. To test

this hypothesis, subjects tracked a target by elbow flexion

and extension both with fatigued and unfatigued elbow

flexor and extensor muscles. Joint impedance was esti-

mated from controlled perturbations to the elbow. Contrary

to the hypothesis, elbow impedance decreased, whereas

performance, expressed as the time-on-target, was unaf-

fected by fatigue. Further analysis of the data revealed that

subjects changed their control strategy with increasing

fatigue. Although their overall kinematic variability

increased, task performance was retained by staying closer

to the center of the target when fatigued. In conclusion, the

present study reveals a limitation of impedance modulation

in the control of movement variability.

Introduction

Prolonged exercise induces muscle fatigue. Muscle fatigue

is generally defined as an activity induced loss of the ability

to produce force with a muscle or muscle group due to a

combination of central and peripheral processes (Gandevia

2001). The central nervous system (CNS) can compensate

for a loss in the force generating capacity of the individual

motor units (peripheral fatigue) by increasing the central

drive to the muscle(s), resulting in higher firing frequencies

of already active motor units and additional recruitment of

larger motor units. Muscle fatigue eventually results in task

failure (Hunter et al. 2002, 2004).

In the present study, we were interested in how fatigue

influences the variability of motor performance prior to

task failure. Motor output variability is, at least in part,

caused by variability in muscular force output. Besides the

effort required to generate a constant force output under

fatigue, also the variability of the force output increases

with fatigue (e.g., Lippold 1981; Lorist et al. 2002; Hunter

et al. 2004; Huang et al. 2006). Most tasks constrain the

range of permissible positional variations and therefore

the CNS has to control the effects of force variability on the

overt kinematics.

The neuromotor noise theory (NNT, Van Galen and

Schomaker 1995) states that in order to obtain a desired

level of positional accuracy of the end-effector (e.g.,

hand, finger, mouse), the effects of force variability are

filtered by increasing joint stiffness through muscular co-

activation. Most empirical support for the use of imped-

ance to filter neuromuscular noise is based on indirect

evidence, such as increased pen tip pressure in writing

(e.g., Van Den Heuvel et al. 1998) and on EMG increases

with increasing precision demands (e.g., Gribble et al.

2003; Osu et al. 2004). In recent studies, we provided
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direct evidence that individuals increase joint stiffness in

order to attain the prevailing accuracy demands (Selen

et al. 2006a, b). This modulation of joint stiffness is

particularly evident in target tracking.

As an extension of the NNT, Van Dieën et al. (2003)

argued that an increase in neural and motor noise with

fatigue might necessitate increased co-activation to attain

the desired accuracy. Increased co-activation, on the other

hand, would further accelerate fatigue development,

resulting in a vicious circle of fatigue development and

muscular co-activation under strict task constraints. Indi-

cations of increased co-activation with fatigue have been

found (Gagnon et al. 1992; Psek and Cafarelli 1993), but

given that the EMG–force relationship is affected by fati-

gue, this provides only tentative support.

Apart from an increase in force variability with fatigue,

also the muscle impedance changes with fatigue. With

fatigue, muscle stiffness decreases for a constant isometric

force, whereas the damping increases (Zhang and Rymer

2001). This would exacerbate the vicious circle identified

by Van Dieën et al. (2003) because a disproportionate in-

crease in activation would be needed to generate satisfac-

tory stiffness.

In previous studies, we not only found that elbow

impedance changed with accuracy demand, but also that

subjects tend to adapt their movement speed within the

margins imposed by the task. For time-constrained goal

directed movements, this resulted in a small but signifi-

cant decrease of movement velocity with smaller targets

(Selen et al. 2006a). During target tracking, where

movement velocity is more severely constrained, subjects

changed the organization of corrective movements (Selen

et al. 2006b).

In the present study, we aimed to further extend our

understanding of the control of joint impedance in relation

to motor output variability. Following our previous

manipulations of accuracy demand, we now manipulated

the neuromuscular noise by inducing muscular fatigue. We

hypothesized that joint impedance would increase in order

to compensate for the fatigue-induced neuromuscular noise

and concomitant kinematic variability.

Methods

Subjects

Ten healthy subjects (five males and five females) between

20 and 25 years of age participated in the experiment. All

subjects had normal or corrected to normal vision and re-

ported no history of neuromuscular disorders. All subjects

were right handed, in the sense that this was the hand they

normally used for writing. The Local Ethics Committee

approved the experiment and all subjects signed informed

consent forms prior to their participation.

Overview of the experiment

The subjects performed two tasks. In the first task, they

tracked a sinusoidally moving target (Fig. 1a) by making

elbow flexion and extension movements in the horizontal

plane. The second task was intended to induce muscular

fatigue (Fig. 1b) and consisted of resisting a time varying

motor torque. Figure 1c depicts an overview of the order in

which both tasks were performed. First, four 2-min unfa-

tigued tracking trials (UFT) were performed. Second, the

fatigue protocol (FP) alternated with, now fatigued, track-

ing (FT). To control for learning effects, the tracking task

was repeated for five of the ten subjects after a recovery

period of 5 min (PFT, post fatigue tracking). After every

tracking period and every fatigue protocol, subjects were

asked to rate their perceived exertion (RPE) in the arm on a

ten-point Borg scale (Borg 1982).

Prior to the actual experiment, estimates of maximum

voluntary torque, limb inertia and maximum voluntary

stiffness were obtained. In the following sections, the

experimental setup and procedure will be explained in

more detail.

Experimental setup

Subjects were seated on a chair in front of a semicircular

array of light emitting diodes (LEDs). Two permanently

active LEDs indicated the target boundaries. The forearm

used for writing was tightly cast onto the vertical shaft of

a torque controlled motor (S-motor, elu93028, Fokker

Control Systems), with the medial epicondyle aligned

with the axis of rotation and the palm of the hand facing

downwards. A laser pointer was attached to the forearm,

indicating the pointing position on the LED array that

was 1.5 m away from the hand. Both torque and position

were stored at 1 kHz. For a more detailed description

and a picture of the experimental setup see Selen et al.

(2006a, b).

Experimental procedure

Maximum voluntary torque assessment

The torque level of the fatigue protocol was based on an

estimate of the maximum voluntary torque (MVT) of the

elbow. A force transducer was attached 30 cm distal to the

elbow joint, orthogonal to the cast forearm. Three MVT

attempts in both flexion and extension direction were per-

formed, alternated with 1 min rest. The maximum value,

out of six, was selected as the MVT.
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Inertia and maximum voluntary stiffness estimation

After the forearm had been attached to the torque motor,

subjects were instructed to relax as much as possible.

Sixteen bi-phasic torque perturbations (eight flexions and

eight extensions) were applied randomly to the forearm.

Each perturbation had a duration of 70 ms and an ampli-

tude of 5 Nm. Positions and torques were used to estimate

inertia of forearm and manipulandum.

The same sequence of perturbations was applied to the

forearm to estimate maximum values of stiffness and

damping. Subjects were instructed to maximally co-acti-

vate their forearm muscles and to minimize the angular

displacements due to the perturbations.

Unfatigued tracking

During UFT, FT and PFT, subjects tracked a target that had

a width of 0.027 rad (which is approximately 1�) and

oscillated at 0.25 Hz with an amplitude of 0.2 rad (see

Fig. 1a). Subjects were instructed to keep the projection of

the laser pointer within the target area. In some cycles, the

motor applied a bi-phasic torque to the forearm. Subjects

were instructed not to intervene voluntarily with those

torque perturbations. From these perturbations, estimates of

elbow stiffness and damping were calculated.

Two perturbation types were used and each was applied

12 times for every experimental condition. Perturbations

were applied during flexion (pFLEX) and extension

(pEXT) and started with a torque opposite to the movement

direction. The 24 perturbations were distributed randomly

over the four 2-min trials with the restriction that they had

to be at least 5 s apart. All perturbations occurred in the

zero crossing of the target sine wave, i.e., at maximum

velocity. Perturbations were bi-phasic, had an amplitude of

5 Nm and a total duration of 70 ms.

Fatigue protocol

Fatigue was induced by counteracting a torque generated

by the motor (see Fig. 1b). This positional task is believed

to generate fatigue much faster than an isometric force

production task (Hunter et al. 2004). The time varying

motor torque was constant for 4 s and changed sign in 1 s.

Peak values of the torque were 5% MVT. Subjects opposed

this torque pattern for 10 min, immediately followed by

FT.

Fatigued tracking

The fatigued tracking task was exactly the same as in UFT.

Subjects tracked the target immediately after the fatigue

protocol for 2 min, during which six randomly distributed

perturbations were applied. The combination of FP and FT

was repeated four times.

Post-fatigue tracking

For five of the ten subjects, the UFT protocol was repeated

after the FT protocol. These data were analyzed to test for

learning effects and retention in both performance and

impedance.
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Fig. 1 Schematic description of the experiment. a Section of a

tracking trial. The gray area indicates the target area and the black
line the projection of the pointer position. b Section of the fatigue

protocol. Time varying torque is indicated in gray and the elbow

angle in black. c Time line of the experiment. Unfatigued tracking

(UFT) and post fatigue tracking (PFT) trials were all followed by

1-min rest. The fatigue protocol (FP) was followed immediately by

fatigued tracking (FT). After the last UFT trial and after the last FT

trial, subjects had a 5-min rest period. Ratings of perceived exertion

were assessed immediately after UFT, FP, FT and PFT and are

indicated by the vertical arrows
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Analyses

Tracking performance

The instruction to the subjects was to keep the pointer

between the target boundaries. Fulfillment of this perfor-

mance constraint was quantified as the percentage of time

that the pointer was on target (%TT). In order to reveal

changes in control, also the percentage of samples that

lagged (%LAG) the center of the target was calculated. A

sample was marked as ‘lagging’ when its position minus

the target center position times the sign of the target

velocity was smaller than zero.

Kinematic variability was assessed by calculating the

mean distance to the center of the target (MDT), the RMS

value of the distance to the center of the target (RMSDT)

and the standard deviation of the distance to the center of

the target (SDDT) over the unperturbed tracking cycles.

The latter two were calculated as a function of cycle time

RMSDTðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

j¼n

j¼1

½ujðtÞ � /ðtÞ�2
v

u

u

t and

SDDTðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

j¼n

j¼1

½ujðtÞ � �uðtÞ�2
v

u

u

t ;

where n is the number of unperturbed cycles and t repre-

sents time within a cycle. /(t) represents the center of the

target as a function of time and �uðtÞ represents the average

position over cycles of the laser as a function of time.

Subsequently, the time-averaged value was calculated

(RMSDT and SDDT).

Impedance estimation

The dynamics of the elbow joint were estimated by fitting a

second order linear model with stiffness K, damping B and

inertia I to the kinematic deviations in response to the

torque perturbations. The inertia was estimated in a sepa-

rate step and kept constant over conditions (UFT, FT and

PFT) and movement directions (pFLEX and pEXT). The

time window for the optimization was 150 ms, avoiding

contributions of voluntary responses, but including spinal

reflexes to the impedance estimates. After the optimization

procedure the variance accounted for (VAF) was calcu-

lated. For a detailed description of the optimization pro-

cedure, see Selen et al. (2006a, b).

Characterization of submovements

Tracking movements are composed of small submove-

ments. These submovements are best visible in the velocity

domain where they appear as speed pulses (SP) (see

Roitman et al. 2004; Selen et al. 2006b). To quantify SPs,

angular data were filtered with a fifth order Butterworth

filter with a cut-off frequency of 6 Hz and subsequently

numerically differentiated. The duration of a single SP (SP

duration) was defined as the time between two successive

local minima in the velocity profile. The amplitude of an

SP (SP amplitude) was defined as the difference between a

local maximum in the velocity profile and the average

value of the two nearest minima. The slope of the linear

regression between SP duration and SP amplitude was

interpreted as an error correction gain (SP gain). SP gain

has been shown to increase with increasing movement

velocity (Roitman et al. 2004; Selen et al. 2006b) and

increasing accuracy demand (Selen et al. 2006b).

Statistics

Both in the text and figures data will be presented as mean

and SD. In the figures, the four separate trials per condition

will be presented. However, to remove learning effects,

statistics will be presented for the last two trials only.

Unless mentioned otherwise, there was no difference with

the statistics as determined for all four trials. Statistics for

stiffness and damping will be presented for all four trials

together.

The focus will be on the difference between UFT and

FT. The effects of fatigue were examined by performing

two-way (two or four trials · two conditions) repeated

measures ANOVAs on all ten subjects. Additional two-way

(two trials · conditions) repeated measures ANOVAs were

performed on the subgroup of five subjects that also per-

formed PFT. For the stiffness and damping two-way (two

movement directions · two conditions) ANOVAs were

performed. Honest significant difference (HSD) Tukey’s

tests were used to further analyze significant effects.

Results

Fatigue

All subjects completed the four repetitions of the 10 min

fatigue protocol. Figure 2 presents the summary of their

RPE scores. Subjects reported increased exertion due to the

FP, which slightly decreased during FT but remained above

baseline level of unfatigued tracking. During PFT, RPE

scores had returned to UFT levels.

Tracking performance

Measures of tracking performance are depicted in Fig. 3

itemized for the four 2-min trials per condition. The sta-

102 Exp Brain Res (2007) 181:99–108

123



tistics related to UFT and FT as calculated for the final two

trials per condition are presented in Table 1. At first sight,

the results appear to indicate an increase of %TT over time.

However, no significant effect of trial number was found

for any performance measure, either with all four trials or

with only the last two trials included.

%TT is the performance measure that corresponds with

the instruction to the subjects to stay on target. Despite the

fatigue protocol, no changes in tracking performance were

observed. However, fatigue resulted in larger kinematic

fluctuations (SDDT). Without changes in control this

would have resulted in lower %TT. The decrease in MDT

and %LAG with fatigue indicates that subjects changed

their control strategy to stay closer to the center of the

target.

Separate repeated measures ANOVAs were performed

for the four subjects that performed PFT in addition to UFT

and FT. For %LAG, MDT, SDDM and RMSDT P-values

were smaller than 0.02. The effect of condition on the

stiffness estimate K was nearly significant (P = 0.056).

Figure 4 shows the mean data over those five subjects for

all performance variables and the stiffness. All P-values

smaller than 0.05 in the post-hoc tests are presented. Again,

no differences in %TT were revealed between the three

conditions. Both %LAG and MDT seemed to stay at their

FT values, whereas SDDT and RMSDT returned to their

baseline, UFT, values during PFT.

Additional analyses revealed that performance variables

became much less variable with fatigue. The left panel of

Fig. 5 shows the average value of performance measures

split into eight 1-min sections for a single subject. The right

panel shows the mean and SD over all subjects of the

standard deviation over the 8 min sections. It is evident

that performance was less variable between trials in the

fatigued condition.

Impedance

The impedance of the elbow joint was estimated by fitting a

K-B-I model to the experimental data. The inertia was

estimated independently of K and B and ranged from 0.047

to 0.0833 Nms2/rad. Maximum voluntary stiffness was

61 (SD 17) Nm/rad and maximum voluntary damping was

0.81 (SD 0.22) Nms/rad. Figure 6 presents the impedance
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estimates, expressed as stiffness and damping. The fatigue

protocol resulted in smaller stiffness values [F(1,9) =

24.238, P = 0.001, gp
2 = 0.729] compared to UFT values.

During PFT the stiffness recovered slowly, but not signif-

icantly (Fig. 4). Damping estimates did not change in re-

sponse to fatigue [F(1,9) = 0.634, P = 0.449]. In all cases

the VAF was higher than 0.9.

Apart from fatigue, the stiffness estimate was also af-

fected by perturbation direction. The stiffness was higher

during extension than during flexion [F(1,9) = 30.474,

P < 0.000, gp
2 = 0.772].

Speed pulses

Speed pulses were extracted from the speed profiles of the

unperturbed movement cycles. Their characteristics (SP

amplitude, SP duration and SP gain) are depicted in Fig. 7

for the individual trials and conditions. After a strong

learning effect in the first two trials of UFT [F(1,9) = 10.018,

P = 0.000, gp
2 = 0.590 for SP gain], no differences in the

organization of speed pulses were observed between the

unfatigued and fatigued condition for the remaining trials.

Discussion

In the present study we tested the hypothesis that fatigue-

induced increase of force variability would result in in-

creased elbow impedance in order to retain the accuracy

required by the task. Based on %TT, no effects of fatigue

on task performance were revealed. Contrary to our

hypothesis, however, this was not accompanied by an in-

crease in elbow impedance (i.e., stiffness), suggesting that

the vicious circle between fatigue development and mus-

cular co-activation as proposed by Van Dieën et al. (2003)

does not exist or is circumvented. This is supported by the

finding that muscular activity does not increase in response

to fatigue in multi-joint target tracking (Huysmans et al.

2007).

In the following sections, we will first discuss why joint

impedance did not increase and how other mechanisms

might have contributed to preserving task performance in

the face of fatigue-induced increased neuromuscular noise.

Subsequently, we will explain the results in view of re-

duced solution spaces and explorative behavior. Finally,

we will draw some general conclusions about the impli-

cations of the present findings for the concept of impedance

modulation as a generic means to cope with neuromuscular

noise.

Before discussing the present results, we have to

ascertain that the fatigue protocol was effective. Fatigue

was only assessed indirectly by ratings of perceived exer-

tion as previous studies showed that RPE is a good indi-

cator of muscle fatigue (e.g., Kankaanpää et al. 1997;

Hummel et al. 2005; Huysmans et al. 2007). As expected,

RPE increased in response to the fatigue protocol. Besides

Table 1 Statistical effects of the physical state of the subjects (State)

and trial number (Trial) on performance measures

F(1,9) P gp
2

%TT

State 0.062 0.809 0.007

Trial 0.000 0.289 0.124

State · Trial 0.000 0.434 0.069

%LAG

State 14.878 0.004* 0.623

Trial 0.000 0.810 0.007

State · Trial 0.000 0.819 0.006

MDT

State 9.596 0.013* 0.516

Trial 0.401 0.541 0.043

State · Trial 0.019 0.892 0.002

SDDT

State 0.576 0.040* 0.390

Trial 2.519 0.447 0.219

State · Trial 4.669 0.614 0.064

RMSDT

State 0.428 0.530 0.045

Trial 3.344 0.072 0.271

State · Trial 1.112 0.351 0.110

States are unfatigued (UFT) and fatigued (FT). Trials are the four

2-min tracking periods. Partial-g2 (gp
2) is presented as a measure

of effect size

*Indicates that the result was significant (P < 0.05)

60

100

%
T

T

UFT FT PFT

4

8

12

K
 [N

m
/r

ad
]

UFT FT PFT

50

70

%
LA

G

0

1

2

3

4

M
D

T
 [m

ra
d]

5

7

9

S
D

D
T

 [m
ra

d]

6

8

R
M

S
D

T
 [m

ra
d]

Fig. 4 Post fatigue tracking (PFT) performance. Five subjects

performed an additional PFT task. Repeated measures ANOVAs

were executed for the mean of the performance variables in the last

two trials of each condition. Stiffness values were averaged over

movement directions. Overlines indicate P-values smaller than 0.05
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this expected increase in RPE, the decrease of joint

impedance and the increase of SDDT also indicate that the

fatigue protocol was effective. The increase in SDDT

further indicates increased neuromuscular noise due to fa-

tigue, as reported previously for isometric force (Lippold

1981; Lorist et al. 2002; Hunter et al. 2004; Huang et al.

2006).

Although there was a significant increase in RPE, con-

comitant with an increase in neuromuscular noise, no de-

crease in performance was observed. Based on previous

studies in which joint impedance was found to increase

with increasing accuracy demand (Selen et al. 2006a, b),

we expected joint impedance to increase in the present

experiment as well. This expectation was based on the

consideration that increasing the accuracy demand and

increasing the noise are equivalent in that they both require

adaptations from the neural control system to increase the

signal-to-noise ratio. Nevertheless, joint stiffness decreased

by 30% (SD 19%).

The applied impedance estimation method does not al-

low separating out the muscle intrinsic and reflexive con-
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tributions to the fatigue-induced impedance changes. Based

on previous system identification studies of the isometric

arm under fatigue, we expected that both muscle intrinsic

stiffness and reflex contributions decrease with fatigue

(Zhang and Rymer 2001).

Could it have been the case that a further increase of

impedance was impossible under the prevailing task con-

ditions? We suspect not. Prior to fatigue, stiffness levels

were relatively low (about 10% of their maximum). Due to

fatigue the maximum stiffness decreases to about 60%

(Zhang and Rymer 2001). This leaves enough margin to

increase joint impedance, although excessive muscular co-

activation would be necessary, and renders it unlikely that

subjects were unable to increase impedance.

What then prevented the neural control system from

increasing joint impedance? Was it some kind of cost

consideration or was an impedance strategy no longer

adequate to serve the task goal when fatigued? Cost

considerations might have played a role. First, just to

reach the stiffness level of UFT, co-activation has to

increase at least 100% during FT (Zhang and Rymer

2001). This is much more than the increase in stiffness of

up to 30% we found in previous studies involving a

threefold increase in accuracy demand (Selen et al.

2006a, b). Second, the control system may have learned

to circumvent the vicious circle associated with imped-

ance modulation (Van Dieën et al. 2003). On the other

hand, it is conceivable that impedance modulation is no

longer an adequate strategy when fatigued. The delicate

balance between increases in neuromuscular noise and

impedance (Selen et al. 2005) with cocontraction may

have shifted toward an increase in kinematic variability

with increasing impedance. Based on the present data it

is impossible to differentiate between the aforementioned

possibilities, but it follows from the observed decrease in

joint impedance that the neural control system must have

relied on some other strategy to compensate for the

detrimental effects of increased neuromuscular noise due

to fatigue.

What could this strategy be? In principle, the neural

control system may have employed both feedback and

feedforward control strategies to preserve movement

accuracy. Feedback control strategies can be revealed by

the analysis of submovements. In a previous study, we

observed systematic changes in the control of submove-

ments when tracking targets of different frequency and

different width (Selen et al. 2006b). Both higher target

frequencies and smaller targets resulted in an increase of

SP gain as a result of an increase in SP amplitude. Simi-

larly, Pasalar et al. (2005) reported that SP gain increases

for larger external perturbing force fields in circular

drawing. All those increases may be interpreted as a result

of a feedback controlled (relative) error correction mech-

anism. In particular for the external perturbing force field

manipulations, parallels may be drawn to fatigue-induced

increase in neuromuscular noise as both manipulations

imply an increase of the perturbing forces. However, we

observed no changes in SP gain, SP amplitude or SP

duration with fatigue. Only an initial decrease of SP gain

and SP amplitude was observed in the first few unfatigued

trials, which was most likely due to adaptation to the

prevailing task conditions. Apparently, feedback control

did not change in response to fatigue. Instead, it is apparent

from the present data that, when sufficiently fatigued, the

neural control system adopted a feedforward strategy of

staying closer to the center of the target, as evidenced by

decreased %LAG and decreased MDT. The predictability

of the sine motion of the target allowed for this feedfor-

ward strategy, although in both the unfatigued and fatigued

states, subjects lagged behind the target most of the time.

Adopting this feedforward strategy is understandable be-

cause it allows the task constraints to be retained in spite of

the increase in within-trial variability (SDDT and

RMSDT).

Besides a strategy change due to fatigue, we observed

that the execution of that strategy became stereotyped

when fatigued. The within-trial variability of all perfor-

mance measures decreased as fatigue increased over

time. How should we interpret this observation? In all

likelihood, the experimental manipulation reduced the

solution space in two ways, namely by increasing neu-

romuscular noise and by changing the biophysical

properties of the neuromuscular system. We submit that

during UFT the neural control system was exploring the

solution space, whereas during FT it was not because

this would hamper performance. Further support for this

hypothesis comes from the observation that within-trial

variability decreased and between-trial variability in-

creased again during PFT (see Fig. 5), indicating that the

solution space was again being explored. Interestingly,

comparable observations of stereotypical, i.e., less vari-

able, control strategies were made in patients with tar-

dive dyskinesia (Newell et al. 1993) and with

patellofemoral pain (Hamill et al. 1999) while standing

respectively running. It is conceivable that also those

stereotypical motor behaviors were associated with a

reduction of the solution space, in this case as a result of

an underlying pathology.

The PFT data also suggest that subjects adhered to the

strategy they adopted during fatigue and stayed close to the

center of the target (%LAG, MDT), despite the recurrence

of explorative behavior. This might either be taken to im-

ply that subjects simply adhered to the newly discovered

control strategy, or that the neuromuscular system was not

fully recovered from fatigue, preventing them from a

switch to their UFT strategy.
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If subjects discovered a new control strategy of

staying close to the center of the target, then why had

they not discovered and used it prior to fatigue? An

impedance strategy is energetically demanding (Franklin

et al. 2004) and one might expect the neural control

system to select an energy saving strategy from the

outset. On the other hand, an impedance strategy is

generic and has low control cost. Possibly, subjects

would have discovered the strategy of staying close to

the target in the long run. However, fatigue appeared to

have forced them into this new strategy. Similar in-

stances of not discovering alternative strategies have

been reported for goal directed movements in a divergent

force field (Osu et al. 2003). When subjects move to a

target in a divergent force field that pushes them away

from a straight line, they increase endpoint stiffness to

overcome the instability. An equally effective strategy

would be to move through the force field, by making

curved paths, thus learning the dynamics of the field.

However, subjects only discover this strategy when

explicitly instructed to do so. Alternatively, subjects

might have switched back to their UFT strategy in the

long term. Although SDDT and RMSDT returned to

their baseline values during PFT, joint stiffness did not

return to baseline and therefore could not contribute to

the control of movement variability.

Conclusions

Impedance modulation is not the strategy of choice to

preserve movement accuracy in the face of muscle fatigue,

suggesting that the vicious circle of continuously increas-

ing impedance with fatigue (Van Dieën et al. 2003) does

not exist or is circumvented. Instead, subjects make use of

the predictability of the target motion and stay closer to the

center of the target in the fatigued state than in the unfa-

tigued state, resulting in unaffected task performance de-

spite increased kinematic variability.

References

Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci

Sports Exerc 14:377–381

Franklin DW, So U, Kawato M, Milner TE (2004) Impedance control

balances stability with metabolically costly muscle activation.

J Neurophysiol 92:3097–3105

Gagnon D, Arsenault AB, Smyth G, Kemp F (1992) Cocontraction

changes in muscular fatigue at different levels of isometric

contraction. Int J Ind Ergon 9:343–348

Gandevia SC (2001) Spinal and supraspinal factors in human muscle

fatigue. Physiol Rev 81:1725–1789

Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of

cocontraction in arm movement accuracy. J Neurophysiol

89:2396–2405

Hamill J, Van Emmerik RE, Heiderscheit BC, Li L (1999) A

dynamical systems approach to lower extremity running injuries.

Clin Biomech (Bristol, Avon) 14:297–308

Huang CT, Hwang IS, Huang CC, Young MS (2006) Exertion

dependent alternations in force fluctuation and limb acceleration

during sustained fatiguing contraction. Eur J Appl Physiol

97:362–371
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