Skip to main content
Log in

Effects of distal and proximal arm muscles fatigue on multi-joint movement organization

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To investigate the strategies developed by the central nervous system to compensate for fatigue in muscles, we studied the changes in the relative mechanical contribution of the joint torques in a multi-joint movement following an isometric exhaustion test. Eighteen male subjects performed throws, moving the arm in the horizontal plane, before and after two fatigue protocols. Muscular fatigue was induced either in the distal (extensor digitorum communis) or in the proximal (triceps brachii) agonist muscle of the arm. The kinematic, kinetic and electromyographic parameters of the movement were analysed. The subjects produced two different coordinations following the fatigue protocols. In the distal fatigue condition, the wrist angular velocity was maintained by decreasing elbow active torque. In the proximal fatigue condition, the compensatory strategy involved increasing the contribution of the wrist. In fact, the control of elbow and wrist was modified in order to compensate for the different mechanical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernstein N (1967) The coordination and regulation of movement. Pergamon, Oxford

    Google Scholar 

  • Bernstein NA (1996) From essay 6: on exercises and motor skill. In: Latash ML, Turvey MT (eds) Dexterity and its development. Lawrence Erlbaum, New Jersey, pp 171–205

    Google Scholar 

  • Bonnard M, Sirin AV, Oddsson L, Thorstensson A (1994) Different strategies to compensate for the effects of fatigue revealed by neuromuscular adaptation processes in humans. Neurosci Lett 166:101–105

    Article  PubMed  CAS  Google Scholar 

  • Cooke JD, Virji-Babul N (1995) Reprogramming of muscle activation patterns at the wrist in compensation for elbow reaction torques during planar two-joint arm movements. Exp Brain Res 106:169–176

    Article  PubMed  Google Scholar 

  • Cooper SE, Martin JH, Ghez C (2000) Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. J Neurophysiol 84:1988–2000

    PubMed  CAS  Google Scholar 

  • Cordo PJ (1990) Kinesthetic control of a multijoint movement sequence. J Neurophysiol 63:161–172

    PubMed  CAS  Google Scholar 

  • Côté JN, Mathieu PA, Levin MF, Feldman AG (2002) Movement reorganization to compensate for fatigue during sawing. Exp Brain Res 146:394–398

    Article  PubMed  Google Scholar 

  • Côté JN, Raymond D, Mathieu PA, Feldman AG, Levin MF (2005) Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals. Clin Biomech 20(6):581–590. Epub 2005 Apr 14

    Google Scholar 

  • Cram JR, Kasman GS, Holtz J (1998) Introduction to surface electromyography. Aspen Publishers, Gaithersburg

    Google Scholar 

  • Dimitrova NA, Dimitrov GV (2003) Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies. Rev J Electromyogr Kinesiol 13(1):13–36

    Article  CAS  Google Scholar 

  • Dounskaia NV, Swinnen SP, Walter CB, Spaepen AJ, Verschueren SM (1998) Hierarchical control of different elbow-wrist coordination patterns. Exp Brain Res 121:239–254

    Article  PubMed  CAS  Google Scholar 

  • Enoka RM, Stuart DG (1985) The contribution of neuroscience to exercise studies. Fed Proc 44:2279–2285

    PubMed  CAS  Google Scholar 

  • Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 5:1631–1648

    Google Scholar 

  • Forestier N, Nougier V (1998) The effects of muscular fatigue on the coordination of a multijoint movement in human. Neurosci Lett 252:187–190

    Article  PubMed  CAS  Google Scholar 

  • Galloway JC, Koshland GF (2002) General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Exp Brain Res 142:163–180

    Article  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors inhuman muscle fatigue. Physiol Rev 81:1725–1788

    PubMed  CAS  Google Scholar 

  • Garland SJ, Kaufman MP (1995) Role of muscle afferents in the inhibition of motoneurones during fatigue. Adv Exp Med Biol 384:271–278

    PubMed  CAS  Google Scholar 

  • Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol 429:17–22

    PubMed  CAS  Google Scholar 

  • Ghez C, Sainburg R (1995) Proprioceptive control of interjoint coordination. Can J Physiol Pharmacol 73:273–284

    PubMed  CAS  Google Scholar 

  • Gribble PL, Ostry DJ (1999) Compensation for interaction torques during single- and multijoint limb movement. J Neurophysiol 82:2310–2326

    PubMed  CAS  Google Scholar 

  • Hirashima M, Kudo K, Ohtsuki T (2003) Utilization and compensation of interaction torques during ball-throwing movements. J Neurophysiol 89:1784–1796

    Article  PubMed  Google Scholar 

  • Hollerbach MJ, Flash T (1982) Dynamic interactions between limb segments during planar arm movement. Biol Cybern 44:67–77

    Article  PubMed  CAS  Google Scholar 

  • Kamen G, Caldwell GE (1996) Physiology and interpretation of the electromyogram. J Clin Neurophysiol 13(5):366–384

    Article  PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Ketcham CJ, Dounskaia NV, Stelmach GE (2004) Multijoint movement control: the importance of interactive torques. Prog Brain Res 143:207–218

    Article  PubMed  Google Scholar 

  • Latash ML (2000) There is no motor redundancy in human movements. There is motor abundance. Motor Control 4(3):259–260

    PubMed  CAS  Google Scholar 

  • Latash ML, Aruin AS, Shapiro MB (1995) The relation between posture and movement: study of a simple synergy in a two-joint task. Hum Mov Sci 14:79–107

    Article  Google Scholar 

  • Neal RJ, Snyder CW, Kroonberg PM (1991) Individual differences and segment interactions in throwing. Hum Mov Sci 10:653–676

    Article  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153(3):275–288. Epub 2003 Sep 13

    Google Scholar 

  • Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M (2002) Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J Neurophysiol 88:991–1004

    PubMed  Google Scholar 

  • Plagenhoeff SC (1966) Methods for obtaining kinetic data to analyse human motions. Res Q Am Assoc Health Phys Ed 37:103–112

    Google Scholar 

  • Putnam CA (1993) Sequential motions of body segments in striking and throwing skills: descriptions and explanations. J Biomech 26(Suppl. 1):125–135

    Article  PubMed  Google Scholar 

  • Sinoway LI, Hill JM, Pickar JG, Kaufman MP (1993) Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. J Neurophysiol 69(4):1053–1059

    PubMed  CAS  Google Scholar 

  • Stephens J, Taylor A (1972) Fatigue of maintained voluntary muscle contraction in man. J Physiol 220:1–18

    PubMed  CAS  Google Scholar 

  • Vereijken B, Whiting HT, Beek WJ (1992) A dynamical systems approach to skill acquisition. Q J Exp Psychol A 45(2):323–344

    PubMed  CAS  Google Scholar 

  • Virji-Babul N, Cooke JD (1995) Influence of joint interactional effects on the coordination of planar two-joint arm movements. Exp Brain Res 103:451–459

    Article  PubMed  CAS  Google Scholar 

  • Webb Associates (1978) Anthropometric source book, vol I. NASA 1024, National Aeronautics and Space Administration, Washington, pp IV-1–IV-76

Download references

Acknowledgements

The authors are especially indebted to Prof. Vincent Nougier for his critical reading of the paper and wish to thank Prof. Luc Martin for biomechanical modelling. We also thank all the subjects for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Forestier.

Appendix I

Appendix I

Mean power frequency

$$ {\text{MPF}} = \frac{{{\int_0^\infty {f \cdot S(f)\,{\text{d}}f} }}} {{{\int_0^\infty {S(f)\,{\text{d}}f} }}}. $$

where f is the frequency; S(f) is the power of the spectrum defined by: S(f) = Re 2 + Im 2, in which Re and Im are, respectively, the real and the imaginary terms.

Elbow torques

$$ {\text{NT}} = \ifmmode\expandafter\ddot\else\expandafter\"\fi{\theta }_{2} \cdot I_{{\text{f}}} + I_{{\text{h}}} + {\left( {m_{{\text{h}}} \cdot l^{2}_{{\text{f}}} } \right)} + {\left( {m_{{\text{f}}} \cdot r^{2}_{{\text{f}}} } \right)} + {\left( {m_{{\text{h}}} \cdot r^{2}_{{\text{h}}} } \right)} + {\left( {2m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \cos \theta _{3} } \right)} $$
$$ \begin{aligned} {\text{IT}} & = - \ifmmode\expandafter\ddot\else\expandafter\"\fi{\theta }_{1} \cdot I_{{\text{f}}} + I_{{\text{h}}} + {\left( {m_{{\text{h}}} \cdot l^{2}_{{\text{f}}} } \right)} + {\left( {m_{{\text{f}}} \cdot r^{2}_{{\text{f}}} } \right)} + {\left( {m_{{\text{h}}} \cdot r^{2}_{{\text{h}}} } \right)} \\ & \quad + {\left( {{\left( {m_{{\text{h}}} \cdot l_{{\text{u}}} \cdot l_{{\text{f}}} + m_{{\text{f}}} \cdot l_{{\text{u}}} \cdot r_{{\text{f}}} } \right)}\cos \theta _{2} + 2m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \cos \theta _{3} + m_{{\text{h}}} \cdot l_{{\text{u}}} \cdot r_{{\text{h}}} \cdot \cos {\left( {\theta _{2} + \theta _{3} } \right)}} \right)} \\ & \quad - \ifmmode\expandafter\ddot\else\expandafter\"\fi{\theta }_{3} \cdot I_{{\text{h}}} + {\left( {m_{{\text{h}}} \cdot r^{2}_{{\text{h}}} } \right)} + m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \cos \theta _{3} \\ & \quad - \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }^{2}_{1} \cdot {\left( {l_{{\text{u}}} \cdot {\left( {{\left( {m_{{\text{h}}} \cdot l_{{\text{f}}} + m_{{\text{f}}} \cdot r_{{\text{f}}} } \right)}\sin \theta _{2} + m_{{\text{h}}} \cdot r_{{\text{h}}} \cdot \sin {\left( {\theta _{2} + \theta _{3} } \right)}} \right)}} \right)} \\ & \quad + \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }^{2}_{3} \cdot {\left( {m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \sin \theta _{3} } \right)} + \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }_{1} \cdot \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }_{3} \cdot {\left( {2m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \sin \theta _{3} } \right)} + \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }_{2} \cdot \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }_{3} \cdot {\left( {2m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \sin \theta _{3} } \right)} \\ \end{aligned} $$
$$ {\text{MT}} = {\text{NT}} - {\text{IT}} $$

Wrist torques

$$ \begin{aligned} {\text{IT}} & = - \ifmmode\expandafter\ddot\else\expandafter\"\fi{\theta }_{1} \cdot {\left( {I_{{\text{h}}} + m_{{\text{h}}} \cdot r^{2}_{{\text{h}}} + m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \cos \theta _{3} + m_{{\text{h}}} \cdot l_{{\text{u}}} \cdot r_{{\text{h}}} \cdot \cos {\left( {\theta _{2} + \theta _{3} } \right)}} \right)} \\ & \quad - \ifmmode\expandafter\ddot\else\expandafter\"\fi{\theta }_{2} \cdot {\left( {I_{{\text{h}}} + m_{{\text{h}}} \cdot r^{2}_{{\text{h}}} + m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \cos \theta _{3} } \right)} \\ & \quad - \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }^{2}_{1} \cdot {\left( {m_{{\text{h}}} \cdot r_{{\text{h}}} \cdot {\left( {l_{{\text{f}}} \cdot \sin \theta _{3} + l_{{\text{u}}} \cdot \sin {\left( {\theta _{2} + \theta _{3} } \right)}} \right)}} \right)} \\ & \quad - \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }^{2}_{2} \cdot {\left( {m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \sin \theta _{3} } \right)} - \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }_{1} \cdot \ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }_{2} \cdot {\left( {2m_{{\text{h}}} \cdot l_{{\text{f}}} \cdot r_{{\text{h}}} \cdot \sin \theta _{3} } \right)} \\ \end{aligned} $$
$$ {\text{MT}} = {\text{NT}} - {\text{IT}} $$

where θ 1 is the shoulder angle, θ 2 is the elbow angle, θ 3 is the wrist angle, I i is the moment of inertia of the segment i, r i is the radius of gyrations of the segment i, l i is the length, m i is the mass (i = u: upper arm, f: forearm, h: hand).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huffenus, AF., Amarantini, D. & Forestier, N. Effects of distal and proximal arm muscles fatigue on multi-joint movement organization. Exp Brain Res 170, 438–447 (2006). https://doi.org/10.1007/s00221-005-0227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0227-3

Keywords

Navigation