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We are grateful to Professor Andrey V. Soldatov of the Moscow Steklov Mathemati-
cal Institute for calling our attention to an error in our paper. The commutator inequality
(8) in our stepI , namely|kj ||〈ake

ik·x〉| ≤ 2〈p2
j〉1/2〈a∗

kak〉1/2, is not correct. Rather,
the right side of this inequality should be〈p2

j〉1/2(〈a∗
kak〉1/2 + 〈aka

∗
k〉1/2) or a related

expression. The extra factor〈aka
∗
k〉1/2 with theak anda∗

k not in normal order generates
uncontrolled mischief with, for example, the right side of the ultraviolet bound (10)
containing an additional term

∑
|k|≥K 1/2 = ∞.

The situation is remedied with the help of the method introduced by Lieb and Ya-
mazaki (ref. [14], in our previous paper) to obtain the previous rigorous lower bound on
the polaron energy. Our main result, (31), is still valid. Indeed, it is improved slightly.

Define the (vector) operatorZ = (Z1, Z2, Z3) with components

Zj = (
4πα

V
)1/2

∑
|k|≥K

kj
ak

|k|3eik·x, j = 1, 2, 3. (1)

Then the commutator estimate (8) is replaced by

−(
4πα

V
)1/2

∑
|k|≥K

[
〈 ak

|k|e
ik·x〉 + c.c.

]
≡ −

∑
j

〈[pj , Zj − Z∗
j ]〉

≤ 2〈p2〉1/2〈−(Z − Z∗)2〉1/2 ≤ 2〈p2〉1/2〈2(Z∗Z + ZZ∗)〉1/2

≤ ε〈p2〉 +
2
ε
〈Z∗Z + ZZ∗〉. (2)

Now, each componentZj can be thought of as a single (unnormalized) oscillator mode
having commutator with its adjoint, [Zj , Z∗

j ] = (4πα/V )
∑

|k|≥K k2
j |k|−6 → 2α/3πK;
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moreover,Zi andZ∗
j commute fori 6= j (i.e., these modes are orthogonal). Using these

facts, we have that

2
ε
〈Z∗Z + ZZ∗〉 =

4
ε
〈Z∗Z〉 +

2
ε

(
2α

πK

)
≤

∑
|k|≥K

〈a∗
kak〉 + 3/2 (3)

if we chooseε = 8α/3πK, which is smaller and better by a factor 1/3 from theε
in the article. Here we have employed an orthogonal rotation of coordinates bringing∑

|k|≥K a∗
kak into a form (4/ε)Z∗Z+non-negative operators. (Compare Eqs.(21,22) of

the article.) Combining these inequalities, we obtain

− (
4πα

V
)1/2

∑
|k|≥K

[
〈 ak

|k|e
ik·x〉 + c.c.

]
≤ ε〈p2〉 +

∑
|k|≥K

〈a∗
kak〉 + 3/2. (4)

This last inequality is our replacement for the ultraviolet bound (10). It follows that
H ≥ HK − 3/2, whereHK is as in Eq.(11), but with the coefficient ofp2 given by
(1 − 8α/3πK) rather than (1− 8α/πK). With the choiceK = 8α/3π, inequality (13)
becomesH ≥ −(16α2/3π2) − 3/2, a bound at least consistent with a knownupper
bound for the ground state energy linear inα.

The remainder of the article is an analysis ofHK and needs only minor modification.
The coefficient ofp2 in Eqs.(19,23,27,28,30) should be (1− c1α

−1/5/3) and, at the end
of the article,c5 = (c1/3 + 2c4)cP . Due to the smaller value ofε defined above, our
estimate on the coefficient ofα9/5 in (31) is slightly improved to 2.337, rather than
3.822 as reported. Of course, our lower bound for the ground state energy is decreased
merely by the constant−3/2, which is unimportant on a scale ofα9/5.
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