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Abstract: The singular behaviour of quantum fields in Minkowski space can often be
bounded by polynomials of the Hamiltonian H . These so-called H -bounds and related
techniques allow us to handle pointwise quantum fields and their operator product ex-
pansions in a mathematically rigorous way. A drawback of this approach, however, is
that the Hamiltonian is a global rather than a local operator and, moreover, it is not
defined in generic curved spacetimes. In order to overcome this drawback we investi-
gate the possibility of replacing H by a component of the stress tensor, essentially an
energy density, to obtain analogous bounds. For definiteness we consider a massive,
minimally coupled free Hermitean scalar field. Using novel results on distributions of
positive type we show that in any globally hyperbolic Lorentzian manifold M for any
f, F ∈ C∞

0 (M) with F ≡ 1 on supp( f ) and any timelike smooth vector field tμ we can
find constants c,C > 0 such that ω(φ( f )∗φ( f )) ≤ C(ω(T ren

μν (tμtνF2))+c) for all (not
necessarily quasi-free) Hadamard states ω. This is essentially a new type of quantum
energy inequality that entails a stress tensor bound on the smeared quantum field. In
1 + 1 dimensions we also establish a bound on the pointwise quantum field, namely
|ω(φ(x))| ≤ C(ω(T ren

μν (tμtνF2)) + c), where F ≡ 1 near x .

1. Introduction

Quantum fields are typically very singular objects. Not only must we treat φ(x) as
an operator-valued distribution [31], rather than an operator-valued function, but for
bosonic fields the averaged expression φ( f ) = ∫

φ(x) f (x)dx with some test function
f normally yields an unbounded operator, so its action is not defined on all vectors in a
Hilbert space.

In Minkowski space and in the vacuum representation, this singular behaviour can
typically be controlled using bounds on the quantum field in terms of the Hamiltonian
operator H . Indeed, under quite general conditions there hold polynomial H-bounds, i.e.
expressions of the form φ( f )(1 + H)−k determine bounded operators for all sufficiently
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large k, cf. [16] and Sec.14.3 of [7]. Moreover, even pointlike quantum fields can be
handled using the boundedness of quadratic forms of the form (1 + H)−kφ(x)(1 + H)−k

for sufficiently large k. The use of H -bounds for theories with sufficiently good phase
space behaviour gives rise to operator product expansions, that are a useful tool to
investigate interacting QFTs [2,3].

One major drawback of these H -bounds is that the operator H is of a global nature
and only well-defined on stationary Lorentzian manifolds. I.e., for quantum fields in a
general curved spacetime the singular behaviour of quantum field cannot be controlled
by an H -bound in this way. This is a major obstruction for attempts to extend structural
results about pointlike fields and operator product expansations to a generally covariant
setting.

In this paper we will investigate whether this drawback can be overcome by replacing
the Hamiltonian operator H by an average of a suitable component of the quantum
stress tensor, essentially an averaged energy density. For definiteness we will consider a
massive minimally coupled free scalar field, for which the quantum stress tensor is well
understood, including its renormalization and all remaining renormalization freedom
[17]. In this case the stress tensor is a local and covariant quantum field, so replacing H
by a component of the stress tensor should give rise to bounds that behave in a local and
covariant way. Our emphasis, however, will be on a single Lorentzian manifold and for
convenience we will renormalize the stress tensor by subtracting a reference Hadamard
two-point distribution, rather than a local and covariant Hadamard parametrix.

Using an apparently new mathematical result on distributions of positive type (as
defined in Sect. 2 below), we will establish a polynomial bound on the smeared quantum
field φ( f ) in terms of the averaged stress tensor T ren

μν (tμtνF2), where f, F are test
functions on a globally hyperbolic Lorentzian manifold M such that F ≡ 1 on supp( f )
and tμ is any smooth time-like vector field. This stress tensor bound essentially takes
the form of a new kind of quantum energy inequality (QEI) [13,23],

ω(φ( f )∗φ( f )) ≤ C(ω(T ren
μν (tμtνF2)) + c)

for some constants c,C > 0 and all (not necessarily quasi-free) Hadamard states ω.
Here the constants c and C are independent of the state ω. In the GNS-representation
of any Hadamard state this bound leads to the analogue of an H -bound, where H + 1
is replaced by the operator T ren

μν (tμtνF2) + c (or rather by the Friedrichs extension of
its representative). Analogous local energy bounds have been studied for chiral CFTs in
1 + 1 dimensions, cf. [8,9] and references cited therein.

In 1 + 1 dimensions we will also establish a bound on the pointwise quantum field,
namely

|ω(φ(x))| ≤ C(ω(T ren
μν (tμtνF2)) + c) ,

where F ≡ 1 in a neighbourhood of the point x and the constants c,C > 0 may be
different than before. We conjecture that a similar result involving higher powers of the
stress tensor is valid in higher dimensions.

This paper is organised as follows. Section 2 describes the mathematical results on
distributions of positive type that we need. It uses some results about Sobolev wave front
sets, which are relegated to Appendix A. Section 3 establishes the stress tensor bound
for the smeared massive free scalar field. The stress tensor bound for pointwise fields in
1 + 1 dimensions is contained in Sect. 4. We conclude with a brief discussion in Sect. 5.
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2. On Distributions of Positive Type

In this section we will prove some results on distributions of positive type that we will
need later in Sect. 3. We will prove these in the following general setting. Let M be a
smooth manifold of dimension d ∈ N with a smooth volume form μ. A distribution u
on M × M is said to be of positive type when u(μ f̄ ⊗ μ f ) ≥ 0 for all f ∈ C∞

0 (M).1

We will assume that M is orientable and μ is nowhere vanishing.
In the following theorem, Z denotes the zero section of the bundle T ∗M×2.

Theorem 2.1. Let u1, u2 be distributions on M×2 of positive type such that for all
(x, ξ) ∈ T ∗M×2 \ Z there are s1, s2 ∈ R with s1 + s2 ≥ 0, (x, ξ) 	∈ WF (s1)(u1) and
(x,−ξ) 	∈ WF (s2)(u2). Then u1 · u2 is also of positive type.

Proof. A product of distributions is not always well-defined in a natural way. Ober-
guggenberger [25] considers the product of distributions in R

n as defined by Ambrose
under suitable hypotheses and compares it with several alternative definitions. In par-
ticular, Cor. 3.1 loc.cit. shows that the Sobolev wave front set condition on u1 and u2
ensures that the product u1u2 is a well-defined distribution. This result can be gener-
alised to distributions on the smooth manifold M using local charts and a partition of
unity argument.

We fix an arbitrary f ∈ C∞
0 (M) and we choose F ∈ C∞

0 (M, R) such that F ≡ 1
on supp( f ). The distributions u′

1 := (F ⊗ F) · u1 and u′
2 := ( f̄ ⊗ f ) · u2 are again of

positive type and (u1 · u2)(μ f̄ ⊗ μ f ) = u′
1((μ ⊗ μ) · u′

2). The u′
i are also compactly

supported and they satisfy the same wave front set estimate as the ui . Replacing ui by
u′
i it then suffices to show that u1((μ ⊗ μ) · u2) ≥ 0, where we may assume that both

ui have compact support.
Let B ⊂ R

d denote the open unit ball. Because F has compact support, we can
choose a finite number of charts κk : Ok → B, k = 1, . . . , n such that the union
of the domains Oj ⊂ M covers the support of F . Furthermore, we can choose χk ∈
C∞

0 (Ok, R) such that
∑n

k=1 χ2
k ≡ 1 on supp(F). For all k, l ∈ {1, . . . , n} we define the

distributions v1,kl := (κk × κl)∗((χk ⊗ χl) · u1) and the distribution densities v2,kl :=
(κk × κl)∗((χkμ ⊗ χlμ) · u2) in R

2d , which are supported in B×2. Using
∑n

k=1 χ2
k ≡ 1

we then have u1((μ ⊗ μ) · u2) = ∑n
k,l=1 v1,kl(v2,kl) and the positive type property of

the ui now means that
n∑

k,l=1

vi,kl( f̄k ⊗ fl) ≥ 0 (1)

for all f1, . . . , fn ∈ C∞
0 (Rd). For the distribution densities v2,kl this follows immedi-

ately from the definitions. For v1,kl we use the fact that we can write fk = μkgk with
gk ∈ C∞

0 (B) and μk such that (κk)∗(μ) = μkdd x .
Now let η ∈ C∞

0 (Rd) with η ≥ 0 and
∫

η = 1. For each λ > 0 we let ηλ(x) =
λ−dη(λ−1x) and η̃λ(x) = ηλ(−x) and we define the convolutions v

(λ)
i,kl := (ηλ ⊗ ηλ) ∗

vi,kl . Note that the v
(λ)
i,kl are compactly supported and smooth and they also satisfy (1).

Indeed, because the functions v
(λ)
i,kl are smooth, we even find

n∑

k,l=1

v
(λ)
i,kl( f̄k ⊗ fl) =

n∑

k,l=1

vi,kl((η̃λ ∗ f̄k) ⊗ (η̃λ ∗ fl)) ≥ 0 (2)

1 Throughout this paper, test functions are allowed to be complex-valued, unless indicated otherwise.
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for all distributions f1, . . . , fn on R
d . For any λ > 0 we may view the matrix of

functions
(
v

(λ)
2,kl

)n

k,l=1
as the integral kernel of a linear operator X on L2(Rd , C

n),

defined by (X f )k = ∑n
l=1 v

(λ)
2,kl fl , where f = ( f1, . . . , fl) ∈ L2(Rd , C

n). Because

(v
(λ)
2,kl)

n
k,l=1 ∈ L2(R2d , C

n2
) the operator X is Hilbert-Schmidt (cf. [22] Prop.2.6.9).

Equation (2) shows that X is also a positive operator, so we may write

X =
∞∑

j=1

x jψ j ⊗ ψ∗
j

for some orthonormal basis {ψ j } j∈N of L2(Rd , C
n) and x j ≥ 0 (cf. [26], Thm.VI.16).

Note that the series

v
(λ)
2,kl(x, y) =

∞∑

j=1

x jψ j,k(x)ψ j,l(y)

converges in L2(R2d). Because also v
(ρ)
1,kl ∈ L2(R2d) for all ρ > 0 we then have

n∑

k,l=1

v
(ρ)
1,kl(v

(λ)
2,kl) =

∞∑

j=1

x j

n∑

k,l=1

v
(ρ)
1,kl(ψ j,k ⊗ ψ j,l) ≥ 0 (3)

by Eq. (2).
The comparison of various notions of products of distributions in [25] shows that the

Sobolev wave front set condition also implies

v1,kl(v2,kl) = lim
λ→0+

v
(λ)
1,kl(v

(λ)
2,kl)

and hence

u1((μ ⊗ μ) · u2) =
n∑

k,l=1

v1,kl(v2,kl) = lim
λ→0+

n∑

k,l=1

v
(λ)
1,kl(v

(λ)
2,kl) ≥ 0

by (3). This completes the proof. �
Next we want to give a construction of a certain distribution of positive type that we

will need in Sect. 3. We will use the following lemma.

Lemma 2.2. For l ∈ N let v ∈ D′(R) such that

v̂(k) :=
{ 1

2 (1 + k2)−l if k > 0
1 − 1

2 (1 + k2)−l if k ≤ 0
.

Then W F (s)(v) ⊂ {0} × R<0 for all s < 2l − 1
2 .
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Proof. For u ∈ D′(R) with û(k) = (1 + k2)−l we note that u is smooth on R \ {0} and
WF (s)(u) = ∅ iff s−2l < − 1

2 (cf. Cor.8.4.7. in [20]). Because u is real and even it then
follows that WF (s)(u) = {0} × (R \ {0}) iff s − 2l ≥ − 1

2 . Now define u± by û±(k) =
û(k)θ(±k), where θ is the Heaviside function. Because û+ is supported on k > 0 we must
have WF (s)(u+) ⊂ R×R>0 for all s ∈ R. Similarly, WF (s)(u−) ⊂ R×R<0 and hence
WF (s)(u) = WF (s)(u+) ∪ WF (s)(u−) as a disjoint union, so WF (s)(u+) = {0} × R>0
iff s ≥ 2l − 1

2 . Analogously, defining v± such that v̂±(k) = v̂(k)θ(±k), we also have
WF (s)(v) = WF (s)(v+) ∪ WF (s)(v−) as a disjoint union. v+ = 1

2u+ proves the result.
(We only require an estimate on the part of the wave front set contained in R × R>0, so
we don’t need to determine WF (s)(v−) for all s.) �

The construction in the lemma below makes use of the delta distribution δμ supported
on the diagonal of M×2, defined by δμ(μg, μh) := ∫

ghμ for all g, h ∈ C∞
0 (M).

Lemma 2.3. Assumed ≥ 2 and let f, F ∈ C∞
0 (M) such that F is real-valued and F > 0

on supp( f ). Let s ∈ R and t a smooth vector field on M such that t 	= 0 on supp(F).
Then there is a compactly supported distribution u on M×2 and a constant C > 0 such
that Cu(x, y) − f (x) f (y) is of positive type, u(x, y) + u(y, x) = F(x)F(y)δμ(x, y)
and W F (s)(u) ⊂ {((x, y), (p, q)) ∈ T ∗M×2| p(t) ≤ 0 ≤ q(t)}.
Proof. We can cover supp(F) by a finite set of open coordinate charts {(Oj , κ j )}nj=1
on which the vector field t is the first coordinate derivative t = ∂x1 . We then have
μ = μ jκ

∗
j d

d x for a smooth non-vanishing function μ j . Because d ≥ 2 we can change
the sign of x2 if necessary to ensure that μ j > 0.

We may choose χ j ∈ C∞
0 (Oj ) such that χ j ≥ 0 and

∑n
j=1 χ2

j ≡ 1 on supp(F). We

then define the distribution u on M×2 by setting

u(x, y) := (2π)−d
∫

ddk
n∑

j=1

F(x)χ j (x)μ j (x)
− 1

2 eiκ j (x)·k

F(y)χ j (y)μ j (y)
− 1

2 e−iκ j (y)·k v̂(k1) ,

with v as in Lemma 2.2 for some l > s
2 + d

4 . Note that u(x, y) is well-defined, because
χ j = 0 outside the coordinate neighbourhood Oj . It is also compactly supported and
because v̂(k1) + v̂(−k1) = 1 we have

u(x, y) + u(y, x) =
n∑

j=1

F(x)χ j (x)F(y)χ j (y)δμ(x, y) = F(x)F(y)δμ(x, y) ,

where the factors of μk in the definition of u are needed to produce the correct measure
for δμ.

To show the wave front set estimate we consider the distribution u0 on R
2d defined

by u0(x, y) = (2π)−d
∫

ddk ei(x−y)·k v̂(k1). Using the linear change of coordinates
(X,Y ) = (x − y, x + y), which acts on covectors as (P, Q) = ( p−q

2 ,
p+q

2

)
, we find

that u0(x, y) = v(X1) ⊗ δ(X ′) ⊗ 1(Y ), where X = (X1, X ′). Hence, ((x, y), (p, q)) ∈
WF (s)(u0) exactly when ((X,Y ), (P, Q)) ∈ WF (s)(v ⊗ δ ⊗ 1), which implies Q = 0
and (X, P) ∈ WF (s)(v ⊗ δ) by Lemma A.1. By our choice of l we can combine Lemma
A.2 and Lemma 2.2 to see that P1 ≤ 0 and X ′ = 0. We therefore find

WF (s)(u0) ⊆ {((x, y), (p,−p))| x ′ = y′, p1 ≤ 0} .
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Because p1 ≤ 0 exactly when p(t) ≤ 0 we must also have WF (s)(u) ⊆ {((x, y), (p, q))

|p1(t) ≤ 0 ≤ q1(t)}.
It remains to show that Cu(x, y)− f (x) f (y) is of positive type for a suitable C > 0.

For this purpose we define f̃ ∈ C∞
0 (M) by f̃ (x) = f (x)

F(x) when F(x) 	= 0 and f̃ (x) = 0

otherwise, so that f = f̃ F . For any g ∈ C∞
0 (M) we can estimate

|〈 f, g〉μ|2 =
∣
∣
∣
∣
∣
∣

n∑

j=1

1 · 〈χ2
j f̃ , Fg〉μ

∣
∣
∣
∣
∣
∣

2

≤ n
n∑

j=1

|〈χ2
j f̃ , Fg〉μ|2 = n

n∑

j=1

|〈χ j f̃ , χ j Fg〉μ|2

using
∑n

j=1 χ2
j ≡ 1, the Cauchy–Schwarz inequality and the inner product 〈, 〉μ of

L2(M, μ). Using the charts κ j and denoting the usual L2 inner product on κ j (Oj ) by
〈, 〉 we can rewrite this estimate as

|〈 f, g〉μ|2 ≤ n
n∑

j=1

|〈(κ j )∗(μ
1
2
j χ j f̃ ), (κ j )∗(μ

1
2
j χ j Fg)〉|2

= n

(2π)2d

n∑

j=1

∣
∣
∣
∣

∫
[(κ j )∗(μ

1
2
j χ j f̃ )]ˆ(k) · [(κ j )∗(μ

1
2
j χ j Fg)]ˆ(k)ddk

∣
∣
∣
∣

2

= n

(2π)2d

n∑

j=1

∣
∣
∣
∣

∫
(1 + k2

1)
l
2 [(κ j )∗(μ

1
2
j χ j f̃ )]ˆ(k) · (1 + k2

1)
−l
2 [(κ j )∗(μ

1
2
j χ j Fg)]ˆ(k)ddk

∣
∣
∣
∣

2

,

where [X ]ˆ denotes the Fourier transform of X . Another application of the Cauchy–
Schwarz inequality and the estimate v̂(k1) ≥ 1

2 (1 + k2
1)−l (cf. Lemma 2.2) then yield

|〈 f, g〉μ|2 ≤ n

(2π)2d

n∑

j=1
∫

(1 + k2
1)l

∣
∣
∣
∣[(κ j )∗(μ

1
2
j χ j f̃ )]ˆ(k)

∣
∣
∣
∣

2

ddk ·
∫

(1 + k2
1)−l

∣
∣
∣
∣[(κ j )∗(μ

1
2
j χ j Fg)]ˆ(k)

∣
∣
∣
∣

2

ddk

≤ 2n

(2π)2d

n∑

j=1
∫

(1 + k2
1)l

∣
∣
∣
∣[(κ j )∗(μ

1
2
j χ j f̃ )]ˆ(k)

∣
∣
∣
∣

2

ddk ·
∫

v̂(k1)

∣
∣
∣
∣[(κ j )∗(μ

1
2
j χ j Fg)]ˆ(k)

∣
∣
∣
∣

2

ddk

≤ Cu(μg, μg) ,

where we used the definition of u and we introduced

C := 2n

(2π)d
max

j=1,...,n

∫
(1 + k2

1)l
∣
∣
∣
∣[(κ j )∗(μ

1
2
j χ j f̃ )]ˆ(k)

∣
∣
∣
∣

2

ddk .

This proves that f (x) f (y) ≤ Cu(x, y), as desired. �
Remark 2.4. When d = 1 the analogous conclusion of Lemma 2.3 still holds if we
additionally assume that μ(t) > 0, because this ensures that the μ j are still positive
functions. if μ(t) < 0 we could replace t by −t , which leads to a change in the estimate
for WF (s)(u).
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3. Stress Tensor Bounds on Smeared Free Scalar Fields

Consider a smooth globally hyperbolic Lorentzian manifold (M, g) with dimension
d = n+1 ≥ 2. We assume that M is time-oriented and we consider a massive, minimally
coupled real linear scalar field of mass m > 0 on M . I.e., we consider the Klein–Gordon
equation Pϕ = 0, where P = � + m2 and we let E−, respectively E+, denote the
advanced, respectively retarded, fundamental solutions for P , viewed as distributions
on M×2. A classical field configuration is a solution ϕ of this equation. Its stress tensor
is given by

Tμν[ϕ] = ∇μϕ · ∇νϕ − 1

2
gμν(|∇ϕ|2 − m2ϕ2) . (4)

To be specific, we describe the quantized theory by the Weyl-algebra A, which is
a complex ∗-algebra generated by operators W ( f ), f ∈ C∞

0 (M, R), subject to the
relations

(i) W ( f )∗ = W (− f ),
(ii) W (P f ) = W (0),

(iii) W ( f )W (h) = e−i 1
2 E( f,h)W ( f + h),

where E = E− − E+. Note that W (0) = 1 is the identity operator and each W ( f ) is a
unitary. The Weyl-algebraA can be endowed with a norm and completed to aC∗-algebra
[1]. We can formally interpret W ( f ) as eiφ( f ), where φ( f ) = ∫

φ(x) f (x)dvolg is the
averaged quantum field. The relations above then express the reality of φ, the equation
of motion and the canonical commutation relations, respectively.

A state of the quantum field is a linear functional ω : A → C which is positive,
ω(A∗A) ≥ 0, and normalized, ω(1) = 1. Given any state we can construct its GNS-
representation, which consists of a Hilbert space Hω, a unit vector � ∈ Hω and a
representation πω : A → B(Hω) such that ω(A) = 〈�,πω(A)�〉Hω

for all A ∈ A
and πω(A)� ⊂ Hω is dense. The latter two properties uniquely determine the GNS-
representation up to unitary equivalence. We call (πω,Hω,�) the GNS-triple.

We will call a state ω regular when it has well-defined n-point distributions for all
n ∈ N, i.e. there are distributions ωn on M×n such that

ωn( f1, . . . , fn) = (−i)n∂s1 · · · ∂snω(W (s1 f1) · · ·W (sn fn))
∣
∣
s1=···=sn=0

for all f1, . . . , fn . In the GNS-representation of a regular state, s �→ πω(W (s f )) is a
unitary group which is strongly continuous on the dense domain πω(A)Hω and hence
everywhere. The self-adjoint generator of this group will be denoted by φω( f ). Because
f �→ φω( f ) is real linear we may extend this notation by linearity to complex test
functions and interpret φω( f ) as the smeared quantum field φ in the representation πω.

We will call a state ω quasi-free (or Gaussian) when it is regular and

ω(W ( f )) = e− 1
2 ω2( f, f ) .

Note that the two-point distribution ω2 ∈ D′(M×2) of any state is of positive type, it
is a solution to the Klein–Gordon equation in each argument and it satisfies ω2(x, y) −
ω2(y, x) = i E(x, y). Conversely, every distribution ω2 ∈ D′(M×2) with these three
properties is the two-point distribution of a unique quasi-free state, cf. [30].

We will call a state ω Hadamard when it is regular and its two-point distribution has

WF(ω2) = CM
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in the notation of Theorem A.3 in Appendix A, where WF denotes the smooth wave
front set. That theorem then gives us the Sobolev wave front set WF (s)(ω2) for all s ∈ R.
We note that for any Hadamard state ω any normalized vector in the dense linear space
πω(A)� in Hω again defines a Hadamard state (cf. [14] Thm.4.2 and Thm.A.1 and its
proof). Furthermore, the two-point distributions of any two Hadamard states differ by a
smooth function.

Using Hadamard states one can define a local and covariant renormalization proce-
dure for renormalized and time-ordered products of quantum fields, cf. [19] for a detailed
discussion. In particular one can define a Wick square : φ2 : (x) and a renormalized
stress tensor T ren

μν (x). For our purposes it will be sufficient to know that these are quan-
tum fields with the following properties. For any two Hadamard states ω, ω̄ on M we
have

ω(: φ2 : (x)) − ω̄(: φ2 : (x)) = lim
x ′→x

(ω2 − ω̄2)(x, x
′) (5)

ω(T ren
μν (x)) − ω̄(T ren

μν (x)) = lim
x ′→x

Dsplit
μν (ω2 − ω̄2)(x, x

′) , (6)

where the operator Dsplit
μν is defined near the diagonal in M×2 by

Dsplit
μν := ∇μ ⊗ ∇ν − 1

2
g′
μν((g

′)ρσ ∇ρ ⊗ ∇σ − m2) .

Here gρμ(x)g′
μν(x, x

′) is the parallel propagator from Tx ′M to TxM along a geodesic
between these points. For x ′ and x in a sufficiently small neighbourhood of the diago-
nal there is a unique geodesic in that neighbourhood, which allows us to define Dsplit

μν

unambiguously near the diagonal, cf. [24]. Furthermore, in the GNS-representation of
a Hadamard state ω, the smeared operators : φ2 : ( f ) and T ren

μν (hμν), with f and h
compactly supported and smooth, define quadratic forms on the dense domain πω(A)�

in Hω (cf. [4]).
We are now ready to establish a new QEI, which is our main result.

Theorem 3.1. Let t be a smooth, timelike vector field on M and f, F ∈ C∞
0 (M, R) such

that F ≡ 1 on supp( f ). Then there are constants c,C > 0 such that for all Hadamard
states ω

ω(φ( f )2) ≤ C(ω(T ren
μν (tμtνF2)) + c) .

For f = 0 the result reduces to a known QEI [15].

Proof. We choose s ∈ R large enough that WF (−s)(ω2) = ∅ for all Hadamard states,
i.e. s > d−3

2 when d is even and s > d−2
2 when d is odd, cf. Theorem A.3. We then let

C > 0 and the distribution u on M×2 be as in Lemma 2.3 for this s, f, t , F̃ := √
tμtμF

instead of F and the metric volume form μg = dvolg on M . As a matter of notation,
we treat ω2 as a distribution density on M×2, so ω2( f, f ) = ω2( f ⊗ f ) and when the
distributional product of a compactly supported distribution v on M×2 and ω2 is defined
(using the wave front set condition of Theorem 2.1), we write ω2(v) = (v · ω2)(1). It
then follows from Theorem 2.1 that

0 ≤ ω2(Cu − f ⊗ f ) = Cω2(u) − ω2( f, f ) ,
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where the right-hand side is finite due to the wave front set properties of u and ω2. The
last term is ω(φ( f )2). We fix a Hadamard reference state ω̄, so that c0 := ω̄2(u) ≥ 0
by Theorem 2.1. Setting ũ(x, y) := u(y, x) we also have

ω2(u) − c0 = (ω2 − ω̄2)(u) = 1

2
(ω2 − ω̄2)(u + ũ)

= 1

2
(ω2 − ω̄2)((F̃ ⊗ F̃)δμg )

= 1

2
ω(: φ2 : (F̃2)) − 1

2
ω̄(: φ2 : (F̃2))

by (5), where we used the fact that ω2−ω̄2 is symmetric due to the canonical commutation
relations. Thus we find

ω2( f, f ) ≤ Cω2(u) = Cc0 − 1

2
Cω̄(: φ2 : (F̃2)) +

1

2
Cω(: φ2 : (F̃2)) .

Replacing C by C
m2 we obtain

ω2( f, f ) ≤ C

(

ω

(
1

2
m2 : φ2 : (gμν t

μtνF2)

)

+ c1

)

for some c1 > 0 such that c1 > c0m2− 1
2m

2ω̄(: φ2 : (F̃2)). The right hand-side involves
one of the terms in the renormalized stress tensor. It is well-known that the remaining
terms can be estimated from below by a constant [15], leading to the final result. For
convenience we reproduce the argument.

We use the notations of Lemma 2.3 and assume that the local coordinate neighbour-
hoods {Oj , κ j } are contractible. For each j we choose an orthonormal frame {eμ

j,a}da=1

for the tangent bundle T O j such that eμ
j,1 = (tν tν)−

1
2 tμ. We then define a distribution

w on M×2 by

w(x, y) := (2π)−d
∫

ddk
n∑

j=1

d∑

a=1

eμ
j,a(x)∂xμ F̃(x)χ j (x)μ j (x)

− 1
2 eiκ j (x)·k

eμ
j,a(y)∂yμ F̃(y)χ j (y)μ j (y)

− 1
2 e−iκ j (y)·k v̂(k1) .

In our choice of v (cf. Lemma 2.2) we choose l > s
2 + d

4 + 1 here, where the +1 allows
us to conclude that WF (s+2)(w) ⊂ {((x, y), (p, q)) ∈ T ∗M×2 | p(t) ≤ 0 ≤ q(t)}
as in Lemma 2.3, despite the presence of derivatives. w is compactly supported and of
positive type and the wave front set estimate entails that c2 := ω̄2(w) ≥ 0 is finite.
Furthermore, writing w̃(x, y) := w(y, x) and using Theorem 2.1 and (6),

0 ≤ ω2(w) = c2 + (ω2 − ω̄2)(w) = c2 +
1

2
(ω2 − ω̄2)(w + w̃)

= c2 + ω

(

T ren
μν (tμtνF2) − 1

2
m2 : φ2 : (gμν t

μtνF2)

)

− ω̄

(

T ren
μν (tμtνF2) − 1

2
m2 : φ2 : (gμν t

μtνF2)

)

.

Adding this inequality C times to the right-hand side of the previous estimate and
increasing c1 if necessary we find we find the desired estimate. �
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Remark 3.2. It is clear from the proof of Theorem 3.1 that the result extends to adiabatic
Hadamard states ω of sufficiently high order that the stress tensor is well-defined, because
such states satisfy WF (s)(ω2 − ω̄2) = ∅ for some sufficiently large s, cf. [21].

Now let ω be any Hadamard state of the free scalar field. There is a quadratic form
(T ren

ω )μν(tμtνF2) on the GNS-representation space Hω such that

ω′(T ren
μν (tμtνF2)) = 〈ψ, (T ren

ω )μν(t
μtνF2)ψ〉H

if ψ ∈ πω(A)� is a unit vector and ω′ is the Hadamard state defined by ψ . By Theo-
rem 3.1 with f = 0 it is known that the quadratic form (T ren

ω )μν(tμtνF2) is bounded
from below, so it has a self-adjoint Friedrichs extension, which we will denote by
(T ren

ω )μν(tμtνF2).2 Theorem 3.1 then implies

〈ψ, φω( f )2ψ〉Hω
≤ C〈ψ,

(
(T en

ω )μν(t
μtνF2) + c

)
ψ〉Hω

for all ψ ∈ πω(A)�. Because πω(A)� is a form core for (T ren
ω )μν(tμtνF2) it is also a

core for the operator ((T ren
ω )μν(tμtνF2) + c)

1
2 . This leads to the operator inequality

(
(T en

ω )μν(t
μtνF2) + c

)− 1
2
φω( f )2

(
(T en

ω )μν(t
μtνF2) + c

)− 1
2 ≤ C , (7)

which entails ‖φω( f )
(
(T en

ω )μν(tμtνF2) + c
)− 1

2 ‖ ≤ √
C . This is the desired stress

tensor bound on the smeared quantum field. It is interesting to note that the constants
c and C are independent of the Hadamard state chosen, so they apply equally to all
GNS-representations obtained in this way.

Remark 3.3. We consider the Rindler spacetime, M = {x ∈ R
d | x1 > |x0|} as a subset

of Minkowski space M0 = (Rd , η) in inertial coordinates xμ. We denote the Weyl-
algebras for the massive free scalar field on the Rindler and Minkowski spacetimes by
AM and A0, respectively, and note that AM ⊂ A0. If ω0 denotes be Minkowski vacuum
state with GNS-triple (π0,H0,�0), then ω0 restricts to a (regular, quasi-free) Hadamard
state ω on AM whose GNS-triple is (π,H,�) = (π0|AM ,H0,�0).

There is a self-adjoint Hamiltonian operator H0 in H0 which implements the inertial
time flow and for a smeared field φ( f ) there is an H -bound of the form ‖φ0( f )(H0 +
1)− 1

2 ‖ < ∞ (because H ≥ mN , where N is the number operator on the Fock space H0,
cf. [7] Sec.12.5.4.). Similarly, M is static w.r.t. the time flow of the uniformly accelerated
observers and there is a self-adjoint Hamiltonian H in H which implements this time
flow. Clearly H 	= H0. Indeed, it is known that ω is a thermal (i.e. KMS) state w.r.t. the
time flow [6] and hence the spectrum of H is unbounded from below as well as from
above. An H -bound of the same form, involving negative powers of H + 1 or even H + c
for some positive c, cannot even be properly formulated.

Nevertheless, the stress tensor bound (7) holds on M and we are free to choose for tμ

either the inertial time flow, the flow of the accelerated observers, or any other smooth
timelike vector field.

2 It is known that one can define (T ren
ω )μν(tμtνF2) as an operator, but it is unknown whether this operator

is essentially self-adjoint on the domain πω(A)�. See [28] and Thm.5.2 in [29] for related essential self-
adjointness results when ω is quasi-free.
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4. Bounds on Pointwise Free Scalar Fields in 1 + 1 Dimensions

We now turn to stress tensor bounds on the pointwise quantum field φ(x). It is clear
that when the test function f in Theorem 3.1 approaches a Dirac delta distribution, then
the constant c must diverge, because ω2 is divergent on the diagonal. However, we can
obtain the following elementary estimate on the one-point distribution.

Proposition 4.1. Let (M, g) be a globally hyperbolic Lorentzian manifold, tμ a smooth
timelike vector field and F ∈ C∞

0 (M, R). Then there is a c > 0 such that

ω(T ren
μν (tμtνF2)) ≥ −c +

∫

M
Tμν[ω1]tμtνF2dvolg ,

for all Hadamard states ω of a minimally coupled free scalar field, where the right-hand
side integrates the classical stress tensor of the classical field configuration ω1.

Proof. ω1 is a real-valued solution to the Klein–Gordon equation, which is smooth due
to the Hadamard condition, cf. Prop.4.1 of [27]. The truncated two-point distribution
ωT

2 (x, y) := ω2(x, y) − ω1(x)ω1(y) has the same singularity structure as ω2 and it is
again a solution to the Klein–Gordon equation in each argument. Moreover, ωT

2 is of
positive type, because

ωT
2 ( f̄ , f ) = ω2( f̄ , f ) − |ω1( f )|2 = 〈φω( f )�, φω( f )�〉 − |〈�,φω( f )�〉|2 ≥ 0

using the Cauchy–Schwarz inequality in the GNS-representation. Thus, ωT
2 itself is a

Hadamard two-point distribution and it defines a quasi-free quantum state, which we
will denote by ωT .

Comparing the expectation values of the stress tensor we immediately find from (6)
and (4) that

ω(T ren
μν tμtνF2) − ωT (T ren

μν tμtνF2) =
∫

M
Tμν[ω1]tμtνF2dvolg .

Applying the QEI of Theorem 3.1 with f = 0 to the term with ωT yields the result. �
Proposition 4.1 is a QEI which, roughly speaking, compares the quantum energy

density with the classical one. This is interesting, because the classical stress tensor
plays in important role in the study of classical solutions to semi-linear wave equations
through the use of energy estimates.

In 1 + 1 dimensions we can exploit Proposition 4.1 to estimate pointwise quantum
fields.

Theorem 4.2. For every x ∈ M and F ∈ C∞
0 (M) such that F ≡ 1 on an open neigh-

bourhood of x there are c,C > 0 such that

|ω1(x)| ≤ C(ω(T ren
μν (tμtνF2)) + c) .

Proof. ω1 is a real-valued solution to the Klein–Gordon equation and it is smooth due
to the Hadamard condition. We can choose a chart (O, κ = (x0, . . . , xn)) on a (small)
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open neighbourhood O of x such that tμ is the coordinate derivative w.r.t. x0, F ≡ 1 on
O , x = 0 and gμν(0) = αημν for some α > 0. For R > 0 we define the open sets

W :=
{

|x0| < R,

n∑

i=1

(xi )2 < 9R2

}

V± :=
{

x | ±x0 ∈ (0, R),

n∑

i=1

(xi )2 < (R + 2|x0|)2

}

in R
d . We may choose R small enough that W ⊂ O and the boundary of each V±

consists of three smooth, spacelike surfaces. For t < 0 we let Vt = V− ∩ {x0 = t} (so
Vt = ∅ when t ≤ −R) and we recall the standard energy estimate

∫

V0

T00[ω1]dvolg0 ≤ C0

∫

Vt
T00[ω1]dvolgt ,

where gt is the Riemannian metric induced on Vt and C0 > 0 is independent of ω1 and
t ∈ (−R, 0], cf. [10] App. III, especially Eqn. (3.15). The analogous estimate holds
for t > 0 with Vt = V+ ∩ {x0 = t}. Because the integrand on the right-hand side is
non-negative it follows that

∫

W
T00[ω1]dvolg ≥ C1

∫ R

−R

∫

Vt
T00[ω1]dvolgt dt ≥ C2

∫

V0

T00[ω1]dvolg0

for some C1,C2 > 0. Since T00[ω1] = Tμν(tμtνF2) on W we find from Proposition
4.1 that

ω(T ren
μν (tμtνF2)) ≥ −c + C2

∫

V0

T00[ω1]dvolg0

for some c > 0.
Note that ω1 and its derivatives restricted to the ball V0 are (in local coordinates) all

in L2. If d = 1 + 1 we can use a Morrey’s Inequality, [12] Sec.5.6 Thm.4, to find

|ω1(x)|2 ≤ C4

∫

V0

T00[ω1]dvolg0 ≤ C(ω(T ren
μν (tμtνF2)) + c) .

Increasing c by C−1 if necessary we find that the right-hand side is less than or equal to
its own square, so taking square roots yields the result. �

If ω is any (not necessarily quasi-free) Hadamard state of the massive minimally
coupled scalar field in a 1 + 1 dimensional Lorentzian manifold, then Theorem 4.2
implies

|〈ψ, φω(x)ψ〉Hω
| ≤ C〈ψ, ((T ren

ω )μν(t
μtνF2) + c)ψ〉Hω

for all ψ ∈ πω(A)�, where we use the notations of Sect. 3. Consequently,

−C ≤ ((T ren
ω )μν(t

μtνF2) + c)−
1
2 φω(x)((T ren

ω )μν(t
μtνF2) + c)−

1
2 ≤ C (8)

for suitable c,C > 0. This is the desired stress tensor bound for pointlike fields. Once
again it is interesting to note that c and C are independent of ω.
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5. Discussion

In Eqs. (7) and (8) we have shown that the unboundedness of smeared quantum field
operators and the singularity of pointwise quantum field operators in 1 + 1 dimensions
can be controlled by polynomials in an averaged quantum stress tensor. This is true in
general globally hyperbolic Lorentzian manifolds, which is a significant improvement
over pre-existing H -bounds that necessarily require a ground state representation and
hence a static metric. Before we discuss the possible implications of these stress tensor
bounds for more general (possibly interacting) theories, let us first point out some of
their general features.

Firstly, Theorems 3.1 and 4.2, from which the stress tensor bounds are derived, are
formulated as new types of QEIs. Whereas QEIs have previously mostly been investi-
gated with a view to applications in GR [13,23] (e.g. singularity theorems for quantum
matter) or the stability of matter [14], these new QEIs change the perspective and provide
information about the structure of the quantum field theory itself. To prove these QEIs
we used an apparently new result on distributions of positive type, Theorem 2.1.

Secondly, the reader will have observed that the new aspects of Theorem 3.1 are
essentially about a quantum inequality for the Wick square, which appears in the stress
tensor when m > 0. If the claim remains true in the massless case, the proof will
need substantial modification. Similarly, 4.2 relies heavily on the low dimension. We
conjecture that a similar result involving higher powers of the stress tensor is valid in
higher dimensions, but it will require a substantially modified proof involving higher
n-point distributions.

Thirdly, the stress tensor bound (7) on smeared quantum fields requires the same
power of the stress tensor, regardless of the dimension. For chiral CFTs in 1 + 1 dimen-
sions, however, the analogous local energy bounds of [8,9] may involve different powers
of the energy density, depending on the scaling dimension of the field. This suggests
that stress tensor bounds for Wick polynomials and other smeared quantum fields may
also require different powers of the stress tensor, depending on their scaling degree.

Finally, the stress tensor bounds that we found involve constants c,C > 0 that
are independent of the representation, as long as we consider GNS-representations of
Hadamard states. This suggests that the bounds tell us about some intrinsic properties of
the theory and they could potentially be used to define a topology on the Weyl algebra
(in a local and covariant way), which is weaker than the C∗-norm topology and which
allows us to recover smeared field operators by taking a completion. This idea is similar
to the Hörmander topology that can be used to extend the ∗-algebra of smeared fields in
order to include e.g. Wick polynomials [4,11]. However, there are two key differences.
Firstly, the analytic structure we envisage here targets bounded operators and therefore
connects to the good spectral properties that such operators have. Secondly, there may
be advantages to using the stress tensor to define such a topology instead of resorting to
the Hörmander topology. These ideas will be the subject of a future investigation.

If one takes the point of view that a good quantum field theory should be local,
covariant and have a quantum stress tensor, then one has all the ingredients necessary
to formulate QEIs like those of Theorems 3.1 and 4.2 and the ensuing stress tensor
bounds (7) and (8). This would open up a way to connect the perspective of bounded
operator algebras and their spectral theory [5] to the perspective of field operators with
their geometric meaning and differential equations [18]. So far, the connection between
these perspectives is only well-understood in Minkowski space, cf. [2,3,7]. The main
obstruction to generalising results about this connection to general Lorentzian manifolds
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is the need to have a Hamiltonian operator. Our results indicate that this obstruction can
potentially be overcome by using stress tensor bounds.

Acknowledgement I thank Rainer Verch for encouraging comments and for suggesting the reference [7]
and Sebastiano Carpi for pointing out connections to chiral CFTs in 1 + 1 dimensions. I am grateful to two
anonymous reviewers for detailed comments and suggestions. I also thank the participants and organisers of
the conference Energy conditions in quantum field theory in Leipzig (2022), where initial results of this project
were presented.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study.

Declarations

Conflict of interest The author has no conflict of interest to declare.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

A. Sobolev Wave Front Sets and the Hadamard Parametrix

In this appendix we recall the definition of Sobolev wave front sets and give a few
results that will be needed in the main text. For further properties and results we refer
to Appendix B of [21].

We consider a smooth orientable manifold M of dimension d ∈ N with a smooth
non-vanishing volume form μ. We will freely identify smooth functions u ∈ C∞(M)

with distributions in D′(M) using u( f ) = ∫
M u f μ for all f ∈ C∞

0 (M).
For any u ∈ D′(M), s ∈ R and (x, ξ) ∈ T ∗M with ξ 	= 0 we will write u ∈ H (s)(x, ξ)

iff there is a coordinate chart κ : O → R
d with x ∈ O , a f ∈ C∞

0 (O) with f (x) 	= 0
and an open convex cone � ⊂ R

d with (Dκ(x)κ
−1)tξ ∈ � such that

∫

�

ddk(1 + |k|2)s | ̂( f u) ◦ κ−1(k)|2 < ∞ .

If this inequality holds, it still holds when we replace f by f h for any h ∈ C∞(M).
Furthermore, the definition of H (s)(x, ξ) can be shown to be independent of the choice
of local chart κ . The Sobolev wave front set is then defined as

WF (s)(u) = {(x, ξ) ∈ T ∗M | ξ 	= 0, u 	∈ H (s)(x, ξ)} .

By definition WF (s)(u) is a closed subset (possibly empty) of T ∗M \Z , where Z is the
zero section of T ∗M . The smooth wave front set of a distribution u can be defined as
the closure WF(u) = ⋃

s∈R FW (s)(u) in T ∗M \ Z .
The following lemma is a special case of Prop.B.5 in [21], where we note that

WF (t)(1) = ∅ for all t ∈ R.

http://creativecommons.org/licenses/by/4.0/
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Lemma A.1. For any two smooth orientable manifolds X and Y with smooth non-
vanishing volume forms μX and μY , respectively, and any distribution u ∈ D′(X), the
distribution u ⊗ 1 on X × Y (with volume form μX ⊗ μY ) has

W F (s)(u ⊗ 1) ⊆ WF (s)(u) × (Y × {0}) .

We will also need the following variation of this result.

Lemma A.2. For d ∈ N, d ≥ 2, let vd ∈ D′(Rd) such that vd = v ⊗ δ with v ∈ D′(R)

and δ ∈ D′(Rd−1). Then

W F (s)(vd) ∩ {(x, k) ∈ R
2d | k1 	= 0} = WF (s+ 1

2 (d−1))(v) × ({0} × R
d−1) .

Proof. Writing x = (x1, x̃) we note that vd vanishes outside supp(v) × {0}, so it is
clearly smooth there. We now fix x = (x1, 0) ∈ supp(v)×{0} and choose f ∈ C∞

0 (Rd)

with f (x) = 1. We let f1(x1) := f (x1, 0), so that f̂ vd(k) = f̂1v(k1).
Let p = (p1, p̃) ∈ R

d with p1 	= 0. We can choose α 	= 0 such that αp1 > | p̃| and then
define the open cone � = {k = (k1, k̃) ∈ R

d | αk1 > |k̃|}, so that p ∈ �. For k ∈ � we
have 1 + k2

1 ≤ 1 + |k|2 ≤ (1 + α2)(1 + k2
1) and hence the convergence of

∫

�

(1 + |k|2)s |̂ f vd(k)|2ddk (9)

is equivalent to the convergence of
∫ ∞

0
(1 + |k1|2)skd−1

1 | f̂1v(±k1)|2dk1

where the sign is the sign of p1 and the factor kd−1
1 comes from integrating the coordi-

nates k̃ over a ball of radius αk1. The convergence of the latter integral is equivalent to

(x1, p1) 	∈ WF (s+ d−1
2 )(v). This proves the lemma. �

When M is a globally hyperbolic Lorentzian manifold and μ the metric volume form,
then we can consider the Sobolev wave front set of a Hadamard two-point distribution
ω2 on M×2. As in Lemma 5.2 of [21] one can show

Theorem A.3. Let M beaglobally hyperbolic Lorentzianmanifold. ThenanyHadamard
two-point distribution ω2 ∈ D′(M × M) satisfies

W F (s)(ω2) =
{∅ if d is even and s < 3−d

2 , or d is odd and s < 2−d
2

CM if d is even and s ≥ 3−d
2 , or d is odd and s ≥ 2−d

2
,

where

CM = {((x ′, x), (ξ ′, ξ)) ∈ T ∗(M × M)| (x ′, ξ ′) ∼ (x,−ξ), ξ ′ null and future pointing} ,

and (x ′, ξ ′) ∼ (x, ξ) means that there is a geodesic γ between x ′ and x to which ξ ′
and −ξ are cotangent and each other’s parallel transports. When x ′ = x this reduces
to ξ ′ = −ξ which must be a future pointing null vector.
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