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Abstract: Let V be a C2-cofinite vertex operator algebra without nonzero elements of
negative weights. We prove the conjecture that the spaces spanned by analytic extensions
of pseudo-q-traces (q = e2π iτ ) shifted by − c

24 of products of geometrically-modified
(logarithmic) intertwining operators among grading-restricted generalized V -modules
are invariant under modular transformations. The convergence and analytic extension re-
sult needed to formulate this conjecture and some consequences on such shifted pseudo-
q-traces were proved by Fiordalisi (Logarithmic intertwining operator and genus-one
correlation functions, 2015) and Fiordalisi (Commun Contemp Math 18:1650026, 2016)
using the method developed in Huang (Commun Contemp Math 7:649–706, 2005). The
method that we use to prove this conjecture is based on the theory of the associative
algebras AN (V ) for N ∈ N, their graded modules and their bimodules introduced and
studied by the author in Huang (Associative algebras and the representation theory of
grading-restricted vertex algebras, 2020) and Huang (Commun Math Phys 396:1–44,
2022). This modular invariance result gives a construction of C2-cofinite genus-one
logarithmic conformal field theories from the corresponding genus-zero logarithmic
conformal field theories.

1. Introduction

The modular invariance of (logarithmic) intertwining operators was conjectured by the
author almost 20 years ago.1 It is a conjecture on logarithmic conformal field theories.

In this paper, we prove this conjecture. In the language of conformal field theory,
this modular invariance result says that in the C2-cofinite case, genus-one logarithmic
conformal field theories can be constructed by sewing the corresponding genus-zero log-
arithmic conformal field theories. We expect that this modular invariance result will play
an important role in the study of problems and conjectures on C2-cofinite logarithmic
conformal field theories.

1 The conjecture appeared first in some grant proposals by the author and later in [F1].
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Modular invariance plays a crucial role in the construction and study of conformal
field theories. In 1988, Moore and Seiberg [MS1,MS2] conjectured that for rational
conformal field theories, the space spanned by q-traces (q = e2π iτ ) shifted by − c

24 of
products of n chiral vertex operators (intertwining operators) is invariant under modular
transformations for each n ∈ N. (For simplicity, we shall use “shifted (pseudo-)q-
traces” below to mean “(pseudo-)q-traces (q = e2π iτ ) shifted by − c

24 .”) Based on this
conjecture in the most important case of n = 2 and the conjecture that intertwining
operators have operator product expansion, they derived the Verlinde formula [V] and
discovered a mathematical structure now called modular tensor category (see [T] for a
precise definition and its connection with three-dimensional topological quantum field
theories).

In 1990, Zhu [Z] proved a special case of the modular invariance conjecture of
Moore and Seiberg under suitable conditions formulated precisely also in [Z]. Let V
be a vertex operator algebra satisfying the conditions that (i) V has no nonzero ele-
ments of negative weights, (ii) V is C2-cofinite (that is, dim V/C2(V ) < ∞, where
C2(V ) = 〈Resx x−2YV (u, x)v | u, v ∈ V 〉), and (iii) every lower-bounded generalized
V -module is completely reducible. Zhu proved in [Z] that for each n ∈ N and each subset
{v1, . . . , vn} of V , the space spanned by the analytic extensions of shifted q-traces of
products of suitably modified vertex operators associated to v1, . . . , vn for V -modules is
invariant under modular transformations. In particular, the space spanned by the vacuum
characters of irreducible V -modules is invariant under modular transformations. In 2000,
using the the method developed by Zhu in [Z], Miyamoto in [Mi1] generalized this mod-
ular invariance result of Zhu to the space spanned by the analytic extensions of shifted
q-traces of products of suitably modified vertex operators associated to v1, . . . vn−1 for
V -modules and one suitably modified intertwining operator of a special type associated
to an element w ∈ W for each n ∈ Z+, each subset {v1, . . . , vn−1} of V , each V -module
W and each w ∈ W . Unfortunately, the method used in [Z,Mi1] cannot be used to prove
the modular invariance conjecture of Moore and Seiberg in the most important case
n = 2 and the important cases n > 2.

In 2002, Miyamoto [Mi2] proved a nonsemisimple generalization of Zhu’s theorem.
It was observed in [Mi2] that in the nonsemisimple case, the space of shifted q-traces
of suitably modified vertex operators for grading-restricted generalized V -modules is in
general not modular invariant and one needs shifted pseudo-q-traces of suitable operators
on grading-restricted generalized V -modules introduced and studied in [Mi2]. Let V be
a vertex operator algebra satisfying Conditions (i) and (ii) above and also satisfying
an additional condition that (iv) there are no finite-dimensional irreducible V -modules.
Miyamoto proved that for each n ∈ N and each subset {v1, . . . , vn} of V , the space
spanned by the analytic extensions of shifted pseudo-q-traces of products of suitably
modified vertex operators associated to v1, . . . , vn for grading-restricted generalized V -
modules is invariant under modular transformations. The fact that Condition (iv) above is
needed in [Mi2] was pointed out explicitly in Remark 3.3.5 in [ArN]. There are examples
of vertex operator algebras satisfying Conditions (i) and (ii) above but not Condition
(iv) (for example, W2,3; see Remark 3.3.5 in [ArN] and [AM]).

In 2003, the author proved in [H2] the modular invariance conjecture of Moore and
Seiberg under the same conditions as in [Z]. The precise statement of the modular
invariance theorem in [H2] is that for a vertex operator algebra V satisfying the same
conditions (i),2 (ii) and (iii) above as in [Z] and for each n ∈ N, each set of n grading-

2 Note that the statement of the modular invariance theorem in [H2] also has an additional condition
V(0) = C1. This condition is added in [H2] because Theorem 7.2 in [H2] needs some results of [ABD], which
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restricted generalized V -modules W1, . . . ,Wn and each set {w1, . . . , wn} for w1 ∈
W1, . . . , wn ∈ Wn , the space spanned by the analytic extensions of shifted q-traces of
products of geometrically-modified intertwining operators associated to w1, . . . , wn is
invariant under modular transformations. As is mentioned above, the method used by
Zhu and Miyamoto cannot be used to prove this conjecture of Moore and Seiberg in the
main important cases n ≥ 2. A completely different method was developed in [H2] to
prove this conjecture in these cases, including the most important case n = 2. Using
this modular invariance and the associativity of intertwining operators proved in [H1],
the author proved the Verlinde conjecture and Verlinde formula in [H3] and the rigidity
and modularity of the braided tensor category of V -modules in [H4].

Around 2003, after the work of Miyamoto [Mi2] and the proof in [H2] of the mod-
ular invariance conjecture of Moore and Seiberg, the following modular invariance was
conjectured by the author: For a C2-cofinite vertex operator algebra V without nonzero
elements of negative weights and for each n ∈ N, each set of n grading-restricted gener-
alized V -modules W1, . . . ,Wn and each set {w1, . . . , wn} for w1 ∈ W1, . . . , wn ∈ Wn ,
the space of analytic extensions of shifted pseudo-q-traces of products of geometrically-
modified (logarithmic) intertwining operators associated to w1, . . . , wn is invariant un-
der modular transformations. We put the word “logarithmic” in parenthesis before “in-
tertwining operators" since both intertwining operators without logarithm and logarith-
mic intertwining operators are needed. In the main body of this paper, we shall omit
“(logarithm)" so that intertwining operators in general might have the logarithms of the
variables involved.

In fact, in the original version of this conjecture, the convergence and analytic ex-
tension of shifted pseudo-q-traces of products of geometrically-modified (logarithmic)
intertwining operators is also part of the conjecture. In 2015, using the method devel-
oped in [H2], Fiordalisi [F1,F2] proved that such shifted pseudo-q-traces are convergent
absolutely in a suitable region and can be analytically extended to multivalued analytic
functions on a maximal region. He also proved that these multivalued analytic func-
tions satisfy the genus-one associativity, genus-one commutativity and other properties
using the associativity and commutativity of (logarithmic) intertwining operators and
other properties for a C2-cofinite vertex operator algebra proved in [H5]. In addition, he
proved in [F1,F2] that the solution space of the differential equations used to prove the
convergence and analytic extension property of shifted pseudo-q-traces discussed above
is invariant under the modular transformations. As in the proof in [H2] of the modular
invariance conjecture of Moore and Seiberg, by the genus-one associativity proved in
[F1,F2], the modular invariance conjecture in the case n ≥ 2 can be reduced to the
modular invariance conjecture in the case n = 1. Here the author would like to empha-
size the importance of the convergence and analytic extension results proved in [H2,F1]
and [F2]. Without the convergence and analytic extension results in [H2,F1,F2], we
could not even formulate the modular invariance conjecture of Moore and Seiberg and
the modular invariance conjecture for (logarithmic) intertwining operators above. See
[H10] for a survey on the convergence and analytic extension results and conjectures in
the approach to conformal field theory using the representation theory of vertex operator
algebras.

are in turn proved using a result of Buhl [B] giving a spanning set of a weak V -module. It is this result in [B]
that needs the condition V(0) = C1. But in Lemma 2.4 in [Mi2], Miyamoto obtained such a spanning set of a
weak module without using the condition V(0) = C1. So the modular invariance theorem in [H2] in fact does
not need this condition.
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To prove the modular invariance conjecture for (logarithmic) intertwining operators
above, we need to show that the modular transformations of the multivalued analytic
functions obtained from shifted pseudo-q-traces of geometrically-modified (logarith-
mic) intertwining operators are sums of the multivalued analytic functions obtained
from such shifted pseudo-q-traces. In [Z,Mi1,H2], Zhu algebra A(V ) = A0(V ) asso-
ciated to V , its modules and its bimodules are needed to prove the modular invariance.
In [Mi2], the generalizations An(V ) for n ∈ N of Zhu algebra by Dong, Li and Mason
[DLM1] and their modules are needed to prove the modular invariance. On the other
hand, the additional condition (Condition (iv) above) in [Mi2] that there are no finite-
dimensional irreducible V -modules is needed exactly because the associative algebras
An(V ) for n ∈ N cannot be used to handle the case that there exist finite-dimensional
irreducible V -modules. More importantly, to study general (logarithmic) intertwining
operators using the theory of associative algebras, the associative algebras An(V ) for
n ∈ N are not enough. Therefore, even if Condition (iv) above is satisfied, we will not be
able to prove this modular invariance using only An(V ) for n ∈ N and their bimodules
introduced and studied in [HY].

In [H8], the author introduced new associative algebras A∞(V ) and AN (V ) for N ∈
N associated to a vertex operator algebra V . These associative algebras contain An(V )

for n ∈ N as (very small) subalgebras. In fact, An(V ) for n ∈ N are all algebras of zero
modes but acting on different homogeneous subspaces of lower-bounded generalized
V -modules. On the other hand, the associative algebras A∞(V ) and AN (V ) for N ∈ N

introduced by the author in [H8] are algebras of all modes, including all nonzero modes.
In [H9], the author introduced bimodules A∞(W ) and AN (W ) for N ∈ N for these
new associative algebras associated to a lower-bounded generalized V -module W and
proved that the spaces of (logarithmic) intertwining operators are linearly isomorphic to
the corresponding spaces of module maps between suitable modules for these associative
algebras. In Sect. 3 of the present paper, we also introduced associative algebras ˜A∞(V )

and ˜AN (V ) for N ∈ N isomorphic to A∞(V ) and AN (V ) for N ∈ N, respectively, and
the corresponding bimodules ˜A∞(W ) and ˜AN (W ) for N ∈ N associated to a lower-
bounded generalized V -module W . We then transport the results on the associative
algebras A∞(V ) and AN (V ) for N ∈ N, their graded modules and bimodules obtained
in [H8,H9] to the corresponding results on ˜A∞(V ) and ˜AN (V ) for N ∈ N, their graded
modules and bimodules.

In this paper, using the results of Fiordalisi in [F1,F2] and the results on these new
associative algebras, their modules and bimodules in [H8,H9] and Sect. 3 of the present
paper, we prove the modular invariance conjecture for (logarithmic) intertwining op-
erators discussed above. For the precise statement, see Theorem 5.5. Note that all the
modular invariance theorems mentioned above are special cases of Theorem 5.5. In
particular, in the special case studied in [Mi2] that the intertwining operators involved
are vertex operators for grading-restricted generalized V -modules, we obtain a proof of
the modular invariance result in [Mi2] without Condition (iv) above requiring that there
are no finite-dimensional irreducible V -modules. Also, as special cases of the proofs of
(4.22) and (4.37), we recover the proof by McRae [Mc] of Propositions 4.4 in [Mi2] and
obtain a proof of Proposition 4.5 in [Mi2] (see Remarks 4.7 and 4.9).

Here we give a sketch of the proof of this modular invariance conjecture: As is men-
tioned above, we need only prove the modular invariance conjecture in the case n = 1.
To prove the modular invariance conjecture in this case, we introduce a notion of genus-
one 1-point conformal block labeled by a grading-restricted generalized V -module W .
Then the conjecture follows from the following two results: (1) For grading-restricted
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generalized V -modules W and ˜W , the modular transformation of the analytic extension
of the shifted pseudo-q-trace of a geometrically-modified intertwining operator of type
(

˜W
W ˜W

)

is a genus-one 1-point conformal block labeled by W (see Proposition 5.2). (2)
Every genus-one 1-point conformal block labeled by W is the sum of the analytic exten-
sions of the shifted pseudo-q-traces of geometrically-modified intertwining operators of

type
(

˜Wi
W ˜Wi

)

for finitely many grading-restricted generalized V -modules ˜Wi (see Theorem
5.4). The proof of (1) can be obtained easily from the properties of the shifted pseudo-q-
traces of (logarithmic) intertwining operators in [F1,F2]. To prove (2), we first prove that
a genus-one 1-point conformal block labeled by W gives a symmetric linear function on
˜AN (W ) satisfying some additional properties for each N ∈ N. This proof is technically
the most difficult part of this paper. Then using the results on symmetric linear functions
and pseudo-traces proved by Miyamoto [Mi2], Arike [Ar] and Fiordalisi [F1,F2], we
prove that for N sufficiently large, these symmetric linear functions on AN (W ) are in
fact finite sums of pseudo-traces of suitable linear operators on AN (V )-modules. Next
we use a main result in [H9] to show that for N sufficiently large, pseudo-traces of such
linear operators on AN (V )-modules are in fact obtained from shifted pseudo-q-traces
of geometrically-modified (logarithmic) intertwining operators. Finally we show that
when N is sufficiently large, the genus-one 1-point conformal block labeled by W that
we start with is equal to the sum of the analytic extensions of the shifted pseudo-q-traces
of these geometrically-modified (logarithmic) intertwining operators.

The present paper is organized as follows: In Sect. 2, we recall some basic definitions
and results needed in this paper. In Sect. 2.1, we recall the definition of pseudo-traces and
the results about pseudo-traces and symmetric linear functions obtained by Miyaomoto
[Mi2], Arike [Ar] and Fiordalisi [F1]. In Sect. 2.2, we recall the results of Fiordalisi in
[F1] and [F2] on the convergence and analytic extensions of shifted pseudo-q-traces of
products of intertwining operators and their properties. In Sect. 3, for a vertex operator
algebra V , we study further the A∞(V )-bimodule A∞(W ) and the AN (V )-bimodules
AN (W ) for N ∈ N constructed from a lower-bounded generalized V -module W in [H9].
Then we introduce and study new associative algebras ˜A∞(V ) and ˜AN (V ) N ∈ N, the
˜A∞(V )-bimodule ˜A∞(W ) and ˜AN (V )-bimodules ˜AN (W ) for N ∈ N in this section. In
Sect. 4, we give two constructions of symmetric linear functions on ˜AN (V )-bimodules
˜AN (W ) for a grading-restricted generalized V -module W . The first construction is given
by shifted pseudo-q-traces of intertwining operators. The second construction is given by
suitable maps satisfying properties involving the Weierstrass ℘- and ζ -functions. In Sect.
5, we prove our modular invariance theorem (Theorem 5.5) by proving Proposition 5.2
and Theorem 5.4 (the two results (1) and (2) discussed above). We also have two appen-
dices. In Appendix A, we recall some basic facts on the Weierstrass ℘-function ℘2(z; τ)

the Weierstrass ζ -function ℘1(z; τ) and the Eisenstein series G2(τ ). In Appendix B, we
prove and collect a number of identities involving the binomial coefficients. The proof
of the modular invariance theorem in this paper depends heavily on these identities.

2. Pseudo-traces, Symmetric Linear Functions and Pseudo-q-traces

We recall some basic definitions and results in this section. In Sect. 2.1, we recall the
basic definitions and results on pseudo-traces and symmetric linear functions introduced
and obtained by Miyamoto [Mi2], Arike [Ar] and Fiordalisi [F1]. In Sect. 2.2, we recall
the results obtained by Fiordalisi [F1,F2] on genus-one correlation functions constructed
using shifted pseudo-q-traces of products of (logarithmic) intertwining operators.
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2.1. Pseudo-traces and symmetric linear functions. In this subsection, we first recall the
definition of pseudo-traces for a finitely generated right projective module M for a finite-
dimensional associative algebra A introduced by Miyamoto [Mi2] and further studied
by Arike [Ar]. Then we recall a result on symmetric linear functions on A obtained by
Miyamoto [Mi2] and Arike [Ar] and a result on symmetric linear functions on finite-
dimensional A-bimodules obtained by Fiordalisi [F1]. See [Ar] and Fiordalisi [F1] for
details.

Let A be a finite-dimensional associative algebra. Recall that a right A-module M is
said to be projective if every short exact sequence

0 → K → P → M → 0

for right A-modules K and P splits.
Let M be a finitely generated right A-module. A projective basis for M is a pair of

sets {mi }ni=1 ⊂ M , {αi }ni=1 ⊂ HomA(M, A) such that for all m ∈ M ,

m =
n

∑

i=1

miαi (m).

A finitely generated right A-module M has a projective basis if and only if it is projective.
Let M be a right A-module. Then HomA(M, A) has a left A-module structure given

by

(aα)(m) = aα(m)

for a ∈ A, α ∈ HomA(M, A) and m ∈ M . We also have a contraction map

πM : M ⊗A HomA(M, A) → A

m ⊗A α 
→ α(m)

For right A-modules M1 and M2, let

τM1,M2 : M2 ⊗A HomA(M1, A) → HomA(M1, M2)

m2 ⊗A α 
→ τM1,M2(m2 ⊗A α)

be the natural linear map defined by (τM1,M2(m2 ⊗ α))(m1) = m2α(m1) for m1 ∈ M1,
m2 ∈ M2 and α ∈ HomA(M1, M2). In the case that M1 = M2 = M , let τM = τM,M .

For a finitely generated right A-module M , the map τM : M ⊗A HomA(M, A) →
EndAM is an isomorphism so that τ−1

M : EndAM → M ⊗A HomA(M, A) exists. The
Hattori–Stallings trace of an endomorphism α ∈ EndAM is the element

TrMα = πM (τ−1
M (α)) + [A, A]

of A/[A, A]. For finitely generated projective right A-modules M1, M2, f ∈ HomA(M1,

M2) and g ∈ HomA(M2, M1), we have

TrM2 f ◦ g = TrM1g ◦ f.

A linear function φ : A → C is said to be symmetric if φ(ab) = φ(ba) for all
a, b ∈ A. We denote the the space of symmetric linear functions on A by SLF(A).
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Then SLF(A) is linearly isomorphic to (A/[A, A])∗. Any symmetric linear function on
A defines a symmetric bilinear form

〈 , 〉 : A × A → C

by 〈a, b〉 = φ(ab). A symmetric linear function φ on A is said to be nondegenerate
if the corresponding bilinear form is nondegenerate. The radical of a symmetric linear
function on A is defined to be the two sided ideal

rad φ = {

a ∈ A | 〈a, b〉 = 0 for all b ∈ A
}

of A. A symmetric function φ is nondegenerate if and only if rad φ = {0}.
Let M be a finitely generated projective right A-module and {mi }ni=1, {αi }ni=1 a pro-

jective basis. The pseudo-trace function φM on EndAM associated to a linear symmetric
function φ on A is the map φM = φ ◦ TrM : EndAM → C. We can express the
pseudo-trace of α ∈ EndAM in terms of the projective basis as

φM (α) = φ

(

n
∑

i=1

αi (α(mi ))

)

.

For right projective A-modules M1 and M2,α ∈ HomA(M1, M2) andβ ∈ HomA(M2,

M1), we have

φM1(β ◦ α) = φM2(α ◦ β).

A symmetric algebra (or Frobenius algebra) is an associative algebra equipped with
a nondegenerate symmetric linear function. A basic algebra is an associative algebra A
such that A/J (A) is isomorphic to C

n for some n ∈ N, where J (A) is the Jacobson
radical of A.

Theorem 2.1 (Miyamoto [Mi2], Arike [Ar]). Let A be a finite-dimensional associative
algebra and φ ∈ SLF(A). Let 1A = e1 + · · · + en, where 1A is the identity of A and
e1, . . . , en are orthognal primitive central idempotents. Then A = A1 ⊕ · · · ⊕ An is a
decomposition of A as a direct sumof indecomposable A-bimodules, where Ai = Aei for
i = 1, . . . , n. Let φi = φ|Ai for i = 1, . . . , n. For each i , let Pi = ēi (A/Rad(φi ))ēi and
Mi = (A/Rad(φi ))ēi , where ēi = ei +Rad(φi ) ∈ A/Rad(φi ). Then for i = 1, . . . , n, Pi
are basic symmetric algebraswith symmetric linear functions givenbyφi (still denotedby
φi ), and Mi are A-Pi -bimodules , finitely generated and projective as right Pi -modules,
such that

φ(a) =
n

∑

i=1

(φi )Mi (a)

where in each term in the right-hand side, a ∈ A is viewed an element of EndPi Mi given
by the left action a on Mi . Furthermore, if ν is an element of rad φ, that is,

φ(νa) = 0

for all a ∈ A, then νMi = 0.
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Let A be an associative algebra and M an A-bimodule. A linear function φ : M → C

is said to be symmetric if for all m ∈ M and a ∈ A,

φ(am) = φ(ma).

Let P be another associative algebra and U an A-P-bimodule. Then the endomorphism
ring EndPU is an A-A-bimodule with the actions given by (aτ)(u) = a(τ (u)) and
(τa)(u) = τ(au) for a ∈ A, τ ∈ EndPU and u ∈ U .

Now assume that P is finite dimensional andU is finitely generated and projective as
a right P-module. Then for φ ∈ SLF(P), the pseudo-trace φU on EndPU is a symmetric
linear function on the A-bimodule EndPU .

Let M be an A-bimodule and let HomA,P (M⊗AU,U ) be the set of all A-P-bimodule
maps from M ⊗A U to U . Let f ∈ HomA,P (M ⊗A U,U ). Then for any m ∈ M , the
map

U → U

u 
→ f (m ⊗ u)

is an element of EndPU . Define T f : M → EndPU by T f (m) = (u 
→ f (m⊗u)). Then

the map T f is an A-bimodule homomorphism. Let φ
f
U : M → C be the linear function

on M defined by φ
f
U (m) = φU (T f (m)). Then the linear function φ

f
U is symmetric.

We have obtained a map SLF(P) ⊗ HomA,P (M ⊗A U,U ) → SLF(M). We now
want to give an “inverse” map in a suitable sense.

We consider the trivial square-zero extension Ā = A⊕M of A by M with the product
given by

(a1,m1)(a2,m2) = (a1a2, a1m2 + m1a2)

for (a1,m1), (a2,m2) ∈ Ā. Let φ ∈ SLF(M). We extend φ to a linear function φ̄ on Ā
by φ̄(a,m) = φ(m). Then

φ̄((a1,m1)(a2,m2)) = φ̄(a1a2, a1m2 + m1a2)

= φ(a1m2 + m1a2)

= φ(m2a1 + a2m1)

= φ̄(a2a1,m2a1 + a2m1)

= φ̄((a2,m2)(a1,m1)),

which says that φ̄ is in fact symmetric.
Let 1A = e1 + · · · + en , where 1A is the identity of A and e1, . . . , en are orthogonal

primitive central idempotents. Then A = A1 ⊕ · · · ⊕ An is a decomposition of A
as a direct sum of indecomposable A-bimodules, where Ai = Aei for i = 1, . . . , n.
Then A1, . . . , An are in fact two-sided ideal of A and as an associative algebra, A is
canonically isomorphic to the direct product of A1, . . . , An . Let M = M1 ⊕ · · · ⊕ Mn
be a decomposition of M as a direct sum of A1-, . . . , An-bimodules. Since M =
M1 ⊕ · · · ⊕ Mn and for each i , Mi is an Ai -bimodule, we have Ā = Ā1 ⊕ · · · ⊕ Ān ,
where for each i , Āi = Ai + Mi is the trivial square-zero extension of Ai by Mi . Let
φi = φ̄| Āi

for i = 1, . . . , n.
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Theorem 2.2 (Fiordalisi [F1]). Let A be a finite-dimensional associative algebra and
M a finite-dimensional A-bimodule, and let φ ∈ SLF(M). Let 1A = e1 + · · · + en,
where 1A is the identity of A and e1, . . . , en are orthognal primitive central idempotents
such that A = A1 ⊕ · · · ⊕ An is a decomposition of A as a direct sum of A-bimodules,
where Ai = Aei for i = 1, . . . , n, and let M = M1 ⊕ · · · ⊕ Mn be a decomposition
of M as a direct sum of A1-, . . . , An-modules. For each i , let Pi = ēi ( Ā/Rad(φi ))ēi
and Ui = ( Ā/Rad(φi ))ēi , where ēi = ei + Rad(φi ). Then for i = 1, . . . , n, Pi are
basic symmetric algebras with symmetric linear functions given by φi , Ui and A-Pi -
bimodules, finitely generated and projective as right Pi -modules. For each i , let fi ∈
Hom(M ⊗Ui ,Ui ) be defined by fi (m ⊗ ui ) = (0,m)ui for m ∈ M and ui ∈ Ui . Then
fi ∈ HomA,P (M ⊗A Ui ,Ui ) and for any m ∈ M,

φ(m) =
n

∑

i=1

(φi )
fi
Ui

(m).

Moreover, if ν is an element in A such that φ(νm) = 0 for all m ∈ M, then the modules
Ui can be chosen in such a way that νUi = 0 for i = 1, . . . , n.

Proof. The proof of this result is essentially in [F1]. But since we need to give Pi , φi ,
Ui and fi explicitly, we give a complete proof here.

We apply Theorem 2.1 to the algebra Ā. Then P̄i for i = 1, . . . , n are basic symmetric
linear algebras with symmetric linear functions given by φi (still denoted by φi ), and
Ui for i = 1, . . . , n are Ā-P̄i -bimodules, finitely generated and projective as right P̄i -
modules, such that

φ̄(ā) =
n

∑

n=1

(φi )Ui (ā)

for ā ∈ Ā, where in each term in the right-hand side, ā ∈ Ā is viewed as an element of
EndP̄i

Ui given by the left action of ā on Ui . By definition, we have φ̄(a,m) = φ(m) for
a ∈ A and m ∈ M . Then we have

φ(m) = φ̄(0,m) =
n

∑

n=1

(φi )Ui (0,m)

for m ∈ M . Since A is a subalgebra of Ā, Ui is also a left A-module. By the definition
of fi , we have

fi (ma ⊗ u) = (0,ma)ui = ((0,m)(a, 0))ui = (0,m)(aui ) = fi (m ⊗ aui ),

fi (am ⊗ u) = (0, am)ui = ((a, 0)(0,m))ui = a((0,m)ui ) = a fi (m ⊗ u),

fi (m ⊗ u)pi = ((0,m)ui )pi = (0,m)(ui pi ) = fi (m ⊗ ui pi )

for a ∈ A, m ∈ M , ui ∈ Ui and pi ∈ P̄i . So fi ∈ HomA,P̄i
(M ⊗A Ui ,Ui ). Then

(φi )Ui (0,m) = (φi )
fi
Ui

(m).

Thus we obtain

φ(m) =
n

∑

n=1

(φi )
fi
Ui

(m).

��
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2.2. Genus-one correlation functions from shifted pseudo-q-traces. In this subsection,
we recall the results on genus-one correlation functions constructed from shifted pseudo-
q-traces of products of intertwining operators obtained by Fiordalisi in [F1,F2].

Let V be a vertex operator algebra. In this section, though some of the results hold
for more general vertex operator algebras, we assume that V has no nonzero elements of
negative weights (that is, V(n) = 0 for n < 0) and satisfies theC2-cofiniteness conditions
(that is, dim V/C2(V ) < ∞, where C2(V ) = 〈Resx x−2YV (u, x)v | u, v ∈ V 〉).

Let P be a finite-dimensional associative algebra equipped with a symmetric linear
function φ. A grading-restricted (or lower-bounded) generalized (or ordinary) V -module
W equipped with a right P-module structure such that the the vertex operators on W
commute with the right actions of elements of P is called a grading-restricted (or lower-
bounded) generalized (or ordinary) V -P-bimodule.

In this section, we shall consider mostly grading-restricted generalized V -modules
and grading-restricted generalized V -P-bimodules. We shall also consider intertwin-
ing operators without logarithm and logarithmic intertwining operators. For simplicity,
starting from now on, we shall call all these simply intertwining operators, no matter
whether they contain or do not contain the logarithm of the variable.

Let W1, W2 and W3 be grading-restricted generalized V -P-bimodules. For an inter-
twining operator Y of type

( W3
W1W2

)

and w1 ∈ W1, we say that Y(w1, x) is compatible
with P or Y(w1, x) is P-compatible if

(Y(w1, x)w2)p = Y(w1, x)(w2 p)

for w2 ∈ W2 and p ∈ P . An intertwining operator of type
( W3
W1W2

)

compatible with

P or a P-intertwining operator of type
( W3
W1W2

)

is an intertwining operator Y of type
( W3
W1W2

)

such that Y(w1, x) is compatible with P for every w1 ∈ W1. More generally, let

W1, . . . ,Wn , ˜W1, . . . , ˜Wn−1 be grading-restricted generalized V -modules and let ˜W0
and ˜Wn be grading-restricted generalized V -P-bimodules. Let Y1, . . . ,Yn be intertwin-

ing operators of type
(

˜W0
W1 ˜W1

)

, . . . ,
(
˜Wn−1

Wn ˜Wn

)

, respectively. For w1 ∈ W1, . . . , wn ∈ Wn , we
say that the product Y1(w1, x1) · · ·Yn(wn, xn) is compatible with P or is P-compatible
if

(Y1(w1, x1) · · ·Yn(wn, xn)w̃n)p = Y1(w1, x1) · · ·Yn(wn, xn)(w̃n p)

for w̃n ∈ ˜Wn and p ∈ P . We say that the product of Y1, . . . ,Yn is compatible with P
if Y1(w1, x1) · · ·Yn(wn, xn) is compatible with P for all w1 ∈ W1, . . . , wn ∈ Wn . If
for w1 ∈ W1, . . . , wn ∈ Wn , Y1(w1, x1) · · ·Yn(wn, xn) is compatible with P , then the
coefficients of Y1(w1, x1) · · ·Yn(wn, xn) are elements of HomP (˜Wn, ˜W0).

From [H5], we know that the conditions to apply the results in [HLZ1,HLZ2] are
satisfied. In particular, the associativity and commutativity of intertwining operators
hold. In [F1,F2], Fiordalisi studied these properties in the case of grading-restricted
generalized V -P-bimodules and intertwining operators compatible with P . But the main
results in [F1,F2] also hold in such more general settings with the same proofs except that
the associativity and commutativity of intertwining operators compatible with P should
be replaced by the versions of the associativity and commutativity below. For these
associativity and commutativity of intertwining operators, we give complete proofs.

For simplicity, we use

〈w′
4,Y1(w1, z1)Y2(w2, z2)w3〉
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to denote

〈w′
4,Y1(w1, x1)Y2(w2, x2)w3〉

∣

∣

∣

∣

xn1 =en log z1 , xn2 =en log z2 , log x1=log z1, log x2=log z2

,

where for z ∈ C
×, log z = log |z| + i arg z for 0 ≤ arg z < 2π . Similarly, we have the

notation

〈w′
4,Y3(Y4(w1, z1 − z2)w2, z2)w3〉.

We shall use these and similar notations throughout the present paper.

Proposition 2.3. Let W1,W2,W3,W4,W5,W6 be grading-restricted generalized V -
modules and Y1, Y2, Y3 and Y4 intertwining operators of types

( W4
W1W5

)

,
( W5
W2W3

)

,
( W4
W6W3

)

and
( W6
W2W3

)

, respectively, such that

〈w′
4,Y1(w1, z1)Y2(w2, z2)w3〉 = 〈w′

4,Y3(Y4(w1, z1 − z2)w2, z2)w3〉
for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′

4 ∈ W ′
4 in the region |z1| > |z2| >

|z1 − z2| > 0. Assume that W3 and W4 are grading-restricted generalized V -P-
bimodules. Then Y1(w1, x1)Y2(w2, x2) is compatible with P if and only if the coef-
ficients of Y3(Y4(w1, x0)w2, x2) as a formal series in powers of x0 and nonnegative
powers of log x0 is compatible with P. In particular, in the case that the product of Y1
and Y2 is compatible with P and W6 is spanned by the coefficients of Y4(w1, x)w2 for
w1 ∈ W1 and w2 ∈ W2, the product of Y1 and Y2 is compatible with P if and only if Y3
is compatible with P.

Proof. If Y1(w1, x1)Y2(w2, x2) is compatible with P , then in the region |z1| > |z2| >

|z1 − z2| > 0, we have

〈w′
4, (Y3(Y4(w1, z1 − z2)w2, z2)w3)p〉
= 〈pw′

4,Y3(Y4(w1, z1 − z2)w2, z2)w3〉
= 〈pw′

4,Y1(w1, z1)Y2(w2, z2)w3〉
= 〈w′

4, (Y1(w1, z1)Y2(w2, z2)w3)p〉
= 〈w′

4,Y1(w1, z1)Y2(w2, z2)(w3 p)〉
= 〈w′

4,Y3(Y4(w1, z1 − z2)w2, z2)(w3 p)〉 (2.1)

for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3, w′
4 ∈ W ′

4 and p ∈ P . Since both sides of (2.1)
are convergent in the region |z2| > |z1 − z2| > 0, the left-hand and right-hand sides
of (2.1) are equal in this larger region. In this region, we can take the coefficients of
Y4(w1, z1 − z2)w2 in both sides of (2.1). Thus the coefficients of Y3(Y4(w1, x0)w2, x2)

as a formal series in powers of x0 and nonnegative powers of log x0 is compatible with P .
If the product of Y1 and Y2 is compatible with P and W6 is spanned by the coefficients
of Y4(w1, x0)w2 for w1 ∈ W1 and w2 ∈ W2, then we obtain

〈w′
4, (Y3(w6, z2)w3)p〉 = 〈w′

4,Y3(w6, z2)(w3 p)〉
for w3 ∈ W3, w6 ∈ W6, w′

4 ∈ W ′
4 and p ∈ P in the region z2 �= 0. This shows that Y3

is compatible with P .
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Conversely, if the coefficients of Y3(Y4(w1, x0)w2, x2) as a series in powers of x0
and nonnegative powers of log x0 are compatible with P , then in the region |z1| > |z2| >

|z1 − z2| > 0, we have

〈w′
4, (Y1(w1, z1)Y2(w2, z2)w3)p〉
= 〈pw′

4,Y1(w1, z1)Y2(w2, z2)w3〉
= 〈pw′

4,Y3(Y4(w1, z1 − z2)w2, z2)w3〉
= 〈w′

4, (Y3(Y4(w1, z1 − z2)w2, z2)w3)p〉
= 〈w′

4,Y1(w1, z1)Y2(w2, z2)(w3 p)〉
= 〈w′

4,Y1(w1, z1)Y2(w2, z2)(w3 p)〉 (2.2)

for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3, w′
4 ∈ W ′

4 and p ∈ P . Since both sides of (2.2)
are convergent in the region |z1| > |z2| > 0, the left-hand and right-hand sides of (2.1)
are equal in this larger region. This shows that Y1(w1, x1)Y2(w2, x2) is compatible
with P . If Y3 is compatible with P , then the coefficients of Y3(Y4(w1, x0)w2, x2) as a
series in powers of x0 and nonnegative powers of log x0 are compatible with P . Thus
Y1(w1, x1)Y2(w2, x2) is compatible with P for all w1 ∈ W1 and w2 ∈ W2, that is, the
product of Y1 and Y2 is compatible with P . ��

For two analytic functions f and g on two regions, we shall use f ∼ g to mean that
f and g are analytic extensions of each other.

Proposition 2.4. Let W1,W2,W3,W4,W5,W6 be grading-restricted generalized V -
modules and Y1, Y2, Y5 and Y6 intertwining operators of types

( W4
W1W5

)

,
( W5
W2W3

)

,
( W4
W2W6

)

and
( W6
W1W3

)

, respectively, such that

〈w′
4,Y1(w1, z1)Y2(w2, z2)w3〉 ∼ 〈w′

4,Y5(w2, z2)Y6(w1, z1)w3〉
for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′

4 ∈ W ′
4. Assume that W3 and W4 are grading-

restricted generalized V -P-bimodules. Then Y1(w1, z1)Y2(w2, z2) is compatible with
P if and only if Y5(w2, z2)Y6(w1, z1) is compatible with P. In particular, the product
of Y1 and Y2 is compatible with P if and only if the product of Y5 and Y6 is compatible
with P.

Proof. We need only prove the “if” part; the “only if" part is obtained by symmetry.
If Y5(w2, z2)Y6(w1, z1) is compatible with P , then we have

〈w′
4, (Y1(w1, z1)Y2(w2, z2)w3)p〉
= 〈pw′

4,Y1(w1, z1)Y2(w2, z2)w3〉
∼ 〈pw′

4,Y5(w2, z2)Y6(w1, z1)w3〉
= 〈w′

4, (Y5(w2, z2)Y6(w1, z1)w3)p〉
= 〈w′

4,Y5(w1, z1)Y6(w2, z2)(w3 p)〉
∼ 〈w′

4,Y1(w1, z1)Y2(w2, z2)(w3 p)〉. (2.3)

Since both sides of (2.3) are analytic functions in the same region |z1| > |z2| > 0, 0 ≤
arg z1, arg z2 < 2π , these two sides must be equal, proving that Y1(w1, z1)Y2(w2, z2)

is compatible with P . If the product of Y5 and Y6 is compatible with P , then Y1(w1,

z1)Y2(w2, z2) is compatible with P for all w1 ∈ W1 and w2 ∈ W2. Thus the product of
Y1 and Y2 is compatible with P . ��
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Let W be a grading-restricted generalized V -P-bimodules which is projective as a
right P-module. Then for each n ∈ C, the homogeneous subspace W[n] of W of confor-
mal weight n is a finite-dimensional right projective P-module. Let φ be a symmetric
linear function on P . We have a pseudo-trace function φW[n] on EndPW[n] (see Sect.
2.1). We also know that W is of finite length. Let K be the length of W . Then we know
that LW (0)K+1

N is 0. For f ∈ HomP (W,W ), define

TrφW f qLW (0) =
∑

n∈C

K
∑

k=0

φW[n]

(

πn f
LW (0)kN

k!

)

∣

∣

∣

∣

W[n]
(log q)kqn,

where for n ∈ C, πn is the projection from W to W[n].
For a lower-bounded generalized V -module W , as in [H2], let

UW (x) = (2π i x)LW (0)e−L+
W (A) ∈ (End W ){x}[log x],

where (2π i)LW (0) = e(log 2π+i π
2 )LW (0), x LW (0) = x LW (0)S e(log x)LW (0)N , L+

W (A) =
∑

j∈Z+
A j LW ( j) and A j for j ∈ N are given by

1

2π i
log(1 + 2π iy) =

⎛

⎝exp

⎛

⎝

∑

j∈Z+

A j y
j+1 ∂

∂y

⎞

⎠

⎞

⎠ y.

For Y = YW , (1.5) in [H2] gives

UW (1)YW

(

v,
1

2π i
log(1 + x)

)

= YW ((1 + x)LV (0)UV (1)v, x)UW (1) (2.4)

for v ∈ V . Let Y be an intertwining operator of type
( W3
WW2

)

, where W2 and W3 are also

lower-bounded generalized V -modules. For z ∈ C, let qz = e2π i z . Then as in [H2], we
call Y(UW1(qz)w1, qz) a geometrically-modified intertwining operator.

Let W1, . . . ,Wn , ˜W1, . . . , ˜Wn−1 be grading-restricted generalized V -modules and
let ˜W0 = ˜Wn be a grading-restricted generalized V -P-bimodule which is projective as a

right P-module. Let Y1, . . . ,Yn be intertwining operators of types
(

˜W0
W1 ˜W1

)

, . . . ,
(
˜Wn−1

Wn ˜Wn

)

,
respectively. We assume that

Y1(UW1(qz1)w1, x1) · · ·Yn(UWn (qzn )wn, xn) (2.5)

is compatible with P . If the product of Y1, . . . ,Yn is compatible with P , then this
assumption is true for any w1 ∈ W1, . . . , wn ∈ Wn . Since the product

Y1(UW1(qz1)w1, qz1) · · ·Yn(UWn (qzn )wn, qzn )

of geometrically-modified intertwining operators is absolutely convergent to an element
of Hom(W,W ), it is in fact absolutely convergent to an element of HomP (W,W ). Then
we have the pseudo-qτ -trace shifted by − c

24 or simply the shifted pseudo-qτ -trace

Trφ
W̃n

Y1(UW1(qz1)w1, qz1) · · ·Yn(UWn (qzn )wn, qzn )q
L(0)− c

24
τ (2.6)

of products of n geometrically-modified intertwining operators.
We now state several results of Fiordalisi in [F1,F2] generalizing the corresponding

results in [H2] in the semisimple case. As we discussed above, our statements of these
results are slightly more general than those in [F1,F2] but the proofs there in fact already
gave these results.
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Theorem 2.5 (Convergence and analytic extension [F1] [F2]). Forw1 ∈ W1, . . . ,wn ∈
Wn such that (2.5) is compatible with P, the series (2.6) is absolutely convergent in
the region 1 > |qz1 | > · · · > |qzn | > |qτ | > 0 and can be analytically extended to
a multivalued analytic function in the region �(τ ) > 0, zi �= z j + kτ + l for i �= j ,
k, l ∈ Z.

For w1 ∈ W1, . . . , wn ∈ Wn , we denote the multivalued analytic function in Theorem
2.5 by

F
φ

Y1,...,Yn
(w1, . . . , wn; z1, . . . , zn; τ). (2.7)

Note that the multivalued analytic function (2.7) has a particular branch (usually called
a preferred branch by the author) in the region |qz1 | > · · · > |qzn | > |qτ | > 0 given
by (2.6). Such a function of z1, . . . , zn and τ is called a genus-one n-point correlation
function from a shifted pseudo-qτ -trace.

Theorem 2.6 (Genus-one commutativity [F1] [F2]). For w1 ∈ W1, . . . , wn ∈ Wn such
that (2.5) is compatible with P and for 1 ≤ k ≤ n − 1, there exist grading-restricted

generalized V -modules ̂Wk and intertwining operators ̂Yk and ̂Yk+1 of types
(

̂Wk
Wk ˜Wk+1

)

and
(

˜Wk−1

Wk+1 ̂Wk

)

, respectively, such that

Y1(UW1(qz1)w1, x1) · · ·Yk−1(UWk−1(qzk−1)wk−1, xk−1)̂Yk+1(UWk+1(qzk+1)wk+1, xk+1)·
· ̂Yk(UWk (qzk )wk, xk)Yk+2(UWk+2(qzk+2)wk+2, xk+2) · · ·Yn(UWn (qzn )wn, xn)

is compatible with P and

F
φ

Y1,...,Yn
(w1, . . . , wn; z1, . . . , zn; τ)

= F
φ

Y1,...,Yk−1,̂Yk+1,̂Yk ,Yk+2...,Yn
(w1, . . . , wk−1, wk+1, wk, wk+2, . . . , wn;

z1, . . . , zk−1, zk+1, zk, zk+2, . . . , zn; τ).

More generally, for any σ ∈ Sn, there exist grading-restricted generalized V -modules
̂Wi for i = 1, . . . , n−1 and intertwining operators ̂Yi of types

(
̂Wi−1

Wσ(i) ̂Wi

)

for i = 1, . . . , n

(where ̂W0 = ̂Wn = ˜W0 = ˜Wn), respectively, such that

̂Y1(UWσ(1)
(qzσ(1)

)wσ(1), xσ(1)) · · · ̂Yn(UWσ(n)
(qzσ(n)

)wσ(n), xσ(n))

is compatible with P and

F
φ

Y1,...,Yn
(w1, . . . , wn; z1, . . . , zn; τ)

= F
φ
̂Y1,...,̂Yn

(wσ(1), . . . , wσ(n); zσ(1), . . . , zσ(n); τ).

Theorem 2.7 (Genus-one associativity [F1] [F2]). For w1 ∈ W1, . . . , wn ∈ Wn such
that (2.5) is compatible with P and for 1 ≤ k ≤ n − 1, there exist a grading-restricted

generalized V -module ̂Wk and intertwining operators ̂Yk and ̂Yk+1 of types
(

̂Wk
WkWk+1

)

and
(

˜Wk−1
̂Wk ˜Wk+1

)

, respectively, such that the coefficients as a series in powers of x0 and
nonnegative powers of log x0 of
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Y1(UW1 (qz1 )w1, x1) · · ·Yk−1(UWk−1 (qzk−1 )wk−1, xk−1)̂Yk+1(UWk+1 (qzk+1 )
̂Yk(wk , x0)wk+1, xk+1)·

· Yk+2(UWk+2 (qzk+2 )wk+2, xk+2) · · ·Yn(UWn (qzn )wn, xn)

is compatible with P and

Fφ

Y1,...,Yk−1,̂Yk+1,Yk+2,...,Yn
(w1, . . . , wk−1,

̂Y(wk, zk − zk+1)wk+1, wk+2, . . . , wn; z1, . . . , zk−1, zk+1, . . . , zn; τ)

=
∑

r∈R
F

φ

Y1,...,Yk−1,̂Yk+1,Yk+2,...,Yn
(w1, . . . , wk−1,

πr (̂Y(wk, zk − zk+1)wk+1), wk+2, . . . , wn; z1, . . . , zk−1, zk+1, . . . , zn; τ)

is absolutely convergent in the region 1 > |qz1 | > · · · > |qzk−1 | > |qzk+1 | > · · · >

|qzn | > |qτ | > 0 and 1 > |q(zk−zk+1) − 1| > 0 and is convergent to

F
φ

Y1,...,Yn
(w1, . . . , wn; z1, . . . , zn; τ)

in the region 1 > |qz1 | > · · · > |qzn | > |qτ | > 0, |q(zk−zk+1)| > 1 > |q(zk−zk+1)−1| > 0.

3. Associative Algebras, Lower-Bounded Generalized V -Modules and
Intertwining Operators

In [H2], for a vertex operator algebra V , an associative algebra ˜A(V ) isomorphic to
the Zhu algebra A(V ), ˜A(V )-modules and ˜A(V )-bimodules are introduced and used in
the proof in the same paper of the modular invariance conjecture of Moore and Seiberg
for rational conformal field theories. In [H8,H9], the associative algebras A∞(V ) and
AN (V ) for N ∈ N, their graded modules and their bimodules associated to a lower-
bounded generalized V -module W are introduced and studied. In this section, we first
prove more results on the A∞(V )-bimodule A∞(W ) and the AN (V )-bimodules AN (W )

for N ∈ N, which will be needed in Sect. 4. We then introduce associative algebras
˜A∞(V ) and ˜AN (V ) for N ∈ N isomorphic to the associative algebras A∞(V ) and
AN (V ) for N ∈ N. As in [H2], these algebras and their modules can be obtained
by using some operators corresponding to a canonical conformal transformation from
an annulus to a parallelogram on V and on lower-bounded generalized V -modules,
respectively. We then transport the results obtained in [H8,H9] using these operators
to results on ˜A∞(V ), ˜AN (V ) for N ∈ N, their modules and their bimodules. We refer
the reader to [H8,H9] for the basic material and notations on these associative algebras,
their modules and bimodules.

In this section, we in general do not assume that V is C2-cofinite. But we will prove
some results needed in later sections when V is C2-cofinite.

Let W = ∐

m∈C W[m] be a lower-bounded generalized V -module, where W[m] for
m ∈ C are generalized eigenspaces for LW (0) with eigenvalues m. Let

�(W ) = {μ ∈ C/Z | there exists a nonzero w ∈ W of weight in μ},
hμ ∈ μ such that W[hμ] �= 0 but W[hμ−n] = 0 for n ∈ Z+, and

W� n � =
∐

μ∈�(W )

W[hμ+n].
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Then we have

W =
∐

μ∈�(W )

∐

n∈N
W[hμ+n] =

∐

n∈N
W� n �.

See [H9] for more details.
We first prove some results on A∞(W ). Recall from [H9] that U∞(W ) is the space

of column-finite infinite matrices with entries in W , but doubly indexed by N instead of
Z+. Recall also that for w ∈ W and k, l ∈ N, [w]kl is the matrix with the (k, l)-entry
being w and all the other entries being 0. Elements of U∞(W ) are suitable (possibly
infinite) sums of elements of the form [w]kl for w ∈ W , k, l ∈ N.

Let O∞(W ) be the subspace of U∞(W ) spanned by infinite linear combinations of
elements of the form

Resx x
−k−l−p−2(1 + x)l [YW ((1 + x)LV (0)v, x)w]kl

for v ∈ V , w ∈ W , k, l, p ∈ N, with each pair (k, l) appearing in the linear combinations
only finitely many times.

Let W2 and W3 be lower-bounded generalized V -modules and Y an intertwining
operator of type

( W3
WW2

)

. Then as we discussed above,

W2 =
∐

μ∈�(W2)

∐

n∈N
(W2)[hμ

2 +n] =
∐

n∈N
(W2)�n�,

W3 =
∐

ν∈�(W3)

∐

n∈N
(W3)[hν

3+n] =
∐

n∈N
(W3)�n�.

For w ∈ W , let Y0(w, x) be the constant term in Y(w, x) when Y(w, x) is viewed as
a power series in log x . Then we have a linear map ϑY : U∞(W ) → Hom(W2,W3)

defined by

ϑY ([w]kl)w2 =
∑

ν∈�(W3)

Resx x
hμ

2 −hν
3+l−k−1Y0(x LW (0)Sw, x)w2

for k, l ∈ N, w ∈ W and w2 ∈ W2. Let Q∞(W ) be the intersection of ker ϑY for all
lower-bounded generalized V -modules W2 and W3 and all intertwining operators Y of
type

( W3
WW2

)

.

Proposition 3.1. We have O∞(W ) ⊂ Q∞(W ).

Proof. From the definition of Q∞(W ), we need to prove ϑY (O∞(V )) = 0 for every
pair of lower-bounded generalized V -modules W2, W3 and every intertwining operator
Y of type

( W3
WW2

)

. For

Resx0x
−k−l−p−2
0 (1 + x0)

l [YW ((1 + x0)
L(0)v, x0)w]kl ∈ O∞(W ),

where v ∈ V , w ∈ W , k, l, p ∈ N, and for μ ∈ �(W2), w2 ∈ (W2)[hμ
2 +l] ⊂ (W2)�l�,

we have
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ϑY (Resx0 x
−k−l−p−2
0 (1 + x0)

l [YV ((1 + x0)
L(0)v, x0)w]kl)[w2]l

=
∑

ν∈�(W3)

Coeff0
log x2

Resx2 x
hμ

2 −hν
3+l−k−1

2 Resx0 x
−k−l−p−2
0 (1 + x0)

l ·

· [Y(x LV (0)
2 YW ((1 + x0)

L(0)v, x0)w, x2)w2]k
=

∑

ν∈�(W3)

Coeff0
log x2

Resx2 x
hμ

2 −hν
3+l−k−1

2 Resx0 x
−k−l−p−2
0 (1 + x0)

l ·

· [Y(YW (x LV (0)
2 (1 + x0)

L(0)v, x0x2)x
LV (0)
2 w, x2)w2]k

=
∑

ν∈�(W3)

Resx0 Coeff0
log x2

Resx2 x
−k−l−p−2
0 x

hμ
2 −hν

3−k−1
2 Resx1 x

l
1·

· x−1
1 δ

(

x2 + x0x2

x1

)

[Y(YW (x LV (0)
1 v, x0x2)x

LV (0)
2 w, x2)w2]k

=
∑

ν∈�(W3)

Resx0 Coeff0
log x2

Resx2 x
−k−l−p−2
0 x

hμ
2 −hν

3−k−1
2 Resx1 x

l
1·

· x−1
0 x−1

2 δ

(

x1 − x2

x0x2

)

[YW3(x
LV (0)
1 v, x1)Y(x LW (0)

2 w, x2)w2]k

−
∑

ν∈�(W3)

Resx0 Coeff0
log x2

Resx2 x
−k−l−p−2
0 x

hμ
2 −hν

3−k−1
2 Resx1 x

l
1·

· x−1
0 x−1

2 δ

(

x2 − x1

−x0x2

)

[Y(x LW (0)
2 w, x2)YW2 (x

LV (0)
1 v, x1)w2]k

=
∑

ν∈�(W3)

Resx1 Coeff0
log x2

Resx2 x
−k−p−2
1 (1 − x−1

1 x2)
−k−l−p−2·

· xh
μ
2 −hν

3+l+p
2 [YW3(x

LV (0)
1 v, x1)Y(x LW (0)

2 w, x2)w2]k
−

∑

ν∈�(W3)

Resx1 Coeff0
log x2

Resx2 (−1 + x1x
−1
2 )−k−l−p−2·

· xl1xh
μ
2 −hν

3−k−2
2 [Y(x LW (0)

2 w, x2)YW2 (x
LV (0)
1 v, x1)w2]k . (3.1)

Since w2 ∈ (W2)[hμ
2 +l] and the series (1 − x−1

1 x2)
−k−l−p−2 contains only nonnegative

powers of x2,

Resx2(1 − x−1
1 x2)

−k−l−p−2x
hμ

2 −hν
3+l+p

2 Y(x LV (0)
2 w, x2)w2 = 0.

So the first term in the right-hand side of (3.1) is 0. Since w2 ∈ (W2)[hμ
2 +l] and the series

(−1 + x1x
−1
2 )−k−l−p−2 contains only nonnegative powers of x1,

Resx1(−1 + x1x
−1
2 )−k−l−p−2xl1YW2(x

LV (0)
1 v, x1)w2 = 0.

So the second term in the right-hand side of (3.1) is also 0. Thus we have ϑY (O∞(W )) =
0. ��

Recall

UNN (V ) =
{

N
∑

k=0

[v]kk
∣

∣

∣

∣

v ∈ V

}

⊂ U∞(V )
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and the subalgebra

ANN (V ) =
{

N
∑

k=0

[v]kk + Q∞(V )

∣

∣

∣

∣

v ∈ V

}

of A∞(V ) in Section 4.1 [H8]. Let

UNN (W ) =
{

N
∑

k=0

[w]kk
∣

∣

∣

∣

w ∈ W

}

⊂ U∞(W )

and

ANN (W ) =
{

N
∑

k=0

[w]kk + Q∞(V )

∣

∣

∣

∣

w ∈ V

}

⊂ A∞(W ).

Also let QNN (W ) = Q∞(W )∩UNN (W ) and ONN (W ) = O∞(W )∩UNN (W ). Then
ANN (W ) is linearly isomorphic to UNN (W )/QNN (W ).

In the proof of the next result, we shall use the results on the AN (V )-bimodule
AN (W ) introduced in [HY]. Here we briefly recall some basic definitions and results.
For u ∈ V and w ∈ W , we define

u ∗N w =
N
∑

m=0

(−1)m
(

m + N

N

)

Resx x
−N−m−1YW ((1 + x)L(0)+Nu, x)w,

w ∗N u =
N
∑

m=0

(−1)m
(

m + N

N

)

Resx x
−N−m−1·

· (1 + x)−(LW (−1)+LW (0))YW
WV ((1 + x)L(0)+Nw, x)u.

Let ON (W ) be the subspace of W spanned by elements of the form

Resx x
−2N−2YW ((1 + x)L(0)+Nu, x)w

for u ∈ V and w ∈ W . Let AN (W ) = W/ON (W ). Then it is proved in [HY] that
AN (W ) is an AN (V )-bimodule with the left and right actions induced from ∗N above.
For a lower-bounded generalized V -module

W =
∐

μγ (W )

∐

n∈N
W[hμ+n] =

∐

n∈N
W�n�,

let �0
N (W ) = ∐N

n=0 W�n� and GN (W ) = W�N�. Then �0
N (W ) is a left AN (V )-

module and GN (W ) is a left AN (V )-submodule of �0
N (W ). Theorem 6.1 in [HY]

give a construction of a lower-bounded generalized V -module SN (GN (W )) from the
left AN (V )-module GN (W ) such that GN (SN (GN (W ))) is equivalent to GN (W ) as
AN (V )-modules. See [HY] for details.

Proposition 3.2. For N ∈ N, QNN (W ) = ONN (W ).
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Proof. By Proposition 3.1, ONN (W ) ⊂ QNN (W ). So we need only prove QNN (W ) ⊂
ONN (W ).

For a lower-bounded generalized V -module W , by Theorem 6.1 in [HY], we have
a lower-bounded generalized V -module SN (GN (W )) such that GN (SN (GN (W ))) is
equivalent to GN (W ) as modules for AN (V ). In fact, in the construction in [HY],
GN (W ) can be an arbitrary AN (V )-module M and we obtain a lower-bounded gener-
alized V -module SN (M) such that GN (SN (M)) is equivalent to M as AN (V )-modules
and satisfies the following universal property: For any lower-bounded generalized V -
module W and any AN (V )-module map φ : M → GN (W ), there is a unique V -module
map φ̄ : SN (M) → W such that φ̄|GN (W ) = φ. Note that SN (M) can also be constructed
using the method in Section 5 of [H6].

We view AN (V ) as a left AN (V )-module. Then we obtain a lower-bounded gener-
alized V -module SN (AN (V )). Let W2 = SN (AN (V )). From the construction, we have
GN (W2) = AN (V ).

We now construct a lower-bounded generalized V -module W3 such that GN (W3) =
AN (W ) ⊗AN (V ) AN (V ) and an intertwining operator Y of type

( W3
WW2

)

. We have

W =
∑

μ∈�(W )

∐

n∈N
W[hμ+n]

and
W2 =

∑

ν∈�(W2)

∐

n∈N
(W2)[hν

2+n].

Fix h3 ∈ C. Consider the space

M =
∐

μ∈�(W ),ν∈�(W2)

W ⊗ t−(h3−hμ−hν
2)
C[t, t−1] ⊗ W2.

We shall write an element of M of the form w ⊗ tn ⊗ w2 as w(n, 0)w2 for w ∈ W ,
n ∈ −(h3 − hμ − hν

2) +Z and w2 ∈ W2. We define the weight of the element w(n, 0)w2
to be wt w − n − 1 + wt w2 when w and w2 are homogeneous. We define LM (0)S be
the operator on M given by this weight grading. We also define an operator LM (0)N on
M by

LM (0)Nw(n, 0)w2 = (LW (0)Nw)(n, 0)w2 + w(n, 0)(LW2(0)Nw2).

Then we have an operator LM (0) = LM (0)S + LM (0)N .
From M with the grading defined above and the operator LM (0), g = 1V and

B = h3, we obtain a universal generalized lower-bounded V -module ̂W3 = ̂M1V
h3

using
the construction given in Section 4.2 of [H7] based on the construction in Sect. 5 of
[H6]. Let

̂Y0(w, x)w2 =
∑

n∈−(h3−hμ−hν
2)+N

w(n, 0)w2x
−n−1

for w ∈ ∐

n∈N W[hμ+n], w2 ∈ ∐

n∈N W[hν
2+n] and

̂Y(w, x)w2 = x L ̂W3
(0)

̂Y0(x−LW (0)w, 1)x−LW2 (0)w2

for w ∈ W andw2 ∈ W2. We defineo
̂Y (w)w2 to bew(wt w+wt w2−h3−N−1, 0)w2 for

homogeneous w ∈ W and w2 ∈ GN (W2) = AN (V ) and extend the definition linearly



131 Page 20 of 82 Y. Huang

to general w ∈ W and w2 ∈ AN (V ). Let J1 be the generalized V -submodule of ̂W3
generated by the elements of the forms o

̂Y (w)w2 for w ∈ ON (W ) and w2 ∈ AN (V )

and o
̂Y (w ◦N v)w2 − o

̂Y (w)((v + ON (V )) ◦N w2) for w ∈ W , v ∈ V and w2 ∈ AN (V )

and the coefficients of the formal series of the following form
d

dx
̂Y(w, x)w2 − ̂Y(LW (−1)w, x)w2,

Y
̂W3

(v, x1)̂Y(w, x2)w2 − ̂Y(w, x2)YW2 (v, x1)w2

− Resx0 x
−1
1 δ

(

x2 + x0

x1

)

̂Y(YW (v, x0)w, x2)w2

for v ∈ V , w ∈ W and w2 ∈ W2. Then the lower-bounded generalized V -module
̂W3/J1 is generated by the coefficients of formal series of the form ̂Y(w, x)w2 + J1 for
w ∈ W and w2 ∈ AN (V ). Moreover, elements of ̂W3/J1 of the form o

̂Y (w)(v+ON (V ))

for w ∈ W and v ∈ V can be written uniquely as o
̂Y (w ◦N v)(1 + ON (V )). From the

definition of J1, we see that o
̂Y (w)(1+ON (V )) is not in J1 if and only if w ∈ W \ON (W ),

or equivalently, o
̂Y (w)(1 + ON (V )) is in J1 if and only if w ∈ ON (W ).

We define a linear map from AN (W ) = AN (W ) ⊗AN (V ) AN (V ) to ̂W3/J1 by
w + ON (W ) 
→ o

̂Y (w)(1 + ON (V )) + J1.

Then by the discussion above, we see that this map is injective. In particular, we can
identify the subspace D of ̂W3/J1 consisting of elements of the formo

̂Y (w)(1+ON (V ))+
J1 with AN (W ). Since by construction, elements of the form o

̂Y (w)(v + ON (V )) + J1

for w ∈ W and v ∈ V is in GN (̂W3/J1), we have D ⊂ GN (̂W3/J1).
Let J2 be the generalized V -submodule of ̂W3/J1 generated by the coefficients of

the formal series of the form

(x0 + x2)
wt v+N

̂Y(YW (v, x0)w, x2)w2

− (x0 + x2)
wt v+NY

̂W3
(v, x0 + x2)̂Y(w, x2)w2 + J1

for homogeneous v ∈ V , w ∈ W and w2 ∈ AN (V ). Let W3 = (̂W3/J1)/J2. Then W3
is a lower-bounded generalized V -module. Let

Y : W ⊗ W2 → W3{x}[log x]
w ⊗ w2 
→ Y(w, x)w2

be a linear map defined by

Y(w, x)w2 = (̂Y(w, x)w2 + J1) + J2

for w ∈ W and w2 ∈ W2. By the definitions of J1 and J2, we see that Y satisfies
the lower-truncation property, the L(−1) property, the commutator formula for one
intertwining operator and the weak associativity for one intertwining operator when
acting on AN (V ). The commutativity for one intertwining operator and generalized
rationality for one intertwining operator follows from the commutator formula for one
intertwining operator. Using this commutativity, we obtain the weak associativity for
one intertwining operator acting on W2. The weak associativity for one intertwining
operator gives the associativity for one intertwining operator. Since the lower-truncation
property, the L(−1)-derivative property, the generalized rationality, commutativity and
associativity for one intertwining operator holds for Y , we see that Y is an intertwining
operator of type

( W3
WW2

)

.
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We want to show that D∩ J2 = 0 and then we can view D as a subspace of GN (W3).
We consider the graded dual space (̂W3/J1)

′ with respect to the N-grading of ̂W3/J1.
Given an element d∗ ∈ D∗, we extend it to an element of GN ((̂W3/J1)

′) as follows: For
w ∈ W , v ∈ V , w2 ∈ AN (V ) and z1, z2 satisfying |z2| > |z1 − z2| > 0,

〈d∗, ̂Y(YW (v, z1 − z2)w, z)w2 + J1〉
is well defined. On the other hand, since the commutator formula for Y

̂W3
(v, z1) and

̂Y(w, z2) holds modulo J1, Y
̂W3

(v, z1)̂Y(w, z2)w2 + J1 is absolutely convergent to an
element of the algebraic completion of ̂W3/J1. We define

〈d∗,Y
̂W3

(v, z1)̂Y(w, z2)w2 + J1〉 = 〈d∗, ̂Y(YV (v, z1 − z2)w, z)w2 + J1〉
for z1, z2 ∈ C satisfying |z1| > |z2| > |z1 − z2| > 0. Since the homogeneous compo-
nents of Y>

W 3
(v, z1)

>Y(w, z2)w2 + J1 for v ∈ V , w ∈ W and w2 ∈ AN (V ) span ̂W3/J1,

d∗ gives an element of GN ((̂W3/J1)
′). Thus we can identify D∗ with a subspace of

GN ((̂W3/J1)
′).

We define a subspace J3 of ̂W3/J1 to be the subspace annihilated by D∗, that is

J3 = {ŵ3 + J1 | ŵ3 ∈ Ŵ3, 〈d∗, ŵ3 + J1〉 = 0 for d∗ ∈ D∗}.
We now show that J2 ⊂ J3. The space J2 is spanned by the coefficients of the formal
series

(x0 + x2)
wt v+NY

̂W3
(u, x)̂Y(YW (v, x0)w, x2)w2

− (x0 + x2)
wt v+NY

̂W3
(u, x)Y

̂W3
(v, x0 + x2)̂Y(w, x2)w2 + J1 (3.2)

for u, v ∈ V (with v being homogeneous), w ∈ W and w2 ∈ AN (V ). When we substitute
z, z1 − z2 and z2 for x , x0 and x2, where z, z1 and z2 are complex numbers satisfying
|z| > |z1| > |z2| > |z1 − z2| > 0, (3.2) is absolutely convergent to element

zwt v+N
1 Y

̂W3
(u, z)̂Y(YW (v, z1 − z2)w, z2)w2

− zwt v+N
1 Y

̂W3
(u, z)Y

̂W3
(v, z1)̂Y(w, z2)w2 + J 1 (3.3)

of the algebraic completion of ̂W3/J1, where J 1 is the algebraic completion of J1.
Moreover, the homogeneous components of these elements in the algebraic comple-
tion of ̂W3/J1 also span J2. For d∗ ∈ D∗, by the definition of d∗ as an element of
GN ((̂W3/J1)

′) and the associativity for the vertex operator map YW and Y
̂W3

, we have

〈d∗, zwt v+N
1 Y

̂W3
(u, z)̂Y(YV (v, z1 − z2)w, z2)w2 + J 1〉

∼ zwt v+N
1 〈d∗, ̂Y(YW (u, z − z2)YW (v, z1 − z2)w, z2)w2 + J 1〉

∼ zwt v+N
1 〈d∗, ̂Y(YW (YV (u, z − z1)v, z1 − z2)w, z2)w2 + J 1〉

∼ zwt v+N
1 〈d∗,Y

̂W3
(YV (u, z − z1)v, z1)̂Y(w, z2)w2 + J 1〉

∼ 〈d∗, zwt v+N
1 Y

̂W3
(u, z)Y

̂W3
(v, z1)̂Y(w, z2)w2 + J 1〉, (3.4)

where ∼ means “can be analytically extended to.” Note that z2 can be fixed for each of
the analytic extension step in (3.4). So the analytic extensions in (3.4) do not change
the value of log z2. Since the left-hand side and right-hand side of (3.4) are convergent
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absolutely in the region |z| > |z2| > |z1 − z2| > 0 and |z| > |z1| > |z2| > 0,
respectively, we see that in the region |z| > |z1| > |z2| > |z1 − z2| > 0, we have

〈d∗, zwt v+N
1 Y

̂W3
(u, z)̂Y(YV (v, z1 − z2)w, z2)w2 + J 1〉

= 〈d∗, zwt v+N
1 Y

̂W3
(u, z)Y

̂W3
(v, z1)̂Y(w, z2)w2 + J 1〉. (3.5)

For such z, z1 and z2, we can rewrite (3.5) as
〈

d∗,
(

zwt v+N
1 Y

̂W3
(u, z)̂Y(YV (v, z1 − z2)w, z2)

−zwt v+N
1 Y

̂W3
(u, z)Y

̂W3
(v, z1)̂Y(w, z2)w2 + J 1

)〉

= 0. (3.6)

Since J2 is spanned by the homogeneous components of elements of the form (3.3),
we see from (3.6) that J2 ⊂ J3. Then D ∩ J2 ⊂ D ∩ J3 = 0. So we can view D as a
subspace of GN (W3).

From Proposition 5.7 in [HY], we have an AN (V )-module map

ρ(Y) : AN (W ) ⊗AN (V ) �0
N (W2) → �0

N (W3)

defined by

ρ(Y)((w + ON (W )) ⊗ w2) =
N
∑

n=0

Resx x
−h3−n−1Y0(x LW (0)sw, x)x LW2 (0)sw2

=
N
∑

n=0

Ywt w+wt w2−h3−n−1,0(w)w2,

for homogeneous w ∈ W , w(2) ∈ �0
N (W2). Note that GN (W2) is an AN (V )-submodule

of �0
N (W2) and AN (W ) ⊗AN (V ) GN (W2) is an AN (V )-submodule of AN (W ) ⊗AN (V )

�0
N (W2). Also the projection πGN (W3) from �0

N (W3) to GN (W3) is an AN (V )-module
map. Then we obtain an AN (V )-module map

f = πGN (W3) ◦ ρ(Y) ◦ eGN (W2) : AN (W ) ⊗AN (V ) GN (W2) → GN (W3),

where eGN (W2) is the embedding map from AN (W )⊗AN (V )GN (W2) to AN (W )⊗AN (V )

�0
N (W2). Since GN (W2) = AN (V ), we see that

AN (W ) ⊗AN (V ) GN (W2) = AN (W ) ⊗AN (V ) (1 + ON (V ))

is equivalent as a left AN (V )-module to AN (W ). In particular, f can be viewed as an
AN (V )-module map from AN (W ) to GN (W3).

If f (w + ON (W )) = 0 for homogeneous w ∈ W , by the definitions of o
̂Y , ̂Y , Y and

f , we have in W3
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(o
̂Y (w)(1 + ON (V )) + J1) + J2

= (w(wt w + wt (1 + ON (V )) − h3 − N − 1, 0)(1 + ON (V )) + J1)

+ J2

= (̂Ywt w+wt (1+ON (V ))−h3−N−1,0(w)(1 + ON (V )) + J1) + J2

= Ywt w+wt (1+ON (V ))−h3−N−1,0(w)(1 + ON (V ))

= πGN (W3)

N
∑

n=0

Ywt w+wt (1+ON (V ))−h3−n−1,0(w)(1 + ON (V ))

= (πGN (W3) ◦ ρ(Y) ◦ eGN (W2))((w + ON (W )) ⊗AN (V ) (1 + ON (V ))

= f (w + ON (W ))

= 0.

Since o
̂Y (w)(1+ON (V ))+ J1 ∈ D and D∩ J2 = 0, we obtain o

̂Y (w)(1+ON (V ))+ J1 =
0 in ̂W3/J1 or equivalently, o

̂Y (w)(1 + ON (V )) ∈ J1. We have shown above that
o
̂Y (w)(1 + ON (V )) ∈ J1 if and only if w ∈ ON (W ). In summary, we have shown that
f (w + ON (W )) = 0 implies w ∈ ON (W ).

By definition, Q∞(W ) ⊂ ker ϑY . In particular, for
∑N

k=0[w]kk ∈ QNN (W ),

f (w + ON (W )) = Ywt w+wt (1+ON (V ))−h3−N−1,0(w)(1 + ON (V ))

= Resx x
wt (1+ON (V ))−h3−N−1Y0(x LW (0)Sw, x)(1 + ON (V ))

= ϑY ([w]NN )(1 + ON (V ))

= ϑY

(

N
∑

k=0

[w]kk
)

(1 + ON (V ))

= 0.

Then we have w ∈ ON (W ) ⊂ Ok(V ) for k = 0, . . . , N or equivalently,
∑N

k=0[w]kk ∈
ONN (W ). Thus QNN (W ) = ONN (W ). ��
Theorem 3.3. The space ANN (W ) is invariant under the left and right actions of
U NN (V ) with the left and right actions of QNN (V ) on ANN (W ) equal to 0 and is
thus an ANN (V )-bimodule. Moreover, the linear map f NN : UNN (W ) → AN (W )

defined by fNN (
∑N

k=0[w]kk) = w + ON (W ) for w ∈ W induces an invertible linear
map, still denoted by fNN , sending the ANN (V )-bimodule structure on ANN (W ) to the
AN (V )-bimodule structure on AN (W ).

Proof. By the definitions of the left action and right action of U∞(V ) on U∞(W ) (see
Sect. 4 in [H9]), we have

(

N
∑

k=0

[v]kk
)

�
(

N
∑

k=0

[w]kk
)

=
N
∑

k,l=0

[v]kk � [w]ll
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=
N
∑

k=0

[v]kk � [w]kk

=
N
∑

k=0

Resx T2k+1((x + 1)−k−1)(1 + x)k
[

YW ((1 + x)LV (0)v, x)w
]

kk

=
N
∑

k=0

Resx

k
∑

m=0

(−k − 1
m

)

x−k−m−1(1 + x)k
[

YV ((1 + x)L(0)u, x)v
]

kk

=
N
∑

k=0

[v ∗k w]kk

≡
N
∑

k=0

[v ∗N w]kk mod Q∞(W )

∈ UNN (W )

for v ∈ V and w ∈ W , where for the step given by ≡, we have used v ∗k w is equal to
v ∗N w modulo Ok(W ) which can be proved using the same argument as in the proof
of Proposition 2.4 in [DLM1] and the fact that [Ok(W )]kk ∈ O∞(W ) ⊂ Q∞(W ).
Similarly, we have
(

N
∑

k=0

[w]kk
)

�
(

N
∑

k=0

[v]kk
)

=
N
∑

k,l=0

[w]kk � [v]ll

=
N
∑

k=0

[w]kk � [v]kk

=
N
∑

k=0

Resx T2k+1((x + 1)−k−1)(1 + x)k
[

YW ((1 + x)−LV (0)u,−x(1 + x)−1)w
]

kk

=
N
∑

k=0

Resx

k
∑

m=0

(−k − 1

m

)

x−k−m−1(1 + x)k
[

YW ((1 + x)−LV (0)u,−x(1 + x)−1)w
]

kk

=
N
∑

k=0

[w ∗k v]kk

≡
N
∑

k=0

[w ∗N v]kk mod Q∞(W )

∈ UNN (W )

for v ∈ V and w ∈ W , where for the step given by ≡, we have used w ∗k v is equal to
w ∗N v modulo Ok(W ) which can be proved using a similar argument as in the proof of
Proposition 2.4 in [DLM1] and the fact that [Ok(W )]kk ∈ O∞(W ) ⊂ Q∞(W ). Thus
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ANN (W ) is invariant under the left and right actions of UNN (V ). By Proposition 3.2,
we see that the left and right actions of QNN (V ) = ONN (V ) on ANN (W ) are 0. So
ANN (W ) is an ANN (V )-bimodule.

Let f N N : UNN (W ) → AN (W ) be defined by

f N N

(

N
∑

k=0

[w]kk
)

= w + ON (W )

for w ∈ W . Then by the definition of ON (W ), we have

f N
(

N
∑

k=0

[Resx x
−2N−p−2(1 + x)NYW ((1 + x)LV (0)v, x)w]kk

)

= Resx x
−2N−p−2(1 + x)NYW ((1 + x)LV (0)v, x)w + ON (W )

= 0.

Thus by the definition of O∞(W ), we obtain ONN (W ) = O∞(W ) ∩ UNN (W ) ⊂
ker f N . On the other hand, if w ∈ ON (W ), then w ∈ Ok(W ) for k = 0, . . . , N since
ON (W ) ⊂ Ok(W ). Hence [w]kk ∈ ONN (W ) for k = 0, . . . , N and thus

∑N
k=0[w]kk ∈

ONN (W ). Equivalently, if
∑N

k=0[w]kk �∈ ONN (W ), then w �∈ ON (W ). In particular, in
this case, f N N (

∑N
k=0[w]kk) = w + ON (W ) �= 0, that is,

∑N
k=0[w]kk �∈ ker fN N . Thus

ker f N N = ONN (W ). By Proposition 3.2, ker f N N = QNN (W ). It is clear that f N N

is surjective. In particular, f N N induces a linear isomorphism, still denoted by f N N ,
from ANN (W ) to AN (W ).

For v ∈ V and w ∈ W ,

f N N

((

N
∑

k=0

[v]kk + ONN (V )

)

�
(

N
∑

k=0

[w]kk + ONN (W )

))

= f N N

(

N
∑

k=0

[v ∗N w]kk + ONN (W )

)

= v ∗N w + ON (W )

= (v + ON (V )) ∗N (w + ON (W )).

Therefore fN N sends the ANN (V )-bimodule structure on ANN (W ) to the AN (V )-
bimodule structure on AN (W ). ��
Corollary 3.4. For N ∈ N, the space QNN (W ) = Q∞(W ) ∩ UNN (W ) is spanned by
elements of the form

N
∑

k=0

Resx x
−2N−p−2(1 + x)l [YW ((1 + x)LV (0)v, x)w]kk

for v ∈ V , w ∈ W and p ∈ N.
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We now introduce the associative algebras ˜A∞(V ) and ˜AN (V ) for N ∈ N. Recall
from [H8] that U∞(V ) is the space of column-finite infinite matrices with entries in V ,
but doubly indexed by N instead of Z+. Recall also that for v ∈ V , k, l ∈ N, [v]kl is
the element of U∞(V ) with the (k, l)-entry being v and all the other entries being 0.
Elements of U∞(V ) are suitable (possibly infinite) sums of elements of the form [v]kl
for v ∈ V , k, l ∈ N.

In [H8], a product � on U∞(V ) is introduced. Here we define a new product on
U∞(V ) by

[u]km [v]nl = 0

for k, l,m, n ∈ N and u, v ∈ V when m �= n and
[u]kn [v]nl

= Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)l
[

YV

(

u,
1

2π i
log(1 + x)

)

v

]

kl

=
n

∑

m=0

(−k + n − l − 1

m

)

Resx x
−k+n−l−m−1(1 + x)l

[

YV

(

u,
1

2π i
log(1 + x)

)

v

]

kl

=
n

∑

m=0

(−k + n − l − 1

m

)

Resy2π ie2pi(l+1)i (e2π iy − 1)−k+n−l−m−1 [YV (u, y) v]kl

for k, l, n ∈ N and u, v ∈ V . ThenU∞(V ) equipped with is a nonassociative algebra.
For W = V , we have the invertible linear map UV (1) = (2π i)LV (0)e−L+

V (A) : V →
V (see [H2] and Subsectipon 2.2). We extend the linear isomorphism UV (1) : V → V
to a linear isomorphism UV (1) : U∞(V ) → U∞(V ) by

UV (1)[v]kl = [UV (1)v]kl
for k, l ∈ N and v ∈ V .

Recall the subspace Q∞(V ) of U∞(V ) in [H8]. Let ˜Q∞(V ) = UV (1)−1Q∞(V )

and ˜A∞(V ) = U∞(V )/˜Q∞(V ). Recall from [H8] that A∞(V ) = U∞(V )/Q∞(V )

with the product induced by � is an associative algebra.

Proposition 3.5. The linear isomorphismUV (1) fromU∞(V ) to itself is an isomorphism
of nonassociative algebras from U∞(V ) equipped with the product to U∞(V )

equipped with the product � such that UV (1)˜Q∞(V ) = Q∞(V ). In particular,
induces an associative product, still denoted by , on ˜A∞(V ) such that UV (1) induces
an isomorphism of associative algebras from ˜A∞(V ) to A∞(V ).

Proof. Using (2.4), we obtain
UV (1)([u]km [v]nl) = 0 = [u]km � [v]nl

for k, l,m, n ∈ N and u, v ∈ V when m �= n and

UV (1)([u]kn [v]nl)
= UV (1)

(

Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)l
[

YV

(

u,
1

2π i
log(1 + x)

)

v

]

kl

)

= Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)l
[

YV ((1 + x)LV (0)UV (1)u, x)UV (1)v
]

kl

= [UV (1)u]kn � [UV (1)v]nl
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for k, l, n ∈ N, u, v ∈ V . These show thatUV (1) is an isomorphism of the nonassociative
algebras. By the definition of ˜Q∞(V ), we have UV (1)˜Q∞(V ) = Q∞(V ). The other
conclusions follow immediately. ��

For a lower-bounded generalized V -module W , we have a graded A∞(V )-module
structure on W given by ϑW : U∞(V ) → End W (see [H9]). Let ϑ̃W : U∞(V ) →
End W be defined by

ϑ̃W (v) = ϑW (UV (1)v)

for v ∈ U∞(V ).

Proposition 3.6. Let W be a lower-bounded generalized V -module. Then the linearmap
ϑ̃W gives W an ˜A∞(V )-module structure.

Proof. For k, l,m, n ∈ N and u, v ∈ V ,

ϑ̃W ([u]km [v]nl) = ϑW (UV (1)([u]km [v]nl))
= ϑW ([UV (1)u]kn � [UV (1)v]nl)
= ϑW ([UV (1)u]kn)ϑW ([UV (1)v]nl)
= ϑ̃W ([u]km)ϑ̃W ([v]nl).

Thus W equipped with ϑ̃W is an ˜A∞(V )-module. ��
From Theorem 5.1 in [H9], we know that the category of lower-bounded gen-

eralized V -modules is isomorphic to the category of graded A∞(V )-modules. We
now define a graded ˜A∞(V )-module to be an ˜A∞(V )-module obtained from a lower-
bounded generalized V -module as in Proposition 3.6. Or equivalently, a graded ˜A∞(V )-
module is an ˜A∞(V )-module W with the ˜A∞(V )-module structure given by a lin-
ear map ϑ̃W : U∞(V ) → End W such that ϑW : U∞(V ) → End W defined by
ϑW (v) = ϑ̃W (UV (1)−1v) gives a graded A∞(V )-module structure to W .

Recall the subalgebras ANN (V ) for N ∈ N in [H8] which are proved in [H8] to be
isomorphic to the associative algebras AN (V ) introduced in [DLM1]. In this paper, we
need the following subalgebras ˜ANN (V ) for N ∈ N: For N ∈ N, let

˜ANN (V ) =
{

N
∑

k=0

[v]kk + ˜Q∞(V ) | v ∈ V

}

.

Proposition 3.7. For N ∈ N, ˜ANN (V ) is a subalgebra of ˜A∞(V ) and UV (1) induces an
isomorphism of associative algebras from ˜ANN (V ) to ANN (V ). For a lower-bounded
generalized V -module W, �0

N (W ) = ∐

μ∈�(W )

∐N
k=0 W[hμ+N ] is invariant under the

action of ˜ANN (V ) and thus is a ˜ANN (V )-module.

Proof. By definition, UV (1)˜ANN (V ) = ANN (V ). Since UV (1) is an isomorphsim from
the associative algebra ˜A∞(V ) to the associative algebra A∞(V ) and ANN (V ) is a
subalgebra of A∞(V ), ˜ANN (V ) is a subalgebra of ˜A∞(V ) and UV (1) restricted to
˜ANN (V ) is an isomorphism from ˜ANN (V ) to ANN (V ).

By the definition of ϑ̃W , �0
N (W ) is invariant under the action of ˜ANN (V ). ��
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We also introduce another associative algebra ˜AN (V ) generalizing the associative
algebra ˜A(V ) in [H2]. Define a product •N of V by

u •N v = Resx T2N+1((x + 1)−N−1)(1 + x)NYV

(

u,
1

2π i
log(1 + x)

)

v

for u, v ∈ V . Let ˜ON (V ) be the subspace of V spanned by elements of the form

Resx x
−2N−2−n(1 + x)NYV

(

u,
1

2π i
log(1 + x)

)

v

for n ∈ N and u, v ∈ V and of the form LV (−1)v. Let ˜AN (V ) = V/˜ON (V ).

Proposition 3.8. The product •N induces an associative algebra structure on ˜AN (V )

isomorphic to AN (V ). The operator UV (1) on V induces an isomorphism from ˜AN (V )

to AN (V ). In particular, UV (1)−1ω + ˜O∞(V ) is in the center of ˜AN (V )

Proof. For n ∈ N and u, v ∈ V , by (2.4),

UV (1)Resx x
−2N−2−n(1 + x)NYV

(

u,
1

2π i
log(1 + x)

)

v

= Resx x
−2N−2−n(1 + x)NYV

(

(1 + x)LV (0)UV (1)u, x
)

UV (1)v.

Also for v ∈ V , we have

UV (1)LV (−1)v = 2π i(LV (−1) + LV (0))v

(this is (1.15) in [H2]). These shows UV (1)˜ON (V ) = ON (V ). Therefore UV (1) induces
a linear isomorphism from ˜AN (V ) to AN (V ).

By (2.4) again, we have

UV (1)(u •N v) = UV (1)Resx T2N+1((x + 1)−N−1)(1 + x)NYV

(

u,
1

2π i
log(1 + x)

)

v

= Resx T2N+1((x + 1)−N−1)(1 + x)NYV
(

(1 + x)LV (0)u, x
)

v

= u ∗N v

for u, v ∈ V . So UV (1) induces an isomorphism of associative algebras.
Since ω + ON (V ) is in the center of AN (V ) and UV (1)−1 is an isomorphism from

AN (V ) to ˜AN (V ), UV (1)−1ω + ˜O∞(V ) is in the center of ˜AN (V ). ��
Proposition 3.9. The associative algebras ˜AN (V ) and ˜ANN (V ) are isomorphic. The
map given by v + ˜ON (V ) 
→ ∑N

k=0[v]kk + ˜Q∞(V ) is an isomorphism from ˜AN (V ) to
˜ANN (V ).

Proof. This result follows from Propositions 3.7, 3.8 and Theorem 4.2 in [H2]. ��
We now introduce the main subalgebras of ˜A∞(V ) needed in this paper. Recall from

[H8] the subspaces UN (V ) for N ∈ N of U∞(V ) spanned by elements of the form [v]kl
for v ∈ V , k, l = 0, . . . , N . These subspaces are invariant under the operator UV (1) on
U∞(V ). Let

˜AN (V ) = {v + ˜Q∞(V ) | v ∈ UN (V )}.
Note that ˜AN (V ) is spanned by elements of the form [v]kl + ˜Q∞(V ) for v ∈ V and
k, l = 0, . . . , N .
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Proposition 3.10. For N ∈ N, ˜AN (V ) is a subalgebra of ˜A∞(V ) and UV (1) induces
an isomorphism of associative algebras from ˜AN (V ) to AN (V ). For a lower-bounded
generalized V -module W, �0

N (W ) is invariant under the action of ˜AN (V ) and thus is a
˜AN (V )-module.

Proof. This proposition follows from the invariance of UN (V ) under UV (1) and Propo-
sition 3.5. ��

We now construct an ˜A∞(V )-bimodule from a lower-bounded generalized V -module
W . We define a left action of U∞(V ) on U∞(W ) by

[v]km [w]nl = 0

for v ∈ V , w ∈ W and k,m, n, l ∈ N when m �= n and

[v]kn [w]nl
= Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)l

[

YW

(

v,
1

2π i
log(1 + x)

)

w

]

kl

=
n

∑

m=0

(−k + n − l − 1

m

)

Resx x
−k+n−l−m−1(1 + x)l

[

YW

(

v,
1

2π i
log(1 + x)

)

w

]

kl

=
n

∑

m=0

(−k + n − l − 1

m

)

Resy2π ie2π i(l+1)y(e2π iy − 1)−k+n−l−m−1 [YW (v, y) w]kl .

for v ∈ V , w ∈ W and k, n, l ∈ N. We define a right action of U∞(V ) on U∞(W ) by

[w]km [v]nl = 0

for v ∈ V , w ∈ W and k,m, n, l ∈ N when m �= n and

[w]kn [v]nl
= Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)k

[

YW

(

v, − 1

2π i
log(1 + x)

)

w

]

kl

=
n

∑

m=0

(−k + n − l − 1

m

)

Resx x
−k+n−l−m−1(1 + x)k

[

YW

(

v,− 1

2π i
log(1 + x)

)

w

]

kl

=
n

∑

m=0

(−k + n − l − 1

m

)

Resy2π ie2π i(k+1)y(e2π iy − 1)−k+n−l−m−1 [YW (v,−y)w]kl .

(3.7)

We extend the invertible linear map UW (1) : W → W to an invertible linear map
UW (1) : U∞(W ) → U∞(W ) by

UW (1)[w]kl = [UW (1)w]kl
for k, l ∈ N andw ∈ W . Let ˜Q∞(W ) = UW (1)−1Q∞(W ) and ˜A∞(W ) = U∞(W )/˜Q∞
(W ).

In [H9], a left action and a right action (denoted by �), a subspace Q∞(W ) ofU∞(W )

and an A∞(V )-bimodule A∞(W ) are introduced.
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Proposition 3.11. The linear isomorphism UW (1) from U∞(W ) to itself sends the left
and right actions of U∞(V ) on U∞(W ) given by � to the left and right actions given by
such that UW (1)˜Q∞(W ) = Q∞(W ). In particular, induces left and right actions,

still denoted by , of ˜A∞(V ) on ˜A∞(W ) such that ˜A∞(W ) becomes an ˜A∞(V )-
bimodule and UW (1) induces an invertible linear map sending the A∞(V )-bimodule
structure on A∞(W ) to the ˜A∞(V )-bimodule structure on ˜A∞(W ).

Proof. Using (2.4), we have

UW (1)([v]km [w]nl) = 0 = [v]km � [w]nl
for k, l,m, n ∈ N, v ∈ V and w ∈ W when m �= n and

UW (1)([v]kn [w]nl)
= UW (1)

(

Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)l
[

YW

(

v,
1

2π i
log(1 + x)

)

w

]

kl

)

= Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)l
[

YW ((1 + x)LV (0)UV (1)v, x)UW (1)w
]

kl

= [UV (1)v]kn � [UW (1)w]nl
for k, l, n ∈ N, u, v ∈ V . This shows that UW (1) sends the left action of U∞(V ) on
U∞(W ) given by to the left action given by �.

Using (2.4) again, we have

UW (1)Resx x
−nYW

(

v,− 1

2π i
log(1 + x)

)

w

= UW (1)Resx x
−nYW

(

v,
1

2π i
log(1 − x(1 + x)−1)

)

w

= Resx x
−nYW

(

(1 − x(1 + x)−1)LV (0)UV (1)v,−x(1 + x)−1
)

UW (1)w

= Resx x
−nYW ((1 + x)−LV (0)UV (1)v,−x(1 + x)−1)UW (1)w

for n ∈ Z, v ∈ V and w ∈ W . Then we have

UW (1)([w]km [v]nl) = 0 = [w]km � [v]nl
for k, l,m, n ∈ N, v ∈ V and w ∈ W when m �= n and

UW (1)([w]kn [v]nl )
= UW (1)

(

Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)l
[

YW

(

v,− 1

2π i
log(1 + x)

)

w

]

kl

)

= Resx Tk+l+1((x + 1)−k+n−l−1)(1 + x)l
[

YW ((1 + x)−LV (0)UV (1)v,−x(1 + x)−1)UW (1)w
]

kl

= [UW (1)w]kn � [UV (1)v]nl
for k, l, n ∈ N, u, v ∈ V . This shows that UW (1) sends the right action of U∞(V ) on
U∞(W ) given by to the right action given by �. By the definition of ˜Q∞(W ), we
have UW (1)˜Q∞(W ) = Q∞(W ).

The other conclusions follow from these. ��
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For N ∈ N, let

˜ANN (W ) =
{

N
∑

k=0

[w]kk + ˜Q∞(W ) | w ∈ W

}

.

Proposition 3.12. For N ∈ N, ˜ANN (W ) is closed under the left and right actions of
the subalgebra ˜ANN (V ) of ˜A∞(V ) and thus has an ˜ANN (V )-bimodule structure. The
map UW (1) induces an invertible linear map sending the ˜ANN (V )-bimodule structure
on ˜ANN (W ) to the ANN (V )-bimodule structure on ANN (W ).

Proof. This result follows immediately from the definitions of the left and right actions
of ˜A∞(V ) on ˜A∞(W ) and Proposition 3.11. ��
Corollary 3.13. Themap given byw+ON (W ) 
→ ∑N

k=0[w]kk+ ˜Q∞(W ) is an invertible
linear map sending the AN (V )-bimodule structure on AN (W ) to the ˜ANN (V )-bimodule
structure on ˜ANN (W ).

Corollary 3.14. The space ˜Q∞(W ) ∩UNN (W ) is spanned by the coefficients of
∑

k=0

Resx e
2π i(N+1)x (e2π i x − 1)−2N−p−2[YW (v, x)w]kk

for p ∈ N, v ∈ V and w ∈ W.

Recall from [H9] the subspaces UN (W ) for N ∈ N of U∞(W ) spanned by elements
of the form [w]kl for w ∈ W , k, l = 0, . . . , N . Let

˜AN (W ) = {w + ˜Q∞(W ) | w ∈ UN (W )}.
Note that ˜AN (W ) is spanned by elements of the form [w]kl + Q̃∞(W ) for w ∈ W and
k, l = 0, . . . , N . Also note that ˜AN (W ) is an ˜AN (V )-subbimodule of ˜A∞(W ) viewed
as a ˜AN (V )-bimodule.

Proposition 3.15. The subspace ˜AN (W ) of ˜A∞(W ) is in variant under the left and right
actions of ˜AN (V ) ⊂ ˜A∞(V ). In particular, ˜AN (W ) is an ˜AN (V )-bimodule. More-
over, UW (1) induces an invertible linear map sending the AN (V )-bimodule structure on
AN (W ) to the ˜AN (V )-bimodule structure on ˜AN (W ).

Let W1, W2 and W3 be lower-bounded generalized V -modules and Y an intertwining
operator of type

( W3
W1W2

)

. In [H9], a linear map ϑY : UN (W1) → Hom(W2,W3) is de-
fined. Since Q∞(V ) ⊂ ker ϑY , we can view ϑY as a map from A∞(V ) to Hom(W2,W3).
Now we define ϑ̃Y : UN (W1) → Hom(W2,W3) by

ϑ̃Y (w1)w2 = ϑY (UW1(1)w1)w2

for w1 ∈ U (W1) and w2 ∈ W2. In [H9], for N ∈ N, a linear map

ρN : VW3
W1W2

→ Hom(AN (W1) ⊗ �0
N (W2),�

0
N (W3))

is defined by

(ρN (Y))((w1 + Q∞(W1)) ⊗AN (V ) w2) = ϑY (w1)w2
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for w1 ∈ UN (W1) and w2 ∈ �0
N (W2). Here we define a linear map

ρ̃N : VW3
W1W2

→ Hom(˜AN (W1) ⊗ �0
N (W2),�

0
N (W3))

Y 
→ ρ̃N (Y)

by

(ρ̃N (Y))(w1 + ˜Q∞(W1)) ⊗AN (V ) w2)

= ϑ̃Y (w1)w2

= ϑY (UW1(1)w1)w2

= (ρN (Y))((UW1(1)w1 + Q∞(W1)) ⊗AN (V ) w2)

for w1 ∈ UN (W1) and w2 ∈ �0
N (W2). The definition of ρ̃N (Y) can also be simply

written as

ρ̃N (Y) = (ρN (Y)) ◦ (UW1(1) ⊗ 1�0
N (W2)

), (3.8)

where we use the same notation UW1(1) to denote the map from ˜AN (W1) to AN (W1)

induced from the operator UW1(1) on UN (W1).

Proposition 3.16. The linearmap ρ̃N is in fact fromVW3
W1W2

toHom
˜AN (V )(

˜AN (W1)⊗˜AN (V )

�0
N (W2),�

0
N (W3)).

Proof. Let Y be an intertwining operator of type
( W3
W1W2

)

. For v ∈ U∞(V ), w ∈ U∞(W )

and w2 ∈ �0
N (W2),

(ρ̃N (Y))((v w1 + ˜Q∞(W1)) ⊗ w2)

= ϑ̃N
Y (v w1)w2

= ϑY (UW1(1)(v w1))w2

= ϑY ((UV (1)v) � (UW1(1)w1))w2

= ϑW3(UV (1)v)ϑY (UW1(1)w1)w2

= ϑ̃W3(v)ρ̃
N
Y ((w1 + ˜Q∞(W1)) ⊗ w2).

This shows that the image of ρ̃N is in Hom
˜AN (V )(

˜AN (W1) ⊗ �0
N (W2),�

0
N (W3)).

On the other hand, for v ∈ U∞(V ), w ∈ U∞(W ) and w2 ∈ �0
N (W2),

(ρ̃N (Y))((w1 v + ˜Q∞(W1)) ⊗ w2)

= ϑ̃N
Y (w1 v)w2

= ϑY (UW1(1)(w1 v))w2

= ϑY ((UW1(1)w1) � (UV (1)v))w2

= ϑY (UW1(1)w1)ϑW2(UV (1)v)w2

= ρ̃N
Y ((w1 + ˜Q∞(W1)) ⊗ ϑ̃W2(v)w2).

This shows that the image of ρ̃N is in Hom
˜AN (V )(

˜AN (W1)⊗
˜AN (V ) �0

N (W2),�
0
N (W3)).

��
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In Proposition 6.3 in [H9], given a graded AN (V )-module M , a lower-bounded
generalized V -module SNvoa(�

0
N (M) satisfying a universal property is constructed.

Theorem 3.17. Let V be a vertex operator algebra. Assume that W2 and W ′
3 are equiv-

alent to SNvoa(�
0
N (W2)) and SNvoa(�

0
N (W ′

3)), respectively. Then the linear map ρ̃N is a
linear isomorphism.

Proof. We know that UW1(1) from ˜AN (W1) to AN (W1) is an isomorphism. By Theorem
6.7 in [H9], ρN is a linear isomorphism. Then by (3.8), we see that ρ̃N is also a linear
isomorphism. ��

Note that in Theorem 3.17, one condition is that W ′
3 is equivalent to SNvoa(�

0
N (W ′

3)).
But in applications, for example in the proof of the modular invariance that we shall give
later, what we have is often that W3 is equivalent to SNvoa(�

0
N (W3)). In these cases, we

need the following result to use Theorem 3.17:

Proposition 3.18. Let W be a lower-bounded generalized V -module of finite length
equivalent to SNvoa(�

0
N (W )). Assume that W is of finite length such that the lowest

weight vectors of the irreducible V -modules in the composition series are given by
cosets containing elements of �0

N (W ). Then W ′ is equivalent to SNvoa(�
0
N (W ′)).

Proof. By definition, SNvoa(�
0
N (W ′)) is generated by �0

N (W ′). By the universal property
of SNvoa(�

0
N (W ′)), there is a unique V -module map f : SNvoa(�

0
N (W ′)) → W ′ such that

f |�0
N (W ′) = 1�0

N (W ′). Since W is of finite length such that the lowest weight vectors
of the irreducible V -modules in the composition series are given by cosets containing
elements of �0

N (W ), the same is also true for W ′. Then W ′ is also generated by �0
N (W ′).

So f is surjective.
We still need to prove that f is injective. If ker f �= 0, then it is a nonzero generalized

V -submodule of SNvoa(�
0
N (W ′)). Since W ′ is of finite length, �(W ′) must be a finite set.

Then since SNvoa(�
0
N (W ′)) is generated by �0

N (W ′), �(SNvoa(�
0
N (W ′))) is a finite set.

Since ker f is a generalized V -submodule of SNvoa(�
0
N (W ′)), �(ker f ) is also a finite

set. In particular, there exists a lowest weight vector w′
0 �= 0 of ker f . Let W0 be the

generalized V -module generated by w′
0. Applying Zorn’s lemma to the generalized V -

submodules of W0 not containing w′
0, we know that W0 has a maximal generalized

V -submodule M0 not containing w′
0. Thus the quotient W0/M0 is an irreducible lower-

bounded generalized V -module with a lowest weight vector w′
0 +M0. Since W ′ is also of

finite length, by Property 6 in Proposition 3.19, �(W ′) is finite and for each μ ∈ �(W ′),
there exist hμ ∈ μ equal to a lowest weight of an irreducible V -module such that

�0
N (W ′) =

∐

μ∈�(W ′)

N
∐

n=0

W ∗[hμ+n].

Since SNvoa(�
0
N (W ′)) is generated by�0

N (W ′), the weight of every element of SNvoa(�
0
N (W ′))

is also congruent to hμ modulo Z for some μ ∈ �(W ′). In particular, wt w′
0 is congruent

to hμ0 modulo Z for some μ0 ∈ �(W ′). But hμ0 is also the weight of a lowest weight
vector of an irreducible V -module. Since the difference between lowest weights of two
irreducible V -modules is less than or equal to N , wt w′

0 − hμ0 ≤ N . Hence

w′
0 ∈

N
∐

n=0

W ∗
[hμ0 +n] ⊂ �0

N (W ′).
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Since w′
0 ∈ ker f , we have f (w′

0) = 0. On the other hand, since w′
0 ∈ �0

N (W ′), we
have f (w′

0) = 1�0
N (W ′)(w

′
0) = w′

0. This contradicts with w′
0 �= 0. Thus ker f = 0 and

f is injective. ��
Finally, we give several results on AN (V ), AN (W ), ˜AN (W ) and suitable generalized

or ordinary V -modules when V has no nonzero elements of negative weights and is
C2-cofinite.

A lower-bounded generalized V -module W is said to be of finite length if there
are generalized V -submodules W = W1 ⊃ · · · ⊃ Wl+1 = 0 such that Wi/Wi+1 for
i = 1, . . . , l are irreducible lower-bounded generalized V -modules. A generalized V -
module W is said to be quasi-finite dimensional if

∐

�(n)≤N W[n] is finite dimensional
for N ∈ Z.

Our first proposition is in fact a collection of results from [H5,H8] together with a
well known result derived here as a consequence of these results.

Proposition 3.19. Let V be a C2-cofinite vertex operator algebra without nonzero ele-
ments of negative weights. Then we have the following properties:

1. For N ∈ N, AN (V ) is finite dimensional.
2. Every lower-bounded generalized V -module W generated by a finite-dimensional

subspace of �0
N (W ) is quasi-finite dimensional.

3. Every irreducible lower-bounded generalized V -module is an ordinary irreducible
V -module.

4. The set of equivalence classes of (ordinary) irreducible V -modules is in bijectionwith
the set of equivalence classes of irreducible nondegenerate graded AN (V )-modules.

5. The category of lower-bounded generalized V -module of finite length, the cate-
gory of grading-restricted generalized V -modules and the category of quasi-finite-
dimensional generalized V -modules are the same.

6. There are only finitely many irreducible V -modules up to equivalence.

Proof. Property 1 is Theorem 4.6 in [H8]. Property 2 is Proposition 3.8 in [H5] in the
case that V is C2-cofinite. Property 3 is Theorem 5.8 in [H8]. Property 4 follows from
Theorems 5.6 and 5.8 in [H8].

Property 5 is Proposition 4.3 in [H5]. Note that though Proposition 4.3 in [H5]
assumes that V satisfies in addition V(0) = C1, the only paper quoted there that needs
this condition in some results is [ABD]. But the result needed in the proof of Proposition
4.3 in [H5] is only Proposition 5.2 in [ABD], which does not need this condition. So
Proposition 4.3 in [H5] or Property 5 is true for C2-cofinite V without nonzero elements
of negative weights.

Property 6 is well known and follows immediately from the finite dimension prop-
erty of Zhu algebra for C2-cofinite vertex operator algebra (Proposition 3.6 in [DLM2]
in the case g = 1V ) and the correspondence between irreducible modules for Zhu al-
gebra and irreducible (N-gradable weak) V -modules (Theorem 2.2.2 in [Z]). Here we
derive this from Properties 1 and 4 above. Since AN (V ) is finite dimensional, there are
only finitely many inequivalent irreducible AN (V )-modules. In particular, there are only
finitely many inequivalent irreducible nondegenerate graded AN (V )-modules. By Prop-
erty 4, we obtain Property 6 that there are only finitely many inequivalent irreducible
V -modules. ��

The following result is about the relation between a lower-bounded generalized V -
module W and AN (V )-module �0

N (W ).
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Proposition 3.20. Let V be a C2-cofinite vertex operator algebra without nonzero ele-
ments of negative weights. Let N be a nonnegative integer such that the differences of
the real parts of the lowest weights of the finitely many irreducible V -modules (up to
equivalence) are less than or equal to N. Then we have:

1. For a lower-bounded generalized V -module W of finite length, �(W ) is a finite set
and for eachμ ∈ �(W ), there exists hμ ∈ μ equal to a lowest weight of an irreducible
V -module such that

W =
∐

μ∈�(W )

∐

n∈N
W[hμ+n], (3.9)

�0
N (W ) =

∐

μ∈�(W )

N
∐

n=0

W[hμ+n]. (3.10)

2. A lower-bounded generalized V -module W of finite length is generated by �0
N (W )

and is equivalent to SNvoa(�
0
N (W )). In particular, W ′ is equivalent to SNvoa(W

′).
3. Let N ′ ∈ N + N and

M =
N ′
∐

n=0

M[n]

a finite-dimensional graded AN ′
(V )-module. Let

MN =
N
∐

n=0

M[n].

Then MN is a graded AN (V )-module and M is equivalent to the graded AN ′
(V )-

module �0
N ′(SNvoa(M

N )).

Proof. Let W = W1 ⊃ · · · ⊃ Wl+1 = 0 be a composition sereis of a lower-bounded
generalized V -module W of finite length. Let wi ∈ Wi for i = 1, . . . , l be homogeneous
such that wi +Wi+1 is a lowest weight vector of Wi/Wi+1. Since as a graded vector space,
W is isomorphic to

∐l
i=1 Wi/Wi+1, �(W ) is the set of all congruence classes in C/Z

containing the weights of at least one wi . For each element μ ∈ �(W ), let hμ be the
smallest of all wt wi ∈ μ. Then (3.9) and (3.10) hold.

Let hW be the smallest of all hμ for μ ∈ �(W ). Then hW is a lowest weight of W
and we have

∐

�(hW )≤�(m)≤�(hW )+N

W[m] ⊂
∐

μ∈�(W )

N
∐

n=0

W[hμ+n] = �0
N (W ).

By Proposition 5.11 in [H8],
∐

�(hW )≤�(m)≤�(hW )+N

W[m]

generatesW . Thus�0
N (W ) also generatesW . By the universal property of SNvoa(�

0
N (W )),

there exists a unique V -module map f : SNvoa(�
0
N (W )) → W such that f |�0

N (W ) =
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1�0
N (W ). Since W is generated by �0

N (W ), f is surjective. We now show that f is also
injective, that is, the kernel ker f of f is 0. In fact, W is equivalent to the quotient of
SNvoa(�

0
N (W )) by ker f . Since f |�0

N (W ) = 1�0
N (W ), we have

ker f ⊂
∐

μ∈�(W )

∐

n∈N+Z+

W[hμ+n]. (3.11)

But ker f is a lower-bounded generalized V -submodule of W , if ker f �= 0, its lowest
weight must be equal to the lowest weight of an irreducible V -module. But the real
part of the lowest weight of the irreducible V -module must be less than or equal to the
real part of the lowest weight of W plus N . So a lowest weight vector of ker f must
be in �0

N (W ), contradictory to (3.11). Since f is both injective and surjective, f is an
equivalence of generalized V -modules.

For a finite-dimensional graded AN ′
(V )-module M , it is clear that MN is a graded

AN (V )-module. Since M is finite dimensional, by Property 2 in Proposition 3.19,
SN

′
voa(M) is quasi-finite dimensional. By Property 5 in Proposition 3.19, SN

′
voa(M) is

of finite length. By Property 2 above, SN
′

voa(M) is generated by �0
N (SN

′
voa(M)) = MN

and is equivalent to SNvoa(M
N ). Since �0

N ′(SN
′

voa(M)) = M , we see that M is equivalent
to �0

N ′(SNvoa(M
N )). ��

In [H8], it is proved that AN (V ) is finite dimensional when V has no nonzero elements
of negative weights, V(0) = C1 and is C2-cofinite. In fact, the condition V(0) = C1 is
not needed. Below we prove that AN (W ) is finite dimensional without this condition
for a grading-restricted generalized V -module W .

Theorem 3.21. Let V be aC2-cofinite vertex operator algebra without nonzero elements
of negative weights and W a grading-restricted generalized V -module. Then AN (W ) is
finite dimensional.

Proof. By Proposition 5.2 in [ABD], every irreducible V -module is C2-cofinite. By
Proposition 3.19, we see that W is of finite length. Since every irreducible V -module is
C2-cofinite, W as a generalized V -module of finite length must also beC2-cofinite. If we
assume in addition that V(0) = C1, then by Theorem 11 in [GN] (see Proposition 5.5 in
[AbN]), V is also Cn-cofinite for n ≥ 2. By Proposition 5.1 in [AbN], W is Cn-cofinite
for n ≥ 2.

On the other hand, since Lemma 2.4 in [Mi2] gives a spanning set of W without the
condition V(0) = C1, the arguments in [GN,AbN] can also be used to show that W is
Cn-cofinite for n ≥ 2 without this condition. For reader’s convenience, here we give a
direct proof of this fact observed by McRae using Lemma 2.4 in [Mi2]. In fact, since
W is of finite length, it is finitely generated. By Lemma 2.4 in [Mi2], W is spanned by
elements of the form

(YW )i1(v1) · · · (YW )ik (vk)w j (3.12)

for homogeneous v1, . . . , vk in a finite set, homogeneous w j ∈ W for j = 1, . . . , l
and i1, . . . , ik ∈ Z satisfying i1 < · · · < ik . Using the lower-truncation property of
the vertex operator map YW and the fact that vk can change only in a finite set and
there are only finitely many w j , we see that there exists m ∈ Z such that for ik > m,
(YW )ik (vk)w j = 0 and hence (3.12) is 0. Since in (3.12), we have i1 < · · · < ik , there
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are only finitely many elements of the form (3.12) satisfying i1 > −n. Since elements
of the form 3.12) span W , we see that W is Cn-cofinite for n ≥ 2.

Take n = k + l + 2 for k, l = 0, . . . , N . Then W is Ck+l+2-cofinite. By definition,
Ck+l+2(W ) are spanned by elements of the form (YW )−k−l−2(v)w for v ∈ V and w ∈ W .
Since W isCk+l+2-cofinite, there exists a finite dimensional subspace Xk+l of W such that
Xk+l + Ck+l+2(W ) = W . Let UN (X) be the subspace of UN (W ) consisting matrices
in UN (W ) whose (k, l)-th entries are in Xk+l for k, l = 0, . . . , N . Since Xk+l for
k, l = 0, . . . , N are finite dimensional, UN (W ) is also finite dimensional. We now
prove UN (X)+ (O∞(W )∩UN (W )) = UN (W ). To prove this, we need only prove that
every element of UN (W ) of the form [w]kl for w ∈ W and 0 ≤ k, l ≤ N , can be written
as [w]kl = [w1]kl + [w2]kl , where w1 ∈ Xk+l and w2 ∈ V such that [w2]kl ∈ O∞(W ).
We shall denote the subspace of W consisting of elements w such that [w]kl ∈ O∞(W )

by O∞
kl (W ). Then what we need to prove is W = Xk+l + O∞

kl (W ).
Since W = ∐

n∈N W�n� is of finite length, W�n� for n ∈ N is finite dimensional. We
can always take Xk+l to be a subspace of W containing W�0�. We use induction on p
for w ∈ W�p�. When w ∈ W�0�, w can be written as w = w + 0, where v ∈ Xk+l and
0 ∈ O∞

kl (V ).
Assume that when v ∈ W�p� for p < q, w = w1 + w2, where w1 ∈ Xk+l and

w2 ∈ O∞
kl (V ). Then since W is Ck+l+2-cofinite, for w ∈ W�q�, there exists homo-

geneous w1 ∈ Xk+l and vi ∈ V and wi ∈ W for i = 1, . . . ,m such that v =
u1 +

∑m
i=1(YW )−k−l−2(v

i )wi . Moreover, we can always find such w1 and vi , wi ∈ V for
i = 1, . . . ,m such that w1, (YW )−k−l−2(v

i )wi ∈ W�q�. Since (YW )n−k−l−2(v
i )wi ∈

W�q−n�, where q − n < q for i = 1, . . . ,m and n ∈ Z+, by induction assumption,

(YW )n−k−l−2(v
i )wi ∈ Xk+l + O∞

kl (V ) for i = 1, . . . ,m and k ∈ Z+. Thus

w = w1 +
m
∑

i=1

(YW )−k−l−2(v
i )wi

= w1 +
m
∑

i=1

Resx x
−k−l−2(1 + x)lYW ((1 + x)L(0)vi , x)wi

−
m
∑

i=1

∑

n∈Z+

(

wt vi + l

n

)

(YW )n−k−l−2(v
i )wi .

By definition,

[Resx x
−k−l−2(1 + x)lYW ((1 + x)L(0)vi , x)wi ]kl ∈ O∞(W ).

Thus

Resx x
−k−l−2(1 + x)lYW ((1 + x)L(0)vi , x)wi ∈ O∞

kl (W ).

Thus we have w = w1 + w2, where w1 ∈ Xk+l and w2 ∈ O∞
kl (W ). By induction

principle, we have W = Xk+l + O∞
kl (W ).

We now have proved UN (X) + (O∞(W ) ∩ UN (W )) = UN (W ). Since O∞(W ) ∩
UN (W ) ⊂ Q∞(W )∩UN (W ), we also haveUN (X)+(Q∞(W )∩UN (W )) = UN (W ).
Since UN (X) is finite dimensional, AN (W ) is finite dimensional. ��

By Theorems 3.15 and 3.21, we obtain immediately the following result:
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Corollary 3.22. Let V beaC2-cofinite vertex operator algebrawithout nonzero elements
of negative weights and W a grading-restricted generalized V -module. Then ˜AN (W ) is
finite dimensional.

4. Symmetric Linear Functions on ˜AN (V )-bimodules

In this section, we give two constructions of symmetric linear functions on the ˜AN (V )-
bimodule ˜AN (W ) for N ∈ N and a grading-restricted generalized V -module W . We first
give symmetric linear functions on ˜AN (W ) using shifted pseudo-q-traces of intertwining
operators. Then we also construct symmetric linear functions on ˜AN (W ) starting from
linear maps from a lower-bounded generalized V -module to C{q}[log q] satisfying suit-
able conditions corresponding to the conditions for genus-one 1-point conformal blocks
(see Definition 5.1 in the next section). This second construction is the main technically
difficult part of the present paper. In fact, the first construction can also be obtained
using the second construction. But we still give the first construction to show that it is
much easier to obtain such linear symmetric functions on ˜AN (W ) using the properties
of shifted pseudo-q-traces of intertwining operators than using only the properties of
genus-one 1-point conformal blocks.

Let W be a grading-restricted generalized V -module, ˜W a grading-restricted gener-
alized V -P-bimodule which is projective as a right P-module and Y an intertwining

operator of type
(

˜W
W ˜W

)

and compatible with P .
Recall from [H9] and the preceding section that we can write

˜W =
∐

μ∈�(˜W )

∐

n∈N
˜W[hμ+n] =

∐

μ∈�(˜W )

˜Wμ =
∐

n∈N
˜W�n�,

where �(˜W ) ⊂ C/Z, hμ ∈ μ for μ ∈ �(˜W ) and

˜Wμ =
∐

n∈N
˜W[hμ+n], ˜W�n� =

∐

μ∈�(˜W )

˜W[hμ+n].

Then from the definition of shifted pseudo-q-traces, for w ∈ W , we have

Trφ
˜W
Y(UW (qz)w, qz)q

L(0)− c
24

τ

=
K
∑

k=0

(2π i)k

k!
∑

μ∈�(˜W )

∑

n∈N
φ

˜W[hμ+n]πhμ+nY(UW (qz)w, qz)·

· L
˜W (0)kN

∣

∣

∣

∣

˜W[hμ+n]
τ kq

hμ+n− c
24

τ . (4.1)

Note that [L
˜W (0)N ,Y

˜W (v, x)] = 0 for v ∈ V , that is, L
˜W (0)N is in fact a V -module

map from W to itself. Assume that there exists K ∈ N such that L
˜W (0)K+1

N w̃ = 0 for
w̃ ∈ ˜W . This is always true if ˜W is of finite length. By Proposition 3.19, this is always
true when V has no nonzero elements of negative weights and is C2-cofinite. In this
case, for each k = 0, . . . , K , Yk = Y ◦ (1W ⊗ L

˜W (0)kN ) is an intertwining operators of

the type
(

˜W
W ˜W

)

. Note that Y0 = Y .
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Let μ ∈ �(˜W ) and k = 0, . . . , K . We define

ψ
μ

Yk ,φ
([w]mn) = 0

for w ∈ W and m, n ∈ N such that m �= n and

ψ
μ

Yk ,φ
([w]nn) = φ

˜W[hμ+n]πhμ+nYk(UW (qz)w, qz)

∣

∣

∣

∣

˜W[hμ+n]

= φ
˜W[hμ+n]πhμ+nY(UW (qz)w, qz)L ˜W (0)kN

∣

∣

∣

∣

˜W[hμ+n]
for w ∈ W and n ∈ N. We then define

ψYk ,φ([w]mn) =
∑

μ∈�(˜W )

ψ
μ

Yk ,φ
([w]mn)

for w ∈ W and m, n ∈ N. For m, n ∈ N such that m �= n,

ψYk ,φ([w]mn) = 0

and for n ∈ N,

ψYk ,φ([w]nn) =
∑

μ∈�(˜W )

φ
˜W[hμ+n]πhμ+nYk(UW (qz)w, qz)

∣

∣

∣

∣

˜W[hμ+n]

=
∑

μ∈�(˜W )

φ
˜W[hμ+n]πhμ+nY(UW (qz)w, qz)L ˜W (0)kN

∣

∣

∣

∣

˜W[hμ+n]
.

Using the L(−1)-derivative property and L(−1)-commutator formula for the inter-
twining operator Y , we have

∂

∂z
Trφ

˜W
Y(UW (qz)w, qz)q

L
˜W (0)− c

24
τ

= Trφ
˜W
Y((2π i LW (0) + 2π iqz LW (−1))UW (qz)w, qz)q

L
˜W (0)− c

24
τ

= 2π iTrφ
˜W

[L
˜W (0),Y(UW (qz)w, qz)]qL

˜W (0)− c
24

τ

= 0.

So Trφ
˜W
Y(UW (qz)w, qz)q

L
˜W (0)− c

24
τ is independent of z. Then the coefficients of this

series in powers of qτ and τ are also independent of z. In particular, for k = 0, . . . , K ,
μ ∈ �(˜W ) and m, n ∈ N ψ

μ

Yk ,φ
([w]mn) and ψYk ,φ([w]mn) are independent of z. Then

we obtain linear functions ψ
μ

Yk ,φ
for μ ∈ �(˜W ) and ψYk ,φ on U∞(W ).

Since Trφ
˜W
Y(UW (qz)w, qz)q

L
˜W (0)− c

24
τ is independent of z, we have

Trφ
˜W
Y(UW (qz)w, qz)q

L
˜W (0)− c

24
τ

= coeff0
log qzResqz q

−1
z Trφ

˜W
Y(UW (qz)w, qz)q

L
˜W (0)− c

24
τ

= Trφ
˜W

coeff0
log xResx x

−1Y(UW (x)w, x)q
L

˜W (0)− c
24

τ , (4.2)
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where as in [H9], we use coeff0
log qz

to denote the operation to take the constant term of
a polynomial in log qz .

Let n, N ∈ N such that n ≤ N . Using (4.2), UW (x) = x LW (0)U(1), the definition of
ϑ̃Y and πhμ+m ϑ̃Y ([w]nn) = 0 for m �= n, we obtain

ψk
Y,φ([w]nn) =

∑

μ∈�(˜W )

φ
˜W[hμ+n]πhμ+ncoeff0

log xResx x
−1Yk(UW (x)w, x)

∣

∣

∣

∣

˜W[hμ+n]

=
∑

μ∈�(˜W )

φ
˜W[hμ+n]πhμ+nϑ̃Yk ([w]nn)

∣

∣

∣

∣

˜W[hμ+n]

=
∑

μ∈�(˜W )

N
∑

m=0

φ
˜W[hμ+m]πhμ+m ϑ̃Yk ([w]nn)

∣

∣

∣

∣

˜W[hμ+m]

= φ�0
N (˜W )ϑ̃Yk ([w]nn)

∣

∣

∣

∣

�0
N (˜W )

. (4.3)

for n ∈ N.

Lemma 4.1. For m, n ∈ N, k = 0, . . . , K, v ∈ V and w ∈ W, we have

ψYk ,φ([v]mn [w]nm) = ψYk ,φ([w]nm [v]mn). (4.4)

Proof. By definition,

[v]mn [w]nm = Resx T2m+1((x + 1)−2m+n−1)(1 + x)m
[

YW

(

v,
1

2π i
log(1 + x)

)

w

]

mm
.

Let N ∈ N be larger than or equal to both m and n. Using (4.3) and

ϑ̃Y ([v]mn [w]nm) = ϑ̃
˜W ([v]mn)ϑ̃Y ([w]nm),

ϑ̃Y ([w]nm [v]mn) = ϑ̃Y ([w]nm)ϑ̃
˜W ([v]mn),

we have

ψYk ,φ([v]mn [w]nm)

= φ�0
N (˜W )ϑ̃Yk ([v]mn [w]nm)

∣

∣

∣

∣

�0
N (˜W )

= φ�0
N (˜W )ϑ̃˜W ([v]mn)ϑ̃Yk ([w]nm)

∣

∣

∣

∣

�0
N (˜W )

= φ�0
N (˜W )ϑ̃Yk ([w]nm)ϑ̃

˜W ([v]mn)

∣

∣

∣

∣

�0
N (˜W )

= φ�0
N (˜W )ϑ̃Yk ([w]nm [v]mn)

∣

∣

∣

∣

�0
N (˜W )

= ψYk ,φ([w]nm [v]mn).

��
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Fix N ∈ N. Then the restriction of the linear function ψYk ,φ on U∞(W ) to UN (W )

is a linear function ψN
Yk ,φ

on UN (W ).

Proposition 4.2. The linear function ψN
Yk ,φ

on U∞(W ) is in fact a symmetric linear

function on ˜AN (W ), that is, ψN
Yk ,φ

(˜Q∞(W ) ∩UN (W )) = 0 and

ψN
Yk ,φ

(v w) = ψN
Yk ,φ

(w v) (4.5)

for v ∈ UN (V ) and w ∈ UN (W ).

Proof. Since ψYk ,φ([w]mn) = 0 for m �= n, to prove ψN
Yk ,φ

(˜Q∞(W ) ∩ UN (W )) = 0,

we need only prove ψYk ,φ([w]nn) = 0 if [w]nn ∈ ˜Q∞(W ). From (4.3), we have

ψYk ,φ([w]nn) = φ�0
N (˜W )ϑ̃Yk ([w]nn)

∣

∣

∣

∣

�0
N (˜W )

.

But from the definition of ˜Q∞(W ), ϑ̃Yk ([w]nn) = 0 if [w]nn ∈ ˜Q∞(W ). This proves
ψN
Yk ,φ

(˜Q∞(W ) ∩UN (W )) = 0.
For v = [v]mn and w = [w]kl , if n �= k, we have

v w = [v]mn [w]kl = 0

and

ψYk ,φ(w v) = ψYk ,φ([w]kl [v]mn) = 0.

So (4.5) holds in this case. The same argument shows that if m �= l, (4.5) holds. The
case n = k and m = l is given by (4.4). Thus (4.5) holds for all v ∈ UN (V ) and w
∈ UN (W ). ��

Proposition 4.2 gives the first construction of linear symmetric functions on ˜AN (W ).
We now give the second construction.

In the formulations, discussions and proofs below, for m ∈ Z+, (e2π i x − 1)−m is
always understood as the formal Laurent series obtained by expanding (e2π i z − 1)−m

as a Laurent series near z = 0 and then replacing z by x .
The following theorem gives our second construction of symmetric linear functions

on ˜AN (W ) and is the main result of this section:

Theorem 4.3. Let V be a C2-cofinite vertex operator algebra without nonzero elements
of negative weights. Let W be a grading-restricted generalized V -module and

S : W → C{q}[log q]
w 
→ S(w; q)

a linear map satisfying

S(w; q) =
K
∑

k=0

J
∑

j=1

∑

m∈N
Sk, j,m(w)(log q)kqr j+m,

S(ResxYW (v, x)w; q) = 0, (4.6)
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S(Resx ℘̃2(x; q)YW (v, x)w; q) = 0, (4.7)

(2π i)2q
∂

∂q
S(w; q) = S(Resx (℘̃1(x; q) − ˜G2(q)x)YW (ω, x)w; q) (4.8)

for u ∈ V and w ∈ W, where K ∈ N, r1, . . . , rJ ∈ C are independent of w. For
N ∈ N, k = 0, . . . , K and j = 1, . . . , J , let ψN

S;k, j : UN (W ) → C be the linear map

defined by ψN
S;k, j ([w]mn) = 0 for w ∈ W and m, n ∈ N satisfying 0 ≤ m, n ≤ N and

m �= n and ψN
S;k, j ([w]nn) = Sk, j,n(w) for w ∈ W and n ∈ N satisfying n ≤ N. Then

ψN
S;k, j (˜Q

∞(W )) = 0 so that ψN
S;k, j for k = 0, . . . , K and j = 1, . . . , J induce linear

maps from ˜AN (W ) to C, still denoted by ψN
S;k, j . Moreover, these induced linear maps

ψN
S;k, j are in fact symmetric linear functions on ˜AN (W ), that is, for v ∈ ˜AN (V ) and

w ∈ ˜AN (W ),

ψN
S;k, j (v w) = ψN

S;k, j (w v)

satisfying

ψN
S;k, j (([ω]nn − (r j + n)[1]nn) (K−k+1) w) = 0 (4.9)

for n = 0, . . . , N and w ∈ U (W ), where

([ω]nn − (r j + n)[1]nn) (K−k+1) =
K−k+1

︷ ︸︸ ︷

([ω]nn − (r j + n)[1]nn) · · · ([ω]nn − (r j + n)[1]nn) .

We will prove this result after we prove a number of lemmas and propositions. We
first prove a lemma for the vertex operators for a generalized V -module.

Lemma 4.4. Let W be a generalized V -module. For m, n ∈ N satisfying n ≥ m, we
have

Resxe
2(m+1)π i x (e2π i x − 1)−n−2YW1(v,±x)w

=
m
∑

j=0

1

(n − j + 1)

(

m
j

)

Resxe
2π i x (e2π i x − 1)−2·

· YW
((± 1

2π i LV (−1) − 1
n − j

)

v,±x

)

w. (4.10)

Proof. We first prove (4.10) in the special case m = 0, that is,

Resxe
2π i x (e2π i x − 1)−n−2YW1(v,±x)w

= 1

n + 1
Resxe

2π i x (e2π i x − 1)−2YW

(

(± 1
2π i LV (−1) − 1

n

)

v,±x

)

w (4.11)

for n ∈ N. In this case,
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Resx e
2π i x (e2π i x − 1)−n−2YW (v,±x)w

= Resx e
4π i x (e2π i x − 1)−n−2YW (v,±x)w − Resx e

2π i x (e2π i x − 1)−n−1YW (v,±x)w

= − 1

2π i(n + 1)
Resx

(

d

dx
e2π i x (e2π i x − 1)−n−1

)

YW (v,±x)w

+
1

n + 1
Resx e

2π i x (e2π i x − 1)−n−1YW (v,±x)w

− Resx e
2π i x (e2π i x − 1)−n−1YW (v,±x)w

= 1

2π i(n + 1)
Resx e

2π i x (e2π i x − 1)−n−1 d

dx
YW (v,±x)w

− n

n + 1
Resx e

2π i x (e2π i x − 1)−n−1YW (v,±x)w

= 1

(n + 1)
Resx e

2π i x (e2π i x − 1)−n−1·

· YW
((

± 1

2π i
LV (−1) − n

)

v,±x

)

w. (4.12)

Using (4.12) repeatedly, we have

Resxe
2π i x (e2π i x − 1)−n−2YW (v,±x)w

= 1

(n + 1)!Resx e
2π i x (e2π i x − 1)−2·

· YW
((

± 1

2π i
LV (−1) − 1

)

· · ·
(

± 1

2π i
LV (−1) − n

)

v,±x

)

w

= 1

(n + 1)
Resxe

2π i x (e2π i x − 1)−2·

· YW
((± 1

2π i LV (−1) − 1
n

)

v,±x

)

w.

In the general case, using the binomial expansion of (1 + (e2πx − 1))m , we have

Resxe
2(m+1)π i x (e2π i x − 1)−n−2YW (v,±x)w

=
m
∑

j=0

(

m

j

)

Resxe
2π i x (e2π i x − 1)−(n− j)−2YW (v,±x)w. (4.13)

Since n ≥ m, we have n ≥ j for j = 0, . . . ,m. Then (4.11) gives

Resx e
2π i x (e2π i x − 1)−(n− j)−2YW (v,±x)w

= 1

(n − j + 1)
Resx e

2π i x (e2π i x − 1)−2·

· YW
((± 1

2π i LV (−1) − 1
n − j

)

v,±x

)

w. (4.14)

Using (4.13) and 4.14), we obtain (4.10). ��
We now prove a lemma giving some identities for maps from a generalized V -module

to the space of power series in a formal variable q satisfying (4.6) and (4.7).
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Lemma 4.5. Let W be a generalized V -module. Assume that a linear map

S : W → C[[q]]
w 
→ S(w; q) =

∑

m∈N
Sm(w)qm

satisfies (4.6) and (4.7). Then for m, n ∈ N satisfying n ≥ m,

S0(Resx e
2(m+1)π i x (e2π i x − 1)−n−2YW1(u,±x)w1) = 0 (4.15)

and

Sp(Resxe
2(m+1)π i x (e2π i x − 1)−n−2YW1(v,±x)w1)

= −
m
∑

j=0

p
∑

s=1

∑

l|s

l

(n − j + 1)

(

m
j

)

·

· Sp−s

(

Resx

((−l − 1
n − j

)

e2lπ i x +

(

l − 1
n − j

)

e−2lπ i x
)

YW (v,±x)w

)

. (4.16)

for p ∈ Z+.

Proof. We first prove (4.15) and (4.16) in the special case m = n = 0, that is,

S0(Resx e
2π i x (e2π i x − 1)−2YW1(u,±x)w1) = 0 (4.17)

and

Sp(Resx e
2π i x (e2π i x − 1)−2YW1(v,±x)w1)

= −
p

∑

s=1

∑

l|s
l Sp−s(Resx (e

2lπ i x + e−2lπ i x ))YW (v,±x)w) (4.18)

for p ∈ Z+ From (A.2) and (4.7), we have

0 = S(Resx ℘̃2(x; q)Y (u,±x)w1; q)

= (2π i)2
∑

n∈N
Sn(Resx e

2π i x (e2π i x − 1)−2YW1(u,±x)w1)q
n

+ (2π i)2
∑

n∈N

∑

s∈Z+

∑

l|s
l Sn(Resx (e

2lπ i x + e−2lπ i x )YW1(u,±x)w1)q
n+s

− π2

3

∑

n∈N
Sn(ResxYW1(u,±x)w1)q

n

− 2(2π i)2
∑

n∈N

∑

s∈Z+

σ(s)Sn(ResxYW1(u,±x)w1)q
n+s . (4.19)

Using (4.6), we see that (4.19) gives
∑

n∈N
Sn(Resxe

2π i x (e2π i x − 1)−2YW1(u,±x)w1)q
n

= −
∑

n∈N

∑

s∈Z+

∑

l|s
l Sn(Resx (e

2lπ i x + e−2lπ i x )YW1(u,±x)w1)q
n+s . (4.20)

Taking the coefficients of the power of q p for p ∈ N of both sides of (4.20), we obtain
(4.17) and (4.18) for p ∈ Z+.

For m, n ∈ N satisfying n ≥ m, using (4.10) and (4.17), we obtain
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S0(Resx e
2(m+1)π i x (e2π i x − 1)−n−2YW1 (u, ±x)w1)

=
m
∑

j=0

1

(n − j + 1)

(

m

j

)

S0

(

Resx e
2π i x (e2π i x − 1)−2YW

(

(± 1
2π i LV (−1) − 1

n − j

)

v, ±x

)

w

)

= 0,

proving (4.15). For m, n ∈ N satisfying n ≥ m and p ∈ Z+, using (4.10) and (4.18), we
obtain

Sp(Resx e
2(m+1)π i x (e2π i x − 1)−n−2YW1(v,±x)w1)

= −
m
∑

j=0

p
∑

s=1

∑

l|s

l

(n − j + 1)

(

m
j

)

·

· Sp−s

(

Resx (e
2lπ i x + e−2lπ i x )YW

((± 1
2π i LV (−1) − 1

n − j

)

v,±x

)

w

)

= −
m
∑

j=0

p
∑

s=1

∑

l|s

l

(n − j + 1)

(

m
j

)

·

· Sp−s

(

Resx (e
2lπ i x + e−2lπ i x )

(

1
2π i

d
dx − 1

n − j

)

YW (v,±x)w

)

= −
m
∑

j=0

p
∑

s=1

∑

l|s

l

(n − j + 1)

(

m
j

)

·

· Sp−s

(

Resx

((− 1
2π i

d
dx − 1

n − j

)

(e2lπ i x + e−2lπ i x )

)

YW (v,±x)w

)

= −
m
∑

j=0

p
∑

s=1

∑

l|s

l

(n − j + 1)

(

m
j

)

·

· Sp−s

(

Resx

((−l − 1
n − j

)

e2lπ i x +

(

l − 1
n − j

)

e−2lπ i x
)

YW (v,±x)w

)

, (4.21)

proving (4.16). ��
We are now ready to prove our main technical result.

Proposition 4.6. Let W be a grading-restricted generalized V -module. Assume that a
linear map

S : W → C[[q]]
w 
→ S(w; q) =

∑

m∈N
Sm(w)qm

satisfies (4.6) and (4.7) for u ∈ V and w ∈ W. Then we have:

1. For m, n, p ∈ N satisfying 0 ≤ p ≤ m and 2m ≤ n, v ∈ V and w ∈ W,

Sp(Resxe
2(m+1)π i x (e2π i x − 1)−n−2YW (v, x)w) = 0. (4.22)

2. For m, n ∈ N, v ∈ V and w ∈ W,
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n
∑

k=0

(−2m + n − 1
k

)

·

· Sm(Resxe
2π i(m+1)x (e2π i x − 1)−2m+n−k−1YW (v, x)w)

=
m
∑

k=0

(−2n + m − 1
k

)

·

· Sn(Resxe2π i(n+1)x (e2π i x − 1)−2n+m−k−1YW (v,−x)w). (4.23)

Proof. Note that (4.22) in the case m = 0 is (4.15) in the case m = 0 with ± being +.
So we need only prove (4.22) in the case m, n ∈ Z+. From (4.16), we have

Sp(Resxe
2(m+1)π i x (e2π i x − 1)−n−2YW1(v, x)w1)

= −
m
∑

j=0

p
∑

s=1

∑

l|s

l

(n − j + 1)

(

m

j

)

·

· Sp−s

(

Resx

((−l − 1

n − j

)

e2lπ i x +

(

l − 1

n − j

)

e−2lπ i x )

)

YW (v, x)w

)

= −
p

∑

s=1

∑

l|s

m
∑

j=0

l

(n − j + 1)

(

m

j

)(−l − 1

n − j

)

Sp−s

(

Resx e
2lπ i xYW (v, x)w

)

= 0,

where in the last two steps, we have used
( l−1
n− j

) = 0 (since 0 ≤ l − 1 < s ≤ p ≤ m ≤
2m − j ≤ n − j) and (B.2). This proves (4.22).

We divide the proof of (4.23) into three cases: m = n, m > n and m < n.
We first prove (4.23) in the case m = n. In this case, the difference between left-hand

side and the right-hand side of (4.23) is

n
∑

k=0

(−n − 1

k

)

Sn(Resx e
2π i(n+1)x (e2π i x − 1)−n−k−1YW (v, x)w)

−
n

∑

k=0

(−n − 1

k

)

Sn(Resx e
2π i(n+1)x (e2π i x − 1)−n−k−1YW (v,−x)w)

=
n

∑

k=0

(−n − 1

k

)

Sn(Resx e
2π i(n+1)x (e2π i x − 1)−n−k−1YW (v, x)w)

+
n

∑

k=0

(−n − 1

k

)

Sn(Resx e
−2π i(n+1)x (e−2π i x − 1)−n−k−1YW (v, x)w)

=
n

∑

k=0

(−n − 1

k

)

Sn(Resx (e
2π i(n+1)x + (−1)−n−k−1e2π ikx )(e2π i x − 1)−n−k−1YW (v, x)w).

(4.24)

Using (B.1) and (4.6), we see that the right-hand side of (4.24) is equal to 0, proving
(4.23) in this case.
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Swapping m and n in (4.23) in the case of m < n, we obtain

n
∑

k=0

(−2m + n − 1
k

)

Sm(Resxe
2π i(m+1)x (e2π i x − 1)−2m+n−k−1YW (v,−x)w)

=
m
∑

k=0

(−2n + m − 1
k

)

·

· Sn(Resxe
2π i(n+1)x (e2π i x − 1)−2n+m−k−1YW (v, x)w),

which differs from (4.23) only by the sign of the variable x in the vertex operators. Thus
we can prove (4.23) in the cases m > n and m < n together by proving

n
∑

k=0

(−2m + n − 1

k

)

Sm(Resxe
2π i(m+1)x (e2π i x − 1)−2m+n−k−1YW (v,±x)w)

=
m
∑

k=0

(−2n + m − 1

k

)

Sn(Resxe
2π i(n+1)x (e2π i x − 1)−2n+m−k−1YW (v,∓x)w).

(4.25)

in the case of m > n.
For m, n, k ∈ N satisfying m > n, v ∈ V and w ∈ W , using (4.16) and (B.2) with n

there replaced by 2m − n + k − 1 and noting that 2m − n + k − 1 ≥ m, we have

n
∑

k=0

(−2m + n − 1
k

)

Sm(Resx e
2π i(m+1)x ·

· (e2π i x − 1)−2m+n−k−1YW (v,±x)w)

= −
n

∑

k=0

m
∑

j=0

m
∑

s=1

∑

l|s

(−2m + n − 1
k

)

l

2m − j − n + k

(

m
j

)

·

· Sm−s

(

Resx

(( −l − 1
2m − j − n + k − 1

)

e2lπ i x

+

(

l − 1
2m − j − n + k − 1

)

e−2lπ i x
)

YW (v,±x) w

)

= −
n

∑

k=0

m
∑

j=0

m
∑

s=1

∑

l|s

(−2m + n − 1
k

)

l

2m − j − n + k

(

m
j

)

·

·
(

l − 1
2m − j − n + k − 1

)

Sm−s(Resx e
−2lπ i xYW (v,±x)w). (4.26)

From (B.8), we see that in this case (m > n), the right-hand side of (4.26) and thus
also the left-hand side of (4.25) are equal to

−
∑

(m−n)|s, 1≤s≤m

Sm−s(Resxe
−2(m−n)π i xYW (v,±x)w). (4.27)

We now prove (4.23) in the case m > n. We give the proof in the three cases m > 2n,
m = 2n > 0 and 2n > m > n separately.
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In the case m > 2n, we have p(m − n) ≥ 2(m − n) = m + (m − 2n) > m for
p ∈ Z+ + 1. So the only integer s satisfying 1 ≤ s ≤ m and (m − n)|s is m − n. Thus
in this case, (4.27) is equal to

− Sn(Resx e
−2(m−n)π i xYW (v,±x)w). (4.28)

On the other hand, in this case (m > 2n), we have m ≥ −2n + m − 1 ≥ 0. Then for
v ∈ V and w ∈ W , we have

m
∑

k=0

(−2n + m − 1
k

)

·

· Sn(Resxe
2π i(n+1)x (e2π i x − 1)−2n+m−k−1YW (v,∓x)w)

=
−2n+m−1

∑

k=0

(−2n + m − 1
k

)

·

· Sn(Resxe
2π i(n+1)x (e2π i x − 1)−2n+m−k−1YW (v,∓x)w)

= Sn(Resxe
2π i(m−n)xYW (v,∓x)w)

= −Sn(Resxe
−2π i(m−n)xYW (v,±x)w). (4.29)

So (4.25) holds when m > 2n.
In the case m = 2n > 0, we have m − n = n > 0. Then the only integers s between

1 and m = 2n containing a factor n are n and 2n. So in this case, (4.27) becomes

− Sn(Resx e
−2nπ i xYW (v,±x)w) − S0(Resxe

−2nπ i xYW (v,±x)w). (4.30)

In this case, the right-hand side of (4.25) is equal to

2n
∑

k=0

(−1)k Sn(Resx e
2π i(n+1)x (e2π i x − 1)−k−1YW (v,∓x)w)

=
2n
∑

k=0

(−1)k Sn(Resx e
2π inx (e2π i x − 1)−kYW (v,∓x)w)

+
2n
∑

k=0

(−1)k Sn(Resx e
2π inx (e2π i x − 1)−k−1YW (v,∓x)w)

= Sn(Resx e
2π inxYW (v,∓x)w)

+ Sn(Resx e
2π inx (e2π i x − 1)−2n−1YW (v,∓x)w)

= −Sn(Resx e
−2π inxYW (v,±x)w)

− Sn(Resx e
−2π inx (e−2π i x − 1)−2n−1YW (v,±x)w)

= −Sn(Resx e
−2π inxYW (v,±x)w)

+ Sn(Resx e
2π i(n+1)x (e2π i x − 1)−2n−1YW (v,±x)w). (4.31)

By (4.16), we see that the second term in the right-hand side of (4.31) is equal to
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−
n

∑

j=0

n
∑

s=1

∑

l|s

l

(2n − j)

(

n
j

)

·

· Sn−s

(

Resx

(( −l − 1
2n − 1 − j

)

e2lπ i x +

(

l − 1
2n − 1 − j

)

e−2lπ i x
)

·

· YW (v,±x)w

)

= −
n

∑

s=1

∑

l|s

n
∑

j=0

l

(2n − j)

(

n
j

)( −l − 1
2n − 1 − j

)

·

· Sn−s(Resxe
2lπ i xYW (v,±x)w)

−
n

∑

s=1

∑

l|s

n
∑

j=0

l

(2n − j)

(

n
j

)(

l − 1
2n − 1 − j

)

·

· Sn−s(Resxe
−2lπ i xYW (v,±x)w). (4.32)

Taking m and n be n and 2n − 1, respectively, in (B.2), we obtain

n
∑

j=0

l

(2n − j)

(

n

j

)( −l − 1

2n − 1 − j

)

= 0

and thus the first term in the right-hand side of (4.32) is equal to 0. Note that
( l−1

2n−1− j

) = 0
when 2n − j − 1 > l − 1 or equivalently when 2n > l + j . But l, j ≤ n. So only when
l = j = n,

( l−1
2n−1− j

)

is not 0. Thus the second term in the right-hand side of (4.32) is
equal to

−
n

∑

s=1

∑

n|s

n

n

(

n

n

)(

n − 1

n − 1

)

Sn−s(Resx e
−2nπ i x YW (v,±x)w) = −S0(Resx e

−2nπ i x YW (v,±x)w).

From these calculations, we see that the right-hand side of (4.31) is equal to (4.30),
proving (4.25) in the case m = 2n > 0.

In the case 2n > m > n, we have

m
∑

k=0

(−2n + m − 1

k

)

Sn(Resx e
2π i(n+1)x (e2π i x − 1)−2n+m−k−1YW (v,∓x)w)

=
m
∑

k=0

(−2n + m − 1

k

)

Sn(Resx e
2π i(m−n)x e2π i(2n−m+1)x (e2π i x − 1)−2n+m−k−1YW (v,∓x)w)

=
m
∑

k=0

2n−m+1
∑

j=0

(−2n + m − 1

k

)(

2n − m + 1

j

)

·

· Sn(Resx e
2π i(m−n)x (e2π i x − 1)− j−kYW (v,∓x)w)

= −
m
∑

k=0

2n−m+1
∑

j=0

(−2n + m − 1

k

)(

2n − m + 1

j

)

·

· Sn(Resx e
−2π i(m−n)x (e−2π i x − 1)− j−kYW (v,±x)w)
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= −
m
∑

k=0

2n−m+1
∑

j=0

(−1)− j−k
(−2n + m − 1

k

)(

2n − m + 1

j

)

·

· Sn(Resx e
2π i(−m+n+ j+k)x (e2π i x − 1)− j−kYW (v,±x)w)

= −
2n+1
∑

r=0

(−1)−r
min(m,r)
∑

k=0

(−2n + m − 1

k

)(

2n − m + 1

r − k

)

·

· Sn(Resx e
2π i(−m+n+r)x (e2π i x − 1)−r YW (v,±x)w)

= −
m
∑

r=0

(−1)−r
r

∑

k=0

(−2n + m − 1

k

)(

2n − m + 1

r − k

)

·

· Sn(Resx e
2π i(−m+n+r)x (e2π i x − 1)−r YW (v,±x)w)

−
2n+1
∑

r=m+1

(−1)−r
m
∑

k=0

(−2n + m − 1

k

)(

2n − m + 1

r − k

)

·

· Sn(Resx e
2π i(−m+n+r)x (e2π i x − 1)−r YW (v,±x)w). (4.33)

Using (B.4), we see that the first term in the right-hand side of (4.33) is equal to

−Sn(Resx e
2π i(m−n)xYW (v,±x)w).

Since m > n ≥ l and r ≥ m + 1, we have r − 2 ≥ −m + n + r − 1 ≥ n ≥ l. Then by
(B.2) with m, n replaced by −m + n + r − 1, r − 2, respectively, we have

−m+n+r−1
∑

j=0

l

(r − j − 1)

(−m + n + r − 1

j

)( −l − 1

r − 2 − j

)

= 0. (4.34)

Using (4.16) with m, n replaced by −m + n + r − 1, r − 2, respectively, and (4.34), we
see that the second term in the right-hand side of (4.33) is equal to

2n+1
∑

r=m+1

(−1)−r
m
∑

k=0

(−2n + m − 1

k

)(

2n − m + 1

r − k

)

·

·
−m+n+r−1

∑

j=0

n
∑

s=1

∑

l|s

l

(r − j − 1)

(−m + n + r − 1

j

)

·

· Sn−s

(

Resx

(( −l − 1

r − 2 − j

)

e2lπ i x +

(

l − 1

r − 2 − j

)

e−2lπ i x
)

YW (v,±x)w

)

=
n

∑

s=1

∑

l|s

2n+1
∑

r=m+1

(−1)−r
m
∑

k=0

−m+n+r−1
∑

j=0

(−2n + m − 1

k

)(

2n − m + 1

r − k

)

·

·
(−m + n + r − 1

j

)(

l

r − 1 − j

)

Sn−s

(

Resx e
−2lπ i x YW (v,±x)w

)

= −
n

∑

s=1

∑

l|s

2n−m
∑

p=0

(−1)−p−m
m
∑

k=0

(−2n + m − 1

k

)(

2n − m + 1

p + m + 1 − k

)

·

·
m+p
∑

j=0

(

n + p

j

)(

l

p + m − j

)

Sn−s

(

Resx e
−2lπ i x YW (v,±x)w

)

. (4.35)

Using (B.4) with α, β,m replaced by n + p, l, p + m, respectively, we see that the
right-hand side of (4.35) is equal to
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−
n

∑

s=1

∑

l|s

2n−m
∑

p=0

(−1)−p−m
m
∑

k=0

(−2n + m − 1

k

)(

2n − m + 1

p + m + 1 − k

)

·

·
(

n + p + l

p + m

)

Sn−s

(

Resx e
−2lπ i xYW (v,±x)w

)

. (4.36)

Using (B.12), we see that (4.36) is equal to

−
n

∑

s=1

∑

l|s
δl,m−n Sn−s

(

Resx e
−2lπ i xYW (v,±x)w

)

= −
∑

(m−n)|s, 1≤s≤n

Sn−s

(

Resxe
−2(m−n)π i xYW (v,±x)w

)

.

From the calculations above, we obtain that the right-hand side of (4.33) is equal to

− Sn(Resx e
2π i(m−n)xYW (v,±x)w)

−
∑

(m−n)|s, 1≤s≤n

Sn−s

(

Resx e
−2(m−n)π i x YW (v,±x)w

)

=
∑

(m−n)|s, 1≤s≤m

Sm−s

(

Resx e
−2(m−n)π i x YW (v,±x)w

)

.

Thus (4.25) holds in the case 2n > m > n. This finishes the proof of (4.25) in the case
m > n. The proof of (4.23) is now complete. ��
Remark 4.7. The special case n = m and W = V of (4.22) is the same as Proposition 4.4
in [Mi2]. In fact, this proposition is not proved in [Mi2]. The proof of Proposition 4.4 in
[Mi2] uses some formulas obtained by Zhu for shifted q-traces of vertex operators. It is
claimed in [Mi2] that these formulas give some properties of Oq(V ). But actually these
formulas of Zhu show that such properties hold for the kernels of suitable linear maps
constructed from shifted q-traces of vertex operators. Although Oq(V ) is a subspace of
these kernels, one cannot conclude from only these facts that Oq(V ) also satisfies the
same properties. The arguments in [Mi2] indeed give strong evidence that the conclusion
of Proposition 4.4 in [Mi2] must be true. But these arguments do not give a proof. A
proof is given by the proof of the special case n = m and W = V of (4.22). In fact, the
first proof of this proposition was given by McRae [Mc].

Proposition 4.8. Let W be a grading-restricted generalized V -module. Assume that a
linear map

S : W → qrC[[q]][log q]

w 
→ S(w; q) =
K
∑

k=0

∑

n∈N
Sk,n(w)(log q)kqr+n

satisfies (4.6), (4.7) and (4.8). Then

n
∑

m=0

(−n − 1

m

)

Sk,n(Resx e
2π(n+1)i x (e2π i x − 1)−n−m−1YW (ω, x)w) − 2π i(r + n)Sk,n(w)

= 2π i(k + 1)Sk+1,n(w) (4.37)

for k = 0, . . . , K, n ∈ N and w ∈ W, where SK+1,n(w) = 0 for n ∈ N and w ∈ W.
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Proof. From (4.8), (A.4) and (4.6), we obtain

(2π i)2
K
∑

k=0

∑

n∈N
kSk,n(w)(log q)k−1qr+n

+ (2π i)2
K
∑

k=0

∑

n∈N
(r + n)Sk,n(w)(log q)kqr+n

= 2π i
K
∑

k=0

∑

n∈N
Sk,n(Resxe

2π i x (e2π i x − 1)−1YW1(ω, x)w)(log q)kqr+n

− 2π i
K
∑

k=0

∑

n∈N

∑

s∈Z+

∑

l|s
Sk,n(Resx (e

2lπ i x − e−2lπ i x )·

· YW1(ω, x)w)(log q)kqr+n+s

= 2π i
K
∑

k=0

∑

n∈N
Sk,n(Resxe

2π i x (e2π i x − 1)−1YW1(ω, x)w)(log q)kqr+n

− 2π i
K
∑

k=0

∑

n∈Z+

n
∑

s=1

∑

l|s
Sk,n−s(Resx (e

2lπ i x − e−2lπ i x )·

· YW1(ω, x)w)(log q)kqr+n . (4.38)

Taking the coefficients of (log q)kqr+n in (4.38), we obtain

Sk,0(Resxe
2π i x (e2π i x − 1)−1YW1(ω, x)w) − 2π ir Sk,0(w)

= 2π i(k + 1)Sk+1,0(w) (4.39)

for k = 0, . . . , K , which is (4.37) in the case of n = 0, and

Sk,n(Resx e
2π i x (e2π i x − 1)−1YW1(ω, x)w)

−
n

∑

s=1

∑

l|s
Sk,n−s(Resx (e

2lπ i x − e−2lπ i x )YW1(ω, x)w)

= 2π i(k + 1)Sk+1,n(w) + 2π i(r + n)Sk,n(w) (4.40)

for k = 0, . . . , K and m ∈ Z+.
Note that for k = 0, . . . , K ,

∑

n∈N Sk,n(w)qr+n satisfy (4.6) and (4.7). Thus for fixed
k, all the results above hold for Sk,n for n ∈ N. Expanding e2πnix = (1 + (e2π i x − 1))n

as a polynomial in e2π i x − 1 and then using (4.16) for Sk,n , we have

n
∑

m=0

(−n − 1
m

)

Sk,n(Resx e
2π(n+1)i x (e2π i x − 1)−n−m−1YW (ω, x)w)

=
n

∑

m=0

n
∑

j=0

(−n − 1
m

)(

n
j

)

·

· Sk,n(Resx e
2π i x (e2π i x − 1)−n+ j−m−1YW (ω, x)w)
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= Sk,n(Resx e
2π i x (e2π i x − 1)−1YW (ω, x)w)

−
n−1
∑

j=0

n
∑

s=1

∑

l|s

(

n
j

)

l

n − j
·

· Sk,n−s

(

Resx

(( −l − 1
n − j − 1

)

e2π ilx +

(

l − 1
n − j − 1

)

e−2π ilx
)

·

· YW (ω, x)w

)

−
n

∑

m=1

n
∑

j=0

n
∑

s=1

∑

l|s

(−n − 1
m

)(

n
j

)

l

n − j + m
·

· Sk,n−s

(

Resx

(( −l − 1
n − j + m − 1

)

e2π ilx

+

(

l − 1
n − j + m − 1

)

e−2π ilx
)

YW (ω, x)w

)

. (4.41)

Using (B.19), (B.20), (B.23) and (B.24), we see that the right-hand side of (4.41) is
equal to the left-hand side of (4.40). Then by (4.40), we obtain (4.37). ��
Remark 4.9. The special case W = V of (4.37) implies immediately Proposition 4.5 in
[Mi2]. In fact, this proposition is not proved in [Mi2]. Note that Proposition 4.5 in [Mi2]
is based on the same arguments as what Proposition 4.4 in [Mi2] is based on. As we have
discussed in Remark 4.7, though these arguments indeed give strong evidence that the
conclusion of Proposition 4.5 in [Mi2] must be true, they do not give a proof. A proof of
this proposition is now given by the proof of the special case W = V of (4.37). We also
note that [Mi2] does not have a proof of Proposition 4.6 in [Mi2]. Since we do not need
anything equivalent to Proposition 4.6 in [Mi2] in this paper, we do not give a proof.
On the other hand, without a proof of Proposition 4.6 in [Mi2], the proof of the modular
invariance theorem in [Mi2] is not complete. Certainly the modular invariance theorem
in [Mi2] is a special case of Theorem 5.5 below and thus we do obtain a complete proof
in this paper. But it is still interesting to see whether the method in [Mi2] can indeed
give a complete proof of the modular invariance theorem in [Mi2]. To see this, we need
to find a proof of Proposition 4.6 in [Mi2].

We now prove the main result of this section.

Proof of Theorem 4.3. Since ψ
N ;k, j
S ([v]mn) = 0 for m, n ∈ N satisfying 0 ≤ m, n ≤ N

and m �= n, to show ψN
S;k, j (˜Q

∞(W )) = 0, we need only show ψN
S;k, j ([w]nn) = 0 for

w ∈ W and 0 ≤ n ≤ N such that [w]nn ∈ ˜Q∞(W ).
Since S satisfies (4.6) and (4.7), we see that for k = 0, . . . , K and j = 1, . . . , J , the

linear map given by w 
→ ∑

m∈N Sk, j,m(w)qm for w ∈ W also satisfies (4.6) and (4.7).
In particular, (4.22) holds for Sp = Sk, j,p. Then by (4.22) for Sn = Sk, j,n , we have

Sk, j,n(Resx e
2π i(n+1)x (e2π i x − 1)−2n−p−2YW (v, x)w) = 0

for p ∈ N. Recall the invertible operator U(1) : W → W in Sect. 2.2. Changing the
variable in the formal residue and using (2.4), we obtain
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Sk, j,n(U(1)−1Resx x
−2n−2−pYW ((1 + x)LV (0)+nv, x)w)

= Sk, j,n

(

Resx x
−2n−2−p(1 + x)nYW

(

UV (1)−1v,
1

2π i
log(1 + x)

)

UW (1)−1w

)

= 2π i Sk, j,n(Resxe
2π i(n+1)x (e2π i x − 1)−2n−p−2YW (UV (1)−1v, x)UW (1)−1w)

= 0

for v ∈ V , w ∈ W and p ∈ N. Since elements of W the form Resx x−2n−2−pYW ((1 +
x)LV (0)+nv, x)w span On(W ) (see [HY]), the linear function Sk, j,n ◦U(1)−1 on W is in
fact a linear function on An(W ) = V/On(V ) (see [HY]). Changing the variable in the
formal residue and using (2.4), we see that in the case of m = n, (4.23) in fact gives

Sk, j,n(U(1)−1(v ∗n w)) = Sk, j,n(U(1)−1(w ∗n v))

(see [HY]) for v ∈ V and w ∈ W . This means that Sk, j,n ◦U(1)−1 is in fact a symmetric
linear function on An(W ).

Since V is C2-cofinite and has no nonzero elements of negative weights, by Theorem
3.19, An(V ) is finite dimensional. But from [H8], An(V ) is isomorphic to a subalgebra
of An(V ) and is thus also finite dimensional. By Theorem 3.21, An(W ) is also finite
dimensional. By Theorem 3.3, An(W ) is linearly isomorphic to a subspace of An(W )

and is thus also finite dimensional.
By Theorem 2.2, there exist finite-dimensional basic symmetric algebras Pi for i =

1, . . . , l equipped with symmetric linear functions φi , finite-dimensional An(V )-Pi -
bimodules Ui (projective as right Pi -modules) and fi ∈ HomAn(V ),Pi (An(W ) ⊗An(V )

Ui ,Ui ) such that for w ∈ W

Sk, j,n(U(1)−1w) =
l

∑

i=1

(φi )
fi
Ui

(w + On(W )).

For a lower-bounded generalized V -module W and n ∈ N, we have Gn(W ) = W�n� =
∐

μ∈�(W ) W[hμ+n]. In [HY], a lower-bounded generalized V -module Sn(Gn(W )) is con-
structed such that Gn(Sn(Gn(W ))) as an An(V )-module is equivalent to Gn(W ). In fact,
this construction does not have to start from Gn(W ) of a lower-bounded generalized V -
module W . We can start with an arbitrary An(V )-module M and the construction gives
us Sn(M) is constructed such that Gn(Sn(M)) as an An(V )-module is equivalent to M .
One can also obtain Sn(M) using the construction given in [H6,H7].

For i = 1, . . . , l, we have lower-bounded generalizedV -modules Sn(Ui ) and Sn(U∗
i ).

Since Ui and U∗
i for i = 1, . . . , n are finite dimensional, by Proposition 3.19, Sn(Ui )

and Sn(U∗
i ) are grading restricted. In particular, Sn(U∗

i )′′ = Sn(U∗
i ). Let Wi

2 = Sn(Ui )

and Wi
3 = Sn(U∗

i )′. Then Wi
2 = Sn(Ui ) = Sn(Gn(Wi

2) and (Wi
3)

′ = Sn(U∗
i ) =

Sn(Gn((Wi
3)

′).
In the proof of Theorem 6.7 in [H9], an element f ∈ HomA∞(V )(A∞(W ) ⊗A∞(V )

W2,W3) is constructed from an element f N ∈ HomAN (V )(A
N (W )⊗AN (V )�

0
N (W2),�

0
N

(W3)) such that the restriction of f to AN (W ) ⊗AN (V ) �0
N (W2) gives f N . The same

proof, with AN (V ), AN (W ), �0
N (W2), �0

N (W3) and AN ,∞(W ) replaced by An(V ),
An(W ), Gn(W2), Gn(W3) and the subspace of A∞(W ) consisting of sums of elements
of the form

∑n
i=0[w]i i for w ∈ W and [w]i j for w ∈ W and i, j ∈ N satisfying i < j ,

respectively, in fact gives a construction of an element f̃ ∈ HomA∞(V )(A∞(W )⊗A∞(V )
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W2,W3) from an element f ∈ HomAn(V )(An(W ) ⊗An(V ) Gn(W2),Gn(W3)) such that
the restriction of f̃ to An(W ) ⊗An(V ) Gn(W2) gives f . Apply this construction to
fi ∈ HomAn(V ),Pi (An(W ) ⊗An(V ) Ui ,Ui ) above for i = 1, . . . , l, we obtain f̃i ∈
HomA∞(V )(A∞(W )⊗A∞(V )Wi

2,W
i
3) such that the restriction of f̃i to An(W )⊗An(V )Ui

gives fi . In particular, for w ∈ W such that [w]nn ∈ Q∞(W ) and wi
2 ∈ Ui ,

fi ((w + On(W )) ⊗An(V ) w2) = f̃i (([w]nn + Q∞(W )) ⊗A∞(V ) w2)

= 0.

Then by the definition of (φi )
fi
Ui

, we have (φi )
fi
Ui

(w + On(W )) = 0 for i = 1, . . . , l for
w ∈ W such that [w]nn ∈ Q∞(W ). Then

ψN
S;k, j ([U(1)−1w]nn) = Sk, j,n(U(1)−1w)

=
l

∑

i=1

(φi )
fi
Ui

(w + On(W ))

= 0.

for w ∈ W such that [w]nn ∈ Q∞(W ). Since ˜Q∞(W ) = U(1)−1Q∞(W ) and 0 ≤
n ≤ N , we have proved ψN

S;k, j ([w]nn) = 0 for w ∈ W and 0 ≤ n ≤ N such that

[w]nn ∈ ˜Q∞(W ). Thus we have ψN
S;k, j (˜Q

∞(W )) = 0.

To prove ψN
S;k, j is symmetric, we need only prove

ψN
S;k, j ([v]mn [w]nm) = ψN

S;k, j ([w]nm [v]mn) (4.42)

for v ∈ V , w ∈ W and 0 ≤ m, n ≤ N . Since for k = 0, . . . , K and j = 1, . . . , J ,
the linear map given by w 
→ ∑

m∈N Sk, j,m(w) for w ∈ W satisfies (4.6) and (4.7), we
see that (4.23) holds for Sk, j,m for m, n ∈ N. But by the definitions of [v]mn [w]nm ,
[w]nm [v]mn and ψN

S;k, j , (4.42) is the same as (4.23).
Since S satisfies (4.8), we see that for j = 1, . . . , J , the linear map given by w 
→

∑K
k=0

∑

m∈N Sk, j,m(w) for w ∈ W also satisfies (4.8). In particular, (4.37) holds for
Sk, j,n for j = 1, . . . , J . By the definition of ψN

S;k, j and [ω]nn [w]nn , we see that the first

term in the left-hand side of (4.37) multiplied by 2π i is equal to ψN
S;k, j ([ω]nn [w]nn)

and thus from (4.37) and [1]nn [w]nn = [w]nn , we obtain

ψN
S;k, j (([ω]nn − (2π i)2(r j + n)[1]nn) [w]nn) = (2π i)2(k + 1)ψN

S;k+1, j ([w]nn).
(4.43)

Using (4.43) repeatedly and note that ψN
S;K+1, j ([w]nn) = SK+1, j,n(w) = 0, we obtain

ψN
S;k, j (([ω]nn − (2π i)2(r j + n)[1]nn) (K−k+1) [w]nn) = 0

for w ∈ W and n = 0, . . . , N . For k, l ∈ N, k �= n and w ∈ W , we have

ψN
S;k, j (([ω]nn − (2π i)2(r j + n)[1]nn) (K−k+1) [w]kl) = ψN

S;k, j (0) = 0.

If for l ∈ N and l �= n, note that

([ω − (2π i)2(r j + n)1]nn) (K−k+1) [w]nl = [w̃]nl ,
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for some w̃ ∈ W . Then by the definition of ψN
S;k, j we have

ψN
S;k, j (([ω]nn − (2π i)2(r j + n)[1]nn) (K−k+1) [w]nl) = ψN

S;k, j ([w̃]nl) = 0.

Thus (4.9) is proved. ��

5. Modular Invariance

In this section, we prove the conjecture on the modular invariance of intertwining oper-
ators. See Theorem 5.5. From the genus-one associativity, as in the proof of the modular
invariance in the semisimple case in [H2], we see that we need only prove that the space
of all genus-one 1-point correlation functions constructed from shifted pseudo-q-traces
of geometrically-modified intertwining operators are invariant under the modular trans-
formations. We introduce a notion of genus-one 1-point conformal block as a map from
a grading-restricted generalized V -module W to the space of analytic functions on the
upper-half plane H satisfying some properties involving the Weierstrass functions ℘-
function ℘2(z; τ), the Weierstrass ζ -function ℘1(z; τ) and the Eisenstein series G2(τ ).
We prove that modular transformations of genus-one 1-point correlation functions con-
structed from shifted pseudo-q-traces of geometrically-modified intertwining operators
give genus-one 1-point conformal blocks. Then we prove that the image of w ∈ W under
a genus-one 1-point conformal block must be a sum of genus-one 1-point correlation
functions constructed from shifted pseudo-q-traces of intertwining operators. This in
particular proves the modular invariance conjecture.

We now introduce the notion of genus-one 1-point conformal block. Let H be the
open upper-half plane and H(H) the space of analytic functions on H. Recall the formal
Laurent series expansion ℘1(x; τ) − G2(τ )x of ℘1(z; τ) − G2(τ )z given by (A.5) and
the formal Laurent series expansion ℘2(x; τ) of ℘2(z; τ) given by (A.6).

Definition 5.1. Let W be a grading-restricted generalized V -module. A genus-one 1-
point conformal block labeled by W is a linear map

F : W → H(H)

w 
→ F(w; τ)

satisfying

F(ResxYW (v, x)w; τ) = 0, (5.1)

2π i
∂

∂τ
F(w; τ) = F(Resx (℘1(x; τ) − G2(τ )x)YW (ω, x)w; τ), (5.2)

F(Resx℘2(x; τ)YW (v, x)w; τ) = 0 (5.3)

for v ∈ V and w ∈ W .

Let W be grading-restricted generalized V -modules and w ∈ W . Given a finite-
dimensional associative algebra P with a symmetric linear functionφ, a grading-restricted
generalized V -P-bimodule ˜W , projective as a right P-module, and an intertwining op-

erator Y of type
(

˜W
W ˜W

)

compatible with P , we have a genus-one 1-point correlation

function F
φ

Y (w; z; τ), which is the analytic extension of the sum of the series

Fφ

Y (w; z; τ) = Trφ
˜W
Y(UW (qz)w, qz)q

L
˜W (0)− c

24
τ .
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Using the L(−1)-derivative property and L(−1)-commutator formula for the intertwin-
ing operator Y , we have

∂

∂z
Trφ

˜W
Y(UW (qz)w, qz)q

L
˜W1

(0)− c
24

τ

= Trφ
W̃
Y1((2π i LW (0) + 2π iqz LW (−1))UW (qz)w, qz)q

L
˜W (0)− c

24
τ

= 2π iTrφ
W̃

[L
˜W (0),Y(UW (qz)w, qz)]qL

˜W (0)− c
24

τ

= 0.

Since F
φ

Y (w; z; τ) is the analytic extension of Trφ
˜W
Y(UW (qz)w, qz)q

L
˜W (0)− c

24
τ , we ob-

tain

d

dz
F

φ

Y1
(w; z; τ) = 0, (5.4)

that is, F
φ

Y (w; z; τ) is independent of z. From now on, we shall write F
φ

Y (w; z; τ) simply

as F
φ

Y (w; τ). Then we have a linear map F
φ

Y : W → H(H) given by w 
→ F
φ

Y (w; τ).
For a ∈ C

×, we define a−LW (0) to be a−LW (0)S e−(log a)LW (0)N , where, as is explicitly
discussed in Sect. 2.2, log a = log |a| + arg a, 0 ≤ arg a < 2π .

Proposition 5.2. For
(

α β

γ δ

)

∈ SL(2,Z),

the linear map from W to H(H) given by

w 
→ F
φ

Y
(

(γ τ + δ)−LW (0)w; ατ + β

γ τ + δ

)

(5.5)

is a genus-one 1-point conformal block labeled by W.

Proof. The identity (2.19) in [F2] in the case n = 1 becomes
(

2π i
∂

∂τ
+ G2(τ )z

∂

∂z

)

Fφ

Y (w; τ) + G2(τ )Fφ

Y (LW (0)w; τ)

= Fφ

Y (LW (−2)w; τ) −
∑

k∈Z+

G2k+2(τ )Fφ

Y (LW (2k)w; τ), (5.6)

where in the left-hand side, we have used

Fφ

Y (LW (0)w; τ) = (wt w)Fφ

Y (w; τ) + Fφ

Y (LW (0)Nw; τ).

Using (5.4), we see that (5.6) becomes

2π i
∂

∂τ
Fφ

Y (w; τ) = Fφ

Y (LW (−2)w; τ) −
∑

k∈N
G2k+2(τ )Fφ

Y (LW (2k)w; τ)

= Fφ

Y

(

LW (−2) −
∑

k∈N
G2k+2(τ )LW (2k)w; τ

)

. (5.7)
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Let τ ′ = ατ+β
γ τ+δ

. Then (5.7) holds with τ replaced by τ ′. Using the modular transformation
properties of G2k+2(τ ) for k ∈ N and the commutator formulas between LW (0) and
LW (n) for n ∈ Z, we see that the formula obtained from (5.7) with τ and w replaced by
τ ′ and (γ τ + δ)−LW (0)w is equivalent to

2π i
∂

∂τ
Fφ

Y ((γ τ + δ)−LW (0)w; τ ′)

= Fφ

Y ((γ τ + δ)−LW (0)LW (−2)w; τ ′)

−
∑

k∈N
G2k+2(τ )Fφ

Y ((γ τ + δ)−LW (0)LW (2k)w; τ ′)

= Fφ

Y

(

(γ τ + δ)−LW (0)

(

LW (−2) −
∑

k∈N
G2k+2(τ )LW (2k)

)

w; τ ′
)

. (5.8)

For u ∈ V , from the n = 1 case of the identity (1.10) in [F2] and the fact that LW (0)N
commutes with vertex operators for W , we obtain

Fφ

Y ((γ τ + δ)−LW (0)ResxYW (u, x)w; τ ′) = 0 (5.9)

and from the n = 1, l = 2 case of the identity (1.14) in [F2], the modular transformation
property of G2k+2(τ ) for k ∈ N and the commutator formula between LW (0) and vertex
operators for W , we obtain

Fφ

Y

⎛

⎝(γ τ + δ)−LW (0)

⎛

⎝u−2 +
∑

k∈Z+

(2k + 1)G2k+2(τ )u2k

⎞

⎠w; τ ′
⎞

⎠ = 0. (5.10)

Formulas (7.9) and (7.10) in [H2] still hold, that is, we have
(

LW (−2) −
∑

k∈N
G2k+2(τ )LW2(2k)

)

w

= Resx (℘1(x; τ) − G2(τ )x)YW (ω, x)w

(5.11)

and
⎛

⎝u−2 +
∑

k∈Z+

(2k + 1)G2k+2(τ )u2k

⎞

⎠w = Resx℘2(x; τ)YW (u, x)w. (5.12)

Using (5.11) and (5.12), we see that (5.8) and (5.10) become

2π i
∂

∂τ
Fφ

Y ((γ τ + δ)−LW (0)w; τ ′)

= Fφ

Y
(

(γ τ + δ)−LW (0)Resx (℘1(x; τ) − G2(τ )x)YW (ω, x)w; τ ′) (5.13)

and

Fφ

Y
(

(γ τ + δ)−LW (0)Resx℘2(x; τ)YW (u, x)w; τ ′) = 0, (5.14)

respectively.
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Using analytic extensions, we see that (5.9), (5.13) and (5.14) becomes

F
φ

Y ((γ τ + δ)−LW (0)ResxYW (u, x)w; τ ′) = 0,

2π i
∂

∂τ
F

φ

Y ((γ τ + δ)−LW (0)w; τ ′)

= F
φ

Y
(

(γ τ + δ)−LW (0)Resx (℘1(x; τ) − G2(τ )x)YW (ω, x)w; τ ′) ,

F
φ

Y
(

(γ τ + δ)−LW (0)Resx℘2(x; τ)YW (u, x)w; τ ′) = 0.

These are exactly the conditions for the linear map given by (5.5) to be a genus-one
1-point conformal block. ��

As in [H2], Theorem 2.5 in [F1,F2] is proved by deriving a system of differential
equations of regular singular points satisfied by the formal series of shifted pseudo-qτ -
traces of products of geometrically-modified intertwining operators. In particular, the

genus-one 1-point correlation functions F
φ

Y (LW (0)
p
Nw; τ) for k = 0, . . . , K satisfy

a system of differential equations of a regular singular point qτ = 0, where K is the
smallest number of N such that LW (0)K+1

N w = 0. In fact, the system of differential

equations satisfied by F
φ

Y (LW (0)
p
Nw; τ) are derived using only the C2-cofiniteness and

the qτ -expansions of (5.1), (5.2) and (5.3). Using this fact, we first show that elements
in the image of a genus-one 1-point conformal block satisfy differential equations of a
regular singular point qτ = 0.

Proposition 5.3. Let V be a C2-cofinite vertex operator algebra and W a grading-
restricted generalized V -module. For a genus-one 1-point conformal block F labeled by
W and w ∈ W, F(LW (0)

j
Nw; τ) for j = 0, . . . , K satisfy a system of K + 1 differential

equations of a regular singular point at qτ = 0, where K is the smallest number of N
such that LW (0)K+1w = 0,

Proof. As in the case of n = 1 in [H2,F1,F2], let R = C[G4(τ ),G6(τ )]. Then
G2k+2(τ ) ∈ R for k ∈ Z+. Consider the R-module MF generated by functions of τ

of the form F(w; τ). Then the linear map F in fact induces an R-module map ̂F from
the R-module T = R ⊗ W to MF given by ̂F( f (τ ) ⊗ w) = f (τ )F(w; τ).

As in [H2,F1,F2], let J be an R-submodule of T generated by elements of the form

(YW )−2(v)w +
∑

k∈Z+

(2k + 1)G2k+2(τ )(YW )2k(v)w

for v ∈ V and w ∈ W . Then by (5.12) and (5.3), we see that ker ̂F ⊂ J . In particular,
̂F can in fact be viewed as an R-module map from T/J to MF .

Since V is C2-cofinite, the same proof as those in [H2,F1,F2] shows that T/J is a
finitely generated R-module. As in [H2,F1,F2], let Q : T → T be the map defined by

Q( f (τ ) ⊗ w) = f (τ ) ⊗ (Resx℘1(x; τ)YW (ω, x)w).

Since R is Noetherian, given w ∈ W , the R-submodule of T generated by Qn(1 ⊗ w)

for n ∈ N is also finitely generated. Then there exist m ∈ Z+ and bp(τ ) ∈ R for
p = 1, . . . ,m such that

Qm(1 ⊗ w) +
m
∑

p=1

bp(τ )Qm−p(1 ⊗ w) ∈ J.
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Then by the definition of Q, we obtain

1 ⊗ (Resx℘1(x; τ)YW (ω, x))mw

+
m
∑

p=1

bp(τ ) ⊗ (Resx℘1(x; τ)YW (ω, x))m−pw) ∈ J.

(5.15)

For homogeneous w ∈ W , from (5.2), we have

̂F(1 ⊗ (Resx℘1(x; τ)YW (ω, x))w)

= F(Resx℘1(x; τ)YW (ω, x))w)

= 2π i
d

dτ
F(w) + G2(τ )F(LW (0)w)

=
(

2π i
d

dτ
+ (wt w)G2(τ )

)

F(w) + G2(τ )F(LW (0)Nw).

Then for m ∈ N,

̂F(1 ⊗ (Resx℘1(x; τ)YW (ω, x))mw)

=
(

2π i
d

dτ
+ (wt w)G2(τ )

)m

F(w) +
m
∑

j=1

Dm, j

(

d

dτ
, τ

)

F(LW (0)
j
Nw),

where for j = 1, . . . ,m, Dm, j (
d
dτ

, τ ) is a polynomial in d
dτ

of degree less than m with
polynomials in G2(τ ) and its derivatives as coefficients.

Applying ̂F to the element of J in (5.15) and using ker F̂ ⊂ J , we obtain

(

2π i
d

dτ
+ (wt w)G2(τ )

)m

F(w) +
m
∑

p=1

bp(τ )

(

2π i
d

dτ
+ (wt w)G2(τ )

)m−p

F(w)

+
m
∑

j=1

Dm, j

(

d

dτ
, τ

)

F(LW (0)
j
Nw) +

m
∑

p=1

m−p
∑

j=1

bp(τ )Dm−p, j

(

d

dτ
, τ

)

F(LW (0)
j
Nw)

= 0. (5.16)

Note that in (5.16), bp(τ ) and Dm−p, j
( d
dτ

, τ
)

for p = 1, . . . ,m and j = 0, . . . ,m−
p are independent of the genus-one 1-point conformal block F . Since LW (0)N com-
mutes with vertex operators acting on W , we see that the linear map given by w 
→
F(LW (0) jw) for w ∈ W is also a genus-one 1-point conformal block. Then for
j = 1, . . . , K , F(LW (0) jw) also satisfy the Eq. (5.16). So we see that F(LW (0) jw)

for j = 0, . . . , K satisfy a system of K + 1 differential equations. Moreover, since
d
dτ

= 2π iqτ
d

dqτ
, The singular point qτ = 0 of this system of differential equations is

regular. ��
Recall the genus-one 1-point conormal block F

φ

Y (w; τ) obtained by taking shifted
pseudo-qτ -traces of an intertwining operator Y and then extending it analytically. For

w ∈ W , let Fw be the space spanned by F
φ

Y (w; τ) for all finite-dimensional associative
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algebras P with a symmetric linear functions φ, all grading-restricted generalized V -P-
bimodules ˜W , projective as a right P-module, and all intertwining operators Y of type
(

˜W
W ˜W

)

compatible with P .
We now prove the following main result of this section, which together with Propo-

sition 5.2 implies the modular invariance theorem (Theorem 5.5):

Theorem 5.4. Let V be a C2-cofinite vertex operator algebra without nonzero elements
of negative weights, W a grading-restricted generalized V -module and F : W → H(H)

a genus-one 1-point conformal block labeled by W. Then for w ∈ W, F(w; τ) is in Fw.

Proof. By Proposition 5.3, F(LW (0) jw) for j = 0, . . . , K satisfy a system of K + 1
differential equations and the singular point qτ = 0 is regular. Using the theory of
differential equations of regular singular points, we have an expansion

F(LW (0)
p
Nw; τ) =

K
∑

k=0

J
∑

j=1

∑

m∈N
C p
k, j,m(w)τ kq

r j+m
τ , (5.17)

where r j for j = 1, . . . , J are complex numbers such that r j1 − r j2 �∈ Z when j1 �= j2.
From (5.17), the properties of the genus-one 1-point conformal block F and Lemma

A.1, we obtain

K
∑

k=0

J
∑

j=1

∑

m∈N
C0
k, j,m(ResxYW (u, x)w)(log q)kqr j+m = 0, (5.18)

2π i
K
∑

k=0

J
∑

j=1

∑

m∈N
(k + 1)C0

k+1, j,m(w)(log q)kqr j+m + (2π i)2
∑

m∈N
(r j + m)C0

k, j,m(w)(log q)kqr j+m

=
∑

m∈N
C0
k, j,m(Resx (℘̃1(x; q) − ˜G2(q)x)YW (ω, x)w)(log q)kqr j+m , (5.19)

K
∑

k=0

J
∑

j=1

∑

m∈N
C0
k, j,m(Resx ℘̃2(x; q)YW (u, x)w)(log q)kqr j+m = 0. (5.20)

From (5.18)–(5.20), we see that the linear map S : W → C{q}[log q] given by

S(w) =
K
∑

k=0

J
∑

j=1

∑

m∈N
C0
k, j,m(w)qm

satisfies the conditions needed in Theorem 4.3.
Since V is C2-cofinite, there are only finitely many inequivalent irreducible V -

modules. Let N be a nonnegative integer larger than all the real parts of the differ-
ences between the finitely many lowest weights of the irreducible V -modules. Then any
N ′ ∈ N + N is also larger than all the real parts of the differences between the finitely
many lowest weights of the irreducible V -modules. By Theorem 4.3, for k = 0, . . . , K
and j = 1, . . . , J , the linear map ψN ′

S;k, j : UN ′
(W ) → C defined by

ψN ′
S;k, j ([w]mn) = 0

for 0 ≤ m, n ≤ N ′, m �= n, and w ∈ W and

ψN ′
S;k, j ([w]mm) = C0

k, j,m(w)
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for 0 ≤ m ≤ N ′ and w ∈ W induces a symmetric linear function, still denoted by
ψN ′
S;k, j , on ˜AN ′

(W ) satisfying

ψN ′
S;k, j (([ω]mm − (2π i)2(r j + m)[1]mm) (K−k+1) w) = 0. (5.21)

By Proposition 3.22, we know that ˜AN ′
(W ) is finite dimensional.

Note that

1N
′
+ ˜Q∞(V ) =

N ′
∑

k=0

[1]kk + ˜Q∞(V )

is the identity of ˜AN ′
(V ). Let

1N
′
+ ˜Q∞(V ) = ẽN

′
1 + · · · + ẽN

′
n′ ,

where ẽN
′

1 , . . . , ẽN
′

n′ ∈ ˜AN ′
(V ) are orthogonal primitive central idempotents in ˜AN ′

(V ).

Then ˜AN ′
(V ) = ˜AN ′

1 ⊕ · · · ⊕ ˜AN ′
n′ where ˜AN ′

i = ˜AN ′
(V ) ẽN

′
i for i = 1, . . . , n′, is a

decomposition of ˜AN ′
(V ) into a direct sum of indecomposable ˜AN ′

(V )-bimodules. Let
˜UN ′
i = ẽN

′
i

˜AN ′
(W ) ẽN

′
i for i = 1, . . . , n′. Then we have the decomposition

˜AN ′
(W ) = ˜UN ′

1 ⊕ · · · ⊕ ˜UN ′
n′

of ˜AN ′
(W ) as a direct sum of ˜AN ′

1 -, . . . , ˜AN ′
n′ -bimodules. Let ˜BN ′ = ˜AN ′

(V )⊕ ˜AN ′
(W )

be the trivial square-zero extension of ˜AN ′
(V ) by ˜AN ′

(W ) and ˜BN ′
i = ˜AN ′

i ⊕ ˜UN ′
i for

i = 1, . . . , n′ the trivial square-zero extension of ˜AN ′
i by ˜UN ′

i . Then

˜BN ′ = ˜BN ′
1 ⊕ · · · ⊕ ˜BN ′

n′ .

Let φi
k, j;N ′ = ψN ′

S;k, j |˜AN ′
i

for i = 1, . . . , n′. By Theorem 2.2,

Pi
k, j;N ′ = ε̃N

′
i (˜BN ′

/Rad(φi
k, j;N ′))ε̃N

′
i

for i = 1, . . . , n′, where ε̃N
′

i = ẽN
′

i + Rad(φi
k, j;N ′) ∈ ˜BN ′

/Rad(φi
k, j;N ′), are basic

symmetric algebras equipped with symmetric linear functions given by φi
k, j;N ′ , and

Mi
k, j;N ′ = (˜BN ′

/Rad(φi
k, j;N ′))ε̃N

′
i

are ˜AN ′
(V )-Pi

k, j;N ′ -bimodules which are finitely generated and projective as right Pi
k, j;N ′ -

modules. Moreover, we define

f ik, j;N ′ ∈ Hom
˜AN ′

(V ),Pi
k, j;N ′ (

˜AN ′
(W ) ⊗

˜AN ′
(V )

Mi
k, j;N ′ , Mi

k, j;N ′)

for i = 1, . . . , n′ by f ik, j;N ′(w ⊗ wi ) = (0,w)wi for w ∈ ˜AN ′
(W ) and wi ∈ Mi

k, j;N ′
and then we have

ψN ′
S;k, j (w) =

n′
∑

i=1

(φi
k, j;N ′)

f i
k, j;N ′
Mi

k, j;N ′
(w + ˜Q∞(W )) (5.22)
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for w ∈ AN ′
(W ). We use ϑ̃Mi

k, j;N ′ : ˜AN ′
(V ) → (End Mi

k, j;N ′) to denote the homo-

morphism of associative algebras giving the ˜AN ′
(V )-module structure on Mi

k, j;N ′ . Then
from (5.21) and Theorem 2.2, we have

ϑ̃Mi
k, j;N ′ (([ω]mm − (2π i)2(r j + m)[1]mm) (K−k+1) + ˜Q∞(V ))Mi

k, j;N ′ = 0 (5.23)

for m = 0, . . . , N ′.
From Proposition 3.5, the map U(1)−1 induces an isomorphism from A∞(V ) to

˜A∞(V ) and thus also induces an isomorphism from AN ′
(V ) to ˜AN ′

(V ). In particular,
the map ϑMi

k, j;N ′ : AN ′
(V ) → (End Mi

k, j;N ′) defined by

ϑMi
k, j;N ′ ([v]kl + Q∞(V )) = ϑ̃Mi

k, j;N ′ ([U(1)−1v]kl + ˜Q∞(V ))

for v ∈ V and k, l = 0, . . . , N ′ gives an AN ′
(V )-module structure to Mi

k, j;N ′ .

We now show that Mi
k, j;N ′ for i = 1, . . . , n′, k = 0, . . . , K and j = 1, . . . , J are

graded AN ′
(V )-modules (see Definition 5.1 in [H8]).

Note that

N ′
∑

m=0

ϑMi
k, j;N ′ ([1]mm + Q∞(V )) = 1Mi

k, j;N ′ .

Also we have

([1]mm + Q∞(V )) � ([1]mm + Q∞(V )) = [1]mm + Q∞(V ),

([1]ll + Q∞(V )) � ([1]mm + Q∞(V )) = 0

for l,m = 0, . . . , N ′, l �= m. So

{ϑMi
k, j;N ′ ([1]mm + Q∞(V ))}N ′

m=0

is a partition of the identity on Mi
k, j;N ′ . In particular,

Mi
k, j;N ′ =

N ′
∐

m=0

(Mi
k, j;N ′)[m],

where for m = 0, . . . , N ′,

(Mi
k, j;N ′)[m] = ϑMi

k, j;N ′ ([1]mm + Q∞(V ))Mi
k, j;N ′ .

Since [ω]mm +Q∞(V ) commutes with [1]mm +Q∞(V ) form = 0, . . . , N ′, (Mi
k, j;N ′)[m]

is invariant under ϑMi
k, j;N ′ ([ω]mm + Q∞(V )). Since

([ω]mm + Q∞(V )) � ([1]ll + Q∞(V )) = ([ω]ll + Q∞(V )) � ([1]mm + Q∞(V )) = 0
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for l ∈ N not equal to m, we see that ϑMi
k, j;N ′ ([ω]mm + Q∞(V )) is 0 on (Mi

k, j;N ′)[l] .

Note also that ϑMi
k, j;N ′ ([1]mm + Q∞(V )) on (Mi

k, j;N ′)[m] is the identity on (Mi
k, j;N ′)[m].

From (5.23), we have

ϑ̃Mi
k, j;N ′ (([ω]mm − (2π i)2(r j + m)[1]mm + ˜Q∞(V )) (K−k+1))(Mi

k, j;N ′)[m] = 0.

(5.24)

By the definition of ϑMi
k, j;N ′ and (5.24), we obtain

ϑMi
k, j;N ′

(

([U(1)ω]mm − (2π i)2(r j + m)[U(1)1]mm + Q∞(V ))� (K−k+1)
)

(Mi
k, j;N ′)[m] = 0.

(5.25)

Using U(1)ω = (2π i)2(ω− c
241) and U(1)1 = 1 (see the definition of U(1) and Lemma

1.1 in [H2]), we see that (5.25) becomes

ϑMi
k, j;N ′

(

(

[ω]mm −
(

r j +
c

24
+ m

)

[1]mm + Q∞(V )
)� (K−k+1)

)

(Mi
k, j;N ′)[m]

= 0.

(5.26)

Thus (Mi
k, j;N ′)[m] is the generalized eigenspace of ϑMi

k, j;N ′ ([ω]mm + Q∞(V )) with

eigenvalue r j + c
24 + m.

For v ∈ V , k, l = 0, . . . , N ′ and w ∈ (Mi
k, j;N ′)[m],

ϑMi
k, j;N ′ ([v]kl + Q∞(V ))w = ϑMi

k, j;N ′ ([v]kl + Q∞(V ))ϑMi
k, j;N ′ ([1]mm + Q∞(V ))w

= ϑMi
k, j;N ′ ([v]kl � [1]mm + Q∞(V ))w

= δlmϑMi
k, j;N ′ ([v]km + Q∞(V ))w

= δlmϑMi
k, j;N ′ ([1]kk � [v]km + Q∞(V ))w

= δlmϑMi
k, j;N ′ ([1]kk + Q∞(V ))ϑMi

k, j;N ′ ([v]km + Q∞(V ))w,

which is 0 when l �= m and is in (Mi
k, j;N ′)[k] when l = m. So Condition 1 in Definition

5.1 in [H8] is satisfied.
We define

LMi
k, j;N ′ (0) =

N ′
∑

m=0

ϑMi
k, j;N ′ ([ω]mm + Q∞(V )),

LMi
k, j;N ′ (−1) =

N ′−1
∑

m=0

ϑMi
k, j;N ′ ([ω]m+1,m + Q∞(V )).

Then (Mi
k, j;N ′)[m] for m = 0, . . . , N ′ are generalized eigenspaces for LMi

k, j;N ′ (0)

and Mi
k, j;N ′ is the direct sum of these generalized eigenspaces. The eigenvalues of
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LMi
k, j;N ′ (0) are r j + c

24 + m for m = 0, . . . , N ′ and the real parts of these eigenvalues

has a minimum �(r j ). This shows that Condition 2 in Definition 5.1 in [H8] is satis-
fied. From what we have shown above, we see that LMi

k, j;N ′ (−1) maps (Mi
k, j;N ′)[m] for

m = 0, . . . , N ′ − 1 to (Mi
k, j;N ′)[m+1]. So Condition 3 in Definition 5.1 in [H8] is also

satisfied.
From Remark 4.5 in [H9] with W = V , we have

[LMi
k, j;N ′ (0), LMi

k, j;N ′ (−1)]w = ϑMi
k, j;N ′ ([ω]m+1,m+1[ω]m+1,m − [ω]m+1,m [ω]mm + Q∞(V ))w

= ϑMi
k, j;N ′ ([(LV (−1) + LV (0))ω]m+1,m + Q∞(V ))w (5.27)

for w ∈ (Mi
k, j;N ′)[m]. By Proposition 2.3 in [H8], we know that

[(LV (−1) + LV (0) − 1)ω]m+1,m ∈ Q∞(V ).

Then the right-hand side of (5.27) is equal to

ϑMi
k, j;N ′ ([ω]m+1,m)w = LMi

k, j;N ′ (−1)w. (5.28)

From (5.27) and (5.28), we obtain the commutator formula

[LMi
k, j;N ′ (0), LMi

k, j;N ′ (−1)] = LMi
k, j;N ′ (−1).

(5.29)

For k, l = 0, . . . , N ′ and v ∈ N, by Remark 4.5 in [H9] with W = V and Proposition
2.3 in [H8],

[LMi
k, j;N ′ (0), ϑMi

k, j;N ′ ([v]kl + Q∞(V ))]w
= ϑMi

k, j;N ′ ([ω]kk + Q∞(V ))ϑMi
k, j;N ′ ([v]kl + Q∞(V ))w

− ϑMi
k, j;N ′ ([v]kl + Q∞(V ))ϑMi

k, j;N ′ ([ω]ll + Q∞(V ))w

= ϑMi
k, j;N ′ ([ω]kk � [v]kl − [v]kl � [ω]ll + Q∞(V ))w

= ϑMi
k, j;N ′ ([(LV (−1) + LV (0))v]kl + Q∞(V ))w

= (k − l)ϑMi
k, j;N ′ ([v]kl + Q∞(V ))w

for w ∈ (Mi
k, j;N ′)[l]. Then we obtain the commutator formula

[LMi
k, j;N ′ (−1), ϑMi

k, j;N ′ ([v]kl + Q∞(V ))]
= ϑMi

k, j;N ′ ([LV (−1)v]kl + Q∞(V )). (5.30)

For k = 0, . . . , N ′ − 1, l = 1, . . . , N ′ and v ∈ V , also by Remark 4.5 in [H9] with
W = V ,
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[LMi
k, j;N ′ (−1), ϑMi

k, j;N ′ ([v]kl + Q∞(V ))]w
= ϑMi

k, j;N ′ ([ω]k+1,k + Q∞(V ))ϑMi
k, j;N ′ ([v]kl + Q∞(V ))w

− ϑMi
k, j;N ′ ([v]kl + Q∞(V ))ϑMi

k, j;N ′ ([ω]l+1,l + Q∞(V ))w

= ϑMi
k, j;N ′ ([ω]k+1,k � [v]kl − [v]kl � [ω]l+1,l + Q∞(V ))w

= ϑMi
k, j;N ′ ([LV (−1)v]kl + Q∞(V ))w

for w ∈ (Mi
k, j;N ′)[l]. Then we obtain the commutator formula

[LMi
k, j;N ′ (−1), ϑMi

k, j;N ′ ([v]kl + Q∞(V ))] = ϑMi
k, j;N ′ ([LV (−1)v]kl

+Q∞(V )). (5.31)

From (5.29), (5.30) and (5.31), we see that Condition 4 in Definition 5.1 in [H8] is
satisfied. Thus we have shown that Mi

k, j;N ′ is indeed a graded AN ′
(V )-module.

From Section 6 in [H9], we have the lower-bounded generalizedV -moduleWi
k, j;N ′ =

SN
′

voa(M
i
k, j;N ′) constructed from Mi

k, j;N ′ . By Proposition 6.2 in [H9], we see that �0
N ′

(Wi
k, j;N ′) = Mi

k, j;N ′ . Since V has no nonzero elements of negative weights and C2-

cofinite and Mi
k, j;N ′ is finite dimensional, by Property 2 in Proposition 3.19, Wi

k, j;N ′ as a

lower-bounded generalized V -module generated by Mi
k, j;N ′ is quasi-finite dimensional

and is in particular grading restricted. By Property 5 in Proposition 3.19, Wi
k, j;N ′ is of

finite length.
Now we consider the case N ′ = N . Given an element of Pi

k, j;N , its action on the

right Pi
k, j;N -module Mi

k, j;N is in fact an AN (V )-module map from Mi
k, j;N to itself. By

the universal property of Wi
k, j = SNvoa(M

i
k, j;N ), there is a unique V -module map from

Wi
k, j;N to itself such that its restriction to Mi

k, j;N is the action of the element of Pi
k, j;N

on Mi
k, j;N . Thus we obtain a right action of Pi

k, j;N on Wi
k, j;N . Since the action of Pi

k, j;N
on Wi

k, j;N is given by V -module maps, the homogeneous subspaces (Wi
k, j;N )[r j+m] of

Wi
k, j;N for m ∈ N also have right Pi

k, j;N -module structures. We now show that these

right Pi
k, j;N -modules are in fact projective.

Since �0
N (Wi

k, j;N ) = Mi
k, j;N is a right projective Pi

k, j;N -module,

�0
N (Wi

k, j;N ) =
N
∐

m=0

(Wi
k, j;N )[r j+m]

and (Wi
k, j;N )[r j+m] = (Mi

k, j;N )[m] for m = 0, . . . , N are right Pi
k, j;N -modules,

(Wi
k, j;N )[r j+m] for m = 0, . . . , N as direct summands of Mi

k, j;N are also projective

as right Pi
k, j;N -modules. We still need to prove that (Wi

k, j;N )[r j+N ′] for N ′ ∈ N + Z+

are projective as right Pi
k, j;N -modules.

Using the isomorphisms U(1) : ˜AN ′
(V ) → AN ′

(V ) and the UW (1) : ˜AN ′
(W ) →

AN ′
(W ), all the elements and structures we obtained from ˜AN ′

(V ) and ˜AN ′
(W ) are
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mapped to the corresponding elements and structures that one can obtain from AN ′
(V )

and AN ′
(W ) in the same way. Moreover, these elements and structures have completely

the same properties.
Let eN

′
i = U(1)ẽN

′
i for i = 1, . . . , n′. Then 1N

′
+ Q∞(V ) = eN

′
1 + · · · + eN

′
n′ and

N ≤ N ′, we have

1N + Q∞(V ) = (1N
′
+ Q∞(V )) � (1N + Q∞(V ))

= eN
′

1 � (1N + ˜Q∞(V )) + · · · + eN
′

n′ � (1N + ˜Q∞(V )).

Using the properties of 1N and eN
′

i for i = 1, . . . , n′, we see that eN
′

1 � (1N + Q∞(V ))

for i = 1, . . . , n′ are all in AN (V ). Let eN1 , . . . , eNn be the nonzero elements in the set
consisting of the elements eN

′
i � (1N + Q∞(V )) for i = 1, . . . , n′. Then we have

1N + Q∞(V ) = eN1 + · · · + eNn .

From the properties of 1N and eN
′

i for i = 1, . . . , n′ again, we see that eN1 , . . . , eNn are
orthogonal primitive central idempotents of AN (V ). Let AN

i = AN (V ) � eNi . Then we
have

AN (V ) = AN
1 ⊕ · · · ⊕ AN

n .

Also we have AN (W ) = (1N + Q∞(V )) � AN ′
(W ) � (1N + Q∞(V )). Since AN ′

(W ) =
UN ′

1 ⊕ · · · ⊕UN ′
n′ , where UN ′

i = eN
′

i � AN ′
(W1) � eN

′
i for i = 1, . . . , n′, we have

AN (W ) = (1N + Q∞(V )) � AN ′
(W ) � (1N + Q∞(V ))

= (1N + Q∞(V )) �UN ′
1 � (1N + Q∞(V ))

⊕ · · · ⊕ (1N + Q∞(V )) �UN ′
n′ � (1N + Q∞(V ))

= (eN
′

1 � (1N + Q∞(V ))) � AN (W ) � (eN
′

1 � (1N + Q∞(V )))

⊕ · · · ⊕ (eN
′

n′ � (1N + Q∞(V ))) � AN (W ) � (eN
′

n′ � (1N + Q∞(V )))

= UN
1 ⊕ · · · ⊕UN

n ,

where UN
i = eNi � AN (W1) � eNi is an AN

i -bimodule for i = 1, . . . , n′.
By definition,

BN = AN (V ) ⊕ AN (W1) ⊂ AN ′
(V ) ⊕ AN ′

(W1) = BN ′

as associative algebras. For i and i ′ such that eNi = eN
′

i ′ � (1N + Q∞(V )) is nonzero, we

have Rad(φi ′
k, j;N ′)∩ BN = Rad(φi

k, j;N ). Then the kernel of the homomorphism of asso-

ciative algebras from BN to BN ′
/Rad(φi ′

k, j;N ′) is Rad(φi
k, j;N ′)∩ BN = Rad(φi

k, j;N ). In
particular, we obtain an injective homomorphism of associative algebras from
BN/Rad(φi

k, j;N ) to BN ′
/Rad(φi ′

k, j;N ′). This injective homomorphism maps εNi = eNi +

Rad(φi
k, j;N ) to εN

′
i ′ = eN

′
i ′ + Rad(φi ′

k, j;N ′). Thus we obtain an injective homomorphism

of associative algebras from Pi
k, j;N = εNi � (BN/Rad(φi

k, j;N )) � εNi to Pi ′
k, j;N ′ = εN

′
i ′ �

(BN ′
/Rad(φi ′

k, j;N ))� εNi ′ . We shall view Pi
k, j;N as a subalgebra of Pi ′

k, j;N ′ from now on.
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In particular, Mi ′
k, j;N ′ = (BN ′

/Rad(φi ′
k, j;N ′)) � εN

′
i ′ is also a right Pi

k, j;N -module. Then

we also obtain an injective Pi
k, j;N -module map from Mi

k, j;N = (BN/Rad(φi
k, j;N ))�εNi

to Mi ′
k, j;N ′ = (BN ′

/Rad(φi ′
k, j;N ′)) � epsilonN

′
i ′ . Moreover, Mi

k, j;N and Mi ′
k, j;N ′ are left

BN -module and BN ′
-module, respectively, and this injective Pi

k, j;N -module map in-

duces the left BN -module structure on Mi
k, j;N from the left BN ′

-module structure on

Mi ′
k, j;N ′ .

We know that Mi ′
k, j;N ′ as a right Pi ′

k, j;N ′ -module is projective. We now show that

Mi ′
k, j;N ′ as a right Pi

k, j;N -module is also projective. It is enough to show that the right

action of Pi ′
k, j;N ′ on Mi ′

k, j;N ′ is in fact determined by the right action of Pi
k, j;N . In fact, we

have proved that Mi
k, j;N and Mi ′

k, j;N ′ are AN (V )-Pi
k, j;N -bimodule and AN ′

(V )-Pi ′
k, j;N ′ -

bimodule, respectively and the left AN (V )-module structure on Mi
k, j;N is induced from

the left AN ′
(V )-module structure on Mi ′

k, j;N ′ when we view Mi
k, j;N as a right Pi

k, j;N -

submodule of Mi ′
k, j;N ′ . Then we have

Mi ′
k, j;N ′ =

N ′
∐

m=0

(Mi ′
k, j;N ′)[m]

and

Mi
k, j;N = (Mi ′

k, j;N ′)N =
N
∐

m=0

(Mi ′
k, j;N ′)[m].

By Proposition 3.20, Mi ′
k, j;N ′ is equivalent to the graded AN ′

(V )-module �0
N ′(SNvoa

(Mi
k, j;N )) = �0

N ′(Wi
k, j ). We know that for m = 1, . . . , N ′, (Mi ′

k, j;N ′)[m] are right

Pi ′
k, j;N ′ -submodules of Mi ′

k, j;N ′ . In particular, Mi
k, j;N is a right Pi ′

k, j;N ′ -submodule of

Mi ′
k, j;N ′ . Note that the action of every element of Pi ′

k, j;N ′ on Mi
k, j;N is an AN (V )-

module map. By the universal property of SNvoa(M
i
k, j;N ), such an AN (V )-module map

gives a unique V -module map from SNvoa(M
i
k, j;N ) to itself. In particular, such an AN (V )-

module map gives a unique AN ′
(V )-module map from Mi ′

k, j;N ′ . Thus we see that the

action of the element of Pi ′
k, j;N ′ on Mi ′

k, j;N ′ must be the one obtained from its restriction

to Mi
k, j;N . But the restriction to Mi

k, j;N of the action of Pi ′
k, j;N ′ on Mi ′

k, j;N ′ is exactly the

action of Pi
k, j;N . So we see that the action of Pi ′

k, j;N ′ on Mi ′
k, j;N ′ is determined by the

action of Pi
k, j;N on Mi

k, j;N . Thus Mi ′
k, j;N ′ as a right Pi

k, j;N -module is also projective. In

particular, (Wi
k, j )[r j+N ′] = (Mi ′

k, j;N ′)[N ′] is projective as a right Pi
k, j;N -module. Since

N ′ is arbitrary, we see that Wi
k, j and its homogeneous subspaces are all projective as a

right Pi
k, j;N -modules.

We know that �0
N (Wi

k, j ) = �0
N (SNvoa(M

i
k, j;N )) = Mi

k, j;N . Then by Proposition 3.20,

(Wi
k, j )

′ is equivalent to SNvoa(�
0
N ((Wi

k, j )
′)). In particular, Theorem 3.17 can be applied
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to the case that W1 = W and W2 = W3 = Wi
k, j = SNvoa(M

i
k, j;N ). By this theorem, we

obtain a unique Pi
k, j;N -compatible intertwining operator Y i

k, j of type
( Wi

k, j

WWi
k, j

)

such that

ρN (Y i
k, j ) = f ik, j;N ∈ Hom

˜AN ′
(V ),Pi

k, j;N
(˜AN (W ) ⊗

˜AN (V ) M
i
k, j;N , Mi

k, j;N ).

By Proposition 4.2, we have a symmetric linear function ψY i
k, j ,φ

i
k, j;N

on ˜AN (W ).

We actually need only the intertwining operators Y i
0, j (that is, the case k = 0). It is

clear that the linear map given by

w 
→ F(w; τ) −
J

∑

j=1

n
∑

i=1

F
φi

0, j;N
Y i

0, j
(w; τ) (5.32)

for w ∈ W is also a genus-one 1-point conformal block labeled by W . Then by Propo-
sition 5.3,

F(w; τ) −
J

∑

j=1

n
∑

i=1

F
φi

0, j;N
Y i

0, j
(w; τ)

can be expanded as

J (1)
∑

j=1

∑

m∈N
C (1)

0, j,m(w)q
r (1)
j +m

τ +
K
∑

k=1

τ kG(1)
k (w; qτ ),

where for j = 1, . . . , J (1), there exists j ′ satisfying 1 ≤ j ′ ≤ J such that r (1)
j −r j ′ ∈ Z+

and where G(1)
k (w; qτ ) for k = 1, . . . , K are in

∐

r∈C qrτC[[qτ ]]. Let s ∈ Z+ be larger
than the maximum of the real parts of the differences of the lowest weights of the
(finitely many) irreducible V -modules. Then we repeat the argument above s times to
find finite-dimensional associative algebras P(s)

l with symmetric linear functions φ
(s)
l ,

grading-restricted generalized V -P(s)-modules W (s)
l and P(s)

l -compatible intertwining

operators Y(s)
l of types

( W (s)
l

WW (s)
l

)

for l = 1, . . . , p(s) such that the linear map given by

w 
→ F(w; τ) −
p(s)
∑

l=1

F
φ

(s)
l

Y(s)
l

(w; τ)

is a genus-one 1-point conformal block and for w ∈ W ,

F(w; τ) −
p(s)
∑

l=1

F
φ

(s)
l

Y(s)
l

(w; τ) (5.33)

can be expanded as

J (s)
∑

j=1

∑

m∈N
C (s)

0,i,m(w)q
r (s)
j +m

τ +
K
∑

k=1

τ kG(s)
k (w; qτ ), (5.34)
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where for j = 1, . . . , J (s), there exists j ′ satisfying 1 ≤ j ′ ≤ J such that r (s)
j −r j ′ ∈ s+N

and where G(s)
k (w; qτ ) for k = 1, . . . , K is in

∐

r∈C qrτC[[qτ ]]. We now show that (5.33)
is equal to 0.

We first prove that the first term in (5.34) is 0 for all w ∈ W . Assume that it is not 0
for some w ∈ W . Note that we have shown that r j + c

24 for j = 1, . . . , J are the lowest
weights of Mi

k, j;N and thus are also the lowest weights of Wi
k, j . But the lowest weight of

a lower-bounded generalized V -module of finite length must also be the lowest weight
of an irreducible V -module. In particular, r j + c

24 for j = 1, . . . , J are lowest weights of
irreducible V -modules. Since the first term in (5.34) is not 0 for some w ∈ W , the same
proof shows that r (s)

j + c
24 for j = 1, . . . , J (s) are also lowest weights of irreducible

V -modules. But r (s)
j − r j ′ ∈ s + N, we have �(r (s)

j − r j ′) ≥ s which is larger than the
maximum of the real parts of the differences of the lowest weights of the (finitely many)
irreducible V -modules. This is impossible since as we have shown above, r (s)

j − r j ′ is

the difference between the lowest weights r (s)
j and r j ′ of some irreducible V -modules.

Thus the first term in (5.34) must be 0.
In fact, if we write the first term in (5.34) as G0(w; qτ ), then (5.34) can be written

as

K
∑

k=0

τ kG(s)
k (w; qτ ).

We have proved that G0(w; qτ ) = 0. We now use induction to prove that Gk(w; qτ ) = 0
for k = 0, . . . , K . Assume that Gk(w; qτ ) = 0 for k = 0, . . . , k0. Then (5.34) becomes

K
∑

k=k0+1

τ kG(s)
k (w; qτ ).

Note that (5.33) gives a genus-one 1-point conformal block. In particular, the property
(5.2) for this genus-one 1-point conformal block gives

2π i
∂

∂τ

K
∑

k=k0+1

τ kG(s)
k (w; qτ )

=
K
∑

k=k0+1

τ kG(s)
k (Resx (℘̃1(x; qτ ) − G̃2(qτ )x)YW (ω, x)w; qτ )

(5.35)

(see (A.4) for the definition of ℘̃1(x; qτ ) − G̃2(qτ )x).
The left-hand side of (5.35) is equal to

2π i
K
∑

k=k0+1

kτ k−1G(s)
k (w; qτ ) + 2π i

K
∑

k=k0+1

τ k
∂

∂τ
G(s)

k (w; qτ ). (5.36)

Since the coefficients of τ k0 in the right-hand side of (5.35) and in (5.36) are 0 and
2π i(k0 + 1)G(s)

k0+1(w; qτ ), respectively, we obtain G(s)
k0+1(w; qτ ) = 0. By induction prin-

ciple, we obtain Gk(w; qτ ) = 0 for k = 0, . . . , K . Thus (5.34) is 0.
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This proves (5.33) is 0, that is,

F(w; τ) =
p(s)
∑

j=l

F
φ

(s)
l

Y(s)
l

(w; qτ ) (5.37)

for w ∈ W . Since the right-hand side of (5.37) is in Fw, the left-hand side of (5.37) is
also in Fw, proving our theorem. ��

LetW1, . . . ,Wn be grading-restricted generalizedV -modules andw1 ∈ W1, . . . , wn ∈
Wn . Given a finite-dimensional associative algebra P with a symmetric linear function
φ, grading-restricted generalized V -modules ˜W1, . . . , ˜Wn−1, a grading-restricted gen-
eralized V -P-bimodule ˜W0 = ˜Wn projective as a right P-module and intertwining

operators Y1, . . . ,Yn of types
(

˜W0
W1 ˜W1

)

, . . . ,
(
˜Wn−1

Wn ˜Wn

)

, respectively, such that the product
of Y1, . . . ,Yn is compatible with P , we have a genus-one correlation n-point function

F
φ

Y1,...,Yn
(w1, . . . , wn; z1, . . . , zn; τ).

Let Fw1,...,wn be the vector space of such genus-one correlation n-point functions for all
P , φ, ˜W1, . . . , ˜Wn−1, ˜W0 = ˜Wn and Y1, . . . ,Yn .

We are ready to prove the main theorem of this paper.

Theorem 5.5. Let V be a C2-cofinite vertex operator algebra without nonzero negative
weight elements. Then for a finite-dimensional associative algebra P with a symmetric
linear function φ, grading-restricted generalized V -modules ˜W1, . . . , ˜Wn−1, a grading-
restricted generalized V -P-bimodule ˜W0 = ˜Wn projective as a right P-module, in-

tertwining operators Y1, . . . ,Yn of types
(

˜W0
W1 ˜W1

)

, . . . ,
(
˜Wn−1

Wn ˜Wn

)

, respectively, such that
product of Y1, . . . ,Yn is compatible with P, and

(

α β

γ δ

)

∈ SL(2,Z),

F
φ

Y1,...,Yn

((

1

γ τ + δ

)LW1 (0)

w1, . . . ,

(

1

γ τ + δ

)LWn (0)

wn; z1

γ τ + δ
, . . . ,

zn
γ τ + δ

; ατ + β

γ τ + δ

)

is in Fw1,...,wn .

Proof. As in the proof of the modular invariance (Theorem 7.3 in [H2]) in the rational
case, using the genus-one associativity proved in [F1,F2] (see Theorem 2.7), the proof
in the general n case is reduced to the n = 1 case. So we need only prove the n = 1
case.

In the n = 1 case, by Proposition 5.2, the linear map given by

w1 
→ F
φ

Y1

((

1

γ τ + δ

)LW1 (0)

w1; z1

γ τ + δ
; ατ + β

γ τ + δ

)

is a genus-one 1-point conformal block. Then by Theorem 5.4, for w1 ∈ W1,

F
φ

Y1

((

1

γ τ + δ

)LW1 (0)

w1; z1

γ τ + δ
; ατ + β

γ τ + δ

)

is in Fw1 , proving the theorem in this case. ��
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A. The Weierstrass ℘-function ℘2(zI τ), the Weierstrass ζ -function ℘1(zI τ)
and the Eisenstein series G2(τ)

We recall in this appendix some basic facts on the Weierstrass ℘-function, denoted by
℘2(z; τ) in this paper, the Weierstrass ζ -function, denoted by ℘1(z; τ) in this paper, and
the Eisenstein series G2(τ ). For details, see [L,K]. The Weierstrass ℘-function ℘2(z; τ)

has the q-expansion

℘2(z; τ) = (2π i)2qz(qz − 1)−2 + (2π i)2
∑

s∈Z+

∑

l|s
l(qlz + q−l

z )qsτ − π2

3
− 2(2π i)2

∑

l∈Z+

σ(l)qlτ

(A.1)

in the region given by |qτ | < |qz | < |qτ |−1 and z �= 0, where σ(l) = ∑

n|l n for l ∈ Z+.
Note that the coefficients of the power series (A.1) in qτ are holomorphic functions of
z on the whole complex plane except for the the coefficient (2π i)2qz(qz − 1)−2 of q0

τ ,
which has a pole of order 2 at z = 0. Let

℘̃2(x; q) = (2π i)2e2π i x (e2π i x − 1)−2 + (2π i)2
∑

s∈Z+

∑

l|s
l(e2lπ i x + e−2lπ i x )qs

− π2

3
− 2(2π i)2

∑

l∈Z+

σ(l)ql , (A.2)

where e2π i x (e2π i x − 1)−2 is understood as the formal Laurent series obtained by ex-
panding e2π i z(e2π i z − 1)−2 as a Laurent series near z = 0 and then replacing z by

x , e2lπ i x = ∑

k∈N
(2lπ i x)k

k! and e−2lπ i x = ∑

k∈N
(−2lπ i x)k

k! . In terms of only formal
variables, the formal Laurent series e2π i x (e2π i x − 1)−2 can also be obtained as fol-

lows: Write (e2π i x − 1)−2 as (2π i x)−2(1 +
∑

k∈Z++1
(2π i x)k−1

k! )−2 and then expand (1 +
∑

k∈Z++1
(2π i x)k−1

k! )−2 using binomial expansion as a power series in
∑

k∈Z++1
(2π i x)k−1

k! .

http://creativecommons.org/licenses/by/4.0/
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Since the l-th power of
∑

k∈Z++1
(2π i x)k−1

k! is a power series in x such that the coeffi-

cients of x j for j = 0, . . . , l − 1 are 0, this expansion of (1 +
∑

k∈Z++1
(2π i x)k−1

k! )−2

gives a well-defined formal power series in x . Multiplying (2π i x)−2 with this for-
mal power series in x , we obtain a formal Laurent series expansion of (e2π i x − 1)−2.
Multiplying this formal Laurent series expansion of (e2π i x − 1)−2 with the formal

power series e2lπ i x = ∑

k∈N
(2lπ i x)k

k! , we obtain a formal Laurent series expansion of
e2π i x (e2π i x − 1)−2 which is the same as the formal Laurent series expansion obtained
using complex analysis.
Similarly, the Weierstrass ζ -function ℘1(z; τ) minus G2(τ )z has the q-expansion

℘1(z; τ) − G2(τ )z = 2π iqz(qz − 1)−1 − 2π i
∑

s∈Z+

∑

l|s
(qlz − q−l

z )qsτ − π i (A.3)

in the region given by |qτ | < |qz | < |qτ |−1 and z �= 0. Let

℘̃1(x; q) − ˜G2(q)x = 2π ie2π i x (e2π i x − 1)−1 − 2π i
∑

s∈Z+

∑

l|s
(e2lπ i x − e−2lπ i x )qs − π i,

(A.4)

where e2π i x (e2π i x − 1)−1 is understood as the formal Laurent series obtained by ex-
panding e2π i z(e2π i z −1)−1 as a Laurent series near z = 0 and then replacing z by x . The
formal Laurent series e2π i x (e2π i x − 1)−1 can also be obtained in terms of only formal
variables in a way completely similar to that for e2π i x (e2π i x − 1)−2 above.
We also have the Laurent series expansion in z

℘2(z; τ) = 1

z2 +
∑

k∈Z+

(2k + 1)G2k+2(τ )z2k,

℘1(z; τ) − G2(τ )z = 1

z
−

∑

k∈N
G2k+2(τ )z2k+1

in the region 0 < |z| < min(1, |τ |), where G2k+2(τ ) are the Eisenstein series. Let

℘2(x; τ) = 1

x2 +
∑

k∈Z+

(2k + 1)G2k+2(τ )x2k, (A.5)

℘1(x; τ) − G2(τ )x = 1

x
−

∑

k∈N
G2k+2(τ )x2k+1 (A.6)

Lemma A.1. The formal Laurent series ℘̃2(x; q) and ℘̃1(x; q) − ˜G2(q)x in x and q
can be obtained by expanding the coefficients of ℘2(x; τ) and ℘1(x; τ) − G2(τ )x,
respectively, in powers of x as power series in qτ and then replacing qτ by q.

Proof. Since (A.1) is absolutely convergent in the region given by |qτ | < |qz | < |qτ |−1

and z �= 0 and it has a pole of order 2 at z = 0, the double series (A.2) with x and
q replaced by z and qτ is absolutely convergent in the region given by |qτ | < ε and
0 < |z| <

− log ε
2π

for any ε ∈ (0, 1). In particular, after we substitute z and qτ for x and
q, we can first sum over the powers of qτ in the region |qτ | < ε to obtain a Laurent
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series in z which is absolutely convergent in the region 0 < |z| <
− log ε

2π
to ℘2(z; τ).

Substituting x for z in this Laurent series, we obtain a formal Laurent series in x which
by definition is equal to ℘2(x; τ). This is equivalent to the statement for ℘̃2(x; q).
The proof for the statement for ℘̃1(x; q) − ˜G2(q)x is the same. ��

B. Identities Involving Binomial Coefficients

We recall and prove some identities involving binomial coefficients in this appendix.

Lemma B.1.

n
∑

k=0

(−n − 1

k

)

(e2π i(n+1)x + (−1)−n−k−1e2π ikx )(e2π i x − 1)−n−k−1 = 1. (B.1)

Proof. Using the identity

n
∑

k=0

(

k + n

n

)

(−1)k(1 + x)n+1 − (−1)n(1 + x)k

xn+k+1 = 1

given by Proposition 5.2 in [DLM1], we have

n
∑

k=0

(−n − 1

k

)

(e2π i(n+1)x + (−1)−n−k−1e2π ikx )(e2π i x − 1)−n−k−1

=
n

∑

k=0

(

k + n

n

)

(−1)ke2π i(n+1)x − (−1)ne2π ikx

(e2π i x − 1)n+k+1

=
n

∑

k=0

(

k + n

n

)

(−1)k(1 + (e2π i x − 1))n+1 − (−1)n(1 + (e2π i x − 1))k

(e2π i x − 1)n+k+1

= 1.

��
Lemma B.2. For m, n, k, l ∈ Z+ satisfying n ≥ m ≥ l, we have

m
∑

j=0

l

(n − j + k)

(

m

j

)( −l − 1

n − j + k − 1

)

= 0. (B.2)

Proof. For j = 0, . . . ,m, by the definition of the binomial coefficients, we have

l

(n − j + k)

( −l − 1

n − j + k − 1

)

= l

(n − j + k)

(−l − 1) · · · (−l − 1 − n + j − k + 1 + 1)

(n − j + k − 1)!
= (−1)n− j+k−1 (n − j + l + k − 1) · · · (l + 1)l(l − 1)!

(l − 1)!(n − j + k)!
= (−1)n+k−1(−1) j

(n − j + l + k − 1) · · · (n − j + k + 1)

(l − 1)! .



Modular Invariance of (Logarithmic) Intertwining Operators Page 75 of 82 131

Then
m
∑

j=0

l

(n − j + k)

(

m

j

)( −l − 1

n − j + k − 1

)

=
m
∑

j=0

(−1)n+k−1(−1) j
(

m

j

)

(n − j + l + k − 1) · · · (n − j + k + 1)

(l − 1)!

=
m
∑

j=0

(−1)n+k−1(−1) j
(

m

j

)

(n − j + l + k − 1) · · · (n − j + k + 1)

(l − 1)! xn− j+k
∣

∣

∣

∣

x=1

= (−1)n+k−1

(l − 1)!
dl−1

dxl−1

m
∑

j=0

(−1) j
(

m

j

)

xn− j+l+k−1
∣

∣

∣

∣

x=1

= (−1)n+k−1

(l − 1)!
dl−1

dxl−1 x
n+l+k−1(1 − x−1)m

∣

∣

∣

∣

x=1

= (−1)n+k−1

(l − 1)!
dl−1

dxl−1 x
n−m+l+k−1(x − 1)m

∣

∣

∣

∣

x=1

= 0, (B.3)

where in the last step, we have used l − 1 < m. ��
Lemma B.3. For α, β ∈ C and m, n ∈ N,

m
∑

j=0

(

α

j

)(

β

m − j

)

=
(

α + β

m

)

, (B.4)

m
∑

j=0

(

m

j

)(

α

j + n

)

=
(

m + α

m + n

)

. (B.5)

Proof. The identity (B.4) is well known and is obtained by taking the coefficient of xm

from both sides of

∑

m∈N

⎛

⎝

m
∑

j=0

(

α

j

)(

β

m − j

)

⎞

⎠ xm = (1 + x)α(1 + x)β = (1 + x)α+β =
∑

m∈N

(

α + β

m

)

xm .

We have
m
∑

j=0

(

m

j

)(

α

j + n

)

=
m
∑

j=0

(

m

m − j

)(

α

j + n

)

=
m
∑

j=0

(

m

(m + n) − ( j + n)

)(

α

j + n

)

=
m+n
∑

k=n

(

m

(m + n) − k

)(

α

k

)

. (B.6)

Using
( m
(m+n)−k

) = 0 for k = 0, . . . , n − 1 and (B.4), we see that the right-hand side of
(B.6) is equal to
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m+n
∑

k=0

(

m

(m + n) − k

)(

α

k

)

=
(

m + α

m + n

)

. (B.7)

Combning (B.6) and (B.7), we obtain (B.5). ��
Lemma B.4. For m, n ∈ N satisfying m > n and l = 0, . . . ,m,

n
∑

k=0

m
∑

j=0

(−2m + n − 1

k

)

l

2m − j − n + k

(

m

j

)(

l − 1

2m − j − n + k − 1

)

= δl,m−n .

(B.8)

Proof. In the case α ∈ N and α ≤ m, we have
(

α
j

) = 0 for α < j ≤ m and (B.4)
becomes

α
∑

j=0

(

α

j

)(

β

m − j

)

=
(

α + β

m

)

. (B.9)

Note that 2m − n + k − 1 ≥ m ≥ s ≥ l. For k = 0, . . . , n and j, l = 0, . . . ,m, we have

l

(2m − j − n + k)

(

l − 1

2m − j − n + k − 1

)

= l

(2m − j − n + k)

(l − 1) · · · (l − 1 − 2m + j + n − k + 2)

(2m − j − n + k − 1)!
= l · · · (l − 2m + j + n − k + 1)

(2m − j − n + k)!
=

(

l

2m − j − n + k

)

. (B.10)

Using (B.10), (B.9) with α = m, q = l and m replaced by 2m − n + k, the fact that
( m+l

2m−n+k

) = 0 when l + n −m < 0, and (B.4) with α = −2m + n − 1, β = m + l and m
replaced by l + n − m, we have

n
∑

k=0

m
∑

j=0

(−2m + n − 1

k

)

l

2m − j − n + k

(

m

j

)(

l − 1

2m − j − n + k − 1

)

=
n

∑

k=0

m
∑

j=0

(−2m + n − 1

k

)(

m

j

)(

l

2m − j − n + k

)

=
n

∑

k=0

(−2m + n − 1

k

)(

m + l

2m − n + k

)

=

⎧

⎪

⎨

⎪

⎩

0 l + n − m < 0
l+n−m
∑

k=0

(−2m + n − 1

k

)(

m + l

l + n − m − k

)

l + n − m ≥ 0

=
⎧

⎨

⎩

0 l + n − m < 0
(

l + n − m − 1

l + n − m

)

l + n − m ≥ 0
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=
{

0 l + n − m �= 0
1 l + n − m = 0.

= δl,m−n .

��
Lemma B.5. An identity of Andersen ( [An]): For α ∈ C, n ∈ Z+ and k = 0, . . . , n,

k
∑

j=0

(

α

j

)( −α

m − j

)

= m − k

m

(

α − 1

k

)( −α

m − k

)

. (B.11)

Proof. For the proof of (B.11), see [An]. ��
Lemma B.6. For m, n, l ∈ N satisfying 2n > m > n ≤ l,

2n−m
∑

p=0

(−1)−p−m
m
∑

k=0

(−2n + m − 1

k

)(

2n − m + 1

p + m + 1 − k

)(

n + p + l

p + m

)

= δl,m−n . (B.12)

Proof. Using the identity (B.11) with α,m, k replaced by −2n + m − 1, p + m + 1,m
and

(−1)−p−m
(

n + p + l

p + m

)

=
(

m − n − l − 1

p + m

)

,

we see that the left-hand side of (B.12) is equal to

2n−m
∑

p=0

(−1)−p−m p + 1

p + m + 1

(−2n + m − 2
m

)(

2n − m + 1
p + 1

)(

n + p + l
p + m

)

=
(−2n + m − 2

m

) 2n−m
∑

p=0

2n − m + 1

p + m + 1

(

2n − m
p

)(

m − n − l − 1
p + m

)

. (B.13)

When l �= m − n, we have

1

p + m + 1

(

m − n − l − 1

p + m

)

= 1

m − n − l

(

m − n − l

p + m + 1

)

. (B.14)

Using (B.14) and (B.5) with m, n, α replaced by 2n−m,m + 1,m − n− l, respectively,
the right-hand side of (B.13) is equal to

2n − m + 1

m − n − l

(−2n + m − 2

m

) 2n−m
∑

p=0

(

2n − m

p

)(

m − n − l

p + m + 1

)

= 2n − m + 1

m − n − l

(−2n + m − 2

m

)(

n − l

2n + 1

)

. (B.15)

Since l ≤ n < 2n+1,
( n−l

2n+1

) = 0. So the right-hand side of (B.15) and also the right-hand
side of (B.13) is 0 in this case. Thus (B.12) holds in the case l �= m − n. In the case
l = m − n, using

(−2n + m − 2

m

)( −1

p + m

)

= (2n + 1)

(

2n

m

)

(−1)p
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and (B.16) with n replaced by 2n −m, we see that the right-hand side of (B.13) is equal
to

(−2n + m − 2

m

) 2n−m
∑

p=0

2n − m + 1

p + m + 1

(

2n − m

p

)( −1

p + m

)

= (2n + 1)

(

2n

m

) 2n−m
∑

p=0

(−1)p

p + m + 1

(

2n − m

p

)

= 1.

Thus (B.12) also holds in the case l = m − n. ��
Lemma B.7. For m, n ∈ N,

(n + 1 + m)

(

n + m

m

) n
∑

p=0

(−1)p

p + m + 1

(

n

p

)

= 1. (B.16)

Proof. Multiplying xm to both sides of the binomial expansion

n
∑

p=0

(

n

p

)

x p = (1 + x)n,

we obtain

n
∑

p=0

(

n

p

)

x p+m = (1 + x)nxm .

Integrating both sides from 0 to x , we obtain

n
∑

p=0

(

n
p

)

x p+m+1

p + m + 1

=
∫ x

0
(1 + t)ntmdt

=
m
∑

i=0

m · · · (m − i + 1)

(n + 1) · · · (n + 1 + i)
(1 + x)n+1+i xm−i

− (−1)m
m · · · 1

(n + 1) · · · (n + 1 + m)
. (B.17)

Substituting −1 for x in both sides of (B.17), we obtain

(−1)m+1
n

∑

p=0

(−1)p

p + m + 1

(

n

p

)

= −(−1)m
m · · · 1

(n + 1) · · · (n + 1 + m)
. (B.18)

The identity (B.18) is equivalent to (B.16). ��
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Lemma B.8. For 1 ≤ l ≤ n,
n−1
∑

j=0

(

n

j

)

l

n − j

( −l − 1

n − j − 1

)

= 1. (B.19)

n−1
∑

j=0

(

n

j

)

l

n − j

(

l − 1

n − j − 1

)

=
(

n + l

n

)

− 1. (B.20)

Proof. For 1 ≤ l ≤ n,
n−1
∑

j=0

(

n

j

)

l

n − j

( −l − 1

n − j − 1

)

=
n−1
∑

j=0

(

n

j

)

l

n − j

(−l − 1) · · · (−l − 1 − n + j + 1 + 1)

(n − j − 1)!

=
n−1
∑

j=0

(−1)n− j−1
(

n

j

)

(l + n − j − 1) · · · (l + 1)l(l − 1)!
(l − 1)!(n − j)!

=
n−1
∑

j=0

(−1)n− j−1
(

n

j

)

(l + n − j − 1) · · · (n − j + 1)

(l − 1)!

=
n−1
∑

j=0

(−1)n− j−1
(

n

j

)

1

(l − 1)!
dl−1

dxl−1 x
l+n− j−1

∣

∣

∣

∣

x=1
. (B.21)

But
n

∑

j=0

(−1)n− j−1
(

n

j

)

1

(l − 1)!
dl−1

dxl−1 x
l+n− j−1

∣

∣

∣

∣

x=1

= (−1)n−1 1

(l − 1)!
dl−1
∑

n

j=0

(

n

j

)

(−1) j dxl−1xl+n− j−1
∣

∣

∣

∣

x=1

= (−1)n−1 1

(l − 1)!
dl−1

dxl−1 x
l+n− j−1(1 − x−1)n

∣

∣

∣

∣

x=1

= (−1)n−1 1

(l − 1)!
dl−1

dxl−1 x
l− j−1(x − 1)n

∣

∣

∣

∣

x=1

= 0.

Then
n−1
∑

j=0

(−1)n− j−1
(

n

j

)

1

(l − 1)!
dl−1

dxl−1 x
l+n− j−1

∣

∣

∣

∣

x=1

=
n

∑

j=0

(−1)n− j−1
(

n

j

)

1

(l − 1)!
dl−1

dxl−1 x
l+n− j−1

∣

∣

∣

∣

x=1
+ 1

= 1. (B.22)
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From (B.21) and (B.22), we obtain (B.19).
For 1 ≤ l ≤ n,

n−1
∑

j=0

(

n

j

)

l

n − j

(

l − 1

n − j − 1

)

=
n−1
∑

j=0

(

n

j

)(

l

n − j

)

=
n

∑

j=0

(

n

j

)(

l

n − j

)

− 1

=
(

n + l

n

)

− 1,

where in the last step, we have used (B.4). ��
Lemma B.9. For 1 ≤ l ≤ n,

n
∑

m=1

n
∑

j=0

(−n − 1

m

)(

n

j

)

l

n − j + m

( −l − 1

n − j + m − 1

)

= 0, (B.23)

n
∑

m=1

n
∑

j=0

(−n − 1

m

)(

n

j

)

l

n − j + m

(

l − 1

n − j + m − 1

)

= −
(

n + l

n

)

. (B.24)

Proof. For 1 ≤ l ≤ n, by (B.2), we have

n
∑

m=1

n
∑

j=0

(−n − 1

m

)(

n

j

)

l

n − j + m

( −l − 1

n − j + m − 1

)

=
n

∑

m=1

(−n − 1

m

) n
∑

j=0

(

n

j

)

l

n − j + m

( −l − 1

n − j + m − 1

)

= 0.

For 1 ≤ l ≤ n, using the properties of binomial coefficients and (B.4), we have

n
∑

m=0

n
∑

j=0

(−n − 1

m

)(

n

j

)

l

n − j + m

(

l − 1

n − j + m − 1

)

=
n

∑

m=0

n
∑

j=0

(−n − 1

m

)(

n

j

)(

l

n − j + m

)

=
n

∑

m=0

(−n − 1

m

) n+m
∑

j=0

(

n

j

)(

l

n − j + m

)

=
n

∑

m=0

(−n − 1

m

)(

n + l

n + m

)

=
l

∑

m=0

(−n − 1

m

)(

n + l

l − m

)
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=
l

∑

m=0

(−n − 1

m

)(

n + l

l − m

)

=
(

l − 1

l

)

= 0.

Then

n
∑

m=1

n
∑

j=0

(−n − 1
m

)(

n
j

)

l

n − j + m

(

l − 1
n − j + m − 1

)

=
n

∑

m=0

n
∑

j=0

(−n − 1
m

)(

n
j

)

l

n − j + m

(

l − 1
n − j + m − 1

)

−
n

∑

j=0

(

n
j

)

l

n − j

(

l − 1
n − j − 1

)

= −
n

∑

j=0

(

n
j

)(

l
n − j

)

= −
(

n + l
n

)

,

where in the last step, we have used (B.4). ��
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