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Abstract: We consider a 2D incompressible and electrically conducting fluid in the
domain T × R. The aim is to quantify stability properties of the Couette flow (y, 0)

with a constant homogenous magnetic field (β, 0) when |β| > 1/2. The focus lies on
the regime with small fluid viscosity ν, magnetic resistivity μ and we assume that the
magnetic Prandtl number satisfies μ2 � Prm = ν/μ ≤ 1. We establish that small
perturbations around this steady state remain close to it, provided their size is of order

ε � ν
2
3 in HN with N large enough. Additionally, the vorticity and current density

experience a transient growth of order ν− 1
3 while converging exponentially fast to an

x-independent state after a time-scale of order ν− 1
3 . The growth is driven by an inviscid

mechanism, while the subsequent exponential decay results from the interplay between
transport and diffusion, leading to the dissipation enhancement. A key argument to prove
these results is to reformulate the system in terms of symmetric variables, inspired by the
study of inhomogeneous fluid, to effectively characterize the system’s dynamic behavior.
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1. Introduction

The 2D incompressible Navier–Stokes magnetohydrodynamics (NS-MHD) equations
on the domain T × R are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t ũ + ũ · ∇ũ − b̃ · ∇b̃ = ν�ũ − ∇ p̃, t > 0, x ∈ T, y ∈ R,

∂t b̃ + ũ · ∇b̃ − b̃ · ∇ũ = μ�b̃,
∇ · ũ = ∇ · b̃ = 0
ũ|t=0 = ũin, b̃|t=0 = b̃in .

(1.1)

Here ũ, b̃ are the velocity and magnetic fields, p̃ the pressure, ν and μ are the fluid
viscosity and magnetic resistivity, which are proportional to the inverse Reynolds number
and inverse magnetic Reynolds number respectively. We consider a nearly ideal system
in the regime

0 < ν ≤ μ � 1, �⇒ Prm = ν/μ ≤ 1,

where Prm is the magnetic Prandtl number, observed to be of order 10−7 − 10−2 in
physically relevant cases [40,42].

A steady state of (1.1) is the Couette flow with a constant background magnetic field,
that is

uE = (y, 0), bE = (β, 0), β ∈ R. (1.2)

This is problably one of the simplest setting to understand some quantitative hydro-
magnetic stability properties of shear flows, which is a problem of significant physical
interest [12,17,22]. The presence of a background magnetic field could dramatically
change stability features of the shear flow considered: i) it can have a destabilizing ef-
fect for shear flows that are linearly stable without the magnetic field (as the Couette
flow) [15,21–23,47]. ii) it can suppress instabilities as the Kelvin–Helmholtz one [34]
or lift-up effects in 3D fluids [33].

In this paper, we focus on quantifying a stability threshold in Sobolev spaces. Fol-
lowing [5], the problem can be formulated as follows:

Stability threshold: let N ≥ 0, 0 < ν ≤ μ < 1, (ũin, b̃in) = (uE , bE ) +
(uin, bin). What is the smallest γ = γ (N ) ≥ 0 such that if

∥
∥(uin, bin)

∥
∥
HN =

ε < νγ then ‖(u(t), b(t))‖L2 � 1 and (u(t), b(t)) converges back to a laminar
flow as t → ∞?

Let us briefly review the literature about related problems. Since Reynolds’s famous
experiment [39], it is a classical problem in fluid dynamics to understand under which
circumstances a laminar flow transitions to a turbulent state. Estimating a stability thresh-
old is a quantitative way to establish when turbulence does not develop. The idea that the
laminar regime persists if the size of the perturbation decreases at large Reynolds number
was already predicted by Kelvin in 1887 [28]. The quantification in terms of powers of
the Reynolds number was also linked to the non-normal behavior of the linearized opera-
tor around a shear flow in the influential paper by Trefethen et al. [43] and we refer to the
book [41] for further developments and references. In the last decade, there has been a sig-
nificant effort in rigorously proving estimates for the Sobolev stability threshold in many
different fluid problems involving the Couette flow [5,10,13,30,31,33,36,38,45,48,51]
and recently strictly monotone shear flows as well [32]. Results in this direction are
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known also for the Poiseuille flow in T × R [16,18] or in T × [−1, 1] with Navier-slip
boundary conditions [19], the Lamb–Oseen vortex [20] and the Taylor–Couette flow
[1]. For Gevrey-regular perturbations, one can improve the stability threshold [6,7,9]
and even study problems in absence of viscosity [4,8,24–26,35,37]. In fact, the ground-
breaking result by Bedrossian and Masmoudi [8], proving thenonlinear inviscid damping
around Couette in 2D Euler, inspired many of the subsequent works involving strictly
monotone shear flows.

For electrically conducting fluids, a stability threshold was first proved by Liss in [33]
in 3D NS-MHD. For the 2D case, recently Zhao and Zi [49] studied the stability of (1.2)
with ν = 0 (2D Euler-MHD system) with |β| sufficiently large and perturbations of size
O(μ) in the Gevrey-1/2− space. The latter regularity requirement might be necessary
for the inviscid problem [29]. For what concerns the 2D NS-MHD system considered
here, a Sobolev stability threshold O(ν5/6+

) was first proved by Chen and Zi [14] for
shear close to Couette when ν = μ, about which we comment more later on.

To state the main result for the problem studied in this paper, we first need to introduce
the vorticity and the current density of the perturbation

ω = ∇⊥ · u, j = ∇⊥ · b.
The system satisfied by (ω, j) is:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tω + y∂xω − β∂x j − ν�ω = NLω,

∂t j + y∂x j − β∂xω − μ� j + 2∂xyφ = NL j ,

u = ∇⊥ψ, b = ∇⊥φ,

�ψ = ω, �φ = j,
ω|t=0 = ωin, j |t=0 = j in,

(1.3)

where

NLω := −u · ∇ω + b · ∇ j,

NL j := −u · ∇ j + b · ∇ω + 2∂xyφ(ω − 2∂xxψ) − 2∂xyψ( j − 2∂xxφ).

In the following, we denote

f0(y) = 1

2π

∫

T

f (x, y)dx, f = = f − f0, 〈a〉 :=
√

1 + a2

We are ready to state the main result.

Theorem 1.1. Let 0 < ν ≤ μ � 1, |β| > 1/2, N > 10, and assume that ν ≥
(16μ/β2)3. Let (ωin, j in) be the initial data of (1.3). Then, there exists 0 < ε0 =
ε0(N , β, ν) < ν

2
3 such that for all ε < ε0 the following holds true: if

∥
∥
∥(ωin, j in)

∥
∥
∥
HN

≤ ε,

denoting (�, J )(t, x + yt, y) = (ω, j)(t, x, y), we have

∥
∥(�=, J=)(t)

∥
∥
HN � ε 〈t〉 e− ν

1
3 t

128 (1.4)
∥
∥
∥(u1 =, b1=)(t)

∥
∥
∥
L2

+ 〈t〉
∥
∥
∥(u2 =, b2=)(t)

∥
∥
∥
L2

� εe− ν
1
3 t

128 , (1.5)

‖(u0, b0)(t)‖HN + ν
1
2
∥
∥∂y(u0, b0)

∥
∥
L2([0,t];HN )

� ε. (1.6)
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The bound in (1.4), combines the linear in time transient growth with the dissipation
enhancement of the vorticity and current density. The growth is an inviscid linear mech-
anism generated by the background magnetic field, resulting in a transient amplification
of order ν−1/3 in the viscous case. The exponential decay for times larger than ν−1/3

is a common feature of perturbations around the Couette flow [30,32,33,36,38,45,51].
This is caused by the interaction between the advection term (y, 0) with the diffusion:
the Couette flow sends information towards high-vertical frequencies where dissipation
is more efficient, leading to the accelerated decay of the non-zero horizontal frequen-
cies. The estimates (1.5) are a direct consequence of (1.4). They quantify the inviscid
damping [8] of the second component of the velocity and current density fields, but we
do not expect any inviscid decay on (u1, b1) in view of the possible growth of (ω, j).
Finally, from (1.6) we deduce that the x-averages of the solution remain small so that
the dynamics is effectively converging to a shear flow nearby the steady state (1.2). Let
us first sketch the strategy of proof and then we make a few remarks.

Proof strategy. a key point in the proof of Theorem 1.1 is the use of the symmetric
variables:

(z, q) = (∂xx�
−1)

1
2 (ω, j). (1.7)

These unknowns are inspired by an energy method introduced in [2] for compressible
fluids, and further improved and refined in [4,11]. The main observation is that it is
possible to “symmetrize" the linearized system to get a new system that enjoys a better
energy structure,1 as explained in detail in Sect. 2. For the linearized problem, we see
that for |β| > 1/2 we have a coercive energy functional for (z, q), see (2.15). Using the
good properties of this energy, we prove that the results stated in Theorem 1.1 are true
at the linearized level, see Proposition 2.3.

The idea is then to bootstrap the control of the linear energy functional to the nonlinear
case, which is done in Sects. 3–4. There are two main difficulties to overcome:

(1) It is not straightforward to obtain bounds for the nonlinear system associated to (z, q)

because the inverse of (∂xx�
−1)

1
2 is not a uniformly bounded Fourier multiplier.

This imply that we might encounter some derivatives losses when reconstructing the
symmetric variables in the nonlinear terms.

(2) The symmetric variables do not provide enough information over the x-averages of
the solution.

To overcome these issues, we follow a strategy similar to the one used in [4]. For the first

problem, we exploit the nice structure of the nonlinearity and (∂xx�
−1)

1
2 . The main idea

is that, by performing a frequency decomposition, we can exchange derivative losses
with time-growth. This decomposition considers not only interactions between high-low
(or low-high) frequencies but it also accounts for what occurs near Orr’s critical time
t = η/k, where η and k are the Fourier coefficients associated with the variables x and
y, respectively. The dissipation enhancenment plays a crucial role in avoiding the use
of technically involved Fourier multipliers needed in inviscid problems, e.g. [4,8]. In
fact, it will suffice to capture the dissipation enhancement along with a form of inviscid
damping using standard (by now) Fourier multipliers that are uniformly bounded in ν.

1 The method allows to effectively capture some oscillations that are stabilizing the system.
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The second problem instead can be explained as follows. The transport nonlinearity
will generate terms containing the k = 0-modes, for instance

u · ∇ω = u = · ∇ω= + u1
0∂xω= + u2=∂yω0,

where u0 = (u1
0, 0) thanks to the incompressibility condition. Heuristically, u1

0 has
roughly the same regularity as z (one derivative less than vorticity), and therefore, we
can hope to control it using information on z. On the other hand, ∂yω0 has higher
regularity with respect to z, and even dissipation cannot assist us since ∂yω0 = −∂yyu1

0,
which involves two derivatives more than z. This suggests the need to directly control the
system for (ω, j), which has a worst energy structure. Nevertheless, through the control
on (z, q), we show that a dangerous linear term can be easily controlled leading to bounds
in agreement with the linearized behavior of (ω=, j=). The energy associated to (ω, j) is
at the highest level of regularity but is allowed to grow in time, meaning that the control
of the nonlinearity is somewhat easier. It is important to note that in Theorem 1.1 we
have not stated the bounds for ‖(ω0, j0)‖L∞([0,t];HN ) = ∥

∥(u1
0, b

1
0)

∥
∥
L∞([0,t];HN+1)

, which
are indeed of order ε 〈t〉, even though there is no growth mechanism for the x-averages
in the linearized problem.

Remark 1.2. (On the symmetric variables) The standard auxiliary variables for the NS–
MHD system are the Elsässer variables [3,44], corresponding to e± = ω ± j . The
system satisfied by e± also has a nice structure where one could exploit the integration-
in-time trick used by Liss in the 3D problem [33]. This strategy is followed in the 2D
case by Chen and Zi [14] as well, where there are also the additional complicatons
given by the more general form of the shear flow considered. It appears that using
(z, q) has certain technical advantages, particularly in achieving the ν2/3 threshold and
handling cases where ν = μ. We also mention that, in the result for the 2D Euler–MHD
obtained by Zhao and Zi [49], the main energy functional introduced by the authors uses

an approximated version of (z, q). In particular, (∂xx�
−1)

1
2 is replaced by a Fourier

multiplier whose inverse is bounded with a μ-dependent constant (the weight m in
[49]). The use of symmetric variables has proven to be a flexible approach [2,4,11,51],
which is in essence a carefully weighted Kawashima’s type energy argument [27].

Remark 1.3. (On the threshold) The ν2/3 threshold in Sobolev spaces2 can be heuristi-
cally justified as in [48]. Namely, for the 2D NS case the best available threshold is ν1/3

[38]. Here, the vorticity and current density are experiencing a growth of order ν−1/3

after which the dissipation enhancement kicks in. We would then require an extra ν1/3

smallness to keep everything in a perturbative regime even with this transient growth,
which is why we need to assume ε � ν1/3+1/3.

On the other hand, the threshold ν5/6+
obtained in [14] can be related to the method

of proof. Specifically, the control of nonlinear terms is inspired by [10] where a ν1/2

threshold is obtained in the 2D NS setting. In this paper, we need to treat the nonlinear
terms in a more refined way compared to [10] to improve the threshold, relying on esti-
mates that are closer to inviscid problems. We believe that the nice methods introduced
in [14] to handle shear flows close to Couette, could be combined with the strategy we
use here to obtain the ν2/3+

threshold for shear near Couette as well.

2 The use of HN with N > 10 is certainly not optimal and it might be of interest to understand what are
the critical Sobolev spaces, in a similar spirit of [31,32,36]
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Remark 1.4. (On the viscosity coefficients) The case of different viscosity coefficients
μ = ν is generally more challenging to study compared to the case μ = ν, see for
instance [44]. For the energy method employed here, having μ = ν does not pose any
significant difficulty because we can exploit the dissipation enhancement to handle some
linear errors arising from this anisotropy. This is precisely why we need to assume that
μ3 � ν ≤ μ, and we anticipate that the problem becomes much more intricate in the
opposite regime, as hinted by the limiting case ν = 0 investigated in [49].

When both μ = ν = 0, the inviscid linear instability gives a growth of vorticity
and current density of order O(t). Therefore, we expect that it should be possible to
propagate this instability for the nonlinear system at least for a time-scale of order
O(ε−1), in analogy with what can be done in the 2D Euler–Boussinesq case studied in

[4] (where the growth is O(t
1
2 ) and the time-scale O(ε−2)).

Remark 1.5. (On the limit |β| → 1/2) All the constants hidden in the symbol � degen-
erate as |β| → 1/2, meaning that ε0 → 0 as |β| → 1/2. This is related to the coercivity
of the energy functional we use in the linearized problem, see (2.15), for which we need
|β| > 1/2. Moreover, in the domain T× [0, 1], the stability criterion in [22, eqt (3.16)]
implies that for |β| > 1/2, and ν = μ = 0, there are no unstable eigenvalues for the
linearized problem. This can be thought as the analogue of what happens in stratified
fluids, where there is a relation between the Miles-Howard criterion and the energy
functional associated to the symmetric variables [4,11]. However, the criterion in [22]
heavily depends on the maximum and minimum value of the velocity of the shear flow,
meaning that we cannot easily relate the coercivity of the energy functional to a spectral
criterion in T × R. For the particular shear flow we are considering, namely (1.2), one
might try to refine the criterion in [22] and see wheter or not |β| > 1/2 guarantees
spectral stability also in T × R.

We finally point out that for β = 0 the linearized behavior is quite different. Indeed,
the linearized system is not coupled anymore and the current density will have a growth
of order 〈t〉2 instead of 〈t〉, see also Remark 2.2.

Remark 1.6. (On the converge of the x-average) From the bound (1.6), it is not possible
to deduce an explicit decay rate for (u0, b0). However, since the x-averages satisfy
a nonlinear 1D heat equation with a nonlinearity that decays rapidly enough, it is not
difficult to prove that (u0, b0) converges to zero as a solution of the standard heat equation
on R. The proof follows by combining Duhamel’s formula with the available bounds on
(ω=, j=), as shown, for example, in the related problem [35, Section 4]. As we do not
explicitly need the decay rates of the x-averages during the proof of the main result, we
choose not to provide the details of the proof in our case.

1.1. Notation. We introduce some notation used throughout the paper. For a, b ∈ R,
we define

|a, b| := |a| + |b|, 〈a〉 =
√

1 + a2.

We use the notation a � b to indicate that there is a constant C > 0, independent of
the relevant paramenters ν, μ such that a ≤ Cb. Similarly, we say a ≈ b if a � b and
b � a.

We define the Fourier transform of a function F as

f̂k(η) = F( f )k(η) = 1

2π

∫∫

T×R

e−i(kx+ηy) f (x, y)dxdy,
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and the inverse Fourier transform as

F−1( f̂ )(x, y) = 1

2π

∑

k∈Z

∫

R

ei(kx+ηy) f̂k(η)dη.

We identify Fourier multipliers w(∇) with their symbol wk(t, η), except for standard
derivatives ∂x , ∂y where we use the symbols ik, iη. We denote the L2 scalar product as

〈 f, g〉L2 = 〈 f̂ , ĝ〉L2 =
∑

k∈Z

∫

R

f̂k(η) ¯̂gk(η)dη,

and the norm in HN as

‖ f ‖2
HN =

∑

k∈Z

∫

R

〈|k, η|〉2N | f̂k(η)|2dη.

We use the following convention

〈∂xx ( f ∂xx g), h〉L2 =
〈
k2( f̂ ∗ (�2 ĝ)), ĥ

〉

L2

=
∑

k,�∈Z

∫∫

R2
k2 f̂k−�(η − ξ)�2 ĝ�(ξ)

¯̂hk(η)dηdξ. (1.8)

We define the frequency decomposition as in [5,33]: let χ : R4 → R be

χ(k, η, �, ξ) =
{

1 if |k − �, η − ξ | ≤ 2|�, ξ |
0 otherwise.

We use the paraproduct decomposition

F( f g)k(η) =
∑

k,�∈Z

∫

R

f̂k−�(η − ξ)ĝ�(ξ)χ(k, η, �, ξ)dξ

+
∑

k,�∈Z

∫

R

f̂k−�(η − ξ)ĝ�(ξ)(1 − χ(k, η, �, ξ))dξ

:= F( f LogHi ) + F( f Hi gLo). (1.9)

Notice that |k, η| ≤ 3|�, ξ | on the support of χ and |k, η| ≤ 3|k − �, η − ξ |/2 on the
support of 1 − χ .

2. Linearized Problem

In this section, we study in detail the simple linearized dynamics. First of all, we introduce
the change of coordinates

X = x − yt, Y = y.

We denote the variables in the moving frame with capital letters

�(t, X,Y ) = ω(t, x, y), J (t, X,Y ) = j (t, x, y), (2.1)
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and

∇L = (∂X , ∂Y − t∂X ), �L = ∂XX + (∂Y − t∂X )2. (2.2)

The linearized problem in the moving frame is

∂t� = ν�L� + β∂X J,

∂t J = μ�L J − 2∂X (∂Y − t∂X )�−1
L J + β∂X�.

Taking the Fourier transform in both variables, defining the symbol associated to −�L
as

pk(t, η) := k2 + (η − kt)2,

we get

∂t �̂ = −νp�̂ + βik Ĵ , (2.3)

∂t Ĵ = −μp Ĵ +
∂t p

p
Ĵ + βik�̂, (2.4)

where we omit the subscript k to ease the notation. Multiplying the equation for Ĵ by
p−1, notice that

∂t �̂ = −νp�̂ + βikp(p−1 Ĵ ), (2.5)

∂t (p
−1 Ĵ ) = −μp(p−1 Ĵ ) +

βik

p
�̂. (2.6)

We briefly comment below on the inviscid case. Then we study the viscous problem
with a flexible energy method that will be useful in the nonlinear analysis.
• Case ν = μ = 0: in absence of viscosity, we see that the 2 × 2 non-autonomous
system (2.5)–(2.6) has almost an antisymmetric structure, but the time-dependence of
the factor p prevents the existence of an exact conserved quantity. To overcome this
problem, we apply the symmetrization scheme introduced in [2] and further developed
in [4,11]. This amounts at finding two good unknowns for which we have an almost
conserved quantity. In this case, the symmetrization procedure suggests the use of the
variables
⎧
⎪⎨

⎪⎩

Zk(t, η) =
√

k2

pk(t, η)
�̂k(t, η), Qk(t, η) =

√

k2

pk(t, η)
Ĵk(t, η), for k = 0,

Z0(t, η) = Q0(t, η) = 0.

(2.7)

In the original reference frame, these variables are exactly the (z, q) = (∂xx�
−1)

1
2 (ω, j)

discussed in the Introduction (1.7). The system satisfied by (Z , Q) is

d

dt

(
Z
Q

)

=
(

− 1
2

∂t p
p βik

βik 1
2

∂t p
p

)(
Z
Q

)

.

The energy functional is then given by

Ẽsym(t) := 1

2

(

|Z |2 + |Q|2 − ∂t p

βikp
Re(Z Q̄)

)

(t).
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Remark 2.1. If ∂t p and p were constants, one would have that Ẽsym(t) is a conserved
quantity, meaning that the dynamics lie in an ellipse in the Z–Q plane. With time-
dependent coefficients we only aim at showing that the dynamics remains in an annular
region in the Z–Q plane.

Having that

|∂t pk(t, η)|
pk(t, η)

= 2|k(η − kt)|
k2 + (η − kt2)

≤ 1,

we see that energy functional is coercive only when |β| > 1/2. In particular

1

2

(

1 − 1

2|β|
)(

|Z |2 + |Q|2
)

≤ Ẽsym ≤ 1

2

(

1 +
1

2|β|
)(

|Z |2 + |Q|2
)

In fact, the coercivity of the energy functional is the only reason why we need to assume
|β| > 1/2.

Taking the time derivative of Ẽsym and using a Grönwall type estimate, it is not
difficult to show that

Ẽsym(t) ≈|β|− 1
2
Ẽsym(0),

meaning that all the constants degenerate when |β| → 1/2.

Remark 2.2. It might be natural that |β| = 1/2 is a somewhat sharp threshold to observe
the linear-in-time growth. For instance, when β = 0 one can explicitly solve the system
and obtain that � = is conserved in time whereas J= ≈ 〈t〉2. It seems reasonable that for
0 < |β| < 1/2 one simply interpolates between the behavior at β = 0 and |β| > 1/2, in
a similar fashion to what happens in the Boussinesq case at small Richardson’s number
[46].

• Case 0 < ν ≤ μ: When viscosity is present, we aim at capturing the dissipation en-

hancement, that is the exponential decay on a time-scale of order O(ν− 1
3 ). This could be

proved by using the energy functional Ẽsym and some algebraic manipulation. However,
with the idea in mind of addressing the nonlinear problem, we prove the enhanced dis-
sipation estimate with the help of some Fourier multipliers, which are by now standard
in the literature. We use the following weights: the first one, introduced in [50], is to
control error terms which are integrable in time and is given by

⎧
⎪⎪⎨

⎪⎪⎩

∂tm
d
k = Cβ

1 + (η/k − t)2 m
d
k , for k = 0,

md
k (0, η) = 1

md
0(t, η) = 1,

(2.8)

where Cβ > 0 is a fixed constant that can be chosen to be Cβ = max{1, 4/|β|} for
example. This weight is needed to recover some time-decay from the inviscid damping,
that is generated by inverse powers of the Laplacian in the moving frame. Notice that

md
k (t, η) ≈ 1 for all t > 0, η ∈ R, k = 0.
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The next weight, introduced in [6], is needed to capture the dissipation enhancement
and is defined as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tm
ν
k = ν

1
3

1 + ν
2
3 (η/k − t)2

mν
k , for k = 0, ν > 0,

mν
k (0, η) = 1,

mν
0(t, η) = 1.

Also in this case we have

mν
k (t, η) ≈ 1 for all t > 0, η ∈ R, k = 0. (2.9)

The key property of the weight mν is

νpk(t, η) +
∂tmν

k (t, η)

mν
k (t, η)

≥ 1

4
ν

1
3 , for all t > 0, η ∈ R, k = 0, (2.10)

which can be easily checked by considering |η/k − t | ≤ ν− 1
3 or |η/k − t | ≥ ν− 1

3

separately. This weight is compensating the inefficiency of the dissipation enhancement
close to the critical time t = η/k.

Finally, we need a last weight to absorb some error terms given by the mixed scalar
product in the energy functional,

⎧
⎪⎪⎨

⎪⎪⎩

∂tm
s
k = γβCβ

(1 + (η/k − t)2)
3
2

ms
k, for k = 0, ν > 0,

ms
k(0, η) = 1,

ms
0(t, η) = 1,

where γβ is a fixed constant such that

1

|β|
(

1

2
+

1

γβ

)

< 1.

Notice that γβ → +∞ as |β| → 1/2. This weight is again bounded above and below,
namely

ms
k(t, η) ≈ 1 for all t > 0, η ∈ R, k = 0, (2.11)

and satisfies

∂tms

ms
= γβ

√

k2

p

∂tmd

md
. (2.12)

Aiming at obtaining a bound in Sobolev spaces, we then define the weight

mk(t, η) =
{

eδ0ν
1
3 t 〈|k, η|〉N (mdmνms)−1

k (t, η), for k = 0,

〈η〉N for k = 0,
(2.13)

where 1/128 ≤ δ0 < 1/64 is a fixed constant not depending on N , β, ν. In fact, to
obtain the result in Theorem 1.1 it is enough to choose δ0 = 1/128.
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When k = 0 we have

∂tmk

mk
= δ0ν

1
3 −

∑

ι∈{ν,d,s}

∂tmι
k

mι
k

(2.14)

The good unkowns are still given by (2.7). The system for the weighted variables
(mZ ,mQ) read as

∂t (mZ) = −
(

νp − ∂tm

m

)

mZ − 1

2

∂t p

p
mZ + βikmQ,

∂t (mQ) = −
(

μp − ∂tm

m

)

mQ +
1

2

∂t p

p
mQ + βikmZ .

The energy functional associated to the system is

Esym(t) := 1

2

(

|mZ |2 + |mQ|2 − Re

(
∂t p

βikp
(mZmQ̄)

))

(t). (2.15)

We have the following.

Proposition 2.3. Let 0 < ν ≤ μ � 1, |β| > 1/2 and assume that assume that ν
1
3 ≥

(16μ/β2). Then

Esym(t) +
1

16

∫ t

0
Dsym(τ )dτ ≤ Esym(0), (2.16)

where

Dsym(t) :=
(

νp|mZ |2 + μp|mQ|2 +

(
∂tmν

mν
+

∂tmd

md

)

(|mZ |2 + |mQ|2)
)

(t).

(2.17)

As a consequence of this bound, the following inequalities holds true:

‖Z(t)‖HN + ‖Q(t)‖HN �|β|− 1
2

e−δ0ν
1
3 t

(∥
∥
∥Zin

∥
∥
∥
HN

+
∥
∥
∥Qin

∥
∥
∥
HN

)
, (2.18)

∥
∥�=(t)

∥
∥
HN +

∥
∥J=(t)

∥
∥
HN �|β|− 1

2
〈t〉 e−δ0ν

1
3 t

(∥
∥
∥ωin=

∥
∥
∥
HN

+
∥
∥
∥ j in=

∥
∥
∥
HN

)
, (2.19)

∥
∥
∥U 1=(t)

∥
∥
∥
HN

+ 〈t〉
∥
∥
∥U 2=(t)

∥
∥
∥
HN−1

�|β|− 1
2

e−δ0ν
1
3 t

(∥
∥
∥ωin=

∥
∥
∥
HN

+
∥
∥
∥ j in=

∥
∥
∥
HN

)
. (2.20)

Proof. Compute that

1

2

d

dt
|mZ |2 = −

(

νp − ∂tm

m

)

|mZ |2 + δ0ν
1
3 |mZ |2 − 1

2

∂t p

p
|mZ |2 + βRe(ikmQmZ̄),

(2.21)

1

2

d

dt
|mQ|2 = −

(

μp − ∂tm

m

)

|mQ|2 + δ0ν
1
3 |mQ|2 +

1

2

∂t p

p
|mQ|2 + βRe(ikmZmQ̄).

(2.22)
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When adding these two equations the last terms on the right-hand side cancel out. For
the mixed product instead, we have

−1

2

d

dt

(
∂t p

βikp
(mZmQ̄)

)

= −1

2

∂t p

p

(
|mQ|2 − |mZ |2

)
(2.23)

+
∂t p

2βikp

⎛

⎝(ν + μ)p − 2δ0ν
1
3 + 2

∑

ι∈{ν,d,s}

∂tmι

mι

⎞

⎠ (mZmQ̄)

− 1

2

(
p∂t t p − (∂t p)2

βikp2

)

(mZmQ̄).

Observe that the first term on the right-hand side of (2.23) cancel out with the second
to last terms in (2.21)–(2.22) when computing the time derivative of Esym. Thanks to
the energy identities above, the property (2.14) and the definition (2.17) we arrive at the
following inequality

d

dt
Esym + Dsym +

∂tms

ms
(|mZ |2 + |mQ|2) ≤

5∑

i=0

Li , (2.24)

where we define the linear error terms as:

L0 := δ0ν
1
3

(

1 +
|∂t p|

|β||k|p
)

(|mZ |2 + |mQ|2),

L1 := (ν + μ)
|∂t p|

2|β||k| |mZ ||mQ|,

L2 := |∂t p|
|β||k|p

∂tmν

mν
|mZ ||mQ|,

L3 :=
(
p|∂t t p| + (∂t p)2

2|β||k|p2

)

|mZ ||mQ|,

L4 := |∂t p|
|β||k|p

∂tmd

md
|mZ ||mQ|,

L5 := |∂t p|
|β||k|p

∂tms

ms
|mZ ||mQ|.

Using (2.10), we get

L0 ≤ 8δ0Dsym, (2.25)

where we also used that μ ≥ ν. For L1, since

|∂t p|
|k| ≤ 2

√
p,

we have

L1 ≤
(

ν

4
p +

μ

β2

)

|mZ |2 +

(
μ

4
p +

ν

β2

)

|mQ|2.
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Now, we combine the hypothesis μ/β2 ≤ ν
1
3 /16 and the property (2.10) to get

L1 ≤ 1

2
Dsym. (2.26)

For L2, combining

|∂t p|
|β||k|p ≤ 2

|β|√p
≤ 2

|β|Cβ

√

∂tmd

md
, (2.27)

with ∂tmν/mν ≤ ν
1
3 , we obtain

L2 ≤ 1

64

∂tmν

mν
|mZ |2 +

64ν
1
3

|β|2C2
β

∂tmd

md
|mQ|2.

Since ν � 1, we have

L2 ≤ 1

64
Dsym. (2.28)

Turning our attention to L3, observe that

p|∂t t p| + (∂t p)2

2|β||k|p2 ≤ |k|
|β|p ≤ 1

|β|Cβ

∂tmd

md
.

Hence

L3 ≤ 1

|β|Cβ

Dsym. (2.29)

To control L4, combining the first bound in (2.27) with the property (2.12) we have

L4 ≤ 2

|β|√p

∂tmd

md
|mZ ||mQ| ≤ 2

|β|γβ

∂tms

ms
|mZ ||mQ| ≤ 1

|β|γβ

∂tms

ms
(|mZ |2 + |mQ|2).

(2.30)

On the other hand, for L5 we use |∂t p|/(|kβ|p) ≤ 1/|β| to get

L5 ≤ 1

2|β|
∂tms

ms
(|mZ |2 + |mQ|2). (2.31)

Choosing δ0,Cβ, γβ such that

δ0 <
1

64
,

1

|β|Cβ

≤ 1

4
,

1

|β|
(

1

2
+

1

γβ

)

< 1,

which is always possible since |β| > 1/2, we can combine (2.25), (2.26), (2.28), (2.29),
(2.30) and (2.31) with (2.32) to get

d

dt
Esym +

1

16
Dsym +

(

1 − 1

2|β| − 1

|β|γβ

)
∂tms

ms
(|mZ |2 + |mQ|2) ≤ 0, (2.32)

whence proving (2.16).
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The bound (2.18) is a straighforward consequence of the coercivity of Esym and
(2.16). To prove (2.19), we can perform an energy estimate directly on (2.3)–(2.4) to
get

1

2

d

dt
(|m�̂=|2 + |m Ĵ=|2) ≤ |∂t p|

p
|m Ĵ=|2 = |∂t p|

|k|√p
|mQ||m Ĵ=| ≤ 2|mQ||m Ĵ=|.

(2.33)

This inequality implies that

(|m�̂=| + |m Ĵ=|)(t) � (|m�̂=| + |m Ĵ=|)(0) +
∫ t

0
|mQ|(τ )dτ

� (|m�̂=| + |m Ĵ=|)(0) + t
√

Esym(0)

� 〈t〉 (|m�̂=| + |m Ĵ=|)(0),

where we used the coercivity of Esym and the fact that |√k2/pF̂ | ≤ |F̂ |. Integrating in
space and exploiting the definition of m (2.13), we deduce (2.19).

The estimates (2.20), follows by

|Û 1=| = |η − kt |
k2 + (η − kt)2 |�̂=| = |η/k − t |

|k|√p
|Z | ≤ |Z | (2.34)

|Û 2=| = |k|
k2 + (η − kt)2 |�̂=| = 1

|k|√p
|Z | ≤ 〈|k, η|〉

〈t〉 |Z |, (2.35)

where in the last bound we used the general bound 〈a − b〉 〈b〉 � 〈a〉. Integrating in
space we obtain the desired bound and conclude the proof. ��

3. Nonlinear Problem

For the nonlinear problem, the idea is to propagate the linearized behavior for the sym-
metric variables (Z , Q), see (2.7), proved in Proposition 2.3. As explained in the in-
troduction, to overcome problems related to the x-averages (especially for ∂y(ω0, j0)),
we need to directly control also (�, J ). As shown in the proof of Proposition 2.3, we
can use the bounds on (Z , Q) to handle the problematic linear error term associated to
2∂xy�

−1 j in the equation for j . Indeed, from the linearized problem (2.3)–(2.4), as in
(2.33) we notice that

1

2

d

dt

(
‖�‖2

L2 + ‖J‖2
L2

)
≤

∣
∣
∣
∣

〈
∂t p

p
Ĵ , Ĵ

〉∣
∣
∣
∣ =

∣
∣
∣
∣

〈
∂t p

|k|√p
Q, Ĵ

〉∣
∣
∣
∣ ≤ 2 ‖Q‖L2 ‖J‖L2 ,(3.1)

where we used |∂t p/(|k|√p)| ≤ 2. If we are able to propagate smallness on Q, say
‖Q‖ � ε for some norm, and ‖J‖ � ε 〈t〉, we can treat this term as forcing term of
order ε2 〈t〉 which would lead to bounds on (�, J ) of order ε 〈t〉 when integrating in
time. This behavior is consistent with the growth observed in the linearized problem.
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Before introducing the main ingredients for the proof of Theorem 1.1, we first rewrite
the system (1.3) in the moving frame X = x − yt, Y = y. Recalling the notation (2.1)–
(2.2), we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t� − β∂X J − ν�L� = NL�,

∂t J − β∂X� − ν�L J + 2∂X (∂Y − t∂X )� = NLJ ,

U = ∇⊥
L �, B = ∇⊥

L J
�L� = �, �L� = J,

(3.2)

where

NL� = −∇⊥� · ∇� + ∇⊥� · ∇ J,

NLJ = −∇⊥� · ∇ J + ∇⊥� · ∇�

+ (2∂X (∂Y − t∂X )�)(� − 2∂XX�) − (2∂X (∂Y − t∂X )�)(J − 2∂XX�).

(3.3)

Remark 3.1. Observe that we used the following crucial cancellation

∇⊥
L F · ∇LG = ∇F · ∇G,

that is true for any function F,G.

From Proposition 2.3, it is clear that the proof of Theorem 1.1 is reduced in obtaining
bounds for energy functionals controlling (Z , Q) and (�, J ).

3.1. Energy functionals and the bootstrap scheme. To introduce the energy function-
als needed to prove the main Theorem 1.1, we recall the definitions of the symmetric
variables (Z , Q) and the weight m respectively given in (2.7) and (2.13).

The first energy functional is the one used in the linearized problem to control the
symmetric variables. Here we cannot do estimates at fixed frequencies (k, η) and there-
fore we define

Esym(t) = 1

2

(

‖mZ‖2
L2 + ‖mQ‖2

L2 − 1

β
Re

〈
1

ik

∂t p

p
mZ ,mQ

〉

L2

)

. (3.4)

The goal is to propagate the smallness of this energy, namely Esym � ε2 where ε is the
size of the initial data in Theorem 1.1.

Then, we need the higher order energy to control directly the vorticity and current
density, that is

Eh.o.(t) = 1

2

(
‖m�‖2

L2 + ‖mJ‖2
L2

)
(3.5)

From the estimate (3.1) and (2.19), we expect that Eh.o. � 〈t〉2 ε2.
Finally, to control the x-averages (which is also the only reason why we introduce

Eh.o.), we define

E0(t) := 1

2

(∥
∥
∥U 1

0

∥
∥
∥

2

HN
+
∥
∥
∥B1

0

∥
∥
∥

2

HN
+

1

〈t〉2

(
‖�0‖2

HN + ‖J0‖2
HN

))

(3.6)

We aim at propagating smallness for this functional, that is E0 � ε2.
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Remark 3.2. Notice that we allow the higher order zero modes (�0, J0), controlled by
Eh.o. and E0, to grow linearly in time in HN . One might expect to achieve uniform
boundedness for (�0, J0). However, since they are at the highest level of regularity,
controlling them requires using bounds on (Z , Q) which are at lower regularity. Essen-
tially, we are trading regularity for time-growth, which is a standard argument in these
types of energy estimates. The inclusion of the term t−1(�0, J0) in E0 is for techni-
cal purposes and does not provide any substantial information beyond what we already
know from Eh.o..

Before computing the time-derivative of the energy functionals, we introduce some
notation. We define the good terms as

Gν[F] :=
∥
∥
∥
∥
∥

√
∂tmν

mν
mF

∥
∥
∥
∥
∥

2

L2

, Gd [F] :=
∥
∥
∥
∥
∥
∥

√

∂tmd

md
mF

∥
∥
∥
∥
∥
∥

2

L2

,

which naturally arise from the time-derivative of the weightm. Associated to each energy
functional, we have the dissipation functionals defined as

Dsym(t) := ν ‖∇LmZ‖2
L2 + μ ‖∇LmQ‖2

L2 +
∑

ι∈{ν,d}
Gι[Z ] + Gι[Q], (3.7)

Dh.o.(t) := ν ‖∇Lm�‖2
L2 + μ ‖∇Lm J‖2

L2 +
∑

ι∈{ν,d}
Gι[�] + Gι[J ],

D0(t) :=
(

ν

∥
∥
∥∂YU

1
0

∥
∥
∥

2

HN
+ μ

∥
∥
∥∂Y B

1
0

∥
∥
∥

2

HN
+

1

〈t〉2

(
ν ‖∂Y�0‖2

HN + μ ‖∂Y J0‖2
HN

))

.

(3.8)

We are now ready to compute some basic energy inequalities where we exploit the
bounds obtained in the linearized problem and we introduce the nonlinear error terms.

Lemma 3.3. Let 0 < ν ≤ μ � 1, |β| > 1/2 and assume that assume that ν
1
3 ≥

(16μ/β2). Let Eι,Dι with ι ∈ {sym,h.o., 0} be the energy and dissipation functionals
defined in (3.4)–(3.6) and (3.7)–(3.8). Then,

d

dt
Esym +

1

16
Dsym ≤ Tsym + Ssym, (3.9)

d

dt
Eh.o. +

1

16
Dh.o. ≤ 4

√

Esym
√
Eh.o. + Th.o. + Sh.o., (3.10)

d

dt
E0 + D0 ≤ R=, (3.11)
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where, with the convention introduced in (1.8), we define the following error terms: the
error for the symmetric variables are given by

Tsym :=
∣
∣
∣
∣
∣
∣

〈√

k2

p
mF

(
∇⊥� · ∇�

)
,mZ +

1

iβk

∂t p

p
mQ

〉∣∣
∣
∣
∣
∣

(3.12)

+

∣
∣
∣
∣
∣
∣

〈√

k2

p
mF

(
∇⊥� · ∇ J

)
,mZ − 1

iβk

∂t p

p
mQ

〉∣∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

〈√

k2

p
mF

(
∇⊥� · ∇ J

)
,mQ +

1

iβk

∂t p

p
mZ

〉∣∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

〈√

k2

p
mF

(
∇⊥� · ∇�

)
,mQ − 1

iβk

∂t p

p
mZ

〉∣∣
∣
∣
∣
∣
,

and

Ssym :=
∣
∣
∣
∣
∣
∣

〈√

k2

p
m

(
∂t p

p
Ĵ ∗ (

�̂ − 2
�2

p
�̂
)
)

,mQ − 1

iβk

∂t p

p
mZ

〉∣∣
∣
∣
∣
∣

(3.13)

+

∣
∣
∣
∣
∣
∣

〈√

k2

p
m

(
∂t p

p
�̂ ∗ (

Ĵ − 2
�2

p
Ĵ
)
)

,mQ − 1

iβk

∂t p

p
mZ

〉∣∣
∣
∣
∣
∣
.

The errors for the higher–order terms are

Th.o. :=
∣
∣
∣

〈
mF

(
∇⊥� · ∇�

)
,m�

〉∣
∣
∣ +

∣
∣
∣

〈
mF

(
∇⊥� · ∇ J

)
,m�

〉∣
∣
∣ (3.14)

+
∣
∣
∣

〈
mF

(
∇⊥� · ∇ J

)
,mJ

〉∣
∣
∣ +

∣
∣
∣

〈
mF

(
∇⊥� · ∇�

)
,mJ

〉∣
∣
∣ .

and

Sh.o. :=
∣
∣
∣
∣

〈

m

(
∂t p

p
Ĵ ∗ (

�̂ − 2
�2

p
�̂
)
)

,mJ

〉∣
∣
∣
∣ +

∣
∣
∣
∣

〈

m

(
∂t p

p
�̂ ∗ (

Ĵ − 2
�2

p
Ĵ
)
)

,mJ

〉∣
∣
∣
∣ .

The error term for the zero-mode functional is

R= :=
∣
∣
∣

〈
〈∂Y 〉N

(
U2=U1=

)

0
, 〈∂Y 〉N (∂YU

1
0 )

〉∣
∣
∣ +

∣
∣
∣

〈
〈∂Y 〉N

(
B2=B1=

)

0
, 〈∂Y 〉N (∂YU

1
0 )

〉∣
∣
∣ (3.15)

∣
∣
∣

〈
〈∂Y 〉N

(
U2=B1=

)

0
, 〈∂Y 〉N (∂Y B

1
0 )

〉∣
∣
∣ +

∣
∣
∣

〈
〈∂Y 〉N

(
B2=U1=

)

0
, 〈∂Y 〉N (∂Y B

1
0 )

〉∣
∣
∣

+
1

〈t〉2

( ∣
∣
∣

〈
〈∂Y 〉N

(
U2=� =

)

0
, 〈∂Y 〉N (∂Y�1

0)
〉∣
∣
∣ +

∣
∣
∣

〈
〈∂Y 〉N

(
B2= J=

)

0
, 〈∂Y 〉N (∂Y�1

0)
〉∣
∣
∣

+
∣
∣
∣

〈
〈∂Y 〉N

(
U2= J=

)

0
, 〈∂Y 〉N (∂Y J

1
0 )

〉∣
∣
∣ +

∣
∣
∣

〈
〈∂Y 〉N

(
B2=� =

)

0
, 〈∂Y 〉N (∂Y J

1
0 )

〉∣
∣
∣

+

∣
∣
∣
∣

〈

〈η〉N
(

2∂X B
1=
(
� = − 2∂XX�−1

L J=
)
)

0
, 〈η〉N Ĵ0

〉∣
∣
∣
∣

+

∣
∣
∣
∣

〈

〈η〉N
(

(2∂XU
1=
(
J= − 2∂XX�−1

L J=
)
)

0
, 〈η〉N Ĵ0

〉∣
∣
∣
∣

)

.
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Remark 3.4. In the transport error term we could easily introduce commutators by ex-
ploiting the divergence free condition on U and B. However, since we are not worried
of loss of derivatives thanks to the dissipation, we will see that commutators are not

necessary to close the argument with the threshold ν
2
3 , which is expected as explained

in Remark 1.3.

Proof. In the proof, we omit the subscript k for simplicity of notation. First of all, taking
the Fourier transform of (3.2), we compute that

∂t Z = −
(

νp − ∂tm

m

)

Z − 1

2

∂t p

p
Z + βikQ + m

√

k2

p
F(NL�),

∂t Q = −
(

νp − ∂tm

m

)

Q +
1

2

∂t p

p
Q + βikZ + m

√

k2

p
F(NLJ ).

Therefore, when computing the time-derivative of Esym we readily see that the contribu-
tions from the linear part of the equations are controlled as in the proof of Proposition 2.3
and give us the left-hand side of (3.9). Indeed, all the linear estimates are valid point-wise
in frequency and here we are just integrating in space. The definition of the nonlinear
terms follows by triangle inequality and Plancherel’s theorem, whence proving (3.9).

To prove (3.10), by (3.2) we get

d

dt
Eh.o. + Dh.o. = δ0ν

1
3 (‖m�‖2 + ‖mJ‖2) (3.16)

+ β(〈∂XmJ,m�〉 + 〈∂Xm�,mJ 〉) (3.17)

+

〈
∂t p

p
m Ĵ ,m Ĵ

〉

(3.18)

+ 〈m(NL�),m�〉 + 〈m(NLJ ),mJ 〉 .

Appealing to (2.9), we have

δ0ν
1
3 ‖m(�, J )‖2 ≤ 4δ0Dh.o.,

where we used μ ≥ ν. Hence, for δ0 sufficiently we can absorb the term on the right-
hand side of (3.16) to the left hand-side and remain with Dh.o./16 as in (3.10). The term
in (3.17) is clearly zero. For the term in (3.18), reasoning as done in (3.1), we get

∣
∣
∣
∣

〈
∂t p

p
m Ĵ ,m Ĵ

〉∣
∣
∣
∣ ≤ 2|〈mQ,m Ĵ 〉| ≤ 4

√

Esym
√
Eh.o..

For the nonlinear terms we only apply the triangle inequality.
It remains to compute the errors for the zero modes. We first write down the equations

for the x-average of the velocity and magnetic fields. Since bothU and B are divergence
free, we have U 2

0 = B2
0 = 0. Hence, it is not difficult to check that the equations of

(U 1
0 , B1

0 ) are given by (see for instance [49, eq. (2.11)])

∂tU
1
0 − ν∂YYU

1
0 = −(∇⊥�= · ∇U 1=)0 + (∇⊥� = · ∇B1=)0 (3.19)

∂t B
1
0 − μ∂YY B

1
0 = −(∇⊥�= · ∇B1=)0 + (∇⊥� = · ∇U 1=)0, (3.20)
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where we also used the identity

(FG)0 = (F=G =)0.

The equations for (�0, J0) are like (3.19)–(3.20) with the changes (U 1
0 , B1

0 ) → (�0, J0),
(U =, B=) → (� =, J =) and the x-average of the stretching terms of NLJ in (3.3). To
prove that R= only involves some specific components of the nonlinearity, we observe
the following general cancellations: for any multiplier q and functions F,G, H , after a
few integration by parts we obtain

〈
q(∇⊥F= · ∇G =)0, qH0

〉
= − 〈

q(∂Y F=∂XG =), qH0
〉
+
〈
q(∂X F=∂Y G =), qH0

〉

= 〈
q((∂X F=)G =), q∂Y H0

〉
.

It is then enough to recall that ∂X (�=,� =) = (U 2=, B2=) to obtain all the transport type
terms in R=. For the stretching nonlinearity in (3.3), we use (∂Y − t∂X )(�=,� =) =
−(U 1=, B1=) to conclude the proof of the lemma. ��

With the energy identities at hand, we are ready to set up the bootstrap argument.
First, we assume the following.

Bootstrap hypothesis: Assume that there exists T� ≥ 1 such that for all 1/2 ≤
t ≤ T� the following inequalities holds true:

Esym(t) +
1

16

∫ t

0
Dsym(τ )dτ ≤ 10ε2, (Hsym)

Eh.o.(t) +
1

16

∫ t

0
Dh.o.(τ )dτ ≤ C1ε

2 〈t〉2 , (Hh.o.)

E0(t) +
1

16

∫ t

0
D0(τ )dτ ≤ 100ε2, (H0)

where C1 is a constant satisfying 8
√

10C1 + 1 < C1/2 (true for C1 > 2564).

By a standard local well-posedness argument (which can be obtained from the bounds
in Lemma 3.3), we know that for ε0 sufficiently small the hypothesis (Hsym)–(H0) holds
true with T� = 1 and all the constants on the right-hand side divided by 4. Then, we aim
at improving the bounds (Hsym)–(H0) so that, by continuity and the fact that the interval
[1/2, T�] will be open, closed and connected, we get T� = +∞. In particular, our goal
is to prove the following.

Proposition 3.5. (Bootstrap improvement) Under the hypothesis of Theorem 1.1, there
exists 0 < ε0 = ε0(N , β) < 1/2 with the following property. If ε < ε0 and (Hsym)–(H0)
hold on [1/2, T�], then for any t ∈ [1/2, T∗] the estimates (Hsym)–(H0) are true with all
the constants on the right-hand side of (Hsym)–(H0) divided by a factor 2.

From this proposition, which we prove in the next section, the proof of Theorem 1.1
readily follows by the definition of the energies and the bounds (2.34)–(2.35).

4. Proof of the Bootstrap Proposition

This section is dedicated to the proof Proposition 3.5, which implies Theorem 1.1, and
constitutes the core of this paper. To improve the bounds (Hsym)–(H0), we need to
introduce some useful technical results.
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4.1. Toolbox. We first introduce the resonant intervals, which commonly appear in
inviscid problems, e.g. [8]. For a ≥ 0, let �a� be the integer part.

Definition 4.1. For any η ∈ R, 1 ≤ |k| ≤ �√|η|� and ηk > 0, set

t|k|,η = |η|
|k| − |η|

2|k|(|k| + 1)
, t0,η = 2|η|.

Then, define

Ik,η =
{

[t|k|,η, t|k|−1,η], if ηk > 0 and 1 ≤ |k| ≤ �√|η|�,
∅ otherwise.

Moreover, for any fixed t ≥ 1, we will often use the notation t ∈ I ck,η meaning that we
are working with the following set of frequencies

{
(k, η) ∈ Z × R : ηk ≤ 0 or |k| > �√|η|�

}
.

Notice that, for k = 0, when t ∈ I ck,η we have |η/k − t | � |η|/k2 if ηk ≤ 0 or

|η|/k2 � 1 when |k| > �√|η|�.
We recall the following properties of the weight pk(t, η).

Lemma 4.2. For any t, k, η, �, ξ , the following inequalities holds true
√

p�(ξ)

pk(η)
≤ 〈|k − �, η − ξ |〉3

⎧
⎨

⎩

|η|
k2(1 + | η

k − t |) , if t ∈ Ik,η ∩ I c�,ξ

1 otherwise
(4.1)

When k = � we have the improved estimate
√

pk(ξ)

pk(η)
≤ 1 +

|η − ξ |
|k|(1 + | η

k − t |) . (4.2)

Proof. This lemma is a version of [4, Lemma 4.14], where (4.1) is proved. The bound
(4.2) is in the proof of [4, Lemma 4.14] as well, which follows by
√

pk(ξ)

pk(η)
= 1 + | ξ

k − t |
1 + | η

k − t | ≤ 1 +
|( ξ

k − η
k ) + (

η
k − t)| − | η

k − t |
1 + | η

k − t | ≤ 1 +
|η − ξ |

|k|(1 + | η
k − t |) .

��
The following lossy elliptic estimate enables us to exploit the invisicid damping by

paying regularity.

Lemma 4.3. For any s ≥ 0
∥
∥
∥(−�L)−1F

∥
∥
∥
Hs

� 1

〈t〉2
‖F‖Hs+2 .

The proof of this lemma is an application of the inequality 〈a − b〉 〈b〉 � 〈a〉, see
[8]. We also record the following bounds that follows directly by the definition of md ,
see (2.8),

√

k2

pk(t, η)
= 1

√
Cβ

√
∂tmd

k (t, η)

md
k (t, η)

,
|k|

pk(t, η)
�

√
∂tmd

k (t, η)

md
k (t, η)

√

k2

pk(t, η)
. (4.3)
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4.2. Bounds on the symmetric variables. In this section, we aim at proving that (Hsym)
holds true with 10 replaced by 5. Looking at the energy identity (3.9) and the definition
of Tsym (3.12) and Ssym (3.13), we see that all the nonlinear error terms are of the
following type:

Tsym(F,G, H) :=
∣
∣
∣
∣
∣
∣

〈√

k2

p
mF

(
∇⊥�−1

L F · ∇G
)

, Ĥ

〉∣∣
∣
∣
∣
∣

(4.4)

Ssym(F,G, H) :=
∣
∣
∣
∣
∣
∣

〈√

k2

p
m

(
∂t p

p
F̂ ∗ (

Ĝ − 2
�2

p
Ĝ
)
)

, H

〉∣∣
∣
∣
∣
∣
.

Moreover, in terms of bound to perform, thanks to the definition of the functionals
(3.4)–(3.8) and the bootstrap hypotheses (Hsym)–(H0), we see that there is actually no
difference between (�,�) and (�, J ). In the next lemma we collect the bounds we need
for the transport and stretching nonlinearities respectively.

Lemma 4.4. Let m be the Fourier multiplier defined in (2.13) with N > 10. The follow-
ing inequalities holds true:

Tsym(F=,G =, H) � e−δ0ν
1
3 t

∥
∥mF=

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

k2

p
mG =

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

(4.5)

+
1

〈t〉e−δ0ν
1
3 t

∥
∥mF=

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

k2

p
m|∇L |G =

∥
∥
∥
∥
∥
∥
L2

‖H‖L2

+ 〈t〉 e−δ0ν
1
3 t

∥
∥mG =

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

+ e−δ0ν
1
3 t

∥
∥mG =

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

.

Denoting (∇⊥�−1
L F)0 = (V 1

F,0, 0), one has

Tsym(F0,G =, H) �
∥
∥
∥V 1

F,0

∥
∥
∥
HN

∥
∥
∥
∥
∥
∥

√

k2

p
m∂XG =

∥
∥
∥
∥
∥
∥
L2

‖H‖L2 (4.6)

+
∥
∥
∥∂Y V

1
F,0

∥
∥
∥
HN

∥
∥
∥
∥
∥
∥

√

k2

p
mG =

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

.

Moreover

Tsym(F=,G0, H) � ‖G0‖H3

∥
∥
∥
∥
∥
∥

√

∂tmd

md

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

(4.7)

+
1

〈t〉2

∥
∥mF=

∥
∥
L2 ‖∂Y G0‖HN

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

.
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For the stretching nonlinearities we have the following

Ssym(F,G =, H) � e−δ0ν
1
3 t

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥mG =

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

, (4.8)

Ssym(F,G0, H) �
⎛

⎝

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

‖G0‖H3 +
1

〈t〉
∥
∥mF=

∥
∥
L2 ‖G0‖HN

⎞

⎠

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

. (4.9)

Remark 4.5. The bounds on Tsym(F0,G  =, H) are not optimal since we could exploit

commutators to avoid losing an x-derivative on G =. However, for the threshold ε � ν
2
3

this does not seem necessary.

Before proving the key lemma above, we first show how to improve the bootstrap
hypothesis (Hsym) with the estimates in Lemma 4.4.
Proof: improvement of (Hsym). Since |∂t p|/p ≤ 1, in the nonlinear term Tsym (see
(3.12)) we can just study, for example, the term

Tsym(�,�,mZ) ≤ Tsym(�=,�=,mZ) + Tsym(�0,�=,mZ) + Tsym(�=,�0,mZ)

where we used that �−1
L � = �. Recalling the definition of Z given in (2.7), applying

(4.5) we deduce that

Tsym(�=,�=,mZ) � e−δ0ν
1
3 t

∥
∥m�=

∥
∥
L2 ‖mZ‖L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
mZ

∥
∥
∥
∥
∥
∥
L2

+
1

〈t〉e−δ0ν
1
3 t

∥
∥m�=

∥
∥
L2 ‖|∇L |mZ‖L2 ‖mZ‖L2

+ 〈t〉 e−δ0ν
1
3 t

∥
∥m�=

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
mZ

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
mZ

∥
∥
∥
∥
∥
∥
L2

From the definitions of Esym,Eh.o. and Dsym, see respectively (3.4), (3.5) and (3.7), we
rewrite this bound as

Tsym(�=,�=,mZ) � e−δ0ν
1
3 t
√
Eh.o.

√

Dsym

(√

Esym +
1

〈t〉ν
− 1

2

√

Esym + 〈t〉
√

Dsym

)

.

Appealing to the boostrap hypothesis (Hsym)–(Hh.o.), we get

Tsym(�=,�=,mZ) � e−δ0ν
1
3 tε 〈t〉

√

Dsym

(

ε +
1

〈t〉ν
− 1

2 ε + 〈t〉
√

Dsym

)

� (ε2ν− 1
3 + ε2ν− 1

2 )e−δ0ν
1
3 t/2

√

Dsym + εν− 2
3 Dsym

� εν− 2
3 Dsym + ε2(εν− 2

3 )ν
1
3 e−δ0ν

1
3 t .
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Integrating in time and using the bootstrap hypotheses, we have
∫ t

0
Tsym(�=,�=,mZ)dτdτ � (εν− 2

3 )ε2. (4.10)

Since ∇⊥�−1
L �0 = U 1

0 and |∂X | ≤ |∇L |, from (4.6) we get

Tsym(�0,�=,mZ)

�
∥
∥
∥U 1

0

∥
∥
∥
HN

‖m∂X Z‖L2 ‖mZ‖L2 +
∥
∥
∥∂YU

1
0

∥
∥
∥
HN

‖mZ‖L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
mZ

∥
∥
∥
∥
∥
∥
L2

� ν− 1
2
√
E0

√

Esym

√

Dsym + ν− 1
2
√
D0

√

Esym

√

Dsym.

From the property (2.10), we know that
√

Esym � ν− 1
6

√

Dsym. (4.11)

Using the bootstrap hypotheses we then deduce
∫ t

0
Tsym(�0,�=,mZ) � εν− 2

3

∫ t

0
Dsymdτ + εν− 1

2

∫ t

0
D0dτ � (εν− 2

3 )ε2.(4.12)

For the last term of the transport nonlinearity, since ‖�0‖H3 �
∥
∥U 1

0

∥
∥
H4 �

√
E0,

applying (4.7) we have

Tsym(�=,�0,mZ) � ‖�0‖H3

∥
∥
∥
∥
∥
∥

√

∂tmd

md
mZ

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
mZ

∥
∥
∥
∥
∥
∥
L2

+
1

〈t〉2

∥
∥m�=

∥
∥
L2 ‖∂Y�0‖HN

∥
∥
∥
∥
∥
∥

√

∂tmd

md
mZ

∥
∥
∥
∥
∥
∥
L2

�
√
E0Dsym +

ν− 1
2

〈t〉
√
Eh.o.

√
D0

√

Dsym.

Using the bootstrap assumptions we deduce
∫ t

0
Tsym(�=,�0,mZ)dτ � (εν− 1

2 )

∫ t

0
(Dsym + D0)dτ � (εν− 1

2 )ε2 (4.13)

The structure of all the other transport nonlinearities enables us to apply the exact same
procedure to the term we have just controlled. Therefore, from the bounds (4.10), (4.12)
and (4.13) we conclude that

∫ t

0
Tsymdτ � (εν− 2

3 )ε2. (4.14)

Turning our attention to the stretching nonlinearities, we can again explicitly handle
just one of them, say

Ssym(J,�,mQ) ≤ Ssym(J,�=,mQ) + Ssym(J,�0,mQ).
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From (4.8) we get

Ssym(J,�=,mQ) � e−δ0ν
1
3 t ‖mQ‖L2

∥
∥m�=

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
mQ

∥
∥
∥
∥
∥
∥
L2

� e−δ0ν
1
3 t
√

Esym
√
Eh.o.

√

Dsym � ε2 〈t〉 e−δ0ν
1
3 t
√

Dsym

where we used the bootstrap hypotheses. Therefore,
∫ t

0
Ssym(J,�=,mQ)dτ � (εν− 1

2 )

∫ t

0
(Dsym + ε2ν

1
3 e−δ0ν

1
3 τ )dτ � (εν− 1

2 )ε2 (4.15)

Looking at (4.9), we get

Ssym(J,�0,mQ) �
(

‖mQ‖L2 ‖�0‖H3 +
1

〈t〉
∥
∥mJ=

∥
∥
L2 ‖�0‖HN

)
∥
∥
∥
∥
∥
∥

√

∂tmd

md
mQ

∥
∥
∥
∥
∥
∥
L2

.

Now we observe that

‖�0‖HN =
∥
∥
∥∂YU

1
0

∥
∥
∥
HN

� ν− 1
2
√
D0.

Thus, using again (4.11), we have

Ssym(J,�0,mQ) �
√

Dsym(

√

Esym
√
E0 +

ν− 1
2

〈t〉
√
Eh.o.

√
D0) (4.16)

� (εν− 1
6 + εν− 1

2 )Dsym + εν− 1
2 D0

Arguing similarly for the other stretching term, combining (4.15) with (4.16) we get
∫ t

0
Ssymdτ � (εν− 1

2 )ε2

Finally, using the bound above and (4.14), integrating in time the energy inequality (3.9)
we get

Esym +
1

16

∫ t

0
Dsymdτ ≤ ε2 + C(εν− 2

3 )ε2,

where C = C(N , δ0, β) > 1. By choosing ε0 � ν
2
3 , we improve the bound (Hsym) and

conclude the proof. ��
We finally present the proof of Lemma 4.4.

Proof of Lemma 4.4. We split the proof for each of the bounds (4.5), (4.6), (4.7), (4.8)
and (4.9).

• Proof of (4.5): appealing to the paraproduct decomposition (1.9), we see that

Tsym(F=,G =, H) ≤ Tsym(FLo= ,GHi= , H) + Tsym(FHi= ,GLo= , H)

We study separately the low-high and the high-low terms.
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� Control of the low-high term. We split the integral to handle separately the resonant
and non-resonant case (t ∈ Ik,η ∩ I c�,ξ or not), that is

Tsym(FLo= ,GHi= , H) ≤ T R
sym(FLo= ,GHi= , H=) + T N R

sym (FLo= ,GHi= , H),

where we define

T R
sym(FLo= ,GHi= , H)

:=
∑

k,�∈Z

∫∫

R2
1{t∈Ik,η∩I c�,ξ }

√

k2

pk(t, η)
mk(t, η)

|k − �, η − ξ |
pk−�(t, η − ξ)

|F̂ Lo= |k−�(η − ξ)

× |�, ξ ||ĜHi |�(ξ)|Ĥ |k(η)dηdξ

T N R
sym (FLo= ,GHi= , H)

:=
∑

k,�∈Z

∫∫

R2
1{t /∈Ik,η∩I c�,ξ }

√

k2

pk(t, η)
mk(t, η)

|k − �, η − ξ |
pk−�(t, η − ξ)

|F̂ Lo= |k−�(η − ξ)

× |�, ξ ||ĜHi |�(ξ)|Ĥ |k(η)dηdξ.

By definition of the paraproduct (1.9) we know that |k, η| ≤ 3|�, ξ |. Hence, since
md ,mν,ms are uniformly bounded Fourier multipliers, we deduce that

mk(t, η) � m�(t, ξ) (4.17)

For the non-resonant term, thanks to (4.2), we also know that

1{t /∈Ik,η∩I c�,ξ }

√

k2

pk(t, η)
� 〈|k − �, η − ξ |〉4 1{t /∈Ik,η∩I c�,ξ }

√

�2

p�(t, ξ)
, (4.18)

where we paid an extra derivative on the low-frequency piece since |k|/|�| � 〈k − �〉.
Moreover, having that

|�, ξ | � 〈t〉 |�, ξ − �t |,
combining the bound above with (4.17), (4.18), Cauchy-Schwartz and Young’s convo-
lution inequality we arrive at

T N R
sym (FLo= ,GHi= , H) � 〈t〉

∥
∥
∥(−�L)−1F=

∥
∥
∥
H7

∥
∥
∥
∥
∥
∥

√

k2

p
m|∇L |G =

∥
∥
∥
∥
∥
∥
L2

‖H‖L2

� 1

〈t〉e−δ0ν
1
3 t

∥
∥mF=

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

k2

p
m|∇L |G =

∥
∥
∥
∥
∥
∥
L2

‖H‖L2 .

In the last inequality we used Lemma 4.3 combined with the fact that 〈|k, η|〉9 �
e−δ0ν

1
3 tmk(t, η) since N > 10. This bound is in agreement with (4.5).
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We now turn our attention to the resonant part. From Lemma 4.2 we deduce

1{t∈Ik,η∩I c�,ξ }

√

k2

pk(t, η)
|�, ξ | � 〈|k − �, η − ξ |〉4 1{t∈Ik,η∩I c�,ξ }

|η|
k2(1 + | η

k − t |) |�,

ξ |
√

�2

p�(t, ξ)
. (4.19)

Since t ∈ Ik,η we know that t ≈ |η|/|k|, so we get

|η||�, ξ |
k2 � 〈η − ξ 〉 |η|2

k2 + 〈k − �〉 |η|
k

〈ξ 〉
k2 � 〈|k − �, η − ξ |〉2 〈t〉2 .

Recalling the definition of md (2.8), combining the bound above with (4.19) we obtain

1{t∈Ik,η∩I c�,ξ }

√

k2

pk(t, η)
|�, ξ | � 〈t〉2 〈|k − �, η − ξ |〉6

√
∂tmd

k (t, η)

md
k (t, η)

√

�2

p�(t, ξ)
.

Therefore, appealing again to Lemma 4.3, we have

T R
sym(FLo= ,GHi= , H) � 〈t〉2

∥
∥
∥(−�L)−1F=

∥
∥
∥
H8

∥
∥
∥
∥
∥
∥

√

k2

p
mG =

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

� e−δ0ν
1
3 t

∥
∥mF=

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

k2

p
mG =

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

,

which is consistent with (4.5).
� Control of the high-low term. By the definition of (4.4) and a change of variables,
observe that

Tsym(FHi= ,GLo= , H) = Tsym(�LG
Lo= ,�−1

L FHi= , H).

Writing down this term explicitly, we obtain the bound

Tsym(�LG
Lo= ,�−1

L FHi= , H)

�
∑

k,�∈Z

∫∫

R2

√

k2

pk(t, η)
mk(t, η)|k − �, η − ξ ||ĜLo= |k−�(η − ξ)

× (1{t∈I�,ξ } + 1{t∈I c�,ξ })
|�, ξ |
p�(t, ξ)

|F̂ Hi |�(ξ)|Ĥ |k(η)dηdξ

:= J R + J N R,

whereJ R is the integral containing 1{t∈I�,ξ } andJ N R the other one. Notice that with the
change of variables we now have 〈|k, η|〉 ≤ 3 〈�, ξ 〉 /2. When t ∈ I�,ξ , since md ,mν,ms

are bounded Fourier multipliers, we observe that

1{t∈I�,ξ }
|�, ξ |
p�(t, ξ)

mk(t, η)

� 1{t∈I�,ξ }
|ξ |
|�|2

1

1 + | ξ
�

− t |2 � 〈t〉
√

∂tmd
� (t, ξ)

md
� (t, ξ)

√

�2

p�(t, ξ)
m�(t, ξ).
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Since
√
k2/p ≈ √

∂tmd/md , moving this factor to H , we then deduce the bound

J R � 〈t〉 e−δ0ν
1
3 t

∥
∥mG =

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

.

When t ∈ I c�,ξ we either have |ξ/� − t | � |ξ |/|�|2 or |ξ |/�2 � 1, and in both cases we
get

1{t∈I c�,ξ }
|�, ξ |
p�(t, ξ)

mk(t, η) � 1{t∈I c�,ξ }
〈 |ξ |
|�|2

〉
1

1 + | ξ
�

− t |2 m�(t, ξ) �

√

�2

p�(t, ξ)
m�(t, ξ).

Thus

J N R � e−δ0ν
1
3 t

∥
∥mG =

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

.

The bound (4.5) is proved.
• Proof of (4.6): first we notice that

(∇⊥�−1
L F)0 · ∇G = = V 1

F,0∂XG =.

Hence

Tsym(F0,G =, H)

≤
∑

k∈Z

∫∫

R2

√

k2

pk(t, η)
mk(t, η)|V̂ 1

F,0|(η − ξ)|k||Ĝ =|k(ξ)|Ĥ |k(η)dηdξ.

Since 〈|k, η|〉 � 〈|k, ξ |〉 + 〈η − ξ 〉 and md ,mν,ms are uniformly bounded, we deduce
that

mk(t, η) � mk(t, ξ) +
〈η − ξ 〉N
〈|k, ξ |〉N mk(t, ξ).

Hence

Tsym(F0,G =, H) ≤
∑

k∈Z

∫∫

R2

√

k2

pk(t, η)
|V̂ 1

F,0|(η − ξ)|k||m(t)Ĝ =|k(ξ)|Ĥ |k(η)dηdξ

+
∑

k∈Z

∫∫

R2

√

k2

pk(t, η)
〈η − ξ 〉N |V̂ 1

F,0|(η − ξ)
|k|

〈|k, ξ |〉N |m(t)Ĝ =|k(ξ)|Ĥ |k(η)dηdξ

:= I1 + I2.

Using (4.2) and the definition of md , we deduce
√

k2

pk(t, η)
≤

(

1 + |η − ξ | 1

1 + | η
k − t |

)√

k2

pk(t, ξ)

�
(

1 + |η − ξ |
√

∂tmd
k (t, η)

md
k (t, η)

)√

k2

pk(t, ξ)
.
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Hence

I2 �
∥
∥
∥V 1

F,0

∥
∥
∥
HN

∥
∥
∥
∥
∥
∥

√

k2

p
〈·〉−N m∂XG =

∥
∥
∥
∥
∥
∥
H3

‖H‖L2

+
∥
∥
∥∂Y V

1
F,0

∥
∥
∥
HN

∥
∥
∥
∥
∥
∥

√

k2

p
mG =

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

,

which is in agreement with (4.6) since N > 10. On I1 we can pay regularity on V 1
F,0

and obtain the bound

I1 �
∥
∥
∥V 1

F,0

∥
∥
∥
H3

∥
∥
∥
∥
∥
∥

√

k2

p
m∂XG =

∥
∥
∥
∥
∥
∥
L2

‖H‖L2 ,

so (4.6) is proved.
• Proof of (4.7): in this case we have

(∇⊥�−1
L F) = · ∇G0 = (∂X�−1

L F=)∂Y G0.

Then we do a paraproduct decomposition to get

Tsym(F=,G0, H) ≤ Tsym(FHi= ,GLo
0 , H) + Tsym(FLo= ,GHi

0 , H).

For the high-low term, we move the factor
√
k2/p on H and use (4.3) to get

Tsym(FHi= ,GLo
0 , H) �

〈(
√

∂tmd

md

√

k2

p
m|F̂ Hi= | ∗ |F(∂Y G

Lo
0 )|

)

,

√

∂tmd

md
|H |

〉

.

Applying Cauchy-Schwartz and Young’s convolution inequality we get a bound in agree-
ment with (4.7).

For the low-high term instead, we need to be careful in order to recover time-decay
from ∂X�−1

L . This is because x-derivatives can be high in the FLo piece since G0 is
concentrated on the zero x-frequencies. We then argue as follows: since ξ is the high-
frequency, we have

〈|k, η|〉N � 〈k〉N + 〈η〉N � 〈|k, η − ξ |〉N + 〈ξ 〉N .

This implies

mk(t, η) � mk(t, η − ξ) +
〈ξ 〉N

〈|k, η − ξ |〉N mk(t, η − ξ).

Hence, using (4.3) we deduce that

Tsym(FLo= ,GHi
0 , H) � J1 + J2
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where

J1 :=
∑

k

∫∫
⎛

⎝

√
∂tmd

k (t)

md
k (t)

√

k2

pk(t)
mk(t)|F̂ Lo= |k

⎞

⎠ (η − ξ)|ξ ||ĜHi
0 |(ξ)

(√
∂tmd

k (t)

md
k (t)

|Ĥ |k
)

(η)dηdξ

J2 :=
∑

k

∫∫ |k|mk(t, η − ξ)

〈|k, η − ξ |〉N pk(t, η − ξ)
|F̂ Lo= |k(η − ξ) 〈ξ 〉N |ξ ||ĜHi

0 |(ξ)

(√
∂tmd

k (t)

md
k (t)

|Ĥ |k
)

(η)dηdξ

For J1 it is not difficult to get

J1 � ‖G0‖H3

∥
∥
∥
∥
∥
∥

√

∂tmd

md

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

.

For J2 instead, we have

J2 �
∥
∥
∥∂X (−�L)−1mF=

∥
∥
∥
H−N+2

‖∂Y G0‖HN

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

� 1

〈t〉2

∥
∥mF=

∥
∥
L2 ‖∂Y G0‖HN

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

,

where in the last line we used (4.3) and N > 10. The bound (4.7) is then proved.
• Proof of (4.8): notice that, since we have ∂t p/p in front of F̂ , we always have F=.

It is also enough to prove the bound for

S1
sym(F,G  =, H) =

∣
∣
∣
∣
∣
∣

〈√

k2

p
m

(
∂t p

p
F̂= ∗ G =

)

, H

〉∣∣
∣
∣
∣
∣
.

Using that |∂t p/p| ≤ 2
√
k2/p and the algebra property of HN , we get

S1
sym(F,G  =, H) � e−δ0ν

1
3 t

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥mG =

∥
∥
L2

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

,

whence proving (4.8).
• Proof of (4.9): in this case S = S1 defined above. Then, analogously to what we

have done to treat Tsym(F =,G0, H), we use the paraproduct decomposition first

S1
sym(F,G0, H) ≤ S1

sym(FHi ,GLo
0 , H) + S1

sym(FLo,GHi
0 , H).
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For the high-low piece, we can proceed as done in the proof of (4.8) to get

S1
sym(FHi ,GLo

0 , H) �

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

‖G0‖H3

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

(4.20)

For the low-high piece, we argue as done for the low-high term in the proof of (4.7).
Namely, we can split the derivatives with higher-order in x and y. In the first case, namely
the term corresponding to J1 in the proof of (4.7), we argue as done for the low-high
term and we prove the same bound as in (4.20). In the other case, we proceed as done
for J2 in the proof of (4.7). Overall, we get

S1
sym(FLo,GHi

0 , H) �

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

‖G0‖H3

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

+

∥
∥
∥
∥
∂t p

p
mF=

∥
∥
∥
∥
H−N+2

‖G0‖HN

∥
∥
∥
∥
∥
∥

√

∂tmd

md
H

∥
∥
∥
∥
∥
∥
L2

.

Having that ∂t p ≤ 〈t〉 〈|k, η|〉2, using again Lemma 4.3 we have
∥
∥
∥
∥
∂t p

p
mF=

∥
∥
∥
∥
H−N+2

� 〈t〉
∥
∥
∥(−�L)−1mF=

∥
∥
∥
H−N+4

� 1

〈t〉
∥
∥mF=

∥
∥
H−N+6 ,

which proves (4.9) since N > 6. ��

4.3. Bounds for the higher order energy. The structure of the proof for the higher–order
energy is analogous to what we have done for Esym. However, bounds will be simpler
because we do not have to exchange frequencies for the unbounded multiplier

√
k2/p.

We define the transport and stretching nonlinear terms as

Th.o.(F,G, H) :=
∣
∣
∣

〈
mF

(
∇⊥�−1

L F · ∇G
)

, Ĥ
〉∣
∣
∣ ,

Sh.o.(F,G, H) :=
∣
∣
∣
∣

〈

m

(
∂t p

p
F̂ ∗ (

Ĝ − 2
�2

p
Ĝ
)
)

, H

〉∣
∣
∣
∣ .

We have the following.

Lemma 4.6. Let m be the Fourier multiplier defined in (2.13) with N > 10. Then:

Th.o.(F=,G =, H) � e−δ0ν
1
3 t

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥∇LmG =

∥
∥
L2 ‖H‖L2 . (4.21)

Denoting (∇⊥�−1
L F)0 = (V 1

F,0, 0), one has

Th.o.(F0,G =, H) �
∥
∥
∥V 1

F,0

∥
∥
∥
HN

∥
∥m∂XG =

∥
∥
L2

∥
∥H=

∥
∥
L2 (4.22)

Th.o.(F=,G0, H) � ‖H‖L2

(

‖G0‖H3

∥
∥
∥
∥
∥
∥

√

∂tmd

md

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

(4.23)

+
1

〈t〉2

∥
∥mF=

∥
∥
L2 ‖∂Y G0‖HN

)
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For the stretching nonlinearities we have:

Ssym(F,G =, H) � e−δ0ν
1
3 t

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

∥
∥mG =

∥
∥
L2 ‖H‖L2 , (4.24)

Ssym(F,G0, H) �

⎛

⎝

∥
∥
∥
∥
∥
∥

√

k2

p
mF=

∥
∥
∥
∥
∥
∥
L2

‖G0‖H3 +
1

〈t〉
∥
∥mF=

∥
∥
L2 ‖G0‖HN

⎞

⎠ ‖H‖L2 .

(4.25)

Proof of Lemma 4.6. To prove (4.21), we simply observe that

∇⊥�−1
L F= · ∇G = = ∇⊥

L �−1
L F= · ∇LG =, and

∥
∥
∥∇L�−1

L F=
∥
∥
∥
L2

�

∥
∥
∥
∥
∥
∥

√

k2

p
F=

∥
∥
∥
∥
∥
∥
L2

.

Being md ,mν,ms bounded Fourier multipliers, using the algebra property of HN we
deduce that

Th.o.(F=,G =, H) � e−δ0ν
1
3 t

∥
∥
∥∇L�−1

L mF=
∥
∥
∥
L2

∥
∥∇LmG =

∥
∥
L2 ‖H‖L2

whence proving (4.21).
Turning our attention to (4.22), we first observe that

Th.o.(F0,G =, H) =
∣
∣
∣

〈
mF

(
V 1
F,0∂XG =

)
, Ĥ=

〉∣
∣
∣

since
〈
mF

(
V 1
F,0∂XG =

)
, Ĥ0

〉
= −

〈
V 1
F,0 G,m∂X H0

〉
= 0. The proof (4.22) easily

follows as an application of Cauchy-Schwartz and Young’s inequality.
The proof of the bounds (4.23)–(4.25) is identical to the ones for (4.7)–(4.9). This is

because in the latter bounds we have only moved the factor
√
k2/p on the

function H . ��
With Lemma 4.6 at hand, we show how to improve (Hh.o.).

Proof: improvement of (Hh.o.) For the transport nonlinearity (3.14), recall that
∥
∥m(�=, J=)

∥
∥
L2 � ν− 1

6
√
Dh.o..

Hence, combining (4.21)–(4.23), since
√
k2/p(�̂, Ĵ ) = (Z , Q), we have

Th.o. � ν− 1
2 e−δ0ν

1
3 t
√

Esym
√
Eh.o.

√
Dh.o. + ν− 1

2 − 1
6
√
E0Dh.o.

+

(
√
E0

√

Dsym +
1

〈t〉ν
− 1

6
√
Dh.o.

√
D0

)
√
Eh.o..

Similarly, from (4.24)–(4.25), using that

1

〈t〉
∥
∥m(� =, J =)

∥
∥
L2 ‖(�0, J0)‖HN ‖m(�, J )‖L2

= 1

〈t〉
∥
∥m(� =, J =)

∥
∥
L2

∥
∥
∥∂Y (U 1

0 , B1
0 )

∥
∥
∥
HN

‖m(�, J )‖L2

� 1

〈t〉ν
− 1

6 − 1
2
√
Dh.o.

√
D0

√
Eh.o.
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we have

Sh.o. � ν− 1
6 e−δ0ν

1
3 t
√

Esym
√
Eh.o.

√
Dh.o. +

√
Eh.o.

√

Esym
√
E0

+
1

〈t〉ν
− 2

3
√
Dh.o.

√
D0

√
Eh.o..

Integrating in time and applying the bootstrap hypothesis, we get

∫ t

0
Th.o. + Sh.o.dτ � ε2ν− 1

2

∫ t

0
〈τ 〉 e−δ0ν

1
3 τ

√
Dh.o.dτ + εν− 2

3

∫ t

0
Dh.o.dτ

+ ε2
∫ t

0
〈τ 〉

√

Dsymdτ + εν− 1
6

∫ t

0

√
Dh.o.

√
D0dτ

+ ε3
∫ t

0
〈τ 〉 dτ + εν− 2

3

∫ t

0

√
Dh.o.

√
D0dτ.

Applying Cauchy-Schwartz inequality and the bootstrap hypotheses, we get

ε2ν− 1
2

∫ t

0
〈τ 〉 e−δ0ν

1
3 τ

√
Dh.o.dτ

� ε3 〈t〉 ν− 1
2

(∫ t

0
〈τ 〉2 e−2δ0ν

1
3 τ dτ

) 1
2

� (εν− 2
3 )ε2 〈t〉2 ,

ε2
∫ t

0
〈τ 〉

√

Dsymdτ � ε3 〈t〉 3
2 ,

εν− 1
6

∫ t

0

√
Dh.o.

√
D0dτ � (εν− 1

6 )ε2 〈t〉 ,

εν− 2
3

∫ t

0

√
Dh.o.

√
D0dτ � (εν− 2

3 )ε2 〈t〉 .

Integrating in time (3.10), using again the bootstrap hypothes, when ε � ν
2
3 we get

Eh.o. +
1

16

∫ t

0
Dh.o.dτ ≤ 4

∫ t

0

√

Esym
√
Eh.o.dτ + ε2 〈t〉2

≤ 4
√

10
√
C1ε

2
∫ t

0
〈t〉 dτ + ε2 〈t〉2

≤ (8
√

10
√
C1 + 1)ε2 〈t〉2 .

It is then enough that

8
√

10
√
C1 + 1 ≤ C1

2
,

which is true for any C1 > 2564. ��
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4.4. Bounds on the zero modes. We finally show how to improve (H0).

Proof. Using the uniform boundedness of md ,mν,ms and (4.3), we first observe that

∥
∥
∥(U 2=, B2=)

∥
∥
∥
HN

=
∥
∥
∥∂X�−1

L (�=, J=)

∥
∥
∥
HN

� e−δ0ν
1
3 t

∥
∥
∥
∥
∥
∥

√

∂tmd

md
m(Z , Q)

∥
∥
∥
∥
∥
∥
L2

, (4.26)

∥
∥
∥∂X (U 1=, B1=)

∥
∥
∥
HN

=
∥
∥
∥∂X (∂Y − t∂X )�−1

L (�=, J=)

∥
∥
∥
HN

� e−δ0ν
1
3 t ‖m(Z , Q)‖L2 .

(4.27)

where we also used |∂t p/p| �
√
k2/p. Applying Cauchy-Schwartz and the algebra

property of HN we see that we can bound R= in (3.15) by

R = �
∥
∥
∥(U 2=, B2=)

∥
∥
∥
HN

∥
∥
∥(U 1=, B1=)

∥
∥
∥
HN

∥
∥
∥∂Y (U 1

0 , B1
0 )

∥
∥
∥
HN

+
1

〈t〉2

∥
∥
∥(U 2=, B2=)

∥
∥
∥
HN

∥
∥(�=, J=)

∥
∥
HN ‖∂Y (�0, J0)‖HN

+
1

〈t〉2

∥
∥
∥∂X (U 1=, B1=)

∥
∥
∥
HN

∥
∥(�=, J=)

∥
∥
HN ‖J0‖HN .

Combining the bound above with (4.26)–(4.27) and using the boostrap hypothesis, we

get

R= � e−2δ0ν
1
3 t
(

ν− 1
2

√

Esym

√

Dsym
√
D0

+
ν− 1

2

〈t〉
√
Eh.o.

√

Dsym
√
D0 +

1

〈t〉
√

Esym
√
Eh.o.

√
E0

)

� (εν− 1
2 )(Dsym + D0) + ε3e−2δ0ν

1
3 t .

Integrating (3.11) in time, we get

E0 +
∫ t

0
D0dτ ≤ ε2(1 + C(εν− 1

2 + εν− 1
3 )),

for some constant C > 0. Therefore, when ε � ν
2
3 we see that we can improve from the

constant 100 in (H0) to 50 as desired, whence completing the proof of
Proposition 3.5. ��
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