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Abstract: We prove bulk scaling limits and fluctuation scaling limits for a two-parameter
class ALE(α, η) of continuum planar aggregation models. The class includes regularized
versions of the Hastings–Levitov family HL(α) and continuum versions of the family
of dielectric-breakdown models, where the local attachment intensity for new particles
is specified as a negative power −η of the density of arc length with respect to harmonic
measure. The limit dynamics follow solutions of a certain Loewner–Kufarev equation,
where the driving measure is made to depend on the solution and on the parameter
ζ = α + η. Our results are subject to a subcriticality condition ζ � 1: this includes
HL(α) for α � 1 and also the case α = 2, η = −1 corresponding to a continuum Eden
model. Hastings and Levitov predicted a change in behaviour for HL(α) at α = 1, con-
sistent with our results. In the regularized regime considered, the fluctuations around the
scaling limit are shown to be Gaussian, with independent Ornstein–Uhlenbeck processes
driving each Fourier mode, which are seen to be stable if and only if ζ � 1.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Hastings–Levitov aggregation . . . . . . . . . . . . . . . . . . . . .
1.2 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Commentary and review of related work . . . . . . . . . . . . . . . .
1.4 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Loewner–Kufarev Equation . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Linear stability of disk solutions in the subcritical case . . . . . . . .
2.3 Transformation to (Schlicht function, capacity) coordinates . . . . . .

Amanda Turner acknowledges partial support by EPSRC grant EP/T027940, Vittoria Silvestri acknowl-
edges partial support from Indam – GNAMPA

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-024-04960-5&domain=pdf
http://orcid.org/0000-0002-5894-5782


   74 Page 2 of 78 J. Norris, V. Silvestri, A. Turner

3. Interpolation Formula for Markov Chain Fluid Limits . . . . . . . . . . .
3.1 General form of the interpolation formula . . . . . . . . . . . . . . .
3.2 Proof of the formula for ALE(α, η) . . . . . . . . . . . . . . . . . . .

4. Estimation of Terms in the Interpolation Formula . . . . . . . . . . . . . .
4.1 Estimates for the martingale terms . . . . . . . . . . . . . . . . . . .
4.2 Estimates for the drift terms . . . . . . . . . . . . . . . . . . . . . . .

5. Bulk Scaling Limit for ALE(α, η) . . . . . . . . . . . . . . . . . . . . . .
5.1 L p-estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Spatially-uniform high-probability estimates . . . . . . . . . . . . . .

6. Fluctuation Scaling Limit for ALE(α, η) . . . . . . . . . . . . . . . . . .
6.1 Reduction to Poisson integrals . . . . . . . . . . . . . . . . . . . . .
6.2 Gaussian limit process . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A. Miscellaneous Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1 Explosion in continuous-time ALE(α, η) . . . . . . . . . . . . . . . .
A.2 Estimates for single-particle maps . . . . . . . . . . . . . . . . . . .
A.3 Operator inequalities . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

1.1. Hastings–Levitov aggregation. In many physical contexts there appear clusters
whose shape is complex, formed apparently by some mechanism of random growth.
It has long been a challenge to account for the observed variety of complex cluster
shapes, starting from plausible physical principles governing the aggregation of individ-
ual microscopic particles. For clusters which are essentially two-dimensional, there is
an approach introduced by Carleson and Makarov [4] and Hastings and Levitov [10], in
which clusters are encoded as a composition of conformal maps, one for each particle.
In this approach, a growing cluster is modelled by an increasing sequence of compact
sets Kn ⊆ C which are assumed to be simply connected. We will take the initial set K0
to be the closed unit disk {|z| � 1}. The increments Kn \ Kn−1 are then thought of as
a sequence of particles added to the cluster. The idea is to study the clusters Kn via the
conformal isomorphisms

�n : D0 → Dn

where Dn is the complementary domain C \ Kn and �n is normalized by �n(∞) = ∞
and �′

n(∞) > 0. Then �0(z) = z for all z and Kn has logarithmic capacity �′
n(∞) > 1

for all n � 1. This formulation is convenient because the harmonic measure from ∞
on the boundary ∂ Dn , which provides a natural way to choose the location of the next
particle, is then simply the image under �n of the uniform distribution on ∂ D0 = {|z| =
1}. Having chosen a random angle �n+1 to locate the next particle, and a model particle
Pn+1 attached to K0 at ei�n+1 , for example a small disk tangent to K0, the cluster map is
updated to

�n+1 = �n ◦ Fn+1 (1)

where Fn+1 is the conformal isomorphism D0 → D0 \ Pn+1, normalized similarly to
�n . Then �n+1 encodes the cluster

Kn+1 = Kn ∪ �n(Pn+1).
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Thus, once we specify distributions for the angles �n and model particles Pn , we have
specified a mechanism to grow a random cluster.

We will write

cap(Kn) = log �′(∞), cn = log F ′
n(∞)

and we will refer to cap(Kn) as the capacity1 of Kn and cn as the capacity of Pn . Then

cap(Kn) = c1 + · · · + cn .

We will be looking for scaling limits where the particle capacities cn and the associated
particles Pn become small, but where n is chosen sufficiently large that the cluster
capacities cap(Kn) grow macroscopically.

A simple case is to choose �n+1 uniformly distributed on the unit circle and to take
Pn+1 = ei�n+1 P , where P is a small disk tangent to the unit disk at 1, of radius r(c),
chosen so that P has capacity c. Then in fact r(c)/

√
c has a positive limit as c → 0. The

location of the new particle �n(Pn+1) is then distributed according to harmonic measure
on ∂Kn . However, if we assume that ∂Kn is approximately linear on the scale of P , then
we would have

�n(Pn+1) ≈ �n(ei�n+1) + �′
n(ei�n+1)P (2)

so we would add an approximate disk of diameter proportional to
√

c|�′
n(ei�n+1)|.

In order to compensate for this distortion, Hastings and Levitov proposed the HL(α)

family of models where, once �n+1 is chosen, we choose Pn+1 to be a particle of capacity

cn+1 = |�′
n(e

i�n+1)|−αc.

Then, in the case α = 2, the particles added to the cluster would be approximately of
constant size. The approximation (2) is in fact misleading, at least on a microscopic
level, because ∂Kn develops inhomogeneities on the scale of the particles. Nevertheless,
HL(2) has been considered as a variant of diffusion-limited aggregation (DLA) [28],
with some justification, see [10], derived from numerical experiments.

In general, the HL(α) model offers a convenient mechanism for such experiments,
and moves away from the lattice formulation of [28] which has been shown to lead to
unphysical effects on large scales (see for example [8]). Moreover, it might be hoped
that an evolving family of conformal maps would present a more tractable framework
for the analysis of scaling limits than other growth models, while potentially sharing the
same bulk scaling limit and fluctuation universality class. That is the direction explored
in this paper.

Besides the mechanism of diffusive aggregation, based on harmonic measure, there
is another one-parameter family of models, conceived originally in the lattice case,
called dielectric breakdown models [20], which interpolates between DLA and the Eden
model [7]. In the Eden model, each boundary site is chosen with equal probability. In
the continuum setting, for an Eden-type model we would choose an attachment point
on the boundary according to normalized arc length, which has density proportional to
|�′

n(eiθ )| with respect to harmonic measure. We can widen our family of models to
include a continuum analogue of dielectric breakdown models (DBM) by choosing

P(�n+1 ∈ dθ |�n) ∝ |�′
n(e

iθ )|−ηdθ.

1 This is an abuse of terminology since it is then ecap(Kn ) which is the logarithmic capacity.
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The case η = −1 then provides a continuum variant of the Eden model.
In a law-of-large-numbers regime, it might be guessed that bulk characteristics of the

cluster for the model incorporating both the α and η modifications would depend only
on their sum ζ = α + η since, once this is fixed, up to a global time-scaling, the growth
rate of capacity due to particles attached near eiθ does not depend further on α or η. We
will show, in the regime which we can address, that this is indeed true.

In this paper we investigate the two-parameter family of models just described, but
modified by the introduction of a regularization parameter σ > 0, which controls the
minimum length scale over which feedback occurs through cn+1 and �n+1. Specifically,
we require

P(�n+1 ∈ dθ |�n) ∝ |�′
n(e

σ+iθ )|−ηdθ, cn+1 = |�′
n(e

σ+i�n+1)|−αc. (3)

This model was introduced in [27] as the (discrete-time) aggregate Loewner evolution
model. We will require throughout that σ � √

c (and sometimes more) and we will
restrict attention to the subcritical regime ζ � 1. This includes the Eden case (α = 2,
η = −1) but excludes continuum DLA (α = 2, η = 0). In the regularized models, we
will show fluctuation behaviour which is universal over all choices of particle family. Our
first main result shows that, in this regime, in the limit c → 0, disks are stable, that is, an
initial disk cluster remains close to a disk as particles are added and its capacity becomes
large. Our second main result is to prove convergence of the normalized fluctuations of
the cluster around its deterministic limit, to an explicit Gaussian process. The constraint
ζ � 1 appears sharp for this behaviour: we see an explicit dependence of the fluctuations
on α and η and, in particular, an exponential instability of rate (ζ −1)k in the kth Fourier
mode if we formally take ζ > 1.

1.2. Statement of results. In this section, we define the continuous-time ALE(α, η)

model, which is our object of study, and we specify our standing assumptions for indi-
vidual particles. We then state our main results.

Our model is constructed as a composition of univalent functions on the exterior unit
disk D0 = {|z| > 1}. Each of these functions corresponds to a choice of attachment
angle θ ∈ [0, 2π) and a basic particle P . Recall that K0 = {|z| � 1}. By a basic
particle P we mean a non-empty subset of D0 such that K0 ∪ P is compact and simply
connected. Set D = D0 \ P . By the Riemann mapping theorem, there is a c ∈ (0,∞)

and a conformal isomorphism F : D0 → D with Laurent expansion of the form

F(z) = ec

(
z +

∞∑
k=0

ak z−k

)
. (4)

Then F is uniquely determined by P , and P has capacity c. Our model depends on three
parameters α, η ∈ R and σ ∈ (0,∞), along with the choice of a family of basic particles
(P(c) : c ∈ (0,∞)) with P(c) of capacity c. The associated maps Fc : D0 → D(c) then
have the form (4) with ak = ak(c) for all k. We assume throughout that Fc extends
continuously to {|z| � 1}. We require that our particle family is nested

P(c1) ⊆ P(c2) for c1 < c2 (5)

and satisfies, for some � ∈ [1,∞),

δ(c) � �r0(c) for all c (6)
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where

r0(c) = sup{|z| − 1 : z ∈ P(c)}, δ(c) = sup{|z − 1| : z ∈ P(c)}.
In our results, only small values of c are of interest. For such c, the last condition (6)
forces our particles P(c) to concentrate near the point 1 while never becoming too flat
against the unit circle.

The following are all examples of particle families satisfying both conditions (5) and
(6):

P(c)
slit = (1, 1 + δ(c)], P(c)

bump = {z ∈ D0 : |z − 1| � δ(c)}
and

P(c)
disk = {z ∈ D0 : |z − 1 − r(c)| � r(c)}, r(c) = δ(c)/2

where in each case δ is a suitable increasing homeomorphism of (0,∞).
It will be convenient to place our aggregation models from the outset in continuous

time. By a (continuous-time) aggregate Loewner evolution of parameters α, η ∈ R, or
ALE(α, η), we mean a finite-rate, continuous-time Markov chain (�t )t�0 taking values
in the set of univalent functions D0 → D0, starting from �0(z) = z, which, when in
state φ, jumps to φ ◦ Fc(θ,φ),θ at rate λ(θ, φ)dθ/(2π), where

Fc,θ (z) = eiθ Fc(e
−iθ z), c(θ, φ) = c|φ′(eσ+iθ )|−α, λ(θ, φ) = c−1|φ′(eσ+iθ )|−η.

(7)

Since σ > 0, the rate λ(θ, φ) is continuous in θ , so the total jump rate is finite. The
model may be thought of equivalently in term of the random process of compact sets
(Kt )t�0 given by

K0 = {|z| � 1}, Kt = K0 ∪ {z ∈ D0 : z ∈ �t (D0)}.
The effect of the jump just described is then to add to the current cluster the set
φ(eiθ P(c(θ,φ))) thereby increasing its capacity by c(θ, φ).

An explicit realisation of this Markov chain can be constructed as follows. Given a
univalent function φ : D0 → D0, define the normalising constant

Zφ =
ˆ 2π

0
|φ′(eσ+iθ )|−ηdθ.

Starting from �0(z) = z, suppose that a realisation of (�s)0�s�t has been con-
structed up to some t � 0, and that �t = φ. Sample independently a random time
T ∼ Exp(c−1 Zφ/(2π)) and random angle � with density function |φ′(eσ+iθ )|−η/Zφ .
Then set �s = φ for t < s < t + T , and �t+T = φ ◦ Fc(�,φ),�. It is straightforward
to verify that this construction gives a Markov chain with distribution corresponding to
the specification above.

Denote the jump times of the Markov chain by Tk , k = 1, 2, . . . . By the explicit
construction,

�Tn+1 = �Tn ◦ Fn+1

where Fn = FCn ,�n , for capacity Cn and attachment angle �n satisfying

P(�n+1 ∈ dθ |�Tn ) ∝ |�′
Tn

(eσ+iθ )|−ηdθ, Cn+1 = |�′
Tn

(eσ+i�n+1)|−αc.
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Fig. 1. Cluster map with n particles

Therefore, if Tn � t < Tn+1, we have

�t = F1 ◦ · · · ◦ Fn,

as in Fig. 1. Moreover, the capacity Tt of the cluster Kt is then given by

Tt = log �′
t (∞) = C1 + · · · + Cn .

For certain parameter values, the process (�t )t�0 may explode, that is, may take
infinitely many jumps in a finite time interval. We will show in Proposition A.1 that
explosion occurs if and only if both η < 0 and ζ = α + η < 0, and in this case we
also have Tt → ∞ at the explosion time. This phenomenon is however irrelevant to our
main results on scaling limits, since explosion is excluded by these results (with high
probability) over the relevant time interval. Hence we will make no attempt to define �t
beyond explosion.

By reference to (1) and (3), it is immediate that the jump-chain (�Tn )n�0 is exactly
the discrete-time aggregate Loewner evolution process (�n)n�0 in the introductory
discussion. In particular, in the case η = σ = 0, (�t )t�0 is the original Hastings–Levitov
process embedded in continuous time as a Poisson process with jumps of rate c−1. For
clarity, from now on we denote the discrete-time process by (�disc

n )n�0. Prior work on
ALE models [21,27] was framed in terms of this discrete-time process. The continuous-
time framework allows a more local specification of the dynamics, without the need
to normalise the distribution of attachment angles. It further allows us to organise the
computation of martingales in terms of a standard calculus for Poisson random measures.

We can now state our first main result. Define

tζ =
{
∞, if ζ � 0,

|ζ |−1, if ζ < 0.

and for t < tζ set

τt =
{

t, if ζ = 0,

ζ−1 log(1 + ζ t), otherwise.

Note that τt → ∞ as t → tζ for all ζ .
The result identifies the small-particle scaling limit of Kt in the case ζ � 1 as a disk

of radius eτt , with quantified error estimates. It is proved in Proposition 5.7. The range
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Fig. 2. Domain of stability for ALE(α, η)

of parameter values to which the result applies is indicated by the region shaded red
in Fig. 2, with diagonal lines showing parameter pairs (α, η) sharing a common bulk
scaling limit. Recall that Tt = log �′

t (∞), which is the capacity of Kt , and set

�̂t (z) = �t (z)/eTt .

Theorem 1.1. For all α, η ∈ Rwith ζ = α+η � 1, for all ε ∈ (0, 1/3] and ν ∈ (0, ε/4],
for all m ∈ N and T ∈ [0, tζ ), there is a constant C = C(α, η,�, ε, ν, m, T ) < ∞
with the following property. In the case ζ < 1, for all c � 1/C and all σ � c1/2−ε, with
probability exceeding 1 − cm, for all t � T ,

|Tt − τt | � C

(
c1/2−ν + c1−4ν

(
eσ

eσ − 1

)2
)

and, for all |z| = r � 1 + c1/2−ε,

|�̂t (z) − z| � C

(
c1/2−ν + c1−4ν

(
eσ

eσ − 1

)2
)

.

Moreover, in the case ζ = 1, for all c � 1/C and all σ � c1/3−ε, with probability
exceeding 1 − cm, for all t � T ,

|Tt − τt | � C

(
c1/2−ν + c1−4ν

(
eσ

eσ − 1

)2
)
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and, for all |z| = r � 1 + c1/2−ε,

|�̂t (z) − z| � C

(
c1/2−ν

(
eσ

eσ − 1

)1/2

+ c1−4ν

(
eσ

eσ − 1

)5/2
)

.

We will show a similar result for the discrete-time process (�disc
n )n�0. Set

T disc
n = log(�disc

n )′(∞), �̂disc
n (z) = �disc

n (z)/eT
disc

n .

Define

nα =
{
∞, if α � 0,

|α|−1, if α < 0

and for n < nα/c set

τ disc
n =

{
cn, if α = 0,

α−1 log(1 + αcn), otherwise.
(8)

The following result is proved at the end of Sect. 5.2. The case α = 0 is Theorem 1.1
in [21] but with an improvement to the constraints on r and σ , and the corresponding
upper bound, in the η = 1 case.

Theorem 1.2. For all α, η ∈ R with ζ = α + η � 1, for all ε ∈ (0, 1/3] and ν ∈
(0, ε/4], for all m ∈ N and N ∈ [0, nα), not necessarily an integer, there is a constant
C = C(α, η,�, ε, ν, m, N ) < ∞ with the following property. In the case ζ < 1, for all
c � 1/C and all σ � c1/2−ε, with probability exceeding 1 − cm, for all n � N/c,

|T disc
n − τ disc

n | � Cc1−4ν

(
eσ

eσ − 1

)2

and, for all |z| = r � 1 + c1/2−ε,

|�̂disc
n (z) − z| � C

(
c1/2−ν + c1−4ν

(
eσ

eσ − 1

)2
)

.

Moreover, in the case ζ = 1, for all c � 1/C and all σ � c1/3−ε, with probability
exceeding 1 − cm, for all n � N/c,

|T disc
n − τ disc

n | � Cc1−4ν

(
eσ

eσ − 1

)2

and, for all |z| = r � 1 + c1/2−ε,

|�̂disc
n (z) − z| � C

(
c1/2−ν

(
eσ

eσ − 1

)1/2

+ c1−4ν

(
eσ

eσ − 1

)5/2
)

.
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We turn to our second main result, which describes the limiting fluctuations of
ALE(α, η). Denote by H the set of all holomorphic functions on D0 = {|z| > 1}
which are bounded at ∞. We equip H with the metric

d( f, g) =
∞∑

n=0

2−n

(
sup

|z|�1+1/n
| f (z) − g(z)| ∧ 1

)
.

Then H is a complete separable metric space. Define for t < tζ

�̂t (z) = �̂t (z) − z, �
cap
t = Tt − τt .

Let (Bt )t�0 be a (real) Brownian motion. Let (Bt (k))t�0 for k � 0 be a sequence
of independent complex Brownian motions, independent of (Bt )t�0. We can define
continuous Gaussian processes (�t (k))t<tζ and (�

cap
t )t<tζ by the following Ornstein–

Uhlenbeck-type stochastic differential equations

d�t (k) = e−ατt
(√

2e−ητt /2d Bt (k) − (1 + (1 − ζ )k)�t (k)e−ητt dt
)

, �0(k) = 0,

d�
cap
t = e−ατt

(
e−ητt /2d Bt − ζ�

cap
t e−ητt dt

)
, �

cap
0 = 0.

We show in Sect. 6.2 that the series

�̂t (z) =
∞∑

k=0

�t (k)z−k

converges in H, uniformly on compacts in [0, tζ ), almost surely. In fact (�̂t )t<tζ satisfies
the following stochastic differential equation in H

d�̂t = e−ατt
(√

2e−ητt /2d B̂t − (Q0 + 1)�̂t e
−ητt dt

)
, �̂0 = 0

where Q0 f (z) = −(1 − ζ )z f ′(z) and

B̂t (z) =
∞∑

k=0

Bt (k)z−k .

The following two results are proved in Sect. 6.

Theorem 1.3. Assume that ζ = α + η ∈ (−∞, 1]. Fix T ∈ [0, tζ ) and ε > 0 and
consider the limit c → 0 with σ → 0 subject to the constraint

σ�
{

c1/4−ε, if ζ < 1,

c1/5−ε, if ζ = 1.

Then

c−1/2(�̂t , �
cap
t )t�T → (�̂t , �

cap
t )t�T

weakly in the Skorokhod space D([0, T ],H× R).
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As in the bulk scaling limit, we can deduce an analogous discrete-time fluctuation
theorem. The case α = 0 recovers Theorem 1.2 in [21]. Define for t � 0

�̂disc
t (z) = �̂disc�t� (z) − z.

We have seen already in Theorem 1.2, for N < nα , that (T disc
n − τ disc

n )n�N/c does not
fluctuate at scale

√
c. We can define a continuous Gaussian process (�̂disc

t )t<nα in H by

d�̂disc
t =

√
2d B̂t − (Q0 + 1)�̂disc

t dt

1 + αt
, �̂disc

0 = 0.

Theorem 1.4. Assume that ζ = α + η ∈ (−∞, 1]. Fix N ∈ [0, nα), not necessarily an
integer, and fix ε > 0. In the limit c → 0 with σ → 0 considered in Theorem 1.3, we
have

c−1/2(�̂disc
t/c )t�N → (�̂disc

t )t�N

weakly in D([0, N ],H).

1.3. Commentary and review of related work. Hastings and Levitov [10] introduced the
family of planar aggregation models HL(α), which are the cases η = σ = 0 of our
ALE(α, η) model. They discovered by numerical experiments that, for small particles,
the models underwent a transition at α = 1: for α � 1 the cluster grows like a disk,
while for α > 1 it exhibits fractal properties. There are two natural scaling-limit regimes
under which mathematical results have been established: capacity rescaling and the
small-particle limit. Under capacity-rescaling, the particle capacity parameter c is kept
fixed, and the cluster is rescaled to have logarithmic capacity 1, before the limit is taken
as the number of particles goes to infinity. This corresponds to studying the limit of
the map �̂disc

n (z) as n → ∞. Under the small-particle limit, the parameter c → 0,
but the rate at which particles arrive is increased to ensure a non-trivial limit. This is
the regime followed in the present paper, and corresponds to studying the limit of the
process (�disc

n(t)(z))t�0 as c → 0, where n(t) is a suitable embedding of arrival times into
continuous time. In most results to date, the embedding n(t) = �t/c� has been used.

The HL(0) model is the most mathematically tractable model in the Hastings–Levitov
family as in this case the particle maps, Fn , are i.i.d. It has been investigated rigorously
in a series of works [24] (existence of a bulk scaling limit under capacity rescaling),
[22] (bulk small-particle scaling limit), [26] (fluctuation small-particle scaling limit).
Several variants exist, for example [1,2] (versions of HL(0) grown in the upper half-
plane) and [14,17] (anisotropic versions of HL(0)). The σ -regularized variant of HL(α)

was proposed in [15], where it was shown for slit maps that, if σ � (log(1/c))−1/2,
there is disk-like behaviour in the small-particle limit for all α � 0: it appeared that the
observed fractal properties of HL(α) for α > 1 were suppressed by strong regularization.
In contrast, for the weaker regularization used in the present paper, the conjectured phase
transition at α = 1 (or ζ = 1) becomes visible at the level of fluctuations. The method
of [15] used a comparison with an HL(0)-type model which breaks down for smaller
values of σ . Regularized versions of HL(α) under capacity-rescaling are considered in
[24] (estimates for the dimension) and [16] (fluctuation limit when 0 < α < 2 and
σ = ∞).
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The regularized ALE(α, η) model first appeared in [27] where it was shown that,
for slit maps, if α � 0 and η > 1, σ -regularized ALE(α, η) converges to a growing
slit in the small-particle limit, provided σ → 0 sufficiently fast as c → 0. This result
is a consequence of the singularities of the derivative of the slit map on the cluster
boundary, which causes the cluster growth to concentrate at the tips of particles. Similar
degeneracies are exploited in two recent papers [12,13]. In [12] it was shown that,
when η < −2, ALE(0, η) converges to a SLE4 curve. It is conjectured that, by making
appropriate choices of particle shape, one can get convergence to SLEκ for any κ � 4.
In [13], it is shown that ALE(0, η), initiated from a needle-like configuration, converges
to a Laplacian-path model [5]. Another model that fits into this framework is Quantum
Loewner Evolution (QLE) [19]. The paper [27] contains a comprehensive discussion of
connections between these and related models, so we do not repeat this here.

A new approach was begun in [21], treating regularized ALE(0, η) as a Markov chain
in univalent functions. By martingale arguments, a bulk small-particle scaling limit and
fluctuation scaling limit were shown, subject to the constraint η � 1 and to restrictions
on σ as a fractional power of c. These limits (in contrast to those above) turn out not to
depend on the details of individual particle shapes. In this paper, we extend the analysis
of [21] to ALE(α, η), subject now to the constraint ζ = α +η � 1. Thus we now include
regularized HL(α) for α � 1. Hastings and Levitov had argued that there should be
a trade-off between α and η, with only ζ affecting the bulk scaling limit, and on this
basis proposed HL(1), that is ALE(1, 0), as a continuum variant of the Eden model.
A more direct continuum analogue of the Eden model is ALE(2,−1). Our results, in
the regularized case, both justify the trade-off argument and show a disk scaling limit
whenever ζ � 1. On the other hand, we show that ALE(1, 0) and ALE(2,−1) have
different fluctuation behaviour. As in [21], the behaviour of fluctuations as a function of
ζ is consistent with the conjectured transition in behaviour at ζ = 1. We emphasise that
scaling limits for the conjectured supercritical regime ζ > 1 lie outside the scope of the
present paper.

Hastings and Levitov [10] identify a Loewner–Kufarev-type equation, which they
propose as governing the small-particle limit of HL(α), citing a discussion of Shraiman
and Bensimon [25] for the Hele–Shaw flow, where α is taken to be 2. This is the LK(α)

equation, which is the subject of the next section. As noted by Sola in a contribution to
[18], there is a lack of mathematical theory for the LK(α) equation, except in the case
α = 2 when some special techniques become available (we refer the reader to [11] and
to the monograph [9] which contains an extensive list of references). In this paper, since
our focus is on clusters initiated as a disk, we are able to use an explicit solution of the
equation, along with its linearization around that solution, so we do not rely on a general
theory. However, the particle interpretation established here offers some evidence that
for α � 1, the LK(α) equation may have a suitable existence, uniqueness and stability
theory, and that it may be possible to derive the equation as a limit of particle models.

Our results depend on constraints on the regularization parameter σ , though substan-
tially weaker ones than those used in [15]. These constraints limit the interactions of
individual particles and place us in the simplest case of Gaussian fluctuations. At a tech-
nical level, for Theorem 1.1, these constraints come from the need to have δ̄(eσ ) � cε in
Proposition 5.3, while for Theorem 1.3 they are needed to show that the Poisson integral
process (�t )t�0 is a good approximation to the fluctuations in Proposition 5.7. In the
case ζ = 1, the regularizing operator Q obtained by linearization of the LK(ζ ) equation
collapses from a fixed multiple of the Cauchy operator to σ times the second derivative.
In general, for scaling regimes where σ → 0 faster than our fluctuation results allow, it
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remains possible that ALE(α, η) has different universal fluctuation behaviour, such as
KPZ, as has been conjectured for the lattice Eden model.

1.4. Structure of the paper. In the next section, we discuss the Loewner–Kufarev equa-
tion for the limit dynamics. Then, in Sect. 3, we derive an interpolation formula between
ALE(α, η) and solutions of the limit equation. The terms in this formula are estimated
in Sect. 4. Equipped with these estimates, we show the bulk scaling limit in Sect. 5 and
the fluctuation scaling limit in Sect. 6. We collect in Appendix A some further estimates
needed in the course of the paper, including estimates on the conformal maps which
encode single particles and particle families.

2. Loewner–Kufarev Equation

Let S denote the set of univalent holomorphic functions φ on {|z| > 1} with φ(∞) = ∞
and φ′(∞) ∈ (0,∞). Then each φ ∈ S has the form

φ(z) = ec

(
z +

∞∑
k=0

ak z−k

)

for some c ∈ R and some sequence (ak : k � 0) in C. Fix parameters ζ ∈ R and σ � 0.
Given φ0 ∈ S, consider the following Cauchy problem for (φt )t�0 in S

φ̇t = a(φt ) (9)

where

a(φ)(z) = zφ′(z)
 2π

0

z + eiθ

z − eiθ

∣∣∣φ′(eσ+iθ )

∣∣∣−ζ

dθ.

The case σ = 0 of this equation is the equation proposed by Hastings and Levitov as
scaling limit for HL(ζ ), which we will call the LK(ζ ) equation. When ζ = 0, the value
of σ is immaterial and there is a unique solution given by

φt (z) = φ0(e
t z).

When ζ = 2 and σ = 0, (9) is the Loewner–Kufarev equation associated to the Hele–
Shaw flow. For σ > 0, we will refer to (9) as the σ -regularized LK(ζ ) equation. We will
be interested in the subcritical case ζ ∈ (−∞, 1].

The general form of the Loewner–Kufarev equation is given by

φ̇t (z) = zφ′
t (z)

ˆ 2π

0

z + eiθ

z − eiθ
μt (dθ)

with (μt : t � 0) a given family of measures on [0, 2π). Thus the σ -regularized LK(ζ )

equation is obtained by requiring that the driving measures are given by

μt (dθ) =
∣∣∣φ′

t (e
σ+iθ )

∣∣∣−ζ

dθ/(2π).



Stability of Regularized Hastings–Levitov Aggregation Page 13 of 78    74 

Note that, when ζ = α + η, the density of these driving measures is the product of the
density of the local attachment rate and the local particle capacity (7) for ALE(α, η). By
the Loewner–Kufarev theory, for any solution (φt )t�0 of (9), the sets

Kt = C \ {φt (z) : |z| > 1}
form an increasing family of simply-connected compacts, with capacities given by

τt = cap(Kt ) = log φ′
t (∞) = log φ′

0(∞) +
ˆ t

0
μs([0, 2π))ds.

2.1. Linearization. We compute the linearization of (9) around a solution (φt )t�0. For
ψ holomorphic in {|z| > 1}, we have

(∇a(φ)ψ)(z) = d

dε

∣∣∣∣
ε=0

a(φ + εψ)(z) = zψ ′(z)h(z) − ζ zφ′(z)g(z)

where

h(z) =
 2π

0

z + eiθ

z − eiθ
|φ′(eσ+iθ )|−ζ dθ

and, setting ρ = ψ ′/φ′,

g(z) =
 2π

0

z + eiθ

z − eiθ
|φ′(eσ+iθ )|−ζ Re ρ(eσ+iθ )dθ. (10)

Note that first-order variations in S have the form

ψ(z) = δz +
∞∑

k=0

ψk z−k, δ ∈ R, ψk ∈ C.

The process of first-order variations (ψt )t�0 around a solution (φt )t�0 can be expected
to satisfy the linearized equation

ψ̇t = ∇a(φt )ψt .

2.2. Linear stability of disk solutions in the subcritical case. Fix τ0 ∈ (0,∞). A trial
solution φt (z) = eτt z for (9) leads to the equation

τ̇t = e−ζ τt .

We solve to obtain (τt )t<tζ , with τt → ∞ as t → tζ , given by

τt =
{

τ0 + t, if ζ = 0,

ζ−1 log(eζ τ0 + ζ t), otherwise

where

tζ =
{
∞, if ζ � 0,

eζ τ0/|ζ |, if ζ < 0.
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For the associated solutions (φt )t<tζ , the the sets Kt form a growing family of disks. We
call such a (φt )t<τζ a disk solution.

For disk solutions, we have φ′
t (z) = eτt for all z, so we can evaluate the integral (10)

to obtain

(∇a(φt )ψ)(z) = −Qψ(z)τ̇t

where

Qψ(z) = −zψ ′(z) + ζ zψ ′(eσ z) = −Dψ(z) + ζe−σ Dψ(eσ z). (11)

Here and below, we write Dψ(z) for the radial derivative zψ ′(z). Consider the action of
Q on the set of holomorphic functions on {|z| > 1} which are bounded at infinity. Then
Q is a multiplier operator

Qψ(z) =
∞∑

k=0

q(k)ψk z−k, ψ(z) =
∞∑

k=0

ψk z−k

where

q(k) = k(1 − ζe−σ(k+1)).

It is straightforward to obtain the following lower bounds. We have

q(k) �

⎧⎪⎨
⎪⎩

k, if ζ � 0,

k/(1 − ζ ), if ζ ∈ (0, 1),

(1 − 1/e)((σk2) ∧ k), if ζ = 1.

Define for τ � 0

P(τ ) = e−τ Q . (12)

At least formally, at a disk solution, the linearized equation ψ̇t = ∇a(φt )ψt has solution
given by

ψt (z) = P(τt − τ0)ψ0(z). (13)

In the case σ = 0, we have q(k) = (1 − ζ )k so P(τ )ψ(z) = ψ(e(1−ζ )τ z) for suitable
ψ . Thus, if ζ > 1, as for example in the Hele–Shaw case when ζ = 2, we see that ψt
is holomorphic in {|z| > 1} only if ψ0 extends to a holomorphic function in the larger
domain {|z| > e(1−ζ )(τt−τ0)}. On the other hand, if ζ � 1, then P(τt − τ0) preserves the
set of holomorphic first-order variations, so the variation ψt as given by (13) remains
holomorphic for all t . We will show that this stability property in fact also holds whenever
σ � 0 and ζ � 1.

Define for r > 1

‖ψ‖p,r =
( 2π

0
|ψ(reiθ )|pdθ

)1/p

.

For a multiplier operator M , given by

Mψ(z) =
∞∑

k=0

m(k)ψk z−k, ψ(z) =
∞∑

k=0

ψk z−k
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let us write A = A(M) for the smallest constant such that

|m(0)| � A,

∞∑
k=0

|m(k + 1) − m(k)| � A.

The Marcinkiewicz multiplier theorem is recalled in Sect. A.3. This implies in particular
that, for all p ∈ (0,∞), there is a constant C = C(p) < ∞ such that, for all r > 1, we
have

‖Mψ‖p,r � C A(M)‖ψ‖p,r .

We use this criterion to obtain some estimates on the operators P(τ ) and D P(τ ) for
τ � 0. Note that, if 0 � m(k) � m∗, then A(M) � N (M)m∗ where N (M) is the number
of maximal intervals of constant sign in the sequence of increments (m(k + 1)− m(k) :
k � 0).

Lemma 2.1. For all n � 0 and all p ∈ (1,∞), there is a constant C = C(n, p) < ∞
such that, for all σ � 0, for all holomorphic functions ψ on {|z| > 1} bounded at ∞,
all τ � 0 and all r > 1, we have, for ζ < 1,

‖Dn P(τ )ψ‖p,r � C‖ψ‖p,r

(1 − ζ +)nτ n

and for ζ = 1

‖Dn P(τ )ψ‖p,r � Ceσn‖ψ‖p,r

τ n ∧ (στ)n/2 .

Proof. Consider first the case where ζ � 0. We split

q(k) = q1(k) + q2(k), q1(k) = k, q2(k) = |ζ |ke−σ(k+1).

Then, with obvious notation, P(τ ) = P1(τ )P2(τ ) so

‖Dn P(τ )‖p,r � ‖Dn P1(τ )‖p,r‖P2(τ )‖p,r .

The sequence of multipliers kne−τk for (−D)n P1(τ ) is bounded by (n/τ)n and its
increments change sign at most once, so A(Dn P1(τ )) � 2(n/τ)n . The sequence of
multipliers e−τq1(k) for P2(τ ) is bounded by 1 and its increments change sign at most
once, so A(P2(τ )) � 2. Hence ‖Dn P(τ )‖p,r � C/τ n as claimed.

Consider next the case ζ ∈ (0, 1). We make another split

q(k) = q1(k) + q2(k), q1(k) = (1 − ζ )k, q2(k) = ζk(1 − e−σ(k+1)).

Then P(τ ) = P1(τ )P2(τ ) again, where the notation now corresponds to the new split.
We have A(Dn P1(τ )) � 2(n/((1 − ζ )τ ))n by the argument used for Dn P1 in the case
ζ � 0. The sequence of multipliers e−τq1(k) for P2(τ ) is bounded by 1 and is decreasing,
so A(P2(τ )) � 1. Hence ‖Dn P(τ )‖p,r � C/((1 − ζ )τ )n as claimed.

Consider finally the case ζ = 1. We now write

q(k) = q̂(k) + q3(k), q̂(k) = e−(1+σ)(q1(k) ∧ q2(k)), q1(k) = k, q2(k) = σk2
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and write P̂(τ ) for the operator with multipliers e−τ q̂(k) and so on. As already observed,
the sequence of multipliers kne−τk for (−D)n P1(τ ) is bounded by (n/τ)n and its incre-
ments change sign at most once, so A(Dn P1(τ )) � 2(n/τ)n . The sequence of multipliers
kne−τσk2

for (−D)n P2(τ ) is bounded by (n/(στ))n/2 and its increments also change
sign at most once, so A(D P2(τ )) � 2. We use the inequality

|a1 ∨ b1 − a2 ∨ b2| � |a1 − a2| ∨ |b1 − b2|
to deduce that A(D P̂(τ )) � Ceσn/(τ n∧(στ)n/2). Finally, it is straightforward to check
that the sequence of multipliers e−τq3(k) for P3(τ ) is bounded by 1 and decreasing,
so A(P3(τ )) � 1. Hence ‖Dn P(τ )‖p,r � ‖Dn P̂(τ )‖p,r‖P3(τ )‖p,r � Ceσn/(τ n ∧
(στ)n/2) as claimed. ��

2.3. Transformation to (Schlicht function, capacity) coordinates. Write S1 for the set
of ‘Schlicht functions at ∞’ on {|z| > 1}, given by

S1 = {φ ∈ S : φ′(∞) = 1}.
It will be convenient to use coordinates (φ̂, τ ) on S, given by

φ̂(z) = e−τ φ(z), τ = log φ′(∞).

Then φ̂ ∈ S1 and τ ∈ R. It is straightforward to show that, for a solution (φt )t�0 to (9),
the transformed variables (φ̂t , τt )t�0 satisfy

(
˙̂
φt , τ̇t ) = b(φ̂t , τt ) = (b̂, bcap)(φ̂t , τt ) (14)

where

b̂(φ̂, τ )(z) = e−ζ τ zφ̂′(z)
 2π

0

z + eiθ

z − eiθ
|φ̂′(eσ+iθ )|−ζ dθ

− e−ζ τ φ̂(z)
 2π

0
|φ̂′(eσ+iθ )|−ζ dθ,

bcap(φ̂, τ ) = e−ζ τ

 2π

0
|φ̂′(eσ+iθ )|−ζ dθ.

On linearizing (14) around a solution (φ̂t , τt )t�0, we obtain equations for first-order
variations (ψ̂t , ψ

cap
t )t�0 in the new coordinates, where now ψ̂t is bounded at ∞ for all

t , reflecting the normalization of φ̂t . These are then related to the first-order variations
(ψt )t�0 in the old coordinates by

ψt (z) = eτt (ψ̂t (z) + ψ
cap
t φ̂t (z)).

For a disk solution (φt )t<tζ , we have φ̂t (z) = z and b(φ̂t , τ ) = (0, e−ζ τ ). The
equations for first-order variations are then given by

˙̂
ψt (z) = −(Q + 1)ψ̂t (z)τ̇t , ψ̇

cap
t = −ζψ

cap
t τ̇t

with solutions

ψ̂t (z) = e−(τt−τ0) P(τt − τ0)ψ̂0(z), ψ
cap
t = e−ζ(τt−τ0)ψ

cap
0 .
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3. Interpolation Formula for Markov Chain Fluid Limits

We use an interpolation formula between continuous-time Markov chains and differential
equations, which we first review briefly in a general setting. This formula is then applied
to an ALE(α, η) aggregation process (�t )t�0 with capacity parameter c, regularization
parameter σ and particle family (P(c) : c ∈ (0,∞)), taking as limit equation the
σ -regularized LK(ζ ) equation with ζ = α + η. We use (Schlicht function, capacity)
coordinates for both the process and the limit equation.

3.1. General form of the interpolation formula. Let (Xt )t�0 be a continuous-time Markov
chain with state-space E and transition rate kernel q, starting from x0 say. Suppose for
this general discussion that E = R

d . Let b be a vector field on E with continuous
bounded derivative ∇b. Write (ξt (x) : t � 0, x ∈ E) for the flow of b. The compensated
jump measure of (Xt )t�0 is the signed measure μ̃X on E × (0,∞) given by

μ̃X (dy, dt) = μX (dy, dt) − q(Xt−, dy)dt, μX =
∑

t :Xt =Xt−
δ(Xt ,t).

Set xt = ξt (x0) and define, for s ∈ [0, t],
Zs = xt + ∇ξt−s(xs)(Xs − xs).

Then Z0 = xt and Zt = Xt and, on computing the martingale decomposition of (Zs)s�t ,
we obtain the interpolation formula

Xt − xt = Mt + At (15)

where

Mt =
ˆ

E×(0,t]
∇ξt−s(xs)(y − Xs−)μ̃X (dy, ds)

and

At =
ˆ t

0
∇ξt−s(xs)(β(Xs) − b(xs) − ∇b(xs)(Xs − xs))ds

where β is the drift of (Xt )t�0, given by

β(x) =
ˆ

E
(y − x)q(x, dy).

The identification of martingales associated with finite-rate continuous-time Markov
chains is standard. The particular pathwise formulation in terms of the jump measure
used here is developed in detail in [6]. We will use this formula in a case where the
state-space E is infinite-dimensional. Rather than justify its validity generally in such a
context, in the next section, we will prove directly the special case of the formula which
we require. Note that the integrands in Mt and At depend on t . Nevertheless, we will
call Mt the martingale term and At the drift term.
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3.2. Proof of the formula for ALE(α, η). Let (�t )t�0 be an ALE(α, η) aggregation
process with capacity parameter c, regularization parameter σ and particle family (P(c) :
c ∈ (0,∞)). See Sect. 1.2 and (7) for the specification of this process. We use (Schlicht
function, capacity) coordinates, as in Sect. 2.3, to obtain a continuous-time Markov chain
(Xt )t�0 = (�̂t , Tt )t�0 in S1 × [0,∞). When in state x = (φ̂, τ ), for all θ ∈ [0, 2π),
this process makes a jump of size (�(θ, z, c(θ), φ̂), c(θ)) at rate λ(θ)dθ/(2π), where

�(θ, z, c, φ̂) = e−cφ̂(Fc(θ, z)) − φ̂(z)

and

c(θ) = c(θ, φ̂, τ ) = ce−ατ |φ̂′(eσ+iθ )|−α,

λ(θ) = λ(θ, φ̂, τ ) = c−1e−ητ |φ̂′(eσ+iθ )|−η.

We can and do assume that the process is constructed from a Poisson random measure
μ on [0, 2π)×[0,∞)× (0,∞) of intensity (2π)−1dθdvdt by the following stochastic
differential equation:

�̂t (z) =
ˆ

E(t)
Hs(θ, z)1{v��s (θ)}μ(dθ, dv, ds),

Tt =
ˆ

E(t)
Cs(θ)1{v��s (θ)}μ(dθ, dv, ds)

where

E(t) = [0, 2π) × [0,∞) × (0, t]
and

Hs(θ, z) = �(θ, z, Cs(θ), �̂s−), Cs(θ) = c(θ, �̂s−, Ts−),

�s(θ) = λ(θ, �̂s−, Ts−).

We use the vector field b = (b̂, bcap) of the σ -regularized LK(ζ ) equation (14), writ-
ten in (Schlicht function, capacity) coordinates. Consider the disk solution (xt )t�0 =
(φ̂t , τt )t<tζ with initial capacity τ0 = 0, which is given by

φ̂t (z) = z, τt =
{

t, if ζ = 0,

ζ−1 log(1 + ζ t), if ζ = 0,
tζ =

{
∞, if ζ � 0,

|ζ |−1, if ζ < 0.
(16)

We will compute the form of the interpolation formula in this case and then prove directly
that it holds. Note that

b(xt ) = (b̂, bcap)(φ̂t , τt ) = (0, e−ζ τt )

and, for y = (ψ̂, ψcap),

∇b(xt )y = −e−ζ τt ((Q + 1)ψ̂, ζψcap)

and the first-order variation at time t due to a variation y at time s � t is given by

∇ξt−s(xs)y = (e−(τt−τs ) P(τt − τs)ψ̂, e−ζ(τt−τs )ψcap).
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Write μ̃ for the compensated Poisson random measure

μ̃(dθ, dv, ds) = μ(dθ, dv, ds) − (dθ/2π)dvds.

Fix t � 0 and set τ̄s = τt − τs . We alert the reader to the concealed dependence of τ̄s

on t . The martingale term Mt = (M̂t , Mcap
t ) in the interpolation formula may then be

written

M̂t (z) =
ˆ

E(t)
e−τ̄s P(τ̄s)Hs(θ, z)1{v��s (θ)}μ̃(dθ, dv, ds),

Mcap
t =

ˆ
E(t)

e−ζ τ̄s Cs(θ)1{v��s (θ)}μ̃(dθ, dv, ds).

The drift β = (β̂, βcap) for (�̂, T ) is given by

β̂(φ̂, τ )(z) =
 2π

0
�(θ, z, c(θ, φ̂, τ ), φ̂)λ(θ, φ̂, τ )dθ,

βcap(φ̂, τ ) =
 2π

0
c(θ, φ̂, τ )λ(θ, φ̂, τ )dθ.

Write �̂s(z) = �̂s(z)− φ̂s(z) = �̂s(z)− z and �
cap
s = Ts −τs . Then we have formally

∇b(xs)(Xs − xs) = −e−ζ τs ((Q + 1)�̂s, ζ�
cap
s )

and so

∇ξt−s(xs)∇b(xs)(Xs − xs) = −e−ζ τs (e−τ̄s P(τ̄s)(Q + 1)�̂s, e−ζ τ̄s ζ�
cap
s ).

The following interpolation identities may then be obtained formally by splitting equa-
tion (15) into its Schlicht function and capacity components.

Proposition 3.1. For all t < tζ and all |z| > 1, we have

�̂t (z) = M̂t (z) + Ât (z), �
cap
t = Mcap

t + Acap
t (17)

where

Ât (z) =
ˆ t

0
e−τ̄s P(τ̄s)

(
β̂(�̂s, Ts) + e−ζ τs (Q + 1)�̂s

)
(z)ds,

Acap
t =

ˆ t

0
e−ζ τ̄s

(
βcap(�̂s, Ts) − e−ζ τs + ζe−ζ τs �

cap
s

)
ds.

Proof. Fix t < tζ . For x ∈ [0, t], recall that τ̄x = τt − τx and define for |z| > 1

�̂x,t (z) = e−τ̄x P(τ̄x )(�̂x − φ̂x )(z), �
cap
x,t = e−ζ τ̄x (Tx − τx ).

Set

M̂x,t (z) =
ˆ

E(x)

e−τ̄s P(τ̄s)Hs(θ, z)1{v��s (θ)}μ̃(dθ, dv, ds),

Mcap
x,t =

ˆ
E(x)

e−ζ τ̄s Cs(θ)1{v��s (θ)}μ̃(dθ, dv, ds)
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and

Âx,t (z) =
ˆ x

0
e−τ̄s P(τ̄s)

(
β̂(�̂s, Ts) + e−ζ τs (Q + 1)�̂s

)
(z)ds,

Acap
x,t =

ˆ x

0
e−ζ τ̄s

(
βcap(�̂s, Ts) − e−ζ τs + ζe−ζ τs �

cap
s

)
ds.

We will show that, for all x ∈ [0, t] and all |z| > 1,

�̂x,t (z) = M̂x,t (z) + Âx,t (z), �
cap
x,t = Mcap

x,t + Acap
x,t .

The case x = t gives the claimed identities. In the case x = 0, all terms are 0. The
left-hand and right-hand sides are piecewise continuously differentiable in x , except for
finitely many jumps, at the jump times of (�x )0�x�t , which occur when μ has an atom
at (θ, v, x) with v � �x (θ). It will suffice to check that the jumps and derivatives agree.
Now Âx,t (z) and Acap

x,t are continuous in x and, at the jump times of �x , the jumps in

�̂x,t (z) and �
cap
x,t are given by

��̂x,t (z) = e−τ̄x P(τ̄x )��̂x (z)

= e−τ̄x P(τ̄x )(e
−Cx (θ)�̂x− ◦ FCx (θ)(θ, .) − �̂x−)(z)

= e−τ̄x P(τ̄x )Hx (θ, z) = �M̂x,t (z)

and

��
cap
x,t = e−ζ τ̄x �Tx = e−ζ τ̄x Cx (θ) = �Mcap

x,t .

So it remains to check the derivatives. We will use a spectral calculation for the semigroup
of multiplier operators P(τ ) = e−τ Q , whose justification is straightforward. Recall that
τ̇t = e−ζ τt . We have

d

dx
τ̄x = −e−ζ τx ,

d

dx
e−τ̄x = e−τ̄x e−ζ τx ,

d

dx
e−ζ τ̄x = ζe−ζ τ̄x e−ζ τx

and

d

dx
P(τ̄x ) = e−ζ τx Q P(τ̄x ).

So, between the jump times, we have

d

dx
�̂x,t (z) = e−ζ τx e−τ̄x P(τ̄x )(Q + 1)�̂x (z),

d

dx
�

cap
x,t (z) = −e−ζ τ̄x e−ζ τx (1 − ζ�

cap
x )

and

d

dx
M̂x,t (z) = −

 2π

0
e−τ̄x P(τ̄x )Hx (θ, z)�x (θ)dθ = −e−δx P(τ̄x )β̂(�̂x , Tx )(z),

d

dx
Mcap

x,t = −
 2π

0
e−ζ τ̄x Cx (θ)�x (θ)dθ = −e−ζ τ̄x βcap(�̂x , Tx )
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and

d

dx
Âx,t (z) = e−τ̄x P(τ̄x )

(
β̂(�̂x , Tx ) + e−ζ τx (Q + 1)�̂x

)
(z),

d

dx
Acap

x,t = e−ζ τ̄x
(
βcap(�̂x , Tx ) − e−ζ τx + ζe−ζ τx �

cap
x

)
.

Hence, between the jump times,

d

dx
�̂x,t (z) = d

dx
(M̂x,t (z) + Âx,t (z)),

d

dx
�

cap
x,t = d

dx
(Mcap

x,t + Acap
x,t )

as required. ��

4. Estimation of Terms in the Interpolation Formula

We obtain some estimates on the terms in the interpolation formula (17) for ALE(α, η)
when it is close to the disk solution (16) of the LK(ζ ) equation, with ζ = α + η. For
δ0 ∈ (0, 1/2], define

T0 = T0(δ0) = inf
{
t ∈ [0, tζ ) : sup

θ∈[0,2π)

|�̂ ′
t (e

σ+iθ )| > δ0 or |�cap
t | > δ0

}
.

We estimate first the martingale term and then the drift term.

4.1. Estimates for the martingale terms. Recall that the martingale term (M̂t , Mcap
t ) in

the interpolation formula is given by

M̂t (z) =
ˆ

E(t)
e−τ̄t,s P(τ̄t,s)Hs(θ, z)1{v��s (θ)}μ̃(dθ, dv, ds),

Mcap
t =

ˆ
E(t)

e−ζ τ̄t,s Cs(θ)1{v��s (θ)}μ̃(dθ, dv, ds)

where E(t) = [0, 2π) × [0,∞) × (0, t] and

τ̄t,s = τt − τs, Cs(θ) = c(θ, �̂s−, Ts−), �s(θ) = λ(θ, �̂s−, Ts−) (18)

with

c(θ, φ̂, τ ) = ce−ατ |φ̂′(eσ+iθ )|−α, λ(θ, φ̂, τ ) = c−1e−ητ |φ̂′(eσ+iθ )|−η

and

Hs(θ, z) = �(θ, z, Cs(θ), �̂s−), �(θ, z, c, φ̂) = e−cφ̂(Fc(θ, z)) − φ̂(z).

Consider the following approximations to M̂t (z) and Mcap
t , which are obtained by re-

placing �̂s− by φ̂s , Ts− by τs and e−c Fc(θ, z) − z by 2cz/(e−iθ z − 1). (Under our
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assumptions on the particle family, the last approximation becomes good in the limit
c → 0. See Sect. A.2 and in particular equation (110).) Define

�̂t (z) =
ˆ

E(t)
e−τ̄t,s P(τ̄t,s)H(θ, z)2cs1{v�λs }μ̃(dθ, dv, ds), (19)

�
cap
t =

ˆ
E(t)

e−ζ τ̄t,s cs1{v�λs }μ̃(dθ, dv, ds) (20)

where

cs = ce−ατs , λs = c−1e−ητs

and

H(θ, z) = z

e−iθ z − 1
=

∞∑
k=0

ei(k+1)θ z−k . (21)

Lemma 4.1. For allα, η ∈ R, all p � 2 and all T < tζ , there is a constant C(α, η, p, T ) <

∞, such that, for all c ∈ (0, 1], all σ � 0 and all δ0 ∈ (0, 1/2],∥∥ sup
t�T0(δ0)∧T

|Mcap
t |∥∥p � C

√
c

and ∥∥ sup
t�T0(δ0)∧T

|Mcap
t − �

cap
t |∥∥p � C(c +

√
cδ0).

Proof. We write T0 for T0(δ0) in the proofs. Consider the martingale (Mt )t<tζ given by

Mt =
ˆ

E(t)
eζ τs Cs(θ)1{v��s (θ), s�T0}μ̃(dθ, dv, ds).

By an inequality of Burkholder, for all p � 2, there is a constant C(p) < ∞ such that,
for all t � 0,

‖M∗
t ‖p � C(p)

(
‖〈M〉t‖1/2

p/2 + ‖(�M)∗t ‖p

)
. (22)

We write here M∗
t for sups�t |Ms | and similarly for other processes. See [3, Theorem

21.1] for the discrete-time case. The continuous-time case follows by a standard limit
argument. Now

〈M〉t =
ˆ T0∧t

0

 2π

0
e2ζ τs Cs(θ)2�s(θ)dθds

and

�Mt = |Mt − Mt−| � eζ τt sup
θ∈[0,2π)

Ct (θ).

For all t � T0 ∧ T and all θ ∈ [0, 2π), we have

eζ τt � C, Ct (θ) � Cc, �t (θ) � C/c (23)
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so 〈M〉t � Cc and (�M)∗t � Cc. Here and below, we write C for a finite constant of
the dependence allowed in the statement. The value of C may vary from one instance to
the next. We remind the reader that Ct (θ) and �t (θ) are defined at (18). Hence

‖M∗
t ‖p � C

√
c.

Since Mcap
t = e−ζ τt Mt for all t � T0, the first claimed estimate follows.

For the second estimate, we use instead the martingale (Mt )t�0 given by

Mt =
ˆ

E(t)
eζ τs

(
Cs(θ)1{v��s (θ)} − cs1{v�λs }

)
1{s�T0}μ̃(dθ, dv, ds).

Then

〈M〉t =
ˆ T0∧t

0

ˆ ∞

0

 2π

0
e2ζ τs

(
Cs(θ)1{v��s (θ)} − cs1{v�λs }

)2
dθdvds.

For t � T0 ∧ T and θ ∈ [0, 2π), we have

|Ct (θ) − ct | � Ccδ0, |�t (θ) − λt | � Cδ0/c (24)

so ˆ ∞

0

(
Ct (θ)1{v��t (θ)} − ct 1{v�λt }

)2
dv � Ccδ0. (25)

Then 〈M〉t � Ccδ0 and (�M)t � Cc. Hence, by Burkholder’s inequality,

‖M∗
t ‖p � C(c +

√
cδ0).

Since Mcap
t − �

cap
t = e−ζ τt Mt for all t � T0, the second claimed estimate follows. ��

Note that, since �̂t takes values in S1, the holomorphic function �̂t (z) = �̂t (z)− z
is bounded at ∞ and hence has a limiting value �̂t (∞). The same is true for the terms
M̂t and Ât in the interpolation formula. Instead of estimating these terms directly, we
estimate first their values at ∞ and then their radial derivatives DM̂t and D Ât , since
this gives the best control of the derivative of �̂t near the unit circle, which drives the
dynamics of the process.

Lemma 4.2. For all α, η ∈ R with ζ = α + η � 1, all p � 2 and all T < tζ , there is a
constant C(α, η,�, p, T ) < ∞, such that, for all c ∈ (0, 1], all σ � 0, all δ0 ∈ (0, 1/2]
and all t � T ,

∥∥ sup
s�T0(δ0)∧t

|M̂s(∞)|∥∥p
p � Ccp/2

(
1 +

ˆ t

0
‖�̂s−(∞)1{s�T0(δ0)}‖p

pds

)

and ∥∥ sup
s�T0(δ0)∧t

|M̂s(∞) − �̂s(∞)|∥∥p
p

� C

( (
c +

√
cδ0

)p
+ cp/2

ˆ t

0
‖�̂s−(∞)1{s�T0(δ0)}‖p

pds

)
.
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Proof. By considering the Laurent expansions of Fc and φ̂, we have

�(θ,∞, c, φ̂) = a0(c)e
iθ + (e−c − 1)ψ̂(∞), ψ̂(z) = φ̂(z) − z. (26)

Consider the martingale (Mt )t<tζ given by

Mt =
ˆ

E(t)
eτs

(
a0(Cs(θ))eiθ + (e−Cs (θ) − 1)�̂s−(∞)

)
1{v��s (θ), s�T0}μ̃(dθ, dv, ds).

Then M̂t (∞) = e−τt Mt for all t � T0. By Proposition A.5, |a0(c)| � Cc for all c.
Hence

〈M〉t =
ˆ T0∧t

0

 2π

0
e2τs

∣∣∣a0(Cs(θ))eiθ + (e−Cs (θ) − 1)�̂s−(∞)

∣∣∣2
�s(θ)dθds

� Cce2τt

ˆ T0∧t

0
(1 + |�̂s−(∞)|2)ds

and, for p � 2, since

|(�M)∗t |p �
ˆ

E(t)
epτs

∣∣∣a0(Cs(θ))eiθ + (e−Cs (θ) − 1)�̂s−(∞)

∣∣∣p
1{v��s (θ),s�T0}μ(dθ, dv, ds)

we have

‖(�M)∗t ‖p
p � E

ˆ T0∧t

0

 2π

0
epτs

∣∣∣a0(Cs(θ))eiθ + (e−Cs (θ) − 1)�̂s−(∞)

∣∣∣p
�s(θ)dθds

� Ccp−1epτtE

ˆ T0∧t

0
(1 + |�̂s−(∞)|p)ds.

The first claimed estimate then follows from Burkholder’s inequality (22).
For the second estimate, we consider instead the martingale (Mt )t<tζ given by

Mt =
ˆ

E(t)
eτs

( (
a0(Cs(θ))1{v��s (θ)} − 2cs1{v�λs }

)
eiθ

+ (e−Cs (θ) − 1)�̂s−(∞)1{v��s (θ)}
)

1{s�T0}μ̃(dθ, dv, ds).

Then M̂t (∞)− �̂t (∞) = e−τt Mt for all t � T0. By Proposition A.5, we have |a0(c)−
2c| � Cc3/2. We combine this with (23) and (24) to see that
ˆ ∞

0

∣∣a0(Ct (θ))1{v��t (θ)} − 2ct 1{v�λt }
∣∣p dv � C(c3p/2−1 + c p−1δ0) � C(c p + c p−1δ0).

The second estimate then follows by Burkholder’s inequality as above. ��
Recall that, for p ∈ [1,∞) and r > 1, we set

‖ψ‖p,r =
( 2π

0
|ψ(reiθ )|pdθ

)1/p

.

For a measurable function � on � × {|z| > 1}, we set

���p,r =
(
E

 2π

0
|�(reiθ )|pdθ

)1/p

.
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Lemma 4.3. For all α, η ∈ R with ζ = α + η � 1, all ε ∈ (0, 1/2), all p � 2 and all
T < tζ , there is a constant C(α, η, ε,�, p, T ) < ∞ such that, for all c ∈ (0, 1], all
σ � 0, all δ0 ∈ (0, 1/2] and all t � T , for all r � 1 + c1/2−ε, for ρ = (1 + r)/2, we
have, in the case ζ < 1,

� DM̂t 1{t�T0(δ0)}�p,r � C
√

c

r

(
1 + r sup

s�t
�D�̂s−1{s�T0(δ0)}�p,ρ

) (
r

r − 1

)
(27)

and

� D(M̂t − �̂t )1{t�T0(δ0)}�p,r

� C
√

c

r

(√
δ0 + r sup

s�t
�D�̂s−1{s�T0(δ0)}�p,ρ

) (
r

r − 1

)
+

Cc

r

(
r

r − 1

)2

(28)

while in the case ζ = 1 the same bounds hold with
(

r
r−1

)
replaced in the first term on

the right-hand side by
(

r
r−1

)
+ 1√

σ

(
r

r−1

)1/2
.

Proof. Recall that we write T0 for T0(δ0). Fix t � T < tζ . For s ∈ [0, t], we will write
τ̄s for τ̄t,s = τt − τs . Consider for |z| > 1, the martingale (Mx (z))0�x�t given by

Mx (z) =
ˆ

E(x)

H̃s(θ, z)1{v��s (θ), s�T0}μ̃(dθ, dv, ds),

H̃s(θ, z) = e−τ̄s D P(τ̄s)Hs(θ, z).

By Burkholder’s inequality, for p � 2 and all |z| > 1,

‖Mt (z)‖p � C(p)
(
‖〈M(z)〉t‖1/2

p/2 + ‖(�M(z))∗t ‖p

)
. (29)

On the event {t � T0}, we have DM̂t (z) = Mt (z) so, on taking the ‖.‖p,r -norm in (29),
we obtain

� DM̂t 1{t�T0}�p,r � �Mt�p,r � C(p)
(
�〈M(.)〉t �

1/2
p/2,r + � (�M(.))∗t �p,r

)
.

(30)

Now

〈M(z)〉t =
ˆ T0∧t

0

 2π

0
|H̃s(θ, z)|2�s(θ)dθds

and

(�M(z))∗t � sup
s�T0∧t,θ∈[0,2π)

|H̃s(θ, z)|. (31)

Also

|(�M(z))∗t |p �
ˆ

E(t)
|H̃s(θ, z)|p1{v��s (θ),s�T0}μ(dθ, dv, ds)
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so

‖(�M(z))∗t ‖p
p � E

ˆ T0∧t

0

 2π

0
|H̃s(θ, z)|p�s(θ)dθds.

We have �s(θ) � C/c for all s � T0 and θ ∈ [0, 2π). Hence

〈M(z)〉t � C

c

ˆ T0∧t

0

 2π

0
|H̃s(θ, z)|2dθds (32)

and

‖〈M(.)〉t‖p/2,r � C

c

ˆ T0∧t

0

 2π

0
‖H̃s(θ, .)‖2

p,r dθds. (33)

Similarly,

�(�M(.))∗t �
p
p,r � C

c
E

ˆ T0∧t

0

 2π

0
‖H̃s(θ, .)‖p

p,r dθds. (34)

We will split the jump �(θ, z, c, φ̂) as the sum of several terms, and thereby split
Hs(θ, z) and hence Mt also as a sum of terms. For each of these terms, we will use one
of the inequalities (32), (33) and one of (31), (34) to obtain a suitable upper bound for
the right-side of (30). These bounds will combine to prove the first claimed estimate.

Recall that φ̂(z) = z + ψ̂(z), so

�(θ, z, c, φ̂) = �0(θ, z, c) +
(

e−cψ̂(Fc(θ, z)) − ψ̂(z)
)

(35)

where

�0(θ, z, c) = e−c Fc(θ, z) − z.

We further split the second term by expanding in Taylor series, using an interpolation
from z to Fc(θ, z). For u ∈ [0, 1], define

Fc,u(θ, z) = eu fc(θ,z)z, fc(θ, z) = log(Fc(θ, z)/z).

Then Fc,0(θ, z) = z and Fc,1(θ, z) = Fc(θ, z). Fix c, θ and z and set

g(u) = e−cuψ̂(Fc,u(θ, z))

then

g(k)(u) = e−cu
k∑

j=0

(
k

j

)
(−c)k− j fc(θ, z) j D j ψ̂(Fc,u(θ, z)).

Set m = �1/(8ε)� and recall that our constants C are allowed to depend on ε. Then

e−cψ̂(Fc(θ, z)) − ψ̂(z) = g(1) − g(0)

=
m∑

k=1

g(k)(0)

k! +
ˆ 1

0

(1 − u)m

m! g(m+1)(u)du

=
m+1∑
k=1

�k(θ, z, c, ψ̂) (36)
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where, for k = 1, . . . , m,

�k(θ, z, c, ψ̂) = 1

k!
k∑

j=0

(
k

j

)
(−c)k− j fc(θ, z) j D j ψ̂(z)

and

�m+1(θ, z, c, ψ̂) = 1

m!
ˆ 1

0
(1 − u)me−cu

m+1∑
j=0

(
m + 1

j

)
(−c)m+1− j fc(θ, z) j D j ψ̂(Fc,u(θ, z))du.

Let us write

H0
s (θ, z) = �0(θ, z, Cs(θ)),

Hk
s (θ, z) = �k(θ, z, Cs(θ), �̂s−), k = 1, . . . , m + 1

and

H̃ k
s (θ, z) = e−τ̄s D P(τ̄s)Hk

s (θ, z)

and

Mk
x (z) =

ˆ
E(x)

H̃ k
s (θ, z)1{v��s (θ),s�T0}μ̃(dθ, dv, ds).

We consider first the contribution of

�0(θ, z, c) = e−c Fc(θ, z) − z.

We make the further split �0 = �0,0 + �0,1, where

�0,0(θ, z, c) = a0(c)z

e−iθ z − 1
= a0(c)

∞∑
k=0

ei(k+1)θ z−k

and

�0,1(θ, z, c) = e−c Fc(θ, z) − z − a0(c)z

e−iθ z − 1
.

We will exploit the more explicit form of �0,0, which is the main term as c → 0 under our
particle assumptions (4), (5) and (6), to obtain better estimates. We have, with obvious
notation,

H0,0
s (θ, z) = a0(Cs(θ))

∞∑
k=0

ei(k+1)θ z−k

so, for τ � 0,

D P(τ )H0,0
s (θ, z) = a0(Cs(θ))

∞∑
k=1

ei(k+1)θ (−k)e−τq(k)z−k .
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By Proposition A.5, |a0(c)| � Cc for all c. So, for |z| = r and τ � 0,

|D P(τ )H0,0
s (θ, z)| � Cc

∞∑
k=1

kr−k � Cc

r

(
r

r − 1

)2

(37)

and

 2π

0
|D P(τ )H0,0

s (θ, z)|2dθ � Cc2
 2π

0

∣∣∣∣∣
∞∑

k=1

ei(k+1)θ (−k)e−τq(k)z−k

∣∣∣∣∣
2

dθ

� Cc2
∞∑

k=1

k2e−2τq(k)r−2k .

Hence we have

〈M0,0(z)〉t � C

c

ˆ T0∧t

0

 2π

0
|D P(τ̄s)H0,0

s (θ, z)|2dθds

� Cc
∞∑

k=1

k2r−2k
ˆ t

0
e−2τ̄sq(k)ds � Cc

∞∑
k=1

k2r−2k

q(k)
.

We used the facts that (d/ds)τ̄s = −τ̇s and τ̇s = e−ζ τs and eζ τs � C to see that, for all
λ > 0,

ˆ t

0
λe−λτ̄s ds � C

ˆ t

0
λe−λτ̄s τ̇sds � C. (38)

We will use similar estimates for other integrals of (τ̄s)s�t without further explanation.
Now q(k) � (1 − ζ +)k so we obtain, for ζ < 1,

〈M0,0(z)〉t � Cc

r2

(
r

r − 1

)2

.

On the other hand, for ζ = 1, we have q(k) � ((σk2) ∧ k)/C so we obtain

〈M0,0(z)〉t � Cc

r2

( (
r

r − 1

)2

+
1

σ

(
r

r − 1

))
.

We use (31) and (37) to obtain, for |z| = r > 1,

|(�M0,0(z))∗t | � sup
s�T0∧t,θ∈[0,2π)

|D P(τ̄s)H0,0
s (θ, z)| � Cc

r

(
r

r − 1

)2

.

On substituting the estimates for 〈M0,0(z)〉t and (�M0,0(z))∗t into (30), we obtain for
r � 1 +

√
c and p � 2, for ζ < 1,

� M0,0
t �p,r � C

√
c

r

(
r

r − 1

)
(39)
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while, for ζ = 1,

� M0,0
t �p,r � C

√
c

r

( (
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )
. (40)

We turn to the contribution of �0,1. For s � T0 and all θ ∈ [0, 2π), we have

Cs(θ) � Cc. (41)

By Proposition A.6, there is a family of functions (Qu : u ∈ [0, 1]), each holomorphic
on {|z| > 1}, such that

|Qu(z)| � C
√

u|z|
|z − 1|2 (42)

and such that

H0,1
s (θ, z) = �0,1(θ, z, Cs(θ)) = e−Cs (θ)

ˆ Cs (θ)

0
Qu(θ, z)du (43)

where Qu(θ, z) = eiθ Qu(e−iθ z). We use the Laurent series

Qu(z) =
∞∑

k=1

au(k)z−k

to write

D P(τ )H0,1
s (θ, z) = e−Cs (θ)

∞∑
k=1

(−k)e−τq(k)ei(k+1)θ z−k
ˆ Cs (θ)

0
au(k)du.

Hence we obtain, for |z| = r > 1,

|D P(τ )H0,1
s (θ, z)| �

ˆ Cc

0

∞∑
k=1

kr−k |au(k)|du � Cc3/2

r

(
r

r − 1

)3

where we used

∞∑
k=1

kr−k |au(k)|du �
( ∞∑

k=1

k2(r/ρ)−2k

)1/2 ( ∞∑
k=1

|au(k)|2ρ−2k

)1/2

and

∞∑
k=1

|au(k)|2ρ−2k = ‖Qu‖2
2,ρ � Cu

r2

(
r

r − 1

)3

.

Now

 2π

0
|D P(τ )Qu(θ, z)|2dθ =

∞∑
k=1

k2e−2τq(k)|ak(u)|2r−2k
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so, using again (38),

ˆ t

0

 2π

0
|D P(τ̄s)Qu(θ, z)|2dθds � C

∞∑
k=1

k2|ak(u)|2r−2k

q(k)
.

Hence, using the same lower bounds for q(k) as above, we obtain, for ζ < 1,

ˆ t

0

 2π

0
|D P(τ̄s)Qu(θ, z)|2dθds � C

∞∑
k=1

k|ak(u)|2r−2k � Cu

r2

(
r

r − 1

)4

and, for ζ = 1,
ˆ t

0

 2π

0
|D P(τ̄s)Qu(θ, z)|2dθds � Cu

r2

((
r

r − 1

)4

+
1

σ

(
r

r − 1

)3 )
.

Hence, for |z| = r > 1 and ζ < 1, we have

〈M0,1(z)〉t � C

c

ˆ T0∧t

0
e−τ̄s

 2π

0
|D P(τ̄s)H0,1

s (θ, z)|2dθds

� C

c

ˆ T0∧t

0

 2π

0

( ˆ Cc

0
|D P(τ̄s)Qu(θ, z)|du

)2

dθds

� C
ˆ Cc

0

ˆ T0∧t

0

 2π

0
|D P(τ̄s)Qu(θ, z)|2dθdsdu

� C

r2

(
r

r − 1

)4 ˆ Cc

0
udu = Cc2

r2

(
r

r − 1

)4

while, for ζ = 1, similarly,

〈M0,1(z)〉t � Cc2

r2

( (
r

r − 1

)4

+
1

σ

(
r

r − 1

)3 )
.

Also, for all s � T0 and |z| = r > 1, we have

|�M0,1
s (z)| � sup

s�T0

|D P(τ̄s)H0,1
s (θ, z)| � Cc3/2

r

(
r

r − 1

)3

.

Hence we obtain, for p � 2 and r � 1 +
√

c, for ζ < 1,

� M0,1
t �p,r � Cc

r

(
r

r − 1

)2

(44)

and, for ζ = 1, similarly,

� M0,1
t �p,r � Cc

r

(
r

r − 1

)((
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )
. (45)

We consider next, for k = 1, . . . , m, the contribution of

�k(θ, z, c, ψ̂) = 1

k!
k∑

j=0

(
k

j

)
(−c)k− j fc(θ, z) j D j ψ̂(z).
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In order to avoid the appearance of a spurious log term in the case ζ = 1 we treat this
contribution a little differently. We take an additional derivative, estimate the derivative
and finally integrate that estimate. We have

fc(θ, z) =
ˆ c

0
Lu(θ, z)du

where Lu(θ, z) = eiθ Lu(e−iθ z) and Lu(z) is given by (117). Then

Hk
s (θ, z) = �k(θ, z, Cs(θ), �̂s−)

= 1

k!
k∑

j=0

(
k

j

)
(−Cs(θ))k− j

(ˆ Cs (θ)

0
Lu(θ, z)du

) j

D j �̂s−(z) (46)

so

D2 P(τ )Hk
s (θ, z)

= 1

k! (−Cs(θ))k D2 P(τ )�̂s−(z) +
1

k!
k∑

j=1

(
k

j

)
(−Cs(θ))k− j

ˆ Cs (θ)

0
. . .

ˆ Cs (θ)

0
D2 P(τ )(Lu1,...,u j (θ, .)D j �̂s−)(z)du1 . . . du j

where

Lu1,...,u j (θ, z) =
j∏

i=1

Lui (θ, z).

Hence, for s � T0,

|D2 P(τ )Hk
s (θ, z)| � Cck |D2 P(τ )�̂s−(z)|

+ C
k∑

j=1

ck− j
ˆ Cc

0
. . .

ˆ Cc

0
|D2 P(τ )(Lu1,...,u j (θ, .)D j �̂s−)(z)|du1 . . . du j

so ( 2π

0
|D2 P(τ̄s)Hk

s (θ, z)|2dθ

)1/2

� Cckhs(z) + C
k∑

j=1

ck− j
ˆ Cc

0
. . .

ˆ Cc

0
hs,u1,...,u j (z)du1 . . . du j

where

hs(z) = |D2 P(τ̄s)�̂s−(z)|,

hs,t1,...,t j (z) =
( 2π

0
|D2 P(τ̄s)(Lu1,...,u j (θ, .)D j �̂s−)(z)|2dθ

)1/2

.
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By Proposition A.6, for |z| = r � 1 +
√

c and u � Cc,

|Lu(z)| � C |z|
|z − 1|

so

‖Lu1,...,u j ‖p,r � C

(
r

r − 1

) j−1/p

and so by Proposition A.7, for j = 1, . . . , k and ρ = (r + 1)/2 and ρ′ = (3r + 1)/4, for
ζ < 1,

‖hs,u1,...,u j ‖p,r � ‖D2 P(τ̄s)‖p,ρ′→r‖Lu1,...,u j ‖2,ρ′ ‖D j �̂s−‖p,ρ′

� C

((
r

r − 1

)2

∧ 1

τ̄ 2
s

) (
r

r − 1

) j−1/2 (
r

r − 1

) j−1

‖D�̂s−‖p,ρ .

In estimating ‖D2 P(τ )‖p,ρ′→r , we used the better of two estimates – either the case
n = 0 of Lemma 2.1 in conjunction with (119) or the case n = 2 of Lemma 2.1. A
similar but easier estimate holds for ‖hs‖p,r . Now

〈DMk(z)〉t � C

c

ˆ T0∧t

0

 2π

0
|D2 P(τ̄s)Hk

s (θ, z)|2dθds

� C

c

ˆ T0∧t

0

(
ckhs(z) +

k∑
j=1

ck− j
ˆ Cc

0
. . .

ˆ Cc

0
hs,u1,...,u j (z)du1 . . . du j

)2

ds

so, for r � 1 +
√

c and ζ < 1,

‖〈DMk(.)〉t‖p/2,r

� C

c

ˆ T0∧t

0

(
ck‖hs‖p,r +

k∑
j=1

ck− j
ˆ Cc

0
. . .

ˆ Cc

0
‖hs,u1,...,u j ‖p,r du1 . . . du j

)2

ds

� Cc2k−1
(

r

r − 1

)4k−3 ˆ T0∧t

0

( (
r

r − 1

)4

∧ 1

τ̄ 4
s

)
‖D�̂s−‖2

p,ρds

� Cc

(
r

r − 1

) ˆ T0∧t

0

((
r

r − 1

)4

∧ 1

τ̄ 4
s

)
‖D�̂s−‖2

p,ρds

and so

�〈DMk(.)〉t�p/2,r � Cc

(
r

r − 1

)4

sup
s�t

�D�̂s−1{s�T0} �
p
p,ρ .

We used here the inequality

ˆ ∞

0
a p ∧ s−pds �

(
p

p − 1

)
a p−1 (47)
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which holds for all a > 0 and all p > 1, to see that

ˆ t

0

( (
r

r − 1

)4

∧ 1

τ̄ 4
s

)
ds � C

ˆ t

0

((
r

r − 1

)4

∧ 1

τ̄ 4
s

)
τ̇sds � C

(
r

r − 1

)3

.

For p � 2 and r > 1, we have

�(�DMk(.))∗t �
p
p,r � C

c
E

ˆ T0∧t

0

 2π

0
‖D2 P(τ̄s)Hk

s (θ, .)‖p
p,r dθds

and, from (46), for r � 1 +
√

c, estimating as above but now using the second estimate
of Proposition A.7, we get

‖D2 P(τ̄s)Hk
s (θ, .)‖p,r � Cck

((
r

r − 1

)2

∧ 1

τ̄ 2
s

)(
r

r − 1

)2k−1−1/p

‖D�̂s−‖p,ρ

� Cc

( (
r

r − 1

)2

∧ 1

τ̄ 2
s

) (
r

r − 1

)1−1/p

‖D�̂s−‖p,ρ

so, for r � 1 +
√

c,

� (�DMk(.))∗t �
p
p,r

� Ccp−1
(

r

r − 1

)p−1

E

ˆ T0∧t

0

( (
r

r − 1

)2p

∧ 1

τ̄
2p
s

)
‖D�̂s−‖p

p,ρds

� Ccp−1
(

r

r − 1

)3p−2

sup
s�t

�D�̂s−1{s�T0} �
p
p,ρ . (48)

On substituting the estimates for 〈DMk(z)〉t and (�DMk(.))∗t into (30), we obtain for
r � 1 +

√
c and p � 2, for ζ < 1,

� DMk
t �p,r � C

√
c

(
r

r − 1

)2

sup
s�t

�D�̂s−1{s�T0} �p,ρ . (49)

In the case ζ = 1, we have to modify the above estimation in using

‖D2 P(τ )ψ‖p,r � C

( (
r

r − 1

)2

∧
(

1

τ 2 ∨ 1

στ

) )
‖ψ‖p,ρ .

We obtain in this case

� DMk
t �p,r � C

√
c

( (
r

r − 1

)2

+
1√
σ

(
r

r − 1

)3/2 )
sup
s�t

�D�̂s−1{s�T0} �p,ρ .

(50)

Now, since the holomorphic functions Mk
t and �̂s− vanish at ∞, we have

Mk
t (z) = −

ˆ ∞

1

DMk
t (az)

a
da
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and, for a � 1,

‖�̂s−‖p,aρ � C

a
‖�̂s−‖p,ρ

so, on integrating (49) and (50) we obtain, for ζ < 1,

� Mk
t �p,r � C

√
c

(
r

r − 1

)
sup
s�t

�D�̂s−1{s�T0} �p,ρ . (51)

while, for ζ = 1,

� Mk
t �p,r � C

√
c

((
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )
sup
s�t

�D�̂s−1{s�T0} �p,ρ .

(52)

(We remark that, if a similar argument is used to estimate �Mk
t �p,r directly, then one

obtains the same estimate (51) for ζ < 1 but one faces in the case ζ = 1 the integral
ˆ t

0

(
r

r − 1

)
∧ 1

σ τ̄s
ds.

The p = 1 case of (47) then generates a log term, which our method avoids.)
We consider finally the contribution of

�m+1(θ, z, c, ψ̂) = 1

m!
ˆ 1

0
(1 − u)me−cu

m+1∑
j=0

(
m + 1

j

)

(−c)m+1− j fc(θ, z) j D j ψ̂(Fc,u(θ, z))du.

Then

Hm+1
s (θ, z) = �m+1(θ, z, Cs(θ), �̂s−)

= 1

m!
ˆ 1

0
(1 − u)me−Cs (θ)u

m+1∑
j=0

(
m + 1

j

)

(−Cs(θ))m+1− j fCs (θ)(θ, z) j D j �̂s−(FCs (θ),u(θ, z))du.

By Proposition A.5, we have

| fc(θ, z)| � Cc|z|
|e−iθ z − 1| .

Hence, for s � T0 and τ � 0,

‖D P(τ )Hm+1
s (θ, .)‖p,r

� Ccm+1‖D P(τ )�̂s−‖p,r + C‖D P(τ )‖p,ρ′→r

m+1∑
j=1

cm+1− j‖ fCs (θ)(θ, .) j‖p,ρ′ ‖D j �̂s−(FCs (θ),u(θ, .))‖∞,ρ′ .
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By Lemma 2.1, for ζ < 1,

‖D P(τ )‖p,ρ′→r � C

(
r

r − 1

)
∧ 1

τ
.

We have

‖ fCs (θ)(θ, .) j‖p,ρ′ � Cc j
(

r

r − 1

) j−1/p

and, since |Fc,u(θ, z)| � |z|, we have

‖D j �̂s−(FCs (θ),u(θ, .))‖∞,ρ′ � ‖D j �̂s−‖∞,ρ′ � C

(
r

r − 1

) j−1+1/p

‖D�̂s−‖p,ρ .

Hence, for ζ < 1, we have

‖D P(τ )Hm+1
s (θ, .)‖p,r � Ccm+1

( (
r

r − 1

)
∧ 1

τ

) (
r

r − 1

)2m+1

‖D�̂s−‖p,ρ

so, using (33),

‖〈Mm+1(.)〉t‖p/2,r � Cc2m+1
(

r

r − 1

)4m+2 ˆ T0∧t

0

( (
r

r − 1

)2

∧ 1

τ̄ 2
s

)
‖D�̂s‖2

p,ρds

and so

�〈Mm+1(.)〉t�p/2,r � Cc2m+1
(

r

r − 1

)4m+3

sup
s�t

�D�̂s1{s�T0}�2
p,ρ

� Cc

(
r

r − 1

)2

sup
s�t

�D�̂s1{s�T0} �2
p,ρ .

Here we have used our choice of m � 1/(8ε) and the assumption r � 1 + c1/2−ε to see
that

c2m
(

r

r − 1

)4m+1

� C.

The bound (48) remains valid with Mm+1 in place of Mk . Hence for ζ < 1

� Mm+1
t �p,r � C

√
c

(
r

r − 1

)
sup
s�t

�D�̂s1{s�T0} �p,ρ . (53)

For ζ = 1, given the weaker bound for‖D P(τ )‖p,r in Lemma 2.1, we adapt the argument
as above to obtain

� 〈Mm+1(.)〉t�p/2,r

� Cc

( (
r

r − 1

)2

+
1

σ

(
r

r − 1

) )
sup
s�t

�D�̂s1{s�T0}�2
p,ρ
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where log term has been absorbed using our choice of m, and then

� Mm+1
t �p,r � C

√
c

((
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )
sup
s�t

�D�̂s1{s�T0} �p,ρ .

(54)

Now

Mt = M0,0
t + M0,1

t +
m+1∑
k=1

Mk
t

and we have shown that all terms on the right-hand side can be bounded by the right-hand
side in (27), so this first estimate is now proved.

It remains to show the second estimate. Fix t � 0 and consider, for |z| > 1, the
martingale (�x (z))x�0 given by

�x (z) =
ˆ

E(x)

e−τ̄s P(τ̄s)DH(θ, z)2cs1{v�λs , s�T0}μ̃(dθ, dv, ds).

Set M̃x (z) = M0,0
x (z) − �x (z). Then

M̃x (z) =
ˆ

E(x)

e−τ̄s
(
a0(Cs(θ))1{v��s (θ)} − 2cs1{v�λs }

)
D P(τ̄s)H(θ, z)1{s�T0}μ̃(dθ, dv, ds)

and

D(M̂t − �̂t ) = Mt − �t = M̃t + M0,1
t +

m+1∑
k=1

Mk
t .

For all but the first term on the right, the bounds (44), (45), (51), (52), (53), (54), are
sufficient for (28). It remains to show a suitable bound on M̃t . We use the estimate (25)
to see that, for ζ < 1,

〈M̃(z)〉t =
ˆ T0∧t

0

ˆ ∞

0

 2π

0
e−2τ̄s |a0(Cs(θ))1{v��s(θ)}

− 2cs1{v�λs }|2|D P(τ̄s)H(θ, z)|2dθdvds

� Ccδ0

r2

(
r

r − 1

)2

while for ζ = 1 we obtain similarly

〈M̃(z)〉t � Ccδ0

r2

( (
r

r − 1

)2

+
1

σ

(
r

r − 1

))
.

Otherwise we can proceed as for M0,0 to arrive as the following estimates, which suffice
for (28). For ζ < 1, we have

�M̃t�p,r � C
√

cδ0

r

(
r

r − 1

)
+

Cc

r

(
r

r − 1

)2
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while for ζ = 1

�M̃t�p,r � C
√

cδ0

r

((
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )
+

Cc

r

(
r

r − 1

)2

.

��

4.2. Estimates for the drift terms. We turn to the drift terms, beginning with estimates
for the drift (β̂, βcap) of the ALE(α, η) process. Recall that (Tt )t�0 has drift given by

βcap(φ̂, τ ) =
 2π

0
c(θ, φ̂, τ )λ(θ, φ̂, τ )dθ

where

c(θ, φ̂, τ ) = ce−ατ |φ̂′(eσ+iθ)|−α, λ(θ, φ̂, τ ) = c−1e−ητ |φ̂′(eσ+iθ)|−η.

Lemma 4.4. For all ζ ∈ R and all T < tζ , there is a constant C(ζ, T ) < ∞ such that,
for all δ0 ∈ (0, 1/2], all t � T , all φ̂ ∈ S1 and all τ � 0, we have

|βcap(φ̂, τ ) − e−ζ τt + ζe−ζ τt ψ
cap
t | � Cδ2

0

whenever |ψcap
t | � δ0 and |ψ̂ ′(eσ+iθ )| � δ0 for all θ , where ψ

cap
t = τ − τt and

ψ̂(z) = φ̂(z) − z.

Proof. We have

c(θ, φ̂, τ )λ(θ, φ̂, τ ) = e−ζ τ |φ̂′(eσ+iθ)|−ζ = e−ζ τt e−ζψ
cap
t |1 + ψ̂ ′(eσ+iθ)|−ζ

and, for |w| � 1/2,

|1 + w|−ζ = 1 − ζ Re w + ε(w), |ε(w)| � C |w|2

so

c(θ, φ̂, τ )λ(θ, φ̂, τ ) = e−ζ τt
(

1 − ζψ
cap
t − ζ Re ψ̂ ′(eσ+iθ ) + γt (θ, φ̂, τ )

)
(55)

where

|γt (θ, φ̂, τ )| � Cδ2
0 (56)

whenever |ψcap
t | � δ0 and |ψ̂ ′(eσ+iθ )| � δ0 for all θ . For φ̂ ∈ S1, ψ̂ is holomorphic in

{|z| > 1} and bounded at ∞, so

 2π

0
Re ψ̂ ′(eσ+iθ )dθ = 0. (57)

The claimed estimate follows on integrating (55) in θ . ��
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Recall that the drift of (�̂t )t�0 is given by

β̂(φ̂, τ )(z) =
 2π

0
�(θ, z, c(θ, φ̂, τ ), φ̂)λ(θ, φ̂, τ )dθ

where

�(θ, z, c, φ̂) = e−cφ̂(Fc(θ, z)) − φ̂(z), Fc(θ, z) = eiθ Fc(e
−iθ z).

It is convenient in the following statement to use the notation

‖φ‖p,r,0 = ‖φ − φ(∞)‖p,r

for functions φ holomorphic in {|z| > 1} and bounded at ∞.

Lemma 4.5. For all α, η ∈ R and all T < tζ , there is a constant C(α, η,�, T ) < ∞
with the following property. For all c ∈ (0, 1/C], all σ > 0, all δ0 ∈ (0, 1/2], all t � T ,
all φ̂ ∈ S1 and all τ � 0, we have

|β̂(φ̂, τ )(∞) + e−ζ τt (Q + 1)ψ̂(∞)| � C(δ0
√

c + δ2
0) + C(c + δ0)|ψ̂(∞)| (58)

whenever |ψcap
t | � δ0 and |ψ̂ ′(eσ+iθ )| � δ0 for all θ , where ψ

cap
t = τ − τt and

ψ̂(z) = φ̂(z) − z.
Moreover, for all α, η ∈ R, all ε ∈ (0, 1/2], all p � 2 and all T < τζ , there is a

constant C(α, η,�, ε, p, T ) < ∞ with the following property. For all c ∈ (0, 1/C], all
σ > 0, all δ0 ∈ (0, 1/2], all t � T , all φ̂ ∈ S1 and all τ � 0, for all r � 1 + c1/2−ε and
ρ = (3r + 1)/4, we have

‖β̂(φ̂, τ ) + e−ζ τt (Q + 1)ψ̂‖p,r,0

� Cδ2
0

r

(
1 + log

(
r

r − 1

))
+

Cδ0

r

(
1 + log

(
r

r − 1

))
r‖Dψ̂‖p,ρ

+
Cδ0

√
c

r

(
r

r − 1

)
+

Cc

r

(
r

r − 1

)
r‖Dψ̂‖p,ρ (59)

whenever |ψcap
t | � δ0 and |ψ̂ ′(eσ+iθ )| � δ0 for all θ .

Proof. We use the split (35) and the Taylor expansion (36) to write

�(θ, z, c, φ̂) = �0(θ, z, c) +
m+1∑
k=1

�k(θ, z, c, ψ̂)

where m = �1/(8ε)�. We further split

�0(θ, z, c) = 2cz

e−iθ z − 1
+ �̃0(θ, z, c) (60)

and

�1(θ, z, c, ψ̂) = c(Dψ̂(z) − ψ̂(z)) + �̃1(θ, z, c, ψ̂).
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Note that we now split �0 slightly differently to the split �0 = �0,0 + �0,1 used for
the martingale term: where before we had a0(c) we now approximate by 2c, putting an
additional error into the remainder term �̃0. Set

�̃(θ, z, c, φ̂) = �̃0(θ, z, c) + �̃1(θ, z, c, ψ̂) +
m+1∑
k=2

�k(θ, z, c, ψ̂)

and note that

e−cφ̂(Fc(θ, z)) − φ̂(z) = c

(
2z

e−iθ z − 1
+ Dψ̂(z) − ψ̂(z)

)
+ �̃(θ, z, c, ψ̂). (61)

We use equation (55) to write

β̂(φ̂, τ )(z) =
 2π

0

(
2z

e−iθ z − 1
+ Dψ̂(z) − ψ̂(z)

)
c(θ, φ̂, τ )λ(θ, φ̂, τ )dθ

+
 2π

0
�̃(θ, z, c(θ, φ̂, τ ), ψ̂)λ(θ, φ̂, τ )dθ

= e−ζ τt

 2π

0

(
Dψ̂(z) − ψ̂(z) +

2z

e−iθ z − 1

(
1 − ζψ

cap
t − ζ Re ψ̂ ′(eσ+iθ )

))
dθ

+ e−ζ τt

 2π

0

2z

e−iθ z − 1
γt (θ, φ̂, τ )dθ

+ (Dψ̂(z) − ψ̂(z))
 2π

0
(c(θ, φ̂, τ )λ(θ, φ̂, τ ) − e−ζ τt )dθ

+
 2π

0
�̃(θ, z, c(θ, φ̂, τ ), ψ̂)λ(θ, φ̂, τ )dθ.

Now ψ̂ ′(z) → 0 as z → ∞, so

e−ζ τt

 2π

0

(
Dψ̂(z) − ψ̂(z) +

2z

e−iθ z − 1

(
1 − ζψ

cap
t − ζ Re ψ̂ ′(eσ+iθ )

))
dθ

= e−ζ τt
(

Dψ̂(z) − ψ̂(z) − ζe−σ Dψ̂(eσ z)
)
= −e−ζ τt (Q + 1)ψ̂(z).

Hence

β̂(φ̂, τ )(∞) + e−ζ τt (Q + 1)ψ̂(∞)

= 2e−ζ τt

 2π

0
eiθ γt (θ, φ̂, τ )dθ − ψ̂(∞)

 2π

0
(c(θ, φ̂, τ )λ(θ, φ̂, τ ) − e−ζ τt )dθ

+
 2π

0
�̃(θ,∞, c(θ, φ̂, τ ), ψ̂)λ(θ, φ̂, τ )dθ (62)
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and

β̂(φ̂, τ )(z) + e−ζ τt (Q + 1)ψ̂(z)

= e−ζ τt

 2π

0

2z

e−iθ z − 1
γt (θ, φ̂, τ )dθ

+ (Dψ̂(z) − ψ̂(z))
 2π

0
(c(θ, φ̂, τ )λ(θ, φ̂, τ ) − e−ζ τt )dθ

+
 2π

0
�̃(θ, z, c(θ, φ̂, τ ), ψ̂)λ(θ, φ̂, τ )dθ. (63)

We will estimate the terms on the right-hand sides of (62) and (63), assuming from now
on that t , φ̂ and τ are chosen so that |ψcap

t | � δ0 and |ψ̂ ′(eσ+iθ )| � δ0 for all θ .
From (55) and (56), we have |γt (θ, φ̂, τ )| � Cδ2

0 and

∣∣∣∣
 2π

0
(c(θ, φ̂, τ )λ(θ, φ̂, τ ) − e−ζ τt )dθ

∣∣∣∣ � Cδ0.

We use (26) to see that

�̃(θ,∞, c, ψ̂) = �(θ,∞, c, ψ̂) − 2ceiθ + cψ̂(∞)

= (a0(c) − 2c)eiθ + (e−c − 1 + c)ψ̂(∞).

Write c(θ) for c(θ, φ̂, τ ) and λ(θ) for λ(θ, φ̂, τ ). Then

|c(θ) − ct | � Cδ0c, |λ(θ) − λt | � Cδ0c−1

and, by Proposition A.5, we have

|a0(c(θ)) − 2c(θ)| � Cc3/2, |(a0(c(θ)) − 2c(θ)) − (a0(ct ) − 2ct )| � Cc3/2δ0.

We can now estimate in (62) to obtain (58).
It remains to prove (59). For |z| = r > 1, we have

∣∣∣∣
 2π

0

2eiθ

e−iθ z − 1
γt (θ, φ̂, τ )dθ

∣∣∣∣ � Cδ2
0

 2π

0

1

|e−iθ z − 1|dθ

� Cδ2
0

r

(
1 + log

(
r

r − 1

))
. (64)

Since ψ̂ is bounded at∞, by Marcinkiewicz’s multiplier theorem,‖ψ̂‖p,r,0 � C‖Dψ̂‖p,r
for all p > 1 and r > 1. Hence

∥∥∥∥(Dψ̂(z) − ψ̂(z))
 2π

0
(c(θ, φ̂, τ )λ(θ, φ̂, τ ) − e−ζ τt )dθ

∥∥∥∥
p,r,0

� Cδ0‖Dψ̂‖p,r . (65)
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It remains to deal with the final term in (63). We first estimate the function obtained on
replacing c(θ, φ̂, τ ) and λ(θ, φ̂, τ ) in that term by ct = ce−ατt and λt = c−1e−ητt . Note
that, in the case Fc(z) = ecz and m = 1, the Taylor expansion (36) has the form

e−cφ̂(ecz) − φ̂(z) = c(Dψ̂(z) − ψ̂(z))

+ c2
ˆ 1

0
(1 − u)e−cu(D2ψ̂(ecuz)

−2Dψ̂(ecuz) + ψ̂(ecuz))du.

On the other hand, by Cauchy’s theorem,

 2π

0
φ̂(Fc(θ, z))dθ = φ̂(ecz).

Hence, on integrating in θ in (61), we see that

 2π

0
�̃(θ, z, c, ψ̂)dθ = c2

ˆ 1

0
(1 − u)e−cu(D2ψ̂(ecuz) − 2Dψ̂(ecuz) + ψ̂(ecuz))du

so, for r > 1 and ρ = (3r + 1)/4,∥∥∥∥
 2π

0
�̃(θ, ., ct , ψ̂)λt dθ

∥∥∥∥
p,r,0

� Cc

(
r

r − 1

)
‖Dψ̂‖p,ρ . (66)

It remains to deal with the error made in replacing c(θ, φ̂, τ ) and λ(θ, φ̂, τ ) by ct
and λt . We make a further split

�̃0(θ, z, c) = �̃0,0(θ, z, c) + �̃0,1(θ, z, c), �̃(θ, z, c) = �̄(θ, z, c) + �̃0,1(θ, z, c)

where

�̃0,0(θ, z, c) = e−c Fc(θ, z) − z − a0(c)z

e−iθ z − 1
, �̃0,1(θ, z, c) = (a0(c) − 2c)z

e−iθ z − 1
.

Thus �̃0,0 = �0,1, as considered in estimating the martingale terms, and �̃0,1 is the
additional error introduced by the new split (60). We first estimate the �̃0,1 term. Since
|ψcap

t | � δ0 and |ψ̂ ′(eσ+iθ )| � δ0 for all θ , we have

|c(θ, φ̂, τ ) − ct | � Ccδ0, |λ(θ, φ̂, τ ) − λt | � Cδ0/c.

Hence, by Proposition A.5, for c � 1/C ,

|(a0(c(θ, φ̂, τ )) − 2c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − (a0(ct ) − 2ct )λt | � Cδ0
√

c

and, estimating as for (64), we obtain

‖�̃0,1(θ, ., c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �̃0,1(θ, ., ct )λt‖p,r,0

� Cδ0
√

c

r

(
1 + log

(
r

r − 1

))
. (67)
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By Proposition A.5, for c � 1/C ,

|�̃0,0(θ, z, c)| � Cc3/2|z|
|e−iθ z − 1|2

and, for c1, c2 ∈ (0, c] and |z| � 1 +
√

c,

|�̃0,0(θ, z, c1) − �̃0,0(θ, z, c2)| � C
√

c|c1 − c2||z|
|e−iθ z − 1|2

so

|�̃0,0(θ, z, c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �̃0,0(θ, z, ct )λt | � Cδ0
√

c|z|
|e−iθ z − 1|2

so, for |z| = r � 1 +
√

c,

 2π

0
|�̃0,0(θ, z, c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �̃0,0(θ, z, ct )λt |dθ � Cδ0

√
c

r − 1
. (68)

We have

�̃1(θ, z, c, ψ̂) =
(

log

(
Fc(θ, z)

z

)
− c

)
Dψ̂(z)

so, by Proposition A.5, for c � 1/C ,

|�̃1(θ, z, c, ψ̂)| � Cc

|e−iθ z − 1| |Dψ̂(z)|

and, for c1, c2 ∈ (0, c] and |z| � 1 +
√

c,

|�̃1(θ, z, c1, ψ̂) − �̃1(θ, z, c2, ψ̂)| � C |c1 − c2|
|e−iθ z − 1| |Dψ̂(z)|

so

|�̃1(θ, z, c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �̃1(θ, z, ct )λt | � Cδ0

|e−iθ z − 1| |Dψ̂(z)|

so, for |z| = r � 1 +
√

c,

 2π

0
|�̃1(θ, z, c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �̃1(θ, z, ct )λt |dθ

� Cδ0

(
1 + log

(
r

r − 1

))
|Dψ̂(z)|. (69)

For k = 2, . . . , m, we have

�k(θ, z, c, ψ̂) = 1

k!
k∑

j=0

(
k

j

)
(−c)k− j fc(θ, z) j D j ψ̂(z)
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where fc(θ, z) = log(Fc(θ, z)/z). By Proposition A.5, for c � 1/C and |z| = r > 1,

| fc(θ, z)| � Ccr

|e−iθ z − 1|
and, for c1, c2 ∈ (0, c] and |z| = r � 1 +

√
c,

| fc1(θ, z) − fc2(θ, z)| � C |c1 − c2|r
|e−iθ z − 1|

so, for j = 0, 1, . . . , k,

|ck− j
1 fc1(θ, z) j − ck− j

2 fc2(θ, z) j | � Cck−1|c1 − c2|r j

|e−iθ z − 1| j

so

|�k(θ, z, c, ψ̂)| � Cck
k∑

j=0

r j

|e−iθ z − 1| j
|D j ψ̂(z)|

and

|�k(θ, z, c1, ψ̂) − �k(θ, z, c2, ψ̂)|

� Cck−1|c1 − c2|
k∑

j=0

r j

|e−iθ z − 1| j
|D j ψ̂(z)|

so

|�k(θ, z, c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �k(θ, z, ct )λt |

� Cck−1δ0

k∑
j=0

r j

|e−iθ z − 1| j
|D j ψ̂(z)|

so
 2π

0
|�k(θ, z, c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �k(θ, z, ct )λt |dθ

� Cck−1δ0

(
r

r − 1

)k−1 k∑
j=0

|D j ψ̂(z)|

and so, for r � 1 + 2
√

c,∥∥∥∥
 2π

0
(�k(θ, ., c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �k(θ, ., ct )λt )dθ

∥∥∥∥
p,r,0

� Cck−1δ0

(
r

r − 1

)2k−2

‖Dψ̂‖p,ρ � Ccδ0

(
r

r − 1

)2

‖Dψ̂‖p,ρ (70)

where we used the inequality ‖ψ̂‖p,r,0 � C‖Dψ̂‖p,r in the j = 0 term.



   74 Page 44 of 78 J. Norris, V. Silvestri, A. Turner

In the final step, we use our assumption that r � 1 + c1/2−ε and our choice of
m = �1/(8ε)� to see that

cm
(

r

r − 1

)2m+1+1/p

� Cc

(
r

r − 1

)2

.

Recall that

�m+1(θ, z, c, ψ̂) = 1

m!
ˆ 1

0
(1 − u)me−cu

m+1∑
j=0

(
m + 1

j

)

(−c)m+1− j fc(θ, z) j D j ψ̂(Fc,u(θ, z))du

and, for |z| = r > 1, since |Fc,u(θ, z)| � r , by (118), we find, for ρ′ = (7r + 1)/8,

|D j ψ̂(Fc,u(θ, z))| � C

(
r

r − 1

)1/p

‖D j ψ̂‖p,ρ′ .

So, for |z| = r > 1,

|�m+1(θ, z, c, ψ̂)| � Ccm+1
(

r

r − 1

)1/p (
r

|e−iθ z − 1|
)m+1

‖Dm+1ψ̂‖p,ρ′

so  2π

0
|�m+1(θ, z, c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �m+1(θ, z, ct )λt |dθ

� Ccm
(

r

r − 1

)m+1/p

‖Dm+1ψ̂‖p,ρ′

and so ∥∥∥∥
 2π

0
(�m+1(θ, ., c(θ, φ̂, τ ))λ(θ, φ̂, τ ) − �m+1(θ, ., ct )λt )dθ

∥∥∥∥
p,r,0

� Ccm
(

r

r − 1

)2m+1/p

‖Dψ̂‖p,ρ � Cc

(
r

r − 1

)
‖Dψ̂‖p,ρ . (71)

The claimed estimate is obtained by combining (64), (65), (66), (67), (68), (69), (70)
and (71). ��

Recall that the drift term ( Ât , Acap
t ) in the interpolation formula (17) is given by

Ât (z) =
ˆ t

0
e−(τt−τs ) P(τt − τs)

(
β̂(�̂s, Ts) + e−ζ τs (Q + 1)�̂s

)
(z)ds,

Acap
t =

ˆ t

0
e−ζ(τt−τs )

(
βcap(�̂s, Ts) − e−ζ τs + ζe−ζ τs �

cap
s

)
ds

where �
cap
s = Ts − τs and �̂s(z) = �̂s(z) − z. Recall also that

T0(δ0) = inf
{
t ∈ [0, tζ ) : sup

θ∈[0,2π)

|�̂ ′
t (e

σ+iθ )| > δ0 or |�cap
t | > δ0

}
.
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Lemma 4.6. For all ζ ∈ R and all T < tζ , there is a constant C(ζ, T ) < ∞ such that,
for all σ > 0, all δ0 ∈ (0, 1/2] and all t � T0(δ0) ∧ T , we have

|Acap
t | � Cδ2

0 .

Proof. For all t � T0(δ0) ∧ tζ and all θ , we have |�cap
t | � δ0 and |�̂ ′

t (e
σ+iθ )| � δ0 for

all θ . Hence, by Lemma 4.4, for t � T0(δ0) ∧ T ,

|Acap
t | � e−ζ τt

ˆ t

0
eζ τs |βcap(�̂s, Ts) − e−ζ τs + ζe−ζ τs �

cap
s |ds � Cδ2

0 .

��
Lemma 4.7. For all α, η ∈ R with ζ = α + η � 1 and all T < tζ , there is a constant
C(α, η,�, T ) < ∞ with the following property. For all c ∈ (0, 1/C], all σ > 0, all
δ0 ∈ (0, 1/2] and all t � T ,

sup
s�t∧T0(δ0)

| Âs(∞)| � C(δ0
√

c + δ2
0) + C(c + δ0)

ˆ t∧T0(δ0)

0
|�̂s(∞)|ds. (72)

Moreover, for all such α, η and T , for all ε ∈ (0, 1/2] and all p � 2, there is a constant
C(α, η,�, ε, p, T ) < ∞ with the following property. For all c ∈ (0, 1/C], all σ � 0,
all δ0 ∈ (0, 1/2] and all t � T , for all r � 1 + c1/2−ε, for ρ = (1 + r)/2, we have in the
case ζ < 1

� D Ât 1{t�T0(δ0)}�p,r

� C

r

(
1 + log

(
r

r − 1

))(
δ2

0

(
1 + log

(
r

r − 1

))
+ δ0

√
c

(
r

r − 1

))

+ C

(
1 + log

(
r

r − 1

)) (
δ0

(
1 + log

(
r

r − 1

))
+ c

(
r

r − 1

))
sup
s�t

�D�̂s1{s�T0(δ0)}�p,ρ

(73)

while for ζ = 1 the estimate (73) holds with the first factor of 1 + log( r
r−1 ) replaced by

1 + log( r
r−1 ) + 1√

σ
in each term on the right.

We remark that some of the log terms in (73) can be avoided when ζ < 1 by the same
strategy used for (51). However, this does not work in the case ζ = 1 because that
strategy also replaces the term 1√

σ
by 1

σ
which, for our main results, leads to a weaker

conclusion. The 1√
σ

in (51) arises in a different way. Since spurious log terms for ζ < 1
do not affect the main results, and to economise the argument, we will not present the
slightly stronger estimates than (73) that are available for ζ < 1.
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Proof. The estimate (72) follows immediately from (58). Set ρ′ = (3r +1)/4. For ζ < 1,
by Lemma 2.1, we have

� D Ât 1{t�T0}�p,r

� �

ˆ T0∧t

0
e−τ̄s D P(τ̄s)(β̂(�̂s, Ts) + e−ζ τs (Q + 1)�̂s)ds�p,r

�
ˆ t

0
�D P(τ̄s)(β̂(�̂s, Ts) + e−ζ τs (Q + 1)�̂s)1{s�T0} �p,r ds.

� C sup
s�t

�(β̂(�̂s, Ts) + e−ζ τs (Q + 1)�̂s)1{s�T0} �p,ρ′,0

ˆ t

0

(
r

r − 1

)
∧ 1

τ̄s
ds.

(74)

By Lemma 4.5, for s � T0,

‖β̂(�̂s, Ts) + e−ζ τs (Q + 1)�̂s‖p,ρ′,0

� Cδ2
0

r

(
1 + log

(
r

r − 1

))
+

Cδ0

r

(
1 + log

(
r

r − 1

))
r‖D�̂s‖p,ρ

+
Cδ0

√
c

r

(
r

r − 1

)
+

Cc

r

(
r

r − 1

)
r‖D�̂s‖p,ρ

so, for s � t ,

� (β̂(�̂s, Ts) + e−ζ τs (Q + 1)�̂s)1{s�T0}�p,ρ′,0

� Cδ2
0

r

(
1 + log

(
r

r − 1

))
+

Cδ0

r

(
1 + log

(
r

r − 1

))
r sup

s�t
�D�̂s1{s�T0}�p,ρ

+
Cδ0

√
c

r

(
r

r − 1

)
+

Cc

r

(
r

r − 1

)
r sup

s�t
�D�̂s1{s�T0} �p,ρ .

Since

ˆ t

0

(
r

r − 1

)
∧ 1

τ̄s
ds � C

(
1 + log

(
r

r − 1

))

these estimates combine to prove (73). In the case ζ = 1, the estimate of Lemma 2.1
leads to a different integral on the right in (74), for which we have the following bound

ˆ t

0

(
r

r − 1

)
∧

(
1

τ̄s
∨ 1√

σ τ̄s

)
ds � C

(
1 + log

(
r

r − 1

)
+

1√
σ

)
.

Hence we obtain the modified form of (73) claimed for ζ = 1. ��
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5. Bulk Scaling Limit for ALE(α, η)

Recall that we write our ALE(α, η) process (�t )t�0 in (Schlicht function, capacity)
coordinates (�̂t , Tt ), and that we set

�̂t (z) = �̂t (z) − φ̂t (z), �
cap
t = Tt − τt

where (φ̂t , τt )t<tζ is the disk solution to the LK(ζ ) equation with initial capacity τ0 = 0.
We obtained the following interpolation formula (17)

�̂t (z) = M̂t (z) + Ât (z), �
cap
t = Mcap

t + Acap
t

and have estimated the terms on the right-hand sides in the preceding section. We now put
these estimates together to obtain first L p-estimates and then pointwise high-probability
estimates which allow us to prove Theorems 1.1 and 1.2.

5.1. L p-estimates. Recall that

T0(δ0) = inf
{
t ∈ [0, tζ ) : sup

θ∈[0,2π)

|�̂ ′
t (e

σ+iθ )| > δ0 or |�cap
t | > δ0

}
.

Proposition 5.1. For all α, η ∈ R, all p � 2 and all T < tζ , there is a constant
C(α, η, p, T ) < ∞ such that, for all c ∈ (0, 1] and all δ0 ∈ (0, 1/2],∥∥ sup

t�T∧T0(δ0)

|�cap
t |∥∥p � C(

√
c + δ2

0)

and ∥∥ sup
t�T∧T0(δ0)

|�cap
t − �

cap
t |∥∥p � C(c +

√
cδ0 + δ2

0)

and ∥∥ sup
t�T∧T0(δ0)

|�̂t (∞)|∥∥p � C(
√

c + δ2
0)

and ∥∥ sup
t�T∧T0(δ0)

|�̂t (∞) − �̂t (∞)|∥∥p � C(c +
√

cδ0 + δ2
0).

Proof. The first two estimates follow immediately from Lemmas 4.1 and 4.6. From
Lemmas 4.2 and 4.7, we obtain, for all t � T ,

∥∥ sup
s�t∧T0(δ0)

|�̂t (∞)|∥∥p
p � C(

√
c + δ2

0)p + C
ˆ t

0
‖�̂s(∞)1{s�T0(δ0)}‖p

pds

from which the third estimate follows by Gronwall’s lemma. The fourth estimate follows
from the third, together with Lemmas 4.2 and 4.7. ��
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Fix σ > 0 and set

R = r

r − 1
, L = 1 + log R, R1 = R +

√
R√
σ

, L1 = L +
1√
σ

.

Define

δ(r) = (
√

cR + δ2
0 L2 + δ0

√
cL R)/r, δ̄(r) = √

cR + δ0 L2, (75)

δ1(r) = (
√

cR1 + δ2
0 L L1 + δ0

√
cL1 R)/r, δ̄1(r) = √

cR1 + δ0 L L1. (76)

The next estimates follow immediately from Lemmas 4.3 and 4.7.

Proposition 5.2. For all α, η ∈ R with ζ = α+η � 1, all ε ∈ (0, 1/2], all p � 2 and all
T < tζ , there is a constant C(α, η,�, ε, p, T ) < ∞ with the following property. For all
c ∈ (0, 1], all δ0 ∈ (0, 1/2], all r, eσ � 1 + c1/2−ε and all t � T , setting ρ = (1 + r)/2,
we have, for ζ < 1,

� D�̂t 1{t�T0(δ0)}�p,r � Cδ(r) + C δ̄(r) sup
s�t

�D�̂s−1{s�T0(δ0)}�p,ρ (77)

while, for ζ = 1,

� D�̂t 1{t�T0(δ0)}�p,r � Cδ1(r) + C δ̄1(r) sup
s�t

�D�̂s−1{s�T0(δ0)} �p,ρ . (78)

The preceding estimate may be improved by an iterative argument to obtain the
following result.

Proposition 5.3. For all α, η ∈ R with ζ = α+η � 1, all ε ∈ (0, 1/2], all p � 2 and all
T < tζ , there is a constant C(α, η,�, ε, p, T ) < ∞ with the following property. In the
case ζ < 1, for all c ∈ (0, 1], all r, eσ � 1 + c1/2−ε and all t � T , for all ν ∈ (0, ε/2],
setting δ0 = c1/2−νeσ /(eσ − 1), we have

�D�̂t 1{t�T0(δ0)}�p,r � C
√

c

r

(
r

r − 1

)
+

Cc1−2ν

r

(
eσ

eσ − 1

)2 (
1 + log

(
r

r − 1

))2

.

Moreover, in the case ζ = 1 and ε � 1/3, for all c ∈ (0, 1], all r � 1 + c1/2−ε, all
eσ � 1 + c1/3−ε and all t � T , for ν ∈ (0, ε/2], setting δ0 = c1/2−νeσ /(eσ − 1), we
have

� D�̂t 1{t�T0(δ0)}�p,r

� C
√

c

r

( (
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )

+
Cc1−2ν

r

(
eσ

eσ − 1

)2 (
1 + log

(
r

r − 1

)
+

1√
σ

) (
1 + log

(
r

r − 1

))
. (79)

Proof. We begin with a crude estimate which allows us to restrict further consideration
to small values of c. The function �̂t (z) is univalent on {|z| > 1}, with �̂t (z) ∼ z as
z → ∞. So, by a standard distortion estimate, for all |z| = r > 1,

|�̂′
t (z) − 1| � 1

r2 − 1
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and so

‖D�̂t‖p,r = r‖�̂′
t − 1‖p,r � 1

r − 1
. (80)

It is straightforward to check that this implies the claimed estimates in the case where
c > 1/C , for any given constant C of the allowed dependence. Hence it will suffice to
consider the case where c � 1/C .

Consider first the case ζ < 1. On substituting the chosen value of δ0 in (75), we
obtain

δ(r) = 1

r

(√
cR + c1−2ν

(
eσ

eσ − 1

)2

L2 + c1−ν

(
eσ

eσ − 1

)
L R

)
,

δ̄(r) = √
cR + c1/2−ν

(
eσ

eσ − 1

)
L2.

Note that, for ρ = (1+r)/2, we have R(ρ) � 2R(r) and L(ρ) � 2L(r), so δ̄(ρ) � 4δ̄(r)

and δ̄(ρ) � 4δ̄(r). Note also that, for r � 1 + c1/2−ε/2 and eσ � 1 + c1/2−ε, for all
sufficiently small c,

C∗δ̄(r) � 2C∗(cε/2 + cε/2(1 + log(1/c))2) � cε/3 � 1

where C∗ is the constant in Proposition 5.2. We restrict to such c. Set C0 = 1 and for
k � 0 define recursively Ck+1 = 2k+1Ck + 1. We will show that, for all k � 0, all
r � 1 + 2kc1/2−ε/2 and all t � T ,

� D�̂t 1{t�T0(δ0)}�p,r � Ck

(
(C∗δ̄(r))k

r − 1
+ C∗δ(r)

)
. (81)

The case k = 0 is implied by (80). Suppose inductively that (81) holds for k, for all
r � 1 + 2kc1/2−ε/2 and all t � T . Take r � 1 + 2k+1c1/2−ε/2 and t � T . Then
ρ = (r + 1)/2 � 1 + 2kc1/2−ε/2 so, for all s � t ,

�D�̂s1{s�T0}�p,ρ � Ck

(
(C∗δ̄(ρ))k

ρ − 1
+ C∗δ(ρ)

)
� 2k+1Ck

(
(C∗δ̄(r))k

r − 1
+ C∗δ(r)

)
.

Since r � 1 + c1/2−ε/2, we can use Proposition 5.2 with ε replaced by ε/2 and substitute
the last inequality into (77) to obtain

�D�̂t 1{t�T0(δ0)}�p,r � 2k+1Ck

(
(C∗δ̄(r))k+1

r − 1
+ C∗δ̄(r)δ(r)

)
+ C∗δ(r)

� Ck+1

(
(C∗δ̄(r))k+1

r − 1
+ C∗δ(r)

)
.

Hence (81) holds for k + 1 and the induction proceeds. Choose now k = �3/ε�. Then

(C∗δ̄(r))k

r − 1
� cεk/3

r − 1
� c

r − 1
� δ(r).
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For c sufficiently small, we have cε/2 � 2−k/2. Then, for all r � 1 + c1/2−ε, we have
r � 1 + 2kc1/2−ε/2, so we obtain

�D�̂t 1{t�T0(δ0)}�p,r � Ck

(
(C∗δ̄(r))k

r − 1
+ C∗δ(r)

)
� 2CkC∗δ(r).

For c sufficiently small, we have

c1−ν

(
eσ

eσ − 1

)
L R �

√
cR

so this is a bound of the claimed form.
We turn to the case ζ = 1. On substituting the chosen value of δ0 in (76), we obtain

δ1(r) = 1

r

(√
cR1 + c1−2ν R(eσ )2L L1 + c1−ν R(eσ )L1 R

)
,

δ̄1(r) = √
cR1 + c1/2−ν R(eσ )L L1.

Note that, for ρ = (1+r)/2, we have R1(ρ) � 2R1(r) and L1(ρ) � 2L1(r), so δ̄1(ρ) �
4δ̄1(r) and δ̄1(ρ) � 4δ̄1(r). Note also that, for r � 1 + c1/2−ε/2 and eσ � 1 + c1/3−ε,
for all sufficiently small c,

C∗δ̄(r) � 4C∗(cε/2 + cε/2(1 + log(1/c))2) � cε/3 � 1

where C∗ is the constant in Proposition 5.2. We restrict to such c. Set C0 = 1 and for
k � 0 define recursively Ck+1 = 22k+1Ck +1. Then, by an analogous inductive argument,
we obtain, for all k � 0, all t � T and all r � 1 + 2kc1/2,

� D�̂t 1{t�T0(δ0)}�p,r � Ck

(
(C∗δ̄1(r))k

r − 1
+ C∗δ1(r)

)
. (82)

Choose now k = �1/ε� and assume that r � 1 + c1/2−ε. Then

δ̄1(r)k

r − 1
� cεk

r − 1
� c

r − 1
� δ1(r).

and, for c sufficiently small, we have cε � 2−k , so r � 1 + 2kc1/2 and so

�D�̂t 1{t�T0(δ0)}�p,r � 2C∗Ckδ1(r).

��
We note also the following estimates, which are deduced from (28) and (73) using

the estimates of Proposition 5.3

Proposition 5.4. For all α, η ∈ R with ζ = α+η � 1, all ε ∈ (0, 1/2], all p � 2 and all
T < tζ , there is a constant C(α, η,�, ε, p, T ) < ∞ with the following property. In the
case ζ < 1, for all c ∈ (0, 1], all r, eσ � 1 + c1/2−ε and all t � T , for all ν ∈ (0, ε/2],
setting δ0 = c1/2−νeσ /(eσ − 1), we have

�D(�̂t − �̂t )1{t�T0(δ0)}�p,r � C

r

(
c

(
r

r − 1

)2

+
√

cδ0

(
r

r − 1

)

+δ2
0

(
1 + log

(
r

r − 1

))2 )
.
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Moreover, in the case ζ = 1 and ε � 1/3, for all c ∈ (0, 1], all r � 1 + c1/2−ε, all
eσ � 1 + c1/3−ε and all t � T , for ν ∈ (0, ε], setting δ0 = c1/2−νeσ /(eσ − 1), we have

� D(�̂t − �̂t )1{t�T0(δ0)}�p,r

� C

r

(
c

( (
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )2

+
√

cδ0

((
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )

+ δ2
0

(
1 + log

(
r

r − 1

) )(
1 + log

(
r

r − 1

)
+

1√
σ

))
.

We turn now to some estimates needed for the discrete-time results Theorems 1.2
and 1.4. Write Vt for the number of particles added by time t and define for t < tζ

νt = α−1((1 + ζ t)α/ζ − 1).

It is straightforward to see that, for all α, η ∈ R, we have νt → nα as t → tζ . Also

cVt =
ˆ

E(t)
c1{v��s (θ)}μ(dθ, dv, ds), νt =

ˆ t

0
e−ητs ds. (83)

Proposition 5.5. For all α, η ∈ R, all p � 2 and all T < tζ , there is a constant
C(α, η, p, T ) < ∞ such that, for all c ∈ (0, 1] and all δ0 ∈ (0, 1/2],∥∥ sup

t�T∧T0(δ0)

|cVt − νt |
∥∥

p � C(
√

c + δ2
0).

Proof. Recall from Sect. 3.2 that

Tt =
ˆ

E(t)
Cs(θ)1{v��s (θ)}μ(dθ, dv, ds), τt =

ˆ t

0
e−ζ τs ds

where

Cs(θ) = c|�′
s−(eσ+iθ )|−α, ζ = α + η.

If we substitute the explicit appearances of α in the preceding line by 0, then Cs(θ)

becomes c and e−ζ τs becomes e−ητs . Then, applying these substitutions in the line above,
we recover the integral representations (83) of cVt and νt . The claimed estimate results
from following through this modification in the calculations leading to Proposition 5.1.
The details are left to the reader. ��

We can also improve on the estimate of Tt by τt in Proposition 5.1. Define, for
cVt < nα ,

T̃t = τ disc
Vt

where τ disc
n = α−1 log(1 + αcn) as at (8). We leave any modifications needed for the

case α = 0 to the reader. By allowing T̃t to depend on the random time-scale of particle
arrivals, we remove the main source of error when estimating Tt by τt .
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Proposition 5.6. For all α, η ∈ R, all p � 2, all T < tζ and all N < nα , there is a
constant C(α, η, p, T, N ) < ∞ such that, for all c � 1/C and all δ0 ∈ (0, 1/2],∥∥ sup

t�T∧T (δ0), cVt �N
|Tt − T̃t |

∥∥
p � C(c + δ2

0).

Proof. Set

C̃t = τ disc
Vt−+1 − τ disc

Vt− = α−1 log

(
1 +

αc

1 + αcVt−

)
.

Then

T̃t =
ˆ

E(t)
C̃s1{v��s (θ)}μ(dθ, dv, ds)

so

Tt − T̃t =
ˆ

E(t)
(Cs(θ) − C̃s)1{v��s (θ)}μ(dθ, dv, ds)

=
ˆ

E(t)
(Cs(θ) − C̃s)1{v��s (θ)}μ̃(dθ, dv, ds)

+
ˆ t

0

 2π

0
(Cs(θ) − C̃s)�s(θ)dθds.

We have, for cVt � N ,

|C̃t − ce−αT̃t−| � Cc2

and, for t � T0(δ0), as in the proof of Lemma 4.4,

|Ct (θ) − ce−αTt−(1 + α Re �̂ ′
t−(eσ+iθ ))| � Ccδ2

0,

|c�t (θ) − e−ηTt−(1 + η Re �̂ ′
t−(eσ+iθ ))| � Cδ2

0,

|Ct (θ)�t (θ) − e−ζTt−(1 + ζ Re �̂ ′
t−(eσ+iθ ))| � Cδ2

0

so

|Ct (θ) − C̃t | � Cc|Tt− − T̃t−| + Ccδ0

and, using (57), ∣∣∣∣
 2π

0
Ct (θ)�t (θ)dθ − e−ζTt−

∣∣∣∣ � Cδ2
0

and ∣∣∣∣
 2π

0
C̃t�t (θ)dθ − e−αT̃t−e−ηTt−

∣∣∣∣ � C(c + δ2
0)

and so ∣∣∣∣
 2π

0
(Ct (θ) − C̃t )�t (θ)dθ

∣∣∣∣ � C |Tt− − T̃t−| + C(c + δ2
0).
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Set

f (t) = E

(
sup

s�t∧T0(δ0), cVs�N
|Ts − T̃s |p

)

Then, by Burkholder’s and Jensen’s inequalities, for p � 2, and all t � T ,

f (t) � C(cp + δ
2p
0 ) + C

ˆ t

0
f (s)ds

and the claimed estimate follows by Gronwall’s lemma. ��

5.2. Spatially-uniform high-probability estimates. We now pass from the L p-estimates
of the preceding section to pointwise estimates which hold with high probability on the
function �̂t (z) = �̂t (z) − z, uniformly in t ∈ [0, T ] and |z| � r(c) as c → 0, for a
suitable function r(c), which is specified in the next result, and tends to 1 as c → 0. In
order to show the desired uniformity, we combine the usual L p-tail estimate with suitable
dissections of [0, T ] and {|z| � r(c)}, choosing p large to deal with an increasing number
of terms as c → 0. We see at the same time that the event {T0(δ0) > T }, to which our
previous estimates were restricted, is in fact an event of high probability as c → 0,
thus closing the argument for convergence to a disk. The following result contains
Theorem 1.1.

Proposition 5.7. For all α, η ∈ R with ζ = α + η � 1, all ε ∈ (0, 1/2] and all
ν ∈ (0, ε/4], all m ∈ N and all T < tζ , there is a constant C(α, η,�, ε, ν, m, T ) < ∞
with the following property. In the case ζ < 1, for all c � 1/C, for eσ � 1 + c1/2−ε and
δ0 = c1/2−νeσ /(eσ − 1), there is an event �0 ⊆ {T0(δ0) > T } of probability exceeding
1 − cm on which, for all t � T and all |z| = r � 1 + c1/2−ε,

|�cap
t | � C

(
c1/2−ν + c1−4ν

(
eσ

eσ − 1

)2 )
(84)

and

|�̂t (z)| � C

(
c1/2−ν + c1−4ν

(
eσ

eσ − 1

)2 )
(85)

and

|D�̂t (z)| � C

r

(
c1/2−ν

(
r

r − 1

)
+ c1−4ν

(
eσ

eσ − 1

)2 )
(86)

and

|�cap
t − �

cap
t | � C

(
c3/4−2ν

(
eσ

eσ − 1

)1/2

+ c1−4ν

(
eσ

eσ − 1

)2 )
(87)

and

|�̂t (z) − �̂t (z)| � Cc3/4−2ν

(
eσ

eσ − 1

)1/2

+ Cc1−4ν

( (
r

r − 1

)
+

(
eσ

eσ − 1

)2 )
.

(88)
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Moreover, in the case ζ = 1 with ε ∈ (0, 1/3], for all c � 1/C, for eσ � 1 + c1/3−ε and
δ0 = c1/2−νeσ /(eσ − 1) there is an event �0 ⊆ {T0(δ0) > T } of probability exceeding
1 − cm on which, for all t � T , the estimates (84) and (87) hold and, for all |z| = r �
1 + c1/2−ε,

|�̂t (z)| � C

(
c1/2−ν

(
eσ

eσ − 1

)1/2

+ c1−4ν

(
eσ

eσ − 1

)5/2 )

and

|D�̂t (z)| � C

r

(
c1/2−ν

( (
r

r − 1

)
+

1√
σ

(
r

r − 1

)1/2 )
+ c1−4ν

(
eσ

eσ − 1

)5/2 )

and

|�̂t (z) − �̂t (z)| � Cc3/4−ν

(
eσ

eσ − 1

)
+ Cc1−4ν

((
r

r − 1

)
+

(
eσ

eσ − 1

)5/2 )
. (89)

Proof. We will give details for the case ζ ∈ [0, 1). Some minor modifications are needed
for the case ζ = 1 because of the weaker L p-estimate (79) which applies in that case,
and also for the case ζ < 0. These are left to the reader.

Fix α, η, ε, ν, m and T as in the statement. By adjusting the value of ε, it will suffice
to consider the case where eσ � 1 + 2c1/2−ε, and to find an event �0 ⊆ {T0(δ0) > T },
of probability exceeding 1 − cm , on which the claimed estimates holds whenever
r � 1 + 2c1/2−ε and t � T . There is a constant C < ∞ of the desired dependence,
such that δ0 � 1/2 whenever c � 1/C . We restrict to such c. Set

δ = cm+3, t (n) = δn, N = �T/δ�, N0 = �(T0(δ0) ∧ T )/δ�.
Recall that Vt denotes the number of particles added to the cluster by time t . Consider
the event

�1 = {Vt (n) − Vt (n−1) � 1 for all n � N0 and Vt (N0) = VT0(δ0)∧T }.
Note that, on �1, for all t � T0(δ0) ∧ T , there exists n ∈ {1, . . . , N0} such that �̂t =
�̂t (n). Since δ0 � 1/2, there is a constant C < ∞ of the desired dependence such that
the process (Vt )t�T0(δ0) is a thinning of a Poisson process of rate C/c. Hence

P(�c
1) � N (C/c)2δ2 + (C/c)/δ � Cδ/c2 = Ccm+1

and hence P(�c
1) � cm/3 for all c � 1/(3C). We restrict to such c.

Fix an integer p � 2, to be chosen later, depending on m and ν. By Proposition 5.1,
there is a constant C < ∞ of the desired dependence such that, for μ0 = C

(√
c + δ2

0

)
,

we have ∥∥ sup
t�T0(δ0)∧T

|�cap
t |∥∥p � μ0,

∥∥ sup
t�T0(δ0)∧T

|�̂t (∞)|∥∥p � μ0.

Set λ0 = (6c−m)1/p and consider the event

�2 = {|�cap
t | � λ0μ0 and |�̂t (∞)| � λ0μ0 for all t � T0(δ0) ∧ T }.
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Then P(�c
2) � 2λ

−p
0 = cm/3. We choose p � m/ν. Then, since eσ � 1 + 2c1/2−ε and

ν � ε, there is a constant C < ∞ of the desired dependence such that, for c � 1/C , on
the event �2, for all t � T0(δ0) ∧ T ,

|�cap
t | � λ0μ0 � Cc−ν(

√
c + δ2

0) = C

(
c1/2−ν + c1−3ν

(
eσ

eσ − 1

)2
)

� δ0. (90)

We restrict to such c. Set

K = min{k � 1 : 2kc1/2−ε � 1}.
Then K � �log(1/c)� + 1. For k = 1, . . . , K , set

r(k) = 1 + 2kc1/2−ε, ρ(k) = r(k) + 1

2
.

Then ρ(k) � ρ(1) = 1 + c1/2−ε for all k and r(K ) ∈ [2, 4]. By Proposition 5.3, there is
a constant C < ∞ of the desired dependence such that, for k = 1, . . . , K and all t � T ,

�D�̂t 1{t�T0(δ0)}�p,ρ(k) � μ(r(k))

where

μ(r) = C

r

(√
c

(
r

r − 1

)
+ c1−3ν

(
eσ

eσ − 1

)2
)

.

Set λ = (
3K T c−2m−3

)1/p
and consider the event

�3 =
N⋂

n=1

K⋂
k=1

{‖D�̂t (n)‖p,ρ(k)1{t (n)�T0(δ0)} � λμ(r(k))}.

Then

P(‖D�̂t (n)‖p,ρ(k)1{t (n)�T0(δ0)} > λμ(r(k))) � λ−p

so

P(�c
3) � K Nλ−p � K T λ−p/δ = cm/3.

Fix r � 1 + 2c1/2−ε. Then r(k) � r < r(k + 1) for some k ∈ {1, . . . , K }, where we set
r(K + 1) = ∞. Note that zD�̂t (z) is a bounded holomorphic function on {|z| > ρ(1)}.
We use the inequality (118) to see that, on the event �3, for n � N0,

r‖D�̂t (n)‖∞,r � r(k)‖D�̂t (n)‖∞,r(k)

�
(

r(k) + 1

r(k) − 1

)1/p

r(k)‖D�̂t (n)‖p,ρ(k) � (2c−1/2)1/pr(k)λμ(k)

so

‖D�̂t (n)‖∞,r � (2c−1/2)1/pλμ(r(k)) � 2(2c−1/2)1/pλμ(r).
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We choose p � (2m + 4)/ν. Then there is a constant C < ∞ of the desired dependence
such that, for c � 1/C , on �3, for n = 1, . . . , N0 and all r � 1 + 2c1/2−ε, we have

‖D�̂t (n)‖∞,r � C

r

(
c1/2−ν

(
r

r − 1

)
+ c1−4ν

(
eσ

eσ − 1

)2
)

and

‖�̂ ′
t (n)‖∞,eσ � c1/2−ν

(
eσ

eσ − 1

)
= δ0.

We restrict to such c. Set

�0 = �1 ∩ �2 ∩ �3.

Then P(�c
0) � cm and, on the event �0, for all t � T0(δ0)∧ T and all r � 1 + 2c1/2−ε,

‖D�̂t‖∞,r � C

r

(
c1/2−ν

(
r

r − 1

)
+ c1−4ν

(
eσ

eσ − 1

)2
)

and

‖�̂ ′
t‖∞,eσ � δ0.

In conjunction with (90), this forces T0(δ0) > T on �0 and so concludes the proof of
(84) and (86).

We deduce (85) using the identity

ψ(z) = ψ(∞) −
ˆ ∞

1
Dψ(sz)s−1ds.

On the event �2, for all t � T0(δ0) ∧ T ,

|�̂t (∞)| � C

(
c1/2−ν + c1−3ν

(
eσ

eσ − 1

)2
)

.

On the other hand, �0 ⊆ �2 and on �0 we have T0(δ0) > T and, using (86), for t � T
and |z| = r � 1 + c1/2−ε,

ˆ ∞

1
|D�̂t (sz)|s−1ds �

ˆ ∞

1

C

rs

(
c1/2−ν

(
sr

sr − 1

)
+ c1−4ν

(
eσ

eσ − 1

)2
)

s−1ds

� C

r

(
c1/2−ν

(
1 + log

(
r

r − 1

))
+ c1−4ν

(
eσ

eσ − 1

)2
)

.

Since r � 1 + c1/2, the log factor can be absorbed in c1/2−ν by adjustment of ν. Then,
on combining the last two estimates, we obtain (85).

The estimate (87) may now be deduced from Proposition 5.1 using standard L p tail
estimates. The details are left to the reader.

For the estimate (88), define

μ̃0 = C(c +
√

cδ0 + δ2
0)
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where C is the constant in Proposition 5.1, and define

μ̃(r) = C

r

(
c

(
r

r − 1

)2

+
√

cδ0

(
r

r − 1

)
+ δ2

0

(
1 + log

(
r

r − 1

)))
.

where C is the constant of Proposition 5.4. Set �̃0 = �1 ∩ �̃2 ∩ �̃3, where

�̃2 = �2 ∩ {|�̂t (∞) − �̂t (∞)| � λ0μ̃0 for all t � T0(δ0) ∧ T }
and

�̃3 = �3 ∩
N⋂

n=1

K⋂
k=1

{‖D(�̂t (n) − �̂t (n))‖p,ρ(k)1{t (n)�T0(δ0)} � λμ̃(r(k))}.

We follow a similar argument to above to see that P(�̃c
0) � 2cm and on �̃0 we have

T0(δ0) > T and for t � T

|�̂t (∞) − �̂t (∞)| � C

(
c3/4−3ν/2

(
eσ

eσ − 1

)1/2

+ c1−3ν

(
eσ

eσ − 1

)2
)

and for |z| = r � 1 + 2c1/2−ε,

‖D(�̂t − �̂t )‖∞,r � C

r

(
c1−ν

(
r

r − 1

)2

+ c3/4−3ν/2
(

eσ

eσ − 1

)1/2

(
r

r − 1

)
+ c1−4ν

(
eσ

eσ − 1

)2
)

.

Finally we can integrate as above to deduce (88). ��
Proof of Theorem 1.2. We will write the argument for the case ζ < 1, omitting the
modifications needed for ζ = 1, which are left to the reader. Since N < nα , we can
choose δ = δ(α, η, N ) > 0 and T < tζ such that νT = N + δ. Choose δ0 and �0 as in
Proposition 5.7, with the choice of T just made. Write C for the constant appearing in
Proposition 5.7 and set

� = C

(
c1/2−ν + c1−4ν

(
eσ

eσ − 1

)2
)

.

Then, for all |z| � 1 + c1/2−ε and all t � T , on the event �0, we have |�̂t (z)− z| � �.
Then, by Propositions 5.5 and 5.6, choosing δ0 as in Proposition 5.7 and using an L p-
tail estimate for suitably large p, there is an event �1 ⊆ �0, of probability exceeding
1 − 2cm , on which, for all t � T , both |cVt − νt | � � and, provided cVt � N , also

|Tt − T̃t | � Cc1−4ν

(
eσ

eσ − 1

)2

.

We can choose C so that, for c � 1/C , we have � � δ, so cVT � N + δ − � � N
always on �1. Now, for all n � N/c, we have Vt = n for some t � T with cVt � N ,
so on �1, for all |z| � 1 + c1/2−ε, we have

|�̂disc
n (z) − z| � �, |T disc

n − τ disc
n | � Cc1−4ν

(
eσ

eσ − 1

)2

.

��
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6. Fluctuation Scaling Limit for ALE(α, η)

Given an ALE(α, η) process (�t )t�0, recall that

�̂t (z) = �t (z)/eTt , Tt = log �′
t (∞).

The fluctuations in these coordinates are given by

�̂t (z) = �̂t (z) − z, �
cap
t = Tt − τt , τt = ζ−1 log(1 + ζ t).

Recall that we write H for the set of holomorphic functions on {|z| > 1} which are
bounded at ∞, and we use on H the topology of uniform convergence on {|z| � r}
for all r > 1. In this section we prove Theorem 1.3 and then, at the end, we deduce
Theorem 1.4.

6.1. Reduction to Poisson integrals. Our starting point is the interpolation formula (17)

�̂t (z) = M̂t (z) + Ât (z), �
cap
t = Mcap

t + Acap
t .

As a first step, we study the approximations �̂t (z) and �
cap
t to M̂t (z) and Mcap

t which
have a simple form and which prove to be the dominant terms in the considered limit.
Set

H(θ, z) = z

e−iθ z − 1
=

∞∑
k=0

ei(k+1)θ z−k .

Recall the multiplier operator P(τ ) defined at (12). Then

P(τ )H(θ, z) =
∞∑

k=0

e−q(k)τ ei(k+1)θ z−k .

Recall that ct = ce−ατt and λt = c−1e−ητt , and that we define for |z| > 1

�̂t (z) =
ˆ

E(t)
e−(τt−τs ) P(τt − τs)H(θ, z)2cs1{v�λs }μ̃(dθ, dv, ds), (91)

�
cap
t =

ˆ
E(t)

e−ζ(τt−τs )cs1{v�λs }μ̃(dθ, dv, ds). (92)

The following result allows us to deduce the weak limit of the normalized fluctuations
from that of the Poisson integrals (�̂t ,�

cap
t )t�0.

Proposition 6.1. For all α, η ∈ R with ζ = α + η � 1,

c−1/2(�̂t − �̂t , �
cap
t − �

cap
t ) → 0

in H×R uniformly on compacts in [0, tζ ), in probability, in the limit c → 0 and σ → 0
considered in Theorem 1.3.
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Proof. In Theorem 1.3, for ζ < 1, we restrict toσ � c1/4−ε and take δ0 = c1/2−νeσ /(eσ−
1) with ν � ε/4. On the other hand, for ζ = 1, we restrict to σ � c1/5−ε and take
δ0 = c1/2−νeσ /(eσ − 1)). In both cases, the right-hand sides in (87), (88) and (89) are
therefore small compared to

√
c in the considered limit. The claim thus follows from

Proposition 5.7. ��
Since the integral (91) converges absolutely for all ω, we can exchange limits to see

that

�̂t (z) =
∞∑

k=0

�t (k)z−k

where

�t (k) = 2
ˆ

E(t)
e−(1+q(k))(τt−τs )ei(k+1)θ cs1{v�λs }μ̃(dθ, dv, ds).

Set q0(k) = (1 − ζ )k and define, for all ζ ∈ (−∞, 1] and t < tζ ,

�0
t (k) = 2

ˆ
E(t)

e−(1+q0(k))(τt−τs )ei(k+1)θ cs1{v�λs }μ̃(dθ, dv, ds).

Proposition 6.2. For all α, η ∈ R with α +η = ζ � 1, and all t < tζ , there is a constant
C(α, η, t) < ∞ such that, for all k � 0,∥∥∥ sup

s�t
|�s(k)|

∥∥∥
2

� C
√

c,
∥∥∥ sup

s�t
|�cap

s |
∥∥∥

2
� C

√
c

and ∥∥∥ sup
s�t

|�s(k) − �0
s (k)|

∥∥∥
2

� Ck2σ
√

c.

Moreover, C may be chosen so that, for all h ∈ [0, 1] and all stopping times T � t − h,

‖�0
T +h(k) − �0

T (k)‖2 � C
√

c(
√

h + kh), ‖�cap
T +h − �

cap
T ‖2 � C

√
ch.

Proof. The estimates for (�cap
t )t<tζ are standard and are left to the reader. For (�t (k))t<tζ ,

we use time-dissection to obtain estimates with good dependence on k. Set κ = 1 + q(k)

and define

Mt (k) = eκτt �t (k) =
ˆ

E(t)
eκτs ei(k+1)θ 2cs1{v�λs }μ̃(dθ, dv, ds).

Set n = �κτt� and t (n) = t . Set t (i) = i/κ for i = 0, 1, . . . , n−1. Then t (i +1)−t (i) �
1/κ for all i . We have

E(|Mt (k)|2) = 4
ˆ t

0
e2κτs c2

s λsds � Cc
ˆ t

0
e2κτs τ̇sds � Cce2κτt /κ

so, by Doob’s L2-inequality,∥∥∥ sup
s�t

|Ms(k)|
∥∥∥

2
� Ceκτt

√
c/κ.
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Now, for t (i) � s � t (i + 1),

|�s(k)| � e−κτt (i) |Ms(k)|
so ∥∥∥ sup

t (i)�s�t (i+1)

|�s(k)|
∥∥∥

2
� Ce−κτt (i)

∥∥∥ sup
s�t (i+1)

|Ms(k)|
∥∥∥

2
� C

√
c/κ

and so ∥∥∥ sup
s�t

|�s(k)|
∥∥∥

2
� C

√
c. (93)

For the second estimate, set κ0 = 1 + (1 − ζ )k and note that

0 � |κ − κ0| = |ζ |k(1 − e−σ(k+1)) � |ζ |k(k + 1)σ.

Restrict for now to the case ζ � 0, when κ � κ0, and define

M0
t (k) =

ˆ
E(t)

eκ0τs ei(k+1)θ 2cs1{v�λs }μ̃(dθ, dv, ds)

and

M̃t (k) = Mt (k) − M0
t (k) =

ˆ
E(t)

(eκτs − eκ0τs )ei(k+1)θ 2cs1{v�λs }μ̃(dθ, dv, ds).

Note that

0 � eκτs − eκ0τs � (κ − κ0)τseκτs

so, by a similar argument,∥∥∥ sup
s�t

|e−κτs M̃s(k)|
∥∥∥

2
� C(κ − κ0)

√
c.

Now

�s(k) − �0
s (k) = e−κτs M̃s(k) + (e−κτs − e−κ0τs )M0

s (k)

so

|�s(k) − �0
s (k)| � e−κτs |M̃s(k)| + (κ − κ0)τs |�0

s (k)|
and so ∥∥∥ sup

s�t
|�s(k) − �0

s (k)|
∥∥∥

2
� C(κ − κ0)

√
c � Ck2σ

√
c.

For �0
s (k), we used the estimate (93) with κ replaced by κ0, which is the special case σ =

0. A similar argument holds in the case ζ < 0, with the roles of κ and κ0 interchanged,
which leads to the same estimate. It remains to show the third estimate, which we will
do for general σ � 0. We have

�T +h(k) − �T (k) = e−κτT +h MT +h(k) − e−κτT MT (k)

= e−κτT +h M̃h(k) − (e−κ(τT +h−τT ) − 1)�T (k)
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where we redefine

M̃h(k) = MT +h(k) − MT (k) =
ˆ

E(T +h)\E(T )

eκτs ei(k+1)θ 2cs1{v�λs }μ̃(dθ, dv, ds).

Now

E(|M̃h(k)|2|T ) = 4
ˆ T +h

T
e2κτs c2

s λsds

so

E(|e−κτT +h M̃h(k)|2) � Cch.

On the other hand, since T � t ,

‖(e−κ(τT +h−τT ) − 1)�T (k)‖2 � Cκh
∥∥∥ sup

s�t
|�s(k)|

∥∥∥
2

� C(k + 1)h
√

c.

The claimed estimate follows. ��

6.2. Gaussian limit process. By Proposition 6.1, in order to compute the weak limit of
c−1/2(�̂t , �

cap
t )t<tζ , it suffices to compute the weak limit of c−1/2(�̂t ,�

cap
t )t<tζ . This

process is a deterministic linear function of the compensated Poisson random measure μ̃.
We are guided to find the weak limit process by replacing μ̃ in (91) and (92) by a Gaussian
white noise on [0, 2π) × [0,∞) × (0,∞) of the same intensity. At the same time, we
set σ = 0 in the limit,2 replacing the multiplier operator P(τ ) by the corresponding
operator P0(τ ) when σ = 0. Then, using the scaling properties of white noise, we arrive
at candidate limit processes (�̂t (z))t<tζ and (�

cap
t )t<tζ which are defined as follows. Let

W be a Gaussian white noise on [0, 2π) × (0,∞) of intensity (2π)−1dθdt . Define for
each |z| > 1 and t ∈ [0, tζ )

�̂t (z) = 2
ˆ t

0

ˆ 2π

0
e−(τt−τs ) P0(τt − τs)H(θ, z)e−(α+η/2)τs W (dθ, ds),

�
cap
t =

ˆ t

0

ˆ 2π

0
e−ζ(τt−τs )e−(α+η/2)τs W (dθ, ds)

where these Gaussian integrals are understood by the usual L2 isometry. Define for t � 0
and k � 0

Bt (k) = √
2
ˆ t

0

ˆ 2π

0
ei(k+1)θ W (dθ, ds), Bt =

ˆ t

0

ˆ 2π

0
W (dθ, ds).

2 It is not necessary to pass to the limit σ → 0. Indeed, the best Gaussian approximation for given σ > 0
would be obtained using P instead of P0. The limit c → 0 with σ fixed then holds uniformly in σ , subject to
the restrictions stated in Theorem 1.3, and the limit processes for σ fixed converge weakly to the case σ = 0.
We have stated only the joint limit, since this seems to us of main interest, and since the limit fluctuations have
in this case a slightly simpler form.
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We can and do choose versions of (Bt (k))t�0 and (Bt )t�0 which are continuous in t .
Then (Bt (k))t�0 is a complex Brownian motion for all k, (Bt )t�0 is a real Brownian
motion, and all these processes are independent. Note that, almost surely, for all t < tζ ,

�
cap
t =

ˆ t

0
e−ζ(τt−τs )e−(α+η/2)τs d Bs .

Define for t ∈ [0, tζ ) and k � 0

�t (k) = √
2
ˆ t

0
e−(1−ζ )k(τt−τs )e−(α+η/2)τs d Bs(k).

The following estimate may be obtained by (a simpler version of) the argument used for
Proposition 6.2.

Proposition 6.3. For all α, η ∈ R with α +η = ζ � 1, and all t < tζ , there is a constant
C(α, η, t) < ∞ such that, for all k � 0,∥∥∥ sup

s�t
|�s(k)|

∥∥∥
2

� C.

The following identity holds in L2 for all |z| > 1 and t < tζ

�̂t (z) =
∞∑

k=0

�t (k)z−k . (94)

By Proposition 6.3, almost surely, the right-hand side in (94) converges uniformly on
compacts in [0, tζ ), uniformly on {|z| � r}, for all r > 1. So we can and do use (94) to
choose a version of �̂t (z) for each t < tζ and |z| > 1 such that (�̂t )t<tζ is a continuous
process in H and (94) holds for all ω.

The processes (�t (k))t<tζ and (�
cap
t )t<tζ are also characterized by the following

Ornstein–Uhlenbeck-type stochastic differential equations

d�t (k) = e−ατt
(√

2e−ητt /2d Bt (k) − (1 + (1 − ζ )k)�t (k)e−ητt dt
)

, �0(k) = 0,

d�
cap
t = e−ατt

(
e−ητt /2d Bt − ζ�

cap
t e−ητt dt

)
, �

cap
0 = 0.

These equations can be put in a simpler form by switching to the time-scale

νt =
ˆ t

0
e−ητs ds

which arises as the limit as c → 0 of a time-scale where particles arrive at a constant
rate. Write ν  → t (ν) : [0, nα) → [0, tζ ) for the inverse map and set

�̃ν(k) = �t (ν)(k), �̃
cap
ν = �

cap
t (ν)

and

τ̃ν = τt (ν), B̃ν(k) =
ˆ t (ν)

0
e−ητs/2d Bs(k), B̃ν =

ˆ t (ν)

0
e−ητs/2d Bs .
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Then e−ατ̃ν = (1 + αν)−1. Also (B̃ν(k))ν<nα is a complex Brownian motion for all k,
(B̃ν)ν<nα is a real Brownian motion, and these processes are independent. Then we have

d�̃ν(k) = (1 + αν)−1
(√

2d B̃ν(k) − (1 + (1 − ζ )k)�̃ν(k)dν
)

, �̃0(k) = 0,

d�̃
cap
ν = (1 + αν)−1

(
d B̃ν − ζ �̃

cap
ν dν

)
, �̃

cap
0 = 0. (95)

We can define a Brownian motion (B̃ν)ν<nα in H by

B̃ν(z) =
∞∑

k=0

B̃ν(k)z−k .

Set

�̃ν(z) =
∞∑

k=0

�̃ν(k)z−k = �̂t (ν)(z).

On summing the equations (95), we see that (�̃ν)ν<nα satisfies the following stochastic
integral equation in H

�̃ν(z) =
ˆ ν

0

√
2d B̃s(z) − �̃s(z)ds + (1 − ζ )D�̃s(z)ds

1 + αs
.

6.3. Convergence. Given Proposition 6.1, the following result will complete the proof
of Theorem 1.3.

Proposition 6.4. For all α, η ∈ R with α + η = ζ � 1 and all T < tζ , we have

c−1/2(�̂t ,�
cap
t )t�0 → (�̂t , �

cap
t )t�T

weakly in D([0, T ],H× R) as c → 0 and σ → 0 as in Theorem 1.3.

Proof. By Proposition 6.2, it will suffice to show the claimed limit with (�̂t )t�T replaced
by (�̂0

t )t�T . We first show that

c−1/2((�0
t (k) : k � 0),�

cap
t )t�T → ((�t (k) : k � 0), �

cap
t )t�T

in the sense of finite-dimensional distributions. For all n � 1, all k1, . . . , kn � 0 and all
t1, . . . , tn � T , any real-linear function of c−1/2(�0

t j
(k j ),�

cap
t j

: j = 1, . . . , n) can be
written in the form

F =
ˆ

E(T )

f̃t (θ)1{v�λt }μ̃(dθ, dv, dt)

where

f̃t (θ) = c−1/2 ft (θ)ct
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and (θ, t)  → ft (θ) : [0, 2π)× (0, T ] → R is bounded, measurable and independent of
c. Set

σ 2
t =

 2π

0
ft (θ)2dθ.

The same linear function applied to (�t j (k j ), �
cap
t j

: j = 1, . . . , n) gives the random
variable

G =
ˆ T

0

ˆ 2π

0
f̃t (θ)λ

1/2
t W (dθ, dt) =

ˆ T

0

ˆ 2π

0
ft (θ)e−(α+η/2)τt W (dθ, dt).

Then

E(F2) = E(G2) =
ˆ T

0

 2π

0
f̃t (θ)2λt dθdt =

ˆ T

0
e−(2α+η)τt σ 2

t dt

and, using the Campbell–Hardy formula, as c → 0,

E(eiuF ) = exp

(ˆ T

0

 2π

0
(eiu f̃t (θ) − 1 − iu f̃t (θ))λt dθdt

)

→ exp

(
−u2

2

ˆ T

0
e−(2α+η)τt σ 2

t dt

)
= E(eiuG).

The claimed convergence of finite-dimensional distributions follows, by convergence of
characteristic functions.

Now, Proposition 6.2 shows that the processes (�0
t (k))t�T and (�

cap
t )t�T all satisfy

Aldous’s tightness criterion in D([0, T ],C). Hence

c−1/2((�0
t (k) : k � 0),�

cap
t )t�T → ((�t (k) : k � 0), �

cap
t )t�T

weakly in D([0, T ],CZ
+ × R) as c → 0. Hence, for all K � 0,

c−1/2(pK (�̂0
t ),�

cap
t )t�T → (pK (�̂t ), �

cap
t )t�T

weakly in D([0, T ],H× R) as c → 0, where, for f (z) = ∑∞
k=0 ak z−k ,

pK ( f )(z) =
K∑

k=0

ak z−k .

For |z| = r , we have

|( f − pK ( f ))(z)| �
∞∑

k=K +1

|ak |r−k .

Hence, it will suffice to show, for r > 1 and all ε > 0, that

lim
K→∞ lim sup

c→0
P

(
c−1/2 sup

t�T

∞∑
k=K +1

|�0
t (k)|r−k > ε

)
= 0.
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But, since α + η = ζ � 1, by Proposition 6.2, there is a constant C(α, η, T ) < ∞ such
that, for all c > 0 and all r > 1,∥∥∥∥∥c−1/2 sup

t�T

∞∑
k=K

|�0
t (k)|r−k

∥∥∥∥∥
2

� Cr−K

r − 1
.

The desired limit follows. ��
Proof of Theorem 1.4. We will argue via the Skorokhod representation theorem. It will
suffice to show the claimed convergence for all sequences ck → 0 and σk → 0 subject
to the constraint assumed in Theorem 1.3. Given N < nα , choose δ > 0 and T < tζ
such that νT = N + δ, as in the proof of Theorem 1.2. By Theorem 1.3 and Proposi-
tions 5.5 and 5.7, and since D([0, T ],H) is a complete separable metric space, there is
a probability space on which are defined a sequence of ALE(α, η) processes (�

(k)
t )t�0,

with common particle family (P(c) : c ∈ (0,∞)), and a Gaussian process (�̂t )t<tζ with
the following properties:

(a) (�
(k)
t )t�0 has capacity parameter ck and regularization parameter σk ,

(b) (�̂t )t<tζ has the distribution of the limit Gaussian process in Theorem 1.3,
(c) almost surely, as k → ∞,

sup
t�T

|cV(k)
t − νt | → 0

and, for all r > 1,

sup
t�T

sup
|z|�r

∣∣∣c−1/2�̂
(k)
t (z) − �̂t (z)

∣∣∣ → 0.

Here, V(k)
t denotes the number of particles added in (�

(k)
t )t�0 by time t . Define for

n � 0 and ν < nα

J (k)
n = inf{t � 0 : V(k)

t = n}, t (ν) = ζ−1((1 + αν)ζ/α − 1).

From (c), we deduce that, almost surely, as k → ∞,

sup
n�N/c

|J (k)
n − t (cn)| → 0

and, for ν ∈ [0, N ] and n = �ν/c�, the following limit holds in H

c−1/2�̂
(k),disc
ν/c = c−1/2�̂(k),disc

n = c−1/2�̂
(k)

J (k)
n

→ �̂t (ν).

But (�̂t (ν))ν<nα has the same distribution as (�̂disc
ν )ν<nα . Hence

c−1/2(�̂(k),disc
ν )ν�N → (�̂disc

ν )ν�N

weakly in D([0, N ],H). ��
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A. Miscellaneous Estimates

A.1. Explosion in continuous-time ALE(α, η). In this paper we adopted a continuous-
time formulation of ALE. When the cluster is in state φ, we add a particle with harmonic
measure coordinate θ ∈ [0, 2π) at rate c−1|φ(eσ+iθ )|−ηdθ/(2π). In previous works,
this process had been considered in discrete time, that is, jump by jump. Besides being
mathematically convenient, the continuous-time formulation has physical meaning since
it considers the process in the natural physical time-scale. We now determine exactly
for which parameter values α and η there is pathwise explosion for ALE. The definition
and running assumptions (5) and (6) for ALE(α, η) are given in Sect. 1.2.

Proposition A.1. Let (�t )t�0 be an ALE(α, η) process. Denote by (Tt )t�0 the associated
process of capacities and by Z the explosion time of (�t )t�0. Then, on the event {Z <

∞}, we have Tt → ∞ as t → Z. Moreover, if η � 0 or ζ = α + η � 0, then Z = ∞
almost surely, while if η < 0 and ζ < 0 then Z < ∞ almost surely.

Proof. The total jump rate λ(φ) at a state φ is given by

λ(φ) = c−1
 2π

0
|φ′(eσ+iθ )|−ηdθ

so, by distortion estimates, there is a constant C(η, σ ) < ∞ such that

c−1e−ητ /C � λ(φ) � Cc−1e−ητ

where τ = φ′(∞). Similarly, there is a constant C(α, σ ) < ∞ such that the next jump
in capacity �τ satisfies

ce−ατ /C � �τ � Cce−ατ .

The upper bound in the first estimate implies that the jump rate is bounded if η � 0,
and is bounded on compacts in τ if η < 0. Hence Z = ∞ almost surely if η � 0, and if
η < 0 then Z < ∞ only if Tt → ∞ as t → Z . Moreover, using also the upper bound
of the second estimate, we see that

Tt − C2
ˆ t

0
e−ζTs ds

is a local supermartingale up to Z . Hence Z = ∞ almost surely if ζ � 0.

http://creativecommons.org/licenses/by/4.0/
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It remains to show that Z < ∞ almost surely in the case when η < 0 and ζ < 0. For
this we use the lower bounds in the estimates above. Set

δ(τ ) = (c/C)e−ατ , λ(τ ) = (c−1/C)e−ητ , F(τ ) = τ + δ(τ ).

It will be convenient to choose C � αc so that F is increasing on [0,∞). We know
that Tt jumps up by at least δ(Tt−) at rate at least λ(Tt−). Consider the Markov chain
(Xt )t�0 starting from 0 which jumps up by δ(Xt−) at rate λ(Xt−). Since η < 0, for as
long as Xt− � Tt−, we may couple these processes so that (Xt )t�0 jumps whenever
(Tt )t�0 does. But X0 = T0 = 0 and at each jump of Xt we have Xt = F(Xt−) and
Tt � F(Tt−). Since F is increasing, the inequality Xt � Tt extends to all t < Z .
It will therefore suffice to show that (Xt )t�0 explodes. Now the sequence of values
(x(n) : n � 0) taken by (Xt )t�0 is given by

x(n + 1) = x(n) + δ(x(n)), x(0) = 0

and the holding times of (Xt )t�0 are independent exponential random variables of pa-
rameters (λ(x(n)) : n � 0). Hence (Xt )t�0 explodes if and only if

∞∑
n=0

λ(x(n))−1 < ∞.

Note that, if α � 0, then x(n) � cn/C for all n so

∞∑
n=0

λ(x(n))−1 � Cc
∞∑

n=0

eηcn/C < ∞.

Assume then that α > 0. For x � 0, define (ψt (x) : t � 0) by

ψ̇t (x) = δ(ψt (x)), ψ0(x) = x .

We can solve to obtain

ψt (x) = 1

α
log(eαx + αct/C).

Since α > 0 and ψt (x) is increasing in t ,

ψ1(x(n)) = x(n) + (c/C)

ˆ 1

0
e−αψs (x(n))ds � x(n) + δ(x(n)) = x(n + 1).

Since ψt (x) is increasing in x , it follows by induction that, for all n,

x(n) � ψn(0) = 1

α
log(1 + αcn/C).

Hence

eηx(n) � (1 + αcn/C)η/α.

But α + η = ζ < 0 so η/α < −1 and so

∞∑
n=0

λ(x(n))−1 � Cc
∞∑

n=0

(1 + αcn/C)η/α < ∞

as required. ��
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A.2. Estimates for single-particle maps. Let P be a basic particle and let

F(z) = ec

(
z +

∞∑
k=0

ak z−k

)

be the associated conformal map D0 → D0 \P . We assume that F extends continuously
to {|z| � 1}. Set

r0 = r0(P) = sup{|z| − 1 : z ∈ P},
δ = δ(P) = inf{r � 0 : |z − 1| � r for all z ∈ P}.

We assume throughout that δ � 1. We use the following well known estimates on the
capacity c. There is an absolute constant C < ∞ such that

r2
0 /C � c � Cδ2. (96)

The lower bound relies on Beurling’s projection theorem and a comparison with the case
of a slit particle. The upper bound follows from a comparison with the case Pδ = Sδ∩D0,
where Sδ is the closed disk whose boundary intersects the unit circle orthogonally at
e±iθδ with θδ ∈ [0, π ] is determined by |eiθδ − 1| = δ. See Pommerenke [23].
Write

log

(
F(z)

z

)
= u(z) + iv(z)

where we understand the argument to be determined for each z ∈ D0 so that the left-hand
side is holomorphic in D0 and such that v(z) → 0 as z → ∞. Then u and v are bounded
and harmonic in D0, with continuous extensions to {|z| � 1}, and u(z) → c as z → ∞.
Note also that

0 � u(eiθ ) � log(1 + r0) � r0 for all θ. (97)

Lemma A.2. Assume that 16δ � π . Then

u(eiθ ) = 0 whenever |θ | ∈ [16δ, π ] (98)

and

|v(eiθ )| � 16δ for all θ. (99)

Proof. Set

pδ = P∞(B hits Sδ before leaving D0)

where B is a complex Brownian motion. Consider the conformal map f of D0 to the
upper half-plane H given by

f (z) = i
z − 1

z + 1
.

Set b = f (e−iθδ ) = sin θδ/(1 + cos θδ). Since δ � 1, we have

θδ � δπ/3 (100)
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and then b � 2πδ/9. By conformal invariance,

pδ = Pi (B hits f (Sδ)before leavingH) = 2
ˆ 2b/(1−b2)

0

dx

π(1 + x2)
.

Hence

pδ � 4b/π � 8δ/9. (101)

Now eiπ is not a limit point of P so eiπ = F(ei(π+α)) for some α ∈ R. Then u(ei(π+α)) =
0 and we can and do choose α so that α + v(ei(π+α)) = 0. Set

θ+ = sup{θ � π + α : u(eiθ ) > 0}, θ− = inf{θ � π + α : u(eiθ ) > 0} − 2π.

Then θ− � θ+. We will show that |θ±| � 16δ, which then implies (98). For θ ∈ [θ−, θ+],
we have F(eiθ ) ∈ Sδ so |θ + v(eiθ )| � θδ . Set P∗ = {F(eiθ ) : θ ∈ [θ−, θ+]}. Then
P∗ ⊆ Sδ so, by conformal invariance,

θ+ − θ−

2π
= P∞(B hits P∗ on leavingD0 \ P) � pδ.

On the other hand, for θ, θ ′ ∈ [θ+, θ− + 2π ] with θ � θ ′, by conformal invariance,

θ ′ − θ

2π
= P∞

(
B hits

[
ei(θ+v(eiθ )), ei(θ ′+v(eiθ ′ ))] on leaving D0 \ P

)
� θ ′ + v(eiθ ′) − θ − v(eiθ )

2π

so v is non-decreasing on [θ+, θ− + 2π ], and so

α + v(eiθ+
) � α + v(ei(π+α)) = 0 � α + v(eiθ−).

Hence

θ+ − α � 2πpδ + θ− − α � 2πpδ + θδ − v(eiθ−) − α � 2πpδ + θδ (102)

and similarly

θ− − α � −2πpδ − θδ. (103)

So we obtain, for all θ ∈ [θ−, θ+],
|α + v(eiθ )| � 2θδ + 2πpδ. (104)

Since v is continuous and is non-decreasing on the complementary interval, this in-
equality then holds for all θ . Now v is bounded and harmonic in D0 with limit 0 at ∞,
so

ˆ 2π

0
v(eiθ )dθ = 0.

Hence

|α| =
∣∣∣∣
 2π

0
(α + v(eiθ ))dθ

∣∣∣∣ � 2θδ + 2πpδ.
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On combining this with (102), (103) and (104), we see that

|θ±| � 4θδ + 4πpδ, |v(eiθ )| � 4θδ + 4πpδ for all θ.

But 4θδ + 4πpδ � 44πδ/9 � 16δ by (100) and (101), so we have shown the claimed
inequalities. ��
Proposition A.3. There is an absolute constant C < ∞ with the following properties.
In the case where δ = δ(P) � 1/C, for all |z| > 1,∣∣∣∣log

(
F(z)

z

)
− c

∣∣∣∣ � Cδ

|z| (105)

and, for all |z| > 1 with |z − 1| � Cδ,∣∣∣∣log

(
F(z)

z

)
− c − 2c

z − 1

∣∣∣∣ � Cδc|z|
|z − 1|2 (106)

and

|a0 − 2c| � Cδc (107)

and ∣∣∣∣log

(
F(z)

z

)
− c − a0

z − 1

∣∣∣∣ � Cδc

|z − 1|2 . (108)

Proof. Since z log(F(z)/z) is bounded and holomorphic in {|z| > 1}, (105) follows from
(97) and (99) by the maximum principle. The inequality (107) follows from (106) on
letting z → ∞, since z(log(F(z)/z)−c) → a0. Moreover, since (z−1)2(log(F(z)/z)−
c) − a0z is bounded and holomorphic on {|z| > 1}, (108) follows from (106) by the
maximum principle, at the cost of replacing C by 6C , say. We will show (106) holds
whenever |z − 1| � 3a, where a = 16δ.
Since u is bounded and harmonic with u(z) → c as z → ∞, we have

 2π

0
u(eiθ )dθ = c

and, for all |z| > 1,

u(z) =
 2π

0
u(eiθ ) Re

(
z + eiθ

z − eiθ

)
dθ = c +

 2π

0
u(eiθ ) Re

(
2eiθ

z − eiθ

)
dθ.

Let α ∈ (−π, π ] and ρ > 0 be defined by

 2π

0
u(eiθ )eiθ dθ = cρeiα.

We use (98) to see that |α| � a and ρ ∈ [cos a, 1). Now

u(z) − c − Re

(
2ρceiα

z − eiα

)
=
 2π

0
u(eiθ ) Re

(
2eiθ

z − eiθ
− 2eiθ

z − eiα

)
dθ.
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For |z − 1| � 2a and any θ such that u(eiθ ) > 0, we have

|z − eiα| � |z − 1|/2, |z − eiθ | � |z − 1|/2, |eiθ − eiα| � 2a.

Hence, for |z| > 1 with |z − 1| � 2a,∣∣∣∣u(z) − c − Re

(
2ρceiα

z − eiα

)∣∣∣∣ � 2
 2π

0
u(eiθ )

|eiθ − eiα|
|z − eiθ ||z − eiα|dθ � 16ac

|z − 1|2
and ∣∣∣∣ 2

z − 1
− 2ρeiα

z − eiα

∣∣∣∣ � 2(1 − ρ + |ρeiα − 1||z|)
|z − 1||z − eiα| � 12a|z|

|z − 1|2
and hence ∣∣∣∣u(z) − c − Re

(
2c

z − 1

)∣∣∣∣ � Cac|z|
|z − 1|2 . (109)

We can extend F to a holomorphic function in {|z−1| > a} by setting F(z̄−1) = F(z)
−1

.
Then u and v also extend and it is straightforward to check that the estimate (109) remains
valid for all |z − 1| � 2a. Since v(z) → 0 as z → ∞, a standard argument allows us to
deduce from (109) that, for |z − 1| � 3a,∣∣∣∣v(z) − Im

(
2c

z − 1

)∣∣∣∣ � Cac|z|
|z − 1|2

and hence ∣∣∣∣log

(
F(z)

z

)
− c − 2c

z − 1

∣∣∣∣ � Cac|z|
|z − 1|2 .

��
We sometimes use exponentiated versions of the inequalities just proved, which are
straightforward to deduce and are noted here for easy reference. There is an absolute
constant C < ∞ with the following properties. Suppose that δ � 1/C . Then, for all
|z| > 1,

|e−c F(z) − z| � Cδ

and, in the case |z − 1| � Cδ,∣∣∣∣e−c F(z) − z − 2cz

z − 1

∣∣∣∣ � Cδc|z|2
|z − 1|2 (110)

and ∣∣∣∣e−c F(z) − z − a0z

z − 1

∣∣∣∣ � Cδc|z|
|z − 1|2 .
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Proposition A.4. There is an absolute constant C < ∞ with the following properties.
Let P1, P2 be basic particles with P1 ⊆ P2. For i = 1, 2, write Fi for the associated
conformal map D0 → D0 \ Pi and write ci for the capacity of Pi . Set δi = δ(Pi ) and
a0,i = a0(Pi ) and set

εi (z) = log

(
Fi (z)

z

)
− ci − 2ci

z − 1
, ε0,i (z) = log

(
Fi (z)

z

)
− ci − a0,i

z − 1
.

Assume that δ2 � 1/C. Then

|a0,2 − a0,1 − 2(c2 − c1)| � Cδ2(c2 − c1) (111)

and, for all |z| > 1 with |z − 1| � Cδ2,

|ε1(z) − ε2(z)| � Cδ2(c2 − c1)|z|
|z − 1|2 (112)

and

∣∣ε0,1(z) − ε0,2(z)
∣∣ � Cδ2(c2 − c1)

|z − 1|2 . (113)

Proof. The inequalities (112) and (113) follow from (111) by the same argument used to
deduce (107) and (108) from (106). Set P̃ = F−1

1 (P2 \ P1). Write F̃ for the associated
conformal map D0 → D0 \ P̃ and write c̃ for the capacity of P̃ . Then

F2 = F1 ◦ F̃, c2 = c1 + c̃.

Note that, for z ∈ P̃ , we have F1(z) ∈ P2, so |F1(z)−1| � δ2. But |e−c1 F1(z)−z| � Cδ1
for all |z| > 1 and c1 � Cδ2

1. Hence |z − 1| � Cδ2 for all z ∈ P̃ and so

δ̃ = δ(P̃) � Cδ2.

Hence, for C sufficiently large and δ2 � 1/C , for all |z| > 1 with |z − 1| � Cδ2,∣∣∣∣∣log

(
F̃(z)

z

)
− c̃ − 2c̃

z − 1

∣∣∣∣∣ � Cδ2c̃|z|
|z − 1|2 (114)

and in particular ∣∣∣∣∣log

(
F̃(z)

z

)∣∣∣∣∣ � Cc̃|z|
|z − 1| . (115)

Set zt = z exp(t log(F̃(z)/z)) and f (t) = log(F1(zt )/F1(z)). Then

log

(
F2(z)

F1(z)

)
= f (1) − f (0) =

ˆ 1

0
ḟ (t)dt = log

(
F̃(z)

z

)ˆ 1

0
F ′

1(zt )

(
F1(zt )

zt

)−1

dt
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so

ε2(z) − ε1(z)

= log

(
F2(z)

F1(z)

)
− c̃ − 2c̃

z − 1

= log

(
F̃(z)

z

)ˆ 1

0
F ′

1(zt )

(
F1(zt )

zt

)−1

dt − c̃ − 2c̃

z − 1

= log

(
F̃(z)

z

)
− c̃ − 2c̃

z − 1
+ log

(
F̃(z)

z

)ˆ 1

0

(
F ′

1(zt )

(
F1(zt )

zt

)−1

− 1

)
dt.

Now | log(F̃(z)/z)| � Cδ2, so |zt − z| � Cδ2 for all t . Hence, for C sufficiently large
and |z − 1| � Cδ2, we have |zt − 1| � C0δ1 for all t , where C0 is the constant from
Proposition A.3. Then

|e−c1 F1(zt ) − zt | � Cδ1, |e−c1 F ′
1(zt ) − 1| � Cδ1

|z − 1|
where we used Cauchy’s integral formula for the second inequality, adjusting the value
of C if necessary. On combining these estimates with (114) and (115), we see that

|ε2(z) − ε1(z)| � Cδ2(c2 − c1)|z|
|z − 1|2

as claimed. ��
The following is a straightforward consequence of (96) and Propositions A.3 and A.4.

Proposition A.5. Let (P(c) : c ∈ (0, 1]) be a family of basic particles and suppose that
the associated conformal maps Fc are given by

Fc(z) = ec

(
z +

∞∑
k=0

ak(c)z
−k

)
.

Fix � ∈ [1,∞) and assume that δ(c) � �r0(c) for all c. Then there is a constant
C(�) < ∞ such that, for all c � 1/C,

|a0(c) − 2c| � Cc3/2

and, for all |z| > 1, ∣∣∣∣log

(
Fc(z)

z

)
− c

∣∣∣∣ � Cc

|z − 1|
and ∣∣∣∣log

(
Fc(z)

z

)
− c − a0(c)

z − 1

∣∣∣∣ � Cc3/2

|z − 1|2
and ∣∣∣∣e−c Fc(z) − z − a0(c)z

z − 1

∣∣∣∣ � Cc3/2|z|
|z − 1|2 .
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Moreover, if (P(c) : c ∈ (0, 1]) is nested, then C may be chosen so that, for all c1, c2 ∈
(0, c],

|(a0(c1) − 2c1) − (a0(c2) − 2c2)| � Cc1/2|c1 − c2|
and, for all |z − 1| � C

√
c,∣∣∣∣

(
log

(
Fc1(z)

z

)
− c1

)
−

(
log

(
Fc2(z)

z

)
− c2

)∣∣∣∣ � C |c1 − c2|
|z − 1|

and∣∣∣∣
(

log

(
Fc1(z)

z

)
− c1 − a0(c1)

z − 1

)
−

(
log

(
Fc2(z)

z

)
− c2 − a0(c2)

z − 1

)∣∣∣∣ � C
√

c|c1 − c2|
|z − 1|2

and∣∣∣∣
(

e−c1 Fc1(z) − z − a0(c1)z

z − 1

)
−

(
e−c2 Fc2(z) − z − a0(c2)z

z − 1

)∣∣∣∣ � C
√

c|c1 − c2||z|
|z − 1|2 .

For our final particle estimates, we use the following integral representation for the
family of particle maps

Fc(z) = z +
ˆ c

0
DFt (z)

ˆ 2π

0

z + eiθ

z − eiθ
μt (dθ)dt

for some measurable family of probability measures (μt : t ∈ (0,∞)), withμt supported
on {θ : |eiθ − 1| � δ(t)} for all t . This follows from our requirements that the particles
P(c) have capacity c, are contained in {|z − 1| � δ(c)} and are nested, by the Loewner–
Kufarev theory. Our condition (6) and the inequality (96) then give a constant C(�) < ∞
such that

supp μt ⊆ {θ : |eiθ − 1| � C
√

t}. (116)

Define holomorphic functions Lt and Qt on {|z| > 1} by

Lt (z) =
ˆ 2π

0
lt (θ, z)μt (dθ), Qt (z) =

ˆ 2π

0
qt (θ, z)μt (dθ) (117)

where

lt (θ, z) =
(

D log

(
Ft (z)

z

)
+ 1

)
z + eiθ

z − eiθ
, qt (θ, z) = DFt (z)

z + eiθ

z − eiθ
− et z − 2et eiθ z

z − 1
.

Note that lt (θ, z) → 1 and qt (θ, z) → 0 as z → ∞, uniformly in θ . It is then straight-
forward to show the integral representations

log

(
Fc(z)

z

)
=
ˆ c

0
Lt (z)dt, ec

(
e−c Fc(z) − z − a0(c)z

z − 1

)
=
ˆ c

0
Qt (z)dt.
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Proposition A.6. There is a constant C(�) < ∞ with the following property. For all
t � 1/C and all |z| > 1,

|Lt (z)| � C |z|
|z − 1| +

C
√

t |z|
|z − 1|2 , |Qt (z)| � C

√
t |z|

|z − 1|2 .

Proof. We give the details for the second estimate, leaving the first which is similar but
simpler to the reader. We split qt (θ, z) = gt (θ, z) + ht (θ, z), where

gt (θ, z) = (DFt (z) − et z)
z + eiθ

z − eiθ
, ht (θ, z) = et z

(
z + eiθ

z − eiθ
− 1 − 2eiθ

z − 1

)
.

Now

z + eiθ

z − eiθ
− 1 − 2eiθ

z − 1
= 2eiθ (eiθ − 1)

(z − eiθ )(z − 1)

so, on the support of μt , we have, for |z − 1| � 2C
√

t ,

|ht (θ, z)| � 2Cet√t |z|
|z − 1|2

where C is the constant in (116). On the other hand, we showed above that, for all
|z| > 1,

|Ft (z) − et z| � C
√

t

and Ft extends by reflection to a holomorphic function on {|z − 1| > C
√

t} satisfying
the same inequality. Hence, by Cauchy’s integral formula, for |z − 1| � 2C

√
t ,

|DFt (z) − et z| � C
√

t |z|
|z − 1|

and so, for θ in the support of μt ,

|gt (θ, z)| � C
√

t |z|
|z − 1|2 .

We have shown that, for all |z − 1| � C
√

t ,

|Qt (z)| � C
√

t |z|
|z − 1|2 .

��
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A.3. Operator inequalities. Recall that, for a measurable function f on {|z| > 1}, for
p ∈ [1,∞) and r > 1, we set

‖ f ‖p,r =
( 2π

0
| f (reiθ )|pdθ

)1/p

, ‖ f ‖∞,r = sup
θ∈[0,2π)

| f (reiθ )|.

Suppose that f is holomorphic and is bounded at ∞. It is standard that, for ρ ∈ (1, r),

‖ f ‖p,r � ‖ f ‖p,ρ, ‖ f ‖∞,r �
(

ρ

r − ρ

)1/p

‖ f ‖p,ρ . (118)

Moreover, there is an absolute constant C < ∞ such that

‖D f ‖p,r � Cρ

r − ρ
‖ f ‖p,ρ (119)

where D f (z) = z f ′(z). The function f has a Laurent expansion

f (z) =
∞∑

k=0

fk z−k .

Let M be an operator which acts as multiplication by mk on the the kth Laurent coeffi-
cient. Thus

M f (z) =
∞∑

k=0

mk fk z−k .

Assume that there exists a finite constant A > 0 such that, for all k � 0,

|mk | � A

and, for all integers K � 0,

2K +1−1∑
k=2K

|mk+1 − mk | � A.

Then, by the Marcinkiewicz multiplier theorem [29, Vol. II, Theorem 4.14], for all
p ∈ (1,∞), there is a constant C = C(p) < ∞ such that, for all r > 1,

‖M f ‖p,r � C A‖ f ‖p,r . (120)

We will use also the following estimate.

Proposition A.7. Let f and g be holomorphic in {|z| > 1} and bounded at ∞. Let M
be a multiplier operator and let p � 2. Set

fθ (z) = f (e−iθ z).

and

h p(z) =
( 2π

0
|M( fθ .g)|p(z)dθ

)1/p

.
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Then, for all r, ρ > 1, we have

‖h2‖p,r � ‖M‖p,ρ→r‖g‖p,ρ‖ f ‖2,ρ

and

‖h p‖p,r � ‖M‖p,ρ→r‖g‖p,ρ‖ f ‖p,ρ

where

‖M‖p,ρ→r = sup{‖M f ‖p,r : ‖ f ‖p,ρ � 1}.
Proof. The second estimate is straightforward and is left to the reader. For the first, we
can write

f (z) =
∞∑

k=0

fk z−k, g(z) =
∞∑

k=0

gk z−k, M f (z) =
∞∑

k=0

mk fk z−k .

Then

M( fθ .g)(z) =
∞∑

k=0

∞∑
j=0

m j+k fk g j e
iθk z−(k+ j)

so

h2(z)
2 =

∞∑
k=0

| fk |2|M(τk g)(z)|2

where τk g(z) = z−k g(z). Hence

‖h2‖2
p,r = ‖h2

2‖p/2,r �
∞∑

k=0

| fk |2‖M(τk g)‖2
p,r �

∞∑
k=0

| fk |2‖M‖2
p,ρ→r‖τk g‖2

p,ρ

=
∞∑

k=0

| fk |2ρ−2k‖M‖2
p,ρ→r‖g‖2

p,ρ = ‖M‖2
p,ρ→r‖ f ‖2

2,ρ‖g‖2
p,ρ .

��
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