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Abstract: In this paper, we construct a new family of generalization of the positive
representations of split-real quantum groups based on the degeneration of the Casimir
operators acting as zero on some Hilbert spaces. It is motivated by a new observation aris-
ing from modifying the representation in the simplest case of Uq(sl(2,R)) compatible
with Faddeev’s modular double, while having a surprising tensor product decomposi-
tion. For higher rank, the representations are obtained by the polarization of Chevalley
generators of Uq(g) in a new realization as universally Laurent polynomials of a certain
skew-symmetrizable quantum cluster algebra. We also calculate explicitly the Casimir
actions of the maximal An−1 degenerate representations of Uq(gR) for general Lie types
based on the complexification of the central parameters.
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1. Introduction

Motivation. Positive representations were introduced in [9] to study the representation
theory of split real quantum groups Uq(gR) associated to semisimple Lie algebra g, as
well as its modular double Uqq̃(gR) introduced by [5,6] in the regime where |q| = 1.
These representations are natural generalizations of a special family of representations
of Uq(sl(2,R)) classified in [25] and studied in detail by Teschner et al. [1,23,24]
from the point of view of quantum Liouville theory, in which they are characterized by
the actions of the Chevalley generators 〈e, f,K〉 as positive self-adjoint operators on
the Hilbert space L2(R). In general, this family of representations of Uq(gR), which
is referred to as the standard positive representations, has been constructed explicitly
for all Lie types [9,12,13], and has since been given a cluster realization [16,26] as
well as a geometric meaning in terms of the quantization of potential functions [10],
associated to moduli spaces of certain framed G-local systems [7]. The study of the
positive representations of Uq(gR) in general is expected to generalize the program of
Teschner et al. to appropriate quantum Toda field theory [27].

In this paper, we discover a new family of representations of Uq(gR) which does not
lie in the original family of the standard positive representations, but yet the Chevalley
generators of the quantum group still act by positive operators. This is based on a simple
observation in the sl2 case, where the generators can be re-expressed in terms of the
Casimir element

C = fe − qK − qK−1. (1.1)

Let q = eπ ib2
where i := √−1 and 0 < b < 1 such that |q| = 1. In the family of the

standard positive representation Pλ, C acts as multiplication on L2(R) by a positive real
scalar

πλ(C) = e2πbλ + e−2πbλ ≥ 2 (1.2)

for a real parameter λ ∈ R≥0. We observe that however, if we require that C acts by zero
instead, the resulting representation is still positive, since we can rewrite formally

f = e−1(C + qK + qK−1) � qe−1K + qe−1K−1 (1.3)

which is a positive expression. We call this the degenerate positive representation, de-
noted by P0.
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From another point of view, formally this can be obtained by setting the real parameter
λ to certain special complex values λ0 = ± i

4b , so that we may consider P0 = Pλ0 as
some kind of analytic continuation of the standard positive representationsPλ. It turns out
that P0 behaves surprisingly well under taking tensor product since it also decomposes
into a direct integral of the standard family Pλ. In some sense this is reminiscent of the
complementary series of the unitary representations of the split real group SL(2,R).

Finally, the action of the Casimir by zero is very special in the sense that we have an
embedding of (a quotient of)Uq(sl2) into a skew-symmetrizable quantum cluster algebra
Oq(X ). In particular, the image of the Chevalley generators are universally Laurent
polynomials, such that P0 is realized as a certain polarization of such embedding. This
also induces a dual construction which is compatible with the modular double structure.

Degenerate positive representations. Generalizing the motivation in sl2, we construct
a new family of representations of Uq(sl(n,R)) by formally setting the generalized
Casimir elements Ck = 0 in the standard positive representations Pλ in an appropriate
cluster chart. The construction is based on the cluster realization of Uq(sl(n,R)) and its
symmetric folding by cluster mutations due to [27]. This leads to the consideration of a
new, skew-symmetrizable cluster variety X 0, and we obtain the following main result
(Theorem 4.5).

Let Dq(g) denote the Drinfeld’s double of the Borel subalgebra of Uq(g).

MainTheorem. There is an embedding ofDq(sln)/〈Ck = 0〉 into a skew-symmetrizable
quantum cluster algebra Oq(X 0), such that the image of the Chevalley generators are
universally Laurent polynomials.

Passing to a polarization, we have an irreducible representation P0 of Uq(sl(n,R))

acting on a Hilbert space as positive operators, such that all the generalized Casimir
operators Ck act by zero.

By reversing the multipliers of the symmetric folding, one also induces from P0

a representation ˜P0 compatible with the modular double counterpart (Corollary 4.14).
Hence in fact we have constructed two different new embeddings of Uq(sl(n,R)) with
specialized Casimir actions.

Next, we proceed to discuss the representations for Uq(gR) for general Lie type,
where rank(g) = n. If it is not of type An , the symmetric folding construction may
not work. However, we can consider the parabolic subgroup WJ ⊂ W of the Weyl
group associated to a subset of the Dynkin index J ⊂ I . In [17], we have constructed
the parabolic positive representations P J

λ of Uq(gR) based on WJ . Using the same
argument presented in [17], we proved that the symmetric folding construction can be
performed on different type A parabolic parts, and obtain a new family of representations
(Theorem 5.1) which is again referred to as the degenerate positive representations.

MainTheorem. Given a parabolic subgroup WJ ⊂ W of type A, there exists a new
family of irreducible representations P0,J

λ of Uq(gR) parametrized by λ ∈ R
n−|J |,

such that the Chevalley generators are positive operators realized by a polarization of
universally Laurent polynomials in a skew-symmetrizable quantum cluster algebra.

Again the construction also yields another representation P0,J
˜λ

compatible with the
modular double counterpart (Theorem 5.7).
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Computation of generalized casimirs. We observed that the symmetric folding construc-
tion yielding P0 can also be obtained formally by setting the parameters λ to certain
special complex values (which we call the general solution of a symmetric equation).
Since the generalized Casimirs Ck of the original representation Pλ act by scalars in
terms of λ only, one obtain the corresponding Casimir actions for P0,J

λ by substituting
the specialized parameter λ ∈ C

n with appropriate complex shifts. In the parabolic case,
when |J | = n − 1, the resulting representations P0,J

λ , which we refer to as maximal
degenerate representations, are parametrized by a single number λ ∈ R.

Using the Weyl-type character formula developed in [15], together with the explicit
presentation of the weight spaces of the fundamental representations of g, as well as
some technical calculations involving the central characters of the folded quantum torus
algebra, we compute explicitly all the actions of the generalized Casimirs of P0,J

λ in the
case WJ is of type An−1. This is summarized in Theorems 5.5–5.6.

Regular positive representations. The original standard positive representations Pλ [9,
12,13], the parabolic positive representations P J

λ [17], the degenerate representations

P0,J
λ as well as their modular double counterpart P0,J

˜λ
considered in this paper, all share

the same important cluster theoretic properties. Namely, we have a homomorphism of
the Drinfeld’s double quantum group Dq(g) into a quantum torus algebra, such that the
image of the Chevalley generators are universally Laurent polynomials. In other words,
we have a homomorphism

Dq(g) −→ Oq(X )

to the quantum algebra of regular functions of a cluster variety X , or equivalently, the
quantum upper cluster algebra of X . Furthermore, the representations are recovered
from a polarization of any cluster chart of Oq(X ) as positive operators.

This motivates the definition of regular positive representations (Definition 6.1), and
the new goal is to classify all the irreducible regular positive representations up to unitary
equivalence. We propose in Conjecture 6.4 that these are classified by the four families
of positive representations above, as well as their appropriate mixtures.

Outline. The paper is organized as follows. In Sect. 2, we set the notations and recall
the basic construction of the positive representations of Uq(gR) via the polarization of
its cluster embedding into a certain quantum torus algebra. We also recall some results
on the calculation of the generalized Casimir operators. In Sect. 3, we focus on the case
of Uq(sl(2,R)) and discuss the main observations and results that motivate the general
construction in higher rank. In Sect. 4, we give the symmetric folding construction in
type An , where the mutation sequence and the change of central parameter are outlined
in “Appendix B”. In Sect. 5, we state the main results for general Lie type by parabolic
folding, and explain the computation of the Casimir action for the maximal degenerate
representations. Finally, in Sect. 6, we discuss the classification of the regular positive
representations, and illustrate with an example in type A2.

2. Prerequisites

2.1. Root systems. Let g be a finite-dimensional semisimple Lie algebra over C. Let I
be the root index of the Dynkin diagram of g such that

|I | = n = rank(g). (2.1)
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Let � be the set of roots of g. Let �+ := {αi }i∈I be the set of simple roots and �+
the set of positive roots. Let W = 〈si 〉i∈I be the Weyl group generated by the simple
reflections si := sαi . We write

N = l(w0) (2.2)

to be the length of the longest element of W .

Definition 2.1. Let (−,−) be a W -invariant inner product of the root lattice. We define

ai j := 2(αi , α j )

(αi , αi )
, i, j ∈ I (2.3)

such that A := (ai j ) is the Cartan matrix.
We normalize (−,−) as follows: we choose the symmetrization factors (also called

the multipliers) such that for any i ∈ I ,

di := 1

2
(αi , αi ) =

⎧

⎪

⎨

⎪

⎩

1 i is long root or in the simply-laced case,
1
2 i is short root of type B, C, F,

1
3 i is short root of type G,

(2.4)

and (αi , α j ) = −1 when i, j ∈ I are adjacent in the Dynkin diagram, such that

di ai j = d j a ji . (2.5)

Definition 2.2. We denote the simple coroots by

Hi := α∨
i := 2αi

(αi , αi )
∈ h, (2.6)

the fundamental weights dual to Hi by

wi :=
∑

j∈I

(A−1) j iα j ∈ h∗
R
, (2.7)

and the fundamental coweights dual to αi by

Wi :=
∑

j∈I

(A−1)i j H j ∈ hR. (2.8)

We also let

ρ := 1

2

∑

α∈�+

α =
∑

i∈I

wi =
∑

i∈I

di Wi . (2.9)

be the half sum of positive roots.

Definition 2.3. The Weyl group W acts on the fundamental coweights by

si · W j = W j − δi jα
∨
j = W j − δi j

n
∑

k=1

a jk Wk . (2.10)



   91 Page 6 of 60 I. C.-H. Ip, R. Man

Definition 2.4. Let w0 ∈ W be the longest element of the Weyl group. The Dynkin
involution

I −→ I

i �→ i∗ (2.11)

is defined by

w0siw0 = si∗ . (2.12)

Equivalently, we have

w0(αi ) = −αi∗ , αi ∈ �+. (2.13)

2.2. Quantum groups Uq(g) and Dq(g). For any finite dimensional complex semisim-
ple Lie algebra g, Drinfeld [3,4] and Jimbo [19] associated to it a remarkable Hopf
algebra Uq(g) known as the quantum group, which is a certain deformation of the uni-
versal enveloping algebra. We follow the notations used in [16] for Uq(g) as well as the
Drinfeld’s double Dq(g) of its Borel part.

In the following, we assume g is of simple Dynkin type, with straightforward modi-
fication for the semisimple case.

Definition 2.5. Let di be the multipliers (2.4). We define

qi := qdi , (2.14)

which we will also write as

ql := q, (2.15)

qs :=
{

q
1
2 if g is of type B, C, F,

q
1
3 if g is of type G,

(2.16)

for the q parameters corresponding to long and short roots respectively.

Definition 2.6. We define Dq(g) to be the C(qs)-algebra generated by the elements

{Ei ,Fi ,K
±1
i ,K′±1

i }i∈I

subject to the following relations (we will omit the obvious relations involving K−1
i and

K′
i
−1 below for simplicity):

KiE j = q
ai j
i E jKi , KiF j = q

−ai j
i F jKi , (2.17)

K′
iE j = q

−ai j
i E jK′

i , K′
iF j = q

ai j
i F jK′

i , (2.18)

KiK j = K jKi , K′
iK

′
j = K′

jK
′
i , KiK′

j = K′
jKi , (2.19)

[Ei ,F j ] = δi j
Ki − K′

i

qi − q−1
i

, (2.20)
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together with the Serre relations for i = j :

1−ai j
∑

k=0

(−1)k [1 − ai j ]qi !
[1 − ai j − k]qi ![k]qi !

Ek
i E jE

1−ai j −k
i = 0, (2.21)

1−ai j
∑

k=0

(−1)k [1 − ai j ]qi !
[1 − ai j − k]qi ![k]qi !

Fk
i F jF

1−ai j −k
i = 0, (2.22)

where [k]q := qk − q−k

q − q−1 is the q-number, and [n]q ! :=
n

∏

k=1

[k]q is the q-factorial.

The algebra Dq(g) is a Hopf algebra with coproduct

�(Ei ) = 1 ⊗ Ei + Ei ⊗ Ki , �(Ki ) = Ki ⊗ Ki , (2.23)

�(Fi ) = Fi ⊗ 1 + K′
i ⊗ Fi , �(K′

i ) = K′
i ⊗ K′

i , (2.24)

We will not need the counit and antipode in this paper.

Definition 2.7. The quantum group Uq(g) is defined as the quotient

Ug(g) := Dq(g)/〈KiK′
i = 1〉i∈I , (2.25)

and it inherits a well-defined Hopf algebra structure from Dq(g).

Remark 2.8. Dq(g) is the Drinfeld’s double of the quantum Borel subalgebra Uq(b)
generated by Ei and Ki .

Notation 2.9. In the split real case with q ∈ C, we require |q| = 1 and write

q := eπ ib2
(2.26)

where i = √−1 and 0 < b < 1. We assume b2 /∈ Q. We also write

bi := √

di b (2.27)

such that qi = eπ ib2
i as in Definition 2.5. We will also write qs = eπ ib2

s .

Definition 2.10. We define the rescaled generators by

ei :=
(

i

qi − q−1
i

)−1

Ei , fi :=
(

i

qi − q−1
i

)−1

Fi . (2.28)

We also denote by Dq(g) the C(qs)-algebra generated by

{ei , fi ,Ki ,K′
i }i∈I (2.29)

and the corresponding quotient byUq(g). The generators satisfy all the defining relations
above except (2.20) which is modified to

[ei , f j ] = δi j (qi − q−1
i )(K′

i − Ki ). (2.30)

Definition 2.11. We define Uq(gR) to be the real form of Uq(g) induced by the star
structure

e∗
i = ei , f∗i = fi , K∗

i = Ki , (2.31)

with q∗ = q = q−1, making it a Hopf-* algebra.
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2.3. Quantum torus algebra. In this subsection we recall some definitions and properties
concerning the quantum torus algebra and their cluster realizations.

Definition 2.12. A cluster seed is a datum

Q = (Q, Q0, B, D), (2.32)

where Q is a finite set, Q0 ⊂ Q is a subset called the frozen subset, B = (εi j )i, j∈Q a
skew-symmetrizable 1

2Z-valued matrix called the exchange matrix, and D = diag(d j ) j∈Q
is a diagonal Q>0-matrix called the multiplier, such that

W := DB = −BT D (2.33)

is a skew-symmetric Q-matrix. The rank of Q is defined to be the rank of the matrix B.

In the following, we will consider only the case where there exists a decoration

η : Q −→ I (2.34)

to the root index of a simple Dynkin diagram, such that D = diag(dη( j)) j∈Q where
(di )i∈I are the multipliers given in (2.4).

Let �Q be a Z-lattice with basis {−→ei }i∈Q , and let d = min(dη( j)) j∈Q . Also let

wi j = diεi j = −w j i . (2.35)

We define a skew symmetric dZ-valued form (−,−) on �Q by

(
−→ei ,

−→e j ) := wi j . (2.36)

Definition 2.13. Let q be a formal parameter. We define the quantum torus algebra1

XQ
q associated to a cluster seed Q to be the associative algebra over C[q±d ] generated

by {X±1
i }i∈Q subject to the relations

Xi X j = q−2wi j X j Xi , i, j ∈ Q. (2.37)

The generators Xi ∈ XQ
q are called the quantum cluster variables, and they are called

frozen if i ∈ Q0.
Alternatively, XQ

q is generated by {Xλ}λ∈�Q with X0 := 1 subject to the relations

q(λ,μ) Xλ Xμ = Xλ+μ, μ, λ ∈ �Q. (2.38)

Finally, we define TQ
q to be the fraction field of the quantum torus algebra XQ

q , which

is well defined since XQ
q is an Ore domain.

1 We abuse the notation here for convenience. More precisely it should be written as Oq (XQ) where XQ

denote the cluster Poisson tori associated to the seed Q. See also Definition 2.25.
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Notation 2.14. Under this realization, we shall write

Xi = X−→ei
, (2.39)

and define the monomials (allowing the indices to repeat)

Xi1,...,ik := X−→ei1 +···+−→eik
, (2.40)

or more generally for n1, . . . , nk ∈ R,

Xi
n1
1 ,...,i

nk
k

:= Xn1
−→ei1 +···+nk

−→eik
. (2.41)

A collection of monomials is said to be independent if the underlying vectors of the
indices are linearly independent over R.

Definition 2.15. We associate to each cluster seed Q = (Q, Q0, B, D) with decoration
η a quiver, denoted again by Q, with vertices labeled by Q and adjacency matrix C =
(ci j )i, j∈Q , where

ci j :=
{

εi j di d
−1
j if d j > di ,

εi j otherwise.
(2.42)

An arrow i −→ j represents the algebraic relation

Xi X j = q−2∗ X j Xi , (2.43)

where ∗ =
{

i if di ≥ d j ,

j if di ≤ d j .

Note that ci j is skew-symmetric, so the quiver is well-defined. Obviously one can recover
the cluster seed and the exchange matrix B from the quiver and the multipliers by

εi j =
{

ci j d j d
−1
i if d j > di ,

ci j otherwise.
(2.44)

Notation 2.16. We will use squares to denote frozen nodes i ∈ Q0 and circles otherwise.
We will also use dashed arrows if |ci j | = 1

2 , which only occur between frozen nodes.
For display convenience, we will represent the algebraic relations (2.43) by thick or thin
arrows (see for example Fig. 3) to indicate the power of q when we rewrite q∗ in terms
of q in the commutation relation (2.43). However, thickness is not part of the data of the
quiver.

Notation 2.17. Let η : N −→ I be a decoration. For any symbol xk , k ∈ N, we denote
the rescaled symbol by

x̊k := bη(k)xk, (2.45)

where bi ∈ R is defined in (2.27).
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Definition 2.18. A polarization π of the quantum torus algebra XQ
q on a Hilbert space

H = L2(RM ) is an assignment

Xi �→ e2π L̊i , i ∈ Q, (2.46)

where L̊i (ůk, p̊k, λ̊k) is a linear combination of the (rescaled) position and momentum
operators {uk, pk}M

k=1 satisfying the Heisenberg relations

[p j , uk] = δ jk

2π i
, (2.47)

together with real parameters λk ∈ R, such that they satisfy algebraically

[L̊i , L̊ j ] = b2wi j

2π i
. (2.48)

Each generator Xi acts as a positive essentially self-adjoint operator onH, and altogether
these give a representation of XQ

q on H.

Remark 2.19. The domains of these unbounded operators are discussed in detail in e.g.
[8,11,24]. In this paper, we will only deal with the algebraic relations among the cluster
variables, and assume that their polarizations are well-defined acting on an appropriate
dense subspace P ⊂ H which contains the subspace W of entire rapidly decreasing
functions of the form

W = {e−uT Au+b·uP(u)|b ∈ C
n,A ∈ Mn×n(C) : positive definite, P : polynomial}

which forms the core of essential self-adjointness of π(Xi ).

Notation 2.20. We will simplify notations and write

e(L) := eπ L̊ (2.49)

for L a linear combination of position, momentum operators and scalars as above, and
L̊ rescales the corresponding variables with index k by bη(k).

Definition 2.21. Assume the polarization of a monomial is of the form

eπ(
∑

αk ůk +
∑

βk p̊k +
∑

γk λ̊k ). (2.50)

We call
∑

αk ůk +
∑

βk p̊k the Weyl part, and
∑

γk λ̊k the central parameter of the
polarization.

Definition 2.22. A Laurent monomial C ∈ XQ
q is called a central monomial if it

commutes with every cluster variable Xi , i ∈ Q. The center of XQ
q is generated by

|Q| − rank(Q) independent central monomials.
A polarization is irreducible if every central monomial acts as multiplication by

scalars, i.e. their Weyl part is trivial. In this case we refer to the action π(C) as the
central character.
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Lemma 2.23. Assume the rank of Q is 2M. Then there exists an irreducible polarization
πλ of XQ

q on H = L2(RM ) parametrized by the central characters, i.e. the central
parameters λ of the independent central monomials.

Any polarization of XQ
q on H with the same central character is unitarily equivalent

to πλ by an Sp(2M) action on the lattice �Q (known as the Weil representation [10]).

Next we recall the notion of quantum cluster mutations.

Definition 2.24. Given a cluster seed Q = (Q, Q0, B, D) and an element k ∈ Q\Q0,
a cluster mutation in direction k is another seed μ

q
k (Q) := Q′ = (Q′, Q′

0, B ′, D′) with
Q′ := Q, Q′

0 := Q0, D′ := D and

ε′
i j :=

{−εi j if i = k or j = k,

εi j +
εik |εk j |+|εik |εk j

2 otherwise.
(2.51)

The cluster mutation in direction k induces an isomorphism μ
q
k : TQ′

q −→ TQ
q called

the quantum cluster mutation, defined by

μ
q
k (X ′

i ) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

X−1
k if i = k,

Xi

|εki |
∏

r=1

(1 + q2r−1
i Xk) if i = k and εki ≤ 0,

Xi

εki
∏

r=1

(1 + q2r−1
i X−1

k )−1 if i = k and εki ≥ 0

, (2.52)

where we denote by X ′
i the quantum cluster variables of TQ′

q .

Definition 2.25. We denote by Oq(X ) the quantum algebra of regular functions of
the cluster variety X . More precisely, the elements of Oq(X ) consists of all elements

f ∈ XQ
q which remain Laurent polynomials over C[q±d ] under any quantum cluster

mutations. Equivalently, Oq(X ) is the quantum upper cluster algebra of X .
We will also refer to elements of Oq(X ) as universally Laurent polynomials.2

A useful criterion is the following Lemma.

Lemma 2.26. [10] A cluster monomial Xi1,...,is ∈ XQ
q is a standard monomial if it is a

sink with respect to mutable vertices, in the sense that

s
∑

k=1

εik , j ≥ 0, ∀ j ∈ Q \ Q0. (2.53)

An element f ∈ XQ
q belongs to Oq(X ), i.e. a universally Laurent polynomial, if it can

be cluster mutated to a standard monomial in some cluster seed.

Finally, we also recall that the monomial part of the quantum cluster mutation induces
a change in polarization as follows.

2 This terminology usually refers to the classical q = 1 setting.
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Proposition 2.27. Let k ∈ Q \ Q0 and Q′ := μ
q
k (Q). If π is a polarization of XQ

q , then

π ′(Xi ) :=
⎧

⎨

⎩

π(Xk)
−1 if i = k,

π(Xi ) if i = k and εki ≤ 0,

π(Xei +εki ki ) if i = k and εki ≥ 0
(2.54)

gives a polarization of XQ′
q .

2.4. Positive representations and cluster realization ofUq(g). The family of the standard
positive representations Pλ of Uq(gR) is constructed in [9,12,13] where the Chevalley
generators of the quantum group are represented by positive essentially self-adjoint
operators on the Hilbert space L2(RN ) where N = l(w0). The representations are
parametrized by λ ∈ R

n≥0. In [16], they are realized by an embedding of Dq(g) into a

certain quantum torus algebra XD
q and taking the group-like polarization.

Theorem 2.28. [16] Given a reduced word i0 of the longest element of the Weyl group,
one can construct the basic quiver D(i0) of rank 2N + 2n and its associated quantum
torus algebra XD(i0)

q such that

• There exists an embedding of the Drinfeld’s double3

ι : Dq(g) ↪→ XD(i0)
q

(ei , fi ,Ki ,K′
i ) �→ (ei , fi , Ki , K ′

i ), (2.55)

where Ki and K ′
i are cluster monomials, such that Ki K ′

i , i ∈ I are n independent

central monomials of XD(i0)
q .

• In particular we have an embedding

ι : Uq(g) ↪→ XD(i0)
q /〈Ki K ′

i = 1〉i∈I . (2.56)

• There exists a polarization πλ of XD(i0)
q such that the composition with the em-

bedding (2.56) coincides with the standard positive representations Pλ. Under this
polarization, πλ(Ki K ′

i ) = 1, and there exists n additional independent central mono-
mials (associated to the monodromy cycle) acting by e(4λi ) ∈ R>0. (An example is
given in (4.2).)
• The representation Pλ is irreducible, in the sense that the only bounded operators
strongly commuting with the action of the Chevalley generators are multiplication
by scalars.
• The basic quivers associated to different reduced words D(i′0) are mutation equiva-
lent, and so the resulting expressions of the positive representations Pλ are unitarily
equivalent.

Here we say that a bounded operator X strongly commutes with a positive operator
Y if X commutes with the spectral projection of Y , or in other words, X commutes with
the bounded unitary operators Y it for all t ∈ R.

We omit the detailed construction of the basic quiver, see [10,17] for more details
and examples.

3 Throughout this paper, we will use bold letter to denote the generators of Dq (g) or Uq (g), while unbolded
Roman letters denote their images in a quantum torus algebra.
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Definition 2.29. The central elements Ki K ′
i ∈ XD(i0)

q are called the Cartan monomials.
A polarization π is group-like if π(Ki K ′

i ) = 1 for all i ∈ I .

By the explicit expressions of Pλ given in [9,12], it is parametrized by λ = (λi )i∈I
with the identity decoration (2.34), where the central parameters of the polarization of
Pλ can be chosen as in Fig. 10, in such a way that one side of the frozen variables carry
e(−2λi ), while the variables along one half of the middle column carry e(4λi ). The
polarizations of all other remaining variables have trivial central parameters.

Notation 2.30. The embedding of Dq(g) can sometimes be represented by telescopic
sums in some cluster chart, described as paths on the quiver D(i0) (see Fig. 10 for an
example). Following the convention used in [16], we will use blue paths to denote the
image of fi and K ′

i in XD(i0)
q as follows. For a path v1 −→ v2 −→ · · · −→ vS on the

quiver, the embedding is given by

fi = Xv1 + Xv1,v2 + · · · + Xv1,...,vS−1 , (2.57)

K ′
i = Xv1,v2,...,vS . (2.58)

We will use other colors to denote the embedding of ei and Ki in a similar way.

2.5. Casimir operators. For the following definitions, we require an extension ̂Uq(g) :=
Uq(g)[K± 1

h
i ] of the quantum group, where h is the Coxeter number of g, in order to allow

fractional powers of the Cartan generators Ki .

Theorem 2.31 [15]. The center of ̂Uq(g) is generated by the n generalized Casimir
elements

Ck := (1 ⊗ Tr|qVk
)(R R21), (2.59)

where

• Vk is the k-th fundamental representation of Uq(g), k = 1, . . . , n.
• the quantum trace Tr|qV of x ∈ Uq(g) is given by

Tr|qV (x) := Tr|V (xu−1) (2.60)

where

u := K2ρ
˜K2ρ :=

∏

i∈I

q2Wi
i

∏

i∈I

q

2Wi
b2
i

i (2.61)

and Wi are the fundamental coweights (2.8).
• R ∈ Uq(g)̂⊗Uq(g) is the universal R-matrix.

Remark 2.32. In fact CV := (1 ⊗ Tr|qV )(R R21) also lies in the center of ̂Uq(g) for any
finite dimensional representation V of Uq(g). Hence one may refer to Ck defined above
as the generalized Casimirs with respect to the fundamental representations.
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Example 2.33. For Uq(sl2), the Casimir element is given by

C = ef − q−1K − qK−1

= fe − qK − q−1K−1. (2.62)

For Uq(sl3), the two generalized Casimir elements are given by

C1 = K(q−2K1K2 + K−1
1 K2 + q2K−1

1 K−1
2 − q−1K2e1f1 − qK−1

1 e2f2 + e21f12), (2.63)

C2 = K−1(q2K−1
1 K−1

2 + K1K
−1
2 + q−2K1K2 − qK−1

2 e1f1 − q−1K1e2f2 + e12f21), (2.64)

where K = K
1
3
1 K

− 1
3

2 , and

ei j := q
1
2 e jei − q− 1

2 eie j

q − q−1 , fi j := q
1
2 f j fi − q− 1

2 fi f j

q − q−1 (2.65)

are the images of the Lusztig’s isomorphism extended to positive generators [14].

Remark 2.34. One can modify the Cartan part of the universal R-matrix, or more ex-
plicitly, replace K−1

i by K′
i in the formula above to obtain the central elements for

Dq(g).

Since the generalized Casimirs involve only fractional powers of the Cartan genera-
tors, their actions in the positive representations are still well defined. As the standard
positive representations Pλ are irreducible, the generalized Casimirs act as multiplica-
tion by scalars. The choice of the element u in (2.61) which is compatible with the
modular double, ensures that the Casimir operators are positive self-adjoint, acting with
spectrum πλ(Ck) ≥ dim Vk . Their actions in the standard positive representations are
computed as follows.

Decompose the k-th fundamental representation Vk into its one-dimensional weight
subspaces indexed by V with weight μV ∈ h∗

R
.

Theorem 2.35. [15] The generalized Casimir operators Ck acts on Pλ by the scalar

πλ(Ck) =
∑

V⊂Vk

exp
(

−4πμV (
−→
λh)

)

, (2.66)

where the sum is taken over all the one-dimensional weight subspaces of Vk, and

−→
λh =

∑

i∈I

λ̊i Wi ∈ hR. (2.67)

Another way of computing the action is by the following Weyl character formula.

Corollary 2.36. [15] We have

πλ(Ck) =
∑

w∈W sgn(w)e−4π(wk +ρ)(w·−→λh)

∏

α∈�+(e−2πα(
−→
λh) − e2πα(

−→
λh))

, (2.68)

where wk is the k-th fundamental weight, which is also the highest weight of Vk. The
Weyl group acts on

−→
λh by (2.10).
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In type An , the fundamental representations Vk , k = 1, . . . , n, are given by the
exterior product �k V of the standard representation V = V1. Using Theorem 2.35,
we have an explicit formula for the action of Ck in terms of the elementary symmetric
polynomials in n + 1 variables:

Ek(x0, . . . , xn) :=
∑

i1<i2<···<ik

xi1 · · · xik . (2.69)

Proposition 2.37. [15] Let

�i := 1

n + 1

n
∑

k=1

kλk −
n

∑

j=n+1−i

λ j , i = 0, . . . , n. (2.70)

Note that

�0 + �1 + · · · + �n = 0. (2.71)

Then the actions of Ck on Pλ are given by

πλ(Ck) = Ek

(

e4πb�0 , . . . , e4πb�n
)

. (2.72)

In particular the action of C1 is given by

πλ(C1) =
n

∑

i=0

e4πb�i . (2.73)

More generally, the Casimir actions can be expressed by a generating polynomial

p(t) = (t + e4πb�0) · · · (t + e4πb�n ) (2.74)

= tn + πλ(C1)t
n−1 + πλ(C2)t

n−2 + · · · + πλ(Cn)t + 1. (2.75)

Lemma 2.38. The solution to the system of equation

{Ek(x0, . . . , xn) = 0, k = 1, . . . , n,

En+1(x0, . . . , xn) := x0 · · · xn = 1,
(2.76)

is given by the the set of (n + 1)-th roots of −1, in other words

{x0, . . . , xn} = {e (n−2k)
n+1 π i}k=0,...,n . (2.77)

Proof. By the generating polynomial, the system of equations is equivalent to identifying

tn+1 + 1 = (t + x0) · · · (t + xn),

hence {xi } is any permutation of the (n + 1)-th root of −1. ��
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Definition 2.39. We call an ordered tuple of scalars (λ1, . . . , λn) ∈ C
n a general solution

to (2.76) if the roots xk = e4πb�k for any k = 0, . . . , n such that

−π ≤ 4π ib�k ≤ π. (2.78)

In particular, there are (n + 1)! of them, each of which corresponds to a distinct permu-
tation of the (n + 1)-th roots of −1.

The solution corresponding to the following choice of (n + 1)-th roots of −1,

4πb�k = n − 2k

n + 1
π i, k = 0, . . . , n (2.79)

is given by

λ1 = · · · = λn = i
2(n + 1)b

, (2.80)

which is referred as the standard solution of (2.76).

As a direct consequence,

Corollary 2.40. As a complex function of λ1, . . . , λn,

πλ(Ck) = 0 (2.81)

if we substitute (λ1, . . . , λn) to be any general solution of (2.76).

There is also a “modular double counterpart” which will be useful later.
Recall the q-binomial coefficients defined by

[

n
k

]

q
:= [n]q !

[k]q ![n − k]q ! . (2.82)

Corollary 2.41. As a complex function of λ1, . . . , λn, if we substitute (b2λ1, . . . , b2λn)

into (2.73), where (λ1, . . . , λn) is any general solution of (2.76), we obtain

πλ(Ck) =
[

n + 1
k

]

q
1

n+1

, k = 1, . . . , n. (2.83)

Proof. By this substitution, the following sets for k = 0, . . . , n become

{e4πb�k } = {e (n−2k)
n+1 π ib2} = {q n−2k

n+1 }.
Hence the generating polynomial of the Casimirs becomes

p(t) = (t + e4πb�0) · · · (t + e4πb�n )

= (t + q
n

n+1 )(t + q
n−2
n+1 ) · · · (t + q− n

n+1 )

=
n+1
∑

k=0

[

n + 1
k

]

q
1

n+1

tn+1−k

as required. ��
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1

2

3

4

Fig. 1. The quiver for X std
q

1

2

3

4

Fig. 2. The quiver for X sym
q

3. Motivation: Uq(sl(2,R))

In this section, we explain the motivation of the construction of the degenerate positive
representations from the simplest case ofUq(sl(2,R)) and discuss some of its properties.

3.1. Cluster realization of Uq(sl(2,R)). Recall that we have the cluster realization of
the Drinfeld’s double Dq(sl2) into the quantum torus algebra X std

q represented by the
quiver in Fig. 1 with all multipliers di = 1,

such that we have an embedding of the Drinfeld’s double Dq(sl2) = 〈e, f,K,K′〉
given by4

e �→ X3 + X3,4

f �→ X1 + X1,2

K �→ X3,4,1

K′ �→ X1,2,3 (3.1)

using Notation 2.14. The Casimir element of Dq(sl2) is given by

C := fe − qK − q−1K′ (3.2)

�→ X1,3 + X1,2,3,4 (3.3)

which lies in the center of X std
q .

Let us perform a quantum cluster mutation at vertex 2, such that we obtain the
quiver (with minor rearrangements) in Fig. 2 corresponding to the quantum torus algebra
denoted by X sym

q .

4 The choice of indices follows the convention used in the higher rank, cf. Sect. 4.
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In this cluster chart, the embedding of the Drinfeld’s double becomes

e �→ X3 + X3,2 + X3,4 + X3,2,4

f �→ X1

K �→ X3,2,4,1

K′ �→ X1,3 (3.4)

and the Casimir element is given by

C �→ X1,2,3 + X1,3,4 = X1,3(X2 + X4), (3.5)

where we note that both X2 and X4 commute with X1,3 in this cluster chart.
Now the main observation is that the variables X2 and X4 are symmetric in this

quiver, which allows us to perform a certain kind of “folding”. Another observation is
that only the upper Borel generators e and K depend on these two variables. In fact, we
can rewrite e as

e �→ X3 + q X3(X2 + X4) + X3,2,4

= X3 + X−1
1 X1,3(X2 + X4) + X3,2,4

= X3 + X−1
1 C + X3,2,4. (3.6)

Since C lies in the center of X sym
q , the commutation relations among the Chevalley

generators remain invariant if we set

C = 0.

In other words, we have a homomorphic image of Dq(sl2) given by

e �→ X3 + X3,2,4

f �→ X1

K �→ X3,2,4,1

K′ �→ X1,3 (3.7)

or equivalently, an embedding of Dq(sl2)/〈C = 0〉 into X sym
q .

Since X2 and X4 are symmetric in these expressions, we further identify them by
means of folding.

Definition 3.1. We define the symmetric foldingX 0
q to be the skew-symmetrizable quan-

tum torus algebra by combining the variables X2 and X4 of X sym
q . We write Oq(X 0)

to denote the quantum algebra of regular functions of the corresponding cluster variety.
More precisely, X 0

q is generated by

X0
1 := X1, X0

2 := X2,4, X0
3 := X3 (3.8)

with the new multipliers defined to be (d1, d2, d3) := (1, 2, 1).
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1

2

3

Fig. 3. The quiver for the symmetric folding X 0
q

It follows that the q-commutation relations of the cluster variables of X 0
q are given

by

X0
1 X0

2 = q4 X0
2 X0

1

X0
2 X0

3 = q4 X0
3 X0

2

X0
3 X0

1 = q2 X0
1 X0

3 (3.9)

and they can be presented by the quiver as in Fig. 3 according to Notation 2.16.

Theorem 3.2. There is an embedding from Dq(sl2)/〈C = 0〉 to the symmetric folding
X 0

q . Furthermore, the Chevalley generators {e, f,K,K′} are realized as universally

Laurent polynomials in Oq(X 0).

This is the main construction that allows us to generalize the zero Casimir represen-
tation to higher rank in the next section.

Proof. The homomorphism of Dq(sl2) to this quantum torus algebra is given explicitly
by

e �→ X0
3 + X0

3,2

f �→ X0
1

K �→ X0
3,2,1

K′ �→ X0
1,3.

One checks explicitly that

C = ef − q−1K − qK−1 �→ 0.

The image of f,K,K′ are standard monomials in this seed by Lemma 2.26: the only
mutable variable X0

2 commutes with K , K ′, while eX0
2 = q4 X0

2e. For the generator e,
we mutate at vertex 2 (taking into account the fact that the multiplier d2 = 2) and obtain
the new cluster chart (Fig. 4). The generator transforms as

e �→ X0
3
′

in the new cluster chart in which it is again a standard monomial, as it q4-commutes
with the mutable variable X0

2
′
. Hence the conclusion follows. ��
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1

2

3

Fig. 4. The quiver for μ
q
2 (X 0

q )

1

2

3
−2λ

4
4λ

Fig. 5. The polarization of X std
q with central parameters

1

2

3
−2λ

4
4λ

Fig. 6. The polarization of X sym
q with central parameters

3.2. Positive representation with zero Casimir. The standard positive representations
Pλ of Uq(sl(2,R)) and its modular double, parametrized by λ ≥ 0, were first studied in
[5,23,24] in the context of quantum Liouville theory. They can be obtained by choosing
a polarization of the quantum torus algebra X std

q such that ι(KK′) = 1 (i.e. identifying
K ′ = K −1) and the central monomial X2,4 acts by the central parameter e(4λ) = e4πbλ.

Specifically, we choose the polarization (Fig. 5)

πλ(X1) = e(u − 2p)

πλ(X2) = e(−2u)

πλ(X3) = e(−u + 2p − 2λ)

πλ(X4) = e(2u + 4λ) (3.10)

where p = 1
2π i

d
du , such that by (3.1), the Chevalley generators of Uq(sl2) act on the

Hilbert space L2(R, du) as positive self-adjoint operator as

πλ(e) := eπb(u+2p+2λ) + eπb(−u+2p−2λ)

πλ(f) := eπb(u−2p) + eπb(−u−2p)

πλ(K) := eπb(2u+2λ). (3.11)
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1

2
−2λ

3

4
2λ

Fig. 7. Another polarization of X sym
q

Since the representation Pλ is irreducible, the Casimir operator (with K ′ = K −1)

C := ef − q−1K − qK−1

�→ X1,3 + X1,2,3,4

acts as multiplication by scalar, given by

πλ(C) = e2πbλ + e−2πbλ. (3.12)

Now we observe that the pair (K, f) forms a quantum torus. Hence, one can unitarily
transform Pλ in such a way that (K, f) acts by the canonical representation

πλ(f) = e−2πbp, πλ(K) = e2πbu . (3.13)

This can be done by polarizing the quiver obtained from cluster mutation at vertex 2
according to Proposition 2.27 (Fig. 6).

Recall that any two polarizations are unitarily equivalent if the central characters
are the same. Here the central monomials are given by πλ(X4 X−1

2 ) = e(4λ) as well
as ι(KK′) = X12,2,32,4 = 1. Hence there exists a change of variables such that the
polarization is equivalent to that of Fig. 7.

The equivalence πλ(X std
q ) � πλ(X sym

q ) can be realized explicitly by the following
unitary transformation, which is given by a multiplication by the quantum dilogarithm
function gb(z) (see [11] for details) followed by a change of variables:

� := (u �→ u − λ) ◦ eπ iu2
g∗

b(e2πbu). (3.14)

The new polarization together with the change of variables is given by

πλ(X1) = e(−2p)

πλ(X2) = e(2u − 2λ)

πλ(X3) = e(−2u + 2p)

πλ(X4) = e(2u + 2λ). (3.15)

With this new polarization applied to (3.4), we obtain a representation unitary equivalent
to Pλ given by

πλ(e) = e2πb(u+p) + e2πb(−u+p) + e2πb(λ+p) + e2πb(−λ+p)

= e2πb(u+p) + e2πb(−u+p) + πλ(C)e2πbp

πλ(f) = e−2πbp

πλ(K) = e2πbu

πλ(C) = e2πbλ + e−2πbλ. (3.16)
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We note that this representation matches with the formal relation

e = (C + q−1K + qK−1)f−1. (3.17)

If we now set C = 0, the last two monomials of πλ(e) vanish. This gives us a new
representation of Uq(sl(2,R)) acting by positive operators that does not belong to the
standard family.

Theorem 3.3. We have an irreducible representation P0 of Uq(sl(2,R)) by positive
operators on L2(R), given by

π0(e) = e2πb(u+p) + e2πb(−u+p)

π0(f) = e−2πbp

π0(K) = e2πbu (3.18)

such that the Casimir operator C acts as zero on L2(R).

Remark 3.4. In fact, the representation P0 is unitarily equivalent to the integrable rep-
resentation of type (I )+,+,c=0 classified by Schmüdgen [25].

3.3. Analytic continuation and modular double. From another point of view, what we
have done is replacing the action of the Casimir operator by zero:

πλ(C) = e2πbλ + e−2πbλ � 0, (3.19)

Solving for λ, we see that this can be achieved by setting

λ = ± i
4b

+
i
b

n, n ∈ Z. (3.20)

Informally we have analytically continued the weight parameter λ to take complex
values. Moreover, if the representation of Faddeev’s modular double is also taken into
account, n will be set to zero, and the value of λ can be uniquely determined up to a
sign. To explain in more detail, recall that the modular double generators

ẽ := e
1

b2 , ˜f := f
1

b2 , ˜K := K
1

b2

defined in the sense below, should satisfy the transcendental relations, with the Casimir
operator ˜C acting by e2πb−1λ + e−2πb−1λ.

To be more precise, we recall the following useful Lemma.

Lemma 3.5. [24] Let X, Y be positive self-adjoint operators on L2(R) such that XY =
q2Y X. Then X + Y is also positive self-adjoint and

(X + Y )
1

b2 = X
1

b2 + Y
1

b2 . (3.21)

Here again the composition of the unbounded operators is taken in the integrable
sense [11,24] and the powers of positive operators are defined by functional calculus.
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Theorem 3.6. The transcendental relations are satisfied for λ = ± i
4b . In other words,

the positive operators

π0(e)
1

b2 , π0(f)
1

b2 , π0(K)
1

b2

on L2(R)define a positive representation of the modular double counterpartUq̃ (sl(2,R)).

Proof. Since π0(e) and π0(K) are monomials, the transcendental relations are trivial:

π0(f)
1

b2 = e−2πb−1 p

π0(K)
1

b2 = e2πb−1u .

For π0(e), since the two monomial terms are q4 commuting, we compute using Lemma
3.5 and the binomial formula to get

π0(e)
1

b2 = (e2πb(−u+p) + e2πb(u+p))
1

b2

=
(

(e2πb(−u+p) + e2πb(u+p))
1

2b2

)2

=
(

(e2πb−1(−u+p) + e2πb−1(u+p))
)2

= e2πb−1(−u+p) + e2πb−1(u+p) + (q̃
1
2 + q̃− 1

2 )e2πb−1 p

where q̃ = eπ ib−2
. Comparing with the explicit expression of Pλ, we see that this is

indeed a representation of Uq̃(sl(2,R)) with the new Casimir

˜C = q̃
1
2 + q̃− 1

2 = e2πb−1λ + e−2πb−1λ

corresponding to setting the weight parameter to λ = ± i
4b . ��

Hence concerning the Eq. (3.19), or more generally in the higher rank, we shall only
consider the general solution of (2.76) in the sense of Definition 2.39.

3.4. Tensor product decomposition. The main result of this section is the decomposition
of the tensor product of P0 with itself. It turns out that the tensor product lies in a certain
“closure” of the standard positive representations in the form of a direct integral, with
respect to a special Plancherel measure that is different from the usual one [11,24] by a
factor of

√
2.

Theorem 3.7. We have the following decomposition

P0 ⊗ P0 �
∫ ⊕

R≥0

Pλdμ0(λ), (3.22)

wherePλ is the standard positive representation parametrized by λ ≥ 0 and the rescaled
Plancherel measure is given by

dμ0(λ) = 2
√

2 sinh(4πbλ) sinh(πb−1λ)dλ. (3.23)
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1 2 3

4 5

Fig. 8. The quiver for X 0
q ⊗ X 0

q

1

2

3

4 5

Fig. 9. The quiver for μ2(X 0
q ⊗ X 0

q )

Proof. The tensor product representation can be realized by the amalgamation of two
copies of the quiver corresponding to X 0

q along one side of the frozen vertex (here
denoted by vertex 2) as shown in Fig. 8, such that the actions of the generators by
coproduct correspond to concatenation of their telescopic paths.

The polarization of the quiver for Uq(sl(2,R)) is obtained by multiplying the cor-
responding polarizations (u1, p1), (u2, p2) of the two copies of the quiver acting on
L2(R2). Note that we do not have any central parameters.

Following [22], it suffices to decompose the Casimir operator in the tensor product
representation

�(C) = �(f)�(e) − q�(K) − q−1�(K−1) (3.24)

= K ⊗ C + C ⊗ K−1 + e ⊗ f + fK ⊗ K−1e + (q + q−1)K ⊗ K−1. (3.25)

By mutating at vertex 2 (which becomes unfrozen after amalgamation), we obtain
the quiver in Fig. 9 together with the embedding

�(e) �→ X3 + X3,2 + X3,2,5 + X3,5,2,4 + X3,5,22,4

= X3 + X−1
1 �(C) + X3,5,22,4

�(f) �→ X1

�(K) �→ X1,22,3,4,5

�(K′) �→ X1,3

�(C) �→ X1,2,3 + X1,2,3,5 + X1,2,3,4,5.
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Keeping track of the change in polarization according to Proposition 2.27, we obtain
the following positive representation of Uq(sl(2,R)) on L2(R2) given by

πP0⊗P0(e) = e2πb(2p2+p1) + e2πb(u2+p1) + e2πb(−u2+p1) + e2πb(−u1+p1) + e2πb(u1+p1)

πP0⊗P0(f) = e−2πbp1

πP0⊗P0(K) = e2πbu1

πP0⊗P0(C) = e4πbp2 + e2πbu2 + e−2πbu2 .

Upon a rescaling of the variables

{

u2 �→ √
2u2

p2 �→ 1√
2

p2
, we see that the Casimir operator

is equivalent to Kashaev’s geodesic length operator [20]

L := e2πbp + e2πbx + e−2πbx, (3.26)

but with the quantum parameter b �→ √
2b instead. The spectral decomposition of L is

well-known [21] with simple spectrum

L �
∫ ⊕

R≥0

πλ(C)dμ(λ),

where

πλ(C) = e2πbλ + e−2πbλ

is the action of the Casimir on the standard positive representation and the Plancherel
measure is given by

dμ(λ) = 4 sinh(2πbλ) sinh(2πb−1λ)dλ.

As a consequence we have the decomposition πP0⊗P0(C) into simple spectrum

πP0⊗P0(C) �
∫ ⊕

R≥0

πλ(C)dμ0(λ)

with the corresponding rescaled measure. ��

3.5. Remark on other casimir values. It is natural to ask whether we still obtain a sensible
representation by setting the Casimir operator to its other eigenvalues. For example, if
we set C = 1, we obtain from (3.4)–(3.6) formally

e �→ X3 + X−1
1 + X3,2,4

f �→ X1

K �→ X3,2,4,1

K′ �→ X1,3 (3.27)
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in the image of the quantum torus algebra X sym
q . In particular, a polarization of X sym

q
provides us with a representation by symmetric operators:

e = e2πb(−u+p) + e2πbp + e2πb(u+p)

f = e−2πbp

K = e2πbu

K′ = e−2πbu (3.28)

However, we can check that the image of f in X sym
q is no a longer universally Laurent

polynomial, so that f /∈ Oq(X ). In particular, one cannot mutate f in such a way that it
gets transformed into a cluster monomial, unlike the usual cases.

On the other hand, if we set

C = q
1
2 + q− 1

2 = 2 cos
πb2

2
, (3.29)

then from the calculation in the proof of Theorem 3.6 with q̃ replaced by q, the modular
duality ensures that the resulting representation is indeed regular, in the sense that the
Chevalley generators are universally Laurent polynomials lying in Oq(X 0), provided
that we invert the multipliers of X 0

q such that d2 = 1
2 .

In Sect. 6, we will discuss the general classification of such “regular” positive repre-
sentations.

Remark 3.8. If we further set b = 1, then both C and ˜C act by zero, while the trans-
formation gb(z) is independent of λ and well-defined as g1(z) ∼ Li2(z). This curious
connection is worth investigating in future works.

We end this section by a simple observation. Let Pc
λ denote the representation of

Uq(sl(2,R)) obtained from (3.16) where C acts by a positive scalar c ≥ 0.

Proposition 3.9. Let c, c′ ≥ 0. Then �(C) is a symmetric operator with positive spec-
trum ≥ 2 acting on Pc

λ ⊗ Pc′
λ′ .

Proof. It follows from (3.25) that �(C) is of the form

�(C) = K ⊗ C + C ⊗ K−1 + �(C0)

where �(C0) is the Casimir for P0 ⊗P0 which we know has positive spectrum ≥ 2 by
Theorem 3.7. Since the action of K⊗C +C⊗K−1 is evidently positive symmetric, we
have our conclusion. ��

4. Positive Representations at Zero Casimirs in Type An

Let us denote by iAn the standard reduced word of the longest element of the Weyl group
of sln+1, given by

iAn = 1 21 321 4321 · · · n n − 1 · · · 321. (4.1)
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22 24

−2λ4

17 21

−2λ3

18 20

10 16

−2λ2

11 15

12 14

1 9

−2λ1

2 8

3 7

4 6

5

13

19

23

25

4λ1

26

4λ2

27

4λ3

28

4λ4

Fig. 10. A4-quiver, with the ei -paths colored in red and fi -paths colored in blue

4.1. Symmetric quiver X sym
q . In type An , recall that we have an embedding of the

Drinfeld’s double Dq(sln+1) into the quantum torus algebra X std
q given by the quiver in

Fig. 10 corresponding to iAn associated to a triangulation of a once punctured disk, where
the paths on the quiver gives the embedding of the Chevalley generators as telescoping
sums, as explained in Notation 2.30.

We have also indicated the assignment of the central parameters for the polarization
of Uq(sl(n + 1,R)), in such a way that

• The polarization is group-like, i.e. πλ(Ki K ′
i ) = 1 for i ∈ I , and

• the remaining n central monomials Qi are given by the product of the cluster vari-
ables along the monodromy cycles around the puncture.

For example, in Fig. 10 showing n = 4, the central monomials are given by the cluster
monomials

Q1 := X2,25,8,15,20,23,18,11

Q2 := X3,26,7,14,19,12

Q3 := X4,27,6,13

Q4 := X5,28 (4.2)

(here Q4 corresponds to a degenerate 2-cycle) such that

πλ(Qk) = e(4λk), k = 1, . . . , n. (4.3)

Furthermore, following the mutation sequence provided in either [7,16,27], we can

flip the triangulation as in Fig. 11 by

(

n + 2
3

)

cluster mutations, obtaining the quiver for

X sf
q corresponding to the self-folded triangulation in Fig. 12.
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−→

Fig. 11. Flipping to a self-folded triangle. The dotted arrows indicate schematically the transformation of the
fi paths on the quiver

22 24

−2λ4

17 23 21

−2λ3

10 18 20 16

−2λ2

1 11 19 15 9

−2λ1

2 12 14 8

3 13 7 25

4λ1

4 6 26

4λ2

5 27

4λ3

28

4λ4

Fig. 12. The quiver for the self-folded quiver X sf
q

Remark 4.1. The quiver in Fig. 12 is a rearrangement of [27, Fig. 15] where the top self-
folded part is a mirror image, and the top vertex is connected since [27] is dealing with
the universal cover and modulo the deck transformation.

Finally, a mutation sequence, provided in [27] in order to study the monodromy that
gives the central characters, transforms the quiver into the self-folded symmetric form
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22 24

−2λ4

17 23 21

−2λ3

10 18 20 16

−2λ2

1 11 19 15 9

−2λ1

2

4λ1

12 14 8

13

4λ2

7 25

26

4λ3

3

28

4λ4

5

27

−4λ3

4

−4λ2 − 4λ3

6

−4λ1 − 4λ2 − 4λ3

Fig. 13. The quiver for X sym
q with central parameters

associated to the quantum torus algebra X sym
q . Our new result here is the computation

of the central parameters associated to the polarization of X sym
q .

Theorem 4.2. The self-folded symmetric quiver ofX sym
q (using the same index), together

with the central parameters of the vertices, is given by Fig.13.

Proof. A complete description and an example of the mutation are illustrated in “Ap-
pendix B”. We mutate with respect to the opposite quiver on the top half so that the
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resulting quiver differs from those of [27] by a mirror reflection. The computation of the
central parameters of the vertices follows by induction, keeping track of the monomial
changes at each wave of mutations.

The color of the paths again help illustrate the embedding of Dq(sln+1). ��
The quiver of X sym

q can be considered as an amalgamation of the “standard part” and
the “symmetric part”, separated by the dotted lines in Fig. 13.

Definition 4.3. We call the vertices above the dotted lines the symmetric vertices and
label them from top to bottom by c0, c1, . . . , cn (e.g. vertex 6, 4, 27, 5, 28 in Fig. 13).

In particular, the monomials Qk := Xck X−1
ck−1

for k = 1, . . . , n form a generating set

of the non-Cartan central monomials of X sym
q with polarization

πλ(Qk) = e(4λk). (4.4)

Hence, they are the image of the previous central monomials Qk under the sequence
of mutations.

The important point to note is that all the Chevalley generators ei and fi , except en , do
not depend on the symmetric variables. On the other hand, the action of en is expressed
in terms of the elementary symmetric polynomials Ek in the cluster variables associated
to the symmetric part.

More precisely, rewriting the results of [27], we have

ι(en) =
n+1
∑

k=0

Ak Bk (4.5)

where B0 = 1, Bk = Ek(Xc0 , . . . , Xcn ) are the elementary symmetric polynomials, and
Ak ∈ X sym

q are Laurent polynomials in the quantum cluster variables along the colored
path of the quiver, which do not involve Xc0 , . . . , Xcn . By factorizing Xk

c0
out of Bk , we

see that

Bk := Xk
c0
Ck (4.6)

where

Ck := Ek(1,
Xc1

Xc0

, · · · Xcn

Xc0

) = Ek(1, Q1, Q1 Q2, . . . , Q1 · · · Qn) (4.7)

lies in the center of X sym
q . Furthermore, the polarization of Ck gives

πλ(Ck) = e

(

− 4

n + 1

n
∑

k=1

(n + 1 − k)λk

)

πλ(Ck) (4.8)

which is proportional to the action of the Casimir operators given by (2.72).
The following lemma is needed in Sect. 5.
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−2λ5

−2λ4

−2λ3

−2λ2

−2λ1

4λ1

4λ2

4λ3

4λ4

4λ5

Fig. 14. The quiver for the standard embedding for type A5, with the vertices of the central monomial Q1
labeled in red

Lemma 4.4. Let � = Xi1,i2,...,i2n ∈ X std
q , where i1, . . . , i2n are the indices of the frozen

variables in the standard quiver (see Fig.10). In particular, the central parameter of �

is given by −2
n

∑

k=1

λ̊k .

Under the cluster mutation of Theorem 4.2, the monomial transforms as

� �→ μq(�) := X ′
j1,..., jn(n+2)

(4.9)

where jk are given by the indices of all the vertices of X sym
q , except c0, . . . , cn−1.

Proof. One can follow the mutation sequence directly, as described in “Appendix B”,
to show the required transformation.

Alternatively, one can argue as follows. Consider the standard quiver Qn+1 for type
An+1 which is one rank higher as in Fig. 14. We can regard � together with the top
and bottom-most vertices (colored in red) as the central monomial Q1 with central
parameter 4λ1. Now we perform the symmetric folding for the An subalgebra with root
index 2, . . . , n + 1 (the part shaded in green). Note that the top and bottom-most vertices
do not play a role under the mutation since they are outside of the An subalgebra quiver.
The resulting quiver is shown in Fig. 15.

Since � lies in the center of XQn+1
q , under the quantum mutation, only the monomial

transformation as in Proposition 2.27 is effective, and hence the resulting image μq(�)

in the mutated quiver stays a monomial.
Then, we check directly that the product �′ = X ′

j1,..., jn(n+2)
of all the cluster variable

as described (colored in red), lies in the center of the resulting quantum torus algebra

XQsym
n+1

q , with central parameter 4λ̊1. Since � does not involve any frozen variables of

XQsym
n+1

q , there is no contribution by the Cartan monomials ι(KiK′
i ). Hence, �′ must

coincide with the transformed monomial μq(�) of the original �. ��

4.2. Positive representations at zero casimir. Following the motivation from the previ-
ous section, we can now state the following Main Theorem.
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−2λ1

−2λ2

−2λ3

−2λ4

−2λ5

4λ1

4λ2

4λ3

4λ4

4λ5

−4λ4

−4λ3 − 4λ4

−4λ2 − 4λ3 − 4λ4

Fig. 15. The partially self-folded symmetric quiver in type A4 ⊂ A5, with the resulting vertices for C1 colored
in red

Theorem 4.5. There is an embedding fromDq(sln+1)/〈Ck = 0〉 to a skew-symmetrizable
quantum cluster algebra Oq(X 0), such that the image of the Chevalley generators are
universally Laurent polynomials.

Passing to a polarization, we have an irreducible representationP0 ofUq(sl(n+1,R))

acting on L2(RN ) as positive operators, where N = n(n+1)
2 , such that all the Casimir

operators Ck act by zero.

Proof. We identify all the n + 1 symmetric vertices by taking their product as a new

cluster variable X� :=
n

∏

i=0

Xci . We also let d� = n + 1 be the multiplier of this new

vertex. We obtain the quantum torus algebra X 0
q with the quiver given by Fig. 16.
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22 24

17 23 21

10 18 20 16

1 11 19 15 9

2 12 14 8

13 7 25

26 3

�

Fig. 16. The quiver for the skew-symmetrizable X 0
q in type A4

Note that in this quantum cluster seed, we have new relations (e.g. using the labeling
from Fig. 16)

X� X3 = q−2(n+1) X3 X�, X� X26 = q2(n+1) X26 X�, (4.10)

This identification comes from setting all the elementary symmetric polynomials Bk ,
k = 1, . . . , n in the embedding (4.5) of en to zero, while Bn+1 becomes X�, so that the
image of en reduces to a single “jump” in the telescopic sum in the combined variable
X� from the last monomial term of A0 to the first monomial term of An+1 Bn+1. We
also have the corresponding images for Kn . Since the symmetric part is proportional to
the Casimir element, which lies in the center, the resulting expressions for en and Kn
obtained by setting the symmetric part to the scalar zero provide a homomorphic image
of Dq(sln+1) in X 0

q .
By the usual properties of the folding of quantum cluster algebras, a mutation at X� is

equivalent to first mutating simultaneously (unordered) the original unfolded expression
at Xc0 , . . . , Xcn , which remains a symmetric expression involving Xci , and then setting
the symmetric part

Ei (Xc0 , . . . , Xcn ) �→ 0, i = 1, . . . , n (4.11)

En+1(Xc0 , . . . , Xcn ) =
n

∏

k=0

Xci �→ X�. (4.12)
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On the other hand, mutating at other variables different from X� works as in the
original unfolded expression. Since the Chevalley generators are known to be univer-
sally Laurent polynomials in the unfolded quantum cluster algebra Oq(X ), the folding
procedure still produces universally Laurent polynomials in Oq(X 0).

In terms of positive representation, the resulting polarization of X� is given by the
n-th power of the Weyl expression of Xc0 but with the central parameter associated to
X� vanishing. Since we essentially identified all the central monomials Qk from the
folding, the resulting positive representation does not depend on any parameter, which
matches with the rank of the quiver of X 0

q .
Irreducibility in the case of Uq(sl(2,R)) is clear from the action of the pair (K, f).

To prove the irreducibility of the representation in general, we require the following
Lemma.

Lemma 4.6. By the embedding Dq(sln+1) ↪→ Xq , the generator en can be expressed
as a rational expression in e1, . . . , en−1, f1, . . . , fn, K1, . . . ,Kn as well as the Casimirs
C1, . . . ,Cn, considered as elements in the field of fraction Tq .

Recall that in the representation P0 constructed from folding, only the action of the
generator en is modified and the polarization of all the remaining 3n − 1 Chevalley gen-
erators remain the same asPλ. By Lemma 4.6, any operator that strongly commutes with
the 3n − 1 Chevalley generators also commutes with en , and is hence the multiplication
by a scalar by the irreducibility of the standard positive representation Pλ. ��
Proof of Lemma 4.6. In Uq(sl2), recall that we have the expression

e = (C − q−1K − qK−1)f−1.

By the embedding to Xq , this element makes sense as a rational element in Tq , which
factorizes and simplifies to a polynomial representing the image of e ∈ Xq .

In general for type An , the fundamental representations are given by the exterior
power of the standard representation Vk := �k V1. It is known that the action of the
quantum group generators E2

α = 0 for any positive root α in these representation. Hence
the formula for the universal R-matrix restricted to Vk is simply given by [15]

R|1⊗Vk = K
∏

α∈�+

(1 + eα ⊗ fα)

where K is the Cartan part and the product is over a normal ordering of the positive roots
determined by the standard longest word iAn .

As a consequence, by expanding the trace and commuting the generators en with Ki
as well as any (ei , e j ) for |i − j | > 1, we conclude that the explicit expressions of the
Casimir elements are spanned by 1, en, en−1en, . . . , e1 · · · en with coefficients in Uq(g)
without en multiplying from the right. (For example, see (2.63)–(2.64) after expanding
the ei j terms.)

Treating xk := ek · · · en as indeterminates, we obtain a system of n linear equations
with coefficient in Uq(g). Hence, en can be solved as a rational expression in terms of
the remaining 3n − 1 generators as well as the Ck . ��

Formally, setting λ to a general solution of (2.76) also gives the representation P0

by (4.8). However, since λ is complex, the default polarization of some cluster variables
of X 0

q may not be positive if it has nontrivial central parameter. We fix this as follows.
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Corollary 4.7. P0 is obtained from Pλ by

• choosing a polarization of X sym
q where the central parameters of each symmetric

variable Xci are shifted by a constant c, such that X� := Xc0,...,cn as well as all other
variables have trivial central parameters, and
• setting λ to a general solution λ0 ∈ C

n of (2.76).

We may formally write P0 = Pλ0 .

Proof. By direct computation, the constant c is given by

c = 1

n

(

4λn − 4λn−1 − (4λn−1 + 4λn−2) − · · · − 4
n−1
∑

k=1

λk

)

= 4λn − 4

n

n−1
∑

k=1

kλk .

One checks that the polarizations of all central monomials remain invariant. The sym-
metric folding that takes X� = Xc0,...,cn removes all the central parameters in X 0

q and
the polarization of X 0

q is still positive by construction. ��
Remark 4.8. We remark that even though the Chevalley generators are universally Lau-
rent polynomials in Oq(X 0), in type An for n ≥ 3, it appears that the special generator
en is no longer a standard monomial in general.

Finally, we have to show that the construction is independent of the choice of the
“special” generator en used, since the standard positive representations in type An is
symmetric with respect to the Dynkin involution ei ←→ fi∗ as well as ei ←→ ei∗
induced from the change of words i0 ←→ i∗0 by Coxeter moves, both of which are related
by cluster mutations and changes of polarizations. This is addressed in the following
Proposition.

Proposition 4.9. Assume Pλ � P ′
λ are two unitarily equivalent standard positive rep-

resentations of Uq(g) related by quantum cluster mutations. Then the degenerate repre-
sentations obtained as in Corollary 4.7 by setting λ to a general solution of (2.76) are
still unitarily equivalent,

P0 � P0′
. (4.13)

Proof. For a given polarization of Xq , it is known [8] that a quantum cluster mutation
is realized by unitary transformations on H � L2(RN ) of the form

� = M ◦ gb(e
π L̊)

where gb is the quantum dilogarithm function, L as in Notation 2.20, and M ∈ Sp(2N )

gives a change of variables with respect to {ui , p j } realizing the monomial transformation
described in Proposition 2.27, or in other words, just an invertible change of polarization
(cf. Lemma 2.23).

We recall some analytic properties of the quantum dilogarithm function gb(e2πbx )

which can be found in [11,24]. It can be analytically continued to a meromorphic

function G(x), such that it admits poles at x = i
(

b+b−1

2 + nb + mb−1
)

and zeros at
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x = −i
(

b+b−1

2 + nb + mb−1
)

for n, m ∈ Z≥0. Furthermore, for a constant α ∈ R,

G(x + iα) has at most exponential growth on the real line x ∈ R bounded by e2πbαx ,
and is hence a densely defined operator on L2(R). The adjoint can be similarly defined
for α ∈ R, with the reciprocal analytic properties, by

gb(e
2πbx+iα)∗ := gb(e

2πbx−iα)−1.

In particular we compute that
∣

∣

∣gb(e
2πbx+iα)∗gb(e

2πbx+iα)

∣

∣

∣ ∼
{

e−4π Im(α)x x −→ +∞
1 x −→ −∞

is a bounded function on x ∈ R if Im(α) ≥ 0.
By a choice of polarization, the general operator gb(eπ L̊) can be reduced to an action

by a single variable in which the previous analytic properties apply. Furthermore, it
depends analytically on λi . By setting λ1 = · · · = λn = i

2(n+1)b to be the standard
solution of (2.76), x ∈ R will not pass through the poles and zeros of gb since λi does

not involve half multiples of b. Hence, we conclude that gb(eπ L̊) is invertible on a dense

domain, its adjoint is well-defined, and gb(eπ L̊)∗gb(eπ L̊) is a bounded operator.
Now for a sequence of cluster mutations, we need the following Lemma.

Lemma 4.10. Let P and A∗ A be bounded self-adjoint operators with dense Dom(A),
then A∗ P A is also a bounded self-adjoint operator.

Proof. Recall that a self-adjoint operator P is bounded if there exists a positive number
MP such that 〈P f, f 〉 ≤ MP 〈 f, f 〉 for all f ∈ Dom(P). Then for any f ∈ Dom(A),
we have

〈A∗ P A f, f 〉 = 〈P A f, A f 〉 ≤ MP 〈A f, A f 〉 = MP 〈A∗ A f, f 〉 ≤ MP MA∗ A〈 f, f 〉
so A∗ P A is bounded on the dense domain Dom(A), and hence on the whole space. ��

Therefore, by induction, given a composition of the transformations with respect
to a mutation sequence (together with a change of variables) realizing Pλ � P ′

λ, by
analytically continuing λ towards the general solution of (2.76), we obtain a nonzero
densely defined invertible intertwiner:

� : P0 � P0′

and in addition �∗� is a bounded self-adjoint operator.
Now by Theorem 4.5, both representations P0 and P0′

are positive and irreducible
defined on a dense subspace of L2(RN ). Hence, for any X ∈ Uq(g) and t ∈ R such that
π0(X)it is bounded and unitary, we have by positivity

�∗�π0(X)it = �∗π0′
(X)it�

= (π0′
(X)−it�)∗�

= (�π0(X)−it )∗�
= π0(X)it�∗�

hence �∗� commutes strongly with any π0(X). Since �∗� is nonzero, upon rescaling if
necessary it must be the identity operator by irreducibility, so � is a unitary equivalence.

��
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Example 4.11. In the case Uq(sl(2,R)), consider the quiver in Fig. 1. We compare the
two representations with quivers obtained by a mutation at 2 followed by folding, and by a
mutation at 4 followed by folding. The two folded quivers are related by a cluster mutation
with double weight (see Figs. 3, 4). By choosing the standard polarization, the conclusion
of Proposition 4.9 gives us an identity between the folded unitary transformation and
the unfolded one by specifying λ = i

4b , namely

g√
2b(e

4πbu) = c · gb(e
2πbue

π i
2 )gb(e

2πbue− π i
2 ) (4.14)

for some constant c ∈ C with unit norm. By setting u = 0 and using the functional
equation for gb (cf. [11]), one calculates the constant to be just c = 1. This identity,
valid for 0 < b < 1, should be considered as the analytic continuation of the more
well-known ones obtained for quantum dilogarithm at the root of unity [18].

Remark 4.12. By Remark 4.8 however, we see that in general the unitary equivalence
in (4.13) may not be expressible as quantum cluster mutations in X 0

q anymore, since

the unitary transformation gb(π(X�)
1

n+1 ) corresponding to the unfolded variable is not
available. It will be interesting to find all such equivalences that can actually be realized
as cluster mutations, which hold e.g. in type A1 and A2.

4.3. Modular double counterpart.

Theorem 4.13. The representation P0 of Uq(sl(n + 1,R)) induces a representation ˜P0

of its modular double counterpart Uq̃(sl(n + 1,R)) with the central parameter λ given
by the general solution of (2.76).

Proof. Let b� := √
n + 1b and define formally

˜Xi := X
1

b2

i , i = �

˜X� := X
1

(n+1)b2
� = X

1
b2
�

�

with weight d� = 1
n+1 and di = 1 for i = �. Let ˜X 0

q be the corresponding quantum torus

algebra they generate. (Alternatively one can define ˜X 0
q through a proper rescaling of

the lattice and seed basis.)
Note that the polarization of ˜Xn+1

� is the same as that of X� with b ←→ b−1.
If Xi X� = q−2(n+1) X� Xi , then

Adgb� (X�) Xi = Xi + Xi,�.

By the modular invariance of the quantum dilogarithm function, we have

gb�(X�) = gb−1
�

(˜X�).

Since ˜Xi ˜X� = q̃−2
˜X�

˜Xi , by the binomial theorem, the same mutation gives

Adg
b−1
�

(˜X�)
˜Xi =

n+1
∑

k=0

[

n + 1
k

]

q̃
1

n+1

˜Xi,�k .
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Therefore, by comparing the coefficients in the unfolded cluster algebra, we see that the
modular double counterpart is obtained by setting the Casimir actions ofUq̃ (sl(n + 1,R))

to

πλ(˜Ck) =
[

n + 1
k

]

q̃
1

n+1

which is the same as specifying the central parameters λ ∈ C
n to one of the general

solutions of (2.76). ��
Replacing q̃ with q in the discussion above, we have

Corollary 4.14. There is a homomorphism from Uq(sln+1) to a skew-symmetrizable
quantum cluster algebra Oq( ˜X 0) such that for any irreducible polarization π̃ the gen-
eralized Casimir elements act as

π̃(Ck) =
[

n + 1
k

]

q
1

n+1

, k = 1, . . . , n (4.15)

and the Chevalley generators are realized as universally Laurent polynomials.

The transcendental relations however become more subtle. In the original positive
representations, the proof relies heavily on the fact that the Chevalley generators can be
transformed to cluster monomials, such that the transcendental relations are satisfied for
any choice of polarization:

(e2πbL(u,p,λ))
1

b2 = e2πb−1 L(u,p,λ). (4.16)

Hence, the transcendental relations hold for e1, . . . , en−1 as well as f1, . . . , fn and
K1, . . . ,Kn . However, by Remark 4.8, the generator en is in general no longer a standard
monomial. A new algebraic or analytic way is thus required to prove this relation.

Conjecture 4.15. The transcendental relations are satisfied for all Chevalley generators
of Uq(sl(n + 1,R)) with λ ∈ C

n taken to be any general solution in (2.76).

For completeness, we demonstrate an algebraic proof in type A2 below.

Proposition 4.16. The transcendental relations are satisfied for Uq(sl(2,R)) and
Uq(sl(3,R)) with λ taken to be any general solution in (2.76).

Proof. The case for Uq(sl(2,R)) is proved in Theorem 3.6.
For Uq(sl(3,R)), the symmetric quiver is shown in Fig. 17. The thick green arrows

indicate that X2 X� = q−6 X� X2 and X4 X� = q6 X� X4.
The image of e2 under the homomorphism Dq(sl3) −→ X 0

q is given by the green
path

e2 �→ e2 = X8 + X8,7 + X8,7,2 + X8,7,2,� + X8,7,2,�,4 + X8,7,2,�,4,7.

Now we observe that

(X8 + X8,7)(X8,7,2 + X8,7,2,�) = q−2(X8,7,2 + X8,7,2,�)(X8 + X8,7)

(X8 + X8,7)(X8,7,2,�,4 + X8,7,2,�,4,7) = q−2(X8,7,2,�,4 + X8,7,2,�,4,7)(X8 + X8,7)

(X8,7,2 + X8,7,2,�)(X8,7,2,�,4 + X8,7,2,�,4,7) = q−2(X8,7,2,�,4 + X8,7,2,�,4,7)(X8,7,2 + X8,7,2,�).
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6 8

1 7 5

2 4

�

Fig. 17. The quiver for X 0
q in type A2

Hence, by Lemma 3.5, we have

e
1

b2

2 = (X8 + X8,7)
1

b2 + (X8,7,2 + X8,7,2,�)
1

b2 + X8,7,2,�,4 + (X8,7,2,�,4,7)
1

b2 .

Note that the two terms in the first and the last brackets q−2-commute, while those in

the middle bracket q−6-commute. Also recall from definition that X
1

b2
� = ˜X3

� . Hence,
again by Lemma 3.5, we compute

e
1

b2
2 = (X

1
b2
8 + X

1
b2
8,7) + (X8,7,2 + X8,7,2,�)

1
3b2 3

+ (X
1

b2
8,7,2,�,4 + X

1
b2
8,7,2,�,4,7)

= ˜X8 + ˜X8,7 + (˜X
1
3
8,7,2 + ˜X

1
3
8,7,2,�3 )3 + ˜X8,7,2,�3,4 + ˜X8,7,2,�3,4,7

= ˜X8 + ˜X8,7 + (˜X8,7,2 + [3]
q̃

1
3

˜X8,7,2,� + [3]
q̃

1
3

˜X8,7,2,�2 + ˜X8,7,2,�3 ) + ˜X8,7,2,�3,4 + ˜X8,7,2,�3,4,7

which compares with the unfolded expression by setting the central parameter λ to be
the general solution of (2.76).

Alternatively, one can first mutate e2 at the vertices 7, 3, 2, 4 to reduce it to a standard
monomial X ′

8 in the resulting cluster, apply 1
b2 -th power, and reverse the mutation to

obtain the same expression above. ��

5. Degenerate Representations for General Lie Types

For general Lie types, it seems impossible to nullify all the central characters simultane-
ously as in type An . This is particularly true for the non-simply-laced cases as the central
characters corresponding to the long and short root should be treated separately. There-
fore, the next best scenario is to isolate some parabolic part of Uq(g) that is isomorphic
to a direct product of type Ak Lie subalgebras and perform the folding construction for
each of those subalgebras.
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Let J ⊂ I be a nontrivial subset of the Dynkin index such that the parabolic subgroup
WJ ⊂ W of the Weyl group is isomorphic to a direct product of type Ak Weyl group. Let
wJ be the longest element of WJ and write w0 = wJ w′, with its corresponding longest
expression decomposed as i0 = iJ i′. We have an embedding of Uq(g) into the quantum
torus algebra constructed from i0 = iJ i′.

In [17], we proved using the generalized Heisenberg double, that we still have a
homomorphism of Uq(g) as long as the parabolic part of the quiver corresponding to iJ
still produces an image of Uq(g). In other words, we can perform the construction in
the previous section to the iJ part of the quiver. The rank of WJ dictates the reduction
of the dimension of the center. Hence, under a choice of polarization, we obtain a new
family of representations called the degenerate positive representations denoted byP0,J

λ ,
parametrized by n−|J | scalars. Note that as Hilbert spaces, they have the same functional
dimension

P0,J
λ � L2(RN ) � Pλ. (5.1)

Since we are only modifying the expression of some parabolic An part of the represen-
tations, the same argument as in Theorem 4.5 shows that the resulting representation is
still irreducible by restricting to the variables corresponding to the parabolic part.

Hence, we state the Main Theorem of the paper.

Theorem 5.1. We have a homomorphism of Uq(g) into a certain skew-symmetrizable
quantum cluster algebra Oq(X 0), obtained by identifying the symmetric part of the
type A parabolic subgroup WJ , such that the image of the Chevalley generators are
universally Laurent polynomials in Oq(X 0).

Upon choosing a polarization for any cluster chart ofOq (X 0) produces a family of ir-
reducible positive representations ofUq(gR) parametrized by n−|J | central parameters
λi ∈ R.

5.1. Maximal degenerate representations. In this section, we focus on the calculation
of the action of the Casimir operators Ck for general Lie types, by folding a parabolic
An−1 part of maximal rank according to the previous section. Since this reduces the rank
of the quiver by n − 1, the resulting polarization of the skew-symmetrizable quantum
torus algebra X 0

q will be parametrized by a single scalar λ ∈ R≥0 which can be taken
to be positive. We call this family of positive representations the maximal degenerate
representations.

The calculation of the actions of the Casimir operators relies on the explicit expression
of the generating monomials of the center of the quantum torus algebra X sym

q , how the
central parameters are changed under the folding, and the fact that two polarizations are
unitarily equivalent if and only if their actions on the central monomials coincide. We
will focus on the representations of the quantum group Uq(gR), so that in particular our
polarizations are always group-like, i.e. πλ(Ki K ′

i ) = 1 for i ∈ I .
In the following, we illustrate the calculation using type B5 as an example. The

general strategy for the calculation of Ck in other Lie types follows with appropriate
modifications, and are explained in the proof of Theorem 5.5.

5.1.1. Step 1: Central monomials of X sym
q We consider the parabolic part An−1 cor-

responding to all the long roots of Bn . With our labeling (see “Appendix A”), they are
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−2λ5

−2λ4

−2λ3

−2λ2

−2λ1

4λ5

4λ4

4λ3

4λ2

4λ1

Fig. 18. The standard quiver X std
q in type B5, with the vertices for the central monomial Q5 colored in red

indexed by J = {1, 2, . . . , n−1}. It is known that the reduced expression of w0 = wJ w′
can be written as

i0 = (1 2 3 · · · n)n

= (1 2 3 · · · n)(1 2 3 · · · n) · · · (1 2 3 · · · n)

= (1 2 1 3 2 1 · · · n − 1 · · · 1)(n n − 1 n n − 2 n − 1 n · · · 1 · · · n)

=: iAn−1 i
′.

As in [17], the quiver corresponding to the quantum torus algebra X std
q can be rear-

ranged as in Fig. 18 such that the shaded part consists of the parabolic An−1 subquiver.
The colors indicate the embedding of the Chevalley generators, which can be obtained
from the parabolic representations described explicitly in [17], but otherwise are not
really relevant to the discussion below.

It is important to note that, by the results from the parabolic positive representations
[17], the indexing of the parabolic part An−1 requires a twisting by its Dynkin involution,
i.e. the change in indices given by i �→ i∗ = n − i . Therefore, the assignments of the
central parameters are reversed compared with Fig. 10.

Proposition 5.2. The center of X std
q is generated by the following monomials:

• ι(KiK′
i ), i ∈ I , which is the product of the cluster variables along each distinct

blue path for the fi generators, and each distinct colored paths for the ei generators.
• Qk, k = 1, . . . , n − 1, with central parameter 4λ̊k , which coincides with the center
of the parabolic An−1 part as in (4.2).
• Qn, given by the product of the cluster variables associated to the red nodes, i.e.
all the mutable vertices that are not within the interior of the parabolic part. It has
central parameter 4λ̊n.
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4 λ 5

− 2 λ 5

− 2 λ 4

− 2 λ 3

− 2 λ 2

− 2 λ 1

4 λ 4

4 λ 3

4 λ 2

4 λ 1

− 4 λ 2

− 4 λ 2 − 4 λ 3

− 4 λ 2 − 4 λ 3 − 4 λ 4

Fig. 19. The quiver for X sym
q in type B5, with the vertices for the central monomial Q5 colored in red

Note that the index n ∈ I is short, so 4λ̊n = 4bsλn as in Notations 2.9 and 2.17.
Now we perform the folding construction for the parabolic An−1 part and obtain the

quiver as in Fig. 19 with the corresponding assignments of the central parameters (again
noting the twisting of index). We label the symmetric nodes by Xc0 , . . . , Xcn−1 from top
to bottom as before. Under this folding, the central monomials Qk for k = n are given
by the ratio

Qk = Xcn−k X−1
cn−k−1

, k = 1, . . . , n − 1 (5.2)

as before, while by Lemma 4.4, Qn is the product of the cluster variables (colored in
red) associated to all the mutable variables not from the symmetric part, together with
the single variable Xc0 .

5.1.2. Step 2: Central parameters of X 0
q We fold the parabolic An−1 part along the

symmetric nodes as before, with the new cluster variable given by

X� :=
n−1
∏

k=0

Xck , (5.3)

and obtain a skew-symmetrizable quantum torus algebra X 0
q with the same rank but

n − 1 less variables. In particular, the non-Cartan central monomials are parametrized
by a single real number λ ∈ R. The quiver is shown in Fig. 20.
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4λ

−2λ

�

Fig. 20. The quiver for X 0
q in type B5, with the vertices for the central monomial Q� colored in red

By definition, the multipliers of the bottom-most vertex and vertices along the bottom
row are d = 1

2 , the folded vertex d� = n, and the remaining vertices d = 1. In particular,
the central parameter λ is a short weight.

We wish to compute the action of the Casimir operators associated to this polarization.
In order to do this, we try to find an equivalent description of the central parameters by
comparing them with a specification of complex values to the central parameters of the
unfolded quiver as in Sect. 4.2.

Recall that under the polarization of the unfolded quiver above, the effect of folding
is equivalent to setting λ1, . . . , λn−1 to the general solution of (2.76), and is independent
of the choice of the solutions. We choose the standard solution λ1 = · · · = λn−1 = i

2nb .
At the same time, the resulting polarization of X� is obtained by taking the product of
all those of the symmetric vertices, with their central parameters adding up. The sum of
these central parameters (using the rescaled variables) is given by

4λ̊1 + 0 + (−4λ̊2) + (−4λ̊2 − 4λ̊3) + · · · + (−4λ̊2 + · · · − 4λ̊n−1)

= 4λ̊1 − 4
n−1
∑

k=2

(n − k)λ̊k .

By setting the parameters to complex numbers, the resulting polarization is certainly
not positive. However, note that a linear change of variables in the parameters does not
change the action of the center. Thus, it suffices to find a specialization of the parameters,
complex or not, in such a way that the central parameters of the central monomials
coincide with the positive ones chosen as in Fig. 20.

We know that the central monomial Qn of the original unfolded algebra X sym
q is a

monomial which, among other variables, contains a single cluster variable Xc0 . Since
the Weyl part of the polarization of all the Xci ’s are the same, by (5.3) the polarization
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of Xn
c0

and X� coincide. From this, we easily see that the monomial given by

Q� := Qn X−1
c0

X
1
n
� (5.4)

formally lies in the center of X 0
q , if we allow fractional powers of the cluster variables.

It still makes sense to talk about its polarization, and Q� will be the unique central
monomial carrying a nontrivial central parameter.

By the folding, we compute the central parameter of Q� to be

4λ̊n − (−4λ̊2 − 4λ̊3 − · · · − 4λ̊n−1) +
1

n

(

4λ̊1 − 4b
n−1
∑

k=2

(n − k)λk

)

= 4

n

n
∑

k=1

kλ̊k .

On the other hand, the central parameter of Q� is given by 4λ̊ := 4bsλ from the
polarization in Fig. 20. By setting

4λ̊ = 4

n

n
∑

k=1

kλ̊k (5.5)

and substituting the general solution, we conclude that

Theorem 5.3. The polarization of the central monomials of X 0
q is given by setting the

parameters of X sym
q to be

λn = λ − iθBn (5.6)

λk = i
2nb

, k = 1, . . . , n − 1 (5.7)

where the complex shift is given by

θBn := n − 1

4nbs
. (5.8)

Moreover, Q� acts as the multiplication by a positive scalar.

5.1.3. Step 3: action of casimir operators Using the equivalence of the central characters
of the folded quantum cluster algebra with the specification of complex values to the
central parameters of the original quiver, we can now compute the action of the Casimir
operators by substituting (5.6)–(5.8) to the explicit expressions of Ck in (2.66).

We shall compute this directly by using the generating function of the positive
Casimirs derived in [15], together with the explicit form of the finite dimensional funda-
mental representations of type Bn Lie algebra, which consist of the spin representation
Vn = S, the standard representation V1 = V and its exterior products Vk := �k V for
k = 1, . . . , n − 1.
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Theorem 5.4. Under any irreducible polarization of X 0
q with central parameters as in

Fig.20, the Casimir operators of the maximal degenerate representations P0,J
λ of type

Bn act as multiplication by the following scalars:

πλ(C1) = 1

πλ(C2) = 0

...

πλ(Cn−1) = 0

πλ(Cn) = e2πnbsλ + e−2πnbsλ. (5.9)

In particular, we have P0,J
λ � P0,J

−λ , so we can restrict to positive parameter λ ∈ R≥0.

Proof. By the explicit weight decomposition of the spin module [2] and (2.66), we have

πλ(Cn) =
n

∏

i=1

⎛

⎝

n
∏

j=n+1−i

e2πλ̊ j +
n

∏

j=n+1−i

e−2πλ̊ j

⎞

⎠

= e−2π
∑n

k=1 kλ̊k

n
∏

i=1

⎛

⎝1 +
n

∏

j=n+1−i

e4πλ̊ j

⎞

⎠ .

Upon setting λ1 = · · · = λn−1 = i
2nb and λn = λ − n−1

4nbs
i, we obtain

πλ(Cn) = e−2πnbsλ
n

∏

k=1

(

1 − e4πbsλξ
2k−1

2
n

)

(5.10)

where ξn = e
2π i
n is a primitive n-th root of unity. Using the factorization

tn + an =
n

∏

k=1

(

t − aξ
2k−1

2
n

)

and substituting t = 1, the product equals

πλ(Cn) = e−2πnbsλ(1 + e4πnbsλ) = e2πnbsλ + e−2πnbsλ

as required.
We can also observe directly from the computation above that choosing λi to be other

general solutions of (2.76) amounts to permuting the factors in (5.10), which does not
affect the final result.

The other Casimirs are obtained from the generating function of the weights of
exterior product representations

p(t) = (1 + t)
n

∏

i=1

⎛

⎝

⎛

⎝t +
n

∏

j=n+1−i

e4πλ̊ j

⎞

⎠

⎛

⎝t +
n

∏

j=n+1=i

e−4πλ̊ j

⎞

⎠

⎞

⎠ , (5.11)
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which can be rewritten as

p(t) = (1 + t2n+1) + (t + t2n)C1 + (t2 + t2n−1)C2 + · · · + (tn−1 + tn+2)Cn−1 + (tn + tn+1)C

where

C = C2
n − Cn−1 − · · · − C2 − C1 − 1

that follows from the decomposition of the fundamental representations:

S ⊗ S � 1 ⊕ V ⊕ �2V ⊕ · · · ⊕ �n V . (5.12)

Exactly as in (5.10), upon setting λn = λ − n−1
4nbs

i and λ1 = · · · = λn−1 = i
2nb , we

compute that

n
∏

i=1

⎛

⎝t +
n

∏

j=n+1−i

e±4πλ̊ j

⎞

⎠ = tn + e±4πnbsλ

and hence by (5.11),

p(t) = (1 + t)(tn + e4πnbsλ)(tn + e−4πnbsλ)

= 1 + t + (e4πnbsλ + e−4πnbsλ)(tn + tn+1) + t2n + t2n+1.

By comparing coefficients, we obtain

πλ(C1) = 1

πλ(C2) = · · · = πλ(Cn−1) = 0.

We verify that indeed πλ(C) = e4πnbsλ + e−4πnbsλ = πλ(Cn)2 − 2. ��
This completes the analysis of the maximal degenerate representations of type Bn .

5.1.4. Results for general lie types Using the algorithm in the previous subsections,
we compute the actions of Ck of the maximal degenerate representations of other Lie
types (except type F4 and G2 which are treated separately) with respect to the parabolic
part An−1 with root index 1, . . . , n − 1 labeled as in “Appendix A”. We compute the
complex shift θg by analyzing the central monomials Qn under the symmetric folding
as in Sect. 5.1.2, and substitute the corresponding complexified central parameters to
(2.66) in order to obtain the action of Ck as in Sect. 5.1.3.

For completeness, we also include type An−1 ⊂ An which was discussed previously
in Lemma 4.4 and is easy to deal with using the explicit expressions of the actions of
Ck as elementary symmetric polynomials (2.72).
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Theorem 5.5. The complex shifts, together with the actions of the generalized Casimirs
Ck of the maximal degenerate representations in type An to En are given as follows.

Type Complex Shifts Action of Casimirs

An, n ≥ 2 θAn = n−1
4nb

πλ(C1) = e
4πnb
n+1 λ

πλ(C2) = · · · = πλ(Cn−1) = 0

πλ(Cn) = e− 4πnb
n+1 λ

Bn θBn = n−1
4nbs

πλ(C1) = 1
πλ(C2) = · · · = πλ(Cn−1) = 0
πλ(Cn) = e2nπbsλ + e−2nπbsλ

C2

θCn = n−1
2nb

πλ(C1) = 0
πλ(C2) = e4πbλ + e−4πbλ − 1

Cn, n ≥ 3
πλ(C1) = πλ(C3) = πλ(C4) = · · · = πλ(Cn−1) = 0
πλ(C2) = −1
πλ(Cn) = e2πnbλ + e−2πnbλ

Dn, n = 2k

θDn = n−2
2nb

πλ(C1) = · · · = πλ(Cn−1) = 0
πλ(Cn) = eπnbλ + e−πnbλ

Dn, n = 2k + 1
πλ(C1) = · · · = πλ(Cn−2) = 0

πλ(Cn−1) = e−πnbλ

πλ(Cn) = eπnbλ

E6

θEn = 3(n−3)
4nb

πλ(C1) = πλ(C2) = πλ(C4) = πλ(C5) = 0
πλ(C3) = 1
πλ(C6) = e8πbλ + e−8πbλ

E7

πλ(C1) = πλ(C2) = πλ(C3) = πλ(C4) = πλ(C6) = 0
πλ(C5) = −1
πλ(C7) = e14πbλ + e−14πbλ

E8

πλ(C2) = πλ(C3) = πλ(C5) = πλ(C6) = πλ(C7) = 0
πλ(C1) = −1
πλ(C4) = −2
πλ(C8) = e32πbλ + e−32πbλ

Proof. We comment on some special aspects of the computation of different types.
Type Cn . It is known that the quantum torus algebras corresponding to positive

representations of types Bn and Cn are related by Langlands duality, where the long
and short weights are interchanged. More precisely, the quantum torus algebra XCn

q

is obtained from X Bn
q simply by setting the multipliers ˜di := 1

2di
, i.e. interchanging

1 ←→ 1
2 .

The central monomials of XCn
q is then given by the same expression as X Bn

q , but with

all variables rescaled by Xi �→ X2di
i , i.e. all the original “long” variables are squared.

Therefore, when we compute the central monomial Qn in the folding, the corresponding
complex shifts in λ1, . . . , λn−1 which correspond to “short” variables in type Cn are
doubled. Hence, the complex shifts are related by

bθCn = 2bsθBn . (5.13)

The fundamental representations of Cn are, however, quite different from those of Bn .
They are given by the standard representation V1 = V and the quotients of its exterior
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products Vk := �k V/�k−2V for k = 2, . . . , n. The corresponding generating function
is given by

p(t) =
n

∏

i=1

⎛

⎝

⎛

⎝t +
n

∏

j=n+1−i

e2πλ̊ j

⎞

⎠

⎛

⎝t +
n

∏

j=n+1−i

e−2πλ̊ j

⎞

⎠

⎞

⎠

= (1 + t2 + · · · + t2n) + �1(t + t2n−1) + �2(t
2 + t2n−2) + · · · + �n(tn−1 + tn+1) + �1tn

where

�k :=
� k−1

2 �
∑

j=0

Ck+2 j (5.14)

and k ≡ k (mod 2) ∈ {0, 1}. Upon setting λn = λ − n−1
2nb i (which is a long weight) and

λ1 = · · · = λn−1 = i
2nbs

, we get

p(t) = 1 + (e2πnbλ + e−2πnbλ)tn + t2n .

Comparing the coefficients with (5.14), we can solve for the actions of Ck .
Type Dn . First, we choose a reduced word of w0 of the form i0 = iAn−1 i

′. This can
be computed to be given by

i0 = (1 2 1 3 2 1 · · · n − 1 · · · 1)(n n − 2 n − 3 · · · 1)(n − 1 n − 2 n − 3 · · · 2)(n n − 2 · · · 3) · · · (n − n)

where n ≡ n (mod 2) ∈ {0, 1} depending on the parity of n. After constructing the
corresponding quantum torus algebra, we compute that the central monomial Qn con-
tains cluster variables from the outer two layers of the parabolic An−1 part of the quiver.
Upon mutation to the symmetric quiver, Qn is transformed into a monomial which only
consists of two symmetric vertices:

Qn = X ··· Xc0 Xc1 . (5.15)

Following the previous subsection, after folding, we see that the unique non-Cartan
central monomial becomes

Q� := Qn X−1
c0

X−1
c1

X
2
n
� . (5.16)

The indexing of the central parameters of the parabolic An−1 part may differ depending
on the parity of n, but does not matter once we set λ1 = · · · = λn−1. Hence, we compute
the central parameter of Q� to be

4λ̊ := 4λ̊n − 4
n−1
∑

k=2

(−λ̊k) − 4
n−2
∑

k=2

(−λ̊k) +
2

n

(

4λ̊1 − 4
n−1
∑

k=2

(n − k)λ̊k

)

= 4λ̊n − 4λ̊n−1 +
8

n

n−1
∑

k=1

kλ̊k .

By setting λ1 = · · · = λn−1 = i
2nb , we obtain the complex shift θDn = n−2

2nb .
The fundamental representations of Dn comprise the standard 2n-dimensional mod-

ule V1 = V together with its exterior products Vk = �k V , k = 1, . . . , n − 2, as well as
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two spin modules S+, S−. The generating polynomial p(t) for the Casimirs is similar to
that of type Bn−1 but without the (1 + t) factor, and with λn−1 replaced by λn − λn−1.
Similar computation shows that πλ(C1) = · · · = πλ(Cn−2) = 0 from the coefficients
of tk in p(t) for k = 1, . . . , n − 2.

For the spin modules, we have an explicit description of its weight spaces [2] as
follows. The 2n dimensional module S has weight vectors

μVε
:= 1

2

n
∑

i=1

εiμi (5.17)

where ε = (ε1, . . . , εn) ranges over all possible choices of signs εi = ±1, and the
weights μi ∈ H∗ are given by

μ = Mω (5.18)

where

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
−1 1

−1 1
. . .

. . .

−1 1
−1 1 1

−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.19)

and ω = (ωi ) are the fundamental weights.
Now we can split the sum so that it gives a decomposition

S � S+ ⊕ S− (5.20)

where S± corresponds to the weight spaces with even (+) or odd (−) number of −1’s in
the choices of εi . Then

{

Vn−1 � S−, Vn � S+ n is even,
Vn−1 � S+, Vn � S− n is odd. (5.21)

The formula (2.66) together with (5.17) now allow the computation of the actions of
Cn−1 and Cn , which are explicitly given by

πλ(Cε) =
∑

ε

e−2πbε·M A−1� (5.22)

summing over all possible choices of signs of ε = (εi ) with even or odd parity, where
� = (λi ) are the parameters. Upon setting λ1 = · · · = λn−1 = i

2nb and λn = λ − n−2
2nb i,

a direct calculation using root of unity shows that

• The summation over ε which consists of both +1 and −1 vanishes.
• The top term with ε = (1, . . . , 1) gives e−πnbλ, while the bottom term ε =
(−1, . . . ,−1) gives eπnbλ.
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Hence, taking into account the description of S± based on the parity of the number
of −1’s in ε, we complete the analysis of Cn−1 and Cn .

Type En . For type En , we use the following reduced word i0 = iAn−1 i
′ corresponding

to parabolic An−1 with root index 1, . . . , n − 1:

E6 : i0 = (1 21 321 4321 54321)(632143263454362341236),

E7 : i0 = (1 21 321 4321 54321 654321)(732143273454372341237654321732437543265437),

E8 : i0 = (1 21 321 4321 54321 654321 7654321)(83214328345438234123865432183243

854326543876543823456712345683452348321238432543865432765438).

The central monomial Qn can be computed explicitly and is shown to depend on the
outer 3 layers of the parabolic An−1 part. Upon mutation to the symmetric quiver, Qn
is transformed into the form

Qn = X ··· Xc0 Xc1 Xc2 . (5.23)

Again, after folding, the central monomial Q� is given by

Q� := Qn X−1
c0

X−1
c1

X−1
c2

X
3
n
� . (5.24)

Upon substituting λ1 = · · · = λn−1 = i
2nb , we obtain the resulting complex shifts θEn .

For n = 6, 7, 8, they are given by 3
8b , 3

7b and 15
32b respectively.

To compute explicitly the action of the Casimir operators using (2.68), we use the
WeylCharacterRing::fundamental_weights function in Sage to output
the set of weights for each fundamental representation of g. Then, we manipulate the set
of weights to get the exponents Li in the expression for each Casimir of the form

πλ(Ck) =
∑

e4πbLi ,

substitute the complex shifts, compute symbolically the real and imaginary parts of
πλ(Ck) separately and simplify the results to obtain the action listed in Theorem 5.5. ��

In type F4, there is no parabolic subalgebra of type A3. Instead, we consider the
degenerate representations obtained by folding the parabolic subalgebra of type A1 × A2
with respect to two different root lengths, namely the root index (1, 2, 4) and (1, 3, 4)

respectively. The corresponding reduced words can be chosen as

i0 = (1 21 4)(32343231232143231243)

and

i0 = (4 34 1)(23212324323412324312).

respectively. They are chosen to be Langlands dual of each other with 1 ←→ 4 and
2 ←→ 3.

In type G2, there are also two ways to obtain the maximal degenerate representation
by folding the parabolic subalgebra of type A1 with respect to root 1 and 2.

The results are summarized as follows, where details are omitted as they can be
obtained by direct computations from the definition.
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Theorem 5.6. The complex shifts, together with the actions of the generalized Casimirs
Ck of the maximal degenerate representations in type F4 and G2 are given as follows.

Type J Complex Shifts Action of Casimirs

F4

{1, 2, 4} θ s
F4

= 7
24bs

πλ(C1) = −1
πλ(C2) = e24πbsλ + e−24πbsλ

πλ(C3) = e24πbsλ + e−24πbsλ − 1
πλ(C4) = 0

{1, 3, 4} θ l
F4

= 11
24b

πλ(C1) = −1
πλ(C2) = e24πbλ + e−24πbλ

πλ(C3) = 2
πλ(C4) = −1

G2

{1} θ s
G2

= 1
8bs

πλ(C1) = e8πbsλ + e−8πbsλ

πλ(C2) = e8πbsλ + e−8πbsλ + 1

{2} θ l
G2

= 3
8b

πλ(C1) = e8πbλ + e−8πbλ

πλ(C2) = −1

5.2. Modular double counterpart. As explained at the end of the discussion of type An
in Sect. 4.3, one can also obtain the modular double counterpart of the symmetric folding
by substituting

λ1 = · · · = λn−1 = ib
2n

(5.25)

instead, i.e. replacing b by b−1 in the folding of the An−1 parabolic part. The resulting
quiver ˜X 0

q is the same as that of X 0
q but with the weights of d� being 1

n instead. More
generally, we have a modular double counterpart to Theorem 5.1.

Theorem 5.7. For any parabolic subgroup WJ ⊂ W of type Ak1 × · · · × Akm , we have
another new family of homomorphisms of Dq(g) into a skew-symmetrizable quantum
cluster algebra Oq( ˜X 0), where the multiplier of the symmetric node d� is inverse to that
of X 0

q .

Consequently, we obtain another family of representations of Uq(gR) by positive
operators. We call this the modular double counterpart of the degenerate positive rep-
resentations, denoted by P0,J

˜λ
.

In the case of maximal degenerate representations, one can compute using techniques
from the previous subsection the actions ofCk for the modular double counterpart, which
are again parametrized by a single scalar λ. In general, they are Laurent polynomials in

eπλ̊, with coefficients in terms of ck :=
[

n
k

]

q
1
n

such that, by the discussion of Theorem

4.13, setting ck = 0 reduces the expression back to that of P0,J
λ in Theorem 5.5.
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For example, in type Bn , some of the actions of the Casimir elements in the modular
double counterpart of the maximal degenerate representations are given by

π
˜λ(C1) = 1 + c1(e

4πbsλ + e−4πbsλ)

π
˜λ(C2) = c1

(

c1 + (e4πbsλ + e−4πbsλ) + c2(e
8πbsλ + e−8πbsλ)

)

...

π
˜λ(Cn) = e2πnbsλ + e−2πnbsλ +

� n
2 �

∑

k=1

ck(e
2π(n−2k)bsλ + e−2π(n−2k)bsλ)

The actions for other Lie types can be computed similarly, but their expressions are
omitted because they are in general quite complicated and not very illuminating.

6. Classification of Regular Positive Representations

To extend the class of positive representations to incorporate the new family we have
introduced in this paper, we make the following definition.

Definition 6.1. A representation P of Uq(gR) is called a regular positive representation
if the Chevalley generators of Uq(gR) can be realized as a polarization of elements from
the quantum algebra Oq(X ) of regular functions of some quantum cluster variety.

In other words,

• There exists a quantum torus algebra XQ
q and a homomorphism Uq(g) −→ XQ

q .
• The Chevalley generators are realized as universally Laurent polynomials in every

quantum cluster chart mutation equivalent to XQ
q

• The representation P is obtained from the above homomorphism by choosing a
polarization of XQ

q .

If P is irreducible, it is necessary that the Casimir elements act as multiplications by
real scalars.

For the standard positive representation Pλ, recall that we can always choose positive
weight parameters λ ∈ R

rank(g)
≥0 since Pλ � Pw·λ for any Weyl action w ∈ W . Now

from the results of Theorem 5.5 on the maximal degenerate representations, we note
that the Casimir actions are the same for both P0,J

λ and P0,J∗
−λ where J ∗ is obtained by

replacing each index with their Dynkin involutions. This suggests that we can always
restrict ourselves to a positive weight parameter λ ∈ R≥0. In fact this is true for other
ranks of J as well.

Proposition 6.2. Let rank(g) = n. For any J ⊂ I and weight parameters λ ∈ R
n−|J |,

there exists J + ⊂ I with |J | = |J +| and λ+ ∈ R
n−|J |
≥0 such that

P0,J
λ � P0,J +

λ+ .

In particular we can always restrict to the case of positive weight parameters.
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Proof. We consider the Weyl group action on the weight parameter vector � = (λ1, λ2
. . . , λn). Assume λ j = 0 for j ∈ J . Then � lies in the corank |J | wall of a Weyl
chamber in the weight space. Hence there exists w ∈ W such that �+ := w · � lies in
the corank |J | wall of the positive Weyl chamber. In particular, there are |J | zero entries
in �+. Let J + := { j : �+

j = 0} ⊂ I .
If we now consider the Weyl action on a generic weight parameter vector �, this

means the J + entries are parametrized by λ j for j ∈ J . We can further act by a Weyl
element (generated by s j ∈ W with j ∈ J +) in such a way that (�+) j∈J + is a permutation
of (λ j ) j∈J , while the other entries are parametrized by the remaining n − |J | positive
entries of �+ which we denote by λ+, possibly with a shift in λ j for j ∈ J . Upon setting
λ j ( j ∈ J ) to be the complex values required for the symmetric folding, the positivity
of the central monomials Qi (i /∈ J +) ensures that the resulting parameters have the
appropriate complex shifts coinciding with that of the degenerate representation P0,J +

λ+ .
By Proposition 4.9, the resulting representations are unitarily equivalent. In particular,
the action of the Casimir operators are the same for both P0,J

λ � P0,J +

λ+ . ��
As a consequence, we currently have the following list of known irreducible regular

positive representations:

(1) The standard positive representations Pλ, parametrized by n positive scalars.
(2) The parabolic positive representations P J

λ , with respect to the parabolic subgroup
WJ ⊂ W and parametrized by n − |J | positive scalars.5

(3) The degenerate representations P0,J
λ with respect to the parabolic subgroup WJ ⊂

W of type Ak1 ×· · ·× Akm and parametrized by n − (k1 + · · ·+ km) positive scalars.
(4) The modular double counterpart of the degenerate representations P0,J

˜λ
, also

parametrized by n − (k1 + · · · + km) positive scalars.
(5) A mixture of type (2)–(4) for disconnected subsets of Dynkin indices.

Example 6.3. As an example to explain (5), say, in type A6, we can write i0 = (1)(3)(565)i′,
and do a parabolic reduction for J = {1}, a degenerate reduction for J = {3} and a
modular degenerate reduction for J = {5, 6}. The resulting representation is then a
regular positive representation parametrized by

6 − 1 − 1 − 2 = 2

positive weight parameters.

We state the main conjecture as follows.

Conjecture 6.4. The class of all irreducible regular positive representations of Uq(gR)

is classified by the five families listed in (1)–(5) above.

Since the tensor product of the positive representations is just given by amalgamation
of two copies of the basic quiver, such that the action of the Chevalley generators are
the concatenation of the telescopic paths, we also expect that in general,

Conjecture 6.5. The tensor product of regular positive representations is again regular,
and they can be decomposed into a direct integral of regular positive representations.

5 The analysis of the Casimir operators for parabolic positive representations will be done in a subsequent
publication.
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In view of Theorem 3.7, it is interesting to classify those tensor products in which
the decomposition involves only the standard positive representations. In other words,
we wish to understand the closure of the braided tensor category of the standard positive
representations, which will be important in the theory of integrable system and quantum
geometry [7,10].

6.1. Example in type A2. Let us illustrate the joint spectrum (πλ(C1), πλ(C2)) of the
Casimirs of the representations of Uq(sl3) listed in Conjecture 6.4. We assume that q is
not a root of unity and the central parameters λ are positive. Note that in type A2, despite
the discussion in Remark 4.12, the equivalence P0,J

λ � P0,J∗
−λ can actually be realized

as cluster mutations and a change of polarizations.
The actions of the Casimirs in different families are calculated in [15,17], Theorem

5.5 and Sect. 5.2 respectively. They are summarized in the table below.

Representations J Action of Casimirs

Pλ
πλ(C1) = e

4
3 πbλ1+ 8

3 πbλ2 + e
4
3 πbλ1− 4

3 πbλ2 + e− 8
3 πbλ1− 4

3 πbλ2

πλ(C2) = e
8
3 πbλ1+ 4

3 πbλ2 + e− 4
3 πbλ1+ 4

3 πbλ2 + e− 4
3 πbλ1− 8

3 πbλ2

P J
λ

{1} πλ(C1) = e− 8
3 πbλ − (q + q−1)e

4
3 πbλ

πλ(C2) = e
8
3 πbλ − (q + q−1)e− 4

3 πbλ

{2} πλ(C1) = e
8
3 πbλ − (q + q−1)e− 4

3 πbλ

πλ(C2) = e− 8
3 πbλ − (q + q−1)e

4
3 πbλ

P0,J
λ

{1, 2} πλ(C1) = 0
πλ(C2) = 0

{1} πλ(C1) = e
8
3 πbλ

πλ(C2) = e− 8
3 πbλ

{2} πλ(C1) = e− 8
3 πbλ

πλ(C2) = e
8
3 πbλ

P0,J
˜λ

{1, 2} πλ(C1) = q
2
3 + 1 + q− 2

3

πλ(C2) = q
2
3 + 1 + q− 2

3

{1} πλ(C1) = e
8
3 πbλ + (q

1
2 + q− 1

2 )e− 4
3 πbλ

πλ(C2) = e− 8
3 πbλ + (q

1
2 + q− 1

2 )e
4
3 πbλ

{2} πλ(C1) = e− 8
3 πbλ + (q

1
2 + q− 1

2 )e
4
3 πbλ

πλ(C2) = e
8
3 πbλ + (q

1
2 + q− 1

2 )e− 4
3 πbλ

A plot (for all possible positive weight parameters λ and a generic q which is taken
to be b ∼ 0.5) of the joint spectrum (πλ(C1), πλ(C2)) of the list of regular positive
representations of Uq(sl(3,R)) is given in Fig. 21.

Recall that [15] the boundary of the spectrum of the standard positive Casimirs is
given by the discriminant variety

(xy + 9)2 = 4(x3 + y3 + 27), (6.1)

which is independent of q. We observe that as expected, the spectral curves do not cross
each other, reflecting the fact that these families of representations are not equivalent to
one another.
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Fig. 21. A plot (x, y) = (πλ(C1), πλ(C2)) of the different families of the joint spectrum of the Casimir
elements with different colors

As a generalization of Remark 3.8, the situation becomes interesting when q is a
root of unity. For b = 1, we observe that the actions of Casimirs for P0,J

λ and P0,J
˜λ

are

the same, since q
1
2 + q− 1

2 = 0. On the other hand, for b = 1√
2

, we note that the joint

spectrum of the degenerate P0,J
λ and parabolic P J

λ coincide as well, since q + q−1 = 0.
These curious coincidences may be related to the representation theory of (compact)
quantum groups at root of unity, and are worth studying in the future.
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Appendix A: Labeling of Dynkin Diagrams

In this paper, the labeling of the simple roots are chosen such that (except for type F4)
the indices 1, 2, . . . , n − 1 form a parabolic An−1 subalgebra of g. We denote the short
roots by black nodes.

• Type An :

1 2 3 4 5 n

• Type Bn :

1 2 3 4 n − 1 n

• Type Cn :

1 2 3 4 n − 1 n

• Type Dn :

1 2 3 4 n − 2 n

n − 1

• Type En :

1 2 3 4 n − 1

n

• Type F4:

1 2 3 4

• Type G2:

1 2

Appendix B: Mutation Sequence for Symmetric Folding

In this section, we describe the mutation sequence for symmetric folding outlined in [27],
and include the assignments of the corresponding changes in the central parameters,
together with the monomial components of the product � of frozen variables.

We start with the self-folded quiver as in Fig. 10 (we provided one rank higher for
clarity) and colored in red the resulting monomial components of � (Fig. 22).

We focus on the upper part of the quiver associated to the self-folded triangle (with
dotted arrows added accordingly) shown in Fig. 23, and rearrange the vertices such that
it is a mirror image of [27, Fig. 30].
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−2λ5

−2λ4

−2λ3

−2λ2

−2λ1

4λ1

4λ2

4λ3

4λ4

4λ5

Fig. 22. The quiver for X sym
q in type A5

y1

4λ1

y2

4λ2

y3

4λ3

y4

4λ4

4λ5

Fig. 23. The top part of X sf
q rearranged

The preliminary step involves mutations at the outer n−1 vertices indexed y1, . . . , yn−1
in green in Fig. 23. Note that the monomial transformation contributes the variable X y1

to �. The result is shown in Fig. 24, where we rearrange the top 3 symmetric nodes after
the mutations.

Let us call the row below the symmetric part (i.e. the row containing the green
vertices in Fig. 24) the first row of the folded part. The remaining mutation sequence is
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4λ1

4λ2 4λ1
−4λ1

4λ3 4λ2
−4λ2

y2

4λ4
y1

4λ3 −4λ3

4λ5

−4λ4

Fig. 24. The quiver after performing the preliminary step of mutations at y1, . . . , y4 of the previous figure

4λ1

4λ2 4λ1
−4λ1

y3

4λ3
y2 y1

4λ2 −4λ2

y5

4λ4
y4

4λ5

−4λ4

−4λ3 − 4λ4

Fig. 25. After the first wave of mutations at y1, y2 of the previous figure

then given in n − 2 waves of mutations (Figs. 25, 26, 27). The k-th wave of mutations is
along the zigzag paths from the second-to-last vertex in the n −1− k-th row (labeled by
y1, . . . , yNk in each figure, where N j = 1

2 k(k + 3).). After each wave of mutations, the
last vertex of the zigzag path is moved to the top of the symmetric part, and the left-most
vertex of each remaining row to the right-most end of the row above. Finally, each row
is shifted accordingly.

Note that only the last wave of mutations affects the monomial components of �,
where each successive mutation contributes a single monomial. The result includes all
vertices from the non-symmetric part, together with the top vertex, which is the last
vertex of the zigzag path in the last wave of mutations.
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4λ1

y4

4λ2
y3 y2 y1

4λ1 −4λ1

y7

4λ3
y6 y5

y8y9

4λ4

4λ5

−4λ4

−4λ3 − 4λ4

−4λ2 − 4λ3 − 4λ4

Fig. 26. After the second wave of mutations at y1, . . . , y5 of the previous figure

4λ1

4λ2

4λ3

4λ4

4λ5

−4λ4

−4λ3 − 4λ4

−4λ2 − 4λ3 − 4λ4

−4λ1 − 4λ2 − 4λ3 − 4λ4

Fig. 27. The top part of the quiver X sym
q after the last wave of mutations at y1, . . . , y9 of the previous figure
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