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Abstract: Quantum Tanner codes constitute a family of quantum low-density parity-
check codes with good parameters, i.e., constant encoding rate and relative distance.
In this article, we prove that quantum Tanner codes also facilitate single-shot quantum
error correction (QEC) of adversarial noise, where one measurement round (consisting
of constant-weight parity checks) suffices to perform reliable QEC even in the pres-
ence of measurement errors. We establish this result for both the sequential and parallel
decoding algorithms introduced by Leverrier and Zémor. Furthermore, we show that
in order to suppress errors over multiple repeated rounds of QEC, it suffices to run
the parallel decoding algorithm for constant time in each round. Combined with good
code parameters, the resulting constant-time overhead of QEC and robustness to (pos-
sibly time-correlated) adversarial noise make quantum Tanner codes alluring from the
perspective of quantum fault-tolerant protocols.

1. Introduction

Quantum error correcting (QEC) codes [1,2] are the backbone of quantum fault-tolerant
protocols needed to reliably operate scalable quantum computers. Due to their simplic-
ity, stabilizer codes [3], which can be realized by measuring a set of commuting Pauli
operators known as parity checks, have received much attention. From the perspective
of fault tolerance, it might be desirable to further require that qubits are placed on some
lattice and to restrict parity checks to be constant-weight and geometrically local. How-
ever, such topological QEC codes, which include the toric code [4,5] and the color code
[6–8] as examples, have limited code parameters [9–11]. To avoid these limitations, one
can drop the assumption about geometric locality of parity checks (while still maintain-
ing the assumption about their constant weight) to obtain a more general family of QEC
codes known as quantum low-density parity-check (QLDPC) codes; see Ref. [12] for
a recent review. Importantly, QLDPC codes can have essentially optimal parameters,
as shown by recent breakthrough results [13–16], culminating in the construction of
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(asymptotically) good QLDPC codes whose encoding rates and relative distances are
constant [17]. A key component of the construction of asymptotically good QLDPC
codes is the presence of “product-expanding” local codes. Since then, a few alternative
constructions of good QLDPC codes have been proposed [18,19].

Good parameters alone are not enough for QEC codes to be interesting beyond
the theoretical realm. In order to be practically relevant and useful, QEC codes need
computationally efficient decoding algorithms which process the error syndrome and
identify errors afflicting the encoded information. Importantly, decoding algorithms need
to operate at least at the speed at which quantum fault-tolerant protocols are being
implemented; otherwise, the error syndrome will keep accumulating and one will suffer
from the so-called backlog problem [20]. Recently, a few computationally efficient (and
provably correct) decoding algorithms have been developed for good QLDPC codes
[19,21,22], assuming access to the noiseless error syndrome.

To extract the error syndrome, one usually implements appropriate quantum circuits
composed of basic quantum operations, such as state preparation, entangling gates and
measurements. Unfortunately, these basic operations are imperfect and, for that reason,
the assumption about the noiseless error syndrome is unrealistic. In particular, practical
QEC codes and decoding algorithms should exhibit robustness to measurement errors.
Arguably, one of the simplest ways to achieve such robustness involves repeating mea-
surements until a reliable account of the error syndrome is obtained [5,23]. However,
this approach incurs significant time overhead since the number of repetitions needed in
general grows with the code distance.

An alternative to repeated measurement rounds of the error syndrome was introduced
in the form of single-shot QEC by Bombín [24]. The basic idea behind single-shot QEC
is to carefully select a code for which the decoding problem has sufficient structure to
reliably infer qubit errors even with imperfect syndrome measurements. The strength
of this approach is that significantly fewer measurements are necessary for codes that
admit single-shot decoding compared to the simple strategy of repeated measurements.

Single-shot QEC can be considered either for stochastic or adversarial noise. In the
stochastic case, one is interested in noise that afflicts a (randomly selected) constant
fraction of qubits. Additional structure may be needed for both the noise and the code,
since the expected weight of the errors can be far beyond the code distance. Examples
of such structure include sufficiently high expansion in the associated factor graphs,
e.g., quantum expander codes [25]; or the presence of geometrically local redundancies
among constant-weight parity checks, e.g., the 3D subsystem toric code [26,27] and
the gauge color code [28]. In the adversarial case, as considered by Campbell [29], one
can realize single-shot QEC for any code by measuring a carefully chosen set of parity
checks; similar ideas of exploiting a redundant set of parity checks to simultaneously
handle measurement and qubit errors were also explored in Refs. [30–32]. The limitation
of this approach is that, even when starting with a QLDPC code, the parity checks needed
for single-shot QEC may have weight growing with code length, which makes it less
appealing from the perspective of quantum fault-tolerant protocols.

We remark that while stochastic noise and adversarial noise models are generally
incomparable, the distinction fades for asymptotically good QEC codes. Since these
codes, by definition, have constant relative distance, they have the ability to correct
arbitrary errors of weight up to a constant fraction of the number of qubits. In particular,
stochastic noise with sufficiently low rate is correctable with high probability. Since in
the rest of the paper we focus on good QLDPC codes, it suffices to consider the case of
adversarial noise.
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1.1. Main results. In this article, we focus on a class of asymptotically good QLDPC
codes called quantum Tanner codes [18]. They admit computationally efficient decod-
ing algorithms, such as the sequential and parallel mismatch decomposition algorithms
introduced in Ref. [33] and the potential-based decoder introduced in Ref. [22]. The
problem of decoding quantum Tanner codes has so far been considered only in the
scenario with noiseless error syndrome. Here, we study the performance of the afore-
mentioned sequential and parallel mismatch decomposition decoders in the presence
of measurement errors. We show that the decoders are single-shot, under the following
definition. For a more detailed discussion of single-shot decoding, see Sect. 3.

Suppose a data error e occurs on the qubits. Let σ be the (ideal) syndrome correspond-
ing to the data error. Suppose that the measured syndrome is corrupted by measurement
error D. With access to the noisy syndrome σ̃ = σ + D as input, the decoder tries to
output a correction f̂ close to the data error.

Definition 1.1 (Informal Statement of Definition 3.3). A decoder is said to be (α, β)-
single-shot if, for sufficiently low-weight errors, the correction f̂ returned on input σ̃

satisfies |e + f̂ |R ≤ α|e|R + β|D|, where |e|R is the stabilizer-reduced weight of e, i.e.,
the weight of the smallest error equivalent to e up to the addition of stabilizers.

In other words, using a single round of noisy syndrome measurement, the decoder
finds and applies the correction f̂ , resulting in the residual error e + f̂ of weight below
α|e|R + β|D|. Let n be the number of physical qubits of the quantum Tanner code. Our
main theorems are as follows.

Theorem 1.2 (Informal Statement of Theorem 4.17). There exists a constant β such that
the sequential decoder (Algorithm 1) is (α = 0, β)-single-shot.

Theorem 1.3 (Informal Statement of Theorem 4.20). There exists a constant β such that
for all α > 0, the O(log(1/α))-iteration parallel decoder (Algorithm 3) is (α, β)-single-
shot. In particular, for O(log n) iterations of parallel decoding one obtains α = 0.

We further consider the situation where multiple rounds of qubit error, noisy syndrome
measurement, and decoding occur. We show that under mild assumptions on the weights
of qubit and measurement errors, repeated applications of an (α, β)-single-shot decoder
will keep the residual error weight bounded. Specifically, consider the case where an
initial error (e1, D1) is partially corrected by the decoder, leaving a residual error e′1.
A new error (e2, D2) is then applied on top of the existing residual error, giving total
error (e′1 + e2, D2). The decoder attempts to correct using a new round of syndrome
measurements (without using the syndromes of previous rounds), leaving residue e′2.
This process is repeated for multiple rounds. Then we have the following.

Theorem 1.4 (Informal Statement of Theorem 3.5). Consider an (α, β)-single-shot de-
coder and multiple rounds of errors (ei , Di ) for i = 1, · · · , M. For any c > 0, there
exists a constant C∗ > 0 such that if max(|ei |, |Di |) ≤ C∗n for all i , then the final
residual error e′M satisfies |e′M |R ≤ cn.

A direct implication of this result is that for the parallel decoder (Algorithm 3), a
constant number of iterations suffices to keep the residual error weight bounded at each
round. This process can be repeated essentially indefinitely until ideal error correction
is required, at which point the O(log n)-iteration parallel decoder can be used. For more
details, see the discussion at the end of Sect. 3.3.

The rest of this paper is organized as follows. In Sect. 2, we provide the necessary
background on quantum Tanner codes. For more detailed explanations, see Refs. [18] and
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[33]. In Sect. 3, we describe the decoding problem for quantum (CSS) codes under
measurement noise, and discuss the notion of single-shot decoding. We then define
(α, β)-single-shot decoding and derive general consequences of this definition under
multiple rounds of error and decoding. The main result of this section is the proof of
Theorem 3.5. Section 4 forms the bulk of the paper. There, we review the sequential
and parallel decoders from Ref. [33] and prove that the decoders are single-shot in
Theorems 4.17 and 4.20. Finally, we end with some discussions in Sect. 5.

2. Quantum Tanner Codes

2.1. Classical codes. A classical binary linear code is a subspace C ⊆ F
n
2. We refer

to n as the block length of the code. The number of encoded bits (also referred to as
the code dimension) is given by k = dim C and the rate of the code is R = k/n. The
distance of C is defined as d = minx∈C\{0} |x |, where | · | is the Hamming weight of a
vector and where 0 denotes the zero vector. A code with distance d can protect against
any unknown error of weight less than d/2. Often, it is useful to specify a code C via a
parity check matrix H . By definition, C = ker H .

The dual code of a code C is defined as C⊥ = {x ∈ F
n
2 : 〈x, y〉 = 0 ∀y ∈ C}. The

tensor product code of two codes CA ⊆ F
A
2 ,CB ⊆ F

B
2 is CA ⊗CB ⊆ F

A×B
2 , where the

codewords can be thought of as matrices such that every column is a codeword of CA
and every row is a codeword of CB . The dual tensor code of CA and CB , denoted by
CA � CB , is defined as

CA � CB ≡
(
C⊥A ⊗ C⊥B

)⊥ = CA ⊗ F
B
2 + F

A
2 ⊗ CB ⊆ F

A×B
2 .

A parity check matrix for CA � CB is HA ⊗ HB , where HA and HB are the parity
check matrices of CA and CB , respectively.

The dual tensor codes we use are required to satisfy the following robustness condi-
tion.

Definition 2.1. The codeCA�CB is said to be κ-product-expanding if any x ∈ CA�CB
can be expressed as c + r , with c ∈ CA ⊗ F

B
2 and r ∈ F

A
2 ⊗ CB such that

κ

(
1

|A| ‖c‖A +
1

|B| ‖r‖B
)
≤ 1

|A||B| |x | .

Here, ‖c‖A denotes the number of non-zero columns in c and ‖r‖B denotes the
number of non-zero rows in r . When it is clear from context, we will drop the subscripts on
the norms. The notion of product-expansion was introduced by Panteleev and Kalachev
[17]. It is equivalent to robust testability of tensor product codes [34] and agreement
testability [35], and also implies another notion called w-robustness of dual tensor codes
[18]. It has been proven that random codes are product-expanding with high probability
[19,36].

Theorem 2.2 (Theorem 1 in Ref. [36]). Let ρ ∈ (0, 1). For any �, let CA be a random
code of dimension �ρ�� and CB be a random code of dimension �(1 − ρ)��. There
exists a constant κ such that both CA �CB and C⊥A �C⊥B are κ-product-expanding with
probability approaching 1 as �→∞.
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2.2. Quantum codes. An n-qubit quantum code is a subspace C of an n-qubit Hilbert
space, i.e., C ⊆ (

C
2
)⊗n

. We are interested in stabilizer codes, which are codes that can
be expressed as the simultaneous +1-eigenspace of an abelian subgroup S of the n-qubit
Pauli group satisfying−I �∈ S. If S can be generated by two sets SX and SZ comprising,
respectively, Pauli X -type and Z -type operators, then we refer to the corresponding
stabilizer code as a Calderbank-Shor-Steane (CSS) code [37,38]. By ignoring the phase
factors for such X -type and Z -type operators, we can identify them with their supports
as vectors in F

n
2.

For any CSS code stabilized by S = 〈SX ,SZ 〉, we can define two n-bit classical
codes CX = ker HX and CZ = ker HZ , where each row in HX and HZ is the support
of a stabilizer generator in SX and SZ , respectively. The dimension of a CSS code is
k = kX + kZ − n, where kX and kZ are the dimensions of CX and CZ , respectively. The
distance is d = min(dX , dZ ), where dX = minx∈CZ \C⊥X |x | and dZ = minx∈CX \C⊥Z |x |.
A quantum code of distance d can protect against any unknown error of weight less
than d/2. A quantum code C ⊆ (C2)⊗n of dimension k and distance d is said to be an
[[n, k, d]] code. A family of CSS codes is said to be low-density parity-check (LDPC) if
HX and HZ are sparse, i.e., have at most a constant number of non-zero entries in every
column and row.

2.3. Quantum Tanner code construction. We now describe the construction of quantum
Tanner codes. The code is placed on a geometric object called the left-right Cayley
complex. Let G be a finite group and A = A−1, B = B−1 be two symmetric generating
sets of G. The left-right Cayley complex Cay2(A,G, B) is a two-dimensional object
with vertices V , edges E , and faces Q defined as follows:

• V = V00 � V01 � V10 � V11, where Vi j = G × {(i, j)} for i, j ∈ {0, 1} ,
• E = EA � EB , where EA = {{(g, i0), (ag, i1)} : g ∈ G, a ∈ A, i ∈ {0, 1}} and
EB = {{(g, 0 j), (gb, 1 j)} : g ∈ G, b ∈ B, j ∈ {0, 1}} ,
• Q = {{(g, 00), (ag, 01), (gb, 10), (agb, 11)} : g ∈ G, a ∈ A, b ∈ B} .

Let Q(v) denote the set of faces incident to a given vertex v. Each face incident to v can
be obtained by choosing an A-type edge and a B-type edge incident to v and completing
them into a square. Therefore, Q(v) is in bijection with the set A×B, and can be thought
of as a matrix with rows indexed by A and columns indexed by B (Fig. 1). Similarly, the
set of faces incident to a given A-edge is in bijection with B and the set of faces incident
to a given B-edge is in bijection with A.

Consider the usual Cayley graph Cay(A,G) with the vertex set G and the edge set
{{g, ag} : g ∈ G, a ∈ A}. Ignoring the B edges from the complex, we have that (V, EA)

is the disjoint union of two copies of the bipartite cover of Cay(A,G). Similarly, (V, EB)

is the disjoint union of two copies of the bipartite cover of Cay(G, B).1 We say that a
�-regular graph is Ramanujan if the second largest eigenvalue of its adjacency matrix
is at most 2

√
�− 1, and we will consider left-right Cayley complexes with component

Cayley graphs Cay(A,G) and Cay(G, B) that are Ramanujan. Explicitly, Ramanujan
Cayley graphs can be obtained by taking G = PSL2(qi ), where q is an odd prime
power and A, B are (appropriately chosen) symmetric generating sets of constant size
� = |A| = |B| = q + 1 [35].

1 We denote the Cayley graph with left group action by Cay(A,G) and the Cayley graph with right group
action by Cay(G, B). Note that the right Cayley graph Cay(G, B) with edges {g, gb} is isomorphic to the left
Cayley graph Cay(B,G) by mapping every g to g−1.
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Fig. 1. The local structure of the left-right Cayley complex around a vertex labelled by g ∈ G. The incident
faces Q(v) has a natural bijection with A× B. As examples, the red and blue faces in the complex are mapped
to the squares of the same colors in the matrix given by A × B

Fig. 2. An example of a stabilizer generator with local codes CA = span{111} and CB = span{110, 011}.
The codeword x = 111⊗ 110 ∈ CA ⊗CB has support as shown on the right. Identifying that matrix with the
faces incident to a V0 vertex gives an X -type stabilizer generator

Quantum Tanner codes are CSS codes defined by placing qubits on the faces of
a left-right Cayley complex. We fix two classical codes, CA of length |A| and CB of
length |B|, which are used to define a pair of local codes providing the parity checks
of the quantum code. An X -type stabilizer generator is defined as a codeword from a
generating set of C0 = CA⊗CB , with support on the faces incident to a given vertex in
V0 = V00∪V11. More precisely, there is an X -type stabilizer generator s(x, v) for every
generator x ∈ CA ⊗ CB and every vertex v ∈ V0. Identifying Q(v) with A × B using
the bijection explained earlier, the support of s(x, v) is the subset of Q(v) defined by the
support of x ; see Fig. 2 for an illustration. Similarly, the Z -type stabilizers are generated
by codewords of C1 = C⊥A ⊗ C⊥B on the faces incident to vertices of V1 = V01 ∪ V10.
The fact that X and Z parity checks commute is because X and Z generators are either
disjoint or overlap on the faces incident to a single edge. On this set of faces, isomorphic
to either B or A, the supports of the X and Z operators are codewords of either CB and
C⊥B , respectively, or CA and C⊥A , respectively. It is clear that a family of quantum Tanner
codes is QLDPC if the degrees of the component Cayley graphs are bounded.

Leverrier and Zémor showed that quantum Tanner codes defined on expanding left-
right Cayley complexes using product-expanding local codes have good parameters
[18,33].
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Theorem 2.3 (Theorem 1 in Ref. [33]). Letρ, dr , κ ∈ (0, 1)and�be a sufficiently large
constant. Let CA,CB ⊆ F

�
2 be classical codes of rates ρ and (1− ρ) respectively, such

that the distances of CA,CB,C⊥A ,C⊥B are all at least dr�, and such that CA � CB and
C⊥A �C⊥B are both κ-product-expanding. Using a family of�-regular RamanujanCayley
graphs Cay(A,G) and Cay(G, B), define the left-right Cayley complex Cay2(A,G, B).
Then the quantum Tanner codes defined using the components above have parameters

[[
n, k ≥ (1− 2ρ)2n, d ≥ d2

r κ2

256�
n

]]
.

3. Single-shot Decoding

3.1. DecodingCSScodes. Let us now formally define the decoding problem for quantum
(CSS) codes. After we encode logical information in a quantum code, errors will occur on
the physical system. We are interested in how to “undo” these errors and, subsequently,
recover the original logical state. Specifically, consider a logical state |ψ〉 of a stabilizer
code C. A Pauli error E occurs, and we gain information about the error by measuring
a set of stabilizer generators {Si }. This gives a syndrome σ , a bit string whose values σi
correspond to the eigenvalues (−1)σi of the stabilizers measured. Thus, σi = 0 whenever
Si commutes with E and σi = 1 when it anticommutes. The task of decoding is to use
σ to determine a correction F̂ such that F̂ E |ψ〉 = |ψ〉. In other words, F̂ E should be
a stabilizer of the code. When C is a CSS code, we can express the problem as follows.

Definition 3.1. Let C be a CSS code specified by two parity check matrices HX ∈ F
rX×n
2

and HZ ∈ F
rZ×n
2 . Let e = (eX , eZ ) ∈ F

2n
2 be an error with corresponding syndrome

σ = (σX , σZ ) ∈ F
rZ+rX
2 , where σZ = HXeZ and σX = HZeX . Given input σ , the task

of decoding is to find corrections f̂ = ( f̂ X , f̂ Z ) ∈ F
2n
2 such that eX + f̂ X ∈ C⊥X and

eZ + f̂ Z ∈ C⊥Z .

In the definition above, we associate the bit string e = (eX , eZ ) with the Pauli errors
E = EX EZ where EX and EZ are Pauli X and Z operators with support eX and eZ ,
respectively (ignoring phase information). The correction f̂ is similarly associated with
a Pauli operator F̂ .

We note that for CSS codes, the decoding problem can be split into two separate
problems for the X and Z codes that can be solved independently. For quantum Tanner
codes in particular, there is symmetry between the X and Z codes, as can be seen by
switching V0 and V1 labels and switching CA,CB with C⊥A ,C⊥B . Therefore, it suffices
to give an algorithm for decoding one type of error. In the remainder of the paper, we
will consider solely the case where X -errors occur, with Z -errors treated analogously.
For convenience, we will often drop subscripts, for example writing e for eX or H for
HZ .

The above discussion assumes that the ideal syndrome is accessible to the decoder.
Let us now consider the case when the syndrome measurements are unreliable, motivated
by the fact that the quantum circuits implementing the parity checks are necessarily im-
perfect. Suppose that the ideal syndrome σX of an error eX is corrupted by measurement
error DX , so that the actual noisy syndrome readout is σ̃X = σX + DX . A naive decoding
of the syndrome σ̃X may result in a correction f̂ X which does not bring the state back to
the code space, i.e., eX + f̂ X �∈ C⊥X . Furthermore, there may be no guarantee that eX + f̂ X
is close to C⊥X .
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One of the standard procedures to account for measurement errors is to repeatedly
measure the stabilizer generators in order to gain enough confidence in their measurement
outcomes [5,23]. This will incur large time overhead. Alternatively, syndrome measure-
ments can be performed fault-tolerantly by preparing special ancilla qubit states offline
[39,40]. This will incur large qubit overhead. It would be ideal if we could avoid both
overheads at the same time.

3.2. Single-shot decoding. Bombín [24] introduced single-shot decoders as an alterna-
tive approach. These decoders take in a noisy syndrome as input and, even in the presence
of syndrome noise, return a correction that can be used to reduce the data error. Most
likely, there will be some resulting residual error, but its weight is bounded by some
function of the syndrome noise. In more detail, the single-shot property posits that it
suffices to perform O(n) parity check measurements (in the context of QLDPC codes,
one further requires constant weight of measured parity checks), and, using only these
measurement outcomes, one can perform reliable QEC that keeps the residual noise at
bay.

In our analysis, we need the following definition.

Definition 3.2. Let C be an n-qubit CSS code and e ∈ F
n
2 be a Pauli X error. The

stabilizer-reduced weight |e|R of e is defined as the weight of the smallest error equivalent
to e up to the addition of stabilizers of C, i.e., |e|R = mine′∈C⊥X |e + e′|. The stabilizer-
reduced weight of a Pauli Z error is defined analogously.

The stabilizer-reduced weight of an error is a convenient theoretical measure of how
detrimental the error really is. Note that since stabilizers do not change the code state,
errors are only well-defined up to the addition of stabilizers. As such, any bound on
the performance of the decoder is unambiguously defined using the stabilizer-reduced
weight, which can be significantly smaller than the original weight.

Since we focus on asymptotically good QLDPC codes, it is enough to consider single-
shot decoding for adversarial noise. Campbell [29] captures adversarial single-shot de-
coding as follows. Let both the data error e and the syndrome noise D be sufficiently
small. A decoder is single-shot if it outputs a correction such that the weight of the resid-
ual error is bounded by a polynomial of |D|. In this work, we would like to consider
constant-time decoding using the parallel decoder (Algorithm 3) for quantum Tanner
codes. This setting does not directly fit into the previous definition since the residual
error could depend on |e| in addition to |D|. To allow for nontrivial dependence on |e|,
we give the following definition, which is relevant for asymptotically good codes where
the residual error size is at most linear in |e| and |D|.
Definition 3.3. Let C be a CSS code specified by parity check matrices HX ∈ F

rX×n
2

and HZ ∈ F
rZ×n
2 . Let e = (eX , eZ ) ∈ F

2n
2 be a data error, D = (DX , DZ ) ∈ F

rZ+rX
2 be

a syndrome error, and σ̃ = (σ̃X , σ̃Z ) ∈ F
rZ+rX
2 be the corresponding noisy syndrome,

where σ̃X = HZeX + DX and σ̃Z = HXeZ + DZ . A decoder for C is (α, β)-single-shot
if there exist constants A, B,C such that, for P ∈ {X, Z}, whenever

A|eP |R + B|DP | ≤ Cn,

the decoder finds a correction f̂ P ∈ F
n
2 from given input σ̃P such that

|eP + f̂ P |R ≤ α|eP | + β|DP | .
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This definition, combined with Theorems 4.17 and 4.20 below, gives the following
results for the sequential and parallel decoders of the quantum Tanner codes.

Theorem 3.4 (Summary). There exist constants A, B,C, β > 0 (dependent on the pa-
rameters of the quantumTanner code) such that if A|e|R+B|D| ≤ Cn, then the following
conditions hold:

1. The sequential decoder (Algorithm 1) is (α = 0, β)-single-shot.
2. The parallel decoder (Algorithm 3) with k-iterations is (α = 2−	(k), β)-single-shot.

Note that the runtime of the sequential decoder is O(n), and each iteration of the
parallel decoder is constant time. For the parallel decoder, α decreases exponentially
with the number of parallel decoding iterations k, and the results of this section will hold
when k is a sufficiently large constant. It suffices to take k = O(log n) for α = 0 in the
parallel decoder.

Finally, we remark that we may increase the robustness to measurement errors and
improve the overall performance of single-shot decoding by leveraging redundancies
among parity checks, similar to the ideas explored in Refs. [30–32]. We can apply this
approach to quantum Tanner codes without compromising their QLDPC structure, which
is a crucial difference between our setting and the aforementioned works. Specifically,
stabilizer generators of quantum Tanner codes are supported on local neighborhoods,
defined by the local codesC0 andC1. We may apply the technique of adding redundancy
to each set of local checks separately. Since the local codes are of length �2, any
redundant check in a fixed local neighborhood will not have weight more than �2,
which is comparable to the weight of the original checks.

3.3. Multiple rounds of decoding. In this section, we discuss what happens after multiple
rounds of errors, noisy measurements, and decoding. We show that under the assumptions
of Definition 3.3, there exists a variety of noise models such that, as long as the overall
noise level is sufficiently small, the encoded quantum information will persist for an
exponential number of rounds.

The results proven in this section hold for any decoder that can solve the single-shot
decoding problem under Definition 3.3. More precisely, we assume that if the decoder is
given the noisy syndrome from data error e ∈ F

n
2 and syndrome error D ∈ F

rZ
2 satisfying

A|e|R + B|D| ≤ Cn,

then it outputs a correction f̂ such that the residual error satisfies

|e + f̂ |R ≤ α|e| + β|D| .

We will assume that β is constant and that α is a parameter in the decoder that can be
made arbitrarily small. For our analysis, we let R, S be constants such that

R ≤ (1− α)C

2A
and S ≤ (1− α)C

2 (βA + (1− α)B)
. (1)

We prove that as long as the data and syndrome errors in each round are sufficiently
small, the total error can be kept small indefinitely.



85 Page 10 of 37 S. Gu, E. Tang, L. Caha, S.H. Choe, Z. He, A. Kubica

Theorem 3.5. Consider errors (ei , Di ) that occur on rounds i = 1, 2, · · · , with decod-
ing in between each round using new syndrome measurements (i.e., without using the
previous syndromes). If the errors satisfy |ei | ≤ Rn and |Di | ≤ Sn for every round i ,
then the residual error e′i after each round i satisfies

|e′i |R ≤
αR + βS

1− α
n . (2)

Proof. Initially, e′0 = 0, which satisfies the bound. Suppose after round i−1, the residual
error e′i−1 satisfies (2). The new total error is e′i−1 + ei , and we have

A|e′i−1 + ei |R + B|Di | ≤ A|e′i−1|R + A|ei | + B|Di |
≤ A

αR + βS

1− α
n + ARn + BSn

≤ Cn ,

where the last inequality follows since

A
R + βS

1− α
+ BS ≤ C

for R and S satisfying (1).Therefore, the decoder returns a correction f̂ with residual
error

|e′i |R ≤ α|e′i−1 + ei |R + β|Di |
≤ α|e′i−1|R + α|ei | + β|Di |
≤ α

αR + βS

1− α
n + αRn + βSn

= αR + βS

1− α
n ,

where the third inequality uses the inductive hypothesis. ��
From this result, we can immediately analyze the stochastic setting in which large

errors are unlikely.

Corollary 3.6. Let {(ei , Di )}Mi=1 be randomly distributed data and syndrome errors (with
possible correlations) such that

Pr(|ei | > Rn) ≤ e−an, and Pr(|Di | > Sn) ≤ e−bn ,

for constants a, b > 0. Suppose the decoder is run after each round of errors using new
syndrome measurements (i.e., without using the syndromes of previous rounds). Then
the final residual error e′M satisfies

Pr

(
|e′M |R >

αR + βS

1− α
n

)
≤ M(e−an + e−bn) .

Proof. This follows immediately from Theorem 3.5 after using a union bound on the
probability of a large data or syndrome error at every round. ��
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As a sample application of Corollary 3.6, we analyze the case of p-bounded noise
[25,41], although any model of errors with sufficiently suppressed tails will give the
same conclusions.

Definition 3.7 (p-bounded noise). Let p ∈ [0, 1). Let A be a set and let 2A be its power
set. We say that a probability distribution E : 2A → [0, 1] is p-bounded if for any
B ⊆ A we have

∑
B′⊇B

E(B ′) ≤ p|B| .

Corollary 3.8. Let {(ei , Di )}Mi=1 be data and syndrome errorswhere eachof themarginal
distributions of ei and Di are p- and q-bounded, respectively. Suppose the decoder is
run after each round of errors using a new round of syndrome measurements (without
using the syndromes of previous rounds). Then, the final residual error e′M satisfies

Pr

(
|e′M |R >

αR + βS

1− α
n

)
≤ M

(
e−n ln(2−H(R) p−R) + e−n ln(2−
H(S/
)q−S)

)
,

where H(τ ) = −τ log2 τ − (1 − τ) log2(1 − τ) is the binary entropy function, and

 = rZ/n.

Proof. Let us first upper bound Pr(|ei | > Rn). We have

Pr(|ei | > Rn) =
∑
|e|>Rn

Pr(ei = e) ≤
∑
|e|=Rn

Pr(ei ⊃ e) ≤
∑
|e|=Rn

p|e| ≤
(

n

Rn

)
pRn ,

where the last inequality follows by p-boundedness. Using the binary entropy bound for
the binomial coefficient, we then have

Pr(|ei | > Rn) ≤
(

n

Rn

)
pRn ≤ 2nH(R) pRn = e−n ln(2−H(R) p−R) .

Similarly, we have

Pr(|Di | > Sn) ≤ e−n ln(2−
H(S/
)q−S) .

Applying Corollary 3.6 gives the result. ��
In particular, there exist thresholds (p∗, q∗) = (2−H(R)/R, 2−
H(S/
)/S) below which

errors are kept under control for an exponential number of rounds of single-shot QEC
with high probability.

Finally, we comment on the last round of QEC. In a typical setting of fault tolerance,
we choose to measure logical qubits in the computational basis, which for a CSS code
can be accomplished by measuring each physical qubit (also in the computational basis).
We then apply one final round of QEC, where the Z -stabilizer eigenvalues are inferred by
multiplying the Z -measurement outcomes from those qubits in the stabilizer supports.
Note that in this final round, any measurement error can be treated as an X data error
immediately before the measurement. We run the decoder with α sufficiently small so
that by the guarantee on the decoder, |e + f̂ |R = 0, i.e., we completely correct the
error. We can then infer the logical information by combining the corrected single-qubit
Z -measurement outcomes making up the Z -logical operators. Therefore, fault tolerance
may be achieved by using a faster (e.g., constant-time) decoder with larger α value in the
middle of the computation, and only applying the full decoder (e.g., logarithmic-time)
with α = 0 at the end of the computation.
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4. Proofs of Single-shot Decoding of Quantum Tanner Codes

4.1. Decoding algorithms. We consider the decoding problem for quantum Tanner
codes with parameters as in Theorem 2.3. We first provide an overview of how the
decoder works. As before, we will work exclusively with X -type errors, with Z -errors
being analogous. Suppose that the code state experiences data error e, and the measure-
ments experience syndrome error D. The decoder is consequently given as input the
noisy syndrome σ̃ = σ + D = HZe+ D. Due to the structure of the code, the global syn-
drome σ̃ can equivalently be viewed as a set of noisy local syndromes {σ̃v}v∈V1 , where
σ̃v denotes the restriction of σ̃ to the checks associated with the local code C⊥1 at vertex
v. At each V1 vertex, the decoder computes a minimal weight correction ε̃v ⊆ Q(v)

based on the local syndrome σ̃v , i.e,

ε̃v = argmin{|y| : y ⊆ Q(v), σv(y) = σ̃v} .
Note that this is a completely local operation which can be done without consideration
of the syndrome state of the other vertices. Each square q ∈ Q contains two V1 vertices,
say v ∈ V01 and v′ ∈ V10. These two vertices are each associated with their own local
corrections, ε̃v and ε̃v′ , which may disagree on whether there is an error on q. If there
is no disagreement on any square q ∈ Q, then a global correction f̂ ∈ F

Q
2 can be

unambiguously defined by

f̂ =
⊔

v∈V01

ε̃v =
⊔

v′∈V10

ε̃v′ .

However, this will usually not be the case. The disagreement between the different
candidate local corrections is captured by a “noisy mismatch vector” defined as

Z̃ =
∑
v∈V1

ε̃v . (3)

The goal of the main part of the algorithm is to reduce the size of Z̃ by successively
updating the best local corrections on the V1 vertices. For example, it is possible that
for a given v ∈ V1, replacing ε̃v with ε̃v + x for some x ∈ C⊥1 in (3) would significantly
decrease |Z̃ |. In general, we attempt to decompose Z̃ by adding codewords x ∈ C⊥1
on local views Q(v) of vertices v ∈ V .2 We keep track of the decomposition process
through quantities Ĉ0, Ĉ1, R̂0, R̂1 ⊆ F

Q
2 , which are initially 0 and updated as follows.

Suppose x = c + r is supported on a Vi j local view (i, j ∈ {0, 1}), where c ∈ CA ⊗ F
B
2

and r ∈ F
A
2 ⊗CB . Then we add c to Ĉ j and r to R̂i . The interpretation is that Ĉ1 + R̂0 is

the total change made to the local corrections ε̃v from the V01 vertices, and Ĉ0 + R̂1 is the
total change made to those from the V10 vertices. Therefore, at the end of the procedure,
we output a guess for the error, which from the perspective of the V01 vertices is

f̂ =
∑

v∈V01

ε̃v + Ĉ1 + R̂0 .

2 In the presence of measurement errors, a full decomposition of Z̃ into local codewords may not be
possible. See Definition 4.4 and related comments before and after.
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The algorithm can run either sequentially (Algorithm 1) or in parallel (Algorithm 3),
with the corresponding Z̃ decomposition subroutines presented in Algorithm 2 and
Algorithm 4 respectively.

Algorithm 1 Sequential decoder for quantum Tanner codes with parameter ε

Input: A noisy syndrome σ̃ arising from data error e and syndrome error D.
Output: A correction f̂ that approximates e.
1: ε̃v ← argmin{|y| : y ⊆ Q(v), σv(y) = σ̃v} (or ε̃v ← 0 if no such y exists) for all v ∈ V1
2: Z̃ ← ∑

v∈V1
ε̃v

3: (Ĉ0, Ĉ1, R̂0, R̂1) ← Mismatchε(Z̃)

4: f̂ ← ∑
v∈V01

ε̃v + Ĉ1 + R̂0

5: return f̂

Algorithm 2 Sequential mismatch decomposition with parameter ε

Input: A vector Z ∈ F
Q
2 .

Output: A collection (Ĉ0, Ĉ1, R̂0, R̂1) ≡ Mismatchε(Z).

1: Set Ĉ0 = Ĉ1 = R̂0 = R̂1 = 0 and Ẑ = Z .
2: while Ẑ �= 0 do
3: if ∃v ∈ Vi j and 0 �= xv ∈ C⊥1 in Q(v) such that |Ẑ | − |Ẑ + xv | ≥ (1− ε)|xv | then
4: Find rv ∈ F

A
2 ⊗ CB and cv ∈ CA ⊗ F

B
2 such that ‖cv‖ + ‖rv‖ is minimal among

all cv, rv such that rv + cv = xv
5: Ĉ j ← Ĉ j + cv
6: R̂i ← R̂i + rv
7: Ẑ ← Ẑ + cv + rv
8: else
9: return (Ĉ0, Ĉ1, R̂0, R̂1)
10: end if
11: end while
12: return (Ĉ0, Ĉ1, R̂0, R̂1)

Algorithm 3 Parallel decoder for quantum Tanner codes with k iterations
Input: A noisy syndrome σ̃ from a data error e and syndrome error D, and an integer k > 0.
Output: A correction f̂ that approximates e.
1: parallel for each v ∈ V1 do
2: ε̃v ← argmin{|y| : y ∈ Q(v), σv(y) = σ̃v} (or ε̃v ← 0 if no such y exists)
3: Z̃ ← ∑

v∈V1
ε̃v

4: f̂ ←∑
v∈V01

ε̃v

5: end parallel for each
6: (Ĉ0, Ĉ1, R̂0, R̂1) ← ParMismatch(k)

(Z̃)

7: f̂ ← f̂ + Ĉ1 + R̂0 // update f̂ in parallel for each vertex v ∈ V01
8: return f̂
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Algorithm 4 Parallel mismatch decomposition procedure with k iterations

Input: A vector Z ∈ F
Q
2 and integer k > 0.

Output: A collection (Ĉ0, Ĉ1, R̂0, R̂1) ≡ ParMismatch(k)
(Z).

1: Set Ĉ0 = Ĉ1 = R̂0 = R̂1 = 0 and Ẑ = Z .
2: repeat k times
3: for (i, j) ∈ {0, 1}2 do
4: parallel for each v ∈ Vi j do

5: if there exists 0 �= xv ∈ C⊥1 in Q(v) such that |Ẑ | − |Ẑ + xv | ≥ |xv |/2 then
6: Choose xv such that |xv | maximal among all possible choices
7: Find rv ∈ F

A
2 ⊗ CB and cv ∈ CA ⊗ F

B
2 such that ‖cv‖ + ‖rv‖ is minimal

among all cv, rv such that rv + cv = xv
8: Ĉ j ← Ĉ j + cv
9: R̂i ← R̂i + rv
10: Ẑ ← Ẑ + cv + rv
11: end if
12: end parallel for each
13: end for
14: end repeat
15: return (Ĉ0, Ĉ1, R̂0, R̂1)

These algorithms were analyzed in the scenario with perfect measurement outcomes
in Ref. [33], giving the following results:

Theorem 4.1 (Theorem 13 in Ref. [33]). Let ε ∈ (0, 1). Suppose Algorithm 1 with
parameter ε is given as input the noiseless syndrome σ = HZe of an error e ∈ F

Q
2 of

weight

|e| ≤ 1

211 min

(
ε3

16
, κ

)
(1− ε)d2

r κ2 n

�
.

Then it will output a correction f̂ such that e + f̂ ∈ C⊥X in time O(n).

Theorem 4.2 (Theorem 20 in Ref. [33]). Let ε ∈ (0, 1/6). Suppose Algorithm 3 is given
as input the noiseless syndrome σ = HZe of an error e ∈ F

Q
2 of weight

|e| ≤ 1

212 min

(
ε3

16
, κ

)
d2
r κ2 n

�
.

Then it will output a correction f̂ such that e + f̂ ∈ C⊥X in time O(log n).

In the next sections, we will consider what happens when the decoders are given a
syndrome with possible errors.

4.2. Proof preliminaries. We first give a summary of the main ideas of the proof. The
key idea of the proof is to bound the reduction in the weight of the noisy mismatch
vector Z̃ through each step of the algorithm, and to show that when the weight of Z̃
is reduced, the weight of the residual error is also subsequently reduced. There is a
technical challenge to this idea however: there is no direct relation between the weight
of Z̃ and the error weight.
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To bridge these two objects, we define the notion of an ideal mismatch vector Z
(see Eq. (4) below), which is equal to Z̃ when there is no measurement noise. Since the
mismatch Z only captures the portion of the error which cannot be removed using inde-
pendent local corrections, we must first “pre-process” the error by making any possible
local corrections (see Eq. (5) below). This establishes a direct connection between Z
and the “pre-processed” error e0 (see Lemma 4.7) and our analysis will be built upon
this connection.

We show that if Z is decomposable into local corrections by Algorithm 2, then most
of these correction sets will also reduce the weight of Z̃ (Lemma 4.13). This in turn
allows us to relate the weights of Z and Z̃ . Finally, we show that if the qubit and
measurement error weights are bounded, the ideal mismatch vector Z always admits the
desired decomposition into local correction sets (Lemma 4.15). These lemmas allow us
prove our main result (Theorem 4.17): as the weight of Z̃ decreases throughout the steps
of the algorithm, the residual error weight must also decrease. The analysis of the parallel
decoder then builds upon this bound, with the additional requirement of showing that the
decomposition of Z into local corrections must be essentially disjoint (Lemma 4.18).

In the remainder of this section, we set up notation and provide some preliminary
results used in the proofs of Theorems 4.17 and 4.20. We first define quantities relating
to the states of the decoders. Given the local structure of the quantum Tanner codes, it
will be more convenient to bound the size of the syndrome noise in terms of its vertex
support.

Definition 4.3. Given a quantum Tanner code and a syndrome noise D, let us define Dv

to be the restriction of D to the set of stabilizer generators associated with vertex v. We
define the vertex support of D to be the set of all vertices such that Dv �= 0. We denote the
size of the vertex support by |D|V . Note that we have �−2|D| ≤ r−1|D| ≤ |D|V ≤ |D|,
where r is the number of stabilizer generators associated with the local code.

Given the noisy syndrome σ̃ = HZe + D, let σ̃v denote the restriction of σ̃ to the
checks associated with the vertex v. For each vertex v ∈ V1, the decoder finds a locally
minimal correction ε̃v such that σv(ε̃v) = σ̃v . In the event that no local correction ε̃v

exists for σ̃v , we may define σ̃v arbitrarily. In our case, we will simply define ε̃v = 0 by
convention. If εv is the locally minimal correction associated with the noiseless syndrome
σv , then we can decompose ε̃v into “noiseless” and “noisy” parts as

ε̃v = εv + εv(D) ,

where εv(D) is defined by εv(D) = ε̃v − εv . Note that εv(D) will be non-zero only
when D has non-zero support on v.

The full noisy mismatch vector initialized by the decoder is given by

Z̃ =
∑
v∈V1

ε̃v =
∑
v∈V1

(εv + εv(D)) .

It will likewise be convenient to split the mismatch into a noiseless and a noisy part,
defined by

Z =
∑
v∈V1

εv and ZN =
∑
v∈V1

εv(D) , (4)
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so that Z̃ = Z + ZN . We will also need the restrictions of these vectors onto the vertices
of V01, which we define as

Z̃01 =
∑

v∈V01

ε̃v, Z01 =
∑

v∈V01

εv, and Z01
N =

∑
v∈V01

εv(D) .

The key idea of the proof is to pre-process the error using Z̃01, and apply the local
corrections xv step by step. Specifically, we define the initial pre-processed error ẽ0, and
the “noiseless” pre-processed error e0, by

ẽ0 = e + Z̃01 = e +
∑

v∈V01

ε̃v ,

e0 = e + Z01 = ẽ0 + Z01
N . (5)

For the purpose of our proof, we consider the vector ẽ0 as the initial error state of the
algorithm, and Z̃0 = Z̃ as the initial mismatch. Note that in practice it does not matter at
what point in the decoding procedure the set Z̃01 is flipped. The pre-processing is only
introduced as a convenience in our proof in order to relate the weight of e to the weight
of Z . The original algorithms considered in Ref. [33] involve a “post-processing” step
instead, where Z̃01 is applied at the very end rather than the beginning. Since the sets
of qubits flipped are ultimately the same in either case, the results here hold without
modification.

The core loop of the decoding algorithm finds, at each step i , some local codeword
xi = ri + ci ⊆ Q(vi ) such that

|Z̃i−1| − |Z̃i−1 + xi | ≥ (1− ε)|xi |. (6)

Having found a codeword which satisfies (6), we update the error and the mismatch
vectors by

ẽi = ẽi−1 + fi , and Z̃i = Z̃i−1 + xi ,

where the flip-set fi ⊆ Q(vi ) is defined by

fi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 vi ∈ V10 ,

xi vi ∈ V01 ,

ci vi ∈ V11 ,

ri vi ∈ V00 .

Likewise, we can define the associated “noiseless” error and mismatch at each step by

ei = ei−1 + fi = ẽi + Z01
N , and Zi = Zi−1 + xi = Z̃i + ZN .

Note that ZN and Z01
N are determined entirely by the syndrome noise D and initial error

e, and are constant through the decoding process.
In the presence of measurement errors, it is no longer true that the noisy mismatch Z̃

can be decomposed into a sum of local codewords.3 As such, some care must be taken in

3 In the case of perfect syndrome measurements, we have

Z =
∑
v∈V1

εv =
∑
v∈V1

(ev + rv + cv) =
∑
v∈V1

(rv + cv),

where rv + cv is the codeword that the local error is corrected to: ev + εv = rv + cv . This decomposition no
longer holds in the presence of imperfect measurements.
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characterizing what exactly we mean by a “mismatch”. This is captured by the definition
below.

Definition 4.4. A mismatch vector is any Z ∈ F
Q
2 that can be decomposed as Z =

C0 + C1 + R0 + R1, where

C j =
∑

v∈Vj j

cv and Ri =
∑
v∈Vii

rv

are the sum of local column codewords cv ∈ CA⊗F
B
2 and row codewords rv ∈ F

A
2 ⊗CB

on Q(v), i.e., a mismatch vector is an element in the span of local codewords C⊥1 . Here,
we define i = 1− i for convenience.

The division of Z into local codewords of the form (C0,C1, R0, R1) is called a decom-
position of Z . Any given mismatch vector Z may have many distinct decompositions.
Given any decomposition, we define its weight by

wt(C0,C1, R0, R1) = ‖C0‖ + ‖C1‖ + ‖R0‖ + ‖R1‖,
where ‖Ci‖ and ‖Ri‖ denote the number of non-zero columns and rows, respectively,
present in Ci and Ri . Note that the weight is well-defined since distinct local codewords
cv ⊆ Ci and rv ⊆ Ri are disjoint. We then define the norm of a mismatch to be

‖Z‖ = min
(C0,C1,R0,R1)

Z=C0+C1+R0+R1

wt(C0,C1, R0, R1).

Decompositions such that wt(C0,C1, R0, R1) = ‖Z‖ are called minimal weight de-
compositions for Z .

Note that technically the vector Z̃ which we call the noisy mismatch vector is not a
mismatch vector at all as defined by Definition 4.4. Nevertheless, we will continue to
call Z̃ the noisy mismatch since there is little chance of confusion. The noiseless part Z
is a genuine mismatch vector by definition. The properties of the noiseless mismatch Z
are characterized by the following lemma from Ref. [33].

Lemma 4.5 (Lemma 17 in Ref. [33]). Let e ∈ F
Q
2 be an error and let εv be a local

minimal correction for ev at every vertex v ∈ V1. Let

Z =
∑
v∈V1

εv .

Then Z is a mismatch vector which satisfies

|Z | ≤ 4|e|R, and ‖Z‖ ≤ 4

κ�
|e|R .

The main purpose of pre-processing in our proof is that the noiseless pre-processed
error e0 and the noiseless mismatch Z0 can be easily related through the following
property.

Definition 4.6. Let e ∈ F
Q
2 be an error. We say that the error is Vi j -weighted if σv(e) = 0

for all v ∈ Vi j . Given a Vi j -weighted error e, we say that a mismatch vector Z is
associated with e if σv(Z) = σv(e) for all v ∈ Vi j .
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Lemma 4.7. The quantity e0 is a V10-weighted error and Z0 = Z is a mismatch vector
associated with e0.

Proof. First, we show that Z is a mismatch vector. Note that Z is the sum of local
minimal corrections εv to the error e, i.e.,

Z =
∑
v∈V1

εv ,

where for each vertex v ∈ V1 we have ev = εv + xv for some xv ∈ C⊥1 . Therefore

Z =
∑
v∈V1

(ev + xv) =
∑
v∈V1

xv ,

where the ev terms cancel since each face occurs exactly twice in the sum above. Next,
we show that e0 is V10-weighted. We have

e0 = e + Z01 = e +
∑

v∈V01

εv .

Note that the terms in the latter sum are disjoint for distinct vertices v, v′ ∈ V01. It
follows that the restriction of e0 to a vertex v ∈ V01 is given by

(e0)v = ev + εv = xv ,

which has zero syndrome. Finally we show that Z is associated with e0. The restriction
of e0 to a vertex v ∈ V10 is given by

(e0)v = ev + Q(v) ∩
∑
u∈V01

εu .

Likewise, the restriction of Z to v ∈ V10 is given by

Zv = εv + Q(v) ∩
∑
u∈V01

εu .

It follows that

σv(Z) = σv(εv) + σv

⎛
⎝Q(v) ∩

∑
u∈V01

εu

⎞
⎠ = σv(ev) + σv

⎛
⎝Q(v) ∩

∑
u∈V01

εu

⎞
⎠ = σv (e0) ,

which shows that Z is associated with e0. ��
The notion of ei being a V10-weighted error is invariant as the decoder proceeds,

i.e., if ei is initially V10-weighted then it remains so. Moreover, if Z was initially a
mismatch associated with e0 then Zi remains associated with ei throughout all steps i
of the decoder.
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Lemma 4.8. Let Z be a weighted mismatch vector associated with a V10-weighted error
e. Let x = c + r ⊆ Q(v) be a codeword of C⊥1 , with v ∈ Vi j . Define

f =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, v ∈ V10 ,

x, v ∈ V01 ,

c, v ∈ V11 ,

r, v ∈ V00 ,

to be the associated flip set. Then e + f is again a V10-weighted error and Z + x is an
associated mismatch vector.

Proof. It is clear that Z + x is a mismatch vector since Z was one and we add a single
C⊥1 codeword.

We first show that e + f remains V10-weighted. Clearly e + f is V10-weighted if
v ∈ V10 or v ∈ V01 since we either add nothing, or a local codeword to a V01 vertex.
Now suppose that v ∈ V00 so that f = r . We can decompose r into r = r1 + · · · + rk ,
where each ri is a local codeword supported on a single row, which we can assume to
be indexed by the edge (v, ui ) for some ui ∈ V01. The syndrome of e + r on a vertex
u ∈ V01 is therefore given by

σu(e + f ) =
{

σu(e) u �= ui for all i,
σu(e + ri ) u = ui for some i.

In either case, we have σu(e + f ) = 0 so that e + f is V10-weighted. The case where
v ∈ V11 is analogous, taking f = c and making a similar decomposition.

Finally, we show that Z + x is associated with e + f . Let us write

Z =
∑
u∈V10

εu,

where σu(Z) = σu(e) for all u ∈ V10. If v ∈ V10 then there is nothing to show since all
syndromes are unchanged. If v ∈ V01 then define

ε′u = εu + Q(u) ∩ x

so that

Z + x =
∑
u∈V10

ε′u .

Since (e + x)u = eu + Q(u) ∩ x , we see that ε′u has the same syndrome as (e + f )u .
Lastly, suppose v ∈ V00, with the V11 case being analogous. Let f = r . Note that

ε′u = εu and (e + r)u = eu for all u ∈ V10 not adjacent to v. Therefore it suffices to
consider u ∈ N (v). In this case, Q(u) ∩ c is just the column of c labeled by the edge
(u, v) and so Q(u) ∩ c is a local codeword. Therefore σu(c) = 0. It follows that

σu(ε
′
u) = σu(εu) + σu(x) = σu(e) + σu(r) + σu(c) = σu(e) + σu(r) = σu(e + r)

for all u ∈ N (v). Therefore σu(Z + x) = σu(e + f ) for all u ∈ V10 and so Z + x is
associated with e + f . ��
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Lemma 4.7 and Lemma 4.8 show that Zi is a mismatch vector associated with the
V10-weighted error ei for all i . We further cite the following lemma from Ref. [33],
which gives a sufficient condition for the existence of good local corrections. This is the
key to proving that in the noiseless case, the sequential and parallel decoders converge.

Definition 4.9. Let Z be a mismatch vector and let Z = C0 + C1 + R0 + R1 be a
minimal decomposition for Z . We say that a vertex v ∈ Vi j is active with respect this
decomposition if Q(v) ∩ (Ri + C j ) �= 0.

Theorem 4.10 (Theorem 12 in Ref. [33]). Fix δ ∈ (0, 1). Let Z be a non-zero mis-
match vector. If for all i, j ∈ {0, 1}, the set of active vertices Si j ⊆ Vi j for a minimal
decomposition of Z satisfies

|Si j | ≤ 1

212 d
2
r δ3κ|V00| ,

where dr denotes the relative distance of the local code, then there exists a non-zero
x ⊆ Q(v) for some v ∈ Vi j that is a C⊥1 codeword such that

|Z | − |Z + x | ≥ (1− δ)|x | .

4.3. Sequential decoder. To begin analyzing the sequential decoder with noisy input, the
natural question to ask is that if the ideal mismatch Z can be decomposed by Algorithm 2
into F = {xi }ti=1, how well do these local corrections xi decompose the noisy mismatch
Z̃ = Z + ZN ? The following two lemmas address this question.

Definition 4.11. Let Z be a mismatch vector. We say that Z is δ-decomposable if Al-
gorithm 2 successfully returns a decomposition of Z when run with parameter δ, i.e., if
Algorithm 2 halts with state Ẑ = 0.

Lemma 4.12. Let Z be an δ-decomposable mismatch and let F = {xi }ti=1 denote the
codewords returned by Algorithm 2 run with input Z and parameter δ. Then

(1− δ)

t∑
i=1

|xi | ≤ |Z | ≤
t∑

i=1

|xi | .

Proof. Let

Zk = Z −
k∑

i=1

xi ,

with Z = Z0. Note that since Algorithm 2 completely decomposes Z , we have Zt = 0
and

Z =
t∑

i=1

xi .

For the decomposition with parameter δ, we have |Zi−1| − |Zi | ≥ (1 − δ)|xi | and
therefore

|Z | ≥ (1− δ)

t∑
i=1

|xi |.



Single-Shot Decoding of Good Quantum LDPC Codes Page 21 of 37 85

Together, we get the bounds

(1− δ)

t∑
i=1

|xi | ≤ |Z | ≤
t∑

i=1

|xi | .

��
Lemma 4.13. Let Z be a mismatch vector and let ZN ∈ F

Q
2 be any vector. Let Z̃ =

Z + ZN . Suppose that Z is δ-decomposable with decomposition F = {xi }ti=1. Let

F∗ = {x ∈ F : |Z̃ | − |Z̃ + x | ≥ (1− ε)|x |} .
Then

∑
x∈F∗

|x | ≥ c1|Z | − c2|ZN | (7)

for constants

c1 = ε − 2δ

ε(1− δ)
and c2 = 2

ε
.

In particular, if F∗ = ∅, then c1|Z | ≤ c2|ZN |.
Proof. This proof follows the idea of Lemma 5.1 in Ref. [42]. Given any set y ∈ F

Q
2 ,

we have

|Z̃ | − |Z̃ + y| = |Z̃ | − (|Z̃ | + |y| − 2|Z̃ ∩ y|) = 2|Z̃ ∩ y| − |y| .
For all y ∈ F \ F∗, we have

|Z̃ ∩ y| = 1

2
(|y| + |Z̃ | − |Z̃ + y|) <

(
1− ε

2

)
|y| .

Define T =∑
x∈F |Z̃ ∩ x |. We then have

T =
∑
x∈F∗

|Z̃ ∩ x | +
∑

y∈F\F∗
|Z̃ ∩ y|

<
∑
x∈F∗

|x | +
(

1− ε

2

) ∑
y∈F\F∗

|y|

= ε

2

∑
x∈F∗

|x | +
(

1− ε

2

) ∑
y∈F

|y|

≤ ε

2

∑
x∈F∗

|x | +
2− ε

2(1− δ)
|Z | ,

where the last inequality follows from Lemma 4.12. On the other hand, we also have

T ≥ |Z̃ ∩
∑
x∈F

x | = |Z̃ ∩ Z |

= |Z | − |Z ∩ ZN | ≥ |Z | − |ZN | .
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Combining these two inequalities, we get

ε

2

∑
x∈F∗

|x | +
2− ε

2(1− δ)
|Z | ≥ |Z | − |ZN |,

or equivalently

∑
x∈F∗

|x | ≥ ε − 2δ

ε(1− δ)
|Z | − 2

ε
|ZN |,

as desired. ��
Note that Lemma 4.13 will set an implicit bound of δ < 1/2 since we require

ε − 2δ > 0 for the bound (7) to be non-trivial.
Suppose now that the noisy mismatch vector Z̃ is given as input to Algorithm 1

with parameter ε, which terminates after T iterations. Let us denote the residual error
by ẽT and its associated mismatch by Z̃T = ZT + ZN . If ZT is δ-decomposable, then
Lemma 4.13 implies that |ZT | = O(ZN ). Namely, the sequential decoder terminates
only when the mismatch noise ZN becomes significant. In the following lemma, we
further relate the weight of the noiseless residual error eT with |ZT |.
Lemma 4.14 (Mismatch Correctness and Soundness). Let e be a V10-weighted error
and let Z be an associated mismatch vector. Suppose that Z is δ-decomposable and that

|e|R +
1

κ(1− δ)
|Z | < d . (8)

Then we have

|Z | ≥ (1− δ)κ|e|R .

Proof. Let F = {xi }ti=1 denote the decomposition returned for Z by Algorithm 2 with
parameter δ. Each xi is supported on the local view of some vertex vi and has the further
decomposition into column and row codewords as xi = ci + ri .

First, we prove that e ∼= Ĉ1 + R̂0, where∼= denotes equivalence up to stabilizers. Let
e0 = e and define ei = ei−1 + fi where

fi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, v ∈ V10 ,

xi , v ∈ V01 ,

ci , v ∈ V11 ,

ri , v ∈ V00 .

Note that by construction we have

et = e0 + Ĉ1 + R̂0.

By Lemma 4.8, the errors ei are all V10-weighted, and the vector Zk = Z +
∑k

i=1 xi is
a mismatch vector associated with ei at each step. It follows by the V10-weighting of et
that

∀v ∈ V01 : σv(et ) = 0.
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Since Zt = 0, it follows by the association of Zt and et that

∀v ∈ V10 : σv(et ) = σv(Zt ) = 0.

It follows that et has zero syndrome. It remains to show that et is a stabilizer, which we
can do by bounding its weight. For each flip-set fi , we have

| fi | ≤ |ri | + |ci | ≤ �(‖ri‖ + ‖ci‖) ≤ |xi |/κ , (9)

where we use the robustness of the local code in the last inequality. Using Lemma 4.12,
we then have

|Z | ≥ (1− δ)

t∑
i=1

|xi | ≥ (1− δ)κ

t∑
i=1

| fi |.

It follows that

|et |R =
∣∣∣∣∣e +

t∑
i=1

fi

∣∣∣∣∣
R

≤ |e|R +
t∑

i=1

| fi | ≤ |e|R +
1

κ(1− δ)
|Z | < d.

Therefore et ∼= 0 and hence e ∼= Ĉ1 + R̂0. Finally, we have

|e|R =
∣∣∣Ĉ1 + R̂0

∣∣∣
R
≤

∣∣∣Ĉ1 + R̂0

∣∣∣ ≤
t∑

i=1

| fi | ≤ 1

κ(1− δ)
|Z |.

��
Now we show that, without surprise, ZT is δ-decomposable. Let us define the con-

stants

Aε = 24

κ�(1− ε)
, Bε = 3�

κ(1− ε)
, and Cδ = 1

212 d
2
r δ3κ�−2 .

For the purposes of the parallel decoder, it will be convenient to consider a generalized
mismatch decomposition procedure which initially starts the decomposition with some
weight parameter ε and then switches to some other parameter ε′ partway through (see
Lemma 4.18). We state the generalized result below in Lemma 4.15, although we will
only need the special case where ε = ε′ for the analysis of the sequential decoder.

Lemma 4.15. Let e be an error and D a syndrome noise. Let Z̃ ≡ Z + ZN denote the
initial noisy mismatch vector assigned to e and D.

Let ε, ε′ ∈ (0, 1) be constants such that ε′ ≤ ε. Consider a modified Algorithm 2
which takes input Z̃ and runs with parameter ε for the first t steps and then switches to
parameter ε′ until it halts at step T ≥ t . Let Z̃T ≡ ZT + ZN denote the final output of
this process.

If Aε|e|R + Bε|D|V ≤ Cδn, then ZT is δ-decomposable.
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Proof. Consider the process of running the modified Algorithm 2 with input Z̃ and
parameter ε for t steps, and then switching the parameter to ε′ until the algorithm finally
halts at step T . Let {x1, . . . , xt } be local codewords obtained with parameter ε, and
{xt+1, . . . , xT } the codewords obtained with parameter ε′. Denoting Z̃i the mismatch
vector at iteration i , we have

|Z̃i−1| − |Z̃i | ≥
{

(1− ε)|xi |, i ∈ {1, . . . , t} ,
(1− ε′)|xi |, i ∈ {t + 1, . . . , T } .

(10)

We wish to show that ZT is δ-decomposable. Suppose that Algorithm 2 returns local
codewords {y1, . . . , yK } when given input ZT with parameter δ. Let ST+k,i j denote a
set of active vertices in Vi j for the mismatch

ZT+k ≡ ZT +
k∑

�=1

y� .

For all k ∈ [K ], we have

|ST+k,i j | ≤ ‖ZT+k‖ ≤ ‖Z‖ +
T∑
i=1

‖xi‖ +
k∑

�=1

‖y�‖ , (11)

where the first inequality holds since there exists at least one non-zero row or column for
each active vertex. By robustness of the local code, we have κ�‖xi‖ ≤ |xi |. Continuing
the chain of inequalities, we have

(11) ≤ ‖Z‖ +
1

κ�

T∑
i=1

|xi | +
1

κ�

k∑
�=1

|y�|

≤ ‖Z‖ +
1

κ�

T∑
i=1

|xi | +
1

κ�(1− δ)
|ZT | , (12)

where the first inequality follows by robustness and the second by the fact that |ZT +�−1|−
|ZT+�−1 + y�| ≥ (1− δ)|y�|. Using inequality (10), we get

|ZT | =
∣∣∣∣∣Z +

T∑
i=1

xi

∣∣∣∣∣ ≤ |Z | +
T∑
i=1

|xi | ≤ |Z | +
1

1− ε

(
|Z̃ | − |Z̃t |

)
+

1

1− ε′
(
|Z̃t | − |Z̃T |

)
.

Since ε′ ≤ ε, it follows that

|ZT | ≤ |Z | +
1

1− ε
|Z̃ |. (13)

Inserting (13) into (12), we get

|ST+k,i j | ≤ ‖Z‖ +
1

κ�(1− δ)
|Z | +

1

κ�(1− ε)

(
2− δ

1− δ

)
|Z̃ | (14)

≤ ‖Z‖ +
1

κ�(1− δ)
|Z | +

1

κ�(1− ε)

(
2− δ

1− δ

)
(|Z | + |ZN |)
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≤ 4

κ�
|e|R +

4

κ�(1− δ)
|e|R +

1

κ�(1− ε)

(
2− δ

1− δ

)
(4|e|R + �2|D|V ) ,

(15)

where the last inequality follows by applying Lemma 4.5, together with the fact that
εv(D) can be non-zero only when v is in the support of D and hence

|ZN | =
∣∣∣∣∣∣
∑
v∈V1

εv(D)

∣∣∣∣∣∣
≤

∑
v∈V1

|εv(D)| ≤ |D|V max
v∈V1

|εv(D)| ≤ |D|V�2.

Simplifying, we finally get

|ST+k,i j | ≤ 4

κ�

(
2− δ

1− δ

) (
2− ε

1− ε

)
|e|R +

�

κ(1− ε)

(
2− δ

1− δ

)
|D|V

≤ 12

κ�

(
2

1− ε

)
|e|R +

3�

κ(1− ε)
|D|V

≡ Aε|e|R + Bε|D|V ,

where we use the fact that (2−δ)/(1−δ) ≤ 3 for δ ∈ (0, 1/2). It follows that if we have
Aε|e|R + Bε|D|V ≤ Cδn, then the active vertex condition of Theorem 4.10 is always
satisfied so that Algorithm 2 must be able to completely decompose ZT . ��

It remains for us to check that (8) in Lemma 4.14 holds.

Lemma 4.16. Assume the hypotheses of Lemma 4.15, and furthermore that

Aε|e|R + Bε|D|V ≤ d

�
.

Then

|ZT | ≥ (1− δ)κ|eT |R .

Proof. By Lemmas 4.7 and 4.8, the error eT is V10-weighted and ZT is an associated
mismatch vector. Applying Lemma 4.14, it suffices to prove

|eT |R +
1

κ(1− δ)
|ZT | < d . (16)

We have

|eT |R =
∣∣∣∣∣e0 +

T∑
i=1

fi

∣∣∣∣∣
R

≤ |e0|R +
T∑
i=1

| fi | ≤ |e0|R +
1

κ

T∑
i=1

|xi | ≤ |e0|R +
1

κ(1− ε)
|Z̃ |,

where the second inequality follows from (9). We then get

|eT |R +
1

κ(1− δ)
|ZT | ≤ |e0|R +

1

κ(1− ε)
|Z̃ | +

1

κ(1− δ)
|ZT |

≤ |e0|R +
1

κ(1− ε)
|Z̃ | +

1

κ(1− δ)

(
|Z | +

1

1− ε
|Z̃ |

)
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= |e0|R +
1

κ(1− δ)
|Z | +

1

κ(1− ε)

(
1 +

1

1− δ

)
|Z̃ | ,

where we use (13) in the second inequality. Next, we may assume without loss of
generality that e is a reduced error. Then we have

|e0|R = |ẽ0 + Z01
N |R =

∣∣e +
∑

v∈V01

εv

∣∣
R ≤ |e| +

∑
v∈V01

|ev| = 2|e| = 2|e|R ,

where we use the fact that εv are minimum weight corrections in the inequality above
and the fact that eu ∩ ev = ∅ for distinct vertices u, v ∈ V01 in the second last equality.
Following the same steps as from (14) to (15), we therefore get

|eT |R +
1

κ(1− δ)
|ZT | ≤ 2|e|R +

4

κ(1− δ)
|e|R +

1

κ(1− ε)

(
1 +

1

1− δ

)
(4|e|R + �2|D|V )

≤
[

2 +
4

κ(1− ε)

(
1 +

2− ε

1− δ

)]
|e|R + �Bε|D|V .

We can simplify the inequality above by noting that κ ≤ dr ≤ 1 [36]. Then we have

2 +
4

κ(1− ε)

(
1 +

2− ε

1− δ

)
= 1

κ

[
2κ +

4

1− ε

(
1 +

2− ε

1− δ

)]

≤ 1

κ

[
4 +

4

1− ε

(
1 +

2− ε

1− δ

)]

= 4

κ

(
2− δ

1− δ

)(
2− ε

1− ε

)

≤ 24

κ(1− ε)
= �Aε.

Therefore it suffices to require

Aε|e|R + Bε|D|V ≤ d

�

in order that inequality (16) holds. ��
Combining the inequalities, we obtain the main result for sequential decoder.

Theorem 4.17 (Main Theorem for the Sequential Decoder). Let e be an error and let
D be a syndrome error. Suppose that

Aε|e|R + Bε|D|V ≤ min (Cδn, d/�) .

Let σ̃ = σ(e) + D. Then Algorithm 1 with input σ̃ and parameter ε will output a
correction f̂ satisfying

|e + f̂ |R ≤
(

1 +
2c2

κc1

)
�2|D|V .
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Proof. Suppose that Algorithm 1 with parameter ε terminates after T steps with output f̂ .
Let ZT denote the state of the mismatch after the algorithm terminates. By Lemma 4.15,
ZT is δ-decomposable. This allows us to apply Lemma 4.13, giving

0 ≥ c1|ZT | − c2|ZN | , (17)

since the set F∗ must be empty when Algorithm 1 with parameter ε terminates. By
Lemma 4.16, we get

|ZT | ≥ (1− δ)κ|eT |R . (18)

But we know

|eT |R = |ẽT + Z01
N |R ≥ |ẽT |R − |Z01

N |R ≥ |ẽT |R −�2|D|V . (19)

Combining the inequalities (17), (18), and (19) finally gives

|e + f̂ |R = |ẽT |R
≤ |eT |R + �2|D|V
≤ 1

(1− δ)κ
|ZT | + �2|D|V

≤ c2

c1(1− δ)κ
|ZN | + �2|D|V

≤
(

1 +
c2

c1(1− δ)κ

)
�2|D|V .

Note that the restriction δ < 1/2, as required by Lemma 4.13, implies that
(1− δ)−1 ≤ 2. ��

This completes our proof of the main theorem for the sequential decoder.

4.4. Parallel decoder. The key idea in analyzing the parallel decoder is to compare the
performance of one iteration of parallel decoding to that of a full execution of the sequen-
tial decoder. Our convention in this section will be that superscript indices will denote the
parallel decoding iteration (always with parameter 1/2), while subscript indices will de-
note the sequential decoding iteration. For example, Z̃ (k)

j denotes the mismatch obtained
after k iterations of parallel decoding and then j iterations of sequential decoding.

For convenience, we will fix some parameters in this section. Throughout, we will
take ε = 1/2 for the parallel decoder. We will write A = Aε=1/2 and B = Bε=1/2.

Lemma 4.18. Let ε′ ∈ (0, 1/6). Let Z̃ (k) denote the current state of the (noisy) mismatch
vector. Let Z̃ (k)

T denote the residual mismatch after running the sequential decoder with
input Z̃ (k) and parameter ε′. Then after one iteration of parallel decoding, the weight
of the mismatch is reduced by at least

|Z̃ (k)| − |Z̃ (k+1)| ≥ 1

16
(1− 6ε′)

(
|Z̃ (k)| − |Z̃ (k)

T |
)

.
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Proof. The proof closely follows the ideas of Lemma 18 in Ref. [33]. For ease of notation
we write Z̃ (k) as Z̃ throughout this proof. Suppose that Algorithm 2 runs with input Z̃
and parameter ε′ returns local codewords {xi }Ti=1 and residual mismatch Z̃T . Therefore
we can write

Z̃ =
T∑
i=1

xi + Z̃T .

We will analyze the overlap among the sets xi , and argue that the parallel decoder’s
output will intersect non-trivially with the sequential decoder’s output. Let us define the
sets

x ′i =
(
Z̃ ∩ xi

)
\

⋃
j<i

x j .

Note that the sets x ′i are disjoint, and that they satisfy

T⋃
i=1

x ′i = Z̃ ∩
T⋃
i=1

xi ⊇ Z̃ ∩
T∑
i=1

xi ,

which implies
∣∣∣∣∣Z̃ \

T⋃
i=1

x ′i

∣∣∣∣∣ ≤
∣∣∣∣∣Z̃ \

(
Z̃ ∩

T∑
i=1

xi

)∣∣∣∣∣ =
∣∣∣∣∣Z̃ \

T∑
i=1

xi

∣∣∣∣∣ ≤
∣∣∣∣∣Z̃ +

T∑
i=1

xi

∣∣∣∣∣ = |Z̃T | .

Next, we define the set of “good” indices G ⊆ [T ] such that i ∈ G if and only if

|x ′i | ≥
(

1− 3

2
ε′

)
|xi | .

Let B = [T ] \ G denote the remaining set of “bad” indices. For each j ∈ [T ], let us
define

Z̃ ′j = Z̃ \
⋃
i≤ j

x ′i = Z̃ ′j−1 \ x ′j .

We wish to bound the difference between Z̃ j and Z̃ ′j . Let us denote this difference by

A j = Z̃ j \ Z̃ ′j .
To bound the size of A j , we examine how the size of Z̃ changes as we update it by adding
codewords x j . Since the x j ’s were obtained by running the decoder with parameter ε′,
it follows that

|Z̃ j−1 ∩ x j | ≥ (1− ε′/2)|x j | .
Referring to Fig. 3, we have A j\A j−1 = x j\Z̃ j−1, and hence

|A j \ A j−1| = |x j \ Z̃ j−1| = |x j | − |x j ∩ Z̃ j−1| ≤ |x j | −
(

1− ε′

2

)
|x j | = ε′

2
|x j | .

(20)
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Fig. 3. Reference for sets involved in proof of Lemma 4.18. The regions indicated are: II ∪ IV = Z̃ ′j−1,

I ∪ III = A j−1, II = Z̃ ′j , IV = x ′j , III ∪ IV = Z̃ j−1 ∩ x j , I ∪ V = A j , and I ∪ II ∪ V = Z̃ j .

We also have

(A j−1 \ A j ) � x ′j = Z̃ j−1 ∩ x j ,

corresponding to the unions of regions III and IV in Fig. 3. If j ∈ B is a “bad” index,
then we have

|A j−1 \ A j | +

(
1− 3

2
ε′

)
|x j | > |A j−1 \ A j | + |x ′j | = |Z̃ j−1 ∩ x j | ≥

(
1− ε′

2

)
|x j | ,

where the first inequality follows from the fact that j ∈ B and the last from the decoding
condition with parameter ε′. It follows that

|A j−1 \ A j | ≥ ε′|x j |, (21)

and hence

|A j−1| − |A j | = |A j−1 \ A j | − |A j \ A j−1| ≥ ε′|x j | − ε′

2
|x j | = ε′

2
|x j | ,

where we use inequalities (20) and (21) above. It follows that we have
{
|A j | − |A j−1| ≤ ε′|x j |/2, ∀ j ∈ G,

|A j | − |A j−1| ≤ −ε′|x j |/2, ∀ j ∈ B.

Summing the inequalities above, we get

0 ≤ |AT | − |A0| =
T∑
j=1

(|A j | − |A j−1|
) ≤ ε′

2

⎛
⎝∑

j∈G
|x j | −

∑
j∈B
|x j |

⎞
⎠ ,

where |A0| = 0 by definition. Therefore
∑
j∈B
|x j | ≤

∑
j∈G
|x j | .
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We have

∑
j∈B
|x ′j | ≤

(
1− 3

2
ε′

) ∑
j∈B
|x j | ≤

(
1− 3

2
ε′

) ∑
j∈G
|x j | ≤

∑
j∈G
|x ′j | ,

and hence

|Z̃ | − |Z̃T | ≤
∣∣∣∣∣∣
T⋃
j=1

x ′j

∣∣∣∣∣∣
=

T∑
j=1

|x ′j | =
∑
j∈B
|x ′j | +

∑
j∈G
|x ′j | ≤ 2

∑
j∈G
|x ′j | . (22)

Now, consider the iteration of parallel decoding beginning with input Z̃ ≡ Z̃ (k). Let
u ∈ F

Q
2 denote the set of all qubits which have been acted on by the parallel decoder,

i.e.,

u =
⋃
zv∈F

zv ,

where F = {zv} is the collection of all local codewords found by the decoder in the
current iteration. We now prove that for all j ∈ G, we have |x j ∩ u| ≥ c|x j | for some
constant c > 0.

Fix some x j and let v denote its anchoring vertex. Let us write y = |x ′j ∩ u|. First,
let us show that we must have

|x ′j \ u| <
3

4
|x j | .

Suppose otherwise. Then let zv denote the codeword (possibly zero) that the parallel
decoder assigns to vertex v. Note that we have zv ⊆ u by definition, as well as

|Z | − |Z + zv| ≥ 1

2
|zv| , (23)

where Z denotes the current state of the noisy mismatch in the parallel decoder. By
definition of u as the execution support of the decoder, the qubits of x ′j \u are untouched

by the algorithm. Therefore, since x ′j ⊆ Z̃ , it follows that x ′j\u ⊆ Z and x ′j \u ⊆ Z + zv .
Therefore we have

x ′j \ u = x ′j \ u ∩ (Z + zv) ⊆ x j ∩ (Z + zv) .

The addition of x j to Z + zv therefore removes at least |x ′j \ u| ≥ 3
4 |x j | qubits from Z .

Consequently, the addition of x j to Z + zv can add at most |x j |/4 qubits, so that

|Z + zv| − |Z + zv + x j | ≥ 1

2
|x j | .

Adding this inequality to (23), we get

|Z | − |Z + zv + x j | ≥ 1

2
(|x j | + |zv|) ≥ 1

2
|zv + x j | .
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Similar to the argument above, the addition of x j to zv adds at least |x j \ zv| ≥ |x ′j \u| ≥
3|x j |/4 qubits, and hence removes at most |x j |/4 qubits. Therefore

|zv + x j | − |zv| ≥ 1

2
|x j | .

Since |zv + x j | > |zv|, this contradicts the assumption that zv is the local codeword
selected by the decoder, since the decoder will choose to maximize the Hamming weight
of its local codewords. It follows that we’ve established the inequality

|x ′j \ u| <
3

4
|x j | .

This then implies that for all j ∈ G, we have

|x ′j ∩ u| > |x ′j | −
3

4
|x j | ≥

(
1− 3

2
ε′

)
|x j | − 3

4
|x j | =

(
1

4
− 3

2
ε′

)
|x j | .

Since the x ′j are disjoint, we get

|u| ≥
∑
j∈G
|x ′j ∩ u| >

(
1

4
− 3

2
ε′

) ∑
j∈G
|x j |

≥
(

1

4
− 3

2
ε′

) ∑
j∈G
|x ′j | ≥

1

8

(
1− 6ε′

) (
|Z̃ | − |Z̃T |

)
,

where the last inequality follows from (22). Finally, by the decoding criterion (23), the
total decrease in mismatch weight is

|Z̃ (k)| − |Z̃ (k+1)| ≥ 1

2

∑
zv∈F

|zv| ≥ 1

2
|u| ≥ 1

16
(1− 6ε′)

(
|Z̃ (k)| − |Z̃ (k)

T |
)

,

where we restore the superscript (k) in this last inequality for clarity. ��
Now, as in the sequential case, we bound the weight of the residual mismatch by the

weight of measurement noise.

Lemma 4.19. Let e be an error and D be a syndrome noise. Let Z̃ be the initial mismatch
vector assigned to e and D. Let Z̃ (k) denote the state of the mismatch vector after k
iterations of parallel decoding. Let Z̃ (k)

T denote the residual mismatch vector obtained
by running the sequential decoder with input Z̃ (k) and parameter ε′.

Suppose that A|e|R + B|D|V ≤ Cδn. Then for all k ∈ N
+ we have

|Z̃ (k)
T | ≤

(
1 +

2(1− δ)

ε′ − 2δ

)
�2|D|V ≡ (1 + ζ )�2|D|V .

Proof. Suppose that F = {xi }Ki=1 are the codewords which have been found by the
parallel decoder after k iterations. Note that we can equivalently consider the same
sequence to be obtained by running the sequential decoder with parameter 1/2, i.e., we
can consider Z̃ (k) to be a state of the mismatch after K iterations of sequential decoding
with parameter 1/2. It follows that Z̃ (k)

T is a mismatch obtained by first running the
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sequential decoder with input Z̃ and parameter 1/2 for K iterations, and then switching
to parameter ε′ for the remaining iterations.

Applying Lemma 4.15 with ε = 1/2, our assumptions on |e|R and |D|V imply that
Z (k)
T is δ-decomposable. Next, applying Lemma 4.13 (with ε′ as ε), it follows that

|Z (k)
T | ≤

2(1− δ)

ε′ − 2δ
|ZN | .

We then have

|Z̃ (k)
T | = |Z (k)

T + ZN | ≤ |Z (k)
T | + |ZN | ≤

(
1 +

2(1− δ)

ε′ − 2δ

)
|ZN |

≤
(

1 +
2(1− δ)

ε′ − 2δ

)
�2|D|V .

��
For simplicity, we take ε′ = 3δ in the following theorem. Note that this sets an upper

bound on δ so that δ < 1/18.

Theorem 4.20 (Main Theorem for the Parallel Decoder). Let e be an error and D be a
syndrome error. Let Z̃ be the initial (noisy) mismatch associated with e and D. Assume
that

A|e|R + B|D|V ≤ min (Cδn, d/�) .

Then after k iterations of parallel decoding, the decoder returns a correction f̂ (k) such
that

|e + f̂ (k)|R ≤ αk |e|R + β|D|V ,

where

αk = 24

5κ
(1− γ )k, β = 6

κδ
�2, and γ = (1− 18δ)/16 .

Proof. Applying Lemmas 4.18 and 4.19, it follows that the mismatch after k iterations
of parallel decoding is bounded above as

|Z̃ (k)| ≤ (1− γ ) |Z̃ (k−1)| + γ (1 + ζ )�2|D|V .

Summing this inequality over k gives

|Z̃ (k)| ≤ (1− γ )k |Z̃ | + γ (1 + ζ )�2|D|V
(

1 + (1− γ ) + (1− γ )2 + . . . + (1− γ )k−1
)

≤ (1− γ )k |Z̃ | + (1 + ζ )�2|D|V . (24)

Next, let ẽ(k) denote the state of the error after k iterations of parallel decoding. Let ẽ(k)
T

denote the state of the error after T additional iterations of sequential decoding with
parameter ε′. Let us write

ẽ(k)
T = ẽ(k) +

T∑
i=1

fi ,
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where { fi }Ti=1 are the associated flip-sets with parameter ε′. It follows from Lemma 4.8

that e(k)
T is V10-weighted with associated mismatch Z (k)

T . Lemma 4.16 then implies that

|e(k)
T |R ≤

1

(1− δ)κ
|Z (k)

T | ≤
ζ

(1− δ)κ
|ZN | ≤ ζ

(1− δ)κ
�2|D|V . (25)

It remains to bound the weight of |ẽ(k)|R . We have

|ẽ(k)|R ≤ |e(k)|R + �2|D|V (26)

≤
∣∣∣∣∣e

(k)
T +

T∑
i=1

fi

∣∣∣∣∣
R

+ �2|D|V

≤ |e(k)
T |R +

T∑
i=1

| fi | + �2|D|V

≤ ζ

(1− δ)κ
�2|D|V +

1

κ

T∑
i=1

|xi | + �2|D|V (27)

≤
(

1 +
ζ

(1− δ)κ

)
�2|D|V +

1

(1− ε′)κ

(
|Z̃ (k)| − |Z̃ (k)

T |
)

(28)

≤
(

1 +
ζ

(1− δ)κ

)
�2|D|V +

1

(1− ε′)κ
|Z̃ (k)|

≤
(

1 +
ζ

(1− δ)κ

)
�2|D|V +

1 + ζ

(1− ε′)κ
�2|D|V +

(1− γ )k

(1− ε′)κ
|Z̃ | . (29)

In the above, the first inequality (26) follows from (19). Inequality (27) follows from (25)
and the κ-product-expansion of the local code. Inequality (28) follows from the fact
that each local codeword xi satisfies the decoding condition with parameter ε′. Finally,
inequality (29) follows from (24).

Using the fact that |Z̃ | ≤ 4|e|R + �2|D|V , we can rewrite the inequality above in
terms of |e|R and |D|V following the same steps used in (14) to (15). This gives us

|ẽ(k)|R ≤
(

1 +
ζ

(1− δ)κ
+

1 + ζ

(1− ε′)κ
+

(1− γ )k

(1− ε′)κ

)
�2|D|V +

4(1− γ )k

(1− ε′)κ
|e|R .

Finally, setting ε′ = 3δ, and using the fact that κ ≤ 1 [36], we can relax the inequality
above slightly to get 4/((1− ε′)κ) ≤ 24/(5κ), as well as

1 +
ζ

(1− δ)κ
+

1 + ζ

(1− ε′)κ
+

(1− γ )k

(1− ε′)κ
≤ 1

κ

(
1 +

2

δ
+

2− δ

1− 3δ
· 1

δ
+

1

1− 3δ

)

≤ 1

κ

(
1 +

2

δ
+

2

1− 3δ
· 1

δ

)

≤ 6

κδ
,

which holds for δ ∈ (0, 1/18). ��
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5. Discussion

In our article, we have shown that quantum Tanner codes admit single-shot QEC. Given
information from a single round of noisy measurements, the mismatch decomposition
decoder [33] is able to output a correction that is close to the data error that occurred. For a
variety of noise models, including adversarial or stochastic noise, the single-shot decoder
is able to maintain the encoded quantum information for up to an exponential number
of correction rounds. The parallelized version of the decoder can be run in constant
time while keeping the residual error small. During readout, a logarithmic number of
iterations suffices to recover the logical information.

One may also ask about the possibility of single-shot QEC with other decoders for
good QLDPC codes. Due to the close connection between the decoders analyzed here
and the potential-based decoder for quantum Tanner codes in Ref. [22] (for example, the
ability to map between candidate flip sets for both types of decoders), a corollary of the
proofs presented here is that the potential-based decoder also has the single-shot property.
Likewise, under the mapping of errors shown in Ref. [21], the decoders considered here
are applicable to the original good QLDPC codes by Panteleev and Kalachev [17]. Our
analysis does not straightforwardly carry over to the code and decoder proposed in
Ref. [19], and it remains to be seen whether that construction also admits single-shot
decoding.

We further remark that all known constructions of asymptotically good QLDPC
codes admit a property called small-set (co)boundary expansion [43], which in the case
of quantum Tanner codes, was used to prove the No Low-Energy Trivial States (NLTS)
conjecture (see Property 1 of reference [44]). Small-set (co)boundary expansion is also
equivalent to the notion of soundness [45], which lower bounds the syndrome weight by
some function of reduced error weight. Indeed, soundness is a strong indication of single-
shot decodability. Similarly, quantum locally testable codes [46–50] admit analogous
soundness properties, although decoders for such codes are unexplored. Note that in
our proof, what we needed was a notion of soundness for the mismatch vector (see
Lemma 4.14), which is distinct from the usual notion of soundness for the syndrome.
The weight of the mismatch is in general incomparable to the weight of the syndrome, so
the precise relation between these two definitions of soundness is not well understood.

In conclusion, our results can be viewed as a step toward making general QLDPC
codes more practical. While many challenges still remain, there have been promis-
ing developments in this direction [41,51–53]. We believe that quantum LDPC codes,
similar to classical LDPC codes, will constitute the gold standard for future quantum
telecommunication technologies and form the backbone of resource-efficient quantum
fault-tolerant protocols.
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