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Abstract: We explain a construction of G2-instantons on manifolds obtained by resolv-
ing G2-orbifolds. This includes the case of G2-instantons on resolutions of T 7/� as
a special case. The ingredients needed are a G2-instanton on the orbifold and a Fueter
section over the singular set of the orbifold which are used in a gluing construction. In the
general case, we make the very restrictive assumption that the Fueter section is pointwise
rigid. In the special case of resolutions of T 7/�, improved control over the torsion-free
G2-structure allows to remove this assumption. As an application, we construct a large
number of G2-instantons on the simplest example of a resolution of T 7/�. We also
construct one new example of a G2-instanton on the resolution of (T 3 × K3)/Z2

2.
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1. Introduction

In [Ber55], Berger presented a list of groups which can possibly occur as the holon-
omy groups of Riemannian manifolds. However, constructing manifolds which realise
these holonomy groups remained a wide-open problem for decades. A milestone in this
direction was the formulation and proof of the Calabi conjecture in [Cal54,Cal57] and
[Yau77,Yau78] respectively. Among other things, the proof of this conjecture gives a
powerful characterisation of manifolds admitting a metric with holonomy SU(n), giv-
ing rise to a wealth of examples of such manifolds. Another entry on Berger’s list is the
exceptional holonomy group G2. The first compact examples of Riemannian manifolds
with holonomy equal to G2 were constructed in [Joy96] by resolving an orbifold of the
form T 7/�, where � is a finite group of isometries of T 7. In [JK21], this construc-
tion was extended to resolutions of orbifolds of the form Y/�, where Y is a manifold
with holonomy contained in G2, but not necessarily flat, and � is a finite group of G2-
involutions. However, an analogue of the Calabi conjecture for the holonomy group G2
remains out of reach, and not much is known about which 7-manifolds admit torsion-free
G2-structures, and if they do, how many.
In the seminal article [Don83], the moduli space of anti-self-dual connections was used
to define invariants of smooth 4-manifolds. Following this, a rich theory of gauge the-
oretical invariants and their relations to other manifold invariants in 4 dimensions was
developed. The article [DT98] then recognised some of the 4-dimensional phenomena
in dimension 7, for example the existence of a functional whose critical points are in-
stantons. With great optimism, one may hope to recreate the four-dimensional success
story in dimension 7, and use the moduli space of G2-instantons to define invariants of
G2-manifolds that do not change when the G2-structure is deformed. This may shed
some light on how many G2-structures a 7-manifold admits. For example, if two G2-
structures on the same manifold with different gauge theoretical invariants exist, one
cannot be deformed into the other.
There are analytic difficulties present in dimension 7 that were not there in dimension
4, and therefore the study of G2-instantons has mainly focused on the construction of
examples. The examples that have appeared in the literature so far are [Wal13a], using a
gluing construction on Joyce’s Generalised Kummer construction, [SEW15,MNSE21,
Wal16] using a gluing construction on the Twisted Connected Sum construction, and
[GN95,LO18,LO20] using cohomogeneity one methods.
We add to this by generalising the results from [Wal13a]: we prove a gluing theorem that
can be used to construct G2-instantons on the G2-manifolds from [JK21]. This manifold
construction begins with a G2-manifold Y and a group of involutions � on it. (In many
situations) The set of fixed points L of � is a smooth three-dimensional submanifold.
Therefore, Y/� is an orbifold whose singular set is three-dimensional, and a fibre of the
normal bundle of L in Y/� looks like C

2/{±1}. The four-dimensional Eguchi–Hanson
space is a resolution of the orbifold C

2/{±1}. Hence, replacing every fibre of the normal
bundle of L in M/〈ι〉 by an Eguchi–Hanson space yields some smooth manifold N .
Using formidable analysis, [JK21] then constructs a torsion-free G2-structure on N .
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Fig. 1. Illustration of the gluing construction. Left: a G2-instanton θ (in red) over a G2-orbifold (in gray).
Middle: a Fueter section s (in blue) over the singular set of the orbifold. Right: the underlying smooth manifold
is a resolution of the orbifold from the beginning. The gluing construction provides a connection over this
smooth manifold which looks like s close to the resolution locus, and looks like θ far away from the resolution
locus

Given a G2-instanton θ on Y/� one may be able to construct from it a G2-instanton on
N . To do this, one needs a connection on each of the glued in Eguchi–Hanson spaces. One
way to get such a connection is by taking a family, say s, of anti-self-dual instantons over
Eguchi–Hanson space. If θ and s satisfy a simple topological compatibility condition,
one can glue them together to a one-parameter family of connections At . This is in
general not a G2-instanton, but in this article we prove theorems showing that one can
perturb At to genuine G2-instantons in some situations. A simple choice for a family
s is to choose the same infinitesimally rigid instanton on each of the Eguchi–Hanson
spaces, which is the setting of our first theorem (cf. Theorem 4.133):

Theorem. Assume that the section s is given by a rigid ASD-instanton in every point
x ∈ L, and assume that the connection θ used to define the approximate G2-instanton
At is infinitesimally rigid.
There exists c > 0 such that for small t there exists at = (at , ξt ) ∈ C1,α(�0 ⊕
�1(Ad Et )) such that ˜At := At + at is a G2-instanton. Furthermore, at satisfies
∣

∣

∣

∣at
∣

∣

∣

∣

C1,α
−1,δ;t

≤ ct1/18.

Here, α ∈ (0, 1) must be a small number and || · ||C1,α
−1,δ;t

denotes a weighted Hölder

norm. We use this theorem to construct two types of examples of G2-instantons. First, on
the Generalised Kummer Construction [Joy96], viewed as a special case of the extended
construction from [JK21] (cf. Corollary 5.4):

Corollary. Let � act on T 7 as defined in Eq. (5.1) and let N ′t denote the one param-
eter family of resolutions of T 7/� from Sect.3.1. Then, for t small enough, there exist
2205 non-flat, irreducible G2-instantons with structure group SO(3) over N ′ which are
pairwise not gauge equivalent.

Second, in [JK21, Section 7.3] a resolution of (T 3 × K3)/Z2
2 was constructed, and we

construct a G2-instanton on it (cf. Corollary 5.15):

Corollary. Let Nt denote the one parameter family of resolutions of (T 3 × X)/� from
Sect.5.2.1. Then, for t small enough, there exists an irreducible G2-instanton with struc-
ture group SO(3) over the resolution Nt .

Thanks to the improved control over the torsion-freeG2-structure on resolutions of T 7/�

from [Pla20, Theorem 4.58] we have an even stronger gluing theorem on the Generalised
Kummer Construction from [Joy96]. On these manifolds, we need not require that the
family s is given by rigid instantons. That said, an arbitrary family s may behave very
wildly in the direction of the three-manifold L , and our construction does not produce
a G2-instanton in this case. However, if s satisfies a first order equation in the direction
of L , called the Fueter equation, then the construction still works (cf. Theorem 4.134):
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Theorem. Let N → Y ′ be the resolution of the orbifold Y ′ = T 7/� from before.
Assume that the connection θ used to define the approximate G2-instanton At is in-
finitesimally rigid and that s is an infinitesimally rigid Fueter section.
There exists c > 0 such that for small t there exists an at = (at , ξt ) ∈ C1,α(�0 ⊕
�1(Ad Et )) such that ˜At := At + at is a G2-instanton. Furthermore, at satisfies
∣

∣

∣

∣at
∣

∣

∣

∣

Xt
≤ ct2−2α .

Here, || · ||Xt denotes a complicated composite norm. It consists of a part that is harmonic
in the Eguchi–Hanson directions in the gluing region and a rest, and the two parts are
scaled differently.
Unfortunately, no genuine examples of these more general ingredients are known. That
is: all known rigid Fueter sections are actually sections of rigid instantons.
The article is structured as follows: in Sect. 2 we prepare some facts that are used later on.
Notably, in Proposition 2.22 we give a proof of the folklore result that the moduli spaces
of framed instantons over an ALE space and over its compactification are in bijection.
Following this, in Sect. 3, we review the two construction methods for torsion-free G2-
structures from [Joy96] and [JK21]. In Sect. 4 we prove our gluing theorem for G2-
instantons: we first construct the approximate solution At , then construct the perturbation
to a genuine G2-instanton. Last, in Sect. 5, we apply this construction method to the
construction new G2-instantons.

2. Background

In this section we briefly provide the necessary background in G2-geometry, as well as
gauge theory in dimensions 4 and 7.

The material in Sect. 2.1 about G2-geometry is completely standard, but is important
for us to fix notations.
Section 2.2 reviews gauge theory in dimension 4, and its content is also well known,
but we provide proofs of some statements for which we could not locate a proof in the
literature: first, the auxiliary Proposition 2.13 constructing a trivialisation of a principal
bundle around an orbifold singularity of a certain nice form; second, the folklore result
Proposition 2.22 that the moduli spaces of instantons on an ALE space and on its one
point compactification are in bijection; third, the auxiliary Proposition 2.38, showing
that the action of the isometry group of Eguchi–Hanson space lifts to an action on the
tautological bundle defined over the product of Eguchi–Hanson space and the moduli
space of instantons on it, roughly speaking.
The very short section Sect. 2.3 about gauge theory in dimension 7 is again completely
standard.

2.1. G2-structures We now introduce G2-structures and their torsion, following the
treatment in [Joy00].

Definition 2.1 (Definition 10.1.1 in [Joy00]). Let (x1, . . . , x7) be coordinates on R
7.

Write dxi j ...l for the exterior form dxi ∧ dx j ∧ · · · ∧ dxl . Define ϕ0 ∈ �3(R7) by

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356. (2.2)

The subgroup of GL(7,R) preserving ϕ0 is the exceptional Lie group G2. It also fixes
the Euclidean metric g0 = dx2

1 + · · · + dx2
7 , the orientation on R

7, and ∗ϕ0 ∈ �4(R7).
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Definition 2.3. The skew-symmetric bilinear map × : R7 → R
7 defined by

ϕ0(u, v, w) = g0(u × v,w)

for u, v, w ∈ R
7 is called the cross product induced by ϕ.

Theorem 2.4 (Theorem 8.5 in [SW17]). Let ψ = ∗ϕ0. Then �∗(R7)∗ splits into irre-
ducible representations of G2 as follows:

�1V ∗ = �1
7,

�2V ∗ = �2
7 ⊕�2

14,

�3V ∗ = �3
1 ⊕�3

7 ⊕�3
27

and correspondingly for �k(R7)∗ � �7−k(R7)∗ with k = 4, 5, 6. Here, dim �k
d = d

and

�2
7 := {α : ∗(α ∧ ϕ0) = 2α} = {i(u)ϕ0 : u ∈ R

7} � �1
7,

�2
14 := {α : ∗(α ∧ ϕ0) = −α} = {α : α ∧ ψ = 0} � g2,

�3
1 := 〈ϕ0〉,

�3
7 := {i(u)ψ : u ∈ R

7} � �1
7, and

�3
27 := {α : α ∧ ϕ0 = 0 and α ∧ ψ = 0} � Sym0(R

7)

Definition 2.5. Let M be an oriented 7-manifold. A principal subbundle Q of the bundle
of oriented frames with structure group G2 is called a G2-structure. Viewing Q as a set
of linear maps from tangent spaces of M to R

7, there exists a unique ϕ ∈ �3(M) such
that Q identifies ϕ with ϕ0 ∈ �3(R7) at every point.
Such G2-structures are in 1-1 correspondence with 3-forms on M for which there exists
an oriented isomorphism mapping them to ϕ0 at every point. We will therefore also refer
to such 3-forms as G2-structures.

Let M be a manifold with G2-structure ϕ. We call ∇ϕ the torsion of a G2-structure
ϕ ∈ �3(M). Here, ∇ denotes the Levi-Civita induced by ϕ in the following sense: we
have G2 ⊂ SO(7), so ϕ defines a Riemannian metric g on M , which in turn defines
a Levi-Civita connection. As a shorthand, we also use the following notation: write
�(ϕ) = ∗ϕ, where “∗” denotes the Hodge star defined by g. Using this, the following
theorem gives a characterisation of torsion-free G2-manifolds:

Theorem 2.6 (Propositions 10.1.3 and 10.1.5 in [Joy00]). Let M be an oriented 7-
manifold with G2-structure ϕ with induced metric g. The following are equivalent:

(i) Hol(g) ⊆ G2,
(ii) ∇ϕ = 0 on M, where ∇ is the Levi-Civita connection of g, and
(iii) dϕ = 0 and d�(ϕ) = 0 on M.

If these hold then g is Ricci-flat.

The goal of Sect. 3 will be to construct G2-structures that induce metrics with holonomy
equal to G2. A torsion-free G2-structure alone only guarantees holonomy contained in
G2, but in the compact setting a characterisation of manifolds with holonomy equal to
G2 is available:
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Theorem 2.7 (Proposition 10.2.2 and Theorem 10.4.4 in [Joy00]). Let M be a com-
pact oriented manifold with torsion-free G2-structure ϕ and induced metric g. Then
Hol(g) = G2 if and only if π1(M) is finite. In this case the moduli space of metrics with
holonomy G2 on M, up to diffeomorphisms isotopic to the identity, is a smooth manifold
of dimension b3(M).

Note that this theorem makes no statement about the existence of a torsion-free
G2-structure in the first place. Finding a characterisation of manifolds which admit a
torsion-free G2-structure and even the construction of examples remain challenging
problems in the field.
Later on, we will investigate perturbations ofG2-structures and analyse how that changes
their torsion. To this end, we will use the following estimates for the map � defined
before:

Proposition 2.8 (Proposition 10.3.5 in [Joy00] and eqn. (21) of part I in [Joy96]). There
exists ε > 0 and c > 0 such that whenever M is a 7-manifold with G2-structure ϕ

satisfying dϕ = 0, then the following is true. Suppose χ ∈ C∞(�3T ∗M) and |χ | ≤ ε.
Then ϕ + χ is a G2-structure, and

�(ϕ + χ) = ∗ϕ − T (χ)− F(χ), (2.9)

where “∗”denotes theHodge starwith respect to themetric induced byϕ, T : �3(M)→
�4(M) is a linear map (depending on ϕ), and F is a smooth function from the closed
ball of radius ε in �3T ∗M to �4T ∗M with F(0) = 0. Furthermore,

|F(χ)| ≤ c |χ |2 ,
|d(F(χ))| ≤ c

{

|χ |2 ∣∣d∗ϕ∣∣ + |∇χ | |χ |
}

,

[ d(F(χ))]α ≤ c
{

[χ ]α ||χ ||L∞
∣

∣

∣

∣d∗ϕ
∣

∣

∣

∣

L∞ + ||χ ||2L∞ [d∗ϕ]α
+[∇χ ]α ||χ ||L∞ + ||∇χ ||L∞ [χ ]α

}

,

as well as

|∇(F(χ))| ≤ c
{

|χ |2 |∇ϕ| + |∇χ | |χ |
}

,

[∇(F(χ))]C0,α ≤ c
{

[χ ]α ||χ ||L∞ ||∇ϕ||L∞ + ||χ ||2L∞ [∇ϕ]α
+[∇χ ]α ||χ ||L∞ + ||∇χ ||L∞ [χ ]α

}

.

Here, |·| denotes the norm induced by ϕ, ∇ denotes the Levi-Civita connection of the
metric induced by ϕ, and [·]C0,α denotes the unweighted Hölder semi-norm induced by
this metric.

Finally, the landmark result on the existence of torsion-freeG2-structures is the following
theorem. It first appeared in [Joy96, part I, Theorem A], and we present a rewritten version
in analogy with [JK21, Theorem 2.7]:

Theorem 2.10. Let α, K1, K2, K3 be any positive constants. Then there exist ε ∈ (0, 1]
and K4 > 0, such that whenever 0 < t ≤ ε, the following holds.
Let M be a compact oriented 7-manifold, with G2-structure ϕ with induced metric g
satisfying dϕ = 0. Suppose there is a closed 3-form ψ on M such that d∗ϕ = d∗ψ and
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(i) ||ψ ||C0 ≤ K1tα , ||ψ ||L2 ≤ K1t7/2+α , and ||ψ ||L14 ≤ K1t−1/2+α .
(ii) The injectivity radius inj of g satisfies inj ≥ K2t .
(iii) The Riemann curvature tensor Rm of g satisfies ||Rm||C0 ≤ K3t−2.

Then there exists a smooth, torsion-free G2-structure ϕ̃ on M such that ||ϕ̃ − ϕ||C0 ≤
K4tα and [ϕ̃] = [ϕ] in H3(M,R). Here all norms are computed using the original
metric g.

On H with coordinates (y0, y1, y2, y3) we have the three symplectic forms ω1, ω2, ω3
given as

ω0 = dy0 ∧ dy1 + dy2 ∧ dy3,

ω1 = dy0 ∧ dy2 − dy1 ∧ dy3,

ω2 = dy0 ∧ dy3 + dy1 ∧ dy2.

Identify R
7 with coordinates (x1, . . . , x7) with R

3 ⊕ H with coordinates ((x1, x2, x3),

(y1, y2, y3, y4)). Then we have for ϕ0, ∗ϕ0 from Definition 2.1:

ϕ0 = dx123 −
3

∑

i=1

dxi ∧ ωi , ∗ϕ0 = volH−
∑

(i, j,k)=(1,2,3)
and cyclic permutation

ωi ∧ dx jk . (2.11)

This linear algebra statement easily extends to product manifolds in the following sense:
if X is a Hyperkähler 4-manifold, and R

3 is endowed with the Euclidean metric, then
R

3 × X has a G2-structure. The G2-structure is given by the same formula as in the flat
case, namely Eq. (2.11), after replacing (ω1, ω2, ω3)with the triple of parallel symplectic
forms defining the Hyperkähler structure on X . This product G2-structure will be glued
into G2-orbifolds Sect. 3.

2.2. Gauge theory in dimension 4 In this part we briefly review the theory of ASD
instantons on ALE spaces. We follow the treatment of [Nak90]. A treatment of compact
4-manifolds can be found in [DK90].
Let � ⊂ SU(2) be a finite subgroup and let X be an ALE 4-manifold asymptotic
to C

2/�. Even though X is non-compact, some of the results from gauge theory on
compact manifolds carry over to this setting. First, we explain a correspondence between
gauge equivalence classes of connections on X and on its one point compactification
X̂ = X ∪ {∞}. For X̂ , we have:

Proposition 2.12 (p.687 in [Kro89] and Proposition 2.36 in [Wal13b]). Let (X, g) be
an ALE manifold asymptotic to C

2/� and let X̂ = X ∪ {∞} be the one point compact-
ification of X.

1. The topological space X̂ is an orbifold and there exist a neighbourhood V of∞ and
an orbifold chart f : B4/�→ V , where B4 is the unit ball in R

4.
2. The orbifold X̂ carries an orbifold metric ĝ of regularity C3,α for any α ∈ (0, 1)

such that the restriction of ĝ to X ⊂ X̂ is conformally equivalent to g.

Let G be a compact connected Lie group with a faithful representation G → GL(V ).
Let P̂ be an orbifold G-bundle over X̂ and denote its restriction to X by P , i.e. P = P̂|X .
That is, P̂ restricted to V � B4/� from Proposition 2.12 is the trivial bundle B4 × G
together with a fixed lift of the action of � on B4 to B4 × G. Over the point 0 ∈ B4,
this defines a homomorphism ρ : � → G. The following proposition states that this
homomorphism essentially characterises the orbifold bundle over B4 completely.
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Proposition 2.13. There exists a trivialisation κ : P̂|B4 → B4 × G such that � acts
through left multiplication by ρ:

γ · κ−1(b, g) = κ−1(γ · b, ρ(γ )g) for γ ∈ �, (b, g) ∈ B4 × G. (2.14)

Proof. The lift of the action of � to B4 × G can be viewed as an element w ∈
C∞(B4,Hom(�,G)) via γ · (b, g) = (γ · b, w(b)(γ ) · g). The space B4 is connected,
so by Corollary A.9 the conjugacy class of w does not change over B4. That is, there
exists σ ∈ C∞(B4,G) such that lσ rσ−1w ∈ C∞(B4,Hom(�,G)) is constant and
lσ rσ−1w(0) = ρ. Thus σ defines a trivialisation of B4 ×G in which � acts through left
multiplication via ρ. ��
Because of Proposition 2.13 we can fix a trivialisation of P̂ over B4 such that � acts
through left multiplication by ρ. Then denote by A0 any extension of the product con-
nection with respect to this trivialisation to all of P̂ . Different choices of extension will
give rise to the very same spaces in Eq. (2.17). We identify [R,∞)× S3/� � X\K for
some R > 0 big enough and a compact set K ⊂ X . Then the monodromy representation
of A0 restricted to {t} × S3/�, say h : π1({t} × S3/�)→ G, satisfies

h = ρ (2.15)

under the canonical identification � � π1({t} × S3/�). Extend the projection onto the
first component X\K � [R,∞) × S3 → [R,∞) to a smooth positive function r on
all of X . For a non-negative integer l, a weight δ ∈ R, and p ≥ 1 define the weighted
Sobolev norm on the k-forms with values in the adjoint bundle with compact support
�k

0(Ad P) via

||α||L p
l,δ
=

l
∑

j=0

(∫

X
|∇ j

A0
α|pr−(δ− j)p−4 dV

)1/p

, (2.16)

and denote by L p
l,δ(�

k ⊗ Ad P) the completion of �k
0(Ad P) with respect to the norm

||·||L p
l,δ

.

As before, set E = P ×G V and for l ≥ 3 define

A l,δ = {A0 + α : α ∈ L2
l,δ(�

1 ⊗ Ad P)},
G l+1,δ+1

0 = {s ∈ L2
l+1,loc(End(E)) : s(x) ∈ G for all x ∈ G, ||s − Id||L2

l+1,δ+1
<∞},

Gρ = {s ∈ G : sρs−1 = ρ},
G l+1,δ+1 = {s ∈ L2

l+1,loc(End(E)) : s(x) ∈ G for all x ∈ G,

||s − s∞||L2
l+1,δ+1

<∞ for some s∞ ∈ Gρ}.
(2.17)

In the definition of G l+1,δ+1 we regarded s∞ ∈ Gρ as an element in C∞(End(E)) as fol-
lows: consider P̂ over B4 defined by the orbifold chart around∞. Using the trivialisation
from Proposition 2.13, this canonically defines a gauge transformation over B4. (It is
the same to say that we obtain a gauge transformation by parallel transport with respect
to A0.) This gauge transformation is �-equivariant by definition of Gρ and Proposition
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2.13. We then extend it arbitrarily on the rest of X̂ to an element in C∞(End(E)). The
choice of the extension does not matter for the condition ||s − s∞||L2

l+1,δ+1
<∞.

The gauge groups G l+1,δ+1
0 and G l+1,δ+1 both act on A l,δ , and the quotient spaces

A l,δ/G l+1,δ+1
0 and A l,δ/G l+1,δ+1 are called the moduli space of framed connections

and the moduli space of unframed connections, respectively. We can restrict to anti-self-
dual connections:

A l,δ
asd = {A ∈ A l,δ : A is anti-self-dual}

and obtain the moduli space of framed ASD connections Ml,δ := A l,δ
asd/G

l+1,δ+1
0 and the

moduli space of ASD connections A l,δ
asd/G

l+1,δ+1.

The four quotient spaces A l,δ/G l+1,δ+1
0 , A l,δ/G l+1,δ+1, Ml,δ , and A l,δ

asd/G
l+1,δ+1 are

topological spaces. For Ml,δ we will observe explicitly (cf. Theorem 2.23) that it is
metrisable and therefore Hausdorff, and the same argument works for the other three
quotient spaces, cf. [DK90, Lemma 4.2.4].
Moving on to the orbifold, we define:

Definition 2.18. For l ≥ 3 let

A l,orb
asd = {A0 + α : α ∈ L2

l (�
1 ⊗ Ad P̂))},

G l+1,orb = {s ∈ L2
l+1(End V ) : s(x) ∈ G for all x ∈ X̂ , s(∞) ∈ Gρ},

G l+1,orb
0 = {s ∈ G l+1,orb : s(∞) = Id}.

Then G l+1,orb and G l+1,orb
0 both act on A l,orb

asd and we can form the quotient spaces

A l,orb
asd /G l+1,orb and Ml,orb = A l,orb

asd /G l+1,orb
0 . Here, Ml,orb is called the moduli space

of framed ASD connections on X̂ .

We have that these definitions are essentially independent of the chosen regularity l:

Proposition 2.19. For 3 ≤ l1 < l2, the inclusion maps

Ml1,orb ↪→ Ml2,orb, Ml1,−2 ↪→ Ml2,−2

are homeomorphisms.

The proof of Proposition 2.19 works the same as in the compact case, i.e. the proof of
[DK90, Proposition 4.2.16]. The only difference is that in the non-compact case, i.e.
for the claim Ml1,−2 ↪→ Ml2,−2, one has to take the weighted Sobolev norms from Eq.
(2.16). These have their own versions of the Sobolev embedding theorem and, if the
weight is non-positive, the multiplication theorem for Sobolev norms also holds. These
properties of weighted Sobolev norms are proved in [Pac13, Corollary 6.8].

Proposition 2.20. For any A ∈ A l,−2
asd there exists a connection Â ∈ A (P̂) satisfying

Â|P = A.

Proof. Corollary A.14 gives a bundle P ′ over X̂ with connection A′ together with an
injective bundle homomorphism ξ : P → P ′. After fixing a trivialisation of P̂ around
∞, this canonically defines an isomorphism of orbifold G-bundles h : P̂ → P ′, and
Â := h∗(A′) satisfies Â|P = A. ��
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Definition 2.21. Define the map

� : M3,−2 → M3,orb

as follows: for [A0 + a] ∈ M3,−2 let Â ∈ A (P̂) be the induced connection from
Proposition 2.20 and set �([A0 + a]) := [ Â].
Proposition 2.22. The function � from Definition 2.21 is bijective.

Proof. � is injective: let [A0 + a], [A0 + ã] ∈ M3,−2 such that �([A0 + a]) = [ Â] as
well as �([A0 + ã]) = [ Â′]. If [ Â] = [ Â′], then Â′ = s Â for some s ∈ G 4,orb

0 . We
have s(∞) = Id, so (s − Id) = O(|x |) and ∇k

A0
(s − Id) = O(1) for k ∈ {1, 2, 3, 4}.

Here, ∇k
A0

includes terms containing the Levi-Civita connection for the orbifold metric

ĝ on X̂ for k > 1, and |x | denotes the distance from∞ ∈ X̂ in this metric. In particular,
∇k

A0
(s − Id) = O(|x |1−k). We have

∣

∣

∣∇k
A0
(s − Id)

∣

∣

∣

g
= (1 + r2)−k

∣

∣

∣∇k
A0
(s − Id)

∣

∣

∣

ĝ
= O(r−2k |x |1−k) = O(r−1−k),

where g denotes the ALE metric, in the first step we used the definition of ĝ from the
proof of Proposition 2.12 and the fact that we are measuring a tensor with k covariant
indices and 0 contravariant indices. Thus, s ∈ G 4,−1

0 . Therefore, [A0 + a] = [A0 + ã] as
elements in M3,−2, which shows the claim.
� is surjective: Let [A0 + a] ∈ M3,orb, i.e. A0 + a ∈ A 3,orb

asd . Similar to the previous
point we find that ∇k

A0
a = O(r−2−k). By construction �([(A0 + a)|X ]) = [A0 + a],

which proves the claim. ��
Because of Proposition 2.19 we will drop the regularity and decay from the notation of
our moduli spaces most of the time. That is, we will often write M for Ml,δ with any
l ≥ 3 and δ = −2. Likewise for A ,G ,G0,A orb,Morb,G orb, and G orb

0 .
The important results about the local structure of M are the following:

Theorem 2.23 (Theorem 2.4 and Proposition 5.1 in [Nak90]). M is a nonsingular C∞-
manifold and for [A] ∈ M its tangent space is isomorphic to

H1
A,−2 := {α ∈ L2

l,−2(�
1 ⊗ Ad P) : δA(α) = 0},

where

δA : �1(Ad P)→ (�0 ⊕�2
+)(Ad P)

α �→ (d∗Aα, d+
Aα).

(2.24)

For the linear operator δA we have the following analytic result:

Proposition 2.25 (Proposition 5.10 in [Wal13a]). Let A ∈ A (E) be a finite energy ASD
instanton on E. Then the following holds:

1. If a ∈ Ker δA decays to zero at infinity, i.e., limr→∞ supρ(x)=r |a|(x) = 0, then
∇k

Aa = O(|π |−3−k) for all k ≥ 0.
2. If (ξ, ω) ∈ Ker δ∗A decays to zero at infinity, then (ξ, ω) = 0.
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The Hyperkähler triple of X acts on the 1-form part of �1(Ad P). It is checked in
[Ito88, Section 4] together with [Ito85, Proposition 2.4] that this action restricts to H1

A,−2
for all [A] ∈ M . We thus have a triple of complex structures on M . The following theorem
states that this defines a Hyperkähler structure with respect to the standard metric on M :

Theorem 2.26 (Theorem 2.6 and Proposition 5.1 in [Nak90]). The metric gM defined
by

gM (α, β) =
∫

X
g(α, β) volX for α, β ∈ H1

A,−2

and the Hyperkähler triple defined by acting with the Hyperkähler triple of X on the
1-form part of �1(Ad P) is well-defined on M and defines a Hyperkähler structure on
M.

Theorem 2.27 (Theorem 2.47 in [Wal13b]). Let ρ : �→ G be a homomorphism, A0 a
connection on a bundle P that is flat at infinity as in Proposition 2.13 whose holonomy
representation is equal to ρ in the sense of Eq. (2.15). Let δ ∈ (−3,−1) and A = A0 +α

for some α ∈ L2
1,δ(�

1 ⊗ Ad P). Then the L2 index of δA, defined as

dim{a ∈ L2(�1 ⊗ Ad P) ∩ C∞(�1 ⊗ Ad P) : δA(a) = 0}
− dim{a ∈ L2((�0 ⊕�2

+)⊗ Ad P) ∩ C∞((�0 ⊕�2
+)⊗ Ad P) : δ∗A(a) = 0},

is given by

ind δA = −2
∫

X
p1(Ad P) +

2

|�|
∑

g∈�\{e}

χg(g)− dim g

2− tr g
. (2.28)

Here p1(Ad P) is the Chern-Weil representative of the first Pontrjagin class of P and χg

is the character of g acting on g, the Lie algebra associated with G, via ρ, and tr g is the
trace of g acting on g. Moreover, if A is an ASD instanton, then ind δA = dim Ker δA =
dim M.

We will now explain one example of an ASD-instanton on Eguchi–Hanson space that
will be needed later. To this end, we recall the construction of it as a Hyperkähler quotient
as explained in [GRG97]. Let M = H

2 with quaternionic coordinates qa , a ∈ {1, 2},
and let U(1) act on M via

qa �→ qae
it , t ∈ (0, 2π ]. (2.29)

A Hyperkähler moment map for this action is given by

μ :M→ Im(H) � R
3 ⊗ u(1)

(q1, q2) �→ 1

2

∑

a∈{1,2}
qaiqa .

(2.30)

Let ζ = i
2 ∈ Im(H). The group U(1) acts freely on μ−1(ζ ) and the general theory

of Hyperkähler reduction gives rise to a Hyperkähler structure on the four-dimensional
manifold M///U(1) := μ−1(ζ )/U(1).

Definition 2.31. The Hyperkähler space XEH = M///U(1) is called Eguchi–Hanson
space.
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From this, we get our first example of an ASD-instanton on Eguchi–Hanson space:

Proposition 2.32 (Section 2 in [GN92]). The U(1)-bundle R := μ−1(i/2)→ XEH =
μ−1(i/2)/U(1) admits a non-flat finite energy ASD instanton A asymptotic to the rep-
resentation ρ : Z2 → U(1) determined by ρ(−1) = −1 in the sense of Eq. (2.15).

There exists an ADHM-type construction of ASD-instantons on ALE spaces which
generalises this example, cf. [KN90], but we will not need this here.
An additional property of R that we will need later is the following:

Proposition 2.33. There exists a lift of the action of the holomorphic isometry group
U(2)/{±1} of XEH toR.

Proof. We show in Proposition A.1 that the holomorphic isometry group U(2)/{±1} is
realised as an action of U(2)/{±1} on μ−1(i/2) that commutes with the action of U(1)
on μ−1(i/2). The action of U(2)/{±1} on μ−1(i/2) is the desired lift of the action of
U(2)/{±1} on XEH. ��
Remark 2.34. We can apply Theorem 2.27 to the U(1)-bundle over XEH defined before
to find that it is rigid. As Ad R has rank 1, we have that p1(AdR) = c2(Ad RC) = 0,
and plugging this into the index formula from Theorem 2.27 proves the claim.

Remark 2.35. On simply connected compact manifolds it is the case that any U(1)-
bundle admits an ASD-instanton that is unique up to the action of the gauge group. This
is a consequence of the Hodge theorem. On non-compact manifolds a variation of the
Hodge theorem for L2-forms holds, see [Loc87, Example 0.15], and can be used to give
an alternative proof of Remark 2.34 without the use of the index formula.

Before ending the section we will state two results about universal bundles that will
be needed later. The following proposition is proved in [DK90, Proposition 5.2.17] for
compact manifolds, but the proof carries over to the ALE setting with small alterations.

Proposition 2.36. There exist

• a G-bundle˜P over M × X̂ with a natural action of Gρ � G /G0 on˜P covering the
action of Gρ on M,
• a connection ˜A ∈ A (˜P) that is invariant under the action of Gρ � G /G0, and
• for each choice of φ ∈ Iso�(G, P∞) a canonical isomorphism of G-bundles with �

left action φ :˜P|M×{∞} → G × M

satisfying:

• for any element [A] ∈ M there exists an isomorphism ˜P|{[A]}×X̂ � P̂ such that

under this isomorphism ˜A|{[A]}×X and A agree up to the action of G0.
• if we decompose the curvature of ˜A over M × X according to the bi-grading on
�∗T ∗(M × X) induced by T ∗(M × X) = π∗1 T ∗M ⊕ π∗2 T ∗X, then its components
satisfy the following:
– F1,1

˜A
∈ �(Hom(π∗1 T ∗M, π∗2 T ∗X ⊗ Ad P)) at ([A], x) is the evaluation of a ∈

T[A]M at x,
– F0,2

˜A
∈ �(π∗2 �−(X)∗ ⊗Ad P), where�− is defined using the ALE metric on X,

• φ∗Aproduct = ˜A|M×{∞}, where Aproduct ∈ A (G × M) denotes the product connec-
tion.
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By Proposition A.1, the group of holomorphic isometries acting on XEH is U(2)/{±1}.
This induces a non-effective action of U(2) on X̂EH by demanding that each group
element fixes ∞ ∈ X̂EH. Then U(2) acts from the left on M (and equally Morb) as
follows: U(2) is connected, so (u−1)∗E and E are homotopic bundles and in particular
isomorphic. Different choices of isomorphism give rise to gauge equivalent connections,
so [(u−1)∗A] ∈ M is well-defined.
Later on (cf. Definition 4.9) we will need the following assumption:

Assumption 2.37. The action of U(2) on M × X̂EH can be lifted to an action on ˜P that
preserves ˜A.

In the examples constructed in Sect. 5 this assumption will be satisfied because of the
following proposition:

Proposition 2.38. Let ˜P → M × X̂EH be the tautological bundle with tautological
connection ˜A from Proposition 2.36.
If the action of U(2) on X̂EH can be lifted to an action on P̂, then the action of U(2) on
M × X̂EH can be lifted to an action on˜P. If it exists, this lift can be chosen to preserve
˜A.

Proof. First, assume that the action of U(2) on X̂EH can be lifted to an action on P̂ . This
is equivalent to saying that for all g ∈ G there exists a bundle isomorphism ξg : P̂ → P̂
covering g : X̂EH → X̂EH. The bundle ˜P is defined as ˜P = π∗2 P̂/G orb

0 , where π2 :
A orb

asd × X̂EH → X̂EH is the projection onto the second factor. Let ([A], x) ∈ M × X̂EH

and [u] ∈ ˜P([A],x) where u ∈
(

π∗2 P̂
)

(A,x)
� P̂x . We define κg : ˜P → ˜P covering

g : M × X̂EH → M × X̂EH via κg[u] := [ξg(u)]. The check that this is well-defined
and that this lift preserves ˜A is straightforward, using the definition of ˜A from [DK90,
Section 5.2.3]. ��
2.3. Gauge theory on G2-manifolds

Definition 2.39. Let (Y, ϕ) be a G2-manifold, ψ = ∗ϕϕ, and E be a principal bundle
over Y . A connection A ∈ A (E) is called a G2-instanton, if FA ∈ �(�2

14⊗Ad E), i.e.
(by Theorem 2.4)

FA ∧ ψ = 0, (2.40)

where the wedge product is taken in the 2-form part of �2 ⊗ Ad E .

Example 2.41. Let A be an ASD instanton on a bundle E over a Hyperkähler 4-fold X .
Denote by pX : R

3 × X → X the projection onto the second factor. Then R
3 × X

carries the torsion-free G2-structure ϕ from Eq. (2.11), and p∗X A is a G2-instanton on
the bundle p∗X E with respect to this G2-structure. To see this, let ω1, ω2, ω3 ∈ �2(X)

denote a Hyperkähler triple on X . These 2-forms are self-dual, thus A being ASD is
equivalent to FA ∧ωi = 0 for i ∈ {1, 2, 3}. Recall that for the product G2-structure, we
have that

∗ϕ = ψ = 1

2
ω2

1 − dx12 ∧ ω3 − dx23 ∧ ω1 − dx31 ∧ ω2

and therefore

Fp∗X A ∧ ψ = p∗X (FA) ∧ ψ = 0.
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The linearisation of the G2-instanton equation Eq. (2.40) is not elliptic. This problem is
overcome in the following proposition:

Lemma 2.42 (Proposition 1.98 in [Wal13b]). Let (Y, ϕ) be a compact G2-manifold,
ψ = ∗ϕϕ, and E be a principal bundle over Y , and A ∈ A (E). Then A is a G2-
instanton if and only if there exists ξ ∈ �0(Y,Ad E) such that

∗(FA ∧ ψ) + dAξ = 0. (2.43)

Adding the Coulomb gauge condition to this, we consider for a fixed connection
A ∈ A (E), ξ ∈ �0(Y,Ad E), and a ∈ �1(Y,Ad E) the system

∗(FA+a ∧ ψ) + dA+aξ = 0

d∗Aa = 0.
(2.44)

Here, every solution (ξ, a) defines the G2-instanton A + a which is in Coulomb gauge
with respect to A. A computation in coordinates shows that the linearisation of Eq. (2.44)
is an elliptic operator:

Proposition 2.45. The linearisation of Eq. (2.44) is

L A : (�0 ⊕�1)(Y,Ad E)→ (�0 ⊕�1)(Y,Ad E)
(

ξ

a

)

�→
(

0 d∗A
dA ∗(ψ ∧ dA)

)(

ξ

a

)

(2.46)

which is a self-adjoint elliptic operator if d∗ϕ = 0.

Remark 2.47. A coordinate-free proof for the ellipticity of operator LA is given in [RC98,
Section 3, Lemma 4].

3. Resolutions of G2-orbifolds

In this section we review the two manifold constructions featuring in this article: the
Generalised Kummer Construction from [Joy96] and its generalisation from [JK21].
The most important notations are collected in Table 2.

3.1. Torsion-free G2-structures on resolutions of T 7/� In the two articles [Joy96],
Joyce constructed the first compact examples of manifolds with holonomy equal to G2.
One starts with the flat 7-torus T 7, which carries the flat G2-structure ϕ0. A quotient of
the torus by a finite group of maps � preserving the G2-structure still carries a flat G2-
structure, but has singularities. The singularities are modelled on R

3 × (C2/{±1}) and
admit a resolution R

3 × XEH. Gluing this resolution into T 7/�, we have two different
G2-structures near the resolution locus: the flat G2-structure ϕ0 and the product G2-
structure ϕP

t which depends on one real parameter that is proportional to the size of the
unique minimal 2-sphere in XEH. Gluing ϕ0 and ϕP

t , one obtains a 1-parameter family
of smooth manifolds Nt and G2-structures ϕt ∈ �3(N ) depending on a single real
parameter t ∈ (0, 1). While ϕ0 and ϕP

t are torsion-free, the glued structure ϕt is not,
because of the error introduced by the gluing. However, one can check that

∣

∣

∣

∣

∣

∣ϕ
P
t − ϕt

∣

∣

∣

∣

∣

∣

Ck
≤ ct4 (3.1)
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Table 1. Most important notation from Sect. 3

Notation Description References

(T 7/�, ϕ0), (Y/〈ι〉, ϕ) G2-orbifolds

ϕP
t Product structure on glued in part Eqs. (3.1) and (3.14)
Nt Resolution of G2-orbifold Theorem 3.2 and Definition 3.27
ϕt Small torsion G2-structure on resolution of T 7/�

ϕ̃t Torsion-free G2-structure on resolution of T 7/�
ν Normal bundle of fix(ι)
ϕν
t G2-structure on ν Section 3.2.2

ϕ̃ν
t Improvement of ϕν

t Section 3.2.2
P Eguchi–Hanson bundle glued into orbifold Eq. (3.11)
ϕ̃P
t Improvement of ϕP

t Proposition 3.15
ϕN
t Small torsion G2-structure on Nt Eq. (3.30)

ϕ̃N
t Torsion-free G2-structure on Nt Eq. (3.33)

η, ζ, ξ1,2, ξ0,3, τ1,1, Correction terms of secondary importance Propositions 3.8,3.15 and 3.19
χ1,3, θ3,1, θ2,2, v1,2, and Theorem 3.26
α0,2, α2,0, β0,3, β2,1

for any k and a constant c > 0 independent of t . This implies that for small t , Theorem
2.10 can be applied and one obtains a torsion-free G2-structure ϕ̃t ∈ �3(N ) satisfying

∣

∣

∣

∣ϕ̃t − ϕt
∣

∣

∣

∣

C0 ≤ ct1/2.

We need an improved version of this estimate using weighted Hölder norms denoted by
||·||

C2,α/2
β;t

from [Pla20]. At this point, we will not reproduce the definition of these norms

from the reference, because we will define more general norms in Definition 4.19.

Theorem 3.2 (Theorem 4.58 in [Pla20]). Let Nt be the resolution of T 7/� and ϕt ∈
�3(Nt ) the G2-structure with small torsion from Sect. 3.1. There exists c > 0 indepen-
dent of t such that the following is true: for t small enough, there exists ηt ∈ �2(Nt )

such that ϕ̃ = ϕt + dηt is a torsion-free G2-structure, and ηt satisfies

∣

∣

∣

∣ηt
∣

∣

∣

∣

C2,α/2
β;t
≤ ct7/2−β.

In particular,

∣

∣

∣

∣ϕ̃ − ϕt
∣

∣

∣

∣

L∞ ≤ ct5/2 and
∣

∣

∣

∣ϕ̃ − ϕt
∣

∣

∣

∣

C0,α/2

≤ ct5/2−α/2 as well as
∣

∣

∣

∣ϕ̃ − ϕt
∣

∣

∣

∣

C1,α/2 ≤ ct3/2−α/2.

3.2. Torsion-free G2-structures on Joyce–Karigiannis manifolds In [JK21], the au-
thors constructed new examples of compact manifolds with holonomy G2. They first
used a gluing procedure to construct a G2-structure with small torsion and then applied
Theorem 2.10 to perturb this G2-structure into a torsion-free G2-structure.
The main difference to Joyce’s original construction is the following: if one uses the
cutoff procedure from the T 7/� case in the new setting, one produces a G2-structure
that does not satisfy the necessary estimates to apply Theorem 2.10. The authors of
[JK21] overcome this problem by constructing a G2-structure with even smaller torsion,
to which Theorem 2.10 can be applied.
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3.2.1. Ingredients for the construction Let Y be a compact manifold endowed with a
torsion-free G2-structure ϕ. Write g for the metric induced by ϕ. Let ι : Y → Y be a
G2-involution, i.e. satisfying ι2 = Id, ι �= Id, ι∗ϕ = ϕ. We then have:

Proposition 3.3 (Proposition 2.13 in [JK21]). Let L = fix(ι) and assume L �= ∅. Then
L is a smooth, orientable 3-dimensional compact submanifold of Y which is totally
geodesic, and, with respect to a canonical orientation, is associative.

Assumption 3.4. We assume that L is nonempty, and we assume we are given a closed,
coclosed, nowhere vanishing 1-form λ on L .

Such a 1-form need not exist, and cases in which its existence can be guaranteed are
discussed in [JK21, Section 7.1].

3.2.2. G2-structures on the normal bundle ν of L The metric defined by ϕ defines a
splitting

TY |L � ν ⊕ T L , (3.5)

which is orthogonal with respect to g. Write gL for the metric on L induced by g and
g|L = hν ⊕ gL . Write ˜∇ν for some connection on ν. For now, we may think of ˜∇ν

as being the restriction of the Levi-Civita connection of g to ν → L , but later we will
need the freedom to choose another connection. We write elements in ν as (x, α), where
x ∈ L , α ∈ νx . For R > 0 let

UR = {(x, α) ∈ ν : |α|hν < R}.
Write π : UR → L for the projection (x, α) �→ x . We will make use of a map
ϒ : UR → Y satisfying the following:

1. ϒ is a diffeomorphism onto its image,
2. ϒ(x, 0) = x for x ∈ L ,
3. ϒ(x,−α) = ι ◦ϒ(x, α) for (x, α) ∈ UR ,
4. the induced pushforward ϒ∗ : TUR → TY restricted to the zero section of TUR is

the identity map on Tx L ⊕ νx .

For example, ϒ = exp would satisfy these four conditions for small R. But later on we
require ϒ to satisfy an extra condition that exp need not satisfy.
Write (·t) : ν → ν for the dilation map (x, α) �→ (x, tα), and for t �= 0, define
ϒt = ϒ ◦ (·t) : U|t |−1R → Y .

The connection ˜∇ν defines a splitting

T ν = V ⊕ H, where V � π∗(ν) and H � π∗(T L), (3.6)

where V and H are the vertical and horizontal subbundles of the connection. Combining
Eqs. (3.5) and (3.6), we have that T ν � π∗(TY |L). Denote by

ϕν ∈ �3(ν), ψν ∈ �4(ν), and gν ∈ S2(ν) (3.7)

the structures obtained from ϕ, ψ , and g via this isomorphism and for t > 0 write
ϕν
t = (·t)∗ϕν , as well as ψν

t = (·t)∗ψν , and gνt = (·t)∗gν . Note that this definition
implicitly depends on the choice of ˜∇ν . The main result of [JK21, Section 3] is then:
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Proposition 3.8. There exist R > 0, a connection ˜∇ν on ν and a map ϒ : UR → M
satisfying

1. ϒ is a diffeomorphism onto its image,
2. ϒ(x, 0) = x for x ∈ L,
3. ϒ(x,−α) = ι ◦ ϒ(x, α) for (x, α) ∈ UR,
4. the induced pushforward ϒ∗ : TUR → TY restricted to the zero section of TUR is

the identity map on Tx L ⊕ νx ,

and for t > 0 a closed G2-structure ϕ̃ν
t on ν/{±1} and closed 4-form ˜ψν

t ∈ �4(ν/{±1})
satisfying the following properties: first,

ϕν
t − ϕ̃ν

t = O(t2r2) and ψν
t − ˜ψν

t = O(t2r2). (3.9)

Second, there exist η ∈ �2(ν), ζ ∈ �3(ν) such that

|η|gν = O(r3) and | dη|gν =
∣

∣ϒ∗ϕ − ϕ̃ν
1 |UR

∣

∣

gν = O(r2),

|ζ |gν = O(r3) and | dζ |gν =
∣

∣ϒ∗ψ − ˜ψν
1 |UR

∣

∣

gν = O(r2).

3.2.3. G2-structures on the resolution P of ν/{±1} TheG2-structureϕ ∈ �3(Y )defines
for all x ∈ Y a cross product× : TxY × TxY → TxY as in Definition 2.3. We then have
a complex structure I ∈ End(ν) given by

I (V ) = λ

|λ| × V for V ∈ νx , x ∈ L . (3.10)

Recall the metric hν on ν defined by g|L = hν ⊕ gL , cf. Section 3.2.2. Then I and hν

together define a U(2)-reduction of the frame bundle of ν. Denote by XEH the Eguchi–
Hanson space with Hyperkähler triple ω̃1, ω̃2, ω̃3. Denote by ρ : XEH → C

2/{±1} the
blowup map of the blowup with respect to the complex structure induced by ω̃1 and let

P = Fr×U(2)XEH. (3.11)

Denote by σ : P → L the projection of this bundle. Analogously, we have

ν/{±1} = Fr×U(2)C
2/{±1}.

Let L ′ ⊂ L be a nonempty, open set on which we can extend e1 := λ
|λ| ∈ T ∗(L ′) to

an orthonormal basis (e1, e2, e3). Then there exist ω̂I , ω̂J , ω̂K ∈ �2((ν/{±1})|L ′) such
that ϕν from Eq. (3.7) has the form

ϕν = e1 ∧ e2 ∧ e3 − ω̂I ∧ e1 − ω̂J ∧ e2 − ω̂K ∧ e3. (3.12)

We define ω̌I , ω̌J , ω̌K ∈ �2(P|L ′) as follows: For x ∈ L ′, let f ∈ Frx such that
f : (ν/{±1})x → C

2/{±1} satisfies

f ∗(ω1, ω2, ω3) = (ω̂I |νx , ω̂J |νx , ω̂K |νx ),
where (ω1, ω2, ω3) denotes the flat Hyperkähler triple on C

2/{±1}. This choice of f
defines isomorphisms of complex surfaces Px � XEH and (ν/{±1})x � C

2/{±1}. Let
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ω̌I , ω̌J , ω̌K ∈ �2(Px ) be the pullback of ω̃1, ω̃2, ω̃3 ∈ �2(XEH) under this isomor-
phism. This is independent of the choice of f , and therefore defines ω̌I , ω̌J , ω̌K ∈
�2(Px ). The following diagram sums up the situation:

(Px , ω̌I |Px , ω̌J |Px , ω̌K |Px ) (XEH, ω̃1, ω̃2, ω̃3)

(νx/{±1}, ω̂I |νx/{±1}, ω̂J |νx/{±1}, ω̂K |νx/{±1}) (C2/{±1}, ω1, ω2, ω3)

�

ρ ρ

�
(3.13)

Here, by abuse of notation we denoted the map Px → νx/{±1}which makes the diagram
commutative also by ρ. Horizontal arrows pull Hyperkähler triples back to one another,
Hyperkähler triples connected by vertical arrows are asymptotically close to each other.
A complicated point is the actual definition of ω̌I , ω̌J , ω̌K as 2-forms on P|L ′ . Equation
(3.13) tells us what they look like fibrewise. To make sense of them as global objects on
P , one needs to choose a connection on P . In [JK21], the horizontal subspaces H̆ were
defined to this end which allows us to decompose forms on P into vertical and horizontal
components, much like for forms on ν. There are then unique vertical 2-forms which
restrict to ω̌I |Px , ω̌J |Px , ω̌K |Px on every fibre.
We are now ready to define ϕP

t ∈ �3(P|L ′), ψ P
t ∈ �4(P|L ′) via

ϕP
t := ϕ̌0,3 + t2ϕ̌2,1

:= σ ∗(e1 ∧ e2 ∧ e3)− t2
(

σ ∗(e1) ∧ ω̌I − σ ∗(e2) ∧ ω̌J − σ ∗(e3) ∧ ω̌K
)

,

ψ P
t := t4ψ̌4,0 + t2ψ̌2,2

:= 1

2
ω̌I ∧ ω̌I − σ ∗(e2 ∧ e3) ∧ ω̌I − σ ∗(e3 ∧ e1) ∧ ω̌J − σ ∗(e1 ∧ e2) ∧ ω̌K .

(3.14)

These expressions are independent of the choice of (e2, e3), and therefore define forms
ϕP
t ∈ �3(P), ψ P

t ∈ �4(P), not just forms over L ′ ⊂ L . Let also gP
t denote the metric

induced by ϕP
t .

As in the previous section, we add terms to ϕP
t and ψ P

t to define closed forms on P ,
and we have the following control over how they are asymptotic to forms on ν/{±1}:
Proposition 3.15 (Section 4.5 in [JK21]).There exist ξ1,2, ξ0,3 ∈ �3(P), τ1,1 ∈ �2({x ∈
P : ř(x) > 1), such that

ϕ̃P
t := ϕP

t + t2ξ1,2 + t2ξ0,3

is closed and satisfies

ϕ̃P
t = ρ∗ϕ̃ν

t + t2 dτ1,1 (3.16)

where ř > 1. These forms satisfy the following estimates:

∣

∣

∣∇k(t2ξ1,2)

∣

∣

∣

gPt
=

{

O(t1−k), ř ≤ 1,
O(t1−kř−3−k), ř > 1,

∣

∣

∣∇k(t2ξ0,3)

∣

∣

∣

gPt
=

{

O(t2−k), ř ≤ 1,
O(t2−kř2−k), ř > 1,

(3.17)
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∣

∣

∣∇k(t2τ1,1)

∣

∣

∣

gPt
= O(t1−kř−3−k). (3.18)

Proposition 3.19 (Section 4.5 in [JK21]). There exist χ1,3, θ3,1, θ2,2 ∈ �4(P), v1,2 ∈
�3({x ∈ P : ř(x) > 1), such that

˜ψ P
t := ψ P

t + t2χ1,3 + t4θ3,1 + t4θ2,2 (3.20)

is closed and satisfies

˜ψ P
t = ρ∗˜ψν

t + t2 dv1,2 (3.21)

where ř > 1. These forms satisfy the following estimates:

∣

∣

∣∇k(t2χ1,3)

∣

∣

∣

gPt
:=

{

O(t1−k), ř ≤ 1,
O(t1−kř−3−k), ř > 1,

(3.22)

∣

∣

∣∇k(t4θ3,1)

∣

∣

∣

gPt
:=

{

O(t1−k), ř ≤ 1,
0, ř > 1,

(3.23)

∣

∣

∣∇k(t4θ2,2)

∣

∣

∣

gPt
:=

{

O(t2−k), ř ≤ 1,
O(t2−kř2−k), ř > 1,

(3.24)

∣

∣

∣∇k(t2v1,2)

∣

∣

∣

gPt
:= O(t1−kř−3−k). (3.25)

3.2.4. Correcting for the leading-order errors on P Armed with the G2-structures ϕ

on Y and ϕ̃P
t on P , we could define a glued together G2-structure just as is done in the

case of resolutions of T 7/�. However, in this case it would turn out that the torsion of
the glued together G2-structure is too big and Theorem 2.10 cannot be applied. We thus
make use of the following correction terms which will make the torsion of the glued
together G2-structure small enough.

Theorem 3.26 (Theorem 5.1 in [JK21]). There exist α0,2, α2,0 ∈ �2(P), β0,3, β2,1 ∈
�3(P), satisfying for all t > 0 the equation

(DϕP
t
�)

(

t2[dα0,2]1,2 + t4[dα2,0]3,0 + t2ξ1,2

)

= t2 dβ0,3 + t4[dβ2,1]3,1 + t2χ1,3 + t4θ3,1.

Moreover, for γ > 0 sufficiently small and for all k ≥ 0, these forms satisfy the following
estimates

∣

∣

∣∇k(t2α0,2)

∣

∣

∣

gPt
=

{

O(t2−k), ř ≤ 1,
O(t2−kř−2−k+γ ), ř ≥ 1,

∣

∣

∣∇k(t4α2,0)

∣

∣

∣

gPt
=

{

O(t2−k), ř ≤ 1,
O(t2−kř−2−k+γ ), ř ≥ 1,

∣

∣

∣∇k(t2β0, 3)
∣

∣

∣

gPt
=

{

O(t2−k), ř ≤ 1,
O(t2−kř−2−k+γ ), ř ≥ 1,

∣

∣

∣∇k(t4β2, 1)
∣

∣

∣

gPt
=

{

O(t2−k), ř ≤ 1,
O(t2−kř−2−k+γ ), ř ≥ 1,
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3.2.5. G2-structures on the resolution Nt of Y/〈ι〉 We are now ready to glue together
P and Y/〈ι〉 to a manifold, and define a G2-structure with small torsion on it.

Definition 3.27. Define

Nt :=
[

ρ−1(Ut−1R/{±1})
∐

(Y \ L)/〈ι〉
]

/ ∼, (3.28)

where x ∼ ϒt ◦ ρ(x) for x ∈ ρ−1(Ut−1R/{±1}).
Definition 3.29. Let a : [0,∞)→ R be a smooth function with a(x) = 0 for x ∈ [0, 1],
and a(x) = 1 ∈ [2,∞). Define then

ϕN
t =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕ̃P
t + d[t2α0,2 + t4α2,0], if ř ≤ t−1/9,

ϕ̃P
t + d[t2α0,2 + t4α2,0 + a(t1/9ř) · ϒ∗η], if t−1/9 ≤ ř ≤ 2t−1/9,

ϕ̃P
t + d[t2α0,2 + t4α2,0 + ϒ∗η], if 2t−1/9 ≤ ř ≤ t−4/5,

ϕ̃ν
t + d[(1− a(t4/5ř))(t2τ1,1 + t2α0,2 + t4α2,0) + ϒ∗η], if t−4/5 ≤ ř ≤ 2t−4/5,

ϕ, elsewhere,
(3.30)

ψN
t =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˜ψ P
t + d[t2β0,3 + t4β2,1], if ř ≤ t−1/9,

˜ψ P
t + d[t2β0,3 + t4β2,1 + a(t1/9ř) · ϒ∗ζ ], if t−1/9 ≤ ř ≤ 2t−1/9,

˜ψ P
t + d[t2β0,3 + t4β2,1 + ϒ∗ζ ], if 2t−1/9 ≤ ř ≤ t−4/5,

˜ψν
t + d[(1− a(t4/5ř))(t2v1,2 + t2β0,3 + t4β2,1) + ϒ∗ζ ], if t−4/5 ≤ ř ≤ 2t−4/5,

ψ, elsewhere,
(3.31)

The important properties of these forms are that ϕN
t and ψN

t are closed, and that ψN
t

is close to being the Hodge dual of ϕN
t . That is, the 3-form ϕN

t − ∗ϕN
t
ψN
t satisfies the

assumption of Theorem 2.10 and ϕN
t can be perturbed to a torsion-free G2-structure.

This yields the following theorem:

Theorem 3.32 (Theorem 6.4 in [JK21]). For small t there exists ηt ∈ �2(Nt ) such that
ϕ̃N
t := ϕN

t + dηt is a torsion-free G2-structure, and
∣

∣

∣

∣

∣

∣ϕ̃
N
t − ϕN

t

∣

∣

∣

∣

∣

∣

L∞
≤ ct1/18 (3.33)

for some constant c > 0 independent of t .

4. The Gluing Construction for Instantons

We now turn to constructing G2-instantons on the resolutions of Y/〈ι〉 explained in
the previous section. As is common in gluing constructions in differential geometry, we
obtain this result by following the three step procedure of (1) constructing an approximate
solution, (2) estimating the linearisation of the equation to be solved, (3) perturbing the
approximate solution to a genuine solution.
This method was first employed in [Tau82] for the construction of anti-self-dual con-
nections over 4-manifolds. A similar but simpler proof of the same results is given in
[DK90, Section 7.2].
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In Sect. 4.1 we explain how a section s of a moduli bundle gives rise to a connection
s(A) on the bundle of Eguchi–Hanson spaces P from Eq. (3.11), cf. Theorem 4.15. If
the topological compatibility condition Assumption 4.1 is satisfied, we can glue s(A) to
a G2-instanton θ on the orbifold Y/〈ι〉. The resulting connection At is close to being a
G2-instanton and in Sect. 4.2 we will quantify this. We will see that this error is small in
a suitable norm if s satisfies a first order partial differential equation, the Fueter equation.
Section 4.3 is the difficult part of the analysis, where we give an estimate for the inverse
of the linearised instanton operator. In Sects. 4.4 and 4.5 we complete the argument and
construct the perturbation that turns the approximate solution from before into a genuine
solution to the G2-instanton equation.
Throughout we will use the notation from the previous section. That is, Y is a G2-
manifold with G2-involution ι : Y → Y , and Nt is the resolution of Y/〈ι〉. The resolution
Nt is obtained by gluing in the Eguchi–Hanson bundle P over the singular locus L =
fix(ι). On P we have the G2-structures ϕP

t and ϕ̃P
t , and on Nt we have the G2-structure

ϕN
t with small torsion and the torsion-free G2-structure ϕ̃N

t . In the case that Nt is a
resolution of T 7/�, we also defined the G2-structures ϕt and ϕ̃t . These two will also be
denoted by ϕN

t and ϕ̃N
t respectively and the special case of T 7/� will need no special

treatment most of the time. The exception is the pre-gluing estimate for resolutions of
T 7/�, Corollary 4.58, which is better than in the general case. See Table 2 for a reminder
of the most important notation from the previous section.
In the case of resolutions of T 7/�, our main result is Theorem 4.134, in the general case
it is Theorem 4.133. We will use both theorems in Sect. 5 to construct new examples of
G2-instantons on the resolution of T 7/� and the resolution of (T 3 × K3)/Z2

2.

4.1. The pregluing construction

4.1.1. Moduli bundles of ASD-instantons Let π : E0 → Y/〈ι〉 be an orbifold G-bundle
with connection θ , i.e. a G-bundle with connection over Y together with a lift ι̂ of
ι such that ι̂2 = Id and such that ι̂∗θ = θ . As before, fix(ι) = L and we now set
E∞ = E0|L , which is a G-bundle with Z2-action, and A∞ = θ |E∞ . For each connected
component of L choose a framed moduli space of ASD instantons M on a bundle E
over Eguchi–Hanson space XEH, cf. Section 2.2. The homomorphism ρ : Z2 → G used
in the definition of M defines a Z2 left action on G. We then ask for E0 and M to be
compatible in the following sense:

Assumption 4.1. For all l ∈ L there exists an isomorphism of manifolds with G right
action and Z2 left action φ : E∞|l → G.

Proposition 4.2. Let Gρ ⊂ G be the stabiliser of ρ as in Eq. (2.17). Then there exists a
Gρ-reduction Ě of E∞ such that A∞ reduces to Ě.

Proof. As before, let ρ : Z2 → G be the representation that defines the asymptotic limit
for connections in M . Define

Ě := {u ∈ E∞ : u · ρ(−1) = ι̂(u)}. (4.3)

To see that this is a Gρ-bundle, fix l ∈ L and let φ : E∞|l → G be the isomorphism
from Assumption 4.1. Then u ∈ Ě |l if and only if φ(u) ∈ Gρ .
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Table 2. Most important notation from Sect. 4

Notation Description References

E0 Orbifold bundle over Y/〈ι〉
θ Connection on E0
(E∞, A∞) = (E0, θ)|fix(ι)
Ě Reduction of E∞ Eq. (4.3)
M Moduli space of instantons on XEH Section 2.2
M Moduli bundle over fix(ι) Eq. (4.7)
F Fueter equation Eq. (4.14)
s Section of M Section 4.1.2
s(E) Bundle on P induced by s Theorem 4.15
s(A) Connection on A induced by s Theorem 4.15
||·||

Ck,α
l,δ;t (U )

Weighted Hölder norm on Nt Definition 4.19

X̂EH One point compactification of XEH Proposition 2.12
P̂ X̂EH-bundle over fix(ι) Theorem 4.15
A∞ A∞ extended to a neighbourhood of points at infinity in P̂ Definition 4.23
A∞ A∞ extended to a neighbourhood Definition 4.23

of fix(ι) in Y/〈ι〉 Eq. (4.31)
σ, b Terms for comparing θ , s(A) Eq. (4.31)
At Glued connection on Nt Proposition 4.28
Lt = L At , linearised instanton equation Eq. (2.44)
et Pregluing error Eq. (4.62)
Qt Quadratic part of instanton equation Eq. (4.62)
ιt Maps sections of VM to 1-forms on Nt Definition 4.63
πt Map in the opposite direction Definition 4.63
π t = ιtπt Definition 4.63
ηt = Id−π t Definition 4.63
||·||Xt , ||·||Yt Norms with different scaling for ιt and πt parts Definition 4.76
||·||

C0,α
β

Weighted norms on model spaces Definition 4.87

V P
ε1,ε2;t (y) Neighborhood in P Section 4.3.3

U P
ε1/t,ε2/t;t Neighborhood in R

3 × XEH Section 4.3.3

sP = s
P,ε1,ε2
d,y;t Maps 1-forms from P to R

3 × XEH Section 4.3.3
V ν
ε1,ε2,ε3;t (y) Neighborhood in ν Section 4.3.3

Uν
ε1/t,ε2/t,ε3/t;t Neighborhood in R

3 × (C2/{±1}) Section 4.3.3

sν = s
ν,ε1,ε2,ε3
d,y;t Maps 1-forms from ν to R

3 × (C2/{±1}) Section 4.3.3

It remains to check that A∞ reduces to Ě . To this end, let γ : I → Ě be a curve. Then

A∞(γ̇ (0)) = ι̂∗A∞(γ̇ (0))

= A∞
(

d

dt
(γ (t) · ρ(−1))|t=0

)

= Ad(ρ(−1)) (A∞(γ̇ (0))) .

(4.4)

In the first step we used ι̂∗θ = θ . The second step is the defining property of Ě from
Eq. (4.3). Now, for any subgroup H ⊂ G we define the centraliser of H in G as
Z(H) = {g ∈ G : hgh−1 = g for all h ∈ H}. Then

Lie(Z(H)) = zH := {V ∈ g : Ad(h)V = V for all h ∈ H}. (4.5)

This equality holds, because for X = ġ(0) ∈ Lie(Z(H)), where g : I → Z(H)

is a curve, we have that Ad(h)X = d
dt (hg(t)h

−1)|t=0 = X by definition of Z(H).
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Conversely, for V ∈ zH , we have that g(t) := exp(tV ) is a curve with ġ(0) = V in
Z(H), because hg(t)h−1 = exp(t · Ad(h)V ) = exp(tV ) = g(t) for all h ∈ H .
Therefore, by Eqs. (4.4) and (4.5), we have that A∞|Ě takes values in Lie(Gρ), i.e.

restricts to a connection on Ě . ��
Definition 4.6. Define the moduli bundle

M := (Fr×Ě)×U(2)×Gρ
M (4.7)

and its vertical tangent space

VM := (Fr×Ě)×U(2)×Gρ
T M. (4.8)

4.1.2. Fueter sections and connections on bundles over P In the following, we will
study sections s : L →M. It will turn out that such a section s gives rise to a connection
that is almost a G2-instanton, if it satisfies a first order differential equation, the Fueter
equation (cf. Definition 4.13).

Definition 4.9. Let s : L → M be a section. We define its covariant derivative ∇s ∈
�1(L , VM) as follows: for x ∈ L , X ∈ Tx L let f ∈ C∞(Fr) and e ∈ C∞(Ě) be local
sections around x such that ALC d f (x) = 0 and A∞(de(X)) = 0, where ALC is the
Levi-Civita connection of Y . Let B : L → M be a local section around x such that
s = [( f, e), B]. Then

∇X (s) = [( f, e), dB(X)] ∈ (Fr×Ě)×U(2)×Gρ
T M.

Definition 4.10. Let s : L → M be a section. Fix x ∈ L and let e1, e2, e3 be an
orthonormal basis of Tx L . The G2-structure on Y defines a map

�1(Tx L)→ �+Px
ei �→ ω̌i |Px =: ωi .

(4.11)

The ωi correspond to complex structures on Px and therefore, by Theorem 2.26, to
elements Ii ∈ End(VxM). We thus have a Clifford multiplication given by

ei · : VxM→ VxM

a �→ Ii (a).
(4.12)

Definition 4.13. A section s : L →M is called a Fueter section if

Fs :=
3

∑

i=1

ei · ∇ei s = 0 ∈ �(s∗VM), (4.14)

where (e1, e2, e3) is a local orthonormal frame.

The following is an extension of [DS11, Theorem 1]:

Theorem 4.15. Denote by ˜P → M × X̂EH the tautological bundle with tautological
connection ˜A over M × XEH from Proposition 2.36 and assume that there exists a
lift of the U(2)-action on M × X̂EH to ˜P preserving ˜A. Let s ∈ C∞(M), and denote
P̂ = Fr×U(2) X̂EH. Then there exists a natural G-bundle s(E) over P̂ with connection
s(A) ∈ A (s(E)|P ) together with an isomorphism of G-bundles with Z2 left action
� : s(E)|P̂\P → E∞ so that:
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(i) The pair (s(E), s(A))|Px represents s(x). That means: if s(x) = [( f, e), [B]] for f ∈
Frx , e ∈ (E0)x , [B] ∈ M, then under the diffeomorphism XEH � Px , y �→ [ f, y],
the G-bundles s(E)|Px and E are isomorphic, and B and s(A) are gauge equivalent.

(ii) The map� identifies A∞ and s(A) over the fibre at infinity, i.e.�∗A∞ = s(A)|P̂\P .
(iii) The connection s(A)|P is a (ψ P

t )∗-instanton if and only if s is a Fueter section.
Here, s(A) being a (ψ P

t )∗-instanton means that Fs(A)∧ (ψ P
t )∗ = 0, where (ψ P

t )∗ =
∑

σ ∗(ei ) ∧ σ ∗(e j ) ∧ ω̌k and σ : P → L is the projection of the bundle P (cf.
Equation (3.11)).

Proof. Construction of s(E), s(A), and �: together with the connections ∇LC on Fr
and A∞ on Ě , the connection ˜A induces a connection α on the principal G-bundle
(Fr×Ě)×U(2)×Gρ

˜P→ (Fr×Ě)×U(2)×Gρ
(M × X̂EH) via the formula

α([(U, V ), T ]) := ˜A(T ), (4.16)

where U ∈ T Fr, V ∈ T Ě are horizontal vectors and T ∈ T˜P. By assumption, ˜A is
left-invariant, which makes the definition of α independent of the chosen representative.
Consider the map

(s × Id) : P̂ = Fr×U(2) X̂EH → (Fr×Ě)×U(2)×Gρ
(M × X̂EH)

[ f, y] �→ [( f, e), (B, y)],
where s(σ (e)) = [( f, e), B] ∈Mπ(e). Then define

s(E) := (s × Id)∗((Fr×Ě)×U(2)×Gρ
˜P), s(A) := (s × Id)∗α

and the trivialisation φ : ˜P|Morb×{∞} → G × Morb from Proposition 2.36 induces an
isomorphism

� : s(E)|P̂\P
� (s × Id |X̂EH\XEH

)∗
(

(Fr×Ě)×U(2)×Gρ
˜P|M×{∞}

)

→ s∗
(

(Fr×Ě)×U(2)×Gρ
G × M

)

� Ě ×Gρ G � E∞.

(4.17)

The last point of Proposition 2.36 states that φ∗Aproduct = ˜A|M×{∞} which implies that
�∗A∞ = s(A)|P̂\P .

s(A) is a (ψ P
t )∗-instanton if and only if s is a Fueter section: for easier notation,

assume that the bundle Fr is trivial and ∇LC is the product connection. The proof of the
general case works the same. In this case, L× X̂EH = P̂ and s(E) = (s×Id)∗(Ě×Gρ

˜P).

Then fix (l, x) ∈ L × X̂EH = P̂ , an orthonormal basis (e1, e2, e3) of Tl L and denote by
(e1, e2, e3) its dual basis. Around l, write s(x) = [e, B] with the property that de(V ) is
parallel for all V ∈ Tl L . Then, for Z ∈ Tx X̂EH:

Fs(A)(ei , Z) =
(

(s × Id)∗Fα

)

(ei , Z)

= Fα ([de(ei ), (dB(ei ), 0)] , [de(ei ), (0, Z)])

= F
˜A
(dB(ei ), Z)

= dB(ei )(Z).

(4.18)
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In the first step we used that the curvature of a pullback connection is the pullback of its
curvature. The third step is the definition of α from Eq. (4.16), and in the last step we
used the curvature properties of the tautological connection ˜A from Proposition 2.36.
As before, denote by I1, I2, I3 the Hyperkähler triple of complex structures on XEH and
ω1, ω2, ω3 the corresponding symplectic forms. The Fueter condition from Definition
4.13 for s is equivalent to the following equation of elements in �1(XEH,Ad P):

0 =
3

∑

i=1

Ii (dB(ei )) =
3

∑

i=1

ωi (dB(ei ), ·) =
3

∑

i=1

ωi (Fs(A)(ei , ·), ·)

= ∗
(

3
∑

i=1

ωi ∧ Fs(A)(ei , ·)
)

where ∗ denotes the Hodge star on XEH. The first equality is the Fueter equation, the third
equality is Eq. (4.18), and the second and fourth equality are linear algebra computations
that can be computed in standard coordinates.
Applying ∗ to both sides gives

0 =
(

3
∑

i=1

ωi ∧ Fs(A)(ei , ·)
)

which in turn implies

0 =
∑

i, j,k cyclic

ωi ∧ e j ∧ ek ∧ [Fs(A)](1,1),

where [Fs(A)](1,1) denotes the (1, 1)-component of Fs(A) according to the bi-grading
on �∗T ∗(L × XEH) induced by T ∗(L × XEH) = T ∗L ⊕ T ∗XEH. On the other hand,
[Fs(A)](0,2) ∈ �2(XEH,Ad P) is anti-self-dual by Proposition 2.36, thus

0 =
∑

i, j,k cyclic

ωi ∧ e j ∧ ek ∧ [Fs(A)](0,2).

Last, 0 =∑

i, j,k cyclic ωi ∧ e j ∧ ek ∧ [Fs(A)](2,0), because this is a sum of forms of type
(2, 4) which must vanish as L has dimension 3. ��
4.1.3. Gluing connections over P and Y/〈ι〉 Throughout the rest of the article, we will
use weighted the Hölder norms from [Wal17, Section 6]:

Definition 4.19. For δ, l ∈ R, let

wl,δ;t : Nt → R

x �→
{

tδ(t + rt (x))−l−δ, if rt (x) ≤ √t
r−l+δt if rt (x) >

√
t

(4.20)

and by slight abuse of notation use the same symbol to denote wl,δ;t : Nt × Nt → R

given by wl,δ;t (x, y) = min{w(x), w(y)}. Let U ⊂ Nt . For α ∈ (0, 1), β ∈ R, k ∈ N,
and f a tensor field on Nt define the weighted Hölder norm of f via

[ f ]C0,α
l,δ;t (U )

:= sup
x,y∈U, x �=y

d(x,y)≤t+min{rt (x),rt (y)}
wl−α,δ;t (x, y)

| f (x)− f (y)|
d(x, y)α

,
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|| f ||L∞l,δ;t (U ) :=
∣

∣

∣

∣wl,δ;t f
∣

∣

∣

∣

L∞(U )
,

|| f ||Ck,α
l,δ;t (U )

:=
k

∑

j=0

∣

∣

∣

∣

∣

∣∇ j f
∣

∣

∣

∣

∣

∣

L∞l− j,δ;t (U )
+
[

∇ j f
]

C0,α
l− j,δ;t (U )

.

The term f (x)− f (y) in the first line denotes the difference between f (x) and the parallel
transport of f (y) to the fibre over x along one of the shortest geodesics connecting x
and y. When U is not specified, take U = Nt . We use the notation ||·||Ck,α

l,δ;t (U ),g for

the weighted Hölder norm with respect to the metric g, i.e. use parallel transport with
respect to the Levi-Civita connection induced by the metric g, and measure vectors in
g. If no metric g is specified, we take g = gNt . For our analysis, we need δ ∈ (−1, 0),
α ∈ (0, 1), α  |δ|, for example δ = −1/64, α = 1/256 will work.

Remark 4.21. Note that wl,δ;t is not continuous, but that does not cause any problems.

Proposition 4.22 (Proposition 6.2 in [Wal17]). If ( f, g) �→ f · g is a bilinear form
satisfying | f · g| ≤ | f | |g|, then

|| f · g||Ck,α
l1+l2,δ1+δ2;t

≤ || f ||Ck,α
l1,δ1;t

· ||g||Ck,α
l2,δ2;t

.

We have shown that s(A) is a (ψ P
t )∗-instanton. It is, however, in general not a G2-

instanton with respect to ψ P
t because of the (2, 0) part of its curvature. We will later

estimate the failure of s(A) of being a G2-instanton.

Definition 4.23. For l ∈ L choose a neighbourhood l ∈ Vl ⊂ L over which E∞ is trivial.
Use the identification � : s(E)|P̂\P → E∞ and parallel transport with respect to s(A)

to get a trivialisation of s(E) around P̂|Vl \ P|Vl , say on a neighbourhoodUl ⊂ P̂ . Using
this, we can view the pullback of s(A)|P̂\P under the projectionUl → Vl as a connection

A∞
l ∈ A (s(E)|Ul ). This definition is independent of the choice of l ∈ L , and therefore

defines some connection A∞ ∈ A (s(E)|U ), where U ⊂ P̂ is a neighbourhood of the
points at infinity P̂\P .

Now is the first time we cite a non-trivial result from [Wal17]. Therein, Fueter sections
into a moduli bundle of ASD-instantons on R

4 were considered, while in this section
ASD-instantons on XEH are considered. At some points this changes the analysis, and
these results are reproved in this new setting in the coming sections. At some points,
results carry over without having to change the proof. The following proposition is the
first such result:

Proposition 4.24 (Proposition 7.4 in [Wal17]). There exists c > 0 such that for all
t ∈ (0, T ):

∣

∣

∣

∣

∣

∣[Fs(A)]2,0 − FA∞

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (U ),gPt

≤ ct2, (4.25)

∣

∣

∣

∣[Fs(A)]1,1
∣

∣

∣

∣

C0,α
−3,0;t (U ),gPt

≤ ct2, and (4.26)
∣

∣

∣

∣[Fs(A)]0,2
∣

∣

∣

∣

C0,α
−4,0;t (U ),gPt

≤ ct2. (4.27)
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Fig. 2. The cut-off functions χ−t and χ+
t from Eq. (4.30) for small t

Proposition 4.28. Let E0 → Y/〈ι〉 be an orbifold bundle with connection θ satisfying
Assumption 4.1, L = fix(ι), and s : L →M be a Fueter section.
Then there exists a G-bundle Et over Nt and a connection At on Et such that

(Et , At )|Nt\ϒt (Ut−1R)
� (E0, θ)|Nt\ϒt (Ut−1R)

and

(Et , At )|ϒt (U1) � (s(E), s(A))|ρ−1(U1)
.

Proof. Construction of Et : By Theorem 4.15 we have a bundle isomorphism � :
E∞ → s(E)|P̂\P . Let U ⊂ P̂ be a neighbourhood of P̂\P . Now use radial parallel

transport with respect to θ on E0 and parallel transport with respect to A∞ (the pullback
of �∗A∞ to a neighbourhood of P̂ \ P defined in Proposition 4.24) to extend � to the
neighbourhood ϒ(UR) ⊂ Y of L , denote the extension by �. The conditions ι̂∗θ = θ

and Assumption 4.1 ensure that this is well-defined.
As in Sect. 3.2.3 we use the symbol ρ to denote the map ρ : P → ν/{±1} induced by
the blowup map XEH → C

2/{±1} on Eguchi–Hanson space. For small enough t we
have that the overlap O := Ut−1R ∩ ρ(U ) is non-empty. Use this to define Et by gluing
together E0 and s(E) via � over O , i.e.

Et := E0|Y\ϒt (Ut−1R\O) ∪ s(E)|ρ−1(Ut−1R)
/∼, (4.29)

where v ∼ �(v) for v ∈ E0|ϒt (O).
Construction of At : Let χ−t : Nt → [0, 1] and χ+

t : Nt → [0, 1] be rescalings of a
smooth cut-off function such that

χ−t |{rt≤t} ≡ 0 and χ−t |{rt≥2t} ≡ 1,

χ+
t |{rt≤R/2} ≡ 1 and χ+

t |{rt≤R} ≡ 0.
(4.30)

Similar to the definition of A∞ ∈ A (s(E)|U ), define A∞ ∈ A
(

E0|ϒt
(

Ut−1R

)

)

by

pulling back A∞ ∈ A (E∞). By definition of Et , we have that A∞ and A∞ are both
connections on Et . The map � identifies A∞ and s(A) by the second point of Theorem
4.15. Because � is an extension of � defined by radial parallel transport, and A∞ and
A∞ are also defined via radial parallel transport, we have that A∞ = A∞ as connections
on Et |ϒt (O).
We then have σ ∈ �1(Ad s(E)|O) and b ∈ �1(Ad E0|O) such that

s(A) = A∞ + σ, θ = A∞ + b over O. (4.31)
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Define then

At :=

⎧

⎪

⎨

⎪

⎩

s(A) on rt < t
A∞ + χ−t b + χ+

t σ on t ≤ rt ≤ R
θ on rt > R.

(4.32)

��
The following proposition follows immediately from Definition 4.19.

Proposition 4.33. Let χ−t and χ+
t as in Eq. (4.30). Then there exists c > 0 such that for

all t ∈ (0, T ):

∣

∣

∣

∣χ−t
∣

∣

∣

∣

C0,α
0,0;t

+
∣

∣

∣

∣dχ−t
∣

∣

∣

∣

C0,α
−1,0;t

≤ c,
∣

∣

∣

∣χ+
t

∣

∣

∣

∣

C0,α
0,0;t

+
∣

∣

∣

∣dχ+
t

∣

∣

∣

∣

C0,α
0,0;t
≤ c.

The following proposition is proved like Proposition 4.24 with the proof from [Wal17]
directly carrying over to this setting. The estimate for σ holds because of the fast decay
of the curvature of ASD connections on ALE spaces, see Proposition 2.19. The estimate
for b holds because over L we have that A∞ = θ , not just in the L-direction. That is
because A∞ is defined using parallel transport with respect to θ as in Definition 4.23.

Proposition 4.34 (Proposition 7.6 in [Wal17]). Let σ ∈ �1

(Ad s(E)|O) and b ∈ �1(Ad E0|O) as defined in Eq. (4.31). Then there exists c > 0
such that for all t ∈ (0, T ):

||σ ||C0,α
−3,0;t (t≤rt≤R) +

∣

∣

∣

∣

∣

∣dA∞σ

∣

∣

∣

∣

∣

∣

C0,α
−4,0;t (t≤rt≤R)

≤ ct2 and

||b||C0,α
1,0;t (rt≤R) +

∣

∣

∣

∣

∣

∣dA∞b
∣

∣

∣

∣

∣

∣

C0,α
0,0;t (rt≤R)

≤ ct2.

4.2. Pregluing estimate The goal of this section is to derive an estimate for FAt ∧˜ψN
t .

This is achieved in Corollary 4.55 in the general case, and in Corollary 4.58 in the special
case of resolutions of T 7/�.

4.2.1. Estimates for the G2-structures involved We have constructed a connection At
that looks like s(A) near L and looks like θ far away from L . The connection s(A) is
close to being a G2-instanton with respect to ψ P

t , so in order to control the pregluing
error, we will need to estimate the difference ψN

t −ϕP
t . This will be done in Propositions

4.35 and 4.38.
On the other hand, θ is a G2-instanton with respect to ψ , so we will need to estimate the
difference ψN

t − ψ . This will be done in Proposition 4.40.

Proposition 4.35. There exists c > 0 independent of t such that

∣

∣

∣

∣

∣

∣ψ
N
t − ψ P

t

∣

∣

∣

∣

∣

∣

C0,α
2,0;t (UR)

≤ ct−1. (4.36)
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Proof. We have

|ψN
t − ψ P

t |gNt

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d[t2β0,3 + t4β2,1+]t2χ1,3 + t4θ3,1 + t4θ2,2 if ř ≤ t−1/9

d[t2β0,3 + t4β2,1 + a(t1/9ř) · ϒ∗ζ ] + t2χ1,3 + t4θ3,1 + t4θ2,2 if t−1/9 ≤ ř ≤ 2t−1/9

d[t2β0,3 + t4β2,1 + ϒ∗ζ ] + t2χ1,3 + t4θ3,1 + t4θ2,2 if 2t−1/9 ≤ ř ≤ t−4/5

d[(1− a(t4/5ř))(t2β0,3 + t4β2,1) + ϒ∗ζ ]+
t2χ1,3 + t4θ3,1 + t4θ2,2 − a(t4/5ř)t2v1,2

if t−4/5 ≤ ř ≤ 2t−4/5

d(ϒ∗ζ ) + t2χ1,3 + t4θ3,1 + t4θ2,2 − t2v1,2 if 2t−4/5 ≤ ř

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

O(t) if ř ≤ t

O(tř−3) if t ≤ ř ≤ t−1/9

O(tř−3 + t2ř2) if t−1/9 ≤ ř ≤ 2t−1/9

O(tř−3 + t2ř2) if 2t−1/9 ≤ ř ≤ t−4/5

O(t2ř2 + ř−4) if t−4/5 ≤ ř ≤ 2t−4/5

O(t2ř2 + ř−4) if 2t−4/5 ≤ ř ,

(4.37)

where we used Propositions 3.19 and 3.8 and Theorem 3.26 in the second step. Multi-
plying with the weight function (t + rt )−2 gives the estimate for the L∞2,0;t -norm, and

the estimate for the C0,α
2,0;t -norm is proved analogously. ��

Proposition 4.38. Let Nt be the resolution of T 7/� from Sect.3.1. There exists c > 0
independent of t such that

∣

∣

∣

∣

∣

∣ψ
N
t − ψ P

t

∣

∣

∣

∣

∣

∣

C0,α
2,0;t (UR)

≤ ct4. (4.39)

Proof. This is a restatement of Eq. (3.1). In the case that Nt is the resolution of T 7/�

we have that ψ P
t is closed, so the forms t2χ1,3, t4θ3,1, t4θ2,2 from Proposition 3.19 can

be chosen to be 0. Furthermore, in this case ˜ψν
t = ϒ∗t (∗ϕ), so ζ = 0. Using this and

that the cut-off happens where ζ t−1/2 ≤ ř ≤ ζ t−1, the same proof as for Eq. (4.36)
shows the claim. ��
The following estimate holds in general, not just for resolutions of T 7/�:

Proposition 4.40. There exists c > 0 independent of t such that
∣

∣

∣

∣

∣

∣ψ
N
t − ψ

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t ({x∈Nt :ř(x)≥1}) ≤ ct2. (4.41)

Proof. Using Propositions 3.8 and 3.19 and Theorem 3.26, the proof is analogous to
Proposition 4.35. ��
Last we need an estimate comparing ˜ψN

t and ψN
t in a Hölder norm. In Theorem 3.26 we

had this estimate for the L∞-norm, but not for the C0,α
0,0;t -norm. Going through the proof

of 2.10, one can improve this to a C0,α
0,0;t -estimate as stated in the following proposition.

For the case of resolutions of T 7/�, this was done in [Wal13a, Proposition 4.20], and
the proof carries over to resolutions of Y/〈ι〉.
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Proposition 4.42. There exists c > 0 independent of t such that
∣

∣

∣

∣

∣

∣

˜ψN
t − ψN

t

∣

∣

∣

∣

∣

∣

C0,α
0,0;t
≤ ct1/18. (4.43)

4.2.2. Principal bundle curvature estimates For our pregluing estimate we will want to
estimate ∗(FAt∧˜ψN

t ). This is done in Corollaries 4.55 and 4.58. Most of the heavy lifting
is done by the following Proposition 4.44: here we get an estimate for ∗(FAt ∧ ψN

t )

which then is combined with the estimate for ˜ψN
t − ψN

t .

Proposition 4.44. There exists c > 0 such that for all t ∈ (0, T ) we have
∣

∣

∣

∣

∣

∣∗(FAt ∧ ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t

≤ ct. (4.45)

Proof. We will estimate ∗(FAt ∧ ψN
t ) separately on some regions:

1. On rt ≤ 2t we have

FAt = Fs(A) + χ−t dA∞b + χ−t [σ, b] +
1

2
(χ−t )2[b, b] + dχ−t ∧ b.

Thus by Proposition 4.22, Proposition 4.33, and Proposition 4.34:
∣

∣

∣

∣FAt − Fs(A)
∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t)

≤ ||1||C0,α
−2,0;t (rt≤2t)

∣

∣

∣

∣χ−t
∣

∣

∣

∣

C0,α
0,0;t (rt≤2t)

∣

∣

∣

∣dA∞b
∣

∣

∣

∣

C0,α
0,0;t (rt≤2t)

+
∣

∣

∣

∣χ−t
∣

∣

∣

∣

C0,α
0,0;t (rt≤2t) ||σ ||C0,α

−3,0;t (rt≤2t) ||b||C0,α
1,0;t (rt≤2t)

+
1

2
||1||C0,α

−3,0;t (rt≤2t)

∣

∣

∣

∣χ−t
∣

∣

∣

∣

2
C0,α

0,0;t (rt≤2t) ||b||2C0,α
1,0;t (rt≤2t)

+ ||1||C0,α
−2,0;t (rt≤2t)

∣

∣

∣

∣dχ−t
∣

∣

∣

∣

C0,α
−1,0;t (rt≤2t) ||b||C0,α

1,0;t (rt≤2t)

≤ ct2

(4.46)

where we also used the fact that ||1||C0,α
−l,0;t (rt≤2t) ≤ ctl if l > 0, which follows from

Definition 4.19 using rt ≤ 2t .
Remember that [Fs(A)]2,0 ∧ψ P

t = 0 by the ASD condition and [Fs(A)]1,1 ∧ψ P
t = 0 by

the Fueter condition (cf. Theorem 4.15). By Proposition 4.24, we therefore have:
∣

∣

∣

∣

∣

∣Fs(A) ∧ ψ P
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t)

≤
∣

∣

∣

∣

∣

∣[Fs(A)](0,2) ∧ ψ P
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t)

≤ ∣

∣

∣

∣[Fs(A) − Fθ |L ](0,2)
∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t) ·

∣

∣

∣

∣

∣

∣ψ
P
t

∣

∣

∣

∣

∣

∣

C0,α
0,0;t (rt≤2t)

+

∣

∣

∣

∣Fθ |L
∣

∣

∣

∣

C0,α
0,0;t (rt≤2t) ·

∣

∣

∣

∣

∣

∣ψ
P
t

∣

∣

∣

∣

∣

∣

C0,α
0,0;t (rt≤2t)

· ||1||C0,α
−2,0;t (rt≤2t)

≤ ct2,

(4.47)
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where we again used Proposition 4.22. Last, note that by Proposition 4.24 and Eq. (4.46)
we have

∣

∣

∣

∣FAt

∣

∣

∣

∣

C0,α
−4,0;t (rt≤2t) ≤ ct2. Thus, by Proposition 4.22 and Eq. (4.36):

∣

∣

∣

∣

∣

∣FAt ∧ (ψN
t − ψ P

t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t)

≤ ∣

∣

∣

∣FAt

∣

∣

∣

∣

C0,α
−4,0;t (rt≤2t)

∣

∣

∣

∣

∣

∣ψ
N
t − ψ P

t

∣

∣

∣

∣

∣

∣

C0,α
2,0;t (rt≤2t)

≤ ct.
(4.48)

Putting the estimates from Eqs. (4.46) to (4.48) together, we get
∣

∣

∣

∣

∣

∣∗(FAt ∧ ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t)

≤
∣

∣

∣

∣

∣

∣Fs(A) ∧ ψ P
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t)

+
∣

∣

∣

∣

∣

∣(Fs(A) − FAt ) ∧ ψ P
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t)

+
∣

∣

∣

∣

∣

∣FAt ∧ (ψN
t − ψ P

t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (rt≤2t)

≤ c(t2 + t2 + t) ≤ ct.

2. On 2t ≤ rt ≤ R/2 we have At = A∞ + σ + b and therefore

FAt = Fθ + [σ, b] + Fs(A) − FA∞ . (4.49)

First,
∣

∣

∣

∣

∣

∣(Fs(A) − FA∞) ∧ ψ P
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤
∣

∣

∣

∣

∣

∣

[

Fs(A) − FA∞
]

2,0 ∧ ψ P
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤
∣

∣

∣

∣

∣

∣

[

Fs(A) − FA∞
]

2,0

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

∣

∣

∣

∣

∣

∣ψ
P
t

∣

∣

∣

∣

∣

∣

C0,α
0,0;t (2t≤rt≤R/2)

≤ ct2,

(4.50)

where we used point (ii) of Theorem 4.15 in the first step and Proposition 4.24 in the
last step. We also have

∣

∣

∣

∣

∣

∣(Fs(A) − FA∞) ∧ (ψN
t − ψ P

t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤ ∣

∣

∣

∣(Fs(A) − FA∞)
∣

∣

∣

∣

C0,α
−4,0;t (2t≤rt≤R/2)

∣

∣

∣

∣

∣

∣ψ
N
t − ψ P

t

∣

∣

∣

∣

∣

∣

C0,α
2,0;t (2t≤rt≤R/2)

≤ ct

(4.51)

where we used Proposition 4.24 and Eq. (4.36), therefore
∣

∣

∣

∣

∣

∣(Fs(A) − FA∞) ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤
∣

∣

∣

∣

∣

∣(Fs(A) − FA∞) ∧ ψ P
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

+
∣

∣

∣

∣

∣

∣(Fs(A) − FA∞) ∧ (ψN
t − ψ P

t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤ ct.

(4.52)
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Second,
∣

∣

∣

∣

∣

∣[σ, b] ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤ c ||σ ||C0,α
−3,0;t (2t≤rt≤R/2) ||b||C0,α

1,0;t (2t≤rt≤R/2)

∣

∣

∣

∣

∣

∣ψ
N
t

∣

∣

∣

∣

∣

∣

C0,α
0,0;t (2t≤rt≤R/2)

≤ ct4

(4.53)

by Proposition 4.34.
Third,

∣

∣

∣

∣

∣

∣Fθ ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤ ||Fθ ∧ ψ ||C0,α
−2,0;t (2t≤rt≤R/2)

+ ||Fθ ||C0,α
0,0;t (2t≤rt≤R/2)

∣

∣

∣

∣

∣

∣ψ
N
t − ψ

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤ ct2

(4.54)

where we used the fact that θ is a G2-instanton with respect to ψ as well as Eq. (4.41)
in the second step. So, altogether

∣

∣

∣

∣

∣

∣∗(FAt ∧ ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤
∣

∣

∣

∣

∣

∣Fθ ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

+
∣

∣

∣

∣

∣

∣[σ, b] ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

+
∣

∣

∣

∣

∣

∣(Fs(A) − FA∞) ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (2t≤rt≤R/2)

≤ ct

by combining Eqs. (4.49) and (4.52) to (4.54).
3. On R/2 ≤ rt ≤ R we have At = θ + χ+

t σ and therefore

FAt = Fθ + χ+
t dθσ +

1

2
(χ+

t )
2[σ, σ ] + dχ+

t ∧ σ.

Therefore, we find that
∣

∣

∣

∣FAt − Fθ

∣

∣

∣

∣

C0,α
−2,0;t (R/2≤rt ) ≤

∣

∣

∣

∣χ+
t

∣

∣

∣

∣

C0,α
0,0;t (R/2≤rt ) ||dθσ ||C0,α

−4,0;t (R/2≤rt ) ||1||C0,α
2,0;t (R/2≤rt )

+
1

2

∣

∣

∣

∣χ+
t

∣

∣

∣

∣

2
C0,α

0,0;t (R/2≤rt ) ||σ ||2C0,α
−3,0;t (R/2≤rt ) ||1||C0,α

4,0;t (R/2≤rt )
+
∣

∣

∣

∣dχ+
t

∣

∣

∣

∣

C0,α
0,0;t (R/2≤rt ) ||σ ||C0,α

−3,0;t (R/2≤rt ) ||1||C0,α
1,0;t (R/2≤rt )

≤ ct2

where we used Propositions 4.22,4.33 and 4.34 in the second step. Using this, we see
∣

∣

∣

∣

∣

∣FAt ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (R/2≤rt )

≤
∣

∣

∣

∣

∣

∣(FAt − Fθ ) ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (R/2≤rt )
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+
∣

∣

∣

∣

∣

∣Fθ ∧ ψN
t

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t (R/2≤rt )

≤ ct2,

where we used the fact that ψN
t = ψ where rt ≥ R/2 and that θ is a G2-instanton with

respect to ψ .

We have that FAt ∧ ψN
t = 0 outside the three considered regions, which proves the

claim. ��
Corollary 4.55. There exists c > 0 such that

∣

∣

∣

∣

∣

∣∗(FAt ∧ ˜ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t

≤ ct1/18. (4.56)

Proof. First, observe that
∣

∣

∣

∣FAt

∣

∣

∣

∣

C0,α
−2,0;t

≤ c. (4.57)

This follows from estimating FAt separately on the three regions from the proof of
Proposition 4.44. Then
∣

∣

∣

∣

∣

∣∗(FAt ∧ ˜ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t

≤
∣

∣

∣

∣

∣

∣∗(FAt ∧ ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t

+
∣

∣

∣

∣

∣

∣∗(FAt ∧ (˜ψN
t − ψN

t ))

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t

≤
∣

∣

∣

∣

∣

∣∗(FAt ∧ ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t

+
∣

∣

∣

∣FAt

∣

∣

∣

∣

C0,α
−2,0;t

∣

∣

∣

∣

∣

∣

˜ψN
t − ψN

t

∣

∣

∣

∣

∣

∣

C0,α
0,0;t

≤ c(t + t1/18) ≤ ct1/18

where we used Proposition 4.44 to estimate the first summand in the last step, and Eqs.
(4.43) and (4.57) to estimate the second summand in the last step. ��
As promised, we now turn to the special case of resolutions of T 7/�, rather than general
G2-orbifolds. We get a better pregluing estimate here, which is due to the following two
facts: first, we get a better estimate for ∗(FAt ∧ψN

t ) on the resolution of T 7/�, because
near the associative, At is close to s(A), which is close to being a G2-instanton with
respect to ψ P

t , and Proposition 4.38 says that ψN
t −ψ P

t is small. Second, the difference
˜ψN
t − ψN

t is smaller on resolutions of T 7/� than in the general case.

Corollary 4.58. Let Nt be the resolution of T 7/� from Theorem 3.2. Then there exists
c > 0 such that for all t ∈ (0, T ) we have

∣

∣

∣

∣

∣

∣∗(FAt ∧ ˜ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t

≤ ct2. (4.59)

Proof. We first prove
∣

∣

∣

∣

∣

∣∗(FAt ∧ ψN
t )

∣

∣

∣

∣

∣

∣

C0,α
−2,0;t

≤ ct2. (4.60)

as in Proposition 4.44, the only difference being that Eq. (4.39) in Eqs. (4.48) and (4.51)
gives a factor of t2 rather than t , yielding Eq. (4.60). For small enough α ∈ (0, 1) we
have that

∣

∣

∣

∣

∣

∣

˜ψN
t − ψN

t

∣

∣

∣

∣

∣

∣

C0,α
0,0;t
≤ ct5/2 (4.61)

by Theorem 3.2. Taking Eqs. (4.60) and (4.61) together gives Eq. (4.59) as in the proof
of Corollary 4.55. ��
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4.3. Linear estimates We now arrived in the second step of the three step process of
(1) constructing an approximate solution, (2) estimating the linearisation of the instanton
equation, and (3) perturbing the approximate solution to a genuine solution. The estimate
in question is Proposition 4.78. It makes use of the norms ||·||Xt

and ||·||Yt
that are

defined in Sect. 4.3.1.
The idea of the proof is this: near the resolution locus of the associative L , the lineari-
sation of the instanton equation is approximately equal to the linearisation of the Fueter
equation. Deformations of the approximate solution and deformations of the Fueter sec-
tion live in different spaces, so some work will need to go into making this statement
precise.
Over the course of Sects. 4.3.3 to 4.3.5 we work out an estimate for the linearised operator
modulo deformations of the approximate instanton that come from deformations of the
Fueter section. This estimate is given in Proposition 4.108. We use a Schauder estimate
for the linearised operator, which is given in section Sect. 4.3.4, together with analysis
on the local models R

3 × XEH and R
3 × C

2/{±1}, which is explained in Sect. 4.3.3.
So we have estimates for the linearised operator on instanton deformations that come
from deformations of the Fueter section from Sect. 4.3.2 and on the other instanton
deformations from Sect. 4.3.5. In Sects. 4.3.6 and 4.3.7 we combine both and complete
the proof of Proposition 4.108.

4.3.1. Stating the estimate In the previous section, we constructed a connection At ∈
A (Et ). The linearisation of the G2-instanton equation together with the Coulomb gauge
condition is

Lt := L At : (�0 ⊕�1)(M,Ad E)→ (�0 ⊕�1)(M,Ad E)
(

ξ

a

)

�→
(

0 d∗At

dAt ∗(˜ψN
t ∧ dAt )

)(

ξ

a

)

,

cf. Equation (2.44). We introduce the following notation for the constant part and the
quadratic part of the G2-instanton equation: for a = (ξ, a) ∈ (�0 ⊕ �1)(Nt ,Ad Et )

define et as well as Qt (a) ∈ �0(Nt ,Ad Et ) via

∗ (FAt+a ∧ ˜ψN
t ) + dAt+aξ

= ∗(FAt ∧ ˜ψN
t )

︸ ︷︷ ︸

=:et
+ ∗ (dAt a ∧ ˜ψN

t ) + dAt ξ +
1

2
∗ ([a ∧ a] ∧ ˜ψN

t ) + [ξ, a]
︸ ︷︷ ︸

=:Qt (a)

. (4.62)

In this section we will study the operator Lt and derive an estimate for the operator norm
of the inverse of Lt . This operator norm will be taken with respect to the complicated
norms ||·||X and ||·||Y, taken from [Wal17, Section 8], which we will explain now.
We need a way to decompose elements in �1(Nt ,Ad Et ) into a part coming from a
section of s∗(VM), which is nonzero only near the gluing area, and a rest:

Definition 4.63. The section s gives rise to a connection s(A) ∈ A (s(E)) by Theorem
4.15. A section f ∈ �(s∗VM) analogously defines an element in Ts(A)A (s(E)) =
�1(P,Ad s(E)), say i∗ f . Use this to define

ιt : �(s∗VM)→ �1(Nt ,Ad Et )

f �→ χ+
t · i∗ f.

(4.64)
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Further define πt : �1(Nt ,Ad Et )→ �(s∗VM) for a ∈ �1(Nt ,Ad Et ) and x ∈ L by

(πt a)(x) :=
∑

κ

∫

Px
〈a, ιtκ〉gPt volgPt |Px ·κ, (4.65)

where κ runs through an orthonormal basis of (VM)s(x) with respect to the inner product
〈ιt ·, ιt ·〉gtP . Here the integral is taken with respect to the metric induced by ϕP

t restricted
to Px . Let further π t := ιtπt and ηt := Id−π t .

The following proposition states that ιt and πt are bounded operators. The proof of these
estimates is similar to the proof of [Wal17, Proposition 6.4].

Proposition 4.66. For l ≤ −1 and δ ∈ R such that l−α + δ > −3 and l + δ < −1 there
is a constant c > 0 such that for all t ∈ (0, T ) we have

||ιt f ||C0,α
l,δ;t
≤ ct−1−l || f ||C0,α and

||πt a||C0,α ≤ ct1+l−α ||a||C0,α
l,δ;t (V[0,R),t )

.

Proof. The proof of the first inequality is the same as the proof of [Wal17, Proposition
6.4].
To prove the second inequality, note that by Proposition 2.25 we have for x ∈ L , κ ∈
(VM)s(x)

|i∗κ|gP1 ≤ cκ(1 + ř)−3

for a constant cκ depending on x ∈ L and on κ . Because (VM)s(x) is a finite-dimensional
vector space we can take c = max||κ||

L2,gP1
=1 cκ to get the estimate

|i∗κ|gP1 ≤ c(1 + ř)−3 ||κ||gP1 ,L2 (4.67)

for a constant c independent of κ . By compactness of L , we can assume c to also be
independent of x ∈ L . By measuring in gP

t instead of gP
1 we get from Eq. (4.67):

|i∗κ|gPt = t−1|i∗κ|gP1 ≤ ct2(t + tř)−3 ||κ||gP1 ,L2 . (4.68)

For some interval J ⊂ R and x ∈ L we denote Px,J :=
{

u ∈ Px : ř(u) ∈ J
}

and
similarly for (ν/{±1})x,J . By abuse of notation we write volgPt for volgPt |Px ∈ �4(Px )
and similarly for volgνt .

∫

Px
〈a, χ+

t · i∗κ〉gPt volgPt ≤
∫

Px
|a|gPt |χ+

t · i∗κ|gPt volgPt

≤ c
∫

Px,[0,1]

t2

(t + tř)3 w
−1
l,δ;t volgPt ||a||L∞l,δ;t ,gPt ||κ||L2,gP1

+ c
∫

Px,[1,Rt−1]

t2

(t + tř)3 w
−1
l,δ;t volgPt ||a||L∞l,δ;t ,gPt ||κ||L2,gP1

≤ c volgPt (Px , [0, 1]) · t l−1 ||a||L∞l,δ;t ,gPt ||κ||L2,gP1

+ c
∫

(ν/{±1})x,[0,Rt−1]

t2

(t + tř)3 w
−1
l,δ;t volgνt ||a||L∞l,δ;t ,gPt ||κ||L2,gP1
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≤ ctl+3 ||a||L∞l,δ;t ,gPt ||κ||L2,gP1

+ c
∫

√
t

0
t2−δ(t + r)l+δ−3r3 dr · ||a||L∞l,δ;t ,gPt ||κ||L2,gP1

+ c
∫ R

√
t
t2rl−δ(t + r)−3r3 dr · ||a||L∞l,δ;t ,gPt ||κ||L2,gP1

. (4.69)

Here we used Eq. (4.68) in the second step. In the third step, we switched from inte-
grating over Px,[1,Rt−1] to integrating over νx,[1,Rt−1]. We could do this because tř on
P corresponds to the radius function r on ν, and gP

t |Px,[1,Rt−1] − ρ∗gνt |Px,[1,Rt−1] → 0
measured in gνt as t → 0 by Eqs. (3.9) and (3.16). The latter implies that we can change
volgPt to volgνt . We used the definition of wl,δ;t and changing into sphere coordinates in
the fourth step.
We now treat the two integrals separately.

∫

√
t

0
(t + r)l+δ−3r3 dr =

[

(r + t)δ+l
(

− 3t

δ + l
− t3

(−2 + δ + l)(r + t)2

+
3t2

(−1 + δ + l)(r + t)
+

r + t

1 + δ + l

)]

√
t

0

≤ c(tδ+l+1 + tδ/2+l/2+1/2)

≤ ctδ+l+1,

(4.70)

where we used a computer algebra system to compute the integral in the first step and
used δ + l + 1 < 0 in the third step. For the second integral we find that

∫ R

√
t
r l−δ(t + r)−3r3 dr ≤

∫ R

√
t
r l+1−δ dr

≤
[

rl+1−δ]R√
t

≤ t l · t−l/2−δ/2−1/2 · t1 + c

≤ ctl+1

(4.71)

where we used the fact that −l − δ − 1 > 0 to estimate the first summand in the last
step, and the fact that l ≤ −1 to estimate the second summand in the last step.
Combining Eqs. (4.69) to (4.71) we get

∫

Px
〈a, χt · i∗κ〉gPt volgPt ≤ ct3+l ||a||L∞l,δ;t ||κ||L2,gP1

. (4.72)

If κ1, κ2 ∈ (VMt )s(x), then

〈χ+
t · i∗κ1, χ

+
t · i∗κ2〉L2,gPt

∼ 〈i∗κ1, i∗κ2〉L2,gPt

∼ t2〈i∗κ1, i∗κ2〉L2,gP1
,

(4.73)
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where∼means comparable uniformly in t . Here, in the second step we used the fact that
volgPt |Px = t4 volgP1 |Px and 〈κ1(y), κ2(y)〉gPt = t−2〈κ1(y), κ2(y)〉gP1 for y ∈ Px . Equa-
tion (4.73) implies that if κ has unit length with respect to the inner product 〈ιt ·, ιt ·〉gPt ,
then

||κ||L2,gP1
≤ ct−1. (4.74)

Because ||·||L2,gP1
and ||·||L∞,gP1

are norms on a finite-dimensional vector space, they
are equivalent, and thus

||κ||L∞,gP1
≤ ct−1. (4.75)

Combining Eqs. (4.72) and (4.74) to (4.75) and recalling the definition of πt from
Definition 4.63 gives

||πt a||L∞ ≤
∣

∣

∣

∣

∣

∑

κ

∫

Px
〈a, ιtκ〉gPt volgPt |Px

∣

∣

∣

∣

∣

· ||κ||L∞,gP1

≤ ct1+l ||a||L∞l,δ;t .
The estimate for the ||·||C0,α Hölder norm follows analogously. ��
We are now ready to define the norms which we will use to prove estimates for the
operator Lt :

Definition 4.76. Denote by Xt and Yt the Banach spaces C1,α(Nt , (�
0⊕�1)⊗Ad Et )

and C0,α(Nt , (�
0 ⊕�1)⊗ Ad Et ) equipped with the norms
∣

∣

∣

∣a
∣

∣

∣

∣

Xt
:= t−δ/2

∣

∣

∣

∣ηt a
∣

∣

∣

∣

C1,α
−1,δ;t

+ t
∣

∣

∣

∣πt a
∣

∣

∣

∣

C1,α and
∣

∣

∣

∣a
∣

∣

∣

∣

Yt
:= t−δ/2

∣

∣

∣

∣ηt a
∣

∣

∣

∣

C0,α
−2,δ;t

+ t
∣

∣

∣

∣πt a
∣

∣

∣

∣

C0,α

(4.77)

respectively.

Using these norms, we can now state the main result of this section:

Proposition 4.78. Let Nt be the resolution of T 7/� from Sect.3.1. Let s be the Fueter
section and θ be the G2-instanton used in the construction of At (cf. Proposition 4.28).
If s is infinitesimally rigid and θ is infinitesimally rigid and irreducible, then there
exists a constant c > 0 which is independent of t such that for small enough t and all
a ∈ (�0 ⊕�1)(Nt ,Ad Et ):

∣

∣

∣

∣a
∣

∣

∣

∣

Xt
≤ c

∣

∣

∣

∣Lta
∣

∣

∣

∣

Yt
. (4.79)

Unfortunately, we are restricted to the case where Nt is a resolution of T 7/�. The reason
for this is the following: our gluing construction will always produce a connection At
that is close to being a G2-instanton with respect to ϕN

t , that is the G2-structure with
small torsion. Hence, if the difference ϕ̃N

t − ϕN
t is small, then At is also close to being

a G2-instanton with respect to ϕ̃N
t , the torsion-free G2-structure that we are mainly

interested in.
For resolutions of general Y/〈ι〉 we have the estimate Proposition 4.42, which states
ϕ̃N
t − ϕN

t = O(t1/18), measured in a suitable norm. For resolutions of T 7/� we have
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the much stronger estimate Theorem 3.2 which gives O(t5/2) roughly speaking. Thus,
we have a much better approximate G2-instanton on T 7/� than on Y/〈ι〉.
It will turn out that we can always perturb the approximate G2-instanton on T 7/� to
a genuine instanton, but can only perturb the approximate G2-instanton on Y/〈ι〉 to a
genuine G2-instanton in very special cases (namely when s is constant). We will revisit
this issue in Sect. 4.5, where we construct the perturbation to a genuine G2-instanton.

4.3.2. Comparison with the Fueter operator Given an element v ∈ �(s∗VM) one may
do two different things to it: either embed it into �1(Nt ,Ad Et ) first, and then apply Lt .
Or apply the linearised Fueter operator first, and then embed it into�1(Nt ,Ad Et ). It will
turn out that the two are the same, up to a small error. In [Wal17], Fueter sections into a
moduli bundle of ASD-instantons on R

4 were considered, and the following proposition
was proved in that setting. In this article, ASD-instantons on XEH are considered, but
the proof works essentially the same way. That said, we do need that ˜ψN

t −ψ P
t is small.

This is true on resolutions of T 7/� by Proposition 4.38 and Theorem 3.2 but not proved
for general resolutions of G2-orbifolds. Consequently, we only know the following two
propositions to hold on resolutions of T 7/�.

Proposition 4.80 (Proposition 8.26 in [Wal17]). Let Nt be the resolution of T 7/� from
Sect.3.1. There exists a constant c > 0 such that for all t ∈ (0, T ) and all v ∈ �(s∗VM)

the following estimate holds:

||Lt ιtv − ιt dsFv||C0,α
−2,0;t

≤ ct2 ||v||C1,α . (4.81)

The following proposition is then a simple consequence. It essentially provides the
estimate for the inverse of Lt on the space Im π t ⊂ �1(Nt ,Ad Et ).

Proposition 4.82. Let Nt be the resolution of T 7/� from Sect.3.1. If s is infinitesimally
rigid, then there exists a constant c > 0 such that for all t ∈ (0, T ) and all v ∈ �(s∗VM)

the following estimate holds:

||v||C1,α ≤ c ||πt Lt ιtv||C0,α . (4.83)

Proof. We have

||v||C1,α ≤ c ||dsFv||C0,α

= c ||πt ιt dsFv||C0,α

≤ c
(||πt Lt ιtv||C0,α + ||πt (Lt ιtv − ιt dsFv)||C0,α

)

≤ c
(

||πt Lt ιtv||C0,α + t1−α ||v||C0,α

)

,

where we used the fact that s is infitesimally rigid in the first step, and Propositions 4.66
and 4.80 in the last step. For small t , we can then absorb the factor t1−α ||v||C0,α into
the left hand side. ��
Remark 4.84. Apart from the connection to [Wal17], the situation in this subsection is
also very similar to, but more complicated than, the situation in [Pla20, Propositions
4.29 and 4.35].
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4.3.3. The model operators on R
3 × XEH and R

3 × C
2/{±1} As before, let XEH be

the Eguchi–Hanson space. To prove the estimate in Proposition 4.78, we will compare
the operator Lt with the linearised instanton equation in the model case of a pulled back
ASD instanton on R

3 × XEH.

Properties of the Model Operator
Let A be a finite energy ASD instanton on a G-bundle E over XEH. The infinitesimal
deformations of A are then governed by the operator δA from Eq. (2.24). Denote by
pXEH : R

3 × XEH → XEH the projection onto the second factor. By a slight abuse of
notation we denote the pullbacks of A and E to R

3 × XEH under pXEH by A and E as
well.
Denote by LA be the linearised G2-instanton operator from Eq. (2.46). We can define

the map ( · ) �ϕ : p∗
R3T

∗
R

3 �→ p∗XEH
�+T ∗XEH, which takes a 1-form, dualises it, and

plugs it into the product G2-structure ϕ from Eq. (2.11). It maps dxi to −ωi . Using it,
we can relate δA and L A as follows:

Proposition 4.85 (Proposition 2.70 in [Wal13b]). Under the identification

( · ) �ϕ : p∗
R3T

∗
R

3 �→ p∗XEH
�+T ∗XEH

and accordingly

�0 ⊕�1(R3 × XEH,Ad E) � �0(R3 × XEH, p∗XEH
[(R⊕�+T ∗XEH ⊕ T ∗XEH)⊗ Ad E])

the operator L A can be written as L A = F + DA where

F(ξ, ω, a) =
3

∑

i=1

(−〈∂iω,ωi 〉, ∂iξ · ωi , Ii∂i a) and DA =
(

0 δA
δ∗A 0

)

.

Moreover,

L∗AL A = "R3 +

(

δAδ
∗
A
δ∗AδA

)

. (4.86)

We define the following weighted norms on the model spaces R
3 × XEH and R

3 ×
(C2/{±1}):
Definition 4.87. For β ∈ R, let

wβ : R3 × XEH → R wβ : R3 × (C2/{±1})→ R

x �→ (1 + ř(x))−β x �→ (1 + d(x, 0))−β

and define the weighted Hölder norms ||·||C0,α
β

as in Definition 4.19, but using this new

weight function.

We then have the following result:

Proposition 4.88 (Proposition 2.74 in [Wal13b]). Let ˜X be an ALE space. Let β ∈
(−3, 0). Then a ∈ C1,α

β is in the kernel of L I : C1,α
β → C0,α

β−1 if and only if it is given

by the pullback of an element of the L2 kernel of δI to R
3 × ˜X.
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Comparison with Lt
We now explain two maps sP and sν : the first for "zooming into" the resolution locus
of the associative L , the second for "zooming into" the gluing region of Nt . Fix a point
y ∈ L , a scaling parameter d ∈ Z, a gluing parameter t ∈ (0, T ), and two positive real
numbers ε1, ε2 defining the scale of the region into which to zoom in.
Let

V P
ε1,ε2;t (y) := {x ∈ P : σ(x) ∈ Im(expy |(−ε1,ε1)3), ř(x)t < ε2} ⊂ P,

U P
ε1/t,ε2/t;t := {(x, z) ∈ R

3 × XEH : x ∈ (−ε1/t, ε1/t)
3, ρ(z) < ε2/t}.

Here we implicitly used an identification TyL � R
3 to have expy acting on (−ε1, ε1)

3.
Choose this identification so that it maps the orthonormal basis e1(y), e2(y), e3(y) ∈
T ∗y L from Sect. 3.2.3 to the standard basis dx1, dx2, dx3 ∈ �1((R3)∗). Fix an element
f ∈ Fry of the unitary frame bundle of ν around y ∈ L . It induces an isometry XEH � Py ,
and assume that f is chosen so that ω̃i is sent to ω̌i |Py under this map for i ∈ {1, 2, 3}.
Then, for small ε1, we define

EP : U P
ε1/t,ε2/t;t → V P

ε1,ε2;t (y)
(x, z) �→ Ps �→expy(st x)( f (z)) ∈ P.

(4.89)

Here, s �→ expy(st x) denotes the unique shortest geodesic from y to exp(t x) in L , and

Ps �→expy(st x) denotes parallel transport in P with respect to H̆ along this curve, cf. the
paragraph before Eq. (3.14). For ε1 small enough, this is a diffeomorphism. The reason
for this definition is the following: because of our choices of identifications TyL � R

3

and Py � XEH we have that (EP )∗(ϕP
t )(0, z) is the standard G2-structure on R

3× XEH
for all z ∈ XEH, cf. Eq. (3.14). Let a be a tensor field of valence (p, q), i.e. in index
notation p lower indices and q upper indices, on V P

ε1,ε2;t (y). We then define

sP (a) := sP,ε1,ε2
d,y;t (a) := td+p−q(EP )∗a, (4.90)

which is a tensor on Uε1/t,ε2/t;t . The point of this is the following proposition:

Proposition 4.91. There are constants c > 0 and ε > 0 such that for small t the
following holds: for all ε1, ε2 ∈ (0, ε) and for all a ∈ (�0 ⊕�1)(Nt , Et ):

∣

∣

∣

∣

∣

∣sP,ε1,ε2
d,t;y a

∣

∣

∣

∣

∣

∣

L∞l+δ(U P
ε1/t,ε2/t;t )

∼ td+l
∣

∣

∣

∣a
∣

∣

∣

∣

L∞l,δ;t (V P
ε1,ε2

(y)) , (4.92)

∣

∣

∣

∣

∣

∣sP,ε1,ε2
d,t;y a

∣

∣

∣

∣

∣

∣

Ck,α
l+δ (U

P
ε1/t,ε2/t;t )

∼ td+l
∣

∣

∣

∣a
∣

∣

∣

∣

Ck,α
l,δ;t (V P√

t,
√
t
(y)) , (4.93)

where ∼ means comparable independently of t . Furthermore, using the Hyperkähler
isomorphism Py � XEH induced by f , we can view the connection s(A) over Py as a
connection over XEH, denoted by f∗(s(y)). Then

∣

∣

∣

∣

∣

∣

∣

∣

Lta −
(

sP,
√
t,
√
t

2,t;y
)−1

L p∗XEH f∗(s(y))s
P,
√
t,
√
t

1,t;y a

∣

∣

∣

∣

∣

∣

∣

∣

C0,α
−2,δ;t (V P√

t,
√
t
(y))

≤ c
√
t
∣

∣

∣

∣a
∣

∣

∣

∣

C1,α
−1,δ;t (V P√

t,
√
t
(y)) . (4.94)
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Proof. We first prove Eq. (4.92): for (0, z) ∈ Uε1/t,ε2/t;t the map d(0,z)EP (cf. Equation
(4.89)) is an isometry for the metric t2(gR3 ⊕ g(1)) on T(0,z)(R3 × XEH) and the metric
on TEP (0,z)P induced by gP

t . Because of the scaling factor td+p−q from Eq. (4.99) we
have that

|sP,ε1,ε2
d,t;y a(0, z)|g

R3⊕g(1) = td |a(EP (0, z))|gPt . (4.95)

The map EP is not, in general, an isometry away from this one point, as expy need not
be an isometry. Thus, Eq. (4.95) need not hold in points different from (0, z). However,
using Taylor expansions in a neighbourhood of y in L for a and gP

t we get

∣

∣

∣

∣

∣

∣sP,ε1,ε2
d,t;y a

∣

∣

∣

∣

∣

∣

L∞l+δ(Uε1/t,ε2/t;t )
∼ td+l

∣

∣

∣

∣a
∣

∣

∣

∣

L∞l,δ;t (Vε1,ε2 (y)),g
P
t
.

Now Eqs. (4.37) and Proposition 4.42 give the claim for the metric g̃Nt instead of gP
t ,

which is Eq. (4.92). Equation 4.93 is proved analogously.
Now to prove Eq. (4.94): as in Eq. (4.95), we see that for x ∈ Py , ř(x) < 1/

√
t ,

Ls(A)a(x)−
(

(

sP,
√
t,
√
t

2,t;y
)−1

L p∗XEH
f∗(s(y))s

P,
√
t,
√
t

1,t;y a

)

(x) = 0. (4.96)

And At − s(A) = O(1) on Py , so

∣

∣

∣

∣

∣

∣

∣

∣

Lta −
(

(

sP,
√
t,
√
t

2,t;y
)−1

L p∗XEH
f∗(s(y))s

P,
√
t,
√
t

1,t;y a

)∣

∣

∣

∣

∣

∣

∣

∣

C0,α
−2,δ;t ({u∈Py :ř(u)<1/

√
t})

≤ c
∣

∣

∣

∣[At − s(A), a]∣∣∣∣C0,α
−2,δ;t ({u∈Py :ř(u)<1/

√
t})

≤ c
∣

∣

∣

∣a
∣

∣

∣

∣

C0,α
−1,δ;t ({u∈Py :ř(u)<1/

√
t}) ||At − s(A)||C0,α

−1,0;t ({u∈Py :ř(u)<1/
√
t})

≤ c
√
t
∣

∣

∣

∣a
∣

∣

∣

∣

C0,α
−1,δ;t ({u∈Py :ř(u)<1/

√
t})

≤ c
√
t
∣

∣

∣

∣a
∣

∣

∣

∣

C1,α
−1,δ;t ({u∈Py :ř(u)<1/

√
t})

(4.97)

where in the third step we used At − s(A) = O(1) to estimate the second factor as
√
t .

This was possible because the weight function is bounded by
√
t on {u ∈ Py : ř(u) <

1/
√
t}.

Eq. 4.94 now follows from using Taylor expansions for a, gP
t , and s around y, and

comparing gP
t and g̃Nt as in the proof of Eq. (4.92). ��

We now define sν : let ε1 > 0, ε2 > ε3 > 0, and

V ν
ε1,ε2,ε3;t (y) := {x ∈ ν/{±1} : σ(x) ∈ Im(expy |(−ε1,ε1)3), ε3 < r(x) < ε2},

U ν
ε1/t,ε2/t,ε3/t;t := {(x, z) ∈ R

3 × C
2/{±1} : x ∈ (−ε1/t, ε1/t)

3, ε3/t < |ρ(z)| < ε2/t}.

Just as in the definition of V P
ε1,ε2;t , we implicitly used an identification TyL � R

3 so

that ei is sent to dxi for i ∈ {1, 2, 3}. Recall also the frame f that sends ω̃i to ω̌i |Py for
i ∈ {1, 2, 3} under the isometry XEH � Py induced by f . We see from Eq. (3.13) that
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ωi is sent to ω̂i |νy under the isometry C
2/{±1} � (ν/{±1})y induced by f . For small

ε1, ε2, ε3, the map

Eν : U ν
ε1/t,ε2/t,ε3/t;t → V ν

ε1,ε2,ε3;t (y)
(x, z) �→ Pν

s �→expy(tsx)
( f (z)) ∈ ν/{±1} (4.98)

is a diffeomorphism, where Pν denotes parallel transport in ν with respect to the con-
nection ˜∇ν from Proposition 3.8. Because of our choices of identifications TyL � R

3

and (ν/{±1})y � C
2/{±1} we have that (EP )∗(ϕν

t )(0, z) is the standard G2-structure
on R

3 × C
2/{±1}, for all z ∈ C

2/{±1}, cf. Equation (3.12). We now define sν just as
we defined sP in Eq. (4.99), only exchanging EP for Eν : for a tensor field a of valence
(p, q) on V ν

ε1,ε2,ε3;t (y) set

sν(a) := sν,ε1,ε2,ε3
d,y;t (a) := td+p−q(Eν)∗a. (4.99)

In the following we use the norms from Definition 4.87. So, the notation C0,α
0 does not

mean zero boundary condition, but means that the weight function appears with powers
of 0 and 0 + α in the two summands of the definition ||·||C0,α

0
. We have the following

analogue of Proposition 4.91:

Proposition 4.100. There are constants c > 0 and ε > 0 such that for small t the
following holds: for all ε1, ε2 ∈ (0, ε), ε3 ∈ (t, ε) and for all a ∈ (�0 ⊕�1)(Nt , Et ):

∣

∣

∣

∣

∣

∣w
ν
l,δ;t s

ν,ε1,ε2,ε3
d,t;y a

∣

∣

∣

∣

∣

∣

L∞0 (U ν
ε1/t,ε2/t,ε3/t;t )

∼ td+l
∣

∣

∣

∣a
∣

∣

∣

∣

L∞l,δ;t (V ν
ε1,ε2,ε3

(y)) , (4.101)

∣

∣

∣

∣

∣

∣w
ν
l,δ;t s

ν,ε1,ε2,ε3
d,t;y a

∣

∣

∣

∣

∣

∣

Ck,α
0 (U ν

ε1/t,ε2/t,ε3/t;t )
∼ td+l

∣

∣

∣

∣a
∣

∣

∣

∣

Ck,α
l,δ;t (V ν

ε1,ε2,ε3
(y)) , (4.102)

where ∼ means uniformly comparable in t and

wν
l,δ;t =

{

r−l−δ if r ≤ 1/
√
t

r−l+δtδ if r > 1/
√
t .

Furthermore, using the Hyperkähler isomorphism Py � XEH induced by f , we can
view the connection s(A) over Py as a connection over XEH. By Eqs. (2.15) and (2.17),
this connection is asymptotic to a flat connection, say A0, on the orbifold C

2/{±1} with
monodromy representation ρ. Then

∣

∣

∣

∣

∣

∣

∣

∣

Lta −
(

sν,ε1,ε2,ε3
2,t;y

)−1
L p∗

C2 A0s
ν,ε1,ε2,ε3
1,t;y a

∣

∣

∣

∣

∣

∣

∣

∣

C0,α
−2,δ;t (V ν

ε1,ε2,ε3
(y))

≤ c(ε1 + ε2 + (t/ε3)
2)

∣

∣

∣

∣a
∣

∣

∣

∣

C1,α
−1,δ;t (V ν

ε1,ε2,ε3
(y)) ,

(4.103)

where pC2 : R3 ×C
2/{±1} → C

2/{±1} denotes the projection onto the second factor.
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Proof. Equations (4.101) and (4.102) are proved as in Proposition 4.91.
We now prove Eq. (4.103). Adapting Eq. (4.97) to the area {u ∈ Py : ε3/t < ř(u) <

ε2/t} we get
∣

∣

∣

∣

∣

∣

∣

∣

Lta −
(

(

sP,ε1,ε2
2,t;y

)−1
L p∗XEH

f∗(s(y))s
P,ε1,ε2
1,t;y a

)∣

∣

∣

∣

∣

∣

∣

∣

C0,α
−2,δ;t ({u∈Py :ε3/t<ř(u)<ε2/t})

≤ cε2
∣

∣

∣

∣a
∣

∣

∣

∣

C1,α
−1,δ;t ({u∈Py :ε3/t<ř(u)<ε2/t}) .

(4.104)

We have
∣

∣

∣

∣

∣

∣p∗XEH
f∗(s(y))− A0

∣

∣

∣

∣

∣

∣

C0,α
0;0
= O((ρ ◦ pXEH)

−2) by Eq. (2.17) and the fact that

we use δ = −2 in our definition of moduli space (cf. Proposition 2.19). Thus, for x ∈ Py
with ε3/t < ř(x)t < R,

∣

∣

∣

∣

(

sP,
√
t,
√
t

2,t;y
)−1 [

L p∗XEH
f∗(s(y)) − L p∗XEH

A0

]

sP,
√
t,
√
t

1,t;y a

∣

∣

∣

∣

g̃Nt

(x) ≤ c(t/ε3)
2. (4.105)

Combining Eq. (4.104) and (4.105) we get the desired Eq. (4.103) on Py ∩ V ν
ε1,ε2,ε3

(y).
Equation 4.103 then follows like Eq. (4.94) by taking Taylor expansions around y, and
this time comparing gνt and g̃Nt using Eq. (3.9) and Propositions 3.15, 4.35 and 4.42. ��

4.3.4. Schauder estimate On Y/〈ι〉 we have the estimate
∣

∣

∣

∣a
∣

∣

∣

∣

C1,α ≤ c
(∣

∣

∣

∣Lθa
∣

∣

∣

∣

C0,α +
∣

∣

∣

∣a
∣

∣

∣

∣

L∞
)

from standard elliptic theory, e.g. [Bes87, Section H]. With some additional work, we
get an estimate for weighted norms on R

3 × XEH (see [Wal17, Proposition 8.15]), and
can then glue these two estimates together to obtain:

Proposition 4.106 (Proposition 8.15 in [Wal17]). There exists c > 0 such that for all
t ∈ (0, T ) the following estimate holds:

∣

∣

∣

∣a
∣

∣

∣

∣

C1,α
−1,δ;t

≤ c

(

∣

∣

∣

∣Lta
∣

∣

∣

∣

C0,α
−2,δ;t

+
∣

∣

∣

∣a
∣

∣

∣

∣

L∞−1,δ;t

)

. (4.107)

4.3.5. Estimate of ηt a The following proposition is the crucial ingredient in the con-
struction of solutions to the instanton equation:

Proposition 4.108. There exists a constant c > 0 independent of t such that for t small
enough and for all a ∈ (�0 ⊕�1)(Nt ,Ad Et ) the following estimate holds:

||a||L∞−1,δ;t ≤ c

(

∣

∣

∣

∣Lta
∣

∣

∣

∣

C0,α
−2,δ;t

+
∣

∣

∣

∣π t a
∣

∣

∣

∣

L∞−1,δ;t

)

. (4.109)

Proof. Assume not, then there exist ti → 0 and ai such that
∣

∣

∣

∣ai
∣

∣

∣

∣

L∞−1,δ;ti
≡ 1, (4.110)

lim
i→∞

∣

∣

∣

∣Lti a
∣

∣

∣

∣

C0,α
−2,δ;ti

= 0, (4.111)

lim
i→∞

∣

∣

∣

∣π ti a
∣

∣

∣

∣

L∞−1,δ;ti
= 0. (4.112)
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Fig. 3. Blowup analysis away from the associative is reduced to the analysis of θ on Y

It follows from Proposition 4.106 that
∣

∣

∣

∣ai
∣

∣

∣

∣

C1,α
−1,δ;t

≤ c. (4.113)

Let xi ∈ Nti such that

w−1,δ;t (xi )
∣

∣ai
∣

∣ (xi ) = 1. (4.114)

Without loss of generality we can assume to be in one of three following cases, and we
will arrive at a contradiction in each of them.

Case 1. “ai goes to zero near L and on the neck”, i.e. if zi ∈ Nti such that rti (zi )→ 0,
then w−1,δ;t (zi )

∣

∣ai
∣

∣ (zi )→ 0.
Without loss of generality, the sequence (xi ) accumulates away from L , i.e. limi→∞ rti (xi ) >
0 (see Fig. 3).
Without loss of generality assume that xi → x∗ ∈ Y/〈ι〉, where we used that (Y\L)/〈ι〉 ⊂
Nti , cf. Definition 3.27. Now, using a diagonal argument and the Arzelà-Ascoli theorem,
we find that a subsequence of ai converges to a limit a∗ ∈ �1((Y \ L)/〈ι〉,Ad E0) in

C1,α/2
loc . Denote by πι : Y → Y/〈ι〉 the quotient map, and denote by x̃i an arbitrary lift

of xi , i.e. πι(̃xi ) = xi . By passing to a subsequence we still have x̃i → x̃∗ for some
x̃∗ ∈ Y . Denote also ã∗ := π∗ι a∗ ∈ (�0 ⊕�1)(Ad E0|Y\L).
Equation (4.111) implies that this limit satisfies Lθ ã∗ = 0 on Y\L . We can extend
ã∗ to all of Y as a distribution, and we find that then Lθ ã∗ = 0 on Y in the sense
of distributions. By elliptic regularity, e.g. [Fol95, Theorem 6.33], we have that ã∗ is
smooth.
Lastly, we note that Eq. (4.114) implies ã∗(̃x∗) �= 0. By assumption, θ is infinitesimally
rigid and irreducible, which is a contradiction.

Case 2. “The sequence does not go to zero near L”, i.e. there exists yi ∈ Nti such that
t−1
i rti (yi ) is bounded, but w−1,δ;t (yi )

∣

∣ai
∣

∣ (yi ) � 0.
Without loss of generality assume that this is the sequence (xi ), i.e. limi→∞ t−1

i rti (xi ) <∞ (see Fig. 4).
For ai = (ξi , ai ) ∈ (�0 ⊕�1)(Nt ,Ad Et ), let

bi :=
(

s
P,
√
ti ,
√
ti

1,σ (xi );ti (ξi ), s
P,
√
ti ,
√
ti

1,σ (xi );ti (ai )
)

.

Proposition 4.91 then gives

∣

∣

∣

∣bi
∣

∣

∣

∣

C1,α
−1+δ(U

P
1/
√
ti ,1/

√
ti
)
≤ c and lim

i→∞

∣

∣

∣

∣

∣

∣L p∗XEH
f∗s(σ (xi ))bi

∣

∣

∣

∣

∣

∣

C0,α
−2+δ

= 0.
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Fig. 4. Blowup analysis near the associative is, by means of the map sP , reduced to the analysis of the
pull-back of the ASD instanton defined by s(σ (y∗)) to R

3 × XEH

Fig. 5. Blowup analysis in the neck region is reduced to the analysis of the flat G2-instanton defined on the
pull-back of the framing at infinity defined by s(σ (y∗)) to R

3 × R
4

Without loss of generality we can assume σ(xi )→ y∗ ∈ L . By a diagonal argument and
the Arzelà-Ascoli theorem, we havebi → b∗ ∈ (�0⊕�1)(R3×XEH,Ad p∗XEH

f∗s(σ (y∗)))
in C1,α/2

loc , satisfying L p∗XEH
f∗s(σ (y∗))b

∗ = 0. Proposition 4.88 implies that b∗ = p∗XEH
c,

for some c ∈ Ker δ f∗s(σ (y∗) ⊂ �1(XEH, f∗s(σ (y∗))). (Here, δ is the linearisation of the
ASD equation as defined in Eq. (2.24).) Equation (4.112) then implies that c = 0.
This contradicts Eq. (4.114) as follows: denote by (zi ) ⊂ R

3 × XEH the sequence

corresponding to (xi ) under the map s
√
t,1/
√
t

1,ti ;σ(xi ). Then (zi ) is a bounded sequence, as the

R
3-coordinate of all zi is 0, and the XEH-coordinates are bounded by the assumption

that limi→∞ t−1
i rti (xi ) <∞. Thus we can assume without loss of generality that zi →

z∗ ∈ R
3 × XEH, and find that

w(z∗)1−δ ∣
∣b∗(z∗)

∣

∣ = lim
i→∞wν

l,δ;t (zi )
1−δ ∣

∣bi (zi )
∣

∣ ≥ 1

c

by Proposition 4.91, which is a contradiction to b∗ = 0.

Case 3. “The sequence does not go to zero on the neck”, i.e. there exists yi ∈ Nti such
that rti (yi )→ 0, t−1

i rti (yi )→∞, but w−1,δ;t (yi )
∣

∣ai
∣

∣ (yi ) � 0.

Assume without loss of generality that this is the sequence (xi ), i.e. limi→∞ t−1
i rti (xi ) =∞ and limi→∞ rti (xi ) = 0 (see Fig. 5).

Let

• ε
(i)
2 such that ε(i)2 → 0 and ε

(i)
2 /rti (xi )→∞,

• ε
(i)
3 such that ε(i)3 /rti (xi )→ 0 and ε

(i)
3 /ti →∞.
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To ease notation, we write ε2 instead of ε
(i)
2 and ε3 instead of ε

(i)
3 in what follows. As

before, write ai = (ξi , ai ) ∈ (�0 ⊕�1)(Nt ,Ad Et ), and set

bi := (ζi , bi ) :=
(

s
ν,
√
ti ,ε2,ε3

1,σ (xi );ti (ξi ), s
ν,
√
ti ,ε2,ε3

1,σ (xi );ti (ai )
)

and denote by (zi ) the sequence in R
3 ×C

2/{±1} corresponding to (xi ) under the map

s
ν,
√
ti ,ε2,ε3

1,σ (xi );ti . Equation (4.114) implies

|bi (zi )| · w(zi ) > c, (4.115)

Proposition 4.100 and Eq. (4.113) imply that
∣

∣

∣

∣

∣

∣w
ν
l,δ;t s

ν,ε1,ε2,ε3
d,t;y a

∣

∣

∣

∣

∣

∣

C1,α
0 (U ν

1/
√
t,ε2/t,ε3/t;t

)
≤ c, (4.116)

Proposition 4.100 and Eq. (4.111) imply that
∣

∣

∣

∣

∣

∣w
ν
l,δ;t L p∗XEH

A0s
ν,ε1,ε2,ε3
1,t;y a

∣

∣

∣

∣

∣

∣

C1,α
0 (U ν

1/
√
t,ε2/t,ε3/t;t

)
→ 0 as i →∞. (4.117)

We will now conclude the argument as in case 2. The only difference is that, as it stands,
the points zi tend to infinity. Because of this, we cannot directly conclude that a limit of
bi would be non-zero. That is why we rescale by |zi | first. By passing to a subsequence
we can assume without loss of generality to be in case 3.1 or 3.2 as below:

Case 3.1.: |zi | ≤ 1/
√
ti . In this case let

˜bi := (˜ζi ,˜bi ) :=
(

|zi |1−δ(·|zi |)∗ζi , |zi |−δ(·|zi |)∗bi
)

. (4.118)

Equation (4.115) implies |˜bi (zi/|zi |)|·r1−δ(zi/|zi |) = |˜bi (zi/|zi |)| > c, and Eq. (4.116)
implies that on the sets B3(0, 1/

√
t) × [B4(0, ε2/|xi |)\B4(0, ε3/|xi |)], which exhaust

R
3 × (C2/{±1}\{0}), we have:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

{

˜bir
1−δ if r ≤ 1/(

√
t · |zi |)

˜bir
1+δtδ|zi |2δ if r > 1/(

√
t · |zi |).

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C1,α
0 (B3(0,1/

√
t)×[B4(0,ε2/|xi |)\B4(0,ε3/|xi |)])

≤ c.

(4.119)

Here is how to arrive at the exponents of the weight function for˜ζi in the area {(u, v) ∈
R

3 × C
2/{±1} : r(v) > 1/(

√
t · |zi |)}:

˜ζi r
1+δtδ|zi |2δ = (·|zi |)∗ζi |zi |1+δr1+δtδ

= (·|zi |)∗
[

ζi r
1+δtδ

]

,

and ζi r1+δtδ was bounded by Eq. (4.116). The exponents of the weight function on the
area {(u, v) ∈ R

3 × C
2/{±1} : r(v) > 1/(

√
t · |zi |)} and also for the 1-form part ˜bi

are computed analogously and precisely give Eq. (4.119). Now, because of Eq. (4.119),
we can use the Arzelà-Ascoli theorem and a diagonal sequence argument to extract
a limit b∗ on R

3 × (C2/{±1}\{0}). We denote the pullback under the quotient map
R

3 × (C2\{0})→ R
3 × (C2/{±1}\{0}) by the same symbol and end up with a tensor
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b∗ on R
3 × (C2\{0}). Again, by passing to a subsequence we can assume without loss

of generality that we are in one of the following two cases:

Case 3.1.1:
√
ti |zi | → 0 as i →∞.

In this case, the area {u ∈ R
3 ×C

2/{±1} : r(u) > 1/(
√
t · |zi |)} disappears as i →∞,

and from Eq. (4.119) we get the estimate
∣

∣

∣

∣

∣

∣b∗r1−δ
∣

∣

∣

∣

∣

∣

C1,α/2
0 (R3×(R4\{0})) ≤ c. (4.120)

The element b∗ defines a distribution on all of R
3×C

2 and is smooth by elliptic regularity,
e.g. [Fol95, Theorem 6.33]. We also get an L∞-bound for b∗ as in the proof of [Wal13a,
Proposition 8.7]: away from R

3 × {0}, this is given by Eq. (4.120). To see that b∗
does not blow up in the R

3-direction near R
3 × {0}, consider any y ∈ R

3 × {0}. Let
1 < p < −4/(−1 + δ), then

∣

∣

∣

∣b∗
∣

∣

∣

∣

L p(B1(y))
≤ c, independent of y, by Eq. (4.120). So,

by elliptic regularity
∣

∣

∣

∣b∗
∣

∣

∣

∣

L p
m (B1(y))

≤ c for any m ∈ N, and by the Sobolev embedding

we have
∣

∣

∣

∣b∗
∣

∣

∣

∣

L∞ ≤ c, where all of these estimates were independent of y.
Thus, by Proposition 4.88 applied to the case ˜X = C

2, we get that b∗ is independent of
the R

3-direction. Because of Eq. (4.86) we have that b∗ is the pullback of a harmonic
form of mixed degree (in degrees 0 and 1) on C

2. So, b∗ is harmonic and bounded on C
2

by Eq. (4.120), therefore vanishes by Liouville’s theorem. That contradicts Eq. (4.115).

Case 3.1.2:
√
ti |zi | → κ ∈ (0,∞) as i →∞.

In this case, after passing to a subsequence, Eq. (4.119) gives the estimate
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

{

b∗r1−δ if r ≤ 1/κ
b∗r1+δ if r > 1/κ.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C1,α
0 (R3×(C2\{0})

≤ c. (4.121)

Here is how to obtain this estimate: the assumption
√
ti |zi | → κ implies that

√
ti |zi | > c,

at least up to a subsequence. Thus, we have tδ · |zi |2δ < c, and Eq. (4.119) becomes
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

{

˜bir
1−δ if r ≤ 1/(

√
t · |zi |)

˜bir
1+δ if r > 1/(

√
t · |zi |).

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C1,α
0 (B3(0,1/

√
t)×[B4(0,ε2/|xi |)\B4(0,ε3/|xi |)])

≤ c.

Here, taking the limit i →∞ gives Eq. (4.121). In this case, we arrive at a contradiction
as in case 3.1.1.

Case 3.2.: |zi | > 1/
√
ti . In this case let

˜bi := (˜ζi ,˜bi ) :=
(

tδ|zi |1+δ(·|zi |)∗ζi , tδ|zi |δ(·|zi |)∗bi
)

. (4.122)

This gives us the following analogue of Eq. (4.119):
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

{

˜bir
1−δt−δ|zi |−2δ if r ≤ 1/(

√
t · |zi |)

˜bir
1+δ if r > 1/(

√
t · |zi |).

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C1,α
0 (B3(0,1/

√
t)×[B4(0,ε2/|xi |)\B4(0,ε3/|xi |)])

≤ c. (4.123)

We can extract a limit b∗ as in case 3.1 and are, without loss of generality, in one of the
following two cases:
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Case 3.2.1:
√
ti · |zi | → ∞ as i →∞. In this case we have the estimate

∣

∣

∣

∣

∣

∣b∗r1+δ
∣

∣

∣

∣

∣

∣

C1,α/2
0 (R3×(R4\{0})) ≤ c (4.124)

and arrive at a contradiction as in case 3.1.1.

Case 3.2.2:
√
ti · |zi | → κ ∈ (0,∞) as i →∞. In this case we have exactly Eq. (4.121)

and can conclude the proof as in case 3.1.2. ��

4.3.6. Cross-term estimates In the beginning of Sect. 4.3 we explained the idea for the
proof of the linear estimate. Namely, we want to separately consider two parts of the
linearisation of the instanton equation: the first part near the resolution locus of the
associative L , which is approximately equal to the linearisation of the Fueter equation.
The second part is the linearised operator modulo deformations of the Fueter section.
These parts were estimated in Sects. 4.3.2 and 4.3.5.
However, it is not true that the linearised instanton operator neatly decomposes as a sum
of these two operators. We can take a deformation of the Fueter section, apply Lt to it,
and then project it onto the part that does not come from a deformation of the Fueter
section. In an ideal world, Lt near the resolution locus of the associative is exactly equal
to the linearisation of the Fueter equation and the result is 0. In reality, we do not have
that the result is 0, but we have that it is small. That is Eq. (4.126). There is also, roughly
speaking, the converse of this, which is Eq. (4.127).
Like the results from Sect. 4.3.2, this proposition has been proved in a slightly different
setting in [Wal17]. Again, the proof given therein carries over to our situation if we only
have that ˜ψN

t −ψ P
t is small, which is true on resolutions of T 7/� by Proposition 4.38

and Theorem 3.2.

Proposition 4.125 (Proposition 8.29 in [Wal17]). Let Nt be the resolution of T 7/�

from Sect.3.1. There exists a constant c > 0 such that for all t ∈ (0, T ) we have

||ηt Lt ιtv||C0,α
−2,0;t

≤ ct2−α ||v||C1,α (4.126)

as well as
∣

∣

∣

∣πt Ltηt a
∣

∣

∣

∣

C0,α ≤ ct−α
∣

∣

∣

∣ηt a
∣

∣

∣

∣

C1,α
−1,0;t

. (4.127)

4.3.7. Proof of Proposition 4.78

Proof. Assume that the claim does not hold, and let ti → 0, ai ∈ (�0⊕�1)(Nt ,Ad Et )

such that
∣

∣

∣

∣ai
∣

∣

∣

∣

Xt
= 1, but

∣

∣

∣

∣Ltai
∣

∣

∣

∣

Yt
→ 0.

We first prove that

t−δ/2
i

∣

∣

∣

∣ηti ai
∣

∣

∣

∣

C1,α
−1,δ;ti

→ 0. (4.128)

We have that

∣

∣

∣

∣ηti ai
∣

∣

∣

∣

C1,α
−1,δ;ti

≤ ∣

∣

∣

∣Lti ηti ai
∣

∣

∣

∣

C0,α
−2,δ;ti

≤ ∣

∣

∣

∣ηti Lti ηti ai
∣

∣

∣

∣

C0,α
−2,δ;ti

+
∣

∣

∣

∣π ti Lti ηti ai
∣

∣

∣

∣

C0,α
−2,δ;ti
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≤ ∣

∣

∣

∣ηti Lt a
∣

∣

∣

∣

C0,α
−2,δ;ti

+
∣

∣

∣

∣ηti Ltiπ ti ai
∣

∣

∣

∣

C0,α
−2,δ;ti

+
∣

∣

∣

∣π ti Lti ηti ai
∣

∣

∣

∣

C0,α
−2,δ;ti

≤ ∣

∣

∣

∣ηti Lt a
∣

∣

∣

∣

C0,α
−2,δ;ti

+ ||1||
C0,α

0,δ;ti

∣

∣

∣

∣ηti Ltiπ ti ai
∣

∣

∣

∣

C0,α
−2,0;ti

+ t1−α
∣

∣

∣

∣πti Lti ηti ai
∣

∣

∣

∣

C0,α

≤ c

(

∣

∣

∣

∣ηti Lt a
∣

∣

∣

∣

C0,α
−2,δ;ti

+ ctδ/2t2−α
∣

∣

∣

∣πt ai
∣

∣

∣

∣

C1,α + t1−2α ∣

∣

∣

∣ηti ai
∣

∣

∣

∣

C1,α
−1,0;t

)

≤ c

(

∣

∣

∣

∣ηti Lt a
∣

∣

∣

∣

C0,α
−2,δ;ti

+ O(tδ/2+1−α) + O(t1−2α+δ/2)

)

where we used Proposition 4.108 in the first step; we used π ti +ηti = 1 in the second and
third steps; Propositions 4.22 and 4.66 in the fourth step; and Proposition 4.125 together
with ||1||C0,α

0,δ;ti
≤ ctδ/2 in the fifth step. Multiplying the last line with t−δ/2

i , the last two

summands tend to zero as they are bounded by positive powers of t . The first summand
tends to zero by the assumption

∣

∣

∣

∣Ltai
∣

∣

∣

∣

Yt
→ 0.

It remains to prove that

ti
∣

∣

∣

∣πti ai
∣

∣

∣

∣

C1,α → 0. (4.129)

We have that

lim
i→∞ ti

∣

∣

∣

∣πti ai
∣

∣

∣

∣

C1,α ≤ lim
i→∞ ti

∣

∣

∣

∣πti Lti ιtiπti ai
∣

∣

∣

∣

C0,α

≤ lim
i→∞ ti

(∣

∣

∣

∣πt Lta
∣

∣

∣

∣

C0,α +
∣

∣

∣

∣πt Ltηt a
∣

∣

∣

∣

C0,α

)

≤ lim
i→∞ ti

(

∣

∣

∣

∣πt Lta
∣

∣

∣

∣

C0,α + ct−α
∣

∣

∣

∣ηt a
∣

∣

∣

∣

C1,α
−1,0;t

)

.

where we used Proposition 4.82 in the first step, π ti + ηti = 1 in the second step, Propo-
sition 4.125 in the third step. Here, the second summand tends to zero by Eq. (4.128),
and the first summand tends to zero by the assumption

∣

∣

∣

∣Ltai
∣

∣

∣

∣

Yt
→ 0. Altogether,

∣

∣

∣

∣ai
∣

∣

∣

∣

Xt
→ 0, which is a contradiction. ��

4.4. Quadratic estimate We state an estimate for the quadratic form Qt from Eq.
(4.62), where we denote its associated bilinear form by the same symbol. This statement
is taken from [Wal17] and the proof can be directly adapted to our slightly different
setting.

Proposition 4.130 (Proposition 9.1 in [Wal17]). There exists a constant c > 0 such that
for t ∈ (0, 1) we have

∣

∣

∣

∣ηt Qt (a1, a2)
∣

∣

∣

∣

C0,α
−2,δ;t

≤ ct−α
(

∣

∣

∣

∣ηt a1

∣

∣

∣

∣

C0,α
−1,δ;t

· ∣∣∣∣ηt a2

∣

∣

∣

∣

C0,α
−1,δ;t

+
∣

∣

∣

∣ηt a1

∣

∣

∣

∣

C0,α
−1,δ;t

· ∣∣∣∣πt a2

∣

∣

∣

∣

C0,α

+
∣

∣

∣

∣πt a1

∣

∣

∣

∣

C0,α ·
∣

∣

∣

∣ηt a2

∣

∣

∣

∣

C0,α
−1,δ;t

+
∣

∣

∣

∣πt a1

∣

∣

∣

∣

C0,α ·
∣

∣

∣

∣πt a2

∣

∣

∣

∣

C0,α

)

(4.131)
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and

t
∣

∣

∣

∣πt Qt (a1, a2)
∣

∣

∣

∣

C0,α

≤ ct−α
(

∣

∣

∣

∣ηt a1

∣

∣

∣

∣

C0,α
−1,δ;t

· ∣∣∣∣ηt a2

∣

∣

∣

∣

C0,α
−1,δ;t

+
∣

∣

∣

∣ηt a1

∣

∣

∣

∣

C0,α
−1,δ;t

· ∣∣∣∣πt a2

∣

∣

∣

∣

C0,α

+
∣

∣

∣

∣πt a1

∣

∣

∣

∣

C0,α ·
∣

∣

∣

∣ηt a2

∣

∣

∣

∣

C0,α
−1,δ;t

+ t
∣

∣

∣

∣πt a1

∣

∣

∣

∣

C0,α ·
∣

∣

∣

∣πt a2

∣

∣

∣

∣

C0,α

)

.

(4.132)

4.5. Deforming to genuine solutions In this subsection we will complete the construc-
tion of G2-instantons and show that in two favourable situations the G2-instanton θ and
the Fueter section s can be glued together to a G2-instanton on Nt . The favourable
situations are:

1. The Fueter section is a section of rigid ASD-instantons (cf. Theorem 4.133). This
implies, in particular, that the Fueter section is infinitesimally rigid. In this case the
map πt from Definition 4.63 is just the zero map, which leads to better estimates of
the quadratic part Qt of the instanton equation.

2. We are in the special situation of Eq. (4.59), where we resolved the orbifold T 7/�.

The main reason we are confined to these two favourable scenarios is the following: in
Corollaries 4.55 and 4.58 we proved a pregluing estimate with a good power of t1/18

in the general case and a good power of t2 in the case of T 7/�, roughly speaking. In
Proposition 4.130 we stated an estimate for the quadratic part of the instanton operator
which in particular implies

∣

∣

∣

∣Qt (a1, a2)
∣

∣

∣

∣

Y
≤ t−2−α−δ/2

∣

∣

∣

∣a1

∣

∣

∣

∣

X

∣

∣

∣

∣a2

∣

∣

∣

∣

X
.

To apply the inverse function theorem, we would need the bad power t−2−α−δ/2 from
this estimate to be absorbed by the good power from the pregluing estimate, but the
pregluing estimate is only good enough to do this in the case of the orbifold T 7/�. If the
Fueter section is actually the constant section of a rigid ASD-instanton, then we have a
better estimate for the quadratic part of the instanton equation.

Theorem 4.133. Assume that the section s is given by a rigid ASD-instanton in every
point x ∈ L, and assume that the connection θ used to define the approximate G2-
instanton At from Proposition 4.28 is infinitesimally rigid.
There exists c > 0 such that for small t there exists at = (at , ξt ) ∈ C1,α(�0 ⊕
�1(Ad Et )) such that ˜At := At + at is a G2-instanton. Furthermore, at satisfies
∣

∣

∣

∣at
∣

∣

∣

∣

C1,α
−1,δ;t

≤ ct1/18.

Theorem 4.134. Let N → Y ′ be the resolution of the orbifold Y ′ = T 7/� from before.
Assume that the connection θ used to define the approximate G2-instanton At from
Proposition 4.28 is infinitesimally rigid and that s is an infinitesimally rigid Fueter
section.
There exists c > 0 such that for small t there exists an at = (at , ξt ) ∈ C1,α(�0 ⊕
�1(Ad Et )) such that ˜At := At + at is a G2-instanton. Furthermore, at satisfies
∣

∣

∣

∣at
∣

∣

∣

∣

Xt
≤ ct2−2α .

The proof of the theorems will use the following lemma:
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Lemma 4.135 (Lemma 7.2.23 in [DK90]). Let X be a Banach space and let T : X → X
be a smooth map with T (0) = 0. Suppose there is a constant c > 0 such that

||T x − T y|| ≤ c(||x || + ||y||) ||x − y|| .
Then if y ∈ X satisfies ||y|| ≤ 1

10c , there exists a unique x ∈ X with ||x || ≤ 1
5c solving

x + T x = y.

The unique solution satisfies ||x || ≤ 2 ||y||.
Proof of Theorem 4.133. In the case that s is a section of rigid ASD instantons, we have
that the projection map πt is zero. Therefore, Propositions 4.106 and 4.108 give

∣

∣

∣

∣a
∣

∣

∣

∣

C1,α
−1,δ;t

≤ c
∣

∣

∣

∣Lta
∣

∣

∣

∣

C0,α
−2,δ;t

. (4.136)

This means that

Lt : C1,α((�0 ⊕�1)(Nt ,Ad Et ))→ C0,α((�0 ⊕�1)(Nt ,Ad Et ))

is injective. Because Lt is formally self-adjoint, it is also bijective. Denote its inverse by
L−1
t . Furthermore, using πt = 0, and therefore ηt = Id, Proposition 4.130 gives

∣

∣

∣

∣Qt (a1, a2)
∣

∣

∣

∣

C0,α
−2,δ;t

≤ ct−α
∣

∣

∣

∣a1

∣

∣

∣

∣

C0,α
−1,δ;t

· ∣∣∣∣a2

∣

∣

∣

∣

C0,α
−1,δ;t

. (4.137)

Set Tt := Qt ◦ L−1
t . We then have

∣

∣

∣
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∣
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(
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+
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)

,

where we used Eq. (4.137) in the first inequality and Eq. (4.136) in the last inequality.
For et we have

||et ||C0,α
−2,0;t

≤ ct1/18

by Corollary 4.55. For small t , we have that t1/18 <
(

t−α+δ/2
)−1

due to our choices
of α and δ in Definition 4.19. Thus, by applying Lemma 4.135 to the map Tt , we get
a solution bt to the equation bt + Tt (bt ) = −et for small t , satisfying the estimate
∣

∣

∣

∣bt
∣

∣

∣

∣

C0,α
−2,0;t

≤ ct1/18.

Letting at := L−1
t (bt ), this means precisely Lt (at ) + Qt (at ) = −et , so ˜At = At + at is

a G2-instanton, and at satisfies
∣

∣

∣

∣at
∣

∣

∣

∣

C1,α
−1,δ;t

≤ ct1/18 by Eq. (4.136), which proves the

claim. ��
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Proof of Theorem 4.134. As in the proof of Theorem 4.133, set Tt := Qt ◦ L−1
t . Then
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Here we used Proposition 4.130 in the third step, and Proposition 4.78 in the second to
last step.
We have

||et ||Yt
≤ ct2−α,

by Corollary 4.58. Applying Lemma 4.135 as in the proof of Theorem 4.133 shows the
claim. ��
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5. Examples

5.1. Examples on the resolution of T 7/� In [Joy96], many examples of finite groups
� acting on T 7 and resolutions of the resulting G2-orbifolds T 7/� are explained. In
[Wal13a], G2-instantons on these resolutions were constructed. These examples can
immediately be reproduced using Theorem 4.134 by choosing locally constant Fueter
sections. However, Theorem 4.134 is more general in two ways.

1. It allows non-constant Fueter sections, as long as they are rigid. However, we found
no example of such Fueter sections.

2. It allows θ to have non-trivial monodromy along L . Previously, no such examples
have been constructed. Making use of Theorem 4.134, we now explain a large number
of examples in the simplest case of the Generalised Kummer Construction.

Consider the group � = 〈α, β, γ 〉 acting on T 7 defined by

α : (x1, . . . , x7) �→ (x1, x2, x3,−x4,−x5,−x6,−x7),

β : (x1, . . . , x7) �→ (x1,−x2,−x3, x4, x5,
1

2
− x6,−x7),

γ : (x1, . . . , x7) �→ (−x1, x2,−x3, x4,
1

2
− x5, x6,

1

2
− x7).

(5.1)

The singular set S ⊂ T 7/� consists of 12 copies of T 3. Let p : R
7 → T 7/� be the

quotient map. Then, p−1(T 7/� \ S) ⊂ R
7 is a universal cover of T 7/� \ S and we

can identify the orbifold fundamental group of T 7/� with the deck transformations of
p−1(T 7/� \ S), namely

πorb
1 (T 7/�) = π1(T

7/� \ S) = 〈α, β, γ, τ1, . . . , τ7〉,
whereα, β, γ are the maps from Eq. (5.1) but viewed as maps on R

7 by abuse of notation,
and τi is a translation by 1 in the i th coordinate of R

7 for each i ∈ {1, . . . , 7}. These
generators satisfy several relations (as observed in [Ma23, Example 6.2]), where the
important ones for us are:

[α, β] = τ−1
6 , [α, γ ] = τ−1

5 τ−1
7 , [β, γ ] = τ−1

7 . (5.2)

Let

a = diag(1,−1,−1), b = diag(−1, 1,−1),

c = diag(−1,−1, 1), Z
2
2
∼= 〈a, b, c〉 ⊂ SO(3).

A representation ρ : πorb
1 (T 7/�) → 〈a, b, c〉 induces a flat connection θ on a bundle

E0 over T 7/�. By Eq. (5.2), a representation ρ is uniquely determined by specifying
its value on α, β, γ, τ1, τ2, τ3, τ4.
For any such choice we can carry out our pre-gluing construction as follows. Let A0 be
the product connection on the trivial SO(3)-bundle over Eguchi–Hanson space and M0
its moduli space, which is just a single point. Then, for a T 3 ⊂ T 7/� in the fixed point
set of an element in � \ {Id} which is mapped to Id ∈ SO(3), the bundle

Fr×(E0|T 3)×U(2)×G M0

over T 3 has as its fibre a single point, so there exists a parallel section, which is in
particular a Fueter section.



81 Page 54 of 63 D. Platt

Likewise, let A0,1 be the ASD instanton over XEH from Proposition 2.32. This is defined
on a U(1)-bundle and we view it as a reducible SO(3)-connection, and denote its moduli
space by M0,1. This connection has non-trivial holonomy ρ0,1 : Z2 → SO(3) at infinity,
thus Gρ0,1 � G. For each copy of T 3 fixed by an element in � \ {Id} which is mapped
to a non-identity element in SO(3) we find that

Fr×(E0|T 3)×U(2)×Gρ0,1
M0,1

is again a bundle whose fibre is a single point, so we again have a Fueter section.
We chose a moduli bundle of connections over the singularities coming from α, β, and
γ matching the monodromy of θ given by ρ. For example, if ρ(α) = Id, we chose the
moduli bundle of trivial connections Fr×(E0|T 3)×U(2)×G M0 over fix(α). Because of
this, the compatibility condition from Assumption 4.1 is satisfied.
If θ is irreducible and infinitesimally rigid, then Theorem 4.134 guarantees the existence
of an irreducible G2-instanton with structure group SO(3) on the resolution of T 7/�.
We have the following criterion to check if θ is irreducible and/or rigid:

Proposition 5.3 (Proposition 9.2 in [Wal13a]). A flat connection θ on a G-bundle E
over a flat G2-orbifold Y0 corresponding to a representation ρ : πorb

1 (Y0) → G is
irreducible (resp. unobstructed or, equivalently, infinitesimally rigid) if and only if the
induced representation of πorb

1 (Y0) on g (resp. R
7 ⊗ g) has no non-zero fixed vectors.

Here, the action on g is ρ composed with the adjoint representation, and the action on
R

7 is given by identifying R
7 ∼= Tx (T 7/�) for any fixed x ∈ T 7/� and then acting by

parallel transport with respect to the Levi-Civita connection of the flat metric.

In our case, one checks that there are no non-zero vectors in so(3) or R
7 ⊗ so(3)

fixed by πorb
1 (T 7/�), if at least two of the elements τ1, . . . , τ7 are sent to different non-

identity elements in 〈a, b, c〉. Thus, the connection θ is irreducible and infinitesimally
rigid in this case by Proposition 5.3. The number of flat connections which do not satisfy
this condition is

43 · (24 · 3− 2).

Here, we got the factor 43 for the choice of different values for ρ on α, β, γ . The term
24 · 3 is the number of choices of values for ρ on τ1, . . . , τ7 contained in {Id, a} or
{Id, b} or {Id, c}. However, we triple counted the choice ρ(τ1) = · · · = ρ(τ7) = Id, so
overall we get the factor (27 · 3− 2). Thus, we have 47 − 43 · (24 · 3− 2) = 13440 flat
connections to which Theorem 4.134 can be applied, and we get this many G2-instantons
on the resolution of T 7/�.
Among these, there are 210 choices forρ giving rise to a flatG2-instanton on the resolved
manifold, namely when the α, β, γ are all sent to the identity. Thus, we are left with
13440 − 210 = 13230 novel, non-flat examples of G2-instantons on the resolution of
T 7/�.
This number contains gauge equivalent G2-instantons, and we compute the number
of different connections up to gauge equivalence as in [GPTW23, Remark 7.12]: as
Im(ρ) ⊆ 〈a, b, c〉 ⊂ SO(3) contains at least two non-identity elements, the stabiliser of
ρ in Aut(〈a, b, c〉) ∼= S3 is trivial. Hence, this number contains six gauge equivalence
classes of each connection, and the number of newG2-instantons up to gauge equivalence
is 13230/6 = 2205.

Corollary 5.4. Let � act on T 7 as defined in Eq. (5.1) and let N ′t denote the one param-
eter family of resolutions of T 7/� from Sect.3.1. Then, for t small enough, there exist
2205 non-flat, irreducible G2-instantons with structure group SO(3) over N ′ which are
pairwise not gauge equivalent.
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5.2. An example coming from a stable bundle

5.2.1. Review of the resolution of (T 3×K3)/� Recall the G2-manifold constructed in
[JK21, Section 7.3]: consider the sextic

C = {[z0, z1, z2] ∈ CP
2 : z6

0 + z6
1 + z6

2 = 0} ⊂ CP
2

and let π : X → CP
2 be the double cover of CP

2 branched over C . Then X is a complex
K3 surface with a Hyperkähler triple of Kähler forms ωI , ωJ , ωK , cf. [Huy16, Example
1.3]. On X we can define the following two maps: first, the map α : X → X which
swaps the two sheets of the branched cover. Second, there are two lifts X → X of the
complex conjugation map σ : CP

2 → CP
2. One of these two lifts acts freely on X , the

other one does not. Denote the lift that does not act freely on X by β : X → X , which
has fix(β) = π−1(RP

2) � S2. The Hyperkähler triple ωI , ωJ , ωK can be chosen to
satisfy

α∗ωI = ωI , α∗ωJ = −ωJ , α∗ωK = −ωK ,

β∗ωI = −ωI , β∗ωJ = ωJ , β∗ωK = −ωK .

Let α, β act on T 3 via

α(x1, x2, x3) = (x1,−x2,−x3), β(x1, x2, x3) =
(

−x1, x2,
1

2
− x3

)

.

Denote � = 〈α, β〉. Then α, β : T 3 × X → T 3 × X preserve the product G2-structure
ϕ on T 3 × X defined by equation Eq. (2.11). Furthermore, fix(α) = 4 · (S1 × C),
fix(β) = 4·(S1×S2), where the S2-factors are the double cover of fix(σ ) = RP

2 ⊂ CP
2.

Therefore, L = fix(α) ∪ fix(β) admits a nowhere vanishing harmonic 1-form, namely
the parallel 1-form in the S1-direction of each component. Thus, this orbifold is of the
type considered in Sect. 3 and its resolution Nt → (T 3 × X)/� admits a 1-parameter
family of G2-structures with small torsion, inducing metrics gt , which can be perturbed
to torsion-free G2-structures inducing metrics g̃t .

5.2.2. A connection on the orbifold (T 3 × K3)/� coming from a stable bundle The
tangent bundle E of CP

2 is a complex vector bundle of rank 2, which has an associated
SO(3) = PU(2)-bundle F . The Levi-Civita connection on E is a Hermite-Einstein
connection and induces an ASD instanton on F , denoted by A. We denote the standard
Kähler structure on CP

2 by (J, g = gFS, ω), where gFS is the Fubini-Study metric. The
pullback π∗A is then an ASD instanton on the bundle π∗F over (X, π∗g), but it need
not be ASD with respect to the Calabi–Yau metric on X . We will show in Corollary 5.6
that π∗F also carries an instanton with respect to the Calabi–Yau metric.

Proposition 5.5 (Lemma 9.1.9 in [DK90]). The bundle π∗E is stable with respect to
ω.

Corollary 5.6. The bundle π∗E is stable with respect to the Calabi–Yau Kähler form
ωI .
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Proof of Corollary 5.6. Denote by ω̂ = π∗ω the pullback of the Kähler form for the
Fubini-Study metric on CP

2 to X . By Yau’s proof of the Calabi conjecture we have that
ωI = ω̂ + i∂∂φ for some φ : X → R. In particular, ωI and ω̂ are in the same de Rham
cohomology class.
By Proposition 5.5, π∗E is stable with respect to ω. The Kähler form enters into the
definition of stability only through the definition of slope. But slopes do not change
when switching between ωI and ω̂ as they are in the same cohomology class. Thus π∗E
is also stable with respect to ωI . ��
We also have the following:

Corollary 5.7 (p. 348 in [DK90]). Denote by πF : F → CP
2 the SO(3)-bundle over

CP
2 from Sect.5.2.2. Let π : X → CP

2 be the branched double cover from Sect.5.2.1
with Calabi–Yau metric ĝ. Then the bundle

F̂ = π∗F = {(x, u) ∈ X × F : πF (u) = π(x)} (5.8)

admits an infinitesimally rigid and unobstructed ASD instanton Â with respect to ĝ.

Pulling back (F̂, Â) under the projection onto the second factor, p : T 3 × X →
X , gives a bundle with G2-instanton by Example 2.41. Denote the bundle by E0 and
the connection by θ . The connection Â was infinitesimally rigid, and the following
proposition, which is proved like Proposition 4.88, implies that θ is infinitesimally rigid:

Proposition 5.9. Let I be an ASD instanton on a bundle P over a compact 4-fold Y with
deformation operator δI . Let p : T 3× Y → Y be the projection onto the second factor.
Then the G2-instanton p∗ I is infinitesimally rigid if and only if I is infinitesimally rigid
and unobstructed.

The gluing theorems Theorems 4.133 and 4.134 require a connection on the orbifold,
(T 3×X)/�. The following proposition states that θ can be viewed as such a connection:

Proposition 5.10. There exist lifts α0 : E0 → E0 of α and β0 : E0 → E0 of β such that
α2

0 = β2
0 = Id, α∗0θ = β∗0 θ = θ , α0 being the identity over fix(α), and β0 not being the

identity over fix(β).

This relies on the following construction on X :

Proposition 5.11. There exists a lift β̂ : F̂ → F̂ of β such that β̂2 = Id, β̂∗ Â = Â, and
β̂ not being the identity over fix(β).

Proof. Denote by σ : CP
2 → CP

2 the conjugation map and E = TCP
2 as before. We

can then view dσ as a complex linear map E → E covering σ . Define

σ̂ : E ⊗ E → E ⊗ E

v ⊗ w �→ − dσw ⊗ dσv,
(5.12)

which is a complex linear map covering σ : CP
2 → CP

2.
The manifold CP

2 is Kähler-Einstein, so the Levi-Civita connection ∇LC on E is a
Hermite-Einstein connection. The connection∇LC on E induces the product connection
∇⊗ on E ⊗ E , which is again a Hermite-Einstein connection. We have that σ is an
isometry, so ∇⊗ is preserved by σ̂ in the sense of σ̂ ◦ σ ∗∇⊗ ◦ σ̂ = ∇⊗.
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Let β̂ be the lift of σ̂ to π∗E ⊗ π∗E , i.e. β̂ : π∗E ⊗ π∗E → π∗E ⊗ π∗E covering
β : X → X and satisfying pβ̂ = σ̂ p, where p : π∗E ⊗ π∗E → E ⊗ E is the obvious
projection map. Then σ̂ ∗∇⊗ = ∇⊗ implies β̂∗(π∗∇⊗) = π∗∇⊗.
If p ∈ CP

2 and (u1, u2) is a unitary basis of Ep, then (dσ(u1), dσ(u2)) is a unitary basis
of Eσ(p), and writing elements of the trace-free unitary endomorphism bundle u0(π

∗E)

in these bases, we see that β̂ acts as
(

0 1
−1 0

)

�→
(

0 1
−1 0

)

,

(

0 i
i 0

)

�→ −
(

0 i
i 0

)

,

(

i 0
0 −i

)

�→ −
(

i 0
0 −i

)

.

Thus, β̂ induces a map on F̂ = SO(u0(π
∗E)) that is not the identity over fix(β) and

preserves the ASD connection Â on F̂ induced by π∗∇⊗. ��
Remark 5.13. This only works because we have a lift of complex conjugationσ : CP

2 →
CP

2 to F in Proposition 5.11. No lift of σ to E exists, because c1(σ
∗E) = −c1(E), so

it is important to change from U(2)-bundles to SO(3)-bundles in this example.

Remark 5.14. Without the minus sign in Eq. (5.12), β̂ would not descend to a map on
SO(u0(π

∗E)). That is because the map − Id : u0(π
∗E) → u0(π

∗E) is orientation
reversing, as u0(π

∗E) has odd rank.

Proof of Proposition 5.10. The bundle F̂ from Eq. (5.8) is the pullback of a bundle F
from CP

2 to X , thus we have the natural map

α̂ : F̂ → F̂

(x, u) �→ (α(x), u)

covering α : X → X . The bundle E0 is the pullback of F̂ to T 3 × X , and we can
canonically extend the map α̂ and the map β̂ from Proposition 5.11 to E0 and find that
they have the required properties. ��
Because of Proposition 5.10, the connection θ defines a connection on the orbifold
(T 3 × K3)/�. The holonomy of θ around the four S1 × C ⊂ (T 3 × X)/� fixed by α

is trivial, and the holonomy around the four S1 × S2 fixed by β has order 2.

5.2.3. The resulting connection on the resolution of (T 3 × K3)/�

Corollary 5.15. Let Nt denote the one parameter family of resolutions of (T 3 × X)/�

from Sect.5.2.1. Then, for t small enough, there exists an irreducible G2-instanton with
structure group SO(3) over the resolution Nt .

Proof. We make use of the α-invariant and β-invariant connection θ from Proposition
5.10 over (T 3 × X)/�.

Next consider the product connection A0 on the trivial SO(3)-bundle over Eguchi–
Hanson space XEH. Like in Sect. 5.1, we get a constant Fueter section on each connected
component of fix(α) = 4 · (S1 × C), i.e.

S1 × C → Fr×E0|S1×C ×U(2)×G M0.

Likewise, let A0,1 be the ASD instanton over XEH from Proposition 2.32. As in Section
5.1, we get a constant Fueter section on each connected component of fix(β) = 4 · (S1×
S2), i.e.

S1 × S2 → Fr×E0|S1×S2 ×U(2)×Gρ0,1
M0,1.
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By Proposition 5.10, the connection θ and the eight Fueter sections satisfy the necessary
compatibility condition from Proposition 4.28. Thus, Theorem 4.133 applies and gives
a G2-instanton ˜At on Nt . The connections ˜At converge to θ on compact subsets of
(T 3× X)/�\ fix(�) as t → 0. The connection θ has full holonomy SO(3), as otherwise
the Fubini-Study metric on CP

2 would need to have reduced holonomy. Thus, ˜At has
full holonomy for small t and is therefore irreducible. ��
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A. Appendix

A.1. The isometry group of Eguchi–Hanson space The following result is well known,
but we were unable to locate a proof in the literature, so we provide it here.

Proposition A.1. Thegroupof holomorphic isometries of XEH is isomorphic toU(2)/{±1}.
Proof. We use the notation from the description of XEH as a Hyperkähler reduction
from before Definition 2.31. We view SU(2) embedded in H

2×2 as quaternion valued
matrices with no j or k components. Then SU(2) acts on M by right multiplication.
This action restricts to μ−1(ζ ) and commutes with the action of U(1). The action is
not effective, as −1 ∈ SU(2) acts trivially, but the induced action of the quotient group
SU(2)/{±1} � SO(3) is effective. Next, let SO(2) act on M from the left via

qa �→ eit · qa, t ∈ (0, 2π ].
Again, the action restricts to μ−1(ζ ) and commutes with the action of U(1), but is not
effective as −1 ∈ SO(2) acts trivially. The actions of SO(2)/{±1} and SU(2)/{±1}
commute, as the first group is acting from the left, the second is acting from the right.
We thus get that the group SO(2)/{±1}×SU(2)/{±1} acts through isometries on XEH.
Last, one readily confirms that the map

U (1)/{±1} × SU(2)/{±1} → U(2)/{±1}
[λ], [A] �→ [λA]

http://creativecommons.org/licenses/by/4.0/
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is a group isomorphism. Its inverse is given by [B] �→ ([√det B], [B/√det B]) which
is not well-defined as a map U(1) × SU(2) → U(2) but is well-defined after dividing
out {±1}. ��
Remark A.2. One may also recover the full isometry group of the Eguchi–Hanson space
by noticing that there is an additional isometry induced by the map on M that swaps
coordinates, i.e. M→M, (q1, q2) �→ (q2, q1). The group of all isometries (not neces-
sarily holomorphic) of XEH is isomorphic to SO(3)×O(2). The group of triholomorphic
isometries of XEH is isomorphic to SO(3).

A.2. Rigidity of finite subgroups Let G be a compact connected Lie group and � be
a finite group. In Sect. 2.2 we took � to be a finite subgroup of SU(2), thereby acting
on B4. An orbifold G-bundle over B4/� is a G-bundle P over B4 together with a lift
of the action of � to P . In Eq. (2.17) we extended elements of G to elements of the
orbifold gauge group G (P). We could do this, because we assumed the lift of � to act
in a standard way on P , see Eq. (2.14) for the precise statement. In other words: we
used that up to gauge equivalence, orbifold bundles over B4/� are determined by the
homomorphism � → P0 � G induced by the lift of � to P . The proof of this fact was
given in Proposition 2.13, but used that the homomorphism � → G is rigid, in some
sense. We make this rigidity precise here and prove that every finite group in a compact
Lie group is rigid. The proof is taken from [Bad21], where also the generalisation to
non-compact G is explained.

Definition A.3. The set Hom(�,G) ⊂ G|�| endowed with the restriction of the product
topology on G|�| is called the representation variety.

Definition A.4. Let E be a �-module. A map b ∈ �→ E is called cocycle if

b(γ δ) = b(γ ) + γ · b(δ) for all γ, δ ∈ �.

We denote the set of cocycles by Z1(�, E). A map b ∈ �→ E is called coboundary if
there exists v ∈ E such that

b(γ ) = v − γ · v for all γ ∈ �.

We denote the set of coboundaries by B1(�, E) ⊂ Z1(�, E). The first cohomology of
� with coefficients in E is

H1(�, E) = Z1(�, E)/B1(�, E).

Theorem A.5 (Point 3 in [Wei64]). Fix a group homomorphism r : �→ G. The group
G is acting on g through the adjoint representation, and together with r this gives
g the structure of a �-module. If H1(�, g) = 0, then there exists a neighbourhood
U ⊂ Hom(�,G) of r in which each element is conjugate to r , i.e. for all s ∈ U there
exists g ∈ G such that

s = lg ◦ rg−1 ◦ r.
Here, lg, rg−1 : G → G denote left translation and right translation on G, respectively.

Definition A.6. Fix π : �→ Aut(E). An affine action of � on E is a group homomor-
phism φ : �→ Aff(E). We say that π is the linear part of the affine action φ if for all
γ ∈ � there exists v0 ∈ E such that

φ(γ )(v) = π(γ )(v) + v0 for all v ∈ E .
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Lemma A.7 (Lemma 2.1 in [DX16]). The map π : � → Aut(E) endows E with a
�-module structure. We have H1(�, E) = 0 with respect to this �-module structure if
and only if every affine action with linear part π has a fixed point.

Corollary A.8. If � is finite, then H1(�, E) = 0 for any E.

Proof. Let φ : �→ Aff(E) be an affine action. Then the element

X :=
∑

δ∈�
φ(δ)(0) ∈ E

satisfies φ(γ )(X) = X for all γ ∈ �. By Lemma A.7 this implies that H1(�, E) = 0. ��
Corollary A.9. The representation varietyHom(�,G) has finitelymany connected com-
ponents. For each connected component C there exists r ∈ Hom(�,G) such that

C = Ur := {lg ◦ rg−1 ◦ r : g ∈ G}.
Proof. Because � is finite and G is compact we have that Hom(�,G) is compact and
therefore has finitely many connected components. Fix some r ∈ Hom(�,G). Then Ur
is compact because it is the image of G under the conjugation map. Thus, Ur is closed.
On the other hand, Ur is open by Theorem A.5 together with Corollary A.8. Thus, each
connected component of Hom(�,G) is of the form Ur for some r ∈ Hom(�,G). ��
A.3. Removable singularities In Definition 2.21 we defined a map from the moduli
space of ASD connections over the Eguchi–Hanson space XEH into the moduli space
of ASD connections over the one point compactification of XEH. There, we used that
every finite energy ASD connection that is defined over the complement of a point can
be extended over this point. This statement was proved for Yang-Mills connections, not
just ASD connections, in [Uhl82]. This is called the Removable Singularities Theorem.
Because our map between moduli spaces should be a map between framed moduli spaces,
we need a version of the Removable Singularities Theorem that respects framings. This
is Proposition A.11 and we then apply it to our special case of connections over XEH in
Corollary A.14.

Theorem A.10 (Theorem 4.1 in [Uhl82], Theorem D.1 in [FU91]). Let G be a com-
pact Lie group and A be a connection on the trivial G-bundle over B4\{0}, A ∈
A ((B4\{0})×G), which is in L2

1,loc and anti-self-dual with respect to a smooth metric

on B4. If
∫

B4\{0}
|F(A)|2 <∞,

then there exists an injective bundle homomorphism ξ : (B4\{0})× G → B4 × G and
a smooth connection A′ ∈ A (B4 × G) such that ξ∗A′ = A over B4 \ {0}.
Theorem A.10 asserts existence of an extension over 0, and the following proposition
asserts that this extension is essentially unique up to gauge:

Proposition A.11. The data ξ and A′ from Theorem A.10 are unique in the following
sense: if ξ ′, ξ ′′ : (B4\{0}) × G → B4 × G and A′, A′′ ∈ A (B4 × G) are such that
(ξ ′)∗A′ = (ξ ′′)∗A′′ = A, then the map ξ ′′ ◦ (ξ ′)−1 : (B4\{0}) × G → (B4\{0}) × G
can be extended to a continuous map B4 × G → B4 × G.
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Proof. We view the connections A′, A′′ on the trivial bundle B4 × G as elements in
�1(B4, g), and view the gauge transformation ξ ′′ ◦ (ξ ′)−1 as a map B4\{0} → G,
denoted by s. Without loss of generality assume that A′(0) = A′′(0) = 0, which can
be arranged by composing ξ ′, ξ ′′ with a suitable gauge transformation of B4×G. Then
A′′ = s∗A′ on B4\{0}, thus

0 = A′′(0) = lim
x→0

s−1(x) ds(x)

and by taking norms we see that limx→0 ds(x) = 0. This implies that limx→0 s(x)
exists: if the limit does not exist, then we have two sequences xi , x ′i → 0 such that
limi→∞ s(xi ) �= limi→∞ s(x ′i ). Without loss of generality assume that xi , x ′i can be
joined by a line. The mean value theorem then gives a sequence θi ∈ B4\{0} such that
| ds(θi )| → ∞, which is a contradiction.
Therefore limx→0 s(x) exists and defines a continuous map s : B4 → G, which in turn
extends ξ ′′ ◦ (ξ ′)−1. ��
Viewing the map ξ from Theorem A.10 as a map ξ : B4\{0} → G, the limit limx→0 ξ(x)
does not exist in general. But in important cases it does, according to the following
proposition:

Proposition A.12. Under the conditions of Theorem A.10, assume that A is bounded,
viewed as an element in �1(B4\{0}, g). Viewing ξ as a map ξ : B4\{0} → G, we have
that the limit

lim
x→0

ξ(x) ∈ G

exists.

Proof. Without loss of generality assume that A′(0) = 0. Then,

ξ∗A′(x) = A(x) for all x ∈ B4 \ {0}. (A.13)

Taking norms in Eq. (A.13) and using ξ∗A′(x) = ξ−1(x) dξ(x) + A′(x) we see that dξ
is bounded on B4 \ {0}, and we can conclude the proof as in the proof of Proposition
A.11. ��
This can be applied to the case of ASD instantons on ALE manifolds:

Corollary A.14. Let P be a G-bundle over XEH and denote byA asd,−2 the set of ASD-
connections on P as in Eq. (2.17). Let A0 + a ∈ A asd,−2, then there exists an orbifold
G-bundle P ′ over X̂EH together with a connection A′ ∈ A (P ′) and an injective bundle
homomorphism ξ : P → P ′ such that ξ∗A′ = A0 + a. Denote by f : B4/� → V the
chart of X̂EH around∞ from Proposition 2.12. Fixing a trivialisation of P over V \{∞}
induces a trivialisation of P ′ over V and we can view ξ as a map V \{∞} → G. Then
the limit limx→∞ ξ(x), where∞ ∈ X̂EH, exists.

Proof. The assumption A0 + a ∈ A asd,−2 means that a = O(r−2), measured in the
ALE metric. By inspecting how the inversion f acts on 1-forms, we find that a = O(1),
measured in the orbifold metric, and Proposition A.12 gives the claim. ��
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