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Abstract: The paper fully answers a long standing open question concerning the stabil-
ity/instability of pure gravity periodic traveling water waves—called Stokes waves—at
the critical Whitham—Benjamin depth hyp = 1.363... and nearby values. We prove that
Stokes waves of small amplitude O(¢) are, at the critical depth hysg, linearly unstable
under long wave perturbations. The same holds true for slightly smaller values of the
depth h > hyg — ce ¢ > 0, depending on the amplitude of the wave. This problem
was not rigorously solved in previous literature because the expansions degenerate at the
critical depth. To solve this degenerate case, and describe in a mathematically exhaustive
way how the eigenvalues change their stable-to-unstable nature along this shallow-to-
deep water transient, we Taylor-expand the computations of Berti et al. (Arch Ration
Mech Anal 247:91, 2023) at a higher degree of accuracy, starting from the fourth order
expansion of the Stokes waves. We prove that also in this transient regime a pair of
unstable eigenvalues depict a closed figure “8”, of smaller size than for h > hyg, as the
Floquet exponent varies.
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1. Introduction and Main Result

In the last years a substantial mathematical progress has been obtained in the classical
problem of determining the stability/instability of the Stokes waves, i.e. periodic trav-
eling waves of the gravity water waves equations in any depth, subject to long wave
perturbations.

Let us briefly summarize the state of the art. The existence of small amplitude Stokes
waves, pioneered by the famous work of Stokes [40] in 1847, was first rigorously proved
by Struik [43], Levi-Civita [33], and Nekrasov [36] one century ago, and then extended
to global branches containing extreme waves in [1,15,30,35,38,44]. In the sixties Ben-
jamin and Feir [3,4], Whitham [45], Lighthill [34] and Zakharov [48,50] discovered,
through experiments and formal arguments, that small amplitude Stokes waves in suf-
ficiently deep water are unstable, proposing a heuristic mechanism which leads to the
disintegration of wave trains. More precisely, these works predicted the existence of a
critical depth—that we shall call the Whitham—Benjamin depth—

hWB = 1.363... ,

such that 277 k-space periodic Stokes waves in an ocean of depth h > hygk ! are unsta-

ble: in correspondence with small Floquet exponents p (i.e. long-wave perturbations)
the linearized equations at the Stokes wave possess a pair of eigenvalues with non-
zero real part close to zero. This phenomenon is nowadays called “Benjamin—Feir”—or
modulational—instability, and it is supported by an enormous amount of physical obser-
vations and numerical simulations, see e.g. [18,19,31]. We refer to [51] for a historical
survey of the modulational theory of wave packets for several dispersive and fluid PDE
models. We remark that modulational instability has indeed been observed also in a
variety of approximate water waves models, such as KdV, gKdV, NLS and the Whitham
equation, see [11,12,22-25,27,32,39,46].

For the water waves equations, the first mathematically rigorous proof of a local
branch of unstable Benjamin—Feir eigenvalues close to zero for kh > hyg was obtained
by Bridges-Mielke [10] in finite depth (see also Hur-Yang [26]) through a center manifold
reduction, and recently by Nguyen-Strauss [37] by a Lyapunov-Schmidt decomposition.
In deep water we mention the nonlinear modulational result by Chen-Su [13].

Very recently Berti-Maspero-Ventura [7, 8] developed a completely different rigorous
spectral approach, based on a symplectic version of Kato’s theory of similarity transfor-
mations and a block diagonalization technique inspired by KAM theory, which provided
the full topological splitting of all the four eigenvalues close to zero as the Floquet ex-
ponent p is turned on. More precisely the works [7,8], that, with no loss of generality,
are formulated for 2m-periodic Stokes waves, i.e. with wave number k = 1, rigorously
prove that:

e Shallow water case: for any 0 < h < hyjp the eigenvalues close to zero are purely
imaginary for Stokes waves of sufficiently small amplitude €, see Fig. 1-left;

o Sufficiently deep water case: for any hyg < h < oo, there exists a pair of eigen-
values with non-zero real part, which traces a complete closed figure “8” (as shown
in Fig. I-right) parameterized by the Floquet exponent y. As h — hy, the set of
unstable Floquet exponents shrinks to zero and the Benjamin—Feir unstable eigenval-
ues collapse to the origin (we remark that the case h = +00 is not a consequence of
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Fig. 1. The left picture shows that for h < hwp the eigenvalues Ali (i, €) and Ag (e, €) are purely imaginary.
The picture on the right shows that for h > hwg the eigenvalues Afz(u, €) at fixed |e| < 1 as pu varies. This

figure “8 ” depends on h and shrinks to 0 as h — h. Some higher order formal expansions have been
computed in Creedon-Deconinck [16]

the finite depth case). The figure “8” had been numerically observed in Deconinck-
Oliveras [18].

A question remained open: to determine the stability or instability of the Stokes waves
at the critical Whitham—Benjamin depth hywg and analyze in detail the change of stable-
vs-unstable behavior of the eigenvalues along this shallow-to-deep water transient.

Some formal answers have been given so far [27,29,41,42]. Water waves solutions
in the modulational instability ansatz are formally approximated by an equation for the
wave envelope which is, if h < hyg, a defocusing cubic nonlinear Schrodinger equation
(NLS) whereas, if h > hys, it is a focusing cubic NLS (this is in agreement with the
rigorous stability/instability results in shallow/deep water stated above). The transient
behaviour at the critical depth h = hyg corresponds to the vanishing of the cubic
coefficients, and, in this case, it is required to determine a higher order effective NLS.
In the seventies, formal computations by Johnson [28] suggested a stability scenario for
the Stokes waves for nearby larger values of h > hyg. On the contrary, some years
later Kakutani-Michihiro [29] derived a different quintic NLS equation and claimed
the modulational instability of Stokes waves. The instability was further confirmed by
Slunyaev [42] who computed how the coefficients of the quintic effective NLS depend
on h.

In this paper we prove with mathematical rigor the occurrence of the latter scenario:
Stokes waves of the pure gravity water waves equations at the critical depth are linearly
unstable under long wave perturbations. Unlike all the previous mentioned works, we do
not use any formal approximation argument with some quintic NLS equation, but prove
directly the existence of unstable eigenvalues of the linearized water waves equations at
the Stokes wave. Informally speaking the main result we prove is the following:

Theorem 1.1 (Modulational instability of the Stokes wave ath = hyg). Ifh = hyg then
small amplitude Stokes waves of amplitude O(€) are linearly unstable subject to long
wave perturbations. Actually Stokes waves are modulational unstable also at nearby
depths hh < hyg: there is an analytic function defined for € small, of the form

h(e) = —ce> +O(), ¢ >0,
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Fig. 2. The values of (h, €) in (0, 0c0) x (0, €1) for which there are Benjamin—Feir unstable eigenvalues fill
the zone above the red curve, where Agg(h; 0,¢€) > 0
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Fig. 3. The figure “8” at the critical depth, which has a smaller size with respect to the one in Fig. 1

such that, for any (h, €) satisfying
h > hyg +h(e), (1.1)

then the linearized equations at the Stokes wave have two eigenvalues with nontrivial
real part for any Floquet exponent i small enough, see Fig. 2. In particular for h = hysg
the unstable eigenvalues depict a closed figure “8” as | varies in an interval of size
[0, c1€2), see Fig. 3, whose height and width are much smaller than for h > hyg, see
Fig. 1.

For a more rigorous statement we refer to Theorems 1.3 and 1.4. Actually Theorems
1.3 and 1.4 provide a necessary and sufficient condition for the existence of unsta-
ble eigenvalues: the Benjamin—Feir discriminant function Agg(h; i, €) that appears in
the matrix entry [U]o; in (1.18) has to be positive. We prove in Theorem 1.3 that the
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Fig. 4. The Whitham—-Benjamin function ewp (h) has a unique root hwg = 1.363...

Benjamin—Feir discriminant function admits the expansion

Age(h; 1, €) := 8eyg(h)e” + 8nyp (e + 71 (€7, pe®) — en()u (1 +r{ (e, 1)

(1.2)
where
1 19¢3 —10c? +9 1 1—ct 3(1—chH?
eWB(h)Z:c—h[ h 8c6h R <1+ 3 h+Z c2h h)]
h 4=12 h
(1.3)

is called the Benjamin—Feir function, the coefficient ey, (h) > 0 is defined in (3.4c), and
the coefficient nwg(h) is computed in (1.20). The graph of the Benjamin—Feir function
ews(h) is as in Fig. 4.

Thus, for any h > hyg, resp. h < hyg, it results ey (h) > 0, resp. ewp(h) < 0, and
therefore for i and € small enough Agg(h; u, €) > 0, resp. Agr(h; 1, €) < 0, proving
the existence of unstable, resp. stable, eigenvalues. This is the result proved in [9].

On the other hand at h = hyg the coefficient eyws(hywg) = 0 vanishes and the
sign of the Benjamin—Feir function Aggr(h; i, €) in (1.2) is determined by the sign of
the coefficient nwg(hwg) (note that in (1.2) no pure term of order €3 appears; such a
degeneracy is a consequence of symmetries of the problem). The constant nywg (hws) is
computed in (1.20) and it turns out to be strictly positive (Fig. 5).

This proves the linear instability of the Stokes wave at h = hys, stated in Theorem
1.1. In addition the regions where Agr(h; 0, €) > 0, respectively Agr(h; 0, €) < 0, are
delimited by the graph of an analytic curve of the form (obtained by the analytic implicit
function theorem)

_ nws (hwg)

€ — hyg +h(e), h(e) =
e e(VB(hWB)

e+ 0, solving
Agr(hwe +h(€);0,€) =0,

see Fig. 2. It turns out that Agr(h; i, €) > 0 if the condition (1.1) holds.
In order to prove (1.2)—which is the the major achievement of Sects.3 and 4—we
need to expand the Stokes waves up to order €*, as provided in Appendix A, and to explic-
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Fig. 5. The plot of the function nwg (h) looks positive for every depth

itly compute the Taylor expansion of [9] at the fourth order of accuracy. We implement
an effective algorithm to compute (1.2) observing several analytical cancellations in the
symplectic Kato reduction process. We now present rigorously the main results.

Main result.

We first shortly introduce the pure gravity water waves equations, their Hamiltonian
formulation, and the linearized water waves equations at the Stokes waves. We refer to
[9] for more details.

The water waves equations. We consider the Euler equations for a 2-dimensional
incompressible, irrotational fluid under the action of gravity. The fluid fills the region

D, :={(x,y) eTxR: ~h<y<n@x)}, T:=R/27Z,

with finite depth and space periodic boundary conditions. The irrotational velocity field
is the gradient of a harmonic scalar potential ® = @ (¢, x, y) determined by its trace
Y(t,x) = O(t, x,n(t, x)) at the free surface y = n(¢, x). Actually @ is the unique
solution of the elliptic equation A® = 0 in D,, with Dirichlet datum ®(z, x, n(z, x)) =
Y(t,x)and &, (¢, x,y) =0aty = —h.

The time evolution of the fluid is determined by two boundary conditions at the free
surface. The first is that the fluid particles remain, along the evolution, on the free surface
and the second one is that the pressure of the fluid is equal, at the free surface, to the
constant atmospheric pressure. Then, as shown by Zakharov [49] and Craig—Sulem [15],
the time evolution of the fluid is determined by the following equations for the unknowns

(n(, x), ¥ (t,x)),

_G _ ve ' ¢ 2 1.4
n=Gmvy, Iﬁz——gn—7+m( (MY +nxx)”, (1.4)

where g > 0isthe gravity constantand G (n) := G(n, h) denotes the Dirichlet-Neumann
operator [G(M ¥ ](x) := Dy (x, n(x)) — Dx(x, n(x))nx(x). In the sequel, with no loss
of generality, we set the gravity constant g = 1.
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The equation (1.4) are the Hamiltonian system

nl|_ ViH 1 0 1Id
o [w} = J[VZH], J = [_Id 0], (1.5)

where V denote the Lz-gradient, and the Hamiltonian H(n, ) = % fT(lﬂ Gy

+n?)dx is the sum of the kinetic and potential energy of the fluid. In addition of being
Hamiltonian, the water waves system (1.4) is reversible with respect to the involution

n@) | ._ | n(=x) : B
’O|:1/f(x)] = [_w(_x)] , le. Hop="H, (1.6)
and it is space invariant.

Stokes waves. The Stokes waves are traveling solutions of (1.4) of the form n(¢, x) =
n(x—ct)and ¢ (¢, x) = ¥ (x—ct) for somereal ¢ and 27 -periodic functions (17(x), ¥ (x)).
In areference frame in translational motion with constant speed c, the water waves equa-
tion (1.4) become

Ve

1
n=cne + G, w,=c1/fx—n—7+2(1—+nz)(G<n>w+nxwx)2 (1.7)

and the Stokes waves (7], 1/7) are equilibrium steady solutions of (1.7).
Small amplitude Stokes waves were constructed by Struik [43] in finite depth, and
Levi-Civita [33], and Nekrasov [36] in infinite depth.

Theorem 1.2 (Stokes waves). For any h € (0, +o0] there exist €, = €,(h) > 0 and a
unique family of real analytic solutions (n¢(x), ¥ (x), cc), parameterized by the ampli-
tude |€| < €4, of

wZ
cne+ Gy =0, ey —n— ==

2_
2 ey GOV +n)” =0, (18

such that ne (x) and Y (x) are 21w -periodic; ne(x) is even and VY (x) is odd, of the form

ne(x) = e cos(x) + 62(1750] + ngz] cos(2x)) + 63(}751] cos(x) + n?] cos(3x))
+et (né[‘o] + nf] cos(2x) + n£4] cos(4x)) + O(GS) ,

Ye(x) = ecy ' sin(x) + €2yl sin(2x) + €3 (v sin(x) + w1 sin(3x))
+ et (Wi sin2x) + wi sin@x) + O,

ce =cn+elcr+etes +O€),  cp = /tanh(h), (1.9¢)

with coefficients given in (A.2).

(1.92)

(1.9b)

The expansions (1.9) are derived in Proposition A.1 (they coincide with [21] after
some suitable rescaling, translation and choice of the moving frame, see Remark A.3).

Remark. More general time quasi-periodic traveling Stokes waves—which are nonlinear
superpositions of multiple Stokes waves traveling with rationally independent speeds—
have been recently proved for (1.4) in [6] in finite depth, in [20] in infinite depth, and in
[5] for capillary-gravity water waves in any depth.
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Linearization at the Stokes waves.

In order to determine the stability/instability of the Stokes waves given by Theorem
1.2, we linearize the water waves equation (1.7) with ¢ = c¢ at (n¢(x), ¥e(x)). In [9]
we obtain the autonomous real linear Hamiltonian and reversible system

i

X 1.1
K 110

_ —G(e)B — 3y o (V —ce) G(ne) 7

T =1+ B(V —c)dx — Boy o (V —co) = BG(ne)B —(V — c)dx + BG(ne) | | ¥

where the functions (V (x), B(x)) are the horizontal and vertical components of the
velocity field (®,, ®,) at the free surface. The real system (1.10) is Hamiltonian and
reversible, i.e. of the form 7. A with A = AT, where A is the transposed operator with
respect the scalar product of L2('JI‘, Rz), and J A anti-commutes with the involution p
in (1.6).

The linear system (1.10) assumes a simpler form by performing the time-independent
symplectic and reversibility preserving “good unknown of Alinhac” and “Levi-Civita"
conformal change of variables. As proved in [2,9] there exists a diffeomorphism of T,
X = x + p(x), with a small 2r-periodic odd function p(x), such that, defining the
associated composition operator (Pu)(x) := u(x + p(x)), system (1.10) is conjugated
under the change of variable

= pz-1 [ﬂ P [(1+gx)‘13;)3}0[_13 (1)} (L1D)

into the linear system /i, = L.h where L, is the Hamiltonian and reversible real operator

£, .— | 9x o (et pe(x)) |D|tanh((h + £0)|DI)
L (0 +acx) (Ch + pe(x))dx

_ 1 +ac(x) —(cn + pe(x))ox
=J [ax o (ch+ pe(x)) |D|tanh((h + f€>|D|)} (1.12)

where pc(x), a-(x) are even real functions and f. is small real constant. The functions
pe and a, are analytic in € as maps B(eg) — H*(T) and admit a Taylor expansion as in
Proposition A.2. The function € — £, is analytic as well with a Taylor expansion as in
(A.47)-(A.48).

Bloch-Floquet operator. Since the operator L, in (1.12) has 27 -periodic coefficients,
Bloch-Floquet theory guarantees that the spectrum

oraR) (Le) = U o2y (Lue)  where Lyei=e 15 Loethr
)

BI—
Bl—

nel—

and, if X is an eigenvalue of £,  on L?(T, C?) with eigenvector v(x), then h(f, x) =
eMet ¥ y(x) is a solution of i, = Leh.

The Floquet operator associated with the real operator L. in (1.12) turns out to be
the complex Hamiltonian and reversible pseudo-differential operator
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Lo |:(8x +ip) o (ch+ pe(x)) |D+ pltanh ((h+ fe)|D+M|)i| (1.13)
e —(1 +ae(x)) (Ch+ pe(x))(@y +ip) :

0 Id 1 +ac(x) —(cn+ pe(x))(0x +ip)
T |-Id 0| [(3x +ip) o (cn+ pe(x)) |D+pltanh ((h+£)|D+pul) ]’
N ——’

= j = B[L.f

meaning that B, e = B}, . and L, ¢ o p = —po Ly ¢, where p is the complex involution

(cfr. (1.6))
5[] T o
1ZC0 N I AC) I
Equivalently the self-adjoint operator B, ¢ is reversibility-preserving, i.e. By c o p =
pobBe.

Weregard £,  as an operator with domain H'(T) := H!(T, C?) andrange L*(T) :=
L%(T, C?), equipped with the complex scalar product

1 2
(f.8) =5~ /O (fi§1+ h&) dx, Vf= [2] . 8= [g] e L*(T, C?).
(1.14)

We also denote || f|> = (f, f).

In addition (u,€) — L, € L(H'(T), L*(T)) is analytic, since the functions
€ > ag, pe defined in (A.58) are analytic as maps B(ep) — H 1 (T) and £, ¢ is analytic
with respect to u.

Remark. The spectrum o (£_,, ¢) = 0 (L) and we can restrict to ;> 0. Further-
more o (L, ¢) is a 1-periodic set with respect to u, so one can restrict to u € [0, %).
Dimensional reduction. In view of the Hamiltonian structure of £, ., eigenvalues with
non zero real part may arise only from multiple eigenvalues of £,, o because if A is an
eigenvalue of £, . then also — is, and the total algebraic multiplicity of the eigenvalues
is conserved under small perturbation. The Fourier multiplier matrix real operator

_ [cndy |D] tanh (h|D])
Loo = [ -1 Choy

possesses the eigenvalue 0 with algebraic multiplicity 4, and geometric multiplicity 3.
A real basis of the corresponding generalized eigenspace is

12 12 .
+._ | c “cos(x) — | =y " sin(x) +. |1 - .10
= [Chl/z Sin(x)i|’ fi = |:ch1/2cos(x)j| . fo = [O} Jo = [1}
(1.15)

where f}, f", f, areeigenvectors of Lo o and f] is a generalized eigenvector, namely
Lo.0 f0+ = — f . Furthermore 0 is an isolated eigenvalue for Lo o, namely the spectrum
o (Lo,0) decomposes in two separated parts

o (AC()’()) =o' (AC(),()) Uo” (/:,()’0) where G/(Eo,()) = {0} (1.16)
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and 0" (Lo,o) is formed by non zero eigenvalues at a positive distance from 0. In this
paper we study the spectrum of £,  near 0 (an interesting problem concerns the splitting
of the other non zero eigenvalues, see [17]). By Kato’s perturbation theory (see Lemma
2.1 below) for any p, € # 0 sufficiently small, the perturbed spectrum o (L‘M,E) admits
a disjoint decomposition as o (L) = 0/ (Ly.c) Uo” (Lyu.e) where 6/ (L, ) consists
of 4 eigenvalues close to 0. We denote by V,, . the spectral subspace associated with
o’ (Cu,e), which has dimension 4 and it is invariant by £, ¢ : V,, e = V.. The next
Theorem 1.3 provides the complete splitting of the eigenvalues of the 4 x 4 matrix
which represents the operator £, ¢ : Ve = V... Before stating it, we first introduce
a notation used through all the paper:

Notation: we denote by O(u™'e™, ..., u"re"r), mj,n; € N (for us N :=

{1,2,...}), analytic functions of (x, €) with values in a Banach space X which satisfy,

forsome C > 0 uniform for hin any compact set of (0, +00), the bound ||O (i €7) || x <

C Z;’:l [|™ile™ for small values of (u,€). Similarly we denote ri(u™'e™,
., uMre"r) scalar functions O(u™'e™, ..., u"re"r) which are also real analytic.
Our complete spectral result is the following:

Theorem 1.3 (Complete Benjamin—Feir spectrum). There exist €g, o > 0, uniformly
for the depth h in any compact set of (0, +00), such that, for any 0 < u < uo and
0 < € < €, the operator L ¢ : Vi, = Vy,e can be represented by a 4 x 4 matrix of

the form
Uu 0
<0 S) , (1.17)

where U and S are 2 x 2 matrices, with identical purely imaginary diagonal entries
each, of the form

U:<i((c — 3e)u+r(ue’, p¥e, 1)) —enf(1+rs(e. 1)) )
— & Apr(h; . €) i((cn— fe)pu +ra(ne, u’e, u) )’
(1.18)
o_ (ichu+ir9(ue2,u2e) tanh(hyt) + r1g(pe) ) (1.19)
—ptrg(ue?, pie) icnu+irg(ue’, ule)) '

The Benjamin—Feir discriminant function Agg(h; i, €) in (1.18) has the form (1.2),
where ewg(h) is the Whitham—Benjamin function in (1.3), the coefficient ey (h) > 0 is
in (3.4¢), and

nws(h) = ke + D7 (cf — 2(cf + Dhc +(cf, — 2n2)~* -
~[(476c§6 +532c2% - 3973¢2? — 436120 +17173¢[8 +17557¢)0 — 37778c)* — 37754¢)2
—8898c]0 — 84428 +855¢8 +963cy, +81c2 +81)c]0 — 8(432¢30 + 480c7® — 305726
—3361c?* + 1145222 + 1154420 — 25989¢]8 — 2574916 +3928¢)4 + 4384c)2 — 555¢[0
—171c$ +396¢8 + 504c], +81c? +81)hel* +4(2612¢4 +2876¢32 — 155310 — 1723928
+44053c20 +44277c2% — 8219172 — 8128320 +5921¢/8
+9353¢)0 + 6831c)* +10203¢)2 + 230070 +24975¢8 — 117¢§ +639c, + 5672 +567)n%c]?
—8(2128¢38 +2304c30 — 11055¢3* — 1246352 +19370¢30 + 2012628

—5794c70 — 5594c2* — 51646c7% — 49154c70 + 574488 +59416¢]0 — 28802¢ [ — 26582¢]2 +32754c)0
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+33786¢8 —2682c8 — 1926¢, +567c2 +567)h3 )0

+2(8020c? + 8380c0 — 41279¢38 — 46795¢36 + 493313 + 57267¢32 + 86052¢50 + 8451628

—274180c20 — 267924c2* +176654c7? +178806c70 + 104434c)8 +101746¢)0 — 211660c)* — 205420c)2

+181752¢[0 + 181152¢8 — 24615¢§ — 20835¢], +2835¢7 +2835)n*cd

—8(ct — 1)2(1072¢38 + 102436 — 47113 — 5399032 + 4546030 + 5302028 — 4162¢26 — 3850024

+13442¢22 +15070c20 — 11088c)® — 10992¢)0 — 90661+ — 7806¢)? +29442¢)0 + 29466

—5706¢f, — 4950ci +567cf +567)cdnd

+4 (cﬁ - 1)4 (564c3 +380c3? — 3755030 — 408728 +8917¢26 + 955724 — 1521522

—14499¢20 +9953¢8 +10313¢[0 — 8273¢)4 — 7109¢)? +24159¢ [0 +24111¢§ — 6165¢8

—5409¢i, +567c2 +567)h0cy, -8 (Cﬁ - 1)6 (1670 — 32628 — 52126 — 48924 + 1252¢72 + 134420

—1853c[8 — 1901c]0 — 512¢]4 — 344¢]2 + 3333¢[0 + 328508 — 900§ — 792¢ +81c2 +81)n7c2

—(ct- 1)8 (3626 + 10824 + 26122 +73c20 — 1429¢[8 — 1237¢16 + 3666c/4

+3450c)2 — 3774c]0 — 3654c8 +873c§ +765¢¢ — 81c2 — 81)h8]. (1.20)
A numerical calculus performed by Mathematica reveals that

nws (Bws) & 5.65555 > 0 (1.21)

and we deduce Theorem 1.1 since eigenvalues with nonzero real part appear whenever the
Benjamin—Feir discriminant Agr(h; i, €) > 0. In the following corollary of Theorem
1.3 we describe the unstable eigenvalues of £, ¢ at the critical depth h = hyg (for
simplicity we avoid to state the result for any (h, €) satisfying (1.1)).

Theorem 1.4 (Benjamin—Feir unstable eigenvalues ath = hyg.). There exist €y, g > 0
and an analytic function E(') 1 [0, €1) — [0, uo) of the form

&nwe (hwg)

N 1.22
e (hwg) ( )

such that, for any € € [0, €1), the operator L,,  has two eigenvalues )»;_L (u, €)

i g&np+ir(ue?, u?e, 1) £ guven®wp)( +r(e, W)v/Aprhwe: 1,6 0 < < p(e)
i génu+ir(ue?, ple, 1) xi §uventws) (1 +r(e, w)/Aprhws: 11 O] 11(€) < 1 < 1o
(1.23)

with &, 1= 2cn — eip(h) > 0 and Age(hws; i, €) = 8nws(hwe)e® +r1(e%, ne’) —
en(hwp) (1 + 7] (e, ).
Proof of Theorem 1.4. Since Agr(hwg; 0, €) = 8nws(hws)e* (1 + r(€)), it results that
Agr(hwg; i, €) > 0,forany u € (0, K(€)) as in (1.22) and € small enough. The unstable
eigenvalues )Lf (u, €) in (1.22) are those of the matrix U in (1.18). In order to determine
the value u = 1 (¢) such that )Lf (u, €) touches the imaginary axis far from the origin,
we set 1 = ce? so that Agp(hwg; i, €) = 0 if and only if

0 = € Agr(hws; ce?, €) = 8nws(iws) (1 +7(€)) +r1(ce) — exn(hws)c* (1 +71(6)) .

This equation is solved by an analytic function € +— ¢, = ¢(1 +r(€)) with ¢ defined
in (1.22). O
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We conclude this section describing the main steps of the proof and the organization
of the paper.

Ideas and scheme of proof. In Sect.2 we shortly report the results of [9] which
reduce the problem to determine the eigenvalues of the 4 x 4 Hamiltonian and reversible
matrix Ly ¢ = JBy ¢ in (2.8). Then in Sect.3 we provide the Taylor expansion of the
matrix By ¢ in (2.9) at an order of accuracy higher than in [9, Proposition 4.3]. In par-
ticular in Proposition 3.1 we compute the coefficients of the Taylor expansion up to
order 4 in the matrix entries (3.3a)—(3.3c) which enter in the constant nyg (h) (cfr. (4.9))
appearing in the Benjamin—Feir discriminant function (1.2). This explicit computation
requires the knowledge of the Taylor expansions of the Kato spectral projectors Py, .
up to cubic order, that we provide in Sect.3.2 and prove in Appendix B, relying on
complex analysis. In order to perform effective computations we observe several an-
alytical cancellations in Sects.3.3 and 3.4, which reduce considerably the number of
explicit scalar products to compute. The proof of Proposition 3.1 requires ultimately the
knowledge of the Taylor expansion up to order four of the Levi-Civita and Alinach good
unknown transformations (1.11) and of the functions a¢ (x), pe (x) in the operator £, ¢
in (1.13), which are derived in Appendix A.2. In turn, such expansions follow by those
of the Stokes waves that we prove in Appendix A.1. Finally in Sect. 4 we implement the
block-diagonalization procedure of [9, Sect. 5] which provides the block-diagonal ma-
trix (1.18) and we analytically compute the expansion of the Benjamin—Feir discriminant
function Agr(h; i, €), in particular of the constant nyg(h) in (4.9) and thus (1.20).

We point out that the constant nyg in (4.9) is analytically computed in terms of the co-
efficients (4.4) which, in turn, are expressed in terms of the coefficients ¢ 1, ¢22, y12, 12,
Vi1, P11, V22, P12, £11, and ultimately 7750], e, nf], 1//2[2], e, w[4], ¢2, ¢4 of the Stokes
wave provided in Appendix A.l. Then we used Mathematica to compute how the coef-
ficients of the Stokes wave, of the functions ac (x), pe(x) in (1.13), and nwg(h) in (1.20)
depend on h, starting from their algebraic formulas. The Mathematica code employed
can be found at https://git-scm.sissa.it/amaspero/benjamin-feir-instability.

2. Perturbative Approach to Separated Eigenvalues

In this section we shortly report the spectral procedure developed in [7,9] to study the
splitting of the eigenvalues of £, ¢ close to O for small values of 1 and e. First of all we
decompose the operator £, ¢ in (1.13) as

Lue=ichu+ Ly, w=>0, (2.1)
where .Z, ¢ is the Hamiltonian and reversible operator

gﬂ,e = jB/L,e s

B L I +ae(x) —(Ccn + pe(x))dy — i pe(x) 2.2)
€ | Bc o (cn+ pe(x)) +ip pe(x)  |D+pl tanh ((h+ £)[D +pl) |~

with B, ¢ selfadjoint. The operator %}, . is analytic with respect to (i, €) as L, ¢ is.
The operator .%,, ¢ : ¥ C X — X has domain ¥ := H'(T) := H'(T, C?) and range
X := L*(T) := L%(T, C?).

In view of (2.1), the spectrum

0(Lye) =icapu+0(Lye)
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and we focus on studying the spectrum of .%), . The unperturbed %y o = Lo, has
zero as isolated eigenvalue with algebraic multiplicity 4, geometric multiplicity 3 and
generalized kernel spanned by the vectors { f}", f;, fi, fo } in (1.15). The following
lemma is [9, Lemmata 3.1 and 3.2].

Lemma 2.1 (Kato theory for separated eigenvalues of Hamiltonian operators). Let I'
be a closed, counterclockwise-oriented curve around 0 in the complex plane separating
o’ (fo,o) = {0} and the other part of the spectrum o (30,0) in (1.16). There exist
€0, o > 0 such that for any (u, €) € B(uo) x B(eg) the following statements hold:

1. The curve T belongs to the resolvent set of the operator £, ¢ : Y C X — X
defined in (2.2).

2. The operators

Puei=—5— jﬁ(gu c—AN X > Y (2.3)

are well defined projectors commuting with £, ¢, i.e. P2 = e and Py ¢ L) e =
ZyePue. The map (i, €) — Py is analytic from B(,uo) x B(eg) to L(X,Y). The
projectors Py ¢ are skew- Hamlltonlan and reversibility preserving, i.e.

TPue=P T, pPuc=Puch. (2.4)

Finally Py is a real operator, i.e. P(;,E = Pyc.
3. The domain Y of the operator £, « decomposes as the direct sum

Y=V, c®Ker(Pye), Vye:=Rg(Pye)=Ker(ld— Py,.),

of closed invariant subspaces, namely £, ¢ : Vye = Vyer Lue : Ker(Pye) —
Ker(P,, ). Moreover

0 (L) N{z € Cinside T} = 6 (Lpely, ) = 0 (Lo,
0(Zp.e) Nz € Coutside T} = 0 (L elKer () = o"(Lue).

4. The projectors Py ¢ are similar one to each other: the transformation operators

—-1/2
Up,e i= (1d — (Pu.c — Poo)?) / [PuePoo+dd— Py o)dd— Pog)] (2.5
are bounded and invertible in Y and in X, with inverse

_ 1 2
Uyl = [PooPuc+1d = Poo)Id — P, )](1d — (Pye — Pop)?) "/

and UMEP()OU L= e as well as UM PucUpe = Poo. The map (i, €) —
Upels analytlcfrom B(uo) x B(eg) to L(Y). The transformation operators U, . are
symplectic and reversibility preserving, namely

U;’SJU/,L,E =J, ,(_)Uu,,e = Uu,,eta . (2-6)

Finally Uy ¢ is a real operator, i.e. Uy ¢ = Uy .e.
5. The subspaces V, ¢ = Rg(P, ) are isomorphic one to each other: V, . =
U, Vo,0. In particular dim V,, . = dim Vy o = 4, for any (1, €) € B(uo) x B(€o).
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We consider the basis of the subspace V), c = Rg(P,,.¢),

‘F = {f1+(,LL,E), fl_([L,E), fJ(M,E), f()_(“’ve)}a
Fue)=Uyeff,o=x,k=0,1, (2.7)

obtained by applying the transformation operators U, ¢ in (2.5) to the eigenvectors
fi fi fy - fy in(1.15) which form abasis of Vo o = Rg(Po,0). Exploiting the property
(2.6) that the transformation operators U, . are symplectic and reversibility preserving,
it is proved in [9, Sect. 3] the following lemma.

Lemma 2.2 (Matrix representation of £, c on V,, ¢). The operator £ ¢ * Ve = Vy,e
in (2.2) defined for (i1, €) € B,,(0) x Be,(0) is represented on the basis F in (2.7) by
the 4 x 4 Hamiltonian and reversible matrix

Lye =JBye Wwhere J:=J4:= <%2 ;)2) Jp i= (_01 é) (2.8)
and By« = By, . is the 4 x 4 self-adjoint matrix
(Buue [ 1) (Buefi - f1) (Buefg- /1) Bueto - 1)
o | (Bt ) B ) B ) @i |
’ (Bue /i1 15) Bruefi o f7) (Buuefo f3) (Buefy s fo)
( Méfl’fo)( uéfl’fo)( e fo fo)( wefo s )
where
B e = P(T,O U;’€ BieUpyue Poo- (2.10)

The entries of the matrix B, ¢ are alternatively real or purely imaginary: for any o = =+,
k = 0, 1, the scalar product (%M,e 7 f]f,) is real and (%M,e i fkTU) is purely
imaginary. The matrix By, ¢ is analytic in (u, €) close to (0, 0).

We conclude this section recalling some notation. A 2n x 2n, n = 1,2, matrix
of the form L. = J,,B is Hamiltonian if B is a self-adjoint matrix, i.e. B = B*. It is

reversible if B is reversibility-preserving, i.e. po, o B = B o po,,, Where pg 1= (%2 ,02)’

0—c
pn o L= —Lo pay.

The transformations preserving the Hamiltonian structure are called symplectic, and
satisfy Y*J4Y = J4. If Y is symplectic then Y* and Y ~! are symplectic as well. A
Hamiltonian matrix L = J4B, with B = B*, is conjugated through a symplectic matrix
Y in a new Hamiltonian matrix. We finally mention that the flow of a Hamiltonian

reversibility-preserving matrix is symplectic and reversibility-preserving (see Lemma
3.8in [7]).

P2 = (c 0 ) and ¢ : z > Z is the conjugation of the complex plane. Equivalently,
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3. Expansion of By .

In this section we provide the Taylor expansion of the matrix B, ¢ in (2.9), i.e. (3.1),
at an order of accuracy higher than in [9, Proposition 4.3]. In particular we compute
the quadratic terms )/1162, ¢21 L€, the cubic ones mz,uez, )/12/L62,¢1163, qbzzuze, and
the quartic terms ny1€*, yoou?e?, proue’ in the matrices (3.3a)—(3.3¢c) below. These
are the coefficients which enter in the constant nwg (cfr. (4.9)) of the Benjamin—Feir
discriminant function (1.2).

For convenience we decompose the 4 x 4 matrix By, ¢ in (2.9) as

_(EG) Fu.o
Bue = (F*(u, & G, e)) G-

where E, G are the 2 x 2 self-adjoint matrices

Eu. €)= ( Eni(u €) iEu(u,e)) - <(£Bu,efr, ) (%M,efr,f;))
T B, €) Exn(u,e) ) T \(Buefi i) Buefi fi))
(3.2a)

G, €) := < Gr(pu,e) iGra(u, 5)) — ((%u,éf(;-v f(;-) (%,u,efo_v f(;))
T\ G, e) G, €) ) T \(Buefys fy) Buefy  fy))
(3.2b)

and

_( Fuiu,e) iFia(p, ©\ _ ((Buefy, fi) (%#,efo_,ff')>
Pl €)= <i F1(p, €) FZZ(WG)) o ((%u,ef(;r’ fl_) (%M»Efo_’ fl_) - 029

The main result of this section is the following proposition.

Proposition 3.1. The 2 x 2 matrices E := E(u,€), F := F(u,¢), G := G(u,¢€)
defined in (3.2) admit the expansion

2
£ (61162(1 +r] (€3, ne) + et —en (L4, ) i (Sernurmone? +ra(ue’, ue, u3)))

—i(Jerutnione® + r(ue’, ple, 1) —en e (1+rs5(e2, 1))
(3.3a)
G = <1+)/11€2 +rg(e3, ne?, e —iyoue® —irg(ue®, e ) (3.3b)
iyiue® +irg(ued, p?e)  pranh(apw)+ymu?e? +rigu?e’, e
_1
F= <f11€+¢11€3 +r3(et, pe?, pre) ipec 2+ipipue +ir4(ue4,u2e2,u3e)) , (3.3¢)
ig1 e +irg(ue’, ue) daute+ri(uted, nde)
where the coefficients
8 4 452 4
o ._9ch—10ch+9_9(1—ch) +8cy, 0 f L —%1_ 4
1= = = = >0, 1= 5cy " (I —cyp),
8c) 8c),
(3.4a)
enn:=ch+cy (1—chn>0, (3.4b)
4 4312 2.4 4
(1 —-c¥)A +3cy)h”+2ci(cy — Dh+c
e = n)( n) 8 — D B0, (3.4¢)

3
Ch
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were computed in [9, Proposition 4.3 ], whereas

1
n = m( — 36020 — 108c2* — 261c2? — 73¢20 + 1429¢[8 + 123710
h h
(3.4d)
—3666¢ht — 3450c)? +3774ct? +3654cd — 8738 — 765ct + 81ci +81),

ct(3ct? — 8cd +3ct +18) — (cff — 2¢/2 + 12¢8 —38¢} +27)n

ne = 1609 , (B4e)
h
8 4 12 8 4

—cp +6¢cy —5 2c,;"—cyp —9 cy —5

yin = %, iz = % Y22 1= ZCZ : (3.4f)
h h h
10c +4cf® —7¢)0 — 6]t —99¢]? +257c} — 6cf — 171ct +18
$11 = a2 ,(3.42)
h
b1z e 2ci¥ —2cl6 —33c14 —27¢)2 4+ 34¢[0 + 348 — 33c8 —27¢ +18c2 + 18
32c2% (2 + 1)
(3.4h)
2, 4 8 4 4 2

ci(cy —5) — (cp +2ct —3)h —cyh+ci+h .

pp) = 2 TR = (3.4)
8cy, dcy,

The rest of the section is devoted to the proof of this proposition.
In [9, Proposition 4.3] we showed that the matrices E, G, F in (3.3a), (3.3b), (3.3¢)
admit the following expansions

2 w2 a1 300 3y 2,2 .3
elle —en< 1_e12 ri(e-, €, 1r €7, €,
E(M’e)z( c i3 /;>+< (€7, ue, 1) (e, M)>7

Silepp —epk —iry(ue?, ure, 1?)  rs(ure, )
=:E(1,€)
(3.52)
_(! 0 rs(€%, u?e) —iro(uue?, p’e)
G(I’Lv E) - <0 Mtanh(hﬂ)) + (1 r9(/1«€2, 'uze) 710(M26) , (35b)
=:I'(u,€)
1
i pec ? r3(€3,u62,M2€)ir4(uez,u26)>
F(u,e):= | fue ipecy )4 ' . 3.5¢
(e (O 0 ) < ire(ue) r7(u*e) (3.5¢)
=:P(u,€)

In order to get the expansion of £(u, €), I'(i, €) and @ (u, €) in Proposition 3.1 we first
expand the operators B, ¢ in (2.2) (Sect.3.1), the projector P, . in (2.3) (Sect.3.2) and
the operator B, . in (2.10) (Sect.3.3). Finally we prove Proposition 3.1 in Sect. 3.4.
Notation. For an operator A = A(u, €) we denote its Taylor coefficients as

1 .. .
A= m(a,@agA)(o,O), Ap = Ar(p, €) == Z Aijntel . (3.6)

i+j=k
i,j=0
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Moreover we shall occasionally split A; ; = Al[ejvl + Al[ojdd], where Al[ejv] is the part of
odd]

¥ is the part having only

the operator A; ; having only even harmonics, whereas Al[
odd ones.

3.1. Expansion of B, .. In the sequel Os means an operator which maps H (T, C?)
into L2(T, C2)-functions with size €7, ue®, u2e3, ue?, u*e or .

Lemma 3.2. The operator B, ¢ in (2.2) has the Taylor expansion

Bue=Bo+B1+By+B3+Bs+0s, (3.7
where
Bo = [chlax |D|t;rfhh?§|D|)i| ' (3.82)
Bi=e[, 4TI s no0ons, (3.80)
By = &2 [ @) _”2(")3"] —ipept (0T + 12e2,0(1DD ey | (3.8¢)
0y 0 p2(x) €0,2(ID))

Br=& [, @0 TN i g7 il ea.00DD, (3.84)
By=et [ax‘i“;z)(x) ;;’3;;;7)] — i u 30T + u2e 2 (IDDTey + 404 0(DDMey . (3.8¢)
and pi(x)anda;(x),i =1, ..., 4, are computedin (A.592)—(A.60a), J is the symplectic

matrix in (1.5),

0 0 00
s = [0 sgn(D):| o Mev:= [0 Id} : 3.9)
and

€1,0(|D]) = tanh(n|D|) + h|D|(1 — tanh(n| D)) , (3.10a)
6,0(ID]) = h(1 — tanh? (| D)) (1 — b D| tanh(n| D)), (3.10b)
lo2(ID]) = £2|D*(1 — tanh®(a| D)), (3.10¢)

€2.2(ID]) = £2(1 — tanh?(n| D)) (—h2|D|2 +3h2|D|2 tanh2(h| D|) — 4h|D| tanh(h| D|) + 1) i
(3.10d)

€0,4(ID]) = £4|D*(1 — tanh*(n|D])) — £3|D|* tanh(h|D|)(1 — tanh? (| D)),
(3.10e)

with £, and £4 in (A.48).
Proof. By Taylor expanding (2.2). O

We observe that, using the notation introduced in (3.6), we have

B;; if jiseven, [odd] _ 0 if j is even, (3.11)

Blevl — [o
i 0 ifjisodd, i B, if jisodd.
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3.2. Expansion of the projector P, . The projectors P, . in (2.3) admit the expansion

PM,GZPO+P1+P2+P3+O47 (3.12)
where
Po:=Pyo, Pr:= P[Bl]
Py :=P[By] +P[B1, Bi]. (3.13)
P3 = 'P[Bg] + 'P[Bz, B]] + 'P[B] , Bz] + ’P[B] , By, B]] ,
and

PAI] = ZL ?§ (Loo— 2" TAI(Loo—1)"'dr, andfork >2
71
r (3.14)

-1 k+1
= ) ﬁ(ﬁo,o — W T AN(Loo — M7 T A(Loo — )7 A

2mi

In virtue of (3.6), (3.13)—(3.14) and (3.11) we obtain

p},iw:{l’w if j is even, [ode:{O Hrdseven, g5

0 ifjisodd, b P if jisodd.

Action of Py, j on the unperturbed vectors. We now collect how the operators Py ; act
on the vectors fi, f, fif, fo in (1.15). We denote

1/2 12 .
¥ . ¢, “cos(x) — . ¢,/ ”sin(x)
fI = |:_C}}1:1/2 sin(x):| . SO = |: A :| . (3.16)

We first consider the first order jets Pp,1 and P o of Pj.

Lemma 3.3 (First order jets). The action of the jets Py.1 and P10 of Py in (3.13) on the
basis in (1.15) is

+ __ | ao,1cos(2x) — | —ap,18in(2x)
Porfi = [bo,lsin(zx)] Porfy = [ bo,lcos(zx)]

_ _ 3.17
Po1fy =uwoifh, Poify =0, Piofy =0, Piofy, =0, 3-17)
Pioff =iwofZ,. Piofi =iuof’,
where
1 -4 4 -5 4 4
ag,1 :===cy - B+cy), bo1:=-cy,*A+cf)B—cp),
2 . 4 (3.18)
up1 =30, 2B+, uro:= (1 +cp?h( —cp)).

Proof. See [9, formula (A.16)]. O
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Lemma 3.4 (Second order jets). The action of the jet Py of P> in (3.13) on the basis
in (1.15) is given by

ap,2 cos(3x)

+ _
bo2 Sin(3x):| , PoPoafy =0, (3.19a)

Poofi =moofi +uf f + [

_ _ _ 5072 sin(3x) _
Poofy =moofy +ug,f o+ [Eo,z COS(3X)] . Poafy =0, (3.19b)
where 0y 2, Eo,z e Rand
12
cl2+c8 —9ct —9
nog = —A—2 B (3.19)
8cy,
i —2c? —7cf +8cf+9  _ 2ci? —11cf +20c} — 3
02 = 8 % R 8 ’
32¢cy 32¢cy
3(cl2 +17¢} +51ct +27) 3(3c? —5ch+25ch+9)
0.2 -= 72 » boo = 572
64c>/ 64c>/

The action of the jet Py on the vector fy in (1.15) is
Pyofy, =0. (3.19d)
The action of the jet Py 1 on the basis in (1.15) is

i — . [@rsin(2x) — . lar1cos2x)
Prifi=imiify +i [b1,1cos(2x) Piafy =i by.1sin(2x)

_ 1 _3p o~ e
PLify == Pt PLfi =iTaf +itia s, (3.19%)

where 1711,1,51,1, bl,laﬁl,l»ﬁl,l € R and

3((:h — 6(:h +5)h — ?ach(ch + 3)

a1 i=—
3c 15/2
(c8 +8ct —9)h+3(c +c)
byj = —2—= 7 i (3.20)
8c
Proof. In Appendix B. O

Lemma 3.5 (Third order jets). The action of the jets Py 3, P12 and Py 1 of P3 in (3.13)
on f, fo is
Posfi = [

. | ap2cos(2x) -~ o B
[b])zsin(Zx)jI s Poify =moafy uaafoy,

ao.3 cos(2x)} |:§0,3 cos(4x)i| Posf =0
bo.3 sin(2x) bo 3 sin(4x) |’ et
0.3 0,3 sin(4x) (321)

Pl,2fo_ =
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where 30,3, bo,g, 52,] s ﬁz)] € Rand

1 22 20 18 16 14
0.3 = —<6c +22 4 27¢18 4+ 2116 — 379¢
6ac P2+t ¢ n " "
—361c}2 +575¢10 4581} — 243c8 — 225¢) — 162¢2 — 162) ,
1
bo3 = (6c +10c24 +35¢2 + 2120 — 14618 — 146¢16 (392
128¢;7(c2 + 1) n (3.22)
— 46ct* —34c)? + 470¢]0 + 482¢} — 333c8 — 315¢) — 162¢2 — 162) ,
4 4
cy +3 cr +1
app=——2—=—, biyi=—2—r
dcy 4cy
Proof. In Appendix B. O

3.3. Expansion of B, .. In this section we provide the expansion of the operator B, .
defined in (2.10). We introduce the notation Sym[A] := %A + %A*.

Lemma 3.6 (Expansionof B, (). The operator®B,, . in(2.10) has the Taylor expansion

4
Bue=y B;+0s (3.23)
j=0
where
By := PyBoPy, Bi:=PiBiPy, By := PjSym[By+B1Pi|Py,  (3.24a)
B3 := PySym|[Bs + By Py + Bi(Id — Py) P2 ] Py, (3.24b)
By = P(;‘Sym[84 + B3P+ Br(Id — Py) P> + Bi(Id — Py)P3 — B PPy P>
+ MNPy P2]P0 , (3.240)
the operators Py, ..., P3 are defined in (3.13) and
1
N = Z(P;‘zs‘o — BoPy) = —M*. (3.25)
It results
(MfE ) =0, VI FE e UF F fo ) (3.26)

Proof. In order to expand B, . in (2.10) we first expand U, ¢ Py. In view of (2.5) we

have, introducing the analytic function g(x) := (1 — x)_% for |x| < 1,
Upe Po = g((Pue = P0)*) Pue Po = Py 8(Pue — PO Py (327)

using that (P  — PO)2 commutes with P, ., and so does g((Py.c — Po)z). The Taylor
expansion g(x) = 1 + %x + %xz + O(x3) implies that

1 3
g((Pye — Pp)») =1d + 5 (P — Po)? + g Pue = Py)*+0s, (3.28)

=g =g
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where Og = O((Py.e — Py)®) € L(Y).
Furthermore, since Py ¢. %) = Zjie Py, (see Lemma 2.1- item 2), applying J to
both sides and using (2.4), yields

Pr Bue=BuecPuc where P._ =P, (3.29)
Therefore the operator B, ¢ in (2.10) has the expansion
Bie =77 P5 @(Pue = P0))* Py Bue Puc 8(Pue — P0)®) Py

(3.29)
PO g((Pu,e_PO) ) By,epueg((Pue _PO) ) Py
Py (d+ g5+ 845+ O6) Byue Pue (1d+ g2+ g4+ Og) Py
= Sym[Po (Bp.,e P+ ZBu,ePu,egZ + gZBlL,E Puegr+ ZB/L,G P,u,eg4) PO]
+ Og (3.30)

(3 28)

using (3.29) and that go = O and g4 = Og.
A further analysis of the term (3.30) relies on the following lemma.

Lemma 3.7. Let I be the orthogonal projector on fi in (1.15) and M4 :=1d — IT5.
One has

BoP():P(TBo:HS, By P1 + B P()=Pkao+P6kBl, (3.31)
PyP Py=0, PyPy,Py=—P}Py=—PyP}, (3.32)
(Pue — PPy = Po(ld — Pu) Py, (Pue — Po)*Po = Po((1d — Py Po)’,
(3.33)
JP;j=P;J, VjeNy, PiByP;TI“Py=TI{P;TI“Py. (3.34)

Proof. We deduce that By Py = IT{ because By f; = Bo f| = Bof, =0.Bofy = f
and the first identity in (3.31) follows also since PyBy = By Py by (3.29). The second
one follows by expanding the identity in (3.29) at order 1, using the expansions of P, ¢
and B ¢ in (3.12) and (3.7). The identities in (3.32) follow by expanding the identity
P} . = P, atorder 1 and 2, getting P; Py + PoPy = Py and Py Py + P} + PoPy = P,
and applying Py to the right and the left of the identities above. The ﬁrst identity in
(3.33) is verified using that P/ = P, . and the second one follows by applying the
first one tw1ce Finally the ﬁrst identity in (3.34) follows by expanding the identity
JPue= L€ ¥ ¢J in (2.4) into homogeneous orders. The last identity in (3.34) descends

from the ﬁrst of (3.31), since for any g € L*(T, C?) and & e fif, fi s fy ) one has
(PeBoP; 7 - 8) = (PifE - BoPog) = (Pi i . Tlgg) = (TG P; £, 8) -
This concludes the proof of the lemma. O
By (3.33) and (3.32) the Taylor expansions of g Py and g4 Py in (3.28) are
1 1 1 1
&P = EPO(Id = Pue)Po = _EPO Py Py — EPO Py Py — EPO Py Py+Os,
(3.35a)

3 3
g4 Py = §P0(Id - P )Py(Id— P, )Py = gP() P, Py P, Py+ Os. (3.35b)
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We now Taylor expand the operators in (3.30) and collect the terms of the same order.
Expression of B : The term of order 0 in (3.30) is simply B¢ = P(;k Bo Py.
Expression of8 : The term of order 1 is

1
B = EPJ(B()P] + B Py + PI*B()+ P;B1)P() = P(;i< B Py

using (3.32) and (3.31) and that By, B; are self-adjoint.
Expression of®B, : We compute the terms of order 2 in (3.30). By (3.35a) we get

%2 = Sym[PJ (BzP() + Bl P1 + B()Pz — BoPon)Po] . (3.36)
Moreover

P (BoPs — BoPoPa) Py = PiBo(Iid — Po) PPy S0 By Po(ld — Py)PyPy = 0
and from (3.36) descends the expression of ‘B, in (3.24a).

Expression of83 : We compute the terms of order 3 in (3.30). By (3.35a), identity
(3.24b) follows from

%3 = Sym[P(}"(Bg + BzPl + Blpz + B()P3 — (BOPI + B] Py)Py P, Py — BO Py P3 P())P()]
= Sym[P; (B3 + B2 Py + Bi P, — B1 Py P2) Py,

where we used PjByP; = PjByPoP; and PyBy P PyP, Py = 0by (3.31) and (3.32).
Expression of'B4 : At the fourth order we get, in view of (3.35a) and (3.35b),

By = Sym[PJ(BoP4 +B1P3+ByP, + B3Py + By — BoPyPy Py — (Bo Py + By Py) Py P3Py
— (ByPy + By Py + ByP2) Py P, Py + %BOPOPZPOPZPO + %P;PJBOPOPZPO) Po]
— Sym|[ P (B] (Id — Po)Ps + Bo(Id — Po) Py + B3 Py + By — By P1 PoP2 Py
- iBo(Popzpo)z + il’z*BoPonPo)Po], (3.37)

where to pass from the first to the second line we used Py By P4 = Py By Py P4 (by (3.31))
and PSBO P1PyP3Py = 0 (by (3.31) and (3.32)). We sum up the last two terms in (3.37)
into Sym[ Py Py P> Py] where Nis in (3.25). We observe that, in view of (3.31)—(3.34),
we have, for any f, flg, e {ff". fi . fy ). that (3.26) holds. Thus we obtain (3.24c). In
conclusion, we have proved formula (3.23). O
Action of the jets of B, ¢ on the kernel vectors. We now collect how the operators 9B; ;
(cfr. (3.6)) acts on the vectors f1+, S Jo -

Lemma 3.8. The first jets of the operator B, . in (2.10) act, for f7 € {f{", fi . fo' b
as

Boo f = Py (Bo2+Bo,i1Po1)f . Baofi = Pi(Bao+BioPio)fl, (3.38a)
1

B1.1 /¢ = P5(Bi,1 +BioPo1 +Bo1Pro+ §H3P1,1)f,? , (3.38b)

Bo3 7 = Py (Bos+Boa2Po,1 + Bo1Por — Sym[Bo,1 PoPo2l) ff

o *( : (3.38¢)
B30/ = Py (B3,0+B2oP1o+ Bi,oPao — Sym[Bi,oPoP2ol) f
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B2 fi = Py (Bia+Bi,1Po1+Bo2Pio+BioPoa+Boi P+ %HEPM (3.38d)
— Sym([B),0PoPo2 + Bo,1 PoPr.1]) f

Bo1 i = Py (Ba1 +Bi,1Pro+BaoPo1 +BoiPro+BioPi + %Hgl’z,l (3.38¢)
— Sym[Bo,1 PoP2,o + Bi.oPoPr.1]) f

Bo4 f = Py (Boa+Bo3zPo1 +BoaPoys+BoiPos (3.38f)

— Sym([Bo 2 PoPo2 + Bo,1 PoPo.3 + Bo,1 Po,1 PoPo.2 — No 2 PoPo2]) f
B f = Py (Baa+BiaPio+ B2 Poi +Bo2Pro+Bii P+ BaoPos

1
+Bo1P21+BioPia+ EHSPz,z

— Sym[By 2Py P2+ Bi,1PoP1,1 + BaoPoPoo + Bo,1 PoP21 + BioPoP12

+ Bo,1Po,1 PoP2.o+ Bi,oPo1PoP1,1 + Bo,1PioPoPri1+BioPioPoPo2
(3.389)

— M2,0PoPo.2 — MNo2 PoPao — M1 PoPial)
B3/ = Py (B3 +Bo3zPio+Bia2Poi+Bo2Prii+Bi1Po2+BioPos+BoiPr2
1
+ §H8P1,3 — Sym([By 2 Py P1,1+B1,1PoPo2+B1,0PoPo3 + Bo,1 PoPi1 2
+ By,0Po,1 PoPo,2 + Bo,1 P1,0PoPo,2 + Bo,1Po,1 PoPr,1
— M1 PoPo2 — Moo PoPial) 7 (3.38h)
with Bj, j=0,...,4in(38)and P;, j =0,...,3,in(3.13).
The proof of (3.38) relies on formulas (3.24a)—(3.24c) and Lemmata 3.9, 3.10 below.
Lemma 3.9. Let £ € {f{, f{ . fo }. Forany j € N we have
PO*Syl‘l‘l[Bj + B_iflpl + - +B] Pj*l]POf]g = Pg(B/ + ijlpl + .- +B] ijl + %HSP_/')P()f]g y
(3.39)
where I1{ is the orthogonal projector on f.

Proof. By identity (3.29) the operator By, ¢ P, ¢ is, like B, ¢, self-adjoint, hence its j-th
jet fulfills

Sym[BjPo +--- +81Pj_1] = BjPo +--- +81Pj_1 +Bon — Sym[BoR/]. (3.40)
We claim that, for 7 € {f]". fi". f; } we have

1
Py (BoPj — Sym[ByP;1)Po f = EP(;‘HSPJ-POf,f , (3.41)

which, together with (3.40), proves (3.39). Claim (3.41) follows, by observing that f;”
fulfills By f7 = 0 and HZPofk" = f¢ (cfr. Lemma 3.7), then

1 1
P(;‘Sym[BoR,']Pofk” = 3 O*B()ijko + EP(TP;BOJCI?

1 1
- EP(;FZS’OPJ»H‘Pof,g’ B3 2

SRS (4D

Using again that P By P; 7 = II§P; f we obtain (3.41). i



56 Page 24 of 67 M. Berti, A. Maspero, P. Ventura

Lemma 3.10. Forany f € {f{", fi . fy Y and j € Nwe have TI{ Py ; f = TI§Pjof =
0.

Proof. We have that IT{ Py ; f = 0if and only if (Po_; f, f;) = 0. By [9, formula (4.8)]

we have that Py f,” = f, for any € and we have the chain of identities

QAT fr=—fT
—(TPoct Tfy) LT

(Tf Poefy)=(Tf fy) =
forany f € {f]". fi, f; }. deducing, in particular, that (Py ; f, f) = 0. The proof

that IT§ P; o f = 0 is obtained similarly, exploiting that P, o f,” = f,;” as proved in [9,
Lemma A.5]. d

In virtue of (3.6), (3.11) and (3.15) and in view of (3.24)—(3.25) we obtain

(PO,efv f(;—)

P(Sk,ejf’ f07)

splevl —

L]

{%i,j if jiseven,  foda) _ {0 if j is even, (3.43)

0 ifjisodd, i %, ; if jisodd.

3.4. Proof of Proposition 3.1. Proposition 3.1 is a direct consequence of the next propo-
sition.

Proposition 3.11. The 2 x 2 matrices £ := E(u,€), I' ;== T'(un,¢€), & := d(u,¢€) in
(3.5a)—(3.5¢) admit the expansions

: 2 32, 3
£ (mle +n1et +r1(€, ,ue [L e, un’) i (n1~2/462+r2(ll€2,él 6;311- ))) ’ (3.442)
=i (n2pe? +r2(u€ nle, 1)) an?e +rs(ue?, u?)
- <V116 +r3(ed, ne?, 6) *1V12M€ *1r9(M€ M €) \ ) (3.44b)
i y1ope? +1r9(/t6 u2e)  Pmpte + ynule +rig(ute’, ude)
( prie’ +ry(e, Me u2e) igrape? +igraue’ +ivip’e +ir(uet, p2e?, pe)
i o jue +idaipue? +ire(pne, p2e) boap’e + pople? +ri(ued, ule) ’
(3.44¢)
where
= (Bosfi, i) =0, o= (Bo1fi . f7)=0, Po=B21fy.fy)=0
112 = (Biofy, fT)=0, ida = (Biafi /) =—(Braf . &) =0, (3.45a)

¢ = (Baofy /i) =0, ivi2:=(Baify. fi) =0
whereas the coefficients
1= (Boaft. 1), imz=(Biafi ).
1= (Boofy. fo).  iviei=(Biafy . f5).  vei=(Bafy . fo):
o1 = (Bosfo, fi1) = (Bosfi fo), o= (Bisfy, 1),
igo1 = (Buifi /i) =—(Brafi . fo). ¢2=(Baify . fi).  (3.45b)
are given in (3.4d)—(3.41).
The rest of the section is devoted to the proof of Proposition 3.11.

Lemma 3.12. The coefficients 011, 122, 22, b12, $o1, o in (3.45a) vanish.
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Proof. The first six coefficients in (3.45a) are (use also the self-adjointness of the jets
of B e)

ad] ,—
(B A ) (B A ) (B e fy) s (B A
[odd] [ dd]
(0 BV f) (B fo s fi)s
which are zero because, by (3.43), the operators %([f;’ ]‘B[fg a _ %[ﬁ'] = 53[2?3 dl
= 0. O
For the computation of the other coefficients we use the following lemma.

Lemma 3.13. We have

1
(a“] pgl]ch 2) cos(2x)

Bo1fi = +5%x), (3.46)

pllllch sin(2x)

0
B + = 1 3
Lofi |:—i oy 2 (ch +h(l —cf)) cos(x)i|
[1]

1
P e
Biiff = 1921 Clh sin(2x) +50x),
cfl cos(2x)

Boo f* = (@ +1 ])chl (P + 2p£21)0h1 ) cos(x)

201 = i

(f2(1 —ch)ch (p[o] sz )cﬁ) sin(x)
N %( 21 1752]ch ) cos(3x) ’

2p£2]ch sin(3x)

Bosfi = |:%(a£1]ch 0 P} Chz):|

l(amc +a[3]c pmc : pmc )cos(2x) [4]
+23h3h 3h 3 Cn +h¥(x),

1
—(p3 +p3 )ch sin(2x)

1 1
2@ + 1412y — 2 (pl 2] cos(x)
Boafi = (1 nlag +5a,7) no(py + 2P4 )) +5B3 ()

1
-3 2
(ch (1 - cﬁ)(f4 - f%c%) - ch(p4 2p£ ]) sm(x)

Biofy = ! ’ Biifl =- in’ e, +h2(x)
ol icy 2 (cZ+h(l —cf))sinx) | el 2 0 '

or

2 2]
Biafy =—i h 2 zpz])cos(x) +hP(x)
Ch(Pz 2[72 ) sin(x)

[1] [0] [2] 2x)
g — | @ cos(x) L Boafr=|% |4+ ® cos(2x ’
0,10 [1] sin(x) 0.2f0 0 —2pl% sin(2x)
— P P
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_ 1 . 2
Biify =—ipl! [CO%(X)} , Biafy =i P [O} ip! [COS(() x)} ,
_ . _ 0
Bisfi = —i pgl] |:cos0(x)} +hBx), Bonfy = [fz] ,

with pg-i] and aE.i], j=1,...,4i=0,...,], in(A.59), (A.60) and £ in (A.48) and

where hl<1--¥l(x) denotes a function supported on Fourier modes k1, . . . , k; € No.
Proof. By (3.8)-(3.9) and (1.15). O

We now compute the remaining coefficients in (3.45).
Computation of ;. In view of (3.45b) and (3.24a) we have

1 1
o= Boafg, f5) + 5 (BoaPou fg f5) + 5 (Boa fo's Poafg) - (347)
— ———
a® by (3.8¢)

w1 (£4.Bo. i) by 3.17)
By (3.46) and (3.16) it results that (3.47) is equal to

o, 1 1
Y= a& Ty Euo,l(ag ]Cﬁ +P£ ]Ch ),

which in view of (A.59), (3.18) gives the term in (3.4f).
Computation of ¢,;. In view of (3.45b) and (3.38b) we have

i¢y = —(%l,l.frv f()+)
_(Bl,lffvf(;r)_ (BO,lpl,off’f(;r) _(Bl’opo’lff’f(;r)

iul.O(fjlvBO,lfJ) by (3.17) 0'by G.17)

1 _
- §(H3P1,1f1 Ie)

0 by (3.19%)

By (3.46), (1.15) and (3.16) it results

1 T
P = (C}1 P —uyocZall —uy ey, P1 )

which in view of (A.59), (3.18) gives the term in (3.41).
Computation of 71>. In view of (3.45b) and (3.38d), (3.17), Lemmata 3.4 and 3.5 we
have

ino = (Brafy . fi7)+ (Bi1Po1fi s f1) +  (Bo2Piofy s 1)
[ ——— —_—
(e sy wesany ool e oy

+ (BroPo2fi s 1) + (Bo.1 Prifi, fiF)
[ —— [ —

n0.2(B1of7 . f)+ug o (f2.Brof]) by (3.19b) ({al 1 cos(2x)

b1.1 s1n(2x)} B i) by (.19
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1 1
+ (Mg P2 f . ST) _E(BI,OPOPO,foa 1) —E(Bo,lpopl,lff, 1)

=0since M5 /=0 —Jng>(B1of . ) by (3.19) =0by (3.19)

I\JI'—‘

1 1
—E(Bl,off,f’opo,sz) —E(Bo,lfl_,POPLlff'),

—3m02Brofi Dby B19%) GO g, (4 By f7)=0

where the three underlined terms cancel out. Hence, by (3.46), (1.15) and (3.16),

o 1 1 -1 1 1 1
N = —pg I Zpgll(bo,lcﬁ+ao,1ch2)+u1,0(2cha£ ]+4cha£ 1_ Ech f2(1 Cﬁ))

1 el L3 m Tormg 1 -3 m
+2u02(ch+ ( —ch))ch +4chal all—zchpl l’l_é_lch p1 oLl

=

which in view of (A.59), (3.18) and (3.19c¢) gives the term in (3.4¢).
Computation of yj;. By (3.45b) and (3.38d), (3.17), Lemma 3.4 and 3.5 and since
Bo,1fy =0and By f, =0 wehave

iyie = (Biafy . o) +(BiaPorfy s fo) +H(BoaProfy s f)
=0 =0
1
+(BI,OPO,2fO_’fO) (BOIPI 1f0 fo) (H+Pl 2f0 fO)
=0 =iy Ut Boa £ =0

| 1

—5(81,0P0P0.,2f0_’ f0+) —E(Bo,lPoPl,lfo_» f0+)
=0 =0

1 1

—E(Bl,ofoi’ POPO,Zf(;r) —E(B()’]fo*, POP],lf()Jr) .

=0 =0

So, by (3.46), (1.15) and (3.16),

(1]

1 1
0 —3/2 11 2 -7
or_ — ¢ /(ag]cﬁ+p1 cn )

Yi2 = —p; 4Ch

which in view of (A.59) gives the term (3.4f).
Computation of ¢;;. By (3.45b) and (3.38¢), (3.17), Lemma 3.4 and 3.5 we have

11 = (Bosfit f§) + (Bo2Por fi f) + (Bo.1 Po2 fi. fo)
—_————— —_—

ag,1 cos(2x) no 2 (7, Bo.1 fh)+ug o (f1,Bo1 fi)
([bo_lsin(Zx):|’Bo~2fJ) : 0T 0

1 1
—E(BO,IPOPOJfva 1) —5(30,1f1+, PoPo2 f7) -

—Inoa(ff.Boi ) G
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Thus, by (3.46), (1.15) and (3.16),

1 I
¢11——a510h—-19£]ch +5

1
5 > =ao, 102 — bo, 1p2

2
1 13 -3 1 N3, -3
+ ZnO’Z(aE ]cﬁ — pE ]chz) + 5“3,2(‘1% ]cfl +pg ]chz)

which in view of (A.59), (3.18), (3.19c¢), gives the term (3.4g).
Computation of ¢,>. By (3.45b) and (3.38e), (3.17), Lemma 3.4 and 3.5 and since
By1=0and By f, =0,Bi,0f, =0 wehave

¢ = (Baify . [17)+(BiiPiofy . /i) +(BaoPor fy  fT)

0 0 0

1
+(Bo,1 Paofy s 1) +(BroPiafy . i)+ E(HSPz,lfo_, )

0 —5en (141 Brofy) (o T 7+ T £, f7)=0
—%(BO,IPOPZOfo_’ )— %(Bl,opopl,lfo_ﬂ )
-0 =0
- %(Bo,lf()7» PoPaof) — %(Bl,ofoi PoPiif) .

=0 =0

So, by (3.46) and (3.16),

1 _3
¢ =y’ (ci +h(l —c}))

which is the term (3.4i).
Computation of /2. By (3.45a), (3.38¢) and since 32,1 = 0, Piofy =0,Po1fy =0
by (3.17), Lemmata 3.4 and 3.5 this term is given by

iy = (Boi fy s )+ (BiiProfy . fi) + (BaoPor fy o fT)

=0 =0 =0
_ _ 1
+(BoaPaofy . i)+ (BroPuify s 1) 5(1'1 Py fy . f1)
—_— —_—
=0 by (3.19d 3 "
Y190 —ben 2 (1, Brofy) by(3.19) =0 as IT§ f{=0

1 1
- E(BO‘IPOPZ,Ofo_v ) 5 (BioPoPrify s 1)

—0 by (3.19d) =0 by (3.1%)
1 _ 1 B
-3 (Bo,lfo ; P0P2y0f1+) ) (Bl,of() , P0P1,1f1+)
=0 since By,1 f; =0 =0 since B0, =0

and finally, by (3.16) and (3.46),

iy = ~kc m(f_l, Bioff) =
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Computation of 7. By (3.45b), (3.38f), (3.17), Lemma 3.4 and Lemma 3.5 and (3.26),
we have

n = (Boafi, fif)+ (BosPorfi, fif) + (Bo2Por fis f7)
(o o) (roastwsiasn[ 202 s | Boast)
+ (Bo1Posfi. fi) —%(Bo,zPoPo’sz“, )
([fosmea]Borst)  —tnoa(Bast i)

1 1
—E(Bo,for, PoPoafi) — 5(30,1P0Po,3f1+, 1)

—Ing, (Bo.sz',ff) =0
1 1 . 1
~3 (Bo.1 fif. PoPos f7) —5(50.1P0,1P0P0,2f1+, i) —E(Bo,lffr, Py, 1 PoPo2 f7F)
S ——
-0
S gt SRS EOR | Pkeseee] Y

1 1
*3 (No2PoPorfi, f1+)+§(f1+, No2PoPo2fi).
=0

=0

where the three underlined terms cancel out. Thus, in view of (3.46), (1.15) and (3.16),
we get

401 I
n = ch% + ch% —py - % +5 (- ) (F4 — £3c) (3.48)
h
I, 1 13 1 3 I 13 1
+ (@ +ad) - et ()1 + p)ao.s - Sen s+ pihbo
1, 2 3 2
+ Z(“lz ]Ch Plz ]Ch )ao,2 — Zchplz 150»2
1 1
+ Zuo z(cha£ 1, Zcha£ I_ ch]fz(l — cﬁ))
1 no—b1 -
+2aoa(alle? - pllle?) = Zbgscipl!
4 2
1 (.5 [

1
2
—Zﬂo,zﬂo,l(al Cy — Py Cy )+2ﬂ02501ChP1

which in view of (A.59), (A.60c), (3.18), (3.19¢), (3.22) gives (3.4d).
Computation of y,,. By (3.45b), (3.38g), where we exploit that (Sym[A]f, f) =

Re(Af, f),(3.17), Lemma 3.4, Lemma 3.5 and since By, f = 0and By 0 f, =0we
have

v = (Baafy . fo )+ (BiaPiofy . fy )+ (BaiPoafy . fo )+ (Bo2Paofy s fy)
£ -0 -0 -0
+ (BiLiPiafy . fo) +(BaoPoofy s fo )+ (BoaPaifo o fo)

_%CP/Z(fprl.lfo_) =0 (Pz’lfb_’Bo’lfO_):O
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+(BroPi2fy . fy) +% (G P22 fo - fo)
-0 =0
—Re(Bo2PoProfy » fy ) —Re(BiiPoPiify » fy ) —Re(BaoPoPor2fy + fy)
0 —0 =0
—Re(Bo,i PoP21 fy s fy)
(P()PZ‘IstB(),If07)=O
—Re(BroPoPr2fy . fy ) —Re(Bo1Po.i PoPaofy - fo)

-0 =0
—Re(BioPo,1 PoPi1fy s fy ) —Re(Bo,i ProPoPiify s fy)
-0 -0
—Re(BioProPoPo2fy . fy)
=0
+Re(Ma0PoPo2 fy » fo ) +Re(No2PoPaofy » fo ) +Re(MiiPoPiify . fo) -
-0 -0 -0

Then by (3.8e), (3.9), (3.10d), (3.16) and (3.46) we get

i
=f,+ 1
V22 2 dcr
which, in view of (A.48), (A.59¢) gives (3.4f).
Computation of ¢,. By (3.45b), (3.38h), (3.17), Lemma 3.4, Lemma 3.5, (3.26) and
since By f, =0, Bi,0f, =0and By f, =0 we have

igr=(Bi3fy . fi)+(BosPiofy . i)+ (Bi2Porfy . fi)

=0 =0
+ (Bo2Piify  fi) +(BiaPorfy . fi)+(BioPosfy . fi)+ (BoaPiafy fi)
i (1 Boart) - - (e ) 8o )

1 1 1
+ E(H$P1,3f0_, D) -3 (Bo2PoPri fy s 1) ] (Bo2fy s PoPi1fT)

—_—
=0

=0 =0

1 1 1
-3 (Bi,1PoPor fy . fT) —5(31,1f(f, PoPos fT) —3 (BioPoPosfy . f1)
— —_—
=

7%no,z(31,1f07-f1+) h

1 _ 1 _ 1 _
~3 (Biofy s PoPosfi) -3 (Bo1PoPiafy s fT) ) (Bo,1 fy s PoP1afT)
=0 =0 =0
_ 1 _ 1 _
(BioPoPoPo2 fy s f1) —3 (Biofy s PoaPoPo2fi) -3 (Bo,1ProPoPo2 fy s f1)
=0 =0 =0

1 _ 1 _ 1 _
~3 (Bo.1fy » ProPoPo2fT) —3 (Bo,1 Po,i PoPii fy s f7F) —3 (Bo.1fy » PoaPoPryfY)
=0 =0 =0

1
2
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1 1
+ E(ml,l PoPoafy . /i) + E(fof, M1 PoPo2 fT)

-0 -0
1 T D .
+5(‘710,2P0P1,1f0 i )+§(f0 ,No2PoPrifT) -

-0

D~ _ _\(.26
— 5y (fo Mo fy )< 2%

Hence by (3.46), (1.15), (3.16), we have

Va5 o, 1o, 1 =3
¢12 = —Epg ]ch/ — Zchz(a£ 14 §a£ ]) + Zchzfz(l — cﬁ)

1 13 1 -4 1 Lo 1 13
+ ZaLz(aE ]cfl — pg ]chz) — Ebl,zcﬁpg Iy Zno,ng ]cf1 ,

which, in view of (A.59), (3.22) gives the term (3.4h).

4. Block-Decoupling and Proof of Theorem 1.3

In this section we prove Theorem 1.3 by block-decoupling the 4 x 4 Hamiltonian matrix
Ly,e = J4By ¢ in (2.8) obtained in Proposition 3.1, expanding the computations of [9]
at a higher degree of accuracy.

We first perform the singular symplectic and reversibility-preserving change of co-
ordinates in [9, Lemma 5.1].

Lemma 4.1. (Singular symplectic rescaling) The conjugation of the Hamiltonian and
reversible matrix Ly, ¢ = J4By, ¢ in (2.8) obtained in Proposition 3.1 through the sym-
plectic and reversibility-preserving 4 x 4-matrix

Y;:(%Z) with Q::(lt;'u(z >, nw>0,

yields the Hamiltonian and reversible matrix

=

(€Y) (1
) .yl _ on _ [ T2EY) OoF
Lile 7= Y Lyt = J4By e = <J2[F(1)]* JZG(I) 4.1
where B;(},)e is a self-adjoint and reversibility-preserving 4 x 4 matrix
(1) (1
m_(E7F M — g0y 6O — (g
B/L,e - <[F(1)]* G(l)) , EYV=[EY]T, GV =[G],
where the 2 x 2 reversibility-preserving matrices EV = EW(u,e), GV =

G (u, €) and FV := F (u, €) extend analytically at © = 0 with the expansion

3 .
ED — (elméz(l +r1(3, pe) +npet —enle L+ (e, ) i(hennp+none® +ra(ued, ule, M3)))

—i($enap +naue® +ra(ue’, e, 1)) —enk(L+rs5(e?, 1)
(4.2a)
G .- </4 +yripe +rg(ued, pe?, uie) —iyiope? —irg(ue’, ue) ) (4.2b)
’ ivioue? +irg(ue®, pe)  tanh(hw) + yooue? + rig(ue, u2e) :
_1
PO . [ Eripe + pripe® +r3(uet, p?e?, de)  ipecy ? +ignue® +ir(uet, pe?, ude) (4.2¢)
o1 pe +irg(ue®, u2e) poapie +r7(pne, pre)

where the coefficients appearing in the entries are the same of (3.3).
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Note that the matrix LS)E, initially defined only for u # 0, extends analytically to the

zero matrix at u = 0. For u # 0 the spectrum of L commdes with the spectrum of
Lye-
Non-perturbative step of block-decoupling.

The following lemma computes the first order Taylor expansions (4.4) of the matrix
entries in (4.3) and then the expansion (4.8) at a higher degree of accuracy with respect
to [9, Lemma 5.4].

Lemma 4.2. (Step of block-decoupling) There exists a 2 x 2 reversibility-preserving
matrix X, analytic in (i, €), of the form

- (;;1211 1;2122) . xjeR, i j=1,2, 4.3)
with
X1 = xfl)e + r(e3 Ue),  Xpp = xfz)e + r(e3, JLE) (4.4a)
X2] = xél)e +)cg)csg + r(e ,ue % e) , X2 = xg)e +)cg)-fg + r(e ,ue /LZG) ,
where
x5y == —1pp (et v2c ), ) = %Dgl(c;%elg +2hfy)), (4.4b)
and
xﬂ) = Dhl( 2622)621 l612¢21 + ¢ — l622)6%))
xg) =D, ( 22x21 —ho + 5 e12¢22 16612622X§2))
xg) =Dy, ( %enelle}) + 2()/12 + 1712)612)65%) + 1612)/11)6(1) (440)

- §¢nelz - enxl(z) - J/zzle (y12 + 7712))622 —¢12),

3 - 1 a 1
52) i= Dhl(henxfl) —h(yn+ 7712))621) - thlxéz) +hen

1 @M 1 (1 1
+3ereny)y +ye1y2xy) +3en2(vi2 + n2)xy, + 5en2di2).

with e12, e, e11, $21, $22, Y12, N12, V11, D11, Y22, P12, £11 computed in (3.4) and (cfr.
[9,(5.1)D

1
Dh:=h—ze%2>(), Vh > 0, (4.5)

such that the following holds true. By conjugating the Hamiltonian and reversible matrix

LSL, defined in (4.1), with the symplectic and reversibility-preserving 4 x 4 matrix

exp (SP),  where  SU =3y <Z(2)* g) ., X i=02X, (4.6)

we get the Hamiltonian and reversible matrix

@ @
@ ._ M7 (D MY — 7,m@ _ [ T2EY 32F
L, ‘= exp (s )LH,G exp(—S") = J4B,, = (JQ[F(z)]* 7,G® ) 4.7)
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where the reversibility-preserving 2 x 2 self-adjoint matrix E®) has the form

3 .
E® _ <ew}3/l€2 +nwppet +r](ne, 1263) —en e (1+r] (e ) i(Fenm+ra(ue?, u’e, ;ﬁ)))

—i(yenu+r(ue’, u’e, u)) —enk(1+rs(e, )
4.8)
where ews is the Whitham—Benjamin function in (1.3) and
1
3 1 D -3
Nwe = 711 +X21)¢12 +X£1)Ch - x22 ¢11 Xzz)fll + = (le))2x§2)¢22 + (xz )2x](2) Ch . (49)

3.0 ()

3 mom.a 1 1 1
53" ( ) fz)xéz)f 1+ E(xéz))zxél)d’ﬂ BRI 2 + (x( )2y )fl

with xﬁ), xg), xg), xéll) R xg), xg) in (4.4) and the remaining coefficients in (3.4),

whereas the reversibility-preserving 2 x 2 self-adjoint matrix G has the form

G(2) — /¢L+78(/.L62, /‘L36) _ir9(/1/627 I’L26) (4 10)
irg(ue?, p*e) tanh(hu) +rio(ue) ) '
and finally
3y 3
FO _ (.r3(,u€ ) irg(ue )) . 411
ir6(1€%) ra(ue) 1D

The rest of the section is devoted to the proof of Lemma 4.2. In Lemma 5.4 of [9] we
proved the existence of a matrix X as in (4.3) such that we obtain (4.7) with matrices
G®, F® asin (4.10)—(4.11) and a 2 x 2-self adjoint and reversibility preserving matrix
E® whose first entry has the form [E®) ]| = ewsue?+r1(ue, u?€?). The main result
of Lemma 4.2 is that the first entry [E @17, has the better expansion

[E@111 = ewsne? +ri(pe’, u?e?) = ewppe® + nuspe’ +r{(ne’, p?e’)

with nyp computed in (4.9), which is relevant to determine the stability/instablity of
the Stokes wave at the critical depth. Clearly we could compute explicitly also other
Taylor coefficients of the matrix entries of E®, G®, F®  but it is not needed.

The coefficients x and x(l) in (4.4b) were already computed in [9, Lemma 5.4].

We now expand in Lle series the Hamiltonian and reversible matrix L( ) = =exp(S )L(l)

exp(—S) where for simplicity we set § := S We split L(l) into its 2 x 2-diagonal
and off-diagonal Hamiltonian and reversible matrices

1 1 1
L = pO 4 gD,

W . (D1 0 _ JzE(l) 0 . 0 JzF(l)
b "(0 Do> "( 0 26) K= \grrop T ) @12

and we perform the Lie expansion
1
2) __ 1 (1) 1 1) 1 1
Lize = exp(S)Ly) exp(=S) = DV +1S, DVT+ S[5. 15, DVI]+ RV +15, RV

f(l—r)zexp(rS)ad (D) exp(—18)dr
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/(l—r)exp(rS)ad (RW) exp(—t8)dr (4.13)

where ad4(B) := [A, B] := AB — BA denotes the commutator between the linear
operators A, B.

We look for a 4 x 4 matrix S as in (4.6) that solves the homological equation R(D +
[S. D] = 0, which, recalling (4.12), reads

0 J2F(1)+J22D0—D1J22
=0. 4.14
(JZ[F(I)]* +J22*Dy — DpJp T* 0 (414)
Writing ¥ = J3X, namely X = —J,%, the equation (4.14) amounts to solve the
“Sylvester” equation
DX — XDy =—3,FWV . (4.15)

We write the matrices EV, F(D GO in (4.1) as
1 . (D) 1 . 1 .~
BV = ( E“(l) 1Ed%) , FO = (Fl(ll) 1F<112)> . GV = ( G”1 1G112)
—1E)y Ey 1Fy Py _ing) ng)
(4.16)
where the real numbers E(l) F () G(]) i, j = 1,2, have the expansion in (4.2a), (4.2b),

(4.2c). Thus, by (4.12), (4 3) and (4 16) the equation (4.15) amounts to solve the 4 x 4
real linear system

(€ (1) (n (n [€))
Gy, —Ep Gy Ey, 0 X11 — I
(D (n (n (€8] (1)
Gy Gy, —Ep 0 —E; x| | Fp 4.17)
E(l) 0 G(l) E(l) G(l) X21 - F(l) : :
11 12 — £ —Ln —
(e8] (D) () (1) X22 (1
0 —FE -G G,y — FE F
11 22 12 12/ 12
. —x S———’

By [9] system (4.17) admits a unique solution. We now prove that it has the form (4.4).
Lemma 4.3. The vector x = (x11, X12, X21, X22) with entries in (4.4) solves (4.17).

Proof. Since tanh(hu) = hp + r(,u3), we have
1 1 M
Gy —Ef) = —ens —(+ maue” +r(ue’, ue, 1y, (4.18)

1 1 w
Ggl) = w+ynpe +rg(ue’, p?e?, wle), Eéz) = —e22—(1 +r5(€%, 1),

1
Gy = ph+ynpe +r(ue’, e w) . Efy = enpe® +ruet, i’ 1),

with coefficients ez, Y12, 112, Y11, €22, ¥22 and eq1 computed in (3.4). We exploit that

the terms xéi) and xg) have been already computed in [9, Lemma 5.4], in order to get

(1 @

x,; and x5 in (4.4) as solutions of the system
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1 1 1
(e L) )= (pe o) (T P e
h —zen/ \x, 22 — ge2X5y h —%eu

(4.19)

given, using also (4.2c), by the first two lines in (4.17) at order pe. Similarly, xg) and

xg) in (4.4) solve the system

_1 _ &) oDt (s 4 D D
( e —1 )(x%%)>=( Xy + iz + m2)xyy + yiixyy — il . (4.20)

_ _1 1 1 1
h o —3en/ \xy eanz) + sz)él) + (Y2 + 7)12))652) +¢12

which comes, also by (4.2¢), from the last two lines of (4.17) at order ue3. The solutions
of (4.19)-(4.20) are given in (4.4c). m|

We now prove the expansion (4.8). Since the matrix S solves the homological equation
[, D]+ RM =0, identity (4.13) simplifies to

L3, =D+ %[s, RV + % [01 (1 — 22) exp(zS) ad3(RV) exp(—tS)dr.
(4.21)
By plugging the Lie expansion
exp(zS) ad3(R") exp(—75)
= ad3(RV) + rad}(RW) + 72 /01(1 — ) exp(t'tS) adt(RV) exp(—7'tS) dr’

into (4.21) we get

1 1 1
2 = DO 4 515, RO) s Sadi (k) 4 Ladi(R") 22

1 1 1
+ 5/ 1- 12)12/ 1-1) exp(rr’S)adé(R(l))exp(—rr’S)dt’dt.
0 0

(4.22b)
Next we compute the commutators in the expansion (4.22a).
Lemma 4.4. One has
1 JE; 0
—[s, RD] = (7271 % 4.23
2 [ ] 0 J,Gy ( )

where E1, G are self-adjoint and reversibility-preserving matrices of the form

)

—i(e1ope® + P2 (e, p2e?)) Fs(pe?) o)
G = ( Frime® +Fg(uet, u?e?) i(§12M62+I~'9(M64,M262))>
_1 ’

(G1ome® + Fo(uet, u?e?))  gunue? +Fo(uet, ue?)

B = <é11M€2 + 7P et + 7 (ue, n2e, 13e?) i (Brape? +ia(ued, /ﬁez))?
4



56 Page 36 of 67 M. Berti, A. Maspero, P. Ventura

where

1 _ 3 I 3
e = xél)ch —X( )f11 ) nﬁ) = x21)¢12+x§1)ch —x( )¢11 —xéz)fll ,

. - 1 (1 1
€= —gu2 = 2(x21)¢22 +x22)¢21 - Xfl)ch - xg )fn) (4.25)

1
g = Xl(l)fn +x£1)¢21 . 9= x22)¢22 +x

Proof. By (4.6), (4.12), and since ¥ = J> X, we have

()c}—li

1 JEr 0 - -
E[S, R“>]=< 20 ! szh)’ Ey:=Sym[3,XJ,[FV1*], Gy:=Sym[x*F"],

(4.26)

where Sym[A] := L(A+A%), see [9, (5.28)~(5.29)]. By (4.3), (4.16), setting F = F(1,
we have

Fio —xp b i(xo1 Foo +x22F21)
T2 XToF* = (.72 , 4.27
2aez (l(qulz +xi2F1)  —xnFn+xiky (4.27)

(4.28)

X*F — x11 P +x21F21 1(x1 Fia — x21 F22)
i1(x0F1 —x12F11) xpFpn+xi2Fy )7

and the expansions in (4.24) with the coefficients given in (4.25) follow by (4.27), (4.28),
(4.4) and (4.2¢). |

Lemma 4.5. One has

1 0 JF
—ad2(RWy = _" 2 42
FEERD = () (4.29)

where F is a reversibility-preserving matrix of the form

- 2 RAN= 3, 5 2.3
P (fnue +r3(M€ €3 ifiope irlm(éw , e )) ’ 4.30)
i76(ue’) r7(pe’)

z 4 m_a 4 a 4 a 2 a 1
£11 = 3x§1)x§1)ch _§x§2)x11)f1 _3)‘52))621)45 +3x§1)x12)f11_ (xé 22,

. 4 14 2 -1

fo:= gxg)lez)fﬁzﬂ 3x1(12)x§11)ch 3x1(12)x§12)f11 + 5(" o1 — xfl)xg)ch :
(4.31)

Proof. Using the form of S in (4.6) and [S, R™"] in (4.23) we deduce (4.29) with

2 - -
F = §(J2XJ2G1 +E1X) 4.32)

where £ and G are the matrices in (4.24). Writing E; = ( (ELh i[{51]12>’ G| =

—i[E1l12 [E1l2
[61]11 1[G1]12
—i[G1l12 [Giln
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we have, in view of (4.3),
Ty XT2Gy = ( 1[Gilip —x2[Giln i (x21lGilx —mz[fil]lz))
(x11lGiliz +x12[G1l1)  —x11[Gil — x12[G1l12

By X = ( xnlEil — xalEil i()612[11*31]11 +x22[{§1]12)>
(x21[Eilz — x1ilEiln)  xnlEilip+x0[Eiln )

(4.33)

By (4.32), (4.33), (4.4) and (4.24) we deduce that the matrix F has the expansion (4.30)
with

.2 :
fn= 3 (x£1)912 —x;z)gu +X§1)611 —X§1)elz)

- 2
f1o = 3(X£1)922 —xéz)glz +x§2)<—2'11 +x§12)<—2'12)
which, by (4.25), gives (4.31). |

Lemma 4.6. One has

1 JoE; 0
—ad3(RM) = (277 " ), 434
Sa 5( ) 0 J,G3 ( )

where the self-adjoint and reversibility-preserving matrices E3, G in (4.34) have entries
of size O(ue*). In particular the first entry of the matrix E3 has the expansion

~ ~(b
[Esliy = 77} net +r(ue’, e (4.35)
with
(b 1 1 1 1 3 .. a
( ) . ( ( ))2X£2)¢22 + (x( ))foz) h _ 2 §1)x§2)x§2)f11 (4.36)
a 1 3 .. 1
+5 (x22))2x§1)¢21 2x§2)x§1)x§l)ch +(x( ))2x11)f11

Pgosf. Since gad3(R1D) = (S, 1ad%(R")] and using (4.29), the identity (4.34) holds
wit

By = Sym{5XDIFF], Gy o= JSym[X°F]. (4.37)

Since, by (4.4) the matrix X in (4.3) has entries of size O(¢) and the matrix F in
(4.30) has entries of size O(ue3) we deduce that the matrices E3, G3 in (4.37) have

entries of size O(ue?). By (4.37) and denoting F = (ilg;l ig‘; , we deduce, similarly
to (4.27), that [E3]y; = 3(x21 F12 — x22F11) which, by (4.4) and (4.30), gives (4.35)
with 77 = 3 (x{} E12 — x35 E11) which by (4.31) gives (4.36). O

Finally we show that the term in (4.22b) is small.
Lemma 4.7. The 4 x4 Hamiltonian and reversible matrix ( JJ[zFE]* 33 G) given by (4.22b)
has the 2 x 2 self-adjoint and reversibility-preserving blocks E, G and the 2 x 2
reversibility-preserving block F all with entries of size O(jue>).
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Proof. By the Hamiltonian and reversibility properties of S and R(! the matrix adi‘g (RM)
is Hamiltonian and reversible and the same holds, for any 7, T’ € [0, 1], for

exp(z7'S) adt (R exp(—77'S) =[S, ad3(R)I(1 + O(u, €)).  (4.38)

The claimed estimate on the entries of the matrix given by (4.22b) follows by (4.38) and
because S in (4.6) has entries of size O(¢) and adg(R(l)) in (4.34) has entries of size

O(pne). O

Proof of Lemma 4.2. Tt follows by (4.22),(4.12) and Lemmata 4.4,4.5, 4.6 and 4.7. The
matrix E@ := E® + E| + E3 + E has the expansion in (4.8), with
1
& = - 2 b
ews:=e€j1tej1=ej — Dh](chl +hff, + enfiicy?), Twsi=ni1+ 1751) + 7751) ,
as in (4.9). Furthermore G? := GV + G, +G3 + G has the expansion in (4.10) and
F® := F + F has the expansion in (4.11). O

Complete block-decoupling and proof of the main result.
Finally Theorem 1.3 is proved as in [9] by block-diagonalizing the 4 x 4 Hamiltonian

and reversible matrix L( ) in “4.7),

) (2
@ _ p@ , p® @ ._ (92E 0 @ ._ 0  3OoF

(4.39)
The next lemma is [9, Lemma 5.9].

Lemma 4.8. There exist a 4 x 4 reversibility-preserving Hamiltonian matrix S® :=
S@ (w, €) of the form (4.6), analytic in (., €), of size O(€3), and a 4 x 4 block-diagonal
reversible Hamiltonian matrix P := P(u, €), analytic in (i, €), of size (’)(,ueﬁ) such
that

exp(S)(D® + R®)exp(—S?®) =DP + P. (4.40)

By (4.40), (4.8)—(4.10) and the fact that P has size (’)(,ueﬁ) we deduce Theorem
1.3: there exists a symplectic and reversibility-preserving linear map that conjugates the
matrix i cnp + Ly e (Which represents £, ) with L ¢ in (2.8) into the Hamiltonian
and reversible matrix (1.17) with Uin (1.18) and S in (1.19). The function Agg(h; u«, €)
expands as in (1.2).
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A. Fourth-Order Expansion of the Stokes Waves

In this Appendix we compute the Taylor coefficients (A.2) of the fourth order expansions
(1.9) of the Stokes waves. We also compute the fourth order expansion (A.58) of the
2 -periodic functions p.(x) and a.(x) and the expansion (A.47) of the constant £, in
(1.12).

A.1. Expansion of Stokes waves.

Proposition A.1 (Expansion of Stokes waves). The Stokes waves ne(x), e (x) and the
speed c¢ in Theorem 1.2 have the expansions (1.9) with coefficients

4 4 8
0. Cnh—1 2._3-C (21._ 3+¢ch A2
= . = s = ’ 22
& 4c%l 2 4c}6l V2 8c}7] ( )
oo 2 10ct +9¢} LU= ct) S0 — —2cl2+13c8 —12¢t +9 (A2b)
> 16¢] 2cn, 2 16¢7 ’ '
n . —2ci2+3c +3 31 —3ciZ+9cf —9cf +27
BT e (v BT 64c)? ’ N
2cl2_3c8 —3 —9¢!2119¢8 +5¢8 +9 (A.2c)
Yl .= Ch —>Ch B1._ —7Cn ey tocy+
3 16c](1+c2) = 737 64c)3 ’
o) —4cy’ —4ct® +17¢[f + 6t —48cf +6cf +36c) — 9
= 64cl? ’
1
. — ( — 24¢22 +285¢!8 +177¢1° — 862¢)* — 7542
T4 384e8 (2 4 1) n n n n n
+1116¢19 + 10808 — 162¢8 — 54ct — 812 — 81) ,
. 21 +cff — 262¢]? +522¢8 +81c +405
v 384ci¥(ct +5) ’
1
.= 7( — 1220 — 362t +57c22 +93c20 + 51c)® —21c/® — 646c)*
¢4 768011,19(C121 + 1) h h h h h h h »
—502¢/2 +1098c1? 4+ 1098c8 — 2438 — 135¢) — 812 — 81) ,
i —21c2 4+ 60c2 +343¢)0 — 1648c)? +3177c} + 756} + 405
47 1536¢/%(ct +5) ’
(A.2d)
1
c4 = ——————(56¢3 +88c8 — 272c70 — 5282 — 722 +497¢20 +1917¢!® (A2e
4 1024C}119(C12f1+1)< h h h h h h h ( )

+1437c® — 4566¢)* — 4038c1? + 4194¢10 + 39068 — 8918 — 675¢) +81c? + 81) .

The rest of this section is devoted to the proof of Proposition A.1.
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In [9, Theorem 2.1] we have yet computed the second order expansion of the Stokes

waves in (1.9) and proved that the coefficients ngo], ngz], wzm are (A.2a) and ¢; is (A.2b).
Then we write

[0]

Ne(x) =€ cos(x) +¢€ (r] + n2 cos(2x)) +¢€ ng(x) +¢€ r;4(x) + (’)(65)

Ye(x) =€cy, sin(x) + € Wz sin(2x) + € w3(x) +etya(x) + O@), (A.2)

3

Ce =chtelcr+ecy+etca+O),

where the functions n3(x), n4(x) are even and ¥3(x), ¥4 (x) are odd. We rewrite the
equations (1.8) as the system

W2 nx 2
U—CI//x+7—2(l+ 2)( c—Yx) =0 (A3)

cnx +GmMy =0,

where in the first equation we have replaced G ()Y with —c ny.
We Taylor expand the Dirichlet-Neumann operator G (1) as

G(n) = Go+Gi1(n) + G2(n) + G3() + O(*)
where, by [14, formulae (39)—(40)],

Gy := Dtanh(hD) = |D|tanh(h|D|),
G1(n) := —0xndy — GonGo,
_ 1 2 Loo .
Gr(n) := —=Gpoxn 0y + z9;n"Go — GonG (1),
2 2" (A.4)
G3() := —83 3ax+6Goa n Go—GonGz(n)+ a 2n*G1(n)

1 1
Ga(n) := ﬂ0033n43x—ﬂ3?77400 + §3xn2Gz(n)+8G03377‘ G1(n) — GonGs(n).

Remark A.2. In order to check that (A.4) coincides with [14, formulae (39)-(40)] use the
identity D? = —83. We point out that (A.4) coincides with [15, formulae (2.13)—(2.14)]
and the recursion formulae of [47, p. 24].

The ‘unperturbed” linear part of the system (A.3) is associated with the self-adjoint
closed operator

Bo=[ ) e ey o — g a9

with domain D := HZ*"! H;"lf;l . To compute the higher-order expansions one needs

the following

Lemma A.3. The kernel of the operator By in (A.5) is

K := Ker By = span { |: C?Zz()x)} } (A.6a)
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and its range R := Rn By = K7 is given by R = Ry ® R| ® Ry, where

Ry = span{ |:(1):| } , Ry := span{ |:c?hcs(1)rsl(();)):| } ,
- (A.6b)

_ g . cos(kx) 0
Ry = ng , Rp:= SPan{ |: 0 :| ’ |:sin(kX)] } '

Consequently there exists a unique self-adjoint bounded linear operator By '"R—> R
given by

S [1] 1 i —cosx)|] 1 — cos(x)
By [0] - [O] » By [ch sin(x)] - 1+c2 |:ch sin(x)] ’

1| ]| _ 2.2\—1 | D] tanh(h|D]) cndy | | f(x) f
B, [g(x)] = (|D|tanh(h|D|) + c3,97) [ end, 1 ][g(x)] , v[g] € Ry,

such that BoBy' = By ' Bo|, = 1dg.

[k
Proof. This is the content of [9, Lemma B.1]. Then (A.7) follows by inspection. O

From the second-order expansion of the Stokes waves in [9, Appendix B] we recover

4

Gov = casin(¥),  Gi(m)¥1 = —— 2 sin(2x). (A.8)
cn(l +cy)

Third order in €. By plugging the expansion (A.2) in system (A.3) and discarding
quartic terms we find the following linear system (we drop the dependence w.r.t. x)

By [773} _ [czwl)x — (WD)x(W)x = (D3 (Y1)xcn + (m)xmz)xcﬁ] _. [fa]
V3 —c2(n)x — G1() Y2 — Gim) Y1 — G2 ()Y 8]
(A9)

In view of (1.9) we have
12]

WD)y = L (cos(x) + cos(3r)) ) -
Ch ch()x(m)x = ciny (cos(x) — cos(3x)) (A.10)

1
)2 (Y1)xcn = 7 (Cos(x) = cos(3x)) ,

By means of (A.4) and since

5 ZC%1 SC%1 + 0161
tanh(h) = ¢y, tanh(2h) = —, tanh(3h) = — (A.11)
1+cy 1+ 3cy,

whereby

_4cl oy
Goyr = T sin(2x) (A.12)
h

1+c



56 Page 42 of 67 M. Berti, A. Maspero, P. Ventura

we have, in view of (A.8) too,

4 4 8
1 —2cy +cy .
Gitms =y fsm(x>+3wm 2B sin(3x) .
ch +4c), +3cp
Golaypr = 3ch— 1 Sin() 3 b —4ct+3 Sin(30) A13)
= — n(x) — —Ch—————— SIn(dx), .
= 4 " Tvact+3c

Gi1(m)¥n

1 1 3 1-c
[0] 4 [2] 4 - 2]
o (ny (1 —cp)+ 37> (1+cy))sin(x) + — Pon U 4 B sin(3x).

By (A.2b), (A.10), (A.13) and (A.2a) the right-hand side of system (A.9) is given by

f3(x) f3[1] cos(x) + fm cos(3x) (A.14)
g3 (x) gg sin(x) + gB] sin(3x) ’ .
with
U —2c¢i2+3c8 +3 pop 3¢t —6ct -3
3 16c? SR 8ch ’
b b A.15)
12 8 8 4 (A.
g[l] — 2Ch — 3Ch -3 g[3] o —6Ch + 15Ch -9
3 16¢] C3 4c] (1+3ch)

We recall that the term ¢, in (A.2b) is determined (cfr. [9, Appendix B]) to make the
vector (f(x), g(x)) in (A.14) orthogonal to the kernel of the operator By, therefore
ensuring the existence of a solution

[na(X)} [ng” cos(x) + 175 cos<3x)} R [f3(x)}
Y3 (x) yillsin(x) + 5 sinGr) | T 0 8300 |

By Lemma A.3 and (A.11) we have

[ng3] cos(3x)} _ g [ﬂ cos(3x):| _ 1+3c [lDltanh(thl) chax] |:f3[3] cos(3x)i|
— B, __

w1 sin(3x) 8 sin(3x) 2408 —Chis 1| g8 sin3x)
(A.16)
1 +3c} [ (33“:?“ f[3] + chg?]) cos(3x)i| (A17)
240 GenfP + gl sin(3x)
[1]
and n31109s(x) = B! f3m cosx) | _ L f3 cos(x) . The coefficients in
1/f3 sin(x) g3 sin(x) l+ey g3 s1n(x)

(A.2c¢) follow.

Fourth order in €. By plugging the expansion (A.2) in system (A.3) and discarding
quintic terms we find the linear system

“[f]-[2]

1
fa = c3(WDx +c2(W2)x — WDx (Y3)x — sz)i +enD2(c2 — W2)x) (A.19a)

with
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1 1 1
+ (D« (13)xcE + E(nz)icﬁ + E(m)i(vm% - Ecﬁ(nl);? —2en()x (12)x (W1)x s

g4 = —c3(x —c2n2)x — G1(DY3 — G1(2)¥2 — G1(m3) ¥ (A.19b)
= Gy ly1 — G2 vz — Gs ()Y,

where, in view of (A.4),
Gh(n] == —Godnidx + 3iniGo — GoG1(n) — GonG1(R) . (A.20)
Let us inspect the terms in (A.19a). In view of (1.9) we have

(i) = o lezcos(x),  e3(i)y = —e3sin(x),  ca(Ya)y = 2c29s7) cos(2x)
(A21)

Cz(nz)x=—26277[2]Sin(2x), —(wz>2 <w[2])2+(w£2]>2cos<4x),

W)x(W3)x = —ch 1/,“] (% +31/f[3]) cos(2x) + 2c 1#33] cos(4x) ,
2 _ [2] _ 1 2]

canm)y(W2)x = chlﬂz +cny, cos(2x) 2Ch1/f2 cos(4x),

1 1

SERm)T = R0y — Ay cos@x) . enca(n)} = Senea(1 — cos(2v).
1 1 3

CRx (1) = epny |+ 2eh (=13 +3057) cos2x) — Scing cos(n).

1 2 2 2 L, 4 Crzl

E(m)x(tpl)x 6 2 (1 — cos(4x)), Ech(m)x = 1—6(3 — 4 cos(2x) + cos(4x)) ,

2en(Dx(2)x (Y1)x = 05 — 15 cos(dx) .
Let us inspect the terms in (A.19b). In view of (A.4), (A.2), (A.11), whereby

3+c
Gows = 2yl sin(x) + 32 2yl in3) (A.22)
1+3cy
and since
4¢c2 +4c6
tanh(4h) = — 2 2R (A23)
1+6¢y +cp
we have
1 m, 304- eyl (1 — )3yt sin(dx)
G = sin(2x) + 6 ,
s = (T ot o (1+ch)<1+3ch))““( O 3 (1 + 6k + o)
1— 1 — chy2y k2l 12
Gi(n)yn = ((l " ;t}:))z Y sin(2x) +4% sin(4x) , (A.24)
—ct 1+3ct (1 —chH(1+3cH)
G — h 1] h [3J 2 2% [2] 4
1(m3)vn <Ch(] e T 4) )sm( X) + o+ 6l 4 3) sin(4x) .

In view of (1.9), (A.20), (A.11), (A.8), (A.13) and (A.23), we have

8c3nh?! 4ep(l — ch)
(1+3cH (1 +ct) (1+ h)2

Gyl = ( >s1n(2x)
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8cn(l — cdynh?!

(1 +3chd+6ct +cb)

sin(4x) . (A.25)

By (1.9), (A.4), (A.13), (A.11) and (A.23) we have

16c2(1 — eyl
(I+chHA+3ch A +6ct +c8)

Finally, by (1.9), (A.4), (A.13), (A.8), (A.11) and (A.23), we have

8c2(1 — chyyl?

Gy(n)y2 = —m

sin(2x) —

sin(4x) . (A.26)

—1+l4c} —9c8
3cn(1+c)2(1+3ct)
. —1+15¢} —23¢} +9c/?

3cn(1+ch)(1+3ch) (1 +6ct +cb)

sin(2x)

Gs(m)y1 =

sin(4x) . (A.27)

By (A.19), (A.21), (A.24), (A.25), (A.26), (A.27) and (A.2a)—(A.2¢) system (A.18) reads
as

|:f4(x):| |: 4[0] + cglq cos(x) + 4[2] cos(2x) + f4[4] cos(4x)] (A28)
gax) | c3sinx) + g2 sin(@x) + g1 sin(4x) ’ '
with

o) —4cd’ —4ci®+17c[6 + 6cl? — 48t + 6§ +36ct — 9

47 64clt '

(4 7ci® —48cl? +126c8 — 168c) — 45

= .

128c)4
1 _ 4ci? +12¢ — 27¢4® — 31cif + T8¢yt + 66¢” — 72¢’ — 84c +6cf — 6cf, +27cf, +27
! 128ciA(1 + )
o2 = 38 —12¢[* — 39¢{2 +18c]0 + 139c8 — 225¢f + 18cf + 18
¢ 48c%(1 + cﬁ) ’
o4 = —21c20 +61¢{8 + 14c)? — 198c$ +279¢f — 135 .
¢ 48c3(c +6ct + 1)

(A.29)

As a consequence of (A.28) we have

fa(x) cos(x) 4
<|:g4(X)i| ’ [ch] sin(x):| ) =%n G-

By Lemma A.3, with ¢3 = 0 as stated in (1.9¢), one ensures that the system (A.18)

is solved by
na(x) | _ o1 | fa(x)
[wm] =By [g4(x)] : (A.30)
where, in view of (A.7) and (A.28),

|:n4(x):| |:r]£0] + m[‘z] cos(2x) + 174[:” cos(4x):|

_ (A31)
Ya(x) Y sin(2x) + i sin(4x)
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with, in view of (A.11) and (A.23) too,

[2]
o _ o [ 05 1+t [ 2 2c, | [/
ny =Ty | == | et ) (A.32)
1// dcy 2Ch 1 gz[t]
l+cf 4Ch f4 + 20h84

6
4cd 2ch f[2] + gl

[4] [4]
ng | 1+6ck+ch | 16c hH:r—Ci dey, | | 4
—_——_h7"h =3
1//F] 16c8(5+c}) dey, 1 g£4]

1+
__]+6C14}1+C1§ ]6Ch?;:—cf4[]+4chg4
- 6 4
16c8(5+ch dc f[4] 4 gl¥

By (A.31) we conclude the proof of (1.92)—(1.9b) and, in view of (A.32) and (A.29), of
(A.2d). The proof of (1.9), (A.2) needs only the computation of c4.

Fifth order in €. By plugging the expansion (A.2) in system (A.3) and discarding
sextic terms we find the linear system

U fs (Y1)x
Bo [ws] [ } e [—(nox} : (A.33)
with
s i =c2(3)x — Wx(Ya)x — (Y2)x (¥3)x + (771)3( —ch(¥3)x —c2(¥)x + (Y1) (wZ)\c)
(A.34a)

+ D (m)x (W1D2 +2cner — 2en(¥)x) — ca (W) ((12)2 — n)E +2(01)x (13)x)

+ () (a)x + (12)x (03)x — 2013 (12)x) .
gs .= —c2(m3)x — G1(nDY¥a — G1(n2)¥3 — G1(3)V2 — G1(m) Y1 — G2(n1) Y3
— Ga(m)¥1 — GL(D) 2, Y21 — G5 3, Y1l — Gs(m)ya — G2, ¥il — Ga(n) ¥,
(A.34b)

where G, is in (A.20) and, by (A.4),

1 N
LIl = —a*nzna+26082n2nGo—GonGz(n> GonGh(mn]

+3ZnHG1 () + §a§n2G1<ﬁ>. (A.35)

The term c4 is obtained by imposing the expression on the right-hand side of (A.33) to
be orthogonal to the kernel of the operator By in (A.6a), obtaining, in view of (1.14),

(£5.m) + (g5 ¥1)
- = —¢cn((£s, 1)) . (A36
“ (W) m) = (), V1) Ch(( s.m) + (g5 wl)) (A.36)

By (A.34) and (1.9) we find that c4 in (A.36) has the explicit expression in (A.2e).

Remark A.3. Expansion (1.9), (A.2) coincides with that in [21, formulae (12)—(14)],
provided one rescales properly their amplitude ge, = € + f (h)e> with a suitable f(h),
translates their bottom to d := h + € n[O] + 6477[0] + (9(65) (in [21] the water surface
n has zero average) and removes from the velocity potential a shear term —ux (which

corresponds to a Galilean reference frame).
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A.2 Expansions of ar(x) and pc(x). In this section we compute the fourth order expan-
sion of the functions a.(x) and p.(x) and of the constant £, in (1.12).
By [9, formula (2.18)]) the functions ac(x) and pc(x) in (1.12) are given by

ce = Vx+px))

Ch + pe(x) := o)
L+ ac(o = -V +p(f)+);<c;>)3x(x +p(x)
1
B m B (Ch * Pe(x))Bx(x +p(x)) , (A‘37)

and by [9, formula (2.14)]) the constant £, is

fe = L/ Ne(x +p(x))dx . (A.38)
2 T

Here the function p(x) is determined (cfr. [9, formula (2.14)], [2, formula (A.15)]) by
the fixed point equation

= + , A.39
p(x) tanh (0 + f6)|D|)[ne(x p(x))] (A.39)
where ‘H := —isgn(D) is the Hilbert transform!, whereas the functions V and B (cfr.
[9, formula (2.10)]) are given by
o Vo (x) — ce

V(x):= —B@)n.(x) +y¥.(x), B(x) n.(x). (A.40)

T+ (i())?

To provide the Taylor expansion of the functions in (A.37) we need some preparatory
results.

Lemma A.1. (Fourth order expansion of p(x) and f¢) The function p(x) in (A.39) admits
the following Taylor expansion

px) = ec}_l2 sin(x) + ezpl22] sin(2x) + 63(p[3” sin(x) + p[33] sin(3x)) (A4D)
+ e (pl sin2x) + pl sin(dx)) + O() '
with coefficients
34+4ct + 8
0= 27T (A.42)
8cy
) Actt+2c)2 =17l — 14cd + 10cf + 10cf — 15¢2 — 12
= s , (A.43)
l6cy (cp + 1)
9+41ct +43c8 +3c)?
pbl = h hZooh (A.44)

64cit

1 sgn(D) is the Fourier multiplier operator with symbol sgn(k) := 1 Vk > 0, sgn(0) := 0, sgn(k) :=
—1Vk <0.
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1
[2] 24 22 20 18 16 14
= ———F—— (8¢t — 57ci” — 37cy” +199¢,.” + 175¢;,” + 238c¢
P4 256c20(c2 + 1)( b b b h b b
(A.45)
+190ct? — 130c” — 1788 + 171c§ + 135¢t +27c +27),
N et +44c20 +557c]6 +2528¢)% +3595¢8 +1332¢} + 135 (A46)
4 512¢20(ct +5) ' '
The real constant £ in (1.12) has the Taylor expansion
fe =€’ fr+etfs+O() (A.47)
with coefficients
4
-3
fr 1= n 7
dey
1
fh=——(—4c?? = 8c20 +5¢/8 +23¢/0 + 40!t + 22¢/?
—78ct — 72¢8 + 728 + 54c) — 27cE — 27). (A.48)
Proof. We expand
2 3 4 5
x) =epi(x) +€ x)+e€ x)+e€ x)+ O(€),
p(x) = ep1(x) p2(x) p3(x) pa(x) (€”) (A49)

fo=€2frtefy+etfy+ (’)(65) ,
where, by [9, formula (2.15)], p1(x), p2(x) are given in (A.42) and £; in (A.48).
Let us denote derivatives w.r.t x with a prime ’. By (A.38), (1.9) and (A.49), we get

1 1
f3= 2—/ (n3(x) + 0y ()p1(x) + 1] ()p2(x) + = 0] ()pT(x))dx =0
T Jr 2

as stated in the expansion (A.47). In view of (A.39) and (A.48) we have

sgn(D)
tanh(h|D|)
9
+fy————
tanh2(h|D|)

1
pa(x) = i (100 + P @)+ 1 @p20) + 51 ) )
(A.50)
(1 — tanh? (| D)) 11 (x) .

In view of (A.50), (1.9), (A.41)—(A.42) and (A.11), we have
16ngllc§l - 167)&210161 -3 - 60;‘1 - c% — 16fzc}61 + 16fzc}11016cﬂ10( )
: X
sin

4y 31 4 21 2 4. [2] (A.51)
N (1+3ch)Bny 'cp +8n; cf +4chps - + 1) sinGx)

8cO(3+c})

p3(x) =

which, by (A.2a)—(A.2¢), is (A.44). By (A.38), (1.9), (A.42) and (A.44), we have

1
f4= 2_f (n4(x) + n5(x)p1(xX) + 15 (X)p2(x) + 1} (X)p3(x)
7 Jr
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+= nz(x)pl(x) + 1] (X)p2(X)p1 (x) + — n”’(x)p?(x))dx

[2] 2]
[, m ) 1
p3 g2 2 4 (A.52)
2¢y  4cp 16c

0 ’73 2
S
2ch

which gives the fourth-order coefficient in (A.48). Finally, by (A.39) and (A.48),

D
pax) = —i %(nm) + 04 (0)p1 () + 1 (P2 (x) + 7 ()3 (x)

1
+ En/z’(x)p%(x) + 1 ()p2(xX)p1 (x) + — n”’(X)p?(X))

(1 - 2 ,
fztanhz(thD(l tanh”(h| D)) (2(x) + 7} (X)p1 (%))

4 2]
=1+Ch(l m_1mpm_ 1 m i 30

—“ 42— =4 sin(2x
ZC% 23 e 12c$1 ci 2ch 2ch 774 ) (2x)
1+6ch+cb py) 3'7?] 2,12 B, 1 s
4c?(1+ch) (E 2c2 TPt p3 480 " 2c4 i ) sin(4x)
h h h h h h
l1—c 1+2c?
_ f2( h) ( hnz ) sin(2x)

4ch

which, by (A.2a)-(A.2c), gives (A.41) with the coefficients computed in (A.45)—
(A.46). O

The second preparatory result is given by the following

Lemma A.2. (Expansion of B(x) and V (x)) The functions B(x) and V (x) in (A.40)
admit the following Taylor expansion

B(x) = €B1(x) + €2Ba(x) + €2 B3(x) + €* B4(x) + O(€) ,

2 3 4 5 (A.53)
V) =€eVix)+e Vo(x) + €’ V3(x) + € Vy(x) + O(€),
where
3—2ct
Bi(x) = cpsin(x), Br(x) = Bg] sin(2x) , Bg] = 5 Sch ,
B asy)
Vi) = o cos(x),  Vax) = 24 v cos2r),  vii= TR
2 dcy
and
_ plll [3] [2] [4]
B3(x) = By 'sin(x) + By 'sin(3x), B4(x) = B4 s1n(2x) + B, sin(4x), (A55)

Va(x) = Vil cos(x) + ViV cos(Bx), Va(x) = VIO + v cos(2x) + V[ cos(dx)
with

6 +3c2 —8cf — 8¢l +6c8 +3c[0 —4c]2 —2c]4
16c] (1+c?)

(r._
B =

’
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g3l ._ 81— 99ct + 43¢} — cf?
: 64c!
1 2cl2—15ct — 128 +24c) +24cf -3

s

(11 .
vitlh.= ,
3 16¢] (1+c2)
21c}? —39¢8 +15¢) +27
yPl = 2 Cn SRR (A.562)
64cy;
and
Vol _ —2c18 — 6¢10 + 3¢t +9¢)2 —33c8 —27¢] +36c2 +36
4 32cil(c2 + 1) ’
1
[2] . 22 20 18 16
B = ——— (= 24c? +24c20 + 3543 + 210c
4 192c1117(c121 +1) ( b b b b
—943c? — 835¢i? +927c + 855cy — 81cP +27¢; — 8lcf — 81),
1
[2] . 26 24 22 20 18 16
V" 1= ———————(12c;” +36¢;" — 9ci” — 45¢;” + 357¢,, +285c¢
i WPE D) (12¢3 A & h b 2 (A.56b)
— 1060c — 988ci? + 1584c{? + 1584c} — 243¢d — 135¢, — 8lcf, — 81),
Bl _ 6c20 — 47¢l® — 100c)? + 522¢8 — 594¢] + 405
N 967 (ct +5) ’
vl _ 9c2t — 96c20 — 377ciC + 1484c[? — 1413c} +756¢] + 405
= .

384cl?(ct +5)

Proof. The first jets of (A.53) in (A.54) were computed in [9, (B.12-B.13)].
On the other hand, in view of (A.40) and (1.9), (A.2), the third order terms are

B3(x) = —cnny(x) + cn(m)(0)) + ¥ (Onh (x) + (Y5 (x) — e2)n) (x)

3 1 :
= (chngl] —4cn angz] + 1//2[2] + cz) sin(x)
1 1
+(Bennt + 16— c_hngﬂ — i) sin(3x) (A.57a)

and
V3(x) = ¥3(x) — Bi(x)n5(x) — Ba(x)n] (x)

1 1
= (‘g[f3[1] + chngz] + EBéz]) cos(x) + (3l/f3[3] - chngz] - EBéz]) cos(3x) .
(A.57b)

The fourth order terms are given by

Ba(x) = Y40 (x) + (W5 (x) — 2+ 3cn (] (0))?)mh () + ¥ ()5 (x) — ¥ )0 () = ennfy(x),

3 1 2 g 1 3 1 0
= (Ew?] — El/f?[” + 202172 1_ 3chr]£ 1_ Eng” — En?] + E +2chn£1 ]) sin(2x)
(- Sy gy 3o e 3 w1 + 4cnnl¥) sin(4x)
273 272 T e, B 8ep 4 (A.57¢)

Va(x) = Y (x) — B1(x)n3(x) — B2(x)ny (x) — B3(x)n| (x)
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1 1 2121, 1,0 4q 3 3 2021 1,3
:Echn[]+B[]n£]+53£]+(4¢£]—Echng]—Bé]ngl—EBgl)cosMx)

3 1 1
(Zw[z] c ngl] + Echngﬂ — EBE] + EBE]) cos(2x) .

From (A.57) we obtain (A.55) with the coefficients in (A.56). |
We now provide the fourth order expansion of the functions p, (x) and a, (x) in (1.12).

Proposition A.2. The functions p.(x) and ac(x) in (1.12) have a Taylor expansion

Pe(x) = ep1(x) + €2 pr(x) + € p3(x) + €* pa(x) + O(Y)

2 3 4 5 (A.58)
ac(x) = eaj(x) +€“ax(x) +€az(x) + € as(x) + O(e?) ,
with
p1(x) = pgllcos(x), p{” : 72c;11 , (A.59a)
9+ 12¢f +5¢% —2¢/? 3+cf
p2(x) = pi + pPlcos2x), pl = “h sh = PR = - :h
16cy, 2¢cq
12 8 4
+17cy +51cy +27
p3(x) = pg”cos(x) +pg3] cos(3x), pgﬂ = _Shn h 3 “h )
32¢cy’
i —2c* +14c)0 + 118 —10c8 — 10c} +24c2 +21
i 8c§(c}21 +1) '
pa(x) = pé[lol + p4 1cos(2x) + p 4 cos(4x) (A.59Db)
1
= sz“)(%cg0 +88c2% — 20820 — 336c2* + 4412 +369c20 — 995¢/8
h h
—899¢t® — 630c! — 294ci? + 1026¢t” + 1314cd — 27¢ + 189cy, +81cf +81),
1
P = (= 12¢2 — 4’ — 19¢i® — 7cl® + 3504

64ci?(ch +1)
+314ci? — 256¢10 — 268cd + 198cd + 162ct +27¢E +27),
) —cf) —39¢l® —366c)? — 850ct — 657t — 135

- ; A.59¢
P 64(:}1]9(cf1 +5) ( )
and
aj(x) = agl] cos(x), a{l] = —(C% + 0}712) ,
31 9c — 14c* — 3 (A.60a)
a(x) = a£ J +a£2] cos(2x), ag)] = 3 +— a£2] — % ,
2cy 4cp
16 12 8 4
- —98 252¢cy — 318cy — 27
a3(x) = a[ ]COS(X) +“£3] cos(3x) ?] = = = +64 lih “n ,
\ : c
4cl8 16 _ {1al4 _ 12012 _ 45010 _ 4 " ) 24 (A.60Db)
L. ¢y +6cy’ — llcy’ —12¢7 —45¢; — 8ch+93ch+90ch+ 7Ch+
’ 16c10(c? +1)

as(x) = a‘[to] [ cos(2x) + a£4] cos(4x), (A.60c)
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—12¢2° — 31ci® — 17¢{6 + 40c}* + 46¢[2 — 150c[0 — 13268 +84cf +90ct +9c2 +9

U
a =
4 32¢)0(c2 + 1)
1
[2] 24 22 20 18
a; = ——————(—T2ci" —431c;” — 211y’ +1767c¢
T 12802 + 1) ( " " " "

+1623ct — 2142¢)* — 2070c /% + 10220 + 8548 +333¢5 +297ci, +27¢% +27),
4 9c +238c0 —233cf — 1676¢{2 + 743 — 3042¢) — 135
a, = .
¢ 128¢20(ct +5)

(A.60d)

Proof. The first two jets pj(x), p2(x) in (A.59a) and aj(x), ax(x) in (A.60a) of the
expansion (A.58) have been computed in [9, Lemma 2.2]. Let us compute the third
order terms. In view of (A.37), (A.53) and (A.41), we have

p3(x) = cn( = pi(x) +2p] ()P4 (x) — (1] ())?) + Vi () (ph(x) — (0] (x))?)
— (2 = Va(x) = V{(x)p1(x))p} (x)

1
— V3(x) — V3(x)p1 (x) — V| (x)pa(x) — 5V{’<x>p%<x>

2
T 1B o1 3y

[1] [1]
= (- + — — — +—+ -V
(— cnpy 2o ) g Cn 2 e T e 3) cos(x)
[2]
5 3 V.
F(=3cupll e 2t 2 "2 yBheos3x , A.6la
( hp3 2Chp2 8C151 ZC% 3 ) ( ) ( )
az(x) = —p5(x) + 2p) (X)p5 (x) — (p} (x))°
, 1
— cn(B3(x) + By (x)p1 (x) + B (x)pa(x) + EB{”(x)p%(x))
— p1(x)(By(x) + B{ (x)p1(x)) — p2(x) B{(x) ,
! o2 3 - 1 i, o
= (— pg ] +2ch2p[2] — Zchﬁ — cth I +20hlB£ Ty Ec%p[z]
1 _ 1 _ 1
+ gchz — pllllBézl + Zchlpllll — chp[QO] — zchplzzl) cos(x)
1
+(—=3p5" +2¢, 25 - i 3cuBY) - 2¢;, B
1 1 _ 1 _ 1
- Ecgpgﬂ - gch2 — ptBl Zchlpﬁ” - Echpgﬂ) cos(3x), (A.61b)
and

pa(x) = c4 — Va(x) — V3(x0)p1(x) — Vo (0)pa(x) — V{(x)p3(x)

1 1
= 5 V3 @RI =V (0p2(0)p1 () = V("R ()

P @(V300 + Vi1 + V{2 + 3 W (0} 0)

+((p) () = pr (1)) (c2 — Va(x) = V{ (x)p1 ()

+ V() (p (x) = 2p5 (1)} () + (0} (1))°)

+cn( = py(x) +2p5 ()P} () + (P (x))* = 3p5 () (P} ()7 + (p] (0))?)

3 501 _ 5 4. 32 I _ —2,[1 2
= Zch7 + 5C2Ch4 — Zch4V2[ L 2ch3p[2J — Zch} +cth3l J+2ch(p£J)2
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13 1 1
— 1 2 2 0 — — — 2 — 2
+2chlp[3 J +2p[2]V2[ ]+C4 - V4[ ! (—1 ch7 + 7ch4cz + 7ch4‘/2[ 1 6ch3p[2]

I _ 24,3 20, —1.0 ~1,03 2 2 2
- ZCh} +2ch2V3[ ! +chp[2]+ch1p[3]+5chlp[3] - 2chp£] - 2p5]c‘2 - V4[ ])cos(2x)

1 1
+ (gcg7 - 1054 V2[2] - 2c;3p52] - cgz V3[3] + 2ch(p52])2 + 4c;llpg3] - 4chp54] - V4[4]) cos(4x)
(A.62a)
ag(x) = —p4(x) + (P ()% + 2p] (0)P5 (x) — 3(p} (x))*p5 () + (P} (x))*
— cn(B4(x) + By (0)p1(x) + By (x)p2(x) + BY (x)p3(x)

1 " 2 m 1 v 3
+ 532 ()p7(x) + By (x)p1(x)p2(x) + EB' ()p7(x))

1
— p1(0)(By(x) + BY (x)p1 (x) + BY (x)p2 (x) + 53;”(x>p%<x))

— p2(0) (B3 (x) + B (x)p1(x)) — p3(x)B{ (x)

3 s b 4 3 4, b 5 sppr, 2p00 01, 2 (1]
3 T 16 T3S P2t {gCn PI TS By Hcn By p TRy

6
L 5o Rig2i, L oo Lo o b L e L
+ S chP3 +2cnp; By + —cnp; Py — -Chpy *+sCy By +t-cy py —cy Py
2 4 2 2 2
2l

I 0o Lomoy, L- a2, 1o 3,02
+2(p; )2+Zp[2] —B£]p£]— EBglpE]+(§Ch8—3ch4p£]+ﬁch4+2ch33£]

4

Lom, 2, o 23 1 ,m, 9 —1pm 21 1 o

- Echp3 +cp P +§chp3 +3c, 7Py — Ech B; +§ch By —2cnBy” — ich 123

I 1 1 n 1 3 2.0 1lomom 3,810 2

+ Echlpg] — Echpg 1_ ichpg] —2B£ ]pg] — iBg ]pg 1 53% ]pg ] —2p£])cos(2x)
s 3 4 U 4 5o U 5 aper 1o

+(§Ch ~5%n b - 28°h ~Cn By — T6Sr P1 ~Cn By py — EChPS

1 9 1
#3020~ 208 — Loyl = 2o B e~ Lo pp

1 1 3
Lo 20 - Lo B -3 B gl costay. (A.62b)

The expansions of p3(x), az(x), pa(x) and as(x) in (A.59a)—(A.60a) descend from
(A.61a), (A.61Db), (A.62a) and (A.62b) respectively, in view of (A.46), (A.44) (A.42),
(A.54), (A.2b), (A.57Db), (A.57a) and (A.57c)—(A.56b). O

Remark A.8. The functions V and B in (A.40) coincide respectively with the horizontal
and vertical derivative of the velocity potential ® in [21, formula (12)] after the rescaling
procedure outlined in Remark A.3.

B. Expansion of the Projector P, .

In this Appendix we prove Lemmata 3.4 and 3.5.
We denote, for any k € N,

+ . cé/z cos(kx) . —ci/z sin(kx)
fe =1 Zip s S = i ,

¢y, ' sin(kx) cy, T cos(kx)

£ c;/zcos(kx) Foom clll/2 sin(kx)
= s At I V) ,
h h

c sin(kx) c cos(kx)

(B.1)

and we define for any k € Z the spaces
Wi = span {fi', fis f5 fo ) WE =spang{ff, f4), o==%. (B2)
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We have the following

Lemma B.2. The jets of the operator B, ¢ in (3.8) act on the spaces in (B.2) as follows?

. —_nt . _1n¢ . —_nt _ _
Be Wy =i W T i W e iWL) T Sy € Bo Wy, (B3)

j+1 terms

witht, j =0, ...,4, while the operator [J in (1.5) acts as JW,?E = W,T

Proof. The first formula in (B.3) follows by (3.8)—(3.9). Let us prove the second state-
ment by contradiction supposing that there exists g € ¥,~ such that By jg = f; .

Then 1 = (fo_, fo_) = (Bo,jg, fo_) = (g,Bo,ij_) = 0, by (3.8), which is a
contradiction. O

We now include an extended version of [9, Lemma A.2].

Lemma B.2. The space H' (T) decomposes as H' (T) = V0.0 BU B Wy, with Wy =

. il
D Wi~ where the subspaces Vo o, U and W, defined below, are invariant under £
k>2
and the following properties hold:

(i) Vo,o = span{f}', fi", 1o, £y } is the generalized kernel of £y 0. For any A # O the
operator 2.0 — A : Vo,0 — Vo.o is invertible and

1 1 1

(oo =P == i G0 =0T =1 G —R T g = =3 f . (Bda)
1 1

Goo=W ==+ 510 - (B.4b)

(ii) U := span {ffl, 5 } Forany \ # £2i the operator £y o—X : U — U isinvertible
and

(Loo—N"'fH = = (=Af2 +2enf).

A2 +4ct
(B.4c)

(ZLoo—M"'f = (=2cnfr —rf7) -

A2 +4c?

(iii) Each subspace Wy in (B.2) is invariant under £y o. For any |A| < §(h) small enough
and any natural k > 2, the operator oo — » : Wr — Wy is invertible and for any
f € Wk and any natural number N

(Loo -0 F =Ly df+ (G NG f AV opn )
(B.4d)

for some analytic function . — @ N (X, ") € Wk, where fo’_({) Wi — Wy is

chdy —|D|tanh(h|DJ)

— -1
Zo.0 = (c£02 + |D| tanh(h|D])) [ | Cn i

] ZogWE =WF.  (B.S)

2 the sum is direct if Jj < k, otherwise some spaces may overlap.
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Remark B.3. We will use in the sequel the following decomposition formula, for any,

< 1 1 1 1 1 1
[E5R5] = 5taen” +peid i+ stacy —pen st Va,beC. (B6)
a,beC. )

asin(x) 1 i | 1 _r
|:bcos(x)1| = E(bcﬁ - achQ)fl + E(bcﬁ + achz)f_l s

Notation. We denote by O(A) an analytic function having a zero of order 1 at A = 0
and Oz(A™) an analytic function with valued in a subspace Z having a zero of order m
at A = 0. We denote with O(~! : 1) any function having a Laurent series at A = 0 of
the form 3 ;7\ 0, @A/ . We denote by fiy, a function in W.

If h(A) = ho + O(A~ 1 1), ho € C, then, by the residue theorem,

1 [ hO)
— ¢ A =hg. B.7
27 Jr A 0 ®B.7)

We prepend to the proof of Lemma 3.4 a list of results given by straight-forward
computations.

Lemma B.3 (Action of (%0 — 1)71‘780,1 on V0, U and W,). One has

_ S _
(Loo—N"1TBofF = Tlfo +A3 +AB; + ﬁfW; + A3fW2- + O, (1Y),
(Lo.0— M7 TBoafi = Ay +2B3 +27 fy- + 2% fiye + O, 15

Goo -0 TBoufis = gy e 0 pr s FO g
0.0 otfe =5 g -

A2 +4c? (B.8)
(Loo— 2 "'TBo1fy =0,
_ ¢t
(30,0 —A) IJBO,lfjl = Tlf() +At2 +)\fW; + OWQ(A’Z) ,
(Loo— N 'TBofT = Fwy + 0w, (W),

where {7, ¢y, o, By, ¢, are real numbers, and

B —a%llch+(2+cﬁ)p51]
92 cos(2x)
2c
HOES 4 i (1] ’
(Ch+1)((ll Ch_2P1 )
— 112 sin(2x)
dcy,
1] [1]
(c4 +1) (c4 +4)p[ —2aj ‘ch) .
h ( h4 19/; 1 )sm(2x)
c
B, (x) 1= b
2 ’
et + D(aMented +2) — et +4)plM) )
212 cos(2x)
L 8cy
B [1] 4 [1]
- +2
(al Ch ((93}12 )P] ) sin(2x)
_ 2c
Ay (x) = 4 i [ ’
(Ch+1)(a1 Ch—ZP] )
- T2 cos(2x)
L dep
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e+ Dt +apl —2aley)

1972 cos(2x)
B+(.x) R ch
2 T [1] 4 [1] ’
( +1) cp(cy +2) — (3c +4)p .
_En ( h21/2 h ) sin(2x)
8c
3 01 (1]
(chpliwzal)cos(bc)
2¢c
At2(x) = 1 h4 . (B.9)
_m sin(2x)
PR
Ch
Moreover
(Loo—1'TB A+—£f7 % fh+AT+ ﬂz fo+rfy-+0 a2,
00 G = 0N )L2+42 T t4c A2 +4c2 Wy T
.
-1 - _ 473 + 3 — '33 +
(L0 — A" TBp,1B, = 3 i+ 7)\24—4%21]”_1 +fW; f +Ow; (X)),
—1 ~_ % % — . ﬂz 2
(ZO,O_)‘-) jBO,lAz —Tfl +mf_l+fW; FEn f 1+)\.fw++OW3()\.
—1 + _ g 3
(Loo =17 TBoaBs = = f) +A2+4 zf 1wt zf_ +0w; (M), (B.10)
— + + +
where ¢, , By, a3 and B3 are real numbers and
v @2l —2alch + 2)enpl! + Bef + 1) (pl)? B.11
o= = : (B.11)
h
ot = g = — (a%l])zc ZaEI](ch + l)p[l] + ch(p[l])2
2 2 4ch '
. (ct + 1)(a“] m)((ch +2)p“] amch)
{3 = §3 = 8c1110 s
(12, .4 [1] 11, .8 4 8 4 [11\2
(ay) (ch+3’)ch 2cnpya; (cp +9cy +6) + (11cy +29¢f +12)(p; )
120! 1972 cos(3x)
HORES [ [, (112
@Bct + D (@) )2t — 2enp; (ch+2)+ Gt +H(p)H3?) .
21/2 sin(3x)
32¢y,

Proof. Use the operator By 1 in (3.8b), Lemma B.2 and that

1 1+c} 1 1+3c

2tanh(2h) — 42~ 4cS  3tanh(3h) — 9 24cS

which comes from the identities in (A.11). |
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Lemma B.5 (Action of (%0 — )\.)_IJBL() on V.0 and U). One has

2Chll«h Ak

_ . Mh .
Lo =N TIBLoff = -1 =+ ———f,
(L0 =M IBiofi P fr i T dc zf_ A2+4 2f1
- _ CMn o 2Cth Hn _
(L0 — 2 ' TBiof, =—17f1 +1Tf_ Wf,p
h
(Lo — 2 'TBIoff =0, (B.12)
_ . Mn ; 2chpn Ain
Lo — A 1 B + o PRt + ,
(Zo,0— 2" TIBiofZ IA R I 2f1 AZ+4c%1f_l
_ ; 2c /L " _
(oo — N '\ TBiof 7, = fl el f+ e
A2 +4cq
with
4 2
—1h —
{tn ;:M, (B.13)

2Ch

Proof. We apply the operator B1.o = £¢1,0(|D|)I1g in (3.8b) to the vectors in Vp o and
use (B.6) and (B.4a)—(B.4c). O

Lemma B.6 (Action of (%0 — k)’ljBo,z on Vo). One has

Doo— 1) TBoafr = T pme G e ey MGy
0,0 02J1 = 5 1 A2+4c}21 -1 3 )\2+4c% -1 Ws )
—1 - _ i + Kl_ —
(Zoo =)' TBoafi” = = +—A2+4C%f_1+fW3—+Ou®W3(A), (B.14)

_ Ty . _ _
(Lo =M TBosfg = - fo + Sy +Ow, (), (Lo =M TBoafy =0,
where m}, T, T, are real numbers, and

1
= T(Zag)]ch +a£2]ch +2£,(1 — cﬁ) - 4chp[ —2c p[z])
Ch

1 o
o= 5(cﬁ(za[(’]mgﬂ) 26:(1 =), 6 ::E(cﬁ(—za["]mgz])ufz(l—cﬁ)),

(@ en(ct +3) — 2(5¢) +3)pi™h

6o 9/2 cos(3x)
Li(x):= [2] [2] . (B.15)
(3c +1)(a; ) $in(3x)
11/2
16¢c,,

Proof. 'We apply the operators By in (3.8¢c) and J in (1.5) to the vectors in V) . Then
we use (B.6) and Lemma B.2 to obtain (B.14)—(B.15). O
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Lemma B.7 (Action of (Z0.0 — )L)_lij onVy,0andU). One has

1
-1 + ic;z - ic}:7 +
(Lo —MN " IBiLIfI =— 2 fo + \ fo +ifw; +Ow®),
_3
. S T 2
(L0 —A) " IB11f; :Tfo Q) + 4 fiy +Ow, (A9,
-3 - -3 (B.16)
ic 2ic ic
(Zoo—N"TIBiLfy = 2= ff — 52517 A
1o A h A2+4c%f ! k2+4c}21f !
1 1 _1
Chzf* 2icg . icy? -
D2 44277 Tz g2 7

i
(Lo —2'TBIIfy = -

where
4 (1]
+3
% Cos(2x)
. B.17)

C
Qy(x) == h
2 3ct+ nptlh
SRS sin(2x)
8cy

Proof. We have By | = —i p1(x)J by (3.8¢), with p1(x) = pl! cos(x) in (A.59a) and
O

Pl =
Lemma B.8 (Action of (£p.0 — )»)’lng,o on fy ). One has
(B.18)

_ h h
(Loo—N'TBrofy = 2/ —fo.
O

—2¢; ! Use also Lemma B.2.

Proof. We apply B¢ = £2,0(|D|)I1ey in (3.8¢) and (B.4b).
Lemma B.9. (Action of (%00 — )\)_1‘780,1)2 on Vy o) One has

+

62

2 + + o+ +

A2+4c2f‘1+§3f1+A2
h

(Lo — N "TBo P ff = %f{ +
+ A (e + s ) + 27 fwr + 0w, 03 + 06,

+§3_f1_+fw3* +A(fo+fW§’)

(B.19)

(Lo — W \TBo VP f] = %fff+ )\Zj{.izcif:l
+A2fwf + O, (A2) + 03,

.
(Lo — 2 TBoa1l fi = &iBS + %Ai2 +O07 N, [(Ho—2"TBoalPfy =0
h

Proof. Apply twice Lemma B.3 and use that
12 (Loo = W7 TBo fiys = has [T 422 iy + O, (02) + 067

22 (Lo =07 TBo fyy =g fit + O,
(ZLo.0 — V) TBo 10w, 01 = 06

where agt, 016i are real numbers.
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We further list a series of identities to exploit later.
By applying first Lemma B.5 and then Lemma B.3 we get

.
1
(Lo — 2 TBo1(Loo — VT TBrofi = —i Mh[%f{ + *AE +fwy +arfy +Om () + OWO(AZ)] ,

1 2
(Lo =V TBo1 (Lo — M TBiofy = *Wh[;(A{ )chri 12 Jo ) +13 +Afyys + Ow, (Az)} ,
(L0 =) TBo1 (Lo — N TBiofiE =0, (B.20)

where o7 is a real number and

et +pl —allen(cf +2)

cos(2x)
F) =B (x)—LA+ x )(B .9 dc 19/2
2 (ch+1)((3ch+4)p“] 2alllcy) |
1 sin(2x)
/2
8cy,
(B.21)

By applying first Lemma B.3 and then Lemma B.5, and since J B1,0Wik € W, we get

(Lo — N TBLo( Lo — 2 TBo fi = Ly +Omy, (M),
(o0 =N TBro(Loo =0 TBo1 fi7 =iS3 +idfyy +On, (A7)

" (B.22)
(o0 — V7 TB1Lo(Loo — 2 TBoafi =i fys +OGT 1),
(Lo — W TB1Lo(Loo — ) TBoa fy =0,
where, using also (B.5), (3.8b)—(3.10a), (B.9)
iS3(x) == (L.0) \TBroAy
h 2¢4h n)@ey —2
(ch + ch Ch, :Cﬁ; )(a; ‘cn p ) cos(2x)
=i " 5t gl ) . (B.23)
(C}1 + ch —2cih+ 02}31/-; )a; 'cn — p ) Sin(2x)
8cy,

We are now in position to prove Lemmata 3.4 and 3.5.

Proof of Lemma 3.4. The proof is divided in three parts, one for each group of formulas
in (3.19).
Computation of P> f;’. Since Poe fy = f, (cfr. [9, Lemma A.4]) we have

Po,zfoi =0. (B.24)

On the other hand, for f” e {ff", fi . f§), in view of (3.13) we have, by (B.4a)—(B.4b)
and since By,1 f,” = Bop2f, =0,

1 (Lo —M71

o-—__
Poafi==55% A

JTBo f7dA (B.25)
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1 (Loo—M7" —1
— ) —————— Zo0— A 7da =17 +19 .
7 7% ; I Bo,1(Zo0— 2" TBo,1f; ;I

In case fj‘-’ = f; one readily sees, in view of (B.14) for Ij and (B.19) for IIj, that

Po fy € W3 which implies the second statement in (3.19a). We now compute the
remaining four terms.
First by Lemma B.6 and the residue theorem

Va4 _
If=- 4c'%1fi1—L§, I = f_ + fs - (B.26)

Then by (B.19) and the residue theorem
+ a; + + o+ + - O12_ - —
111=Ef_1+4“3f1 +A7, I =Ff’1+§3 i +fwy - (B2D
h h

In conclusion we have formulae (3.19a), (3.19b) with

+ _

Poafi = 228 pr b it A
0.2/ 42 1+ 54 )
‘ﬁf—’ no,z ag,2 cos(3x)
u$_2 bo,2 sin(3x)
Ol_
Poaf) = ) f + Cg i+ fwy s
h
N —— nO,Z
u&z

and we obtain the explicit expression (3.19¢c) of the coefficients given by

+ . a;—ﬂ— - . 062_ —31_ ’ [uo’zcos(3x)] — A+(x)—L+(x),

R - —
M2 i={3, Ugp = » Moo= T b.2 sin(3x)
h

2
deg

with ¢§, @), A% in (B.11) and ¢7, LY in (B.15).
Computation of P> f, . Since P, of, = f, (cfr. [9, Lemma A.5]) we have

Profy =0. (B.28)

Computation of Pl,lff. In case fj‘.’ e{fi. i, Jo } by (3.13), (3.14) and (B.4a), we
have

1 Lo — A Loo— A
Pify = G0N g s b MJBO,I(D%,O — ) TByofTdA
4 27i Jr A J
1 Lo — 1!
— MJBLO(,%VO — ) T By fodA = 9 + VT + V9, (B.292)
27 Jr x J J j J

whereas, by (B.4b), (B.12), (B.8)

Loo— 27! Lo — 27!
PLiff = — f e lfo*dm—yg e

27'[1
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1 Zoo— 271
—f %ﬂBlo(foo—k) T Bt fda =: I + IV + Vi
r

2mwi
(B.29b)

When f ;’ = f{ one readily sees, in view of (B.16) for II{, (B.20) for IV] and (B.22) for
V7, that P 1 fif € iV, ®riW, as stated in (3.19). Similarly, when fjf’ = f; one

has, in view of (B.16) for II§ and IV{ and (B.22) for V{, that Py | fj € iV as stated
in (3.19e).
We now compute the remaining terms. By Lemma B.7 and the residue theorem

— st — i +
]1[1 = _1Q2 5 ]lIO == __3/2f71 . (B.30)
2¢y,
By (B.20) we have
NV, =-i und3, IV, =0. (B.31)
By (B.22) we have
Vi = iS3, VvV, =0. (B.32)

In conclusion we have formulae (3.19¢) with
_ . . . _ i
PLifi =-iQ3+iS; —imdy. Prify =———=5z/". (B.33)
2¢y/
i |:a1,1 cos(2x)]
by,1sin(2x)
and we obtain the explicit expression (3.20) of the coefficients given by

a;1cos(2x) [ o+ +
[bl,l sin(2x):| = Q4 S —nl

with S in (B.23), uy, in (B.13), Q3 in (B.17) and J3 in (B.21).
This concludes the proof of Lemma 3.4.

Proof of Lemma 3.5. Computationof P 3 f 7. Similarly to (B.24) wehave Py 3 f;” =0
(as stated in (3.21)). Let us now compute Py, 3f1 By (3.13), (3.14) and (B.4a)

f(foo—l)l

Posfi = TBo3 firdA

271'1
L L Go—27 !
27Ti r A

1 Loo—1)7"
+ %?{ MJBO,I(jo,O — 07 T By fifda
?g (foo—m !

TBoa(Loo — )" T Bo.1 fiHda

~ 5 TBo.1(Lo.o —») " TBo1 (Lo — ) TBo fiFdx
= VI+VI+ VI +IX. (B.34)

We now compute these four terms.
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VI) By (3.8d) we have By 3 = [af?g)@) _p3(()x)ﬂ with p3(x), a3(x) in (A.59b)—

(A.60b). Then By 3 f;” = 0 whereas JBo3 fi" = aiofy, + W, + fW; where a9 € R
and

1
3 1 3 .
—cp (pg Iy pg ]) sin(2x)

[, 3] 1, [l ) (B.35)
_Ch(a3 +aj )+ (P3 + P3 )
T cos(2x)

2¢cg

W (x) =

Hence by (B.4d) we get
(Loo =W TBosfi = LygWy + ) +OG 1),

and, by (B.7), the term VI in (B.34) is

_| _ ~
M = —f0,0W2 + fWZ , (B.36)
with
n ch(agll +a;3]) - (Cﬁ + 2)(175” + P?])
K1 cos(2x) K= 9/2 ’
2cy,
P (B.37)
0,072 4 [, 3] [, 3l
<1 sin2x) __(cf+D(enlay ' +a3 ) —2(py +p3)
S1:+= 4cl12 :
€h

VII) By Lemma B.3 and since By f, = 0, we get

(Lo — W " TBoa( Lo — W TBofi = (Lo — A TBo2AY (B.38)
+ M Lo — 2 TBoafyys + 42 (Lo — 07 TBozfws + O().

Applying the operators By,» in (3.8¢) and 7 in (1.5) to the vector A7 in (B.9) one obtains

TBo2AL = X5 + fy- + Fyr (B.39a)
where
(e — 12 £2@en —2p) + ented + DY (e + 20 p —allley)
— 3, 4 sin(2x)
X () cy T(cp+ 1)
5 (x) =
ago]ch((cﬁ + 2)pE]] — aEl]ch) + (cf1 + l)pgo](agl]ch — 2pEl])
— 1172 cos(2x)
2cy,
(B.39b)

On the other hand, in view of (B.3) and Lemma B.2, one has
MLoo =0 TBoafy; =00, (Lo~ TBozfwy = O() . (B.3%)
Then Lemmata B.6, B.2, (B.38) and (B.39) give

(Loo = W7 TBoa(Loo = M7 TBo fi = Lo (X5 + fn) + 00 1),
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and, by (B.7), the term VIl in (B.34) is

VI = %5 JX5 + v (B.40)
with, by (B.5) and (B.39b),
_ k2 cos(2x
Xy () = | K2 008N (B.41)
, ¢o sin(2x)
with
o agl]ch(ag)]c% + (cé - l)zfz - Z(Cﬁ + l)chpgo]) + pgl]( — ag)](ci}l + 2)c% — Z(Ci - l)zfz + (cﬁ + SCé + 4)chp£0])
K = 22172 ’
Ch
o alVepn (@2 (ch+D)+(ch =125 —cn(cB+3ch+2)pl) + (= al (B + 3¢ +2)c2 — 2(ch — 12 £2+ (BB +7ct +4)cn pl))
- 4cBr ’

VII) By Lemma B.6, (B.15) and Lemma B.2 we get

(Lo — W TBo 1 (Lo — W TBoafi = (B.42)

2 -1 — 4 -1 + — +
T(fo,o—?») JBo.1f; +m(o%,o—?») TIBo [Z) + L 0T Bo,1L3

am?
+m(a%,o — N T B fo + (Lo — V)T TBo 10w, (W) + O .
h

Applying the operators Bp 1 in (3.8b) and 7 in (1.5) to the vector L} in (B.15) one
obtains

JlS’QlL;r =Y, + fW; , (B.43a)
where
p&” (a%zjch(B + cﬁ) —203+ SCﬁ)pgzj) .
) sin(2x)
16¢;’
Yo () = 4y 11, 12] [2] [ 2] 4 4y 121
3(1+3cp)py (ay 'cn —2py ) +aj cn(—ay cn@B+cy) +23 +5c)py )
— T3 cos(2x)
32c
h
(B.43b)

In view of (B.3) and Lemma B.2, one obtains by inspection

+
Amj

s Do MNTBofT =00, (Lo — 2 TBo1Ow, (W) = O().
h

(B.43c)

Then (B.42), Lemmata B.3, B.2 and (B.43) give

£+
(Lo.o — W TBo1 (Lo — 2N \TBofi =1 B3 + ﬁAtz + LYy + Sw)+00 0,
h
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and, by (B.7), the term VII in (B.34) is

A ~
+p+ 1 A+ —Ay—
h
where
4 k3 cos(2x)
fO,OYZ_ (x) = . (B.45)
¢3 sin(2x)
with
allen(@llen(cf +3) — 25t + 3)pl) — allen(cf + 13¢f + 6)pl! +2(ct +3)(5ch + 2)pl! Pl
oo 3207
(cf] + 1)[aE]]ch(a£2]ch(cf1 +3) — 2(5cﬁ + 3)p£2]) — 2a£2]ch(5ci + 3)p£1] + 4(7cf] + 3)pE]]p£2]]
§3:= a2l :
Ch
]X) By (B.19) we get
.
(o0 =2 TBo T fi = 22 (o0~ 1) TBo Sy (B.462)

+

) —1 + + -1 + —1 +
+m(iﬂo,o—k) TIBoa1 [+ (Lo — A TBoafi + (Lo —2)" TBo1A3
h

+1(Zoo =07 TBon (fay + Fvg ) + 32 (Z00 = 7 TBoa fivy
+(Lo.0 — V) TBo 10w, (WD) + (Lo — V) TBo10G3) .

(B.46b)

In view of (B.3) and Lemma B.2 the terms in the two lines in (B.46b) are

MLpo— 1) TBo (fW( + fw_;> =0, 2( Lo - k)fljBo,lfw; =00,
(Lo — W TBy 10w, (0% = 02, (Lo — 1) 'TBr10G3) =00).

The remaining terms in (B.46), again by Lemma B.3, are

a+

(Lo — W) " TBoiPf = &iBE + ﬁAtz + A+ L (T Bo AT+ 00 ).
h

(B.47)

By applying the operators By, in (3.8b) and J in (1.5) to the vector A; in (B.11) one
gets

+ —
TBo1AS =75 + fy (B.48)
where
p[lll((ug”)z(c?‘+3)c%72aE1]pEl](ci+9ci+6)ch+(p[1”)2(1lcg+29cg+12)> .
1972 sin(2x)
_ 32¢, "
7y (x) = —

(aE]]ch—pgl])<(aE”)z (cé+3)c%—2a%1]p[|”(c§‘+l3cé+6)ch+3(p[|”)2(9c1§+15cﬁ+4))

64c21?

cos(2x)

(B.49)
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Finally, by (B.47) and (B.48), we get that the term IX in (B.34) is

+

X = —¢/Bf — — A= % (25 + Py ) (B.50)
h
where
k4 cos(2x)
Loizy = (B.51)
G4 Sin(2x)
where

1

Ky = 64CT/2( @3t +3)ct + @2 pEed +31cf + 18)cd
h

—a(p"2(2ci? +49¢8 + 101t +36)cn + (P (112 +67c] + 86c +24))
_(cp+ D
- 128c1?

[”(p“]) (1cd +89ct +36)cn +2(pi'h3(19¢8 +37¢t +12))

In conclusion, by (B.34), (B.36), (B.40), (B.44) and (B.50) we deduce that

(— @3t +3)cd +2@")?pil(cf + 14ct +9)c2

F — ot ~
Posfi =% (~Wy +X; +Y; —Z7) + (¢f — ¢)BS + ‘4c22A12—;;A;+fWI
h

which proves the expansion of Py 3 f; in (3.21) with

[ao,g cos(2x)i| : |:(K1 + K + K3 — K4) cos(2x):|

bo,3 sin(2x) (61 + 62+ 63 — ga)sin(2x)
+ +\Rp+ ﬁl— —Ol; + + A+
+ (] —&)By(x) + 42 AT, (x) =3 A5 (x),

h
withk;, ¢i,i = 1,...,4in (B.37), (B.41), (B.45), (B.51), B, Atz A; in (B.9), §2+, a;,
¢ in (B.11) and ¢7, t{ in (B.15), resulting in the coefficients ag 3 and bg 3 in (3.22).
Computation of Py f, . By (3.13), (3.14) and the fact that By of, = Bo1f, =
By fy =0, the term Py 3 f,” reduces to

1 (Lo — 27!

Piaf = ——
12fo 27 Jr Py

jBl,Zfo_d)\

1 Loo—1)"1
e f G00=M" 75 (oo — WTITBL fydh = X+ XI.
271 Jr A

(B.52)
We now compute the two terms.

) By (3.46) we have JB1 > f, =1iasf, +iW_, with W2, (x) := pm [COS(()QX)] and,

by (B.4),
—4
¢y, cos(2x)
B.7 _ B.S5 .
X2 Ligidwe, Zdw s, B P 14 (B.53)

B sin(2x)

Ch



Stokes Waves at the Critical Depth are Modulationally Unstable Page 65 of 67 56
XI) By Lemmata B.7, B.3 one has

1
(Lo.0 — 2 ' TBo (Lo — N TBiLfy =ic, B +i AL, +00 ),

3/2
2cy,
and therefore
_1 1
Xl = ich2B§+i—3/2At2. (B.54)
2cy,
In conclusion, by (B.52), (B.53) and (B.54)
1
Piafy = 1(.,?0 DWW, +icy 2B2 +i - 3/ZAJ' (B.55)
Ch

which, in view of (B.53), proves the expansion of Py f, in (3.21) with

[2] -4
a2 cos(2x) —p; Cy  cos(2x) S 1,
B ——=A
[bl 251n(2x)i| pm 1+Ch sin(2x) +c, " By(n) + e 3/2 To(x),

with B; and Atz in (B.9), resulting in the coefficients aj » and bj > given in (3.22).
Computation of P, f,. By (3.13) and the fact that By o f, = Bo,1f, and B2,; =0
the term P, f; reduces to

_ 1 Do — A1 _ _
Poify = %f %JBO,I(Q%,O — 0 T Bao fidA
I
1 Lo — 27!
o f 00N 7B (Lo — 207 TBuy f .
1 r A

By repeated use of (B.3) and Lemma B.2 one finds that P, 1 f, € W, as stated in
(3.21).
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