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Abstract: We analyse the eigenvectors of the adjacency matrix of the Erdős–Rényi
graph G(N , d/N ) for

√
log N � d � log N . We show the existence of a localized

phase, where each eigenvector is exponentially localized around a single vertex of the
graph. This complements the completely delocalized phase previously established in Alt
et al. (Commun Math Phys 388(1):507–579, 2021). For large enough d, we establish
a mobility edge by showing that the localized phase extends up to the boundary of
the delocalized phase. We derive explicit asymptotics for the localization length up to
the mobility edge and characterize its divergence near the phase boundary. The proof
is based on a rigorous verification of Mott’s criterion for localization, comparing the
tunnelling amplitude between localization centres with the eigenvalue spacing. The first
main ingredient is a new family of global approximate eigenvectors, for which sharp
enough estimates on the tunnelling amplitude can be established. The second main
ingredient is a lower bound on the spacing of approximate eigenvalues. It follows from
an anticoncentration result for these discrete random variables, obtained by a recursive
application of a self-improving anticoncentration estimate due to Kesten.

1. Introduction

1.1. Overview. Let A be the adjacency matrix of a graph with vertex set [N ]={1, . . . , N }.
We are interested in the geometric structure of the eigenvectors of A, in particular their
spatial localization. An �2-normalized eigenvector w = (wx )x∈[N ] ∈ R

N gives rise to
a probability measure x �→ w2

x on the set of vertices [N ]. Informally, w is delocalized
if its mass is approximately uniformly distributed throughout [N ], and localized if its
mass is essentially concentrated on a small number of vertices.

In this paper we study the spatial localization of eigenvectors for the Erdős–Rényi
graph G ≡ G(N , d/N ). It is the simplest model of a random graph, where each edge
of the complete graph on N vertices is kept independently with probability d/N , with
0 � d � N . Here, d ≡ dN is a parameter whose interpretation is the expected degree
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of a vertex. It is well known that G undergoes a dramatic change in behaviour at the
critical scale d � log N , which is the scale at and below which the vertex degrees do not
concentrate. For d 	 log N , with high probability all degrees are approximately equal
and the graph is homogeneous. On the other hand, for d � log N , the degrees do not
concentrate and the graph becomes highly inhomogeneous: it contains for instance hubs
of large degree, leaves, and isolated vertices. As long as d > 1, the graph G has with
high probability a unique giant component, and we shall always restrict our attention to
it.

The Erdős–Rényi graph G at and below criticality was proposed in [12] as a simple
and natural model on which to address the question of spatial localization of eigenvectors.
Its graph structure provides an intrinsic and nontrivial notion of distance, which allows
for a study of the geometry of the eigenvectors. It can be interpreted as a model of
quantum disorder, where the disorder arises from the random geometry of the graph.
Moreover, its phase diagram turns out to be remarkably amenable to rigorous analysis.

In this paper we establish the existence of a fully localized phase in a region of the
phase diagram ofG near the spectral edge. This complements the completely delocalized
phase established in [12,14,42,50]. Our results in both phases are quantitative with
essentially optimal bounds.

As a consequence, for a range of critical densities d � log N , we establish a mobility
edge separating the localized and delocalized phases. We derive the explicit behaviour
of the localization length on either side of the mobility edge. In particular, we show how
the localization length diverges as one approaches the mobility edge from the localized
phase (see Fig. 3 below). The Erdős–Rényi graph at criticality is hence one of the very
few models where a mobility edge can be rigorously established. Moreover, our proofs
yield strong quantitative control of the localization length in the localized phase, as well
as complete delocalization in the delocalized phase, all the way up to the mobility edge
in both phases. To the best of our knowledge, this is the first time quantitative control is
obtained in the vicinity of the mobility edge.

A graphical overview of the main result of this paper, and how it fits into the previous
results of [12,14], is provided by the phase diagram of Fig. 1. It depicts three phases,
which are most conveniently characterized by the �∞-norm ‖w‖∞ of an �2-normalized
eigenvector w. Clearly, N−1 � ‖w‖2∞ � 1, where ‖w‖2∞ = 1 corresponds to local-
ization at a single vertex and ‖w‖2∞ = N−1 to perfect delocalization. We say that an
eigenvalue λ of the rescaled adjacency matrix H ..= A/

√
d with eigenvector w belongs

to

(i) the localized phase if ‖w‖2∞ � 1,
(ii) the delocalized phase if ‖w‖2∞ = N−1+o(1),

(iii) the semilocalized phase if ‖w‖2∞ � N−γ for some constant γ < 1.

In particular, the localized phase is a subphase of the semilocalized phase. The result
of this paper is the existence of phase (i), while phases (ii) and (iii) were previously
established in [12,14].

We now briefly describe the structure of the phase diagram in Fig. 1. It is well known
[75] that, as long as d 	 1, the global eigenvalue density of H converges to the semicircle
law supported in [−2, 2]. We write d = b log N for some constant1 b > 0. The localized

1 Our results hold also for d � log N , i.e. below the critical scale, but in this overview we suppose for
simplicity that b is a constant.
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Fig. 1. The phase diagram of the rescaled adjacency matrix A/
√
d of the (giant component of the) Erdős–

Rényi graphG(N , d/N ) at criticality, where d = b log N with b fixed. The horizontal axis records the location
λ in the spectrum and the vertical axis the sparseness parameter b. The spectrum is confined to the coloured
region, which is split into the indicated phases. The thick purple lines correspond to phase boundaries, which
are not covered by our results. (The phase boundary at energy 0 for b � 1 is discussed in [12,14].) For large
enough b, there is a mobility edge between the localized and the delocalized phases at energies ±2

and semilocalized phases exist only if b < b∗, where

b∗ ..= 1

2 log 2 − 1
≈ 2.59. (1.1)

For fixed b < b∗, the spectrum splits into two disjoints parts, the delocalized phase
(−2, 0) ∪ (0, 2) and the semilocalized phase (−λmax,−2) ∪ (2, λmax), where λmax > 2
is an explicit function of b (see (B.3) below). A region (−λmax,−λloc) ∪ (λloc, λmax)

near the spectral edges is in fact fully localized, where 2 � λloc < λmax. In particular,
for large enough b, the semilocalized phase consists entirely of the localized phase, i.e.
λloc = 2. For smaller values of b, the diagram in Fig. 1 does not rule out the possibility
of an eigenvector w in the semilocalized phase satisfying ‖w‖2∞ = N−γ +o(1) for some
constant γ ∈ (0, 1). This latter scenario corresponds to eigenvectors that are neither fully
localized nor fully delocalized,2 where γ ∈ (0, 1) plays the role of an anomalous fractal
dimension. In fact, it is plausible that such fractal eigenvectors occur in the semilocalized
phase for small enough b; for more details, we refer to [70] and the heuristic discussion
on localization phenomena later in this subsection, as well as [15, Appendix G].

The localization-delocalization transition for G described above is an example of an
Anderson transition, where a disordered quantum system exhibits localized or delocal-
ized states depending on the disorder strength and the location in the spectrum, corre-
sponding to an insulator or conductor, respectively. Originally proposed in the 1950s
[17] to model conduction in semiconductors with random impurities, this phenomenon

2 In the literature, this phenomenon is sometimes referred to as nonergodic delocalization.
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is now recognized as a general feature of wave transport in disordered media, and is
one of the most influential ideas in modern condensed matter physics [3,43,60,63]. It is
expected to occur in great generality whenever linear waves, such as quantum particles,
propagate through a disordered medium. For weak enough disorder, the stationary states
are expected to be delocalized, while a strong enough disorder can give rise to localized
states.

The general heuristic behind localization is the following. A disordered quantum
system is characterized by its Hamiltonian H , a large Hermitian random matrix. The
disorder inherent in H gives rise to spatial regions where the environment is in some
sense exceptional, such as vertices of unusually large degree for the Erdős–Rényi graph.3

These regions are possible localization centres, around which localized states may form.
Whether they do so is captured by the following well-known rule of thumb, also known
as Mott’s criterion: localization occurs whenever the eigenvalue spacing is much larger
than the tunnelling amplitude between localization centres. The simplest illustration of
this rule is for a two-state system whose Hamiltonian is the matrix

( a τ
τ b

)
. Setting the

tunnelling amplitude τ between the two sites to zero, we have an eigenvalue spacing
|a−b|. Denoting by e1, e2 the standard basis vectors of R2, we find that if |τ | � |a−b|
then the eigenvectors are approximately e1, e2, corresponding to localization, and if
|τ | 	 |a − b| then the eigenvectors are approximately 1√

2
(e1 ± e2), corresponding to

delocalization.
More generally, for a disordered Hamiltonian H defined on some connected graph, a

simple yet instructive way to think of the rule of thumb is to suppose that the localization
centres are spatially separated, and to construct the Hamiltonian Ĥ from H by removing
edges from the graph so as to disconnect the localization centres from each other. Hence,
Ĥ is defined on a union of connected components, each of which is associated with a
single localization centre. Denote byW the set of localization centres, which are vertices
in the underlying graph. A component associated with a localization centre x ∈ W
trivially gives rise to a localized state w(x) of Ĥ with eigenvalue θ(x), which has the
interpretation of the energy of the localization centre x . Upon putting back the removed
edges, one can imagine two scenarios:

(i) localization, where the eigenvectors of H remain close to the eigenvectors w(x) of
Ĥ ;

(ii) hybridization, where eigenvectorsw(x) associated with several resonant localization
centres x with similar energies θ(x) are superimposed to form eigenvectors of H .

We refer to Fig. 2 for an illustration of this dichotomy.
To use Mott’s criterion, we note that one possible way of quantifying the tunnelling

amplitude is
τ ..= max

x∈W
‖(H − θ(x))w(x)‖. (1.2)

Indeed, this expression clearly generalizes the tunnelling amplitude for the two-level
system given above, expressing in general the error arising from putting back the edges
of H missing from Ĥ , with respect to the family (w(x))x∈W . It measures the extent
to which the localized eigenvectors w(x) of Ĥ are approximate eigenvectors of H
(sometimes also called quasi-modes of H ). Under some assumptions on the localization

3 For the Anderson model discussed below, these regions arise from an unusually large mean random
potential. We note that, just like the large degree vertices for G, these regions arise as a result of a collec-
tive phenomenon, requiring the conspiracy of a large number of independent random variables to yield an
exceptional local configuration.
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Fig. 2. A schematic illustration of the localization-hybridization dichotomy. A disordered Hamiltonian H
defined on a graph has three localization centres whose energies are in resonance. They are indicated in red,
green, and blue. The Hamiltonian Ĥ is obtained from H by splitting the graph into disconnected components
around each localization centre. This gives rise to three eigenvalues of Ĥ associated with the three components.
Each component associated with a centre x carries a localized state w(x) drawn as a decaying density in the
colour corresponding to that of the centre. The spectrum of Ĥ is drawn above the real line in dotted lines that
match the colour of the associated centre. Upon putting back the edges of the graph to return to H , we can have
either localization or hybridization, depending on Mott’s criterion. In each case, we draw the spectrum of H
below the real line. In the case of localization, the eigenvectors of H remain close to w(x) and the eigenvalues
are shifted by an amount that is small compared to the eigenvalue spacing. In the case of hybridization, the
eigenvectors of H are delocalized over the three centres, being approximately nontrivial linear combinations
of all three vectors w(x)

components, τ also controls the off-diagonal part in a block-diagonal representation of H
in the basis (w(x) .. x ∈ W); see Sect. 2.3 below. Mott’s criterion states that localization
occurs whenever τ � �, where

� ..= min
x �=y∈W

|θ(x) − θ(y)| (1.3)

is the eigenvalue spacing. Otherwise, we expect hybridization. The main difficulty in
establishing localization is therefore to control resonances, i.e. pairs of vertices x, y
such that |θ(x) − θ(y)| is small, and to rule out hybridization. Although this picture is
helpful in gaining intuition about localization, in many instances, such as in the proof
for the Erdős–Rényi graph in this paper,4 it is but a rough caricature and the true picture
is considerably more subtle (as we explain later in this subsection and in more detail in
Sect. 2.3).

The semilocalized phase of the Erdős–Rényi graph from [12] is a phase where the
eigenvectors are concentrated around a small number of localization centres, but where
hybridization cannot be ruled out. As shown in [12], the set of all possible localization
centres of G corresponds to vertices x ∈ [N ] whose normalized degree

αx
..=

∑

y∈[N ]
H2
xy = 1

d

∑

y∈[N ]
Axy

4 Or for the Anderson model e.g. in [45].
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is greater than 2. The energy θ(x) of a localization centre x is approximately equal to
	(αx ), where we introduced the function 	 : [2,∞) → [2,∞) through

	(α) ..= α√
α − 1

. (1.4)

As shown in [13] (see also [71]), there is a one-to-one correspondence between eigen-
values λ > 2 in the semilocalized phase and vertices x of normalized degree αx � 2
given by λ = 	(αx ) + o(1). An eigenvalue λ in the semilocalized phase has an eigen-
vector that is almost entirely concentrated in small balls around the set of vertices
Wλ

..= {x ∈ [N ] .. 	(αx ) = λ + o(1)} in resonance with the energy λ [12]. The
size of the set of resonant vertices Wλ is comparable to the density of states, equal to
Nρb(λ)+o(1) for an explicit exponent ρb(λ) < 1 given in (B.4) in Appendix B below.
Hence, owing to the small size of the set of resonant vertices Wλ, the semilocalized
phase is sharply distinguished from the delocalized phase. However, the key issue of
controlling resonances and ruling out hybridization is not addressed in [12] (see Fig. 2).

In this paper we prove localization by ruling out hybridization among the resonant
vertices. Our result holds for the largest and smallest Nμ eigenvalues for μ < 1

24 . For
small enough μ, our obtained rate of exponential decay is optimal all the way up to
radii of the order of the diameter of the graph. The bound 1

24 is not optimal, and we
expect that by a refinement of the method developed in this paper it can be improved;
for the sake of keeping the argument reasonably simple, we refrain from doing so here.
Heuristic arguments suggest that the optimal upper bound for μ is 1

4 ; see [15, Appendix
G] as well as [70].

At this point it is helpful to review the previous works [12,16], which addressed the
tunnelling amplitude (1.2) in the above simple picture of localization based on disjoint
neighbourhoods of localization centres. In [12], the estimate τ � d−1/2 was established
in the entire semilocalized phase, while in [16] it was improved to τ � d−3/2 at the
spectral edge. In fact, here we argue that the best possible bound on τ in terms of the local

approximate eigenvectors w(x) introduced above is e−c log N
log d for some constant c > 0.

To see this, we recall from [12] that the vector w(x) is exponentially decaying around x
at some fixed rate C > 0 depending on b. Thus, the best possible estimate for τ arising
from the exponential decay is e−Cr , where r � diam(G) = log N

log d (1 + o(1)) (see [32]).
As for the eigenvalue spacing (1.3), it was not addressed at all in [12]. In [16], it

was estimated at the spectral edge as � � d−1−ε with high probability for any constant
ε > 0. Combined with the bound τ � d−3/2 at the spectral edge obtained in [16], one
finds that Mott’s criterion is satisfied at the spectral edge. This observation was used in
[16] to prove localization for the top O(1) eigenvectors.

In the interior of the localized phase, the eigenvalue spacing at energy λ is typically
of order N−ρb(λ), where ρb(λ) > 0 is an exponent defined in (B.4) below. This is much

smaller than the best possible estimate on the tunnelling amplitude, e−c log N
log d = N−o(1).

Hence, Mott’s criterion is never satisfied inside the localized phase, and thus the simple
picture based on local approximate eigenvectors cannot be used to establish localization.
In this paper we therefore introduce a new setup for proving localization.

The first key idea of our proof is to abandon the above simple picture of localization,
and to replace the local approximate eigenvectors w(x) by global approximate eigen-
vectors, denoted by u(x), which approximate eigenvectors of H much more accurately
and therefore lead to a much smaller tunnelling amplitude (1.2). To define u(x), we
consider the graph obtained from G by removing all localization centres except x ; we
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denote by λ(x) the second largest eigenvalue of its adjacency matrix, and by u(x) the
associated eigenvector. The latter is localized around the vertex x . Crucially, the quantity
(1.2) with w(x) replaced by u(x) can now be estimated by a polynomial error N−ζ for
some ζ > 0.

The price to pay for passing from local approximate eigenvectors w(x) to global
approximate eigenvectors u(x) is a breakdown of orthogonality. Indeed, the vectors
u(x) have a nonzero overlap, and a significant difficulty in our proof is to control these
overlaps and various resulting interactions between localization centres.

To complete the verification of Mott’s criterion, we need to establish a polynomial
lower bound minx �=y∈W |λ(x)−λ(y)| � N−η for some η < ζ . Clearly, the left-hand side
cannot be larger than the eigenvalue spacing N−ρb(λ) at the energy λ we are considering,
which yields the necessary bound η > ρb(λ) > 0. Hence, we require an anticoncentra-
tion result for the eigenvalue difference λ(x)−λ(y) on a polynomial scale. Owing to the
discrete law of G (a product of independent Bernoulli random variables), methods based
on smoothness such as Wegner estimates [73] are not available, and obtaining strong
enough anticoncentration is the most involved part of our proof. Our basic strategy is to
perform a recursive resampling of neighbourhoods of increasingly large balls around y.
At each step, we derive a concentration bound for λ(x) and an anticoncentration bound
for λ(y). The key tool for the latter is a self-improving version, due to Kesten [57], of a
classical anticoncentration result of Doeblin, Lévy, Kolmogorov, and Rogozin. In order
to obtain sufficiently strong anticoncentration, it is crucial to perform the recursion up
to radii comparable to the diameter of G.

We conclude this overview with a survey of related results. The eigenvalues and
eigenvectors of the Erdős–Rényi graph have been extensively studied in the denser
regime d 	 log N . Complete eigenvector delocalization for d 	 log N was established
in [42,50]. The local spectral statistics in the bulk were proved to follow the universal
GOE statistics in [40,52] for d � No(1). At the spectral edge, the local spectral statistics
were proved to be Tracy–Widom for d 	 N 1/3 [40,62], to exhibit a transition from
Tracy–Widom to Gaussian at d � N 1/3 [53], and to be Gaussian throughout the regime
No(1) � d � N 1/3 [49,53]. In fact, in the latter regime the Tracy–Widom statistics
were recovered in [55,61] after subtraction of an explicit random shift.

The random d-regular graph is another canonical model of sparse random graphs.
Owing to the regularity constraint, it is much more homogeneous than the Erdős–Rényi
graph and only exhibits a delocalized phase. The eigenvectors were proved to be com-
pletely delocalized for all d � 3 in [21,22,54], and the local spectral statistics in the bulk
were shown to follow GOE statistics for d � No(1) in [19] and at the edge Tracy–Widom
statistics for No(1) � d � N 1/3 in [20,56] or for N 2/3 � d � N/2 in [48].

Anderson transitions have been studied in a variety of models. The archetypal example
is the tight-binding, or Anderson, model on Z

d [1,2,11,18]. In dimensions d � 2, all
eigenvectors of the Anderson model are expected to be localized, while for d � 3
a coexistence of localized and delocalized phases, separated by a mobility edge, is
expected for small enough disorder. So far, only the localized phase of the Anderson
model has been understood rigorously, starting from the landmark works [7,45]; see for
instance [11] for a recent survey.

Although a rigorous understanding of the metal-insulator transition for the Anderson
tight-binding model is still elusive, some progress has been made for random band
matrices. Random band matrices [30,46,64,74] interpolate between the Anderson model
and mean-field Wigner matrices. They retain thed-dimensional structure of the Anderson
model but have proved more amenable to rigorous analysis. They are conjectured [46]
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to have a similar phase diagram as the Anderson model in dimensions d � 3. For d = 1
much has been understood both in the localized [31,33,65,66] and the delocalized [27–
29,35–39,41,51,67,68,79] phases. For large enoughd, recent progress in the delocalized
phase has been made in [76–78]. A simplification of band matrices is the ultrametric
ensemble [47], where the Euclidean metric of Zd is replaced with an ultrametric arising
from a tree structure. For this model, a phase transition was rigorously established in
[72].

Another modification of the d-dimensional Anderson model is the Anderson model
on the Bethe lattice, an infinite regular tree corresponding to the case d = ∞. For it, the
existence of a delocalized phase was shown in [8,44,58]. In [9,10] it was shown that
for unbounded random potentials the delocalized phase exists for arbitrarily weak dis-
order. The underlying mechanism is resonant delocalization, in which the exponentially
decaying tunnelling amplitudes between localization centres are counterbalanced by an
exponentially large number of possible channels through which tunnelling can occur, so
that Mott’s criterion is violated. As a consequence, the eigenvectors hybridize.

Heavy-tailed Wigner matrices, or Lévy matrices, whose entries have α-stable laws
for 0 < α < 2, were proposed in [34] as a simple model that exhibits a transition in the
localization of its eigenvectors; we refer to [6] for a summary of the predictions from
[34,69]. In [24,25] it was proved that eigenvectors are weakly delocalized for energies
in a compact interval around the origin, and for 0 < α < 2/3 eigenvectors are weakly
localized for energies far enough from the origin. In [6] full delocalization, as well as
GOE local eigenvalue statistics, were proved in a compact interval around the origin, and
in [5] the law of the eigenvector components was computed. Recently, by comparison
to a limiting tree model, a mobility edge was established in [4] for α near 0 or 1.
Conventions Every quantity that is not explicitly called fixed or a constant is a sequence
depending on N . We use the customary notations o(·) and O(·) in the limit N → ∞.
For nonnegative X,Y , if X = O(Y ) then we also write X � Y , and if X = o(Y ) then
we also write X � Y . Moreover, we write X � Y to mean X � Y and Y � X . We say
that an event � holds with high probability if P(�) = 1 − o(1). Throughout this paper
every eigenvector is assumed to be normalized in �2([N ]). Finally, we use κ ∈ (0, 1) to
denote a small positive constant, which is used to state assumptions and definitions; a
smaller κ always results in a weaker condition.

1.2. Results. Let G ≡ G(N , d/N ) be the Erdős-Rényi graph with vertex set [N ] and
edge probability d/N for 0 � d � N . Let A = (Axy)x,y∈[N ] ∈ {0, 1}N×N be the
adjacency matrix of G. Thus, A = A∗, Axx = 0 for all x ∈ [N ], and (Axy

.. x < y) are
independent Bernoulli(d/N ) random variables. Define the rescaled adjacency matrix

H ..= A/
√
d.

We always assume that d satisfies

√
log N log log N � d � 3 log N . (1.5)

Owing to the nonzero expectation of H , it is well known that the largest eigenvalue of
H , denoted by λ1(H), is an outlier separated from the rest of the spectrum (see e.g.
Proposition 3.4 (iv) below), and we shall always discard it from our discussion. The
lower bound of (1.5) is made for convenience, to ensure that λ1(H) is separated from



Localized Phase for the Erdős–Rényi Graph Page 9 of 74 9

the bulk spectrum5; the upper bound of (1.5) is made without loss of generality, since
for d � 3 log N the localized phase does not exist and the entire spectrum is known to
belong to the delocalized phase [12,14].

We denote by Br (x) (respectively by Sr (x)) the closed ball (respectively the sphere)
of radius r with respect to the graph distance of G around the vertex x . We refer to
Sect. 2.1 below for a full account of notations used throughout this paper.

The localized phase is characterized by a threshold α∗ defined, for any fixed κ ∈ (0, 1)

and μ ∈ [0, 1], as

α∗ ≡ α∗(μ) ..= max
{

inf
{
α > 0 : P(α1 � α) � Nμ−1}, 2 + κ

}
. (1.6)

We refer to Appendix B below for the basic qualitative properties of α∗ as well as a
graph. We shall show exponential localization for any eigenvector with eigenvalue λ

satisfying the condition

λ �= λ1(H), |λ| � 	(α∗(μ)) + κ, (1.7)

for sufficiently small μ > 0. In particular, the number of eigenvalues λ satisfying (1.7)
is with high probability Nμ+o(1) as κ → 0; see Remark 1.2 below.

1.2.1. Exponential localization Our main result is the following theorem. We recall that
by convention all eigenvectors are normalized.

Theorem 1.1 (Exponential localization). Suppose that (1.5) holds. Fix κ ∈ (0, 1) and
μ ∈ (0, 1/24). Then there is a constant c ∈ (0, 1) depending on κ such that, with high
probability, for any eigenvector w = (wx )x∈[N ] of H with eigenvalue λ satisfying (1.7),
there exists a unique vertex x ∈ [N ] with αx > α∗(μ) such that

w2
x = αx − 2

2(αx − 1)
+ o(1), ‖w|Bi (x)c‖ � √

αx (1 − c)i , (1.8)

for all i ∈ N with 1 � i � 1
6

log N
log d .

Remark 1.2 (Eigenvalue locations). The eigenvalue λ of the eigenvector w and the as-
sociated vertex x from Theorem 1.1 satisfy |λ| = 	(αx ) + o(1) with high probability.
This follows from (2.4) and (3.3) below.

The eigenvalue locations in the localized phase were previously studied in [13, The-
orem 2.1] (see also [12, Theorem 1.7]). In particular, if d > b∗ log N then the localized
phase does not exist (see [13, Remark 2.5]) and there is no eigenvalue of H satisfying
(1.7). Conversely, if d � (b∗ − ε) log N for some constant ε > 0 then for small enough
κ > 0 there is a polynomial number of eigenvalues satisfying (1.7), by [12, Theorem 1.7].
By the same argument, if d/ log N is small enough, then with high probability Nμ+o(1)

eigenvalues of H satisfy (1.7) as N → ∞ and κ → 0.

Remark 1.3 (Conditions in Theorem 1.1). The exponential decay in Theorem 1.1 holds
up to the scale log N

log d of the diameter of G. The upper bound 1/24 and the factor 1/6 are
not optimal (see the discussion in [15, Appendix G]), and they can be improved with
some extra effort, which we however refrain from doing here.

5 In fact, to ensure the separation, the weaker lower bound d 	 √
log N/ log log N would be sufficient;

see [59] and [16, Remark 1.4] for detailed explanations. We impose the slightly stronger lower bound in (1.5)
for convenience, as it allows us to directly import results from [12] that were proved under this condition.
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Remark 1.4 (Optimal exponential decay). If μ is sufficiently small then the rate 1 − c of
exponential decay from (1.8) can be made explicit. Suppose (1.5). Then for each small
enough constant ε > 0 and small enough constant μ > 0, depending on ε, with high
probability, for any eigenvector w of H with eigenvalue λ satisfying (1.7), there exists
a unique vertex x ∈ [N ] with αx > α∗(μ) such that

‖w|Bi (x)c‖ � √
αx

(
1 + O(ε)√

αx − 1

)i+1

(1.9)

for each i ∈ N satisfying i � log N
log d

1
log 10 log N

d

. This follows from (2.3) and Proposition 4.3

below.
The rate of decay in (1.9) is optimal up to the error term O(ε). Indeed, by Theorem

1.6 and the explicit form (1.10)–(1.11) below, we find that

‖w|Bi (x)c‖ � √
αx

(
1√

αx − 1

)i+1

+ o(1).

for any fixed i ∈ N. In particular, (1.9) improves the rate qi

(1−q)2 with q = (2 +

o(1))
√

αx−1
αx

obtained in [16, Theorem 1.7] at the spectral edge, corresponding to αx =
(1 + o(1))α∗(0).

1.2.2. Geometric structure of eigenvectors Next, we describe the precise geometric
structure of the eigenvectors in the localized phase. For any vertex x with αx > 2 and
radius r ∈ N

∗, we shall define two local vectors, wr (x) and vr (x), which depend only on
G in the ball Br (x). If w is an eigenvector of H as in Theorem 1.1 with associated vertex
x , then w will be well approximated by wr (x) and vr (x) for suitably chosen r 	 1.

To define these local vectors, we need the following definitions. Let r ∈ N
∗. For

α > 2 define the positive sequence (ui (α))r−1
i=0 through

u1(α) ..=
(

α

α − 1

)1/2

u0(α), ui (α) ..=
(

1

α − 1

)(i−1)/2

u1(α) (1 � i � r − 1).

(1.10)
We normalize the sequence by choosing u0(α) > 0 such that

∑r−1
i=0 ui (α)2 = 1.

Definition 1.5 (Localization profile vectors wr (x) and vr (x)). Let r ∈ N
∗ and x ∈ [N ].

(i) Denote by wr (x) an eigenvector of H |Br (x) associated with its largest eigenvalue,
chosen so that its value at x is nonnegative. Here H |Br (x) denotes the matrix H
restricted to the vertices in Br (x) (See Sect. 2.1 below.)

(ii) For αx > 2 and (ui (α))r−1
i=0 as in (1.10), define

vr (x) ..=
r−1∑

i=0

ui (αx )
1Si (x)

|Si (x)|1/2 , (1.11)

where 1Si (x) denotes the indicator function of the sphere Si (x).

Note that wr (x) is unique by the Perron-Frobenius theorem for irreducible matrices
with nonnegative entries.
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Theorem 1.6 (Localization profile). Suppose that (1.5) holds and fix κ ∈ (0, 1) and
μ ∈ (0, 1/24). With high probability, for any eigenvector w of H with eigenvalue λ

satisfying (1.7), there exists a unique vertex x ∈ [N ] with αx > α∗(μ) such that6

w = wr (x) + o(1) = vr (x) + o(1) (1.12)

for each r ∈ N
∗ satisfying log d � r � 1

6
log N
log d . Here, o(1) is meant with respect to the

Euclidean norm on R
N .

In particular, w has locally the radial exponentially decaying structure of vr (x).

1.2.3. Mobility edge and localization length Next, we combine the results of this paper
with those obtained for the delocalized phase in [12,14] to establish a mobility edge at
±2 for certain values of d, and analyse the structure of the eigenvectors quantitatively
in the vicinity of the mobility edge.

Theorem 1.7 (Mobility edge). Fix κ > 0 and suppose that 23
24 + κ � d

b∗ log N � 1 − κ .
Then, with high probability, for any eigenvector w of H with eigenvalue λ �= λ1(H) we
have the following dichotomy.

(i) (Localized phase) If |λ| � 2 + κ then w is exponentially localized as in (1.8) and
(1.12).

(ii) (Delocalized phase) If |λ| � 2 − κ then w is completely delocalized in the sense that

‖w‖2∞ � N−1+o(1). (1.13)

Both phases in Theorem 1.7 are nonempty under the assumption on d; see Sect. 1.1
and [13, Remark 2.5]. Theorem 1.7 establishes a dichotomy because (1.8) and (1.13) are
mutually exclusive, since ‖w‖2∞ � w2

x = αx−2
2(αx−1)

+ o(1) � 1 if αx > α∗(μ) � 2 + κ .
Next, we investigate the spatial extent of the eigenvectors near the mobility edge.

To that end, we use the following notion of localization length. With each normalized
vector w we associate the length

�(w) ..= min
x∈[N ]

∑

y∈[N ]
d(x, y) w2

y, (1.14)

where d(x, y) denotes the distance from x to y in the graph G. Regarding y �→ w2
y as a

probability measure on [N ], the quantity �(w) expresses the minimal expected distance
from a reference vertex x . The minimizing vertex x has the interpretation of a localization
centre for w.

Denote by diam(G) the diameter7 of G. It is a classical fact [32] that with high
probability diam(G) = log N

log d (1 + o(1)) as long as d 	 1.

Theorem 1.8 (Localization length). Fix κ > 0 and suppose that 23
24 + κ � d

b∗ log N �
1−κ . Then,with high probability, for any eigenvectorw of H with eigenvalueλ �= λ1(H)

we have

�(w) =
{ |λ|

2
√

λ2−4
+ o(1) if |λ| � 2 + κ

diam(G)(1 + o(1)) if |λ| � 2 − κ.
(1.15)

6 We assume that the sign of w is chosen suitably.
7 We recall that the diameter of a connected graph is the length of its longest geodesic. If the graph is

disconnected, then its diameter is the maximal diameter of its connected components.
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Fig. 3. An illustration of the behaviour of the localization length (1.14) around the mobility edge, established
in Theorem 1.8. We plot the asymptotic localization length � of an eigenvector with eigenvalue λ as a function
of λ. Here d

b∗ log N is a fixed number in [ 23
24 + κ, 1 − κ]. The spectrum is asymptotically given by the interval

[−λmax, λmax]. We only draw a portion of the spectrum near the right edge. Below the mobility edge 2, the

localization length is diam(G) = log N
log d (1 + o(1)). Above the mobility edge 2, the localization length is finite

and diverges as one approaches the mobility edge

Remark 1.9. By the same proof, the first estimate of (1.15) holds also for all eigenvectors
satisfying the conditions of Theorem 1.1. Moreover, the constant 23

24 is not optimal and
can be reduced with some extra effort.

Theorem 1.8 shows that the localization length diverges as one approaches the mo-
bility edge from the localized phase, and that it equals the diameter of the graph in the
delocalized phase. See Fig. 3 for an illustration.

1.2.4. Eigenfunction correlator and dynamical localization Finally, as a consequence
of Theorem 1.1, we control quantities commonly used to characterize Anderson local-
ization (see e.g. [11, Section 1.4]). In particular, we establish exponential decay of the
eigenfunction correlator and dynamical localization.

Corollary 1.10. Suppose (1.5). Then there is a constant μ > 0 such that for each
fixed κ ∈ (0, 1), there exist constants c,C > 0 depending only on κ such that the
following holds with high probability. Let J ⊂ [	(α∗(μ)) + κ,

√
d/2] be an interval

with associated spectral projection �J (H). For any x ∈ [N ], any measurable function
F : R → C satisfying ‖F‖∞ � 1, and any r � 0, we have

‖(�J (H)F(H)1x )|Br (x)c‖ � Ce−cr . (1.16)

In particular, denoting by wλ the normalized eigenvector of H associated with λ ∈
spec(H), the eigenfunction correlator satisfies the estimate

∑

λ∈spec(H)∩J

|〈1x ,wλ〉〈wλ , 1y〉| � Ce−c d(x,y), x, y ∈ [N ], (1.17)

and we have dynamical localization,

sup
t∈R

|〈1y ,�J (H) e−it H1x 〉| � Ce−c d(x,y), x, y ∈ [N ]. (1.18)
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Remark 1.11. By a close inspection of the proof in [15, Appendix F] (using that all error
probabilities are polynomially small in N ), we note that the estimates (1.17) and (1.18)
hold also in expectation, provided one multiplies both sides by the factor ec d(x,y).

Structure of the paper We conclude this section with a short summary of the structure
of the paper. In Sect. 2, we collect a few basic notations, then state the three core propo-
sitions of the paper: Proposition 2.2, which gives exponential decay of the approximate
eigenvectors, Proposition 2.3, which compares the approximate eigenvalues with the
true eigenvalues, and Proposition 2.4, which estimates the spacing between neighbour-
ing approximate eigenvalues. After stating them, we use them to deduce Theorem 1.1 in
Sect. 2.2. Then, we sketch the proofs of these three propositions in Sect. 2.3. Theorems
1.6, 1.7, and 1.8 are proved in the short Sects. 2.4, 2.5, and 2.6, respectively. Section 3 is
devoted to preliminary results on the graph G, its spectrum, and its Green function. Sec-
tions 4, 5 and 6 are devoted to the proofs of Propositions 2.2, 2.3, and 2.4, respectively.
In the appendices, we collect some auxiliary results and basic tools.

2. Proof of Main Results

The rest of the paper is devoted to the proofs of Theorems 1.1, 1.6, 1.7, and 1.8, as well
as Corollary 1.10. The former four are proved in this section, while Corollary 1.10 is
proved in [15, Appendix F].

Throughout, κ ∈ (0, 1) denotes an arbitrary positive constant.

2.1. Basic notations. We write N = {0, 1, 2, . . . }. We set [n] ..= {1, . . . , n} for any
n ∈ N

∗ and [0] ..= ∅. We write |X | for the cardinality of a finite set X . For X ⊂ [N ] we
write Xc ..= [N ]\X . We use 1� to denote the indicator function of an event �.

Vectors in R
N are denoted by boldface lowercase Latin letters like u, v and w. We

use the notation v = (vx )x∈[N ] ∈ R
N for the entries of a vector. We denote by supp v ..=

{x ∈ [N ] .. vx �= 0} the support of a vector v. We denote by 〈v ,w〉 = ∑
x∈[N ] vxwx the

Euclidean scalar product on R
N and by ‖v‖ = √〈v , v〉 the induced Euclidean norm.

For X ⊂ [N ] we set v|X ..= (vx1x∈X )x∈[N ]. For any x ∈ [N ], we define the standard
basis vector 1x ..= (δxy)y∈[N ] ∈ R

N , so that wx = 〈1x ,w〉. To any subset S ⊂ [N ] we
assign the vector 1S ∈ R

N given by 1S ..= ∑
x∈S 1x . In particular, 1{x} = 1x .

We denote by d(x, y) the distance between the vertices x, y ∈ [N ] with respect to
the graph G, i.e. the number of edges in the shortest path connecting x and y. For r ∈ N

and x ∈ [N ], we denote by Br (x) ..= {y ∈ [N ] .. d(x, y) � r} the closed ball of radius
r around x , and by Sr (x) ..= {y ∈ [N ] .. d(x, y) = r} the sphere of radius r around the
vertex x . For X ⊂ [N ] we denote by G|X the subgraph on X induced by G.

For a matrix M ∈ R
N×N , ‖M‖ is its operator norm induced by the Euclidean norm on

R
N . For an N×N Hermitian matrix M , we denote by λ1(M) � λ2(M) � · · · � λN (M)

the ordered eigenvalues of M . For an N × N matrix M ∈ R
N×N and a subset X ⊂ [N ],

we introduce the N×N matrices M |X ..= (Mxy1x,y∈X )x,y∈[N ] as well as M (X) ..= M |Xc

with entries M (X)
xy = Mxy1x,y /∈X .

2.2. Exponential localization: proof of Theorem 1.1. In this section, after introducing
some notation and stating the core propositions of the proof, we use them to prove our
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main result, Theorem 1.1. Recalling the definition of 	 from (1.4), we introduce the
μ-dependent sets

V ..= {
x ∈ [N ] .. αx � α∗(μ)

}
, (2.1)

W ..= {
x ∈ V .. 	(αx ) � 	(α∗(μ)) + κ/2

}
. (2.2)

By definition, W ⊂ V .
The following definition introduces the fundamental approximate eigenvalues and

eigenvectors underlying our proof.

Definition 2.1 (λ(x) and u(x)). For any x ∈ W , we abbreviate λ(x) ..= λ2(H (V\{x})).
Moreover, we denote by u(x) a normalized eigenvector of H (V\{x}) with eigenvalue λ(x)
satisfying 〈1x ,u(x)〉 � 0.

As we shall see, with high probability λ(x) is a simple eigenvalue and hence u(x) is
unique (see Corollary 3.6 below).

The proof of Theorem 1.1 consists of three main steps, which are the content of the
three following propositions. The next proposition states that u(x) has the exponential
decay claimed in Theorem 1.1 for w. It is proved in Sect. 4 below.

Proposition 2.2 (Exponential decay of u(x)). Suppose that (1.5) holds. Then there is a
constant c ∈ (0, 1) such that, for each fixedμ ∈ [0, 1/3), with high probability, for each
x ∈ W ,

〈1x ,u(x)〉 =
√

αx − 2

2(αx − 1)
+ o(1), ‖u(x)|Bi (x)c‖ � √

αx (1 − c)i

for all i ∈ N satisfying 1 � i � min
{ 1

5 − μ
4 , 1

3 − μ
} log N

log d − 2.

In the proof of Theorem 1.1, the next two propositions will be used to conclude that
any eigenvector of H whose associated eigenvalue satisfies (1.7) is close to u(x) for
some x ∈ W . Given Proposition 2.2, this will directly imply Theorem 1.1.

The next proposition, Proposition 2.3, states that λ(x) and u(x) are approximate
eigenvalues and eigenvectors of H , respectively, with an error bounded by an inverse
power of N . Moreover, up to such an error, each eigenvalue of H satisfying (1.7) is
approximated by λ(x) for some x ∈ W . In particular, it provides an upper bound for
the tunnelling amplitude, in the sense of (1.2), for the global approximate eigenvectors
from Definition 2.1. Its proof is given in Sect. 5 below.

Proposition 2.3 (Approximate eigenvalues). Suppose (1.5). Fix μ ∈ [0, 1/4) and ζ ∈
[0, 1/2 − 3μ/2). Then, with high probability, for each x ∈ W there exists εx ∈ R such
that

spec(H) ∩ I = {λ(x) + εx
.. x ∈ W} ∩ I, I ..= [	(α∗) + 3κ/4,

√
d/2]

counted with multiplicity and

max
x∈W

max
{|εx |, ‖(H − λ(x))u(x)‖} � N−ζ .

The next proposition establishes a spacing of at least N−η between the approximate
eigenvalues (λ(x))x∈W , for large enough η. It is proved in Sect. 6 below.
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Fig. 4. An illustration of the setup for the perturbation theory in the proof of Theorem 1.1. We draw two
instances of the interval [	(α∗) + κ, ∞). On the top line, we draw each λ(x) for x ∈ W as blue dot. Each
dot is surrounded by a blue buffer of width N−η . By Proposition 2.4, these buffers do not intersect with high
probability. On the bottom line, we draw each eigenvalue of H as red dot. Each dot on the top line gives rise to
a red region on the bottom line of width 2N−ζ . Since ζ > η, the red regions are disjoint. By Proposition 2.3,
each red region contains exactly one eigenvalue of H and each eigenvalue of H is contained in a red region.
Hence, the eigenvalues of H are separated by at least N−η/2

Proposition 2.4 (Eigenvalue spacing). Suppose (1.5). Fix μ ∈ (0, 1/24) and η > 8μ.
Then, with high probability,

|λ(x) − λ(y)| � N−η

for all x, y ∈ W with x �= y.

We now deduce Theorem 1.1 from Propositions 2.2, 2.3, and 2.4.

Proof of Theorem 1.1. Let λ be an eigenvalue of H satisfying (1.7), andw an associated,
normalized eigenvector. Fix ζ ∈ (8μ, 1/3) and η ∈ (8μ, ζ ). As μ < 1/24, both intervals
are nonempty and ζ < 1/2 − 3μ/2. Thus, Propositions 2.3 and 2.4 are applicable with
these choices of ζ and η. We shall show below that, on the intersection of the high-
probability events of Propositions 2.3 and 2.4, there exists a unique x ∈ W such that

w = u(x) + O(Nη−ζ ) (2.3)

(under suitable choice of the sign of w). Thus, Theorem 1.1 follows from η < ζ and
Proposition 2.2 as exp

( 1
6

log N
log d log(1 − c)

) 	 N−ε for any ε > 0.
What remains is the proof of (2.3). This is an application of perturbation theory in the

form of Lemma D.2, whose conditions we justify now. Note first that, combining (5.24)
below and the trivial fact λ1(EH) = √

d(1 + o(1)) with rank-one eigenvalue interlacing
(Lemma D.4), we conclude that with high probability λ1(H) = √

d(1 + o(1)) and
λ2(H) �

√
d/2. Hence, the eigenvalue λ satisfying (1.7) lies in [	(α∗(μ)) + κ, d/2].

From Propositions 2.3 and 2.4 with η < ζ , we conclude that

dist(λ, spec(H)\{λ}) � N−η − 2N−ζ , |λ − λ(x)| � N−ζ (2.4)

for a unique x ∈ W (see Fig. 4). In particular, as η < ζ , there is � � N−η such that λ is
the unique eigenvalue of H in [λ(x)−�,λ(x)+�]. Moreover, ‖(H−λ(x))u(x)‖ � N−ζ

by Proposition 2.3. Therefore, all conditions of Lemma D.2 are satisfied, and it implies
(2.3). This concludes the proof of Theorem 1.1.

By choosing η in (2.4) of the proof of Theorem 1.1 sufficiently small, we conclude
the following result.
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Corollary 2.5 (Eigenvalue spacing of H ). Suppose (1.5). Fixμ ∈ (0, 1/24) and η > 8μ.
Then, with high probability,

dist(λ, spec(H)\{λ}) � N−η,

for every λ ∈ spec(H) ∩ [	(α∗(μ)) + κ,∞).

Remark 2.6 (Eigenvalue spacing in critical regime). In the critical regime, i.e. when
d � log N , the lower bound on η in the conditions of Proposition 2.4 and Corollary 2.5
can be weakened to η > 4μ. Details can be found in Remark 6.2 below.

Remark 2.7 (Eigenvector mass on vertices inV\{x}). With high probability the following
holds. Let w be an eigenvector of H associated with the vertex x as in Theorem 1.1.
Then, from u(x)|V\{x} = 0 and (2.3), we conclude

‖w|V\{x}‖ � N−ε

for any small enough ε > 0.

2.3. Sketch of the proof. In this subsection we sketch the proof of Theorem 1.1. We use
the definitions and notations from Sects. 2.1 and 2.2.

The basic strategy is to find an orthogonal matrix U , a diagonal n × n matrix � =
diag(θ1, . . . , θn), a symmetric (N − n) × (N − n) matrix X , and a symmetric N × N
matrix E such that the following holds. In the basis of the columns u1, . . . ,uN of U ,
the matrix H has the form

U∗HU =
(

� 0
0 X

)
+ E, (2.5)

where the matrices E and X satisfy

‖E‖ � min
{|θi − θ j | .. i �= j

}
, (2.6a)

dist(spec(X), I ) � κ; (2.6b)

here I denotes the interval containing the eigenvalues of H that we are interested in (cf.
(1.7)). We call the first n columns u1, . . . ,un of H profile vectors.

If ‖E‖ = o(1) then, for each i ∈ [n], the vector ui is an approximate eigenvector of H
with approximate eigenvalue θi . Unlike approximate eigenvalues, in general approximate
eigenvectors have nothing to do with the actual eigenvectors. For ui to be close to an
eigenvector of H , we require the stronger estimates (2.6), which can be regarded as
a version of Mott’s criterion in terms of the profile vectors encoded by u1, . . . ,un .
Localization then follows provided the ui are shown to be localized.

In [13], it was showed that there is a one-to-one correspondence between eigenval-
ues of H in the semilocalized phase [2 + o(1),∞)\{λ1(H)} and vertices x of G with
normalized degree αx � 2 + o(1). Subsequently, in [12,16], the eigenvectors of H in
the semilocalized phase were investigated using the decomposition (2.5). There, the
profile vectors ui were supported in balls Br (x) around vertices x of sufficiently large
αx , where r 	 1. We refer to such vectors as local profile vectors: they are spatially
localized (in the graph distance) and their supports are disjoint. Examples of such local
profile vectors are wr (x) and vr (x) for x ∈ W , defined in Definition 1.5 (others were
defined in [12,16]).

The local profile vectors are exponentially decaying with a rate c > 0 depending on
b and the energy. The best possible error estimate for ‖(H − θi )ui‖ under the condition
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that ui is supported in Br (x) is obtained by choosing ui = wr (x), the top eigenvector
of H |Br (x); in that case the error is purely a boundary term of order e−cr . If the supports
of the profile vectors are separated by more than 1 (in the graph distance) then it is
easy to see that ‖E‖ � maxi‖(H − θi )ui‖ (see also our formulation of Mott’s criterion
(1.2)). Hence, the best possible error estimate for ‖E‖ is e−cr . Since the diameter of G
is log N

log d (1 + o(1)) with high probability, the best bound resulting from this approach is

‖E‖ � N−c/ log d = N−o(1) for some constant c > 0. However, inside the semilocalized
phase this bound is always much larger than the typical eigenvalue spacing N−η for
some η > 0. Recalling the condition (2.6a), we conclude that any approach to prove
localization in the semilocalized phase that uses local profile vectors is doomed to fail.

The reason why any approach based on local profile vectors fails is that local profile
vectors (such as wr (x)) are supported on balls containing a comparatively small set of
vertices, and the mass of the true eigenvectors outside of such balls is not small enough to
be fully negligible. This leads us to introduce theglobal profile vectorsu(x), x ∈ W , from
Definition 2.1, with associated approximate eigenvalues λ(x). They are defined as the
second eigenvector-eigenvalue pair of the matrix H (V\{x}). Thus, � = diag((λ(x))x∈W )

and the first n = |W| columns of U are given by the orthonormalization of the family
(u(x))x∈W . The global profile vector u(x) and the best possible local profile vector
wr (x) are each defined as eigenvectors of the graph after removal of a set of vertices,
|V| − 1 ∼ Nμ � N vertices for the former and |Br (x)c| ∼ N vertices for the latter.
This suggests that u(x) is a better approximation of a true eigenvector of H . The price
to pay is that its definition is less explicit, and, crucially, the family (u(x))x∈W is not
orthogonal owing to the global profile vectors having nonzero overlaps. As explained
below, the need to control the overlaps of the global profile vectors presents a serious
complication.

The proof of Theorem 1.1 consists of three main steps:

(i) exponential decay for u(x) around x ,
(ii) ‖E‖ � N−ζ and spec(X) is separated from I ,

(iii) minx �=y∈W |λ(x) − λ(y)| � N−η,

for some constants ζ > η > 0 (see also Sect. 2.3.4 below). These items corresponds to
Propositions 2.2, 2.3, and 2.4, respectively. We outline their proofs in Sects. 2.3.1, 2.3.2,
and 2.3.3, respectively.

2.3.1. Exponential decay of u(x) First we explain the need to introduce the two different
vertex sets W ⊂ V . In the definition of λ(x) and u(x), all vertices in V\{x} are removed,
while the profile vectors u(x) are only considered for x in the smaller set W . The
difference between W and V is used precisely to obtain a spectral gap for H (V\{x})
around λ(x), x ∈ W .

To show exponential decay of u(x), we use its definition, a simple computation, and
a truncated Neumann series expansion to obtain

u(x)|Vc = cx

(
1 − H (V)

λ(x)

)−1

1S1(x)

= cx

n−1∑

k=0

(
H (V)

λ(x)

)k

1S1(x) + cx

(
1 − H (V)

λ(x)

)−1(H (V)

λ(x)

)n

1S1(x),

(2.7)
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where cx ..= 〈1x ,u(x)〉
λ(x)

√
d

. Each term of the sum is supported in Bn(x) and, thus, vanishes

when restricting to Bn(x)c. Hence, as |〈1x ,u(x)〉| � 1, ‖1S1(x)‖ = √
dαx , and ‖(λ(x)−

H (V))−1‖ � 1 by the spectral gap of H (V\{x}) around λ(x) = λ2(H (V\{x})) mentioned
above, we obtain ‖u(x)|Bn(x)c‖ � √

αx qn with q = λ(x)−1‖H (V)|Bn+1(x)‖ < 1. This is
the desired exponential decay. We remark that in (2.7) we establish exponential decay of
the Green function of H (V) evaluated at λ(x), using that λ(x) is away from the spectrum
of H (V). This is an instance of a Combes-Thomas estimate, and we translate it to an
exponential decay for the eigenvector u(x). Furthermore, we show that λ(x) is isolated in
the spectrum of H (V\{x}) and, thus, perturbation theory implies that u(x) = wr (x)+o(1).

The rate obtained from the above argument is far from optimal, but an extension of
this argument does yield the optimal rate of decay for ‖u(x)|Bi (x)c‖ for small enough
μ. To that end, we choose n = Ci for a large constant C > 0 in (2.7), which makes
the remainder term in (2.7) with n = Ci subleading. It remains to estimate the terms
(H (V))k1S1(x) for k = i , …, Ci , since they vanish for k < i when restricted to Bi (x)c.
For k � i , we relate (H (V))k1S1(x) to the number of a family of walks on the graphG. We
obtain optimal bounds on this number by a path counting argument, exploiting the tree
structure of G|Br (x), a precise bound on the degrees in Br (x)\{x} and the concentration
of the sphere sizes |Si (x)| for i � r .

2.3.2. Approximate eigenvalues We now sketch how (ii) is proved. In contrast to the case
of local profile vectors discussed above, the proof of ‖E‖ � maxx∈W‖(H −λ(x))u(x)‖
requires also a control of the nonzero overlaps 〈u(x) , Hu(y)〉 for x �= y. By exponential
decay of u(x), it is easy to see that these overlaps are N−o(1), but, as explained above, a
polynomial bound N−c is required to prove localization. The construction of u(x) and
λ(x) and a simple computation reveal that

(H − λ(x))u(x) =
∑

y∈V\{x}
εy(x)1y, εy(x) ..= 1√

d

∑

t∈S1(y)

〈1t ,u(x)〉. (2.8)

Then the main idea to estimate εy(x) is the following elementary bound. Let T be a
finite set. For any (ut )t∈T ∈ C

T and any random T ⊂ T we have

E

[∑

t∈T
|ut |2

]
=
∑

t∈T
E[1t∈T ]|ut |2 � max

t∈T
P(t ∈ T )

∑

t∈T
|ut |2. (2.9)

Heuristically, by the independence of the edges in the Erdős-Rényi graph, the edges
between V\{x} and (V\{x})c are sampled independently of the subgraphs G|(V\{x})c and
G|V\{x} and are, therefore, independent of u(x). Hence, (2.8), (2.9) and |S1(y)| � log N
yield

E
[|εy(x)|2

∣
∣A(y)] � 1

d
E

[
|S1(y)|

∑

t∈S1(y)

〈1t ,u(x)〉2
∣∣
∣∣A

(y)
]

� (log N )2

Nd
‖u(x)‖2 = N−1+o(1).

From |V| = Nμ+o(1) and Chebyshev’s inequality, we therefore conclude ‖(H − λ(x))u
(x)‖2 � N 2μ−1+o(1) with high probability.
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Since (u(x))x∈W is not an orthogonal family, we choose the first columns of U in
(2.5) as the Gram-Schmidt orthonormalization (u⊥(x))x∈W of (u(x))x∈W (with respect
to a fixed order on W), i.e.

u⊥(x) ..= u(x) − �<xu(x)

‖u(x) − �<xu(x)‖ , (2.10)

where �<x denotes the orthogonal projection onto span{u(y) : y ∈ W, y < x}. It
remains to show that, for any x ∈ W , ‖(H −λ(x))u⊥(x)‖ is also bounded by an inverse
power of N . The denominator in (2.10) is � 1 since 〈1x ,u(x)〉 � 1 and 〈1y ,u(x)〉 = 0
for all y �= x . Moreover, H − λ(x) applied to the numerator of (2.10) is bounded by
a negative power of N , since ‖(H − λ(x))u(x)‖ � Nμ−1/2+o(1) as shown above, and
‖�<x H�<x‖ � Nμ−1/2+o(1) where �<x

..= 1 − �<x . The latter bound is proved
using the above estimate on ‖(H − λ(x))u(x)‖. Given this construction and the bounds
explained above, we extend (u⊥(x))x∈W to an orthonormal basis and choose these
vectors as columns of U . In particular, the first n = |W| columns of U are given by
(u⊥(x))x∈W .

What remains is to show that spec(X) is separated from I . To that end, we de-
compose its domain of definition into the span of w1, the eigenvector of H associated
with its largest eigenvalue, and its orthogonal complement. This largest eigenvalue and
the overlaps between w1 and u⊥(x) for all x ∈ W can be controlled relatively pre-
cisely, and we omit w1 from the remaining explanations below. It suffices to show that
λ1(X) � 	(α∗) + o(1), by the definitions of V and W . This upper bound on λ1(X) is
equivalent to

λ1(�WH�W ) � 	(α∗) + o(1), (2.11)

where �W ..= 1−�W and �W is the orthogonal projection onto span{u⊥(x) : x ∈ W}.
An estimate of the form (2.11) was first derived in [12], except that there the projection
was defined in terms local profile vectors. Since we are using the global profile vectors
u⊥(x), in our case this estimate is considerably more involved. The rough strategy is to
make a link between (2.11) and a corresponding estimate for local profile vectors, which
was already established in [12] using bounds on the non-backtracking matrix of H , an
Ihara-Bass type identity, and a local delocalization result for approximate eigenvectors.

To that end, let Q be the orthogonal projection onto the complement of
⋃

y∈V\W
B2r�−1(y), where r� � √

log N is chosen as in [12, eq. (1.8)]. In particular, the local
profile vectors v(x) from [12] satisfy supp v(x) ⊂ Br� (x) for every x ∈ V . We denote
by �Q the projection onto span{Qu⊥(x) : x ∈ W}. If we obtain a small enough upper
bound on ‖�W − �Q‖ then it suffices to show λ1(�QH�Q) � 	(α∗) + o(1), where
�Q

..= 1 − �Q . To get a sufficient estimate for ‖�W − �Q‖, we need that u⊥(x)|Br (y)
is polynomially small in N for x �= y as a summation over x, y ∈ W is required. This is
achieved through an argument motivated by (2.9). Let �v be the orthogonal projection
onto span{v(x) : x ∈ V\W}. By definition of Q and supp v(x) ⊂ Br� (x), �Q and
�v commute. Thus, λ1(�QH�Q) � max{λ1(�vH�v), λ1(�Q�vH�v�Q)} + o(1),
where �v

..= 1 − �v. By [12], λ1(�vH�v) � 	(α∗) + o(1). For eigenvectors of H
which are orthogonal to the local profile vectors v(x) and whose associated eigenvalues
are large enough, we obtain a weak delocalization estimate by following an argument in
[12]. This weak delocalization estimate shows that λ1(�Q�vH�v�Q) � 	(α∗)+o(1)

if λ1(�WH (V\W)�W ) � 	(α∗) + o(1). The last bound is finally obtained by a careful
analysis of the spectrum of H (V\W), which is based on viewing it as a perturbation of
�WH (V\W)�W + �WH (V\W)�W and analysing H (V\W) on ran �W in detail.
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2.3.3. Eigenvalue spacing We now sketch how to prove (iii). To that end, we fix a �=
b ∈ W . To prove that λ(a) and λ(b) are not too close to each other, we choose an
appropriate radius r on the scale log N

log d of the diameter of G. Then we fix the two sub-
graphs G|Br (b) and G|Br (b)c and show that resampling the edges between Sr (b) and
Br (b)c results in a substantial change of λ(b) while λ(a) remains almost unchanged:
we establish simultaneous anticoncentration for λ(b) and concentration for λ(b), which
yields anticoncentration for their difference. The edges between Sr (b) and Br (b)c form
an independent family of Bernoulli random variables by definition of the Erdős-Rényi
graph.

On a more formal level, we work conditionally on F ..= σ(Br (b), A|Br (b), A|Br (b)c)
and prove the following two statements in order to obtain a lower bound on |λ(a)−λ(b)|.

(a) λ(a) fluctuates little under resampling of the edges between Sr (b) and Br (b)c, i.e.
the concentration estimate

P(|λ(a) − z| � N−η|F) � 1 − N−η/2+o(1)

holds if z is the second largest eigenvalue of H (V∪Br (b)\{a}), which is F-measurable.
(b) λ(b) fluctuates a lot under resampling of the edges between Sr (b) and Br (b)c, i.e.

the anticoncentration estimate

P(|λ(b) − z| � N−η|F) � 1 − N−η/2+o(1)

holds for any F-measurable spectral parameter z in I (see the definition of I after
(2.6b)).

We justify (a) by replacing u(a) with an F-measurable version. This allows for a use of
(2.9) in a similar fashion as in the first part of Sect. 2.3.2 and reveals that, conditionally
on F , λ(a) is concentrated around the second largest eigenvalue of H (V∪Br (b)\{a}) since
|Br (b)| is not too large due to our choice of r .

The proof of (b) is much more elaborate. We start by noting that λ(b) is characterized
by the equation

λ(b) +
1

d

∑

x,y∈S1(b)

(H (V) − λ(b))−1
xy = 0, (2.12)

as follows from Schur’s complement formula. The main strategy is to derive a recursive
family of equations for the Green function, starting from (2.12) and extending to increas-
ingly large spheres around b, to which Kesten’s self-improving anticoncentration result
can be applied. To quantify anticoncentration, we use Lévy’s concentration function

Q(X, L) ..= sup
t∈R

P(X ∈ [t − L , t + L]), (2.13)

where X is a random variable and L > 0 is deterministic.

Proposition 2.8 (Theorem 2 of [57]). There exists a universal constant K such that for
any independent random variables X1, . . . , Xn satisfying Q(Xi , L) � 1/2 we have

Q

(∑

i∈[n]
Xi , L

)
� K√

n
max
i∈[n] Q(Xi , L). (2.14)
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This result is an improvement due to Kesten [57] of a classical anticoncentration
result of Doeblin, Lévy, Kolmogorov, and Rogozin. Kesten’s insight was that such an
estimate can be made self-improving, as manifested by the factor maxi∈[n] Q(Xi , L) on
the right-hand side. This factor is crucial for our argument, as it allows us to successively
improve the upper bound on Q.

We now explain more precisely how the expression of λ(b) in terms of a large number
of Green function entries is obtained. We shall tacitly use thatG|Br (b) is a tree, which can
be easily shown to be true with high probability. Applying Schur’s complement formula
at x ∈ Si (b), using standard resolvent identities, and arguing similarly as in (2.9) to
control errors yields

1

Gxx (i − 1, z)
= −z − 1

d

∑

y∈S+
1 (x)

Gyy(i, z) + o(1), (2.15)

where Gxx (i, z) ..= (H (Bi (b)∪V) − z)−1
xx and S+

1 (x) = S1(x) ∩ Si+1(b) is the set of
children of x in the tree G|Br (x) rooted at b. The error o(1) is polynomially small in
N ; it comprises error terms arising from removing vertices from H and neglecting all
off-diagonal Green function entries.

Setting the error term in (2.15) to zero, we obtain a recursive equation for the idealized
Green function entries (gx (z))x∈Br (b)\{b}, given by

1

gx (z)
..=
{−z − 1

d

∑
y∈S+

1 (x) Gyy(r, z) if x ∈ Sr (b)

−z − 1
d

∑
y∈S+

1 (x) gy(z) if x ∈ Br−1(b)\{b}, (2.16)

which is an approximate version of the recursion (2.15) for the actual Green function
entries. The recursion begins at the boundary of the ball Br (b) and propagates inwards.
We note that, for any 1 � i � r , conditioned on F , the family (gx (z))x∈Si (b) is inde-
pendent if G|Br (b) is a tree and z is F-measurable. From (2.15), (2.16) and r � log N

log d , it
is not hard to conclude by induction that, for large enough η > 0, with high probability,
gx (z) = Gxx (0, z) + o(N−η) = (H (V) − z)−1

xx + o(N−η) for all x ∈ S1(b). Hence, if we
can prove that Q(gx (z), N−η) � N−c for all x ∈ S1(b) and some constant c > 0, then
a union bound over a �= b ∈ W , |W| � Nμ, the smallness of the off-diagonal entries of
(H (V) −λ(b))−1 as argued after (2.15), and (2.12) imply anticoncentration for λ(b)− z.
This is (b), which together with (a) implies that mina �=b∈W |λ(a) − λ(b)| � N−η with
high probability, i.e. (iii).

Therefore, to complete the sketch of (iii), what remains is to prove Q(gx (z), N−η) �
N−c for all x ∈ S1(b), whose proof we sketch now. Throughout the entire argument we
condition on F and use that G|Br (x) is a tree. To begin the recursion, we first show that
Q(gx , d−1) � 1/2 for any x ∈ Sr (b). This follows from the first case of (2.16), using a
weak lower bound on the entries Gyy(r, z) and anticoncentration from the fact that the
size of S+

1 (x) is a binomial random variable conditioned on F .
Next, let x ∈ Si (b) for 1 � i � r − 1. By using the second case in (2.16) and

Proposition 2.8, we iteratively refine the resolution, i.e. decrease the second argument
of Q, and decrease the upper bound on Q, which are d−1 and 1/2, respectively, at the
starting point. Indeed, conditioning on A|Bi (b), the second case in (2.16) and rescaling
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the second argument of Q yield

Q
(
gx (z), (T

2d)−r+i ) � Q

( ∑

y∈S+
1 (x)

gy(z), (T
2d)−r+i+1

)

� K
√|S+

1 (x)| max
y∈S+

1 (x)
Q
(
gy(z), (T

2d)−r+i+1), (2.17)

where we applied Proposition 2.8 using the independence of (gy(z))y∈S+
1 (x) in the second

step. Here, we also used that Q( f (X), L) � Q(X, T−2L) if f (t) ..= 1
t and X ∈

[T−1, T ] since the derivative of f is bounded from below by T−2 on this interval, and

that, with high probability, g lies in [T−1, T ] for T �
√

log N
d .

The estimate (2.17) yields the desired self-improvement provided that |S+
1 (x)| is large

enough. However, |S+
1 (x)| is not large enough for all vertices x in Br (b) (and in fact

consistently applying (2.17) at all vertices yields an anticoncentration bound at the root
b that is far from optimal and too weak to conclude localization). Sometimes, a better
bound than (2.17) can be obtained by replacing Kesten’s estimate (2.14) with the trivial
estimate

Q

(∑

i∈[n]
Xi , L

)
� min

i∈[n] Q(Xi , L), (2.18)

which follows immediately from the independence of the random variables Xi . Although
this estimate lacks the factor K/

√
n from (2.14), it replaces the maximum with a min-

imum. Thus, an important ingredient in our recursive self-improving anticoncentration
argument is an algorithm that determines which of (2.14) or (2.18) is to be used at any
given vertex x ∈ Br (b). It relies on the notion of robust vertices.

Recursively, a vertex x ∈ Br (b) is called robust if x ∈ Sr (b) or S+
1 (x) contains at least

d/2 robust vertices. We denote the set of robust vertices by R. An important auxiliary
result is that the root b is robust with high probability, which in particular implies that
Si (b)∩R is large for any i � r . Therefore, we can restrict to x ∈ Si (b)∩R and proceed
similarly as in (2.17) to obtain

Q(gx (z), (T
2d)−r+i ) � Q

( ∑

y∈S+
1 (x)∩R

gy(z), (T
2d)−r+i+1

)

� K
√

2√
d

max
y∈S+

1 (x)∩R
Q
(
gy(z), (T

2d)−r+i+1),

where in the first step we used (2.18). Thus, we obtain Q(gx (z), (T 2d)−r ) �
(K

√
2d−1)r−1 for all x ∈ S1(b) and, therefore, by choosing r such that (T 2d)r+1 = Nη,

we arrive at Q(gx (z), N−η) � N−η/2+o(1) for all x ∈ S1(b). This is the desired anticon-
centration bound, (b), which, as explained above, implies (iii).

2.3.4. The three main exponents of N Throughout this paper we use the three exponents
μ, ζ , η > 0 to control three central quantities of the argument. We summarize their roles
here for easy reference.
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• Nμ is the typical size of the vertex sets V and W (cf. Proposition 3.2 (i)), as
the parameter μ is introduced to control α∗ (see (1.6)). Consequently, Nμ is also
the typical number of eigenvalues of H satisfying (1.7). Therefore, the factor Nμ

emerges from union bounds when a property is required for all x ∈ V or x ∈ W .
• N−ζ is the upper bound on the eigenvalue approximation that we establish in Propo-

sition 2.3, i.e. on the distance between λ(x) and the eigenvalues of H or, more pre-
cisely, the upper bound on ‖(H −λ(x))u(x)‖. Proposition 2.3 requires the condition
ζ < 1/2 − 3μ/2.

• N−η is the lower bound on the eigenvalue spacing, or correspondingly minx �=y∈W
|λ(x) − λ(y)|, that we prove in Proposition 2.4. Since the typical eigenvalue spacing
is N−μ in the interval we consider, we clearly need μ < η. In fact, our proof of
Proposition 2.4 requires the stronger condition 8μ < η for technical reasons as well
as μ < 1/24.

To apply perturbation theory in the proof of Theorem 1.1, we need that the error in the
eigenvalue approximation N−ζ be smaller than the eigenvalue spacing N−η. This means
that η < ζ .

2.4. Localization profile: proof of Theorem 1.6. Theorem 1.6 is an immediate conse-
quence of the following result.

Proposition 2.9 (Local approximation for u(x)). Let μ ∈ [0, 1/3). Then, with high
probability, the following holds for all x ∈ W . If r ∈ N satisfies

log d � r � min

{
1

6

log N

log d
, min

{
1

5
− μ

4
,

1

3
− μ

}
log N

log d
− 2

}
, (2.19)

then

(i) u(x) = vr (x) + o(1),
(ii) u(x) = wr (x) + o(1).

Part (i) is proved in Sect. 3.2 below. Part (ii) follows from Corollary 4.2 below, since
	(αx ) � 2.

Proof of Theorem 1.6. From (2.3) in the proof of Theorem 1.1, we know thatw = u(x)+
O(N−ε) for a unique x ∈ W and some small enough ε > 0. Therefore, Theorem 1.6
follows from Proposition 2.9.

2.5. Mobility edge: proof of Theorem 1.7. Part (i) follows from Theorem 1.1, since
inf{α > 0 .. P(α1 � α) � N−23/24} � 2 if d � 23

24b∗ log N , by Lemma D.1 below. Part
(ii) was proved in [14, Theorem 1.1 (ii)].

2.6. Localization length: proof of Theorem 1.8. For any eigenvector w we introduce the
function

q(u) ..=
∑

y

d(u, y)〈1y ,w〉2,

so that �(w) = minu q(u).
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For the localized phase, suppose that λ is an eigenvalue satisfying |λ| � 2 + κ

with associated eigenvector w. Denote by x the unique vertex associated with w from
Theorems 1.1 and 1.6. Then the following estimates hold on the intersection of the
high-probability events of these two theorems. By Theorem 1.1, there exists a constant
R ≡ Rκ such that

q(u) � d(u, x)〈1x ,w〉2 � R
αx − 2

2(αx − 1)
+ o(1) � αx

αx − 2
for all u ∈ BR(x)c,

(2.20)
where the third inequality holds for large enough constant R. Moreover, for any ε > 0
there exists a constant R′ ∈ N such that for u ∈ BR(x) we have

q(u) =
∑

y∈BR′ (x)
d(u, y)〈1y ,w〉2 +

∑

y∈BR′ (x)c
d(u, y)〈1y ,w〉2

=
∑

y∈BR′ (x)
d(u, y)〈1y ,w〉2 + O(ε) =

∑

y∈BR′ (x)
d(u, y)〈1y , vr (x)〉2 + O(ε) + o(1),

(2.21)

where the second step follows from the estimate d(u, y) � R + d(x, y) and the ex-
ponential decay from Theorem 1.1, and the third step from Theorem 1.6 with some
log d � r � log N

log d .
To analyse the sum, we abbreviate k ..= d(x, u) and introduce the set Ti (u, x) ..=

Si (x) ∩ Si+k(u) for 0 � i � r , which is the set of vertices in Si (x) whose geodesic to x
does not pass through u. By Proposition 3.2 (ii) below, the graph G|Br (x) is a tree, which
implies

d(u, y) =
{
k + i if y ∈ Ti (u, x)
|k − i | if y ∈ Si (x)\Ti (u, x).

(2.22)

Next, we estimate |Si (x)\Ti (u, x)|. For 1 � i � k, the set Si (x)\Ti (u, x) consists of
the unique vertex on the geodesic from x to u at distance i from x . For i > k, we have
Si (x)\Ti (u, x) = Si (x) ∩ Si−k(u). Here we used the tree structure of G|Br (x). Hence,
we conclude that for i > k we have |Si (x)\Ti (u, x)| � |Si−k(u)| � (log N )di−k−1, by
Proposition 3.1.

Next, by [12, Lemma 5.4], with high probability we have |Si (x)| = |S1(x)|di−1(1 +
o(1)) for 1 � i � r . Since |S1(x)| � α∗d � 2d, we conclude that |Si (x)| � di for
i � r . Putting all of these estimates together, we conclude for all 1 � i � r that

|Si (x)\Ti (u, x)|
|Si (x)| �

{
d−i if 1 � i � k
(log N )d−k−1 if k < i � r.

Since Ti (u, x) = Si (x) for k = 0 or i = 0, using the condition (1.5) we conclude that

|Si (x)\Ti (u, x)|
|Si (x)| = o(1) (2.23)

for all u ∈ BR(x) and 0 � i � r .
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Next, using (2.22) and recalling the definition (1.11), we write the above sum as
∑

y∈BR′ (x)
d(u, y)〈1y , vr (x)〉2

=
R′∑

i=0

( ∑

y∈Ti (u,x)

(k + i)〈1y , vr (x)〉2 +
∑

y∈Si (x)\Ti (u,x)

|k − i |〈1y , vr (x)〉2
)

=
R′∑

i=0

(
(k + i) ui (αx )

2 |Ti (u, x)|
|Si (x)| + |k − i | ui (αx )

2 |Si (x)\Ti (u, x)|
|Si (x)|

)

=
R′∑

i=0

(k + i)ui (αx )
2 + o(1),

where in the last step we used (2.23), the fact that R′ is constant, and
∑r−1

i=0 ui (αx )
2 = 1.

The latter sum is clearly minimized for k = 0. Recalling (2.21), we therefore conclude
that for any u ∈ BR(x) we have

q(u) � q(x) + O(ε) + o(1), q(x) =
∞∑

i=1

iui (αx )
2 + O(ε) + o(1)

for large enough R′ depending on ε. Since ε > 0 was arbitrary, and recalling (2.20), by
taking the minimum over u ∈ [N ], it therefore suffices to show that

∞∑

i=1

iui (αx )
2 = αx

2(αx − 2)
+ o(1) = |λ|

2
√

λ2 − 4
+ o(1). (2.24)

The first equality of (2.24) is an elementary computation using the definition (1.10),
recalling the normalization

∑r−1
i=0 ui (α)2 = 1 and that r 	 1. The second equality

of (2.24) follows from the estimate |λ| = 	(αx ) + o(1) by Remark 1.2, which can be

inverted to obtain 1
αx

= 1
2

(
1 −

√
λ2−4
|λ|

)
+ o(1).

For the delocalized phase, suppose that λ is an eigenvalue satisfying |λ| � 2−κ with
associated eigenvector w. We use [14, Theorem 1.1 (ii)] to deduce that with probability
1 − O(N−10) we have ‖w‖2∞ � N−1+o(1). Hence, with probability 1 − O(N−9) we
have, for any x ∈ [N ] and r � 0,

q(x) �
∑

y∈Br (x)
d(x, y) 〈1y ,w〉2 + r

∑

y∈Br (x)c
〈1y ,w〉2

� r

(
1 −

∑

y∈Br (x)
〈1y ,w〉2

)
� r

(
1 − N−1+o(1)|Br (x)|

)
.

Next, we deduce from [32, Lemma 1] that for any constant ε > 0 there is a constant
δ > 0 such that, with high probability, if r � (1 − ε)

log N
log d then |Br (x)| � N 1−δ for

all x ∈ [N ]. Choosing r ..= �(1 − ε)
log N
log d �, we conclude that, for any ε > 0, with

high probability, for all eigenvectors w with eigenvalue λ satisfying |λ| � 2 − κ , we
have �(w) � (1 − ε + o(1))

log N
log d . Since ε > 0 was an arbitrary constant, we conclude
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the stronger lower bound �(w) � (1 − o(1))
log N
log d = diam(G)(1 + o(1)), where the

last step follows from [32]. The complementary upper bound �(w) � diam(G) follows
by definition of diam(G), since d(x, y) � diam(G) for all x, y ∈ [N ] (here we used
that under our assumption on d, the graph G is with high probability connected). This
concludes the proof.

3. Preliminaries

The rest of this paper is devoted to the proofs of Propositions 2.2, 2.3 and 2.4. We begin
with a short section that collects some basic properties of the graph G and its spectrum.

3.1. Properties of the graph. In this subsection, we collect some basic local properties
of the Erdős-Rényi graph G around vertices in V .

Proposition 3.1. Suppose that
√

log N � d � 3 log N. With high probability, the fol-
lowing holds.

(i) maxx∈[N ] |S1(x)| � 10 log N.
(ii) |Bi (x)| � max{|S1(x)|, d}di−1 for all x ∈ [N ] and all i ∈ N with i � 1

3
log N
log d .

Item (i) is a simple application of Bennett’s inequality and (ii) follows from [12,13]; a
detailed proof is given in [15, Appendix E]. In particular, by the assumptiond 	 √

log N ,
we get from Proposition 3.1 (i) that

	(αx ) � √
αx �

√
log N

d
� √

d (3.1)

for all x ∈ [N ] on the high-probability event from Proposition 3.1.

Proposition 3.2. Let μ ∈ [0, 1/3) be a constant. Suppose that
√

log N � d � 3 log N.
With high probability, for any r ∈ N satisfying

1 � r � min

{
1

5
− μ

4
,

1

3
− μ

}
log N

log d
, (3.2)

the following holds.

(i) |V| � Nμ+o(1).
(ii) G|Br (x) is a tree for all x ∈ V .

(iii) Br (x) ∩ Br (y) = ∅ for all x, y ∈ V satisfying x �= y.
(iv) Let ν ∈ [0, 1]. If 1 − μ − ν − r log d

log N � 1 then |S1(y)| � α∗(ν)d for all y ∈
⋃

x∈V (Br (x)\{x}).
These statements are all consequences of [13,16]; the details are given in [15, Ap-

pendix E].
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3.2. Properties of the spectrum. In this subsection we collect basic spectral properties
of H and some of its submatrices.

Definition 3.3. Let w1 be a normalized eigenvector of H with nonnegative entries asso-
ciated with the largest eigenvalue λ1(H) of H .

Note that, with high probability,w1 is unique and coincides with the Perron–Frobenius
eigenvector of the giant component of G.

Proposition 3.4. Suppose (1.5). With high probability the following holds.

(i) For any μ ∈ [0, 1] we have max{λ2(H (V)),−λN (H (V))} � 	(α∗) + o(1).
(ii) Fix μ ∈ [0, 1/3). If X ⊂ ⋃

x∈V Br (x) with r ∈ N as in (3.2), then λ1(H (X)) and
the corresponding eigenvector w of H (X) satisfy

λ1(H
(X)) = √

d(1 + o(1)),

∥
∥∥∥w − 1Xc

|Xc|1/2

∥
∥∥∥ = o(1).

(iii) Fix μ ∈ [0, 1). If x ∈ V , r ∈ N satisfies log d � r � 1
6

log N
log d and X ⊂ [N ] satisfies

X ∩ Br (x) = ∅, then

‖(H (X) − 	(αx ))vr (x)‖ = o(1),

where vr (x) was defined in (1.11).
(iv) Fix μ ∈ [0, 4/5). For any r ∈ N satisfying r � d

log log N , there is a normalized

vector q with supp q ⊂ (⋃
x∈V Br+1(x)

)c
such that

‖(H − √
d)q‖ � d−1/2, ‖w1 − q‖ � d−1, ‖q − N−1/21[N ]‖ � d−1/2.

These results follow essentially from [12,13,16]; the detailed proof is presented in
Section C below.

Definition 3.5. We denote by � the intersection of the high-probability events of Propo-
sitions 3.1, 3.2 and 3.4.

In particular, on � the estimate (3.1) holds.

Corollary 3.6. Fix μ ∈ [0, 1/3). On �, the following holds for all x ∈ W and all
X ⊂ [N ]. If X ∩ Br (x) = ∅ and V\{x} ⊂ X ⊂ ⋃

y∈V Br (y) for some r ∈ N satisfying

log d � r � min
{ 1

6 , 1
5 − μ

4 , 1
3 − μ

} log N
log d then

λ1(H
(X))=√

d(1 + o(1)), λ2(H
(X))=	(αx )+o(1), λ3(H

(X)) � 	(α∗)+o(1).

Corollary 3.6 with X = V\{x} directly implies that, on �,

λ(x) = λ2(H
(V\{x})) = 	(αx ) + o(1). (3.3)
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Proof of Corollary 3.6. The statement about λ1(H (X)) is identical to Proposition 3.4
(ii). By eigenvalue interlacing (Lemma D.3), we have

λ3(H
(X)) � λ3(H

(V\{x})) � λ2(H
(V)) � 	(α∗) + o(1),

where for the last inequality we used Proposition 3.4 (i). Finally, Proposition 3.4 (iii)
implies that there exists an eigenvalue of H (X) at distance o(1) from 	(αx ). Because of
the estimates on λ1(H (X)) and λ3(H (X)) just proven, and because 	(αx ) � 	(α∗)+κ/2
for x ∈ W (recall (2.2)) as well as 	(αx ) � √

d by (3.1), this eigenvalue has to be
λ2(H (X)).

Proof of Proposition 2.9 (i). We show that the conclusion of Proposition 2.9 (i) holds on
�. The proof uses a spectral gap of H (V\{x}) around λ(x) = λ2(H (V\{x})), that vr (x) is
an approximate eigenvector of H (V\{x}) by Proposition 3.4 (iii), and perturbation theory.
Indeed, from Corollary 3.6 with X = V\{x}, recalling the definition of W (see (2.2)),
we obtain that λ2(H (V\{x})) is separated from the other eigenvalues of H (V\{x}) by a
positive constant. Owing to (3.3), Proposition 3.4 (iii) with X = V\{x} and Lemma D.2
below imply ‖u(x) − vr (x)‖ = o(1), i.e. Proposition 2.9 (i).

We conclude the following corollary from Proposition 2.9 (i) and its proof.

Corollary 3.7. Fix μ ∈ [0, 1/3). On � we have 〈1x ,u(x)〉 =
√

αx−2
2(αx−1)

+ o(1) � 1 for

all x ∈ W .

Proof. We first note that for any r → ∞ as N → ∞, we have u0(αx ) =
√

αx−2
2(αx−1)

+o(1)

by (1.10). By Proposition 2.9 (i) and its proof, 〈1x ,u(x)〉 = 〈1x , vr (x)〉 + o(1) =
u0(αx ) + o(1) � 1 on �, where in second step we used the definition (1.11), and in
the last step we used that αx � 2 + κ , so that the sequence (ui (αx ))i from (1.10) is
exponentially decaying in i , uniformly in r .

3.3. Properties of the Green function. In this subsection, we fix μ ∈ [0, 1/3). Define

J = [	(α∗) + κ/4,
√
d/2].

We shall use that whenever z ∈ J , all Green functions appearing in our proof are
bounded, which is the content of the following result.

Lemma 3.8. Suppose (1.5) and (3.2). On �, for z, z′ ∈ J and X ⊂ [N ] satisfying
V ⊂ X ⊂ ⋃

x∈V Br (x), we have

‖(H (X) − z)−1‖ � 8/κ, (3.4)

‖(H (X) − z)−1 − (H (X) − z′)−1‖ � (8/κ)2 |z − z′|. (3.5)

Proof of Lemma 3.8. Eigenvalue interlacing (Lemma D.3) and Proposition 3.4 (i) and
(ii) imply

λ2(H
(X)) � λ2(H

(V)) � 	(α∗) + κ/8 and λ1(H
(X)) = √

d(1 + o(1)) �
√
d/2 + κ/8.

Therefore, dist(z, Spec(H (X))) � κ/8 for any z ∈ J , which proves (3.4). The Lipschitz
bound (3.5) follows from (3.4) and the resolvent identity.
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Lemma 3.9. Suppose (1.5) and (3.2). On �, for any V ⊂ X ⊂ ⋃
x∈V Br (x), z ∈ J ,

and y /∈ X, we have

−(H (X) − z)−1
yy � (3z)−1.

Proof of Lemma 3.9. Denoting by λ1 � λ2 � . . . and w1,w2, . . . the eigenvalues and
eigenvectors of H (X), respectively, we have

−(H (X)−z)−1
yy = 〈1y ,w1〉2

z − λ1
+
∑

2�i�N

〈1y ,wi 〉2

z − λi
� 1

z − λN
(1−〈1y ,w1〉2)−

∣∣
∣∣
〈1y ,w1〉2

λ1 − z

∣∣
∣∣ ,

(3.6)
where in the second step we used z − λN � z − λi > 0 for all i � 2, which follows
from eigenvalue interlacing (Lemma D.3), Proposition 3.4 (i), and the condition z ∈ J .

To estimate the right-hand side of (3.6), we use Proposition 3.2 (i) and Proposi-
tion 3.1 (ii) as well as (3.2) to estimate |X | �

∑
x∈V |Br (x)| � N 1/3+o(1) on �. From

Proposition 3.4 (ii) we therefore deduce that

〈1y ,w1〉2 = |Xc|−1/2 + o(1) = o(1). (3.7)

We conclude that the first term on the right-hand side of (3.6) is bounded from below
by ((2 + o(1))z)−1, as z − λN � 2z from Proposition 3.4 (i). The second term on the
right-hand side of (3.6) is estimated using (3.7) as well as |λ1 − z| �

√
d � z by

Proposition 3.4 (ii) and z ∈ J .

4. Exponential Decay of u(x) and Proof of Proposition 2.2

In this section we establish the exponential decay of u(x) around the vertex x . In par-
ticular, Proposition 2.2 is a direct consequence of Proposition 4.1 below. Moreover, we
prove in Corollary 4.2 below that u(x) is well approximated by wr (x), the eigenvector
of H |Br (x) corresponding to its largest eigenvalue. This implies Proposition 2.9 (ii).

Throughout this section we use the high-probability event � from Definition 3.5.

4.1. Simple exponential decay ofu(x). In this subsection we establish exponential decay
at some positive but not optimal rate.

Proposition 4.1. Suppose that (1.5) holds. Then there is a constant c ∈ (0, 1) such that,
for each fixed μ ∈ [0, 1/3), on �, for each x ∈ W there exists qx > 0 such that

‖u(x)|Bi (x)c‖ � √
αx q

i
x , qx = 	(α∗(1/2)) + o(1)

λ(x)
� 1 − c, (4.1)

for all i ∈ N satisfying 1 � i � min
{ 1

5 − μ
4 , 1

3 − μ
} log N

log d − 2.

Proof. We note that supp u(x) ⊂ ([N ]\V)∪{x} and decompose u(x) = 〈1x ,u(x)〉1x +
Qu(x), where Q ..= ∑

y∈[N ]\V 〈1y , · 〉1y is the orthogonal projection on the coordinates
in [N ]\V . We apply the projection Q to the eigenvalue-eigenvector relation

λ(x)u(x) = H (V\{x})u(x) = 〈1x ,u(x)〉1S1(x)/
√
d + H (V\{x})Qu(x),
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solve for Qu(x), and obtain

Qu(x) = 〈1x ,u(x)〉√
d

(
λ(x) − H (V)

)−11S1(x), (4.2)

where we used that H (V\{x})1x = 1S1(x)/
√
d and QH (V\{x})Q = H (V). We also used

that λ(x) − H (V) is invertible, which can be seen as follows. From Proposition 3.4 (ii)
with X = V and r = 0, we conclude λ1(H (V)) = √

d(1 + o(1)) and, hence, (3.3) and
Proposition 3.4 (i) yield that λ(x) is not an eigenvalue of H (V) and

dist(λ(x), spec H (V)) � 1. (4.3)

Let
Qi

..=
∑

y∈[N ]\(V∪Bi (x))

〈1y , · 〉1y

the projection onto the coordinates in [N ]\(V ∪ Bi (x)). As supp u(x) ⊂ ([N ]\V) ∪ {x}
and Qi Q = Qi , we conclude from (4.2) that

u(x)|Bi (x)c = Qiu(x) = Qi Qu(x) = 〈1x ,u(x)〉
λ(x)

√
d

Qi

(
1 − H (V)

λ(x)

)−1

1S1(x). (4.4)

For any n ∈ N we have

(
1 − H (V)

λ(x)

)−1

=
n∑

k=0

(
H (V)

λ(x)

)k

+

(
1 − H (V)

λ(x)

)−1(H (V)

λ(x)

)n+1

. (4.5)

Since H (V) is a local operator, we conclude that Qi (H (V))k1S1(x) = 0 if k + 1 � i .
Hence, fixing i � 1 and applying (4.5) with n = i − 1 to (4.4), we get

u(x)|Bi (x)c = 〈1x ,u(x)〉√
d

Qi
(
λ(x)−H (V)

)−1
(
H (V)

λ(x)

)i

1S1(x) = O

(‖(H (V))i1S1(x)‖√
dλ(x)i

)
.

(4.6)
Here, in the last step, we employed |〈1x ,u(x)〉| � 1, ‖Qi‖ � 1, ‖(λ(x)−H (V))−1‖ � 1
by (4.3).

Let r ∈ N be the largest integer satisfying (3.2). We now claim that, on �,

‖H (V)v‖ � (	(α∗(1/2)) + o(1))‖v‖ (4.7)

for any v such that supp v ⊂ Br (x). Before proving (4.7), we use it conclude the proof
of (4.1).

For i � r − 2 we have supp(H (V))i1S1(x) ⊂ Br (x), so that iterative applications of
(4.7) yield

‖(H (V))i1S1(x)‖ � (	(α∗(1/2)) + o(1))i
√

αx
√
d. (4.8)

Hence, the first bound in (4.1) follows from (4.6). We now show the second bound
in (4.1). If log N

d � T for a sufficiently large constant T then qx � 1 − c for some
constant c > 0 by using Corollary A.3 with ν = 1/2, λ(x) � 	(α∗(μ)), μ � 1/3 and
possibly increasing its T . If log N

d < T � 1 then αx � 1 by Proposition 3.1 (i) and the
estimate qx � 1 − c for some constant c > 0 follows from 	(αx ) � 2

√
αx � 1 and
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λ(x) = 	(αx ) + o(1) � 	(α∗) + κ/4 � 	(α∗(1/2)) + κ/4, which is a consequence of
(3.3) and the definition of W . This completes the proof of the second bound in (4.1).

What remains is the proof of (4.7). For any v ∈ R
[N ], the Cauchy-Schwarz inequality

implies ‖(EH)(V)v‖ �
√

d|supp v|
N ‖v‖. By Proposition 3.1 (ii) and (3.2), if supp v ⊂

Br (x) then |supp v| � N 1/5+o(1). Therefore,

‖H (V)v‖ � ‖(H − EH)(V)v‖ + o(‖v‖)
� ‖(H − EH)({y:αy�α∗(1/2)})v‖ + o(‖v‖)
� (	(α∗(1/2)) + o(1))‖v‖,

where in the second step, we used Vc ∩ Br (x) ⊂ {y .. αy � α∗(1/2)}c by Proposi-
tion 3.2 (iv) and, in the third step, ‖(H − EH)({y :αy�α∗(1/2)})‖ � 	(α∗(1/2)) + o(1)

by Lemma C.1.8 This concludes the proof of (4.7).

4.2. Approximating u(x) by wr (x). From Proposition 4.1 and its proof, we deduce the
following result, which compares u(x) and wr (x) from Definition 1.5.

Corollary 4.2. Suppose that (1.5) holds and fixμ ∈ [0, 1/3). Then, on�, for all x ∈ W
and r ∈ N satisfying (2.19),

u(x) = wr (x) + O
(
αxq

r
x	(αx )

−1) = wr (x) + o
(
	(αx )

−1),

where qx is the same as in Proposition 4.1.

Proof. We shall apply Lemma D.2 with M = H |Br (x), λ̂ = λ(x) and v = u(x).
First, we check its conditions by studying the spectral gap of H |Br (x) around its largest
eigenvalue. As r � 1

6
log N
log d , we conclude from Proposition 3.4 (iii) with X = Br (x)c

that H |Br (x) = H (Br (x)c) has an eigenvalue 	(αx ) + o(1). The bound (4.7) implies
that ‖H |Br (x)\{x}‖ � ‖H (V)‖ � 	(α∗(1/2)) + o(1), where in the first step we used
Proposition 3.2 (iii). By eigenvalue interlacing (Lemma D.3), we therefore deduce that

λ1(H |Br (x)) = 	(αx ) + o(1), λ2(H |Br (x)) � λ1(H |Br (x)\{x}) � 	(α∗(1/2)) + o(1).

Thus, the definition of W in (2.2) implies

λ1(H |Br (x)) − λ2(H |Br (x)) � 	(αx )
(
1 − 	(α∗(1/2))

	(α∗(μ)) + κ/2

)
� 	(αx ),

where the last inequality follows from Corollary A.3 if log N
d � T for some large enough

constant T , and from 	(α∗(1/2)) + κ/2 � 	(α∗(μ)) + κ/2 � 	(αx ) � 1 (see (3.1))
otherwise. Hence, owing to (3.3), there is � � 	(αx ) such that H |Br (x) has precisely
one eigenvalue in [λ(x) − �,λ(x) + �].

Let Pr be the orthogonal projection onto the coordinates in Br (x). The eigenvalue-
eigenvector relation (H (V\{x}) − λ(x))u(x) = 0 and Pr H (V\{x})Pr = H |Br (x) imply

(H |Br (x) − λ(x))u(x) = −Pr H
(V\{x})(1 − Pr )u(x) − λ(x)(1 − Pr )u(x).

8 Note that Lemma C.1 holds on �, since Lemma C.1 is used to prove Proposition 3.4 (i).
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Therefore, since (1 − Pr )u(x) = u(x)|Br (x)c , we get

‖(H |Br (x) − λ(x))u(x)‖ � λ(x)‖u(x)|Br (x)c‖ + ‖Pr H (V\{x})(u(x)|Br (x)c )‖ � αxq
r
x .

(4.9)
In the last step, we used λ(x) � α

1/2
x and Proposition 4.1 to estimate the first term. For the

second term, we used that Pr H (V\{x})(u(x)|Br (x)c) = Pr H (V\{x})(u(x)|Sr+1(x)) by the
locality of H (V\{x}) as well as the identity H (V\{x})(u(x)|Sr+1(x)) = H (V)(u(x)|Sr+1(x)),
which yield

‖H (V\{x})(u(x)|Sr+1(x))‖ � 	(α∗(1/2))‖u(x)|Sr+1(x)‖ � α
1/2
x ‖u(x)|Br (x)c‖ � αxq

r
x

due to (4.7) as r + 1 � min
{ 1

5 − μ
4 , 1

3 − μ
} log N

log d , 	(α∗(1/2))2 � 	(α∗)2 � αx , and
Proposition 4.1.

Since αx � log N
d by Proposition 3.1 (i), qx � 1 − c for some constant c > 0 by

Proposition 4.1, r 	 log d � log
( 10 log N

d

)
by (1.5) and αx � 2, we obtain

αxq
r
x � 1 � α

1/2
x . (4.10)

Therefore, owing to (4.9) and α
1/2
x � 	(αx ) � �, we can now apply Lemma D.2 with

M = H |Br (x), λ̂ = λ(x) and v = u(x) to conclude u(x) = wr (x) + O(αxqrx	(αx )
−1)

from (4.9) and � � 	(αx ) as well as 〈1x ,u(x)〉 � 0 and 〈1x ,wr (x)〉 � 0. This proves
the first equality in Corollary 4.2.

Since αxqrx � 1 by (4.10), the last equality in Corollary 4.2 follows immediately.

4.3. Optimal exponential decay of u(x). In this subsection we establish an explicit rate
of exponential decay of u(x). It holds only for a smaller set of eigenvectors near the
spectral edge, requiring μ to be small enough. As pointed out in Remark 1.4, up to the
error O(ε), this rate is optimal.

Proposition 4.3. Suppose (1.5). Then the following holds.

(i) (Subcritical regime) There are constants T � 1 and c > 0 such that if log N
d � T

then, on �, for any small enough constant ε > 0 and each μ ∈ [0, ε],

‖u(x)|Bi (x)c‖ � √
αx

(
1 + O(ε)√

αx − 1

)i+1

for all x ∈ W and i � c log N

(log d) log 10 log N
d

.

(ii) (Critical regime) There is a constant c > 0 such that, for any constants T � 1 and
ε > 0 with ε � cκ , if log N

d � T and μ ∈ [0, cT−1ε2] then, with high probability,

‖u(x)|Bi (x)c‖ � √
αx

(
1 + O(ε)√

αx − 1

)i+1

for all x ∈ W and i � cε2

T
log N
log d .
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Proof. Let x ∈ W . For any i , n ∈ N, we conclude from (4.4) and (4.5) (see also (4.6))
that

‖u(x)|Bi (x)c‖ � 1

λ(x)
√
d

∥∥
∥∥Qi

n∑

k=0

(
H (V)

λ(x)

)k

1S1(x)

∥∥
∥∥ +

‖(H (V))n+11S1(x)‖√
dλ(x)n+1

since |〈1x ,u(x)〉| � 1, ‖Qi‖ � 1 and ‖(λ(x) − H (V))−1‖ � 1 by (4.3). We denote the
right-hand side of (3.2) by r . In the following, we always assume that n+1 � r and tacitly
use the graph properties listed in Proposition 3.2. As in the proof of Proposition 4.1 (see
(4.8) and use qx � 1 − ε by (4.1)), we find some constant ε > 0 such that if n + 1 � r
then

‖(H (V))n+11S1(x)‖√
dλ(x)n+1

� √
αx (1 − ε)n+1. (4.11)

We shall use the following result, whose proof is given at the end of this subsection.
Claim 4.4 Suppose that all vertices in Br−1(x)\{x} have degree at most τd, where
2 � 2

√
τ < λ(x). Then for all n � r − 1 and i ∈ N we have on �

1

λ(x)
√
d

∥
∥∥∥Qi

n∑

k=0

(
H (V)

λ(x)

)k

1S1(x)

∥
∥∥∥ � √

αx

(
2

λ(x) +
√

λ(x)2 − 4τ

)i+1

. (4.12)

We now explain how we choose τ and n in the subcritical and the critical regimes
in order to deduce Proposition 4.3 from Claim 4.4. In the subcritical regime, i.e. for the
proof of (i), we choose τ ..= α∗(1 − 3ε) and n � ε

log N
log d for some small enough constant

ε > 0. By arguing similarly as in the proof of Corollary A.3 below, we find a constant
T � 1 such that

4τ

λ(x)2 � 4α∗(1 − ε)(1 + o(1))

	(α∗(μ))2 = O(ε) < 1 (4.13)

by (3.3) and (2.2) if log N
d � T . Here, the last inequality holds if ε is sufficiently

small. Hence, the assumption on τ in Claim 4.4 holds. Moreover, with our choice of
τ , the degrees in Bn(x)\{x} are bounded by τd due to Proposition 3.2 (iv) and our

assumption on n. Hence, the assumptions of Claim 4.4 hold. As λ(x) �
√

log N
d by (3.3)

and Proposition 3.1 (i), the right-hand side of (4.11) is bounded by the right-hand side
of (4.12) if n = iC log

( 10 log N
d

)
for some sufficiently large constant C . Since we need

that n + 1 � r , this yields the upper bound on i in (i). From (4.13) and (3.3), we deduce

that λ(x) +
√

λ(x)2 − 4τ = λ(x)
(
1 +

√
1 − 4τ

λ(x)2

) = 	(αx )(1 + o(1))(2 + O(ε)) �
2
√

αx − 1(1 + O(ε))−1, which completes the proof of (i).
For the proof of (ii), we note that μ � cε2T−1 < 1/3 for a sufficiently small constant

c > 0 since T � 1, ε � cκ and κ � 1. We choose τ = 1 + ε for some constant ε > 0.
As λ(x)2 − 4τ = (λ(x)2 − 4)(1 − 4ε

λ(x)2−4
) > 0 due to (3.3) and (2.2) if ε � cκ

with a small enough constant c > 0. This establishes the first condition for (4.12).
We set R ..= cε2

T
log N
log d and conclude from Bennett’s inequality (Lemma D.1 below) and

Proposition 3.2 that

P

(
αy � τ for all x ∈ W and for all y ∈ BR(x)\{x}

)

� exp

((
μ + R

log d

log N
− d

log N
h(ε)

)
log N

)
,
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where h(ε) ..= (1 + ε) log(1 + ε)− ε. Since h(ε) � 3cε2 for some small enough constant
c > 0, the upper bound on μ imposed in the statement, the definition of R and d

log N � 1
T

imply that the factor in front of log N is negative. Therefore, with high probability, we
can apply (4.12) simultaneously for all x ∈ W . We choose n = C(i + 1) and deduce that
ifC > 0 is a large enough constant then the error in (4.11) is dominated by the right-hand
side of (4.12) as λ(x) � 1 for log N

d � T . We recall that r denotes the right-hand side
of (3.2) and note that the condition of (4.11), n + 1 = C(i + 1) + 1 � r , can be satisfied
by possibly decreasing the constant c > 0. Finally, we obtain λ(x) +

√
λ(x)2 − 4τ =

λ(x)+
√

λ(x)2 − 4τ +O( ε√
λ(x)2−4

) = 2
√

αx − 1(1+O(ε))−1 similarly as argued above

and in the proof of (i) using ε � cκ and κ � 1. This proves (ii) and, thus, Proposition 4.3.

Proof of Claim 4.4. For y ∈ S1(x) we denote by B+
n (y) the ball of radius n around y

in the graph G|[N ]\{x}, and we write S+
n (y) ..= B+

n (y)\B+
n−1(y). Since G|Bn+1(x)\V is a

forest on � and for each y ∈ S1(x), G|B+
n (y) is a tree, we obtain

(A(V))k1S1(x) =
∑

y∈S1(x)

k+1∑

j=1

∑

z∈S+
j−1(y)

1z Nk(y, z),

where Nk(y, z) denotes the number of walks on G|B+
n (y) of length k between y and z.

Thus, for i � 0, we conclude

Qi

n∑

k=0

1

λ(x)kdk/2 (A(V))k1S1(x) = Qi

∑

y∈S1(x)

n+1∑

j=1

∑

z∈S+
j−1(y)

n∑

k= j−1

1z
Nk(y, z)

λ(x)kdk/2

=
∑

y∈S1(x)

n+1∑

j=i+1

∑

z∈S+
j−1(y)

1z

( n∑

k= j−1

Nk(y, z)

λ(x)kdk/2

)
,

where the second step follows from the definition of Qi . Since the sets {B+
n (y) .. y ∈

S1(x)}, are disjoint, we conclude that

∥∥
∥∥Qi

n∑

k=0

(
H (V)

λ(x)

)k

1S1(x)

∥∥
∥∥

2

=
∑

y∈S1(x)

n+1∑

j=i+1

∑

z∈S+
j−1(y)

( n∑

k= j−1

Nk(y, z)

λ(x)kdk/2

)2

. (4.14)

Next, let z ∈ S+
j−1(y) for some y ∈ S1(x). We note that Nk(y, z) = 0 if k − ( j − 1)

is odd due to the bipartite structure of a tree. If this difference is even, then we now show
that

Nk(y, z) � (Mk)1 j (τd)(k−( j−1))/2, (4.15)

where M is the adjacency matrix of N∗ (regarded as a graph where consecutive numbers
are adjacent), see (D.2) below for a precise definition, under the assumption that the
degree of each vertex in G|B+

n (y) is bounded by τd.
For the proof of (4.15), we introduce the set of walks on N

∗

Wk( j) ..= {walks γ on N
∗ of length k such that γ (0) = 1 and γ (k) = j},
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and for each γ ∈ Wk( j) we introduce the set of walks on G|B+
n (y) that project down to

γ ,

Wk(y, z; γ ) ..= {walks � on G|B+
n (y) of length k

such that �(0) = y, �(k) = z and d(x, �( · )) = γ }.
By definition, any walk � ∈ Wk(y, z; γ ) projects down to a walk γ ∈ Wk( j), which
implies

Nk(y, z) �
∑

γ∈Wk ( j)

|Wk(y, z; γ )|. (4.16)

In order to prove (4.15), we fix γ ∈ Wk( j) and estimate |Wk(y, z; γ )|. For i ∈ [ j], let
Ti ..= max{t ∈ {0, . . . , k} .. γ (t) = i}, i.e. Ti is the last time when γ hits i . Clearly,
T1 < T2 < . . . < Tj−1 < Tj = k. See Fig. 5 for an illustration of the walks γ and �.
At each time Ti with i ∈ [ j − 1], the walk γ takes a step to the right, and by definition
of the times Ti , any walk � ∈ Wk(y, z; γ ) takes a step outwards on the geodesic from
y to z. This means that j − 1 of the k steps of � are fixed. Of the remaining k − ( j − 1)

steps, half correspond to steps to the left of γ , which again correspond to a uniquely
determined step of � along the unique path back towards y. Hence, only (k− ( j −1))/2
of the k steps of � are free to choose. Since the degrees in G|B+

n (y) are bounded by τd,
we obtain |Wk(y, z; γ )| � (τd)(k−( j−1))/2. Plugging this estimate into (4.16) implies
(4.15), since |Wk( j)| = (Mk)1 j by definition of M .

Next, applying (4.15) to (4.14), we obtain
∥∥∥∥Qi

n∑

k=0

(
H (V)

λ(x)

)k

1S1(x)

∥∥∥∥

2

�
n+1∑

j=i+1

|S j (x)|
( n∑

k= j−1

(Mk)1 j (τd)(k−( j−1))/2

λ(x)kdk/2

)2

�
n+1∑

j=i+1

|S j (x)| 1

(τd) j−1

( n∑

k= j−1

(Mk)1 jτ
k/2

λ(x)k

)2

�
n+1∑

j=i+1

|S1(x)| 1

τ j−1

( ∞∑

k=0

(Mk)1 jτ
k/2

λ(x)k

)2

=
n+1∑

j=i+1

|S1(x)| 1

τ j−1

((
1 −

√
τ

λ(x)
M

)−1

1 j

)2

=
n+1∑

j=i+1

|S1(x)|λ(x)2
(

2

λ(x) +
√

λ(x)2 − 4τ

)2 j

� |S1(x)|λ(x)2
(

2

λ(x) +
√

λ(x)2 − 4τ

)2(i+1)

.

Here, in the third step, we used that |S j (x)| � |S1(x)|d j−1 by Proposition 3.1 (ii) and that
(Mk)1 j � 0 for all k ∈ N. The fourth step follows from the condition 2

√
τ/λ(x) < 1,

the invertibility and the Neumann series representation of M in Lemma D.5 below with

t = λ(x)/
√

τ . The fifth step is a consequence of the representation of (1 −
√

τ

λ(x)M)−1
1 j in

Lemma D.5 below. In the last step, we used that λ(x) = 	(αx ) + o(1) � 2 + κ/4 to sum
up the geometric series and conclude that the series is � 1. This completes the proof of
(4.12) and, thus, the one of Claim 4.4.
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Fig. 5. An illustration of two walks γ ∈ Wk ( j) (bottom) and � ∈ Wk (y, z; γ ) (top). Here k = 21 and j = 6.
By definition of Wk (y, z; γ ), for each t ∈ {0, . . . , k} we have γ (t) = d(x, �(t)). The time Ti is the last
time when γ hits i . We draw an edge {�(t), �(t + 1)} in red if the choice of the vertex �(t + 1) is uniquely
determined by γ and in blue otherwise. In the latter case, there are at most τd possible choices for �(t + 1).
Red edges arise in two ways: (i) a step to the right in γ following a time Ti ( j − 1 in total, in � corresponding
to a step towards z along the geodesic from y to z); (ii) a step to the left in γ ((k − ( j − 1))/2 in total, in �

corresponding to a step towards y)

5. Approximate Eigenvalues: Proof of Proposition 2.3

In this section we prove Proposition 2.3, by showing that in the interval I there is a
one-to-one correspondence between eigenvalues of H and the points λ(x) for x ∈ W ,
up to a polynomially small error term.

5.1. Proof of Proposition 2.3. We recall w1 from Definition 3.3.

Definition 5.1. Let � be the orthogonal projection onto span
({w1} ∪ {u(x) .. x ∈ W})

and � ..= 1 − �.

Note that the set {w1} ∪ {u(x) .. x ∈ W} in the definition of � is not orthogonal.
Throughout the proof, we regard H as a block matrix associated with the orthogonal
sum decomposition ran � ⊕ (ran �)⊥.

Proposition 5.2. Suppose (1.5). Fix μ ∈ [0, 1/3) and ζ ∈ [0, 1/2 − μ). With high
probability, the following holds.

(i) ‖(H − λ(x))u(x)‖ � N−ζ for all x ∈ W .
(ii) If ζ < 1/2 − 3μ/2 then

spec(�H�)\{0} = {λ1(H)} ∪ {λ(x) + εx
.. x ∈ W}
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counted with multiplicity, where |εx | � N−ζ for all x ∈ W and λ1(H) = √
d(1 +

o(1)).
(iii) If ζ < 1/2 − 3μ/2 then ‖�H�‖ � N−ζ .
(iv) If μ < 1/4 then λ1(�H�) � 	(α∗) + κ/2 + o(1).

Proof of Proposition 2.3. Owing to the block decomposition H = �H� + �H� +
�H� + �H�, Proposition 5.2 (iii) yields

spec(H)\{0} = {
λ + ελ

.. λ ∈ (spec(�H�) ∪ spec(�H�))
}\{0}

counted with multiplicities, where |ελ| � 2‖�H�‖ � N−ζ for all λ. Therefore, Propo-
sition 2.3 follows from the definition of I as well as Proposition 5.2 (ii), (iv), and (i).

The rest of this section is devoted to the proof of Proposition 5.2. We assume the
condition (1.5) throughout. We recall the definition of the high probability event � from
Definition 3.5. For any event A and random variable X we write

P�(A) ..= P(� ∩ A), E�[X ] ..= E[X1�]. (5.1)

5.2. Proof of Proposition 5.2 (i). The proof of Proposition 5.2 (i) relies on the following
result, whose proof is given at the end of this subsection.

Proposition 5.3. Let μ ∈ [0, 1/3). For any x ∈ W , we have the decomposition

(H − λ(x))u(x) =
∑

y∈V\{x}
εy(x)1y . (5.2)

Moreover, for any x, y ∈ [N ], we have the estimate
E�[1x∈W1y∈V\{x} εy(x)

2] � d−1(10 log N )2N 2μ−3.

From Proposition 5.3, for any x ∈ [N ], we obtain

E�

[
1x∈W‖(H − λ(x))u(x)‖2] � d−1(10 log N )2N 2μ−2. (5.3)

Proof of Proposition 5.2 (i). From (5.3), a union bound, and Chebyshev’s inequality, we
conclude that

P
(∃x ∈ W, ‖(H − λ(x))u(x)‖ > N−ζ

)
� P(�c) + N 2ζ+2μ−1+o(1)

for any ζ > 0. This proves Proposition 5.2 (i) since ζ < 1/2 − μ by assumption, and
P(�c) = o(1) by Propositions 3.1, 3.2 and 3.4.

We shall need modifications of the sets V and W defined in (2.1) and (2.2), respec-
tively. For X ⊂ [N ] we define

V(X) ..=
{
y ∈ [N ]\X ..

|S1(x)\X |
d

� α∗(μ)

}
, (5.4)

W(X) ..=
{
y ∈ V(X) .. 	

( |S1(x)\X |
d

)
� 	(α∗(μ)) + κ/2

}
. (5.5)

The point of these definitions is that V(X) and W(X) depend only on the edges in G|Xc .
The following remark states that on the event � the effect of the upper index in these
definitions amounts simply to excluding vertices.
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Fig. 6. An illustration of the identity (5.6). The set V\{x} is drawn in green and its complement (V\{x})c
in blue. The blue neighbours of the green vertices are drawn explicitly, and the remaining blue vertices are
represented by the shaded blue region. The edges of incident to V\{x} are drawn in red. The adjacency matrix
of these red edges is A − A(V\{x}). The vector u(x) is supported on the blue vertices, and hence the vector
(A − A(V\{x}))u(x) is supported on the green vertices. Its value at a green vertex y equals the sum of the
entries of u(x) at the blue vertices adjacent to y

Remark 5.4. On � ∩ {y ∈ V}, owing to Proposition 3.2 (iii), we have V(y) = V\{y} and
W(y) = W\{y}.

Proof of Proposition 5.3. Note that H−H (V\{x}) is d−1/2 times the adjacency matrix of
the subgraph of G containing the edges incident to V\{x}. Hence, because (H (V\{x}) −
λ(x))u(x) = 0 and supp u(x) ⊂ (V\{x})c, we find

(H − λ(x))u(x) = (H − H (V\{x}))u(x) =
∑

y∈V\{x}
εy(x)1y, εy(x) ..= 1√

d

∑

t∈S1(y)

〈1t , u(x)〉.

(5.6)
See Fig. 6 for an illustration. The Cauchy-Schwarz inequality implies

εy(x)
2 � |S1(y)|

d

∑

t∈S1(y)

〈1t ,u(x)〉2 � 10 log N

d

∑

t∈S1(y)

〈1t ,u(x)〉2 (5.7)

on � due to Proposition 3.1 (i). From now on we fix x, y ∈ [N ]. Moreover, let
ũ(x) be the eigenvector of H (V(y)∪{y}\{x}) associated with its second largest eigen-
value λ2(H (V(y)∪{y}\{x})) and satisfying 〈1x , ũ(x)〉 � 0. On � ∩ {y ∈ V}, we have
V = V(y) ∪ {y} by Remark 5.4 and, thus, u(x) = ũ(x). As x �= y, on � ∩ {y ∈ V}, the
events {x ∈ W} and {x ∈ W(y)} coincide by Remark 5.4. Therefore, since W(y) and
ũ(x) are σ(A(y))-measurable, we obtain

E�

[
1x∈W1y∈V\{x}

∑

t∈S1(y)

〈1t , u(x)〉2
]

� E

[
1x∈W (y)

∑

t∈[N ]
〈1t , ũ(x)〉2

E
[
1α∗(μ)d�|S1(y)|�10 log N1t∈S1(y)

∣
∣A(y)]

]

� P(x ∈ W (y)) max
t∈[N ]P

(
t ∈ S1(y), α∗(μ)d � |S1(y)| � 10 log N

)

� P(x ∈ W (y))
∑

α∗(μ)d�k�10 log N

P(|S1(y)| = k)
k

N
� P(x ∈ V)P(y ∈ V)

10 log N

N
. (5.8)
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Here, in the first step, in addition, we spelled out the condition y ∈ V as |S1(y)| �
α∗(μ)d, used that |S1(y)| � 10 log N on � by Proposition 3.1 (i) and then dropped
the indicator function 1�. The second step follows from the independence of the event
{α∗(μ)d � |S1(y)| � 10 log N , t ∈ S1(y)} from σ(A(y)) and

∑
t∈[N ]〈1t , ũ(x)〉2 =

‖ũ(x)‖2 = 1. (For these two steps, see also (2.9).) For the third step, we conditioned
on |S1(y)| and used that if |S1(x)| = k then t lies in a uniformly distributed subset of
[N ]\{y} with k elements. For the last step, we used that W(y) ⊂ W ⊂ V .

Finally, applying (5.8) to (5.7) and using the estimate P(x ∈ V) � Nμ−1 (by the
definitions (2.1) and (1.6)) concludes the proof of Proposition 5.3.

5.3. Proof of Proposition 5.2 (ii), (iii). In this section, we conclude Proposition 5.2 (ii)
and (iii) from the following result, which is also proved in this section.

Definition 5.5. Order the elements of W in some arbitrary fashion, and denote by
(u⊥(x))x∈W the Gram-Schmidt orthonormalization of (u(x))x∈W .

Proposition 5.6. Let μ ∈ [0, 1/3). Then the following holds with high probability. For
any x ∈ W , we have

‖(H − λ(x))u⊥(x)‖ � Nμ−1/2+o(1). (5.9)

More generally, denoting D = ∑
x∈W λ(x)u⊥(x)(u⊥(x))∗ we have

‖(H − D)u‖ � N 3μ/2−1/2+o(1)‖u‖ (5.10)

for all u ∈ span{u(x) .. x ∈ W}.
Proof of Proposition 5.2 (ii). By Definition 5.1, w1 is an eigenvector of �H� with
eigenvalue λ1(H). Let ζ < 1/2 − 3μ/2. From (5.10), we conclude that, for each
x ∈ W , there is εx ∈ [−N−ζ , N−ζ ] such that {λ(x) + εx

.. x ∈ W} ⊂ spec(�H�)\{0}
counted with multiplicity. By Proposition 3.4 (ii), λ1(H) = √

d(1 + o(1)). Hence, by
(3.1) and (3.3),

λ1(H) 	 	(αx ) + o(1) = λ(x) (5.11)

for any x ∈ W . Therefore, we have found 1 + |W| non-zero eigenvalues of �H�

(counted with multiplicity). Since the dimension of ran � is at most 1 + |W|, this com-
pletes the proof of Proposition 5.2 (ii).

Proof of Proposition 5.2 (iii). In order to estimate ‖�H�‖, let v ∈ ran �. We decom-
pose v = αw1 +u from some α ∈ R and u ∈ span{u(x) .. x ∈ W}. Let ζ < 1/2−3μ/2.
From (5.10), we obtain that

�Hv = �αλ1(H)w1 + �Du + o(N−ζ ‖u‖) = o(N−ζ ‖u‖), (5.12)

where the last steps follows from w1 ∈ ran � and ranD ⊂ ran � due to the definitions
of D and �. It remains to show that ‖u‖ � ‖v‖. From (5.10), we also conclude

λ1(H)〈w1 ,u〉 = 〈w1 , Hu〉 = 〈w1 ,Du〉 + o(N−ζ ‖u‖). (5.13)

Since ‖D‖ � maxx∈W λ(x) � λ1(H) by (5.11), we obtain from (5.13) that |〈w1 ,u〉| �
‖u‖ and, thus, 2|α||〈w1 ,u〉| � α2 + |〈w1 ,u〉|2 = α2 + o(‖u‖2). Therefore,

‖v‖2 = α2 + ‖u‖2 + 2α〈w1 ,u〉 � α2 + ‖u‖2 − 2|α||〈w1 ,u〉| � α2/2 + (1 − o(1))‖u‖2.

(5.14)
Hence, ‖u‖ � (1 − o(1))‖v‖ which completes the proof of Proposition 5.2 (iii) due to
(5.12).
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The main ingredient in the proof of Proposition 5.6 is the following result. It uses the
following orthogonal projection.

Definition 5.7 (�X ). For anyX ⊂ W , we denote by �X the orthogonal projection onto
span{u(x) .. x ∈ X } and we define �X ..= I − �X .

Proposition 5.8. If μ ∈ [0, 1/3) then

E�

[
max
X⊂W

‖�X H�X ‖2
]

� d−1(log N )2N 2μ−1.

Before proving Proposition 5.8 we deduce Proposition 5.6 from it.

Proof of Proposition 5.6. Recall from Definition 5.5 that the elements of W are ordered
in an arbitrary fashion. For x ∈ W , let �<x be the orthogonal projection onto span{u(y) ..
y ∈ W, y < x} and �<x

..= 1 − �<x . Then for any x ∈ W we have

u⊥(x) = u(x) − �<xu(x)

‖u(x) − �<xu(x)‖ = �<xu(x)

‖�<xu(x)‖ . (5.15)

In order to estimate (H − λ(x))�<xu(x), we conclude from the definitions of �<x and
�<x that

H�<x = �<x H�<x + �<x H�<x = �<x H − �<x H�<x + �<x H�<x ,

which then yields

(H − λ(x))�<xu(x) = �<x (H − λ(x))u(x) + �<x H�<xu(x) − �<x H�<xu(x).

Hence,

‖(H − λ(x))�<xu(x))‖ � ‖(H − λ(x))u(x)‖ + 2‖�<x H�<x‖.
From (5.3) combined with a union bound over x , Proposition 5.8, and Chebyshev’s
inequality, we deduce that with high probability

max
x∈W

‖(H − λ(x))�<xu(x))‖ � Nμ−1/2+o(1).

Moreover, since 〈1x ,u(y)〉 = 0 for x , y ∈ W satisfying y < x , we find that with high
probability, for all x ∈ W ,

‖�<xu(x)‖2 = ‖u(x) − �<xu(x)‖2 � 〈1x ,u(x) − �<xu(x)〉2 = 〈1x ,u(x)〉2 � 1,

where the last step follows from Corollary 3.7 and the fact that P(�) = 1 − o(1).
Plugging these two estimates into (5.15) yields (5.9).

For the proof of (5.10), we write u = ∑
x∈W axu⊥(x) and apply (5.9) and Cauchy-

Schwarz,

‖(H − D)u‖ =
∥∥∥
∥
∑

x∈W
ax (H − λ(x))u⊥(x)

∥∥∥
∥ � Nμ−1/2+o(1)|W|1/2

( ∑

x∈W
a2
x

)1/2

.

Hence, (5.10) follows from W ⊂ V and Proposition 3.2 (i).
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Proof of Proposition 5.8. Let v ∈ ran �X . We write v = ∑
x∈X axu(x) with ax ∈ R,

use (5.2) and �Xu(x) = 0 for each x ∈ X to obtain

‖�X Hv‖2 =
∥∥
∥∥
∑

x∈X
ax�X

(
λ(x)u(x) +

∑

y∈V\{x}
εy(x)1y

)∥∥
∥∥

2

=
∥∥∥∥�X

∑

x∈X ,y∈V\{x}
εy(x)ax1y

∥∥∥∥

2

�
∑

y∈V

( ∑

x∈X \{y}
εy(x)ax

)2

�
(∑

x∈X
a2
x

)( ∑

x∈W, y∈V\{x}
εy(x)

2
)

.

Moreover, since 〈1y ,u(x)〉 = 0 for any y ∈ V\{x}, on � we have

‖v‖2 �
∑

x∈X
|〈1x , v〉|2 =

∑

x∈X
a2
x |〈1x ,u(x)〉|2 � c

∑

x∈X
a2
x

for some constant c > 0 by Corollary 3.7. Therefore, on � we have

‖�X Hv‖2 � 1

c

( ∑

x∈W, y∈V\{x}
εy(x)

2
)

‖v‖2

and, in particular, ‖�X H�X ‖2 � 1
c

(∑
x∈W, y∈V\{x} εy(x)2

)
for any X ⊂ W . By

Proposition 5.3, we therefore conclude

E�

⎡

⎣
∑

x∈W, y∈V\{x}
εy(x)

2

⎤

⎦ =
∑

x,y∈[N ]
E�

[
1x∈W1y∈V\{x} εy(x)

2] � d−1(log N )2N 2μ−1,

as claimed.

5.4. Proof of Proposition 5.2 (iv). For the proof of Proposition 5.2 (iv), we shall need
several notions from the works [12,13]. As in [12, eq. (1.8)], we set

r� = �c√log N� (5.16)

for the constant c > 0 from [12]. Following [12, eq. (1.9)], we define

ξ ..=
√

log N

d
log d, ξu

..=
√

log N

d

1

u
(5.17)

for u > 0. For any τ ∈ [1+ξ1/2, 2], we denote byGτ the pruned graph introduced in [12,
Proposition 3.1]. We denote the balls and spheres inGτ around a vertex x ∈ [N ] by Bτ

i (x)
and Sτ

i (x), respectively. The pruned graph Gτ is a subgraph of G, which possesses a
number of useful properties listed in [12, Proposition 3.1]. In particular, the balls Bτ

2r�
(x)

and Bτ
2r�

(y) in Gτ are disjoint if x , y ∈ [N ] satisfy x �= y and min{αx , αy} � τ .
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Recalling the definition of ui (α) from (1.10), for any x ∈ [N ] with αx � 2 + ξ1/4

and σ = ±, as in [12, eq. (3.5)], we define

vτ
σ (x) ..=

r�∑

i=0

σ i ui (αx )
1Sτ

i (x)

‖1Sτ
i (x)‖ , (5.18)

where, for the last coefficient ur� (αx ) we make the special choice ur� (αx )
..= ur�−1(αx )/√

αx , and u0(αx ) > 0 is chosen such that vτ
σ (x) is normalized, i.e.

∑r�
i=0 u

2
i (αx ) = 1.

Remark 5.9. The family (vτ
σ (x) .. x ∈ [N ], αx � 2 + ξ1/4, σ = ±) is orthonormal. See

[12, Remark 3.3]

As in [12, Definition 3.6], we denote the adjacency matrix of Gτ by Aτ and define
the matrix

H τ ..= (Aτ − χτ (EA)χτ )/
√
d, (5.19)

where χτ is the orthogonal projection onto span{1y .. y /∈ ⋃x..αx�τ Bτ
2r�

(x)}. Moreover,
we recall [12, Definition 3.10].

Definition 5.10 (�τ , Ĥ τ ). Define the orthogonal projections (see Remark 5.9)

�τ ..=
∑

x :αx�2+ξ1/4

∑

σ=±
vτ
σ (x)vτ

σ (x)∗, �τ ..= 1 − �τ

and the associated block matrix (recall (5.19))

Ĥ τ ..=
∑

x :αx�2+ξ1/4

∑

σ=±
σ	(αx )vτ

σ (x)vτ
σ (x)∗ + �τ H τ�τ . (5.20)

We note that, for any τ ∈ [1 + ξ1/2, 2], by (1.5) we have

ξ = o(1), ξτ−1 = o(1). (5.21)

For any τ ∈ [1 + ξ1/2, 2], the definition of Ĥ τ in (5.20) and [12, Proposition 3.12] yield
that, with high probability,

‖Ĥ τ‖ � max

{
max

x..αx�2+ξ1/4
	(αx ), 2τ + Cξ

}
�
√

log N

d
� √

d, (5.22)

where we used (3.1), (5.21) and (1.5) in the last two steps.
Owing to (5.21), [12, Lemmas 3.8, 3.11].9, with high probability, we have

‖H − EH − Ĥ τ‖ = o(1). (5.23)

From (5.23) and (5.22), we conclude that, with high probability,

‖H − EH‖ � √
d. (5.24)

After these preparations, we can start the proof of Proposition 5.2 (iv). We begin with
the following definition.

9 We stress that the definition of H in [12] differs from that in the current paper by EH ; see [12, Defini-
tion 3.6].
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Definition 5.11 (Qr ). For r ∈ N, denote by Qr the orthogonal projection defined by
restriction to the set (

⋃
y∈V\W Br (y))c.

Definition 5.12 (Q, �Q). Let r� be as in (5.16). Set Q ..= Q2r�−1 and define �Q as the
orthogonal projection onto span({Qu⊥(x) .. x ∈ W}∪{Qw1}), and write �Q

..= 1−�Q .

Then

λ1(�H�) � λ1(�(H − EH)�) + ‖�(EH)�‖
� λ1(�Q Ĥ

τ�Q) + 2‖H − EH‖‖� − �Q‖ + ‖H − EH − Ĥ τ‖
+ ‖�(EH)�‖

� λ1(�Q Ĥ
τ�Q) + 2‖H − EH‖‖� − �Q‖ + o(1), (5.25)

whose last step follows from (5.23) and ‖�(EH)�‖ = o(1). The latter bound is a
consequence of

‖�(EH)�‖ = √
d‖�(ee∗ − 1/N )�‖ = √

d‖�(e − w1)(e∗ − w∗
1)�‖

+ o(d−1/2) � d−1/2, (5.26)

where we introduced e ..= N−1/21[N ], used �w1 = w1 in the second step, and in the last
step we used Proposition 3.4 (iv) to estimate ‖e−w1‖ � ‖w1 − q‖ + ‖q− e‖ � d−1/2.

Fix μ ∈ [0, 1/4). We then claim that with high probability

‖� − �Q‖ � d−1 (5.27)

and
λ1(�Q Ĥ

τ�Q) � 	(α∗) + κ/2. (5.28)

Using (5.27) and (5.28), Proposition 5.2 (iv) follows immediately from (5.25) and (5.24).
What remains to prove Proposition 5.2 (iv), therefore, is the proof of (5.27) and (5.28).

5.5. Proof of (5.27). Clearly,

‖� − �Q‖ = ‖��Q − ��Q‖ � ‖��Q‖ + ‖��Q‖ = ‖�Q�‖ + ‖��Q‖, (5.29)

where in the last step we used that (��Q)∗ = �Q�. In order to estimate the terms on
the right-hand side, we continue with

‖�Q�‖2 = sup
v∈ran �‖v‖=1

‖�Qv‖2 � sup
v∈ran �‖v‖=1

inf
u∈ran �Q

‖u‖=1

‖v − u‖2. (5.30)

We now apply the next lemma, whose proof is given in Sect. 5.7 below.

Lemma 5.13. Fix μ ∈ [0, 1/3). With high probability, for all x ∈ W , y ∈ V\W and
r ∈ N satisfying r � log N

log d , we have

‖u⊥(x)|Br (y)‖ � N−1/2+μ+o(1).
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Owing to Lemma 5.13 as well as parts (iii) and (i) of Proposition 3.2, we obtain

‖u⊥(x) − Qu⊥(x)‖ =
( ∑

y∈V\W
‖u⊥(x)|B2r�−1(y)‖2

)1/2

� N−1/2+3μ/2+o(1). (5.31)

Let q be as in Proposition 3.4 (iv) with r = 2r� − 2 � d
log log N by (1.5). Since supp q ⊂

(⋃
x∈V Br+1(x)

)c = (⋃
x∈V B2r�−1(x)

)c, we conclude from Proposition 3.4 (iv) and
the definition of Q that

‖w1 − Qw1‖ = ‖(1 − Q)(w1 − q)‖ � ‖w1 − q‖ � d−1. (5.32)

For γ1, γx ∈ R for x ∈ W write

v ..= γ1w1 +
∑

x∈W
γxu⊥(x) ∈ ran �, u ..= γ1Qw1 +

∑

x∈W
γx Qu⊥(x) ∈ ran �Q .

(5.33)
Then

‖v − u‖ � d−1|γ1| + N−1/2+3μ/2+o(1)
∑

x∈W
|γx |

� d−1|γ1| + N−1/2+2μ+o(1)

( ∑

x∈W
|γx |2

)1/2

� d−1‖v‖.

Here, we used in (5.32) and (5.31) in the first step, Proposition 3.2 (i) in the second step
and, in the fourth step, μ < 1/4 as well as ‖v‖2 � |γ1|2 +

∑
x∈W |γx |2 (the inequality �

follows from (5.14) and the orthogonality of (u⊥(x))x∈W ; the inequality � is trivial).
Hence, if ‖v‖ = 1 then ‖u‖ = 1 + O(d−1) and, thus, ‖v − u

‖u‖‖ � d−1. Therefore,

‖�Q�‖ � d−1 by (5.30).
Finally, similarly to (5.30), we have

‖��Q‖2 � sup
u∈ran �Q

‖u‖=1

inf
v∈ran �‖v‖=1

‖v − u‖2,

and the same argument as above, with the representation (5.33), implies that the right-
hand side is O(d−1). By (5.29), we therefore conclude (5.27).

5.6. Proof of (5.28). We begin by introducing another orthogonal projection.

Definition 5.14 (�v). Let �v be the orthogonal projection onto span{vτ
+(z) .. z ∈ V\W}.

For any z ∈ V\W , we have supp vτ±(z) ⊂ Br� (z) and, thus, by definition of Q,
supp vτ±(z) ∩ supp Qu⊥(x) = ∅ for any x ∈ W and supp vτ±(z) ∩ supp Qw1 = ∅.
Therefore, vτ±(z) is orthogonal to ran �Q , i.e. �Qvτ±(x) = 0. That implies �v�Q =
0 = �Q�v and, in particular, �v and �Q commute. Since �v and Ĥ τ commute and
�v and �Q commute, we obtain

λ1(�Q Ĥ
τ�Q) = λ1(�Q�v Ĥ

τ�v�Q + �Q�v Ĥ
τ�v�Q)

= max{λ1(�Q�v Ĥ
τ�v�Q), λ1(�Q�v Ĥ

τ�v�Q)}. (5.34)
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By the definition of Ĥ τ in (5.20), we have

λ1(�v Ĥ
τ�v) = max

x∈V\W
	(αx ) � 	(α∗) + κ/2. (5.35)

What remains, therefore, is to estimate λ1(�Q�v Ĥ τ�v�Q).
Suppose that w is a normalized eigenvector of �Q�v Ĥ τ�v�Q such that the associ-

ated eigenvalue λ satisfies λ � 	(α∗) + κ/2. We now check that the next lemma, whose
proof is given in Sect. 5.7 below, is applicable to w and λ for any x ∈ V\W .

Lemma 5.15. Let r� ∈ N be as in (5.16). In particular, r� � √
log N. Suppose τ ∈

[1 + ξ1/2, 2].
There is a constant C > 0 such that the following holds with high probability,10. Let

x ∈ [N ], λ > 2τ + Cξ and w satisfy

(Ĥ τw)|Bτ
2r�−1(x)

= λw|Bτ
2r�−1(x)

. (5.36)

If αx � 2 + ξ1/4 and vτ−(x) ⊥ w ⊥ vτ
+(x) or 2 + ξ1/4 > αx � τ then

|〈1x ,w〉|
‖w|Bτ

2r�
(x)‖ � λ2

(λ − 2τ − Cξ)2

(
2τ + Cξ

λ

)r�
. (5.37)

An analogous result holds if λ < −2τ − Cξ .

Choosing τ = 1 + ξ1/2 and taking x ∈ V\W , we now verify the conditions of
Lemma 5.15 for w and λ. Owing to (5.21), there is a constant c ≡ cκ > 0 such that
2τ+Cξ

λ
� 1 − c as λ � 	(α∗) + κ/2 � 2 + 2c due to the definition of α∗(μ) in (1.6). In

particular, λ > 2τ + Cξ . From �Q�v Ĥ τ�v�Qw = λw we conclude that �Qw = w
and �vw = w. Thus, as �v and Ĥ τ commute, we get �Q Ĥ τw = λw. Restricting both
sides in the last identity to Bτ

2r�−1(x) yields (Ĥ τw)|Bτ
2r�−1(x)

= λw|Bτ
2r�−1(x)

as Q is the

restriction to
(⋃

y∈V\W B2r�−1(y)
)c and Bτ

2r�−1(x) ⊂ B2r�−1(x) by [12, Proposition 3.1

(iv)]. This proves (5.36). Note that αx � 2 + ξ1/4. From �vw = w, we conclude
w ⊥ vτ

+(x). Since (vτ
σ (y) .. αy � 2 + ξ1/4, σ = ±) is an orthonormal family by Remark

5.9, the definition of �v implies �vvτ−(y) = 0 for all y ∈ V . Therefore, as moreover
�Qvτ−(x) = 0, we have �Q�v Ĥ τ�v�Qvτ−(x) = −	(αx )vτ−(x). Hence, w ⊥ vτ−(x).
Therefore, we have verified all assumptions of Lemma 5.15 with τ = 1 + ξ1/2 for w, λ,
and any x ∈ V\W .

Since 2τ+Cξ
λ

� 1 − c as shown above, for the right-hand side of (5.37), we get

λ2

(λ − 2τ − Cξ)2

(
2τ + Cξ

λ

)r�
=
(

1 − 2τ + Cξ

λ

)−2(2τ + Cξ

λ

)r�

� c−2(1 − c)r� � d−1/2

as r� � √
log N . Therefore, Lemma 5.15, the disjointness of the balls (Bτ

2r�
(x))x∈V\W

(see the paragraph after (5.17) as well as [12, Proposition 3.1 (i)]) and ‖w‖2 = 1 imply

‖w|V\W‖2 =
∑

x∈V\W
〈1x ,w〉2 � d−1

∑

x∈V\W
‖w|Bτ

2r�
(x)‖2 � d−1. (5.38)

10 We note that the statement actually holds with very high probability meaning that for each ν > 0, there
is a constant C ≡ Cν > 0 such that (5.37) holds with probability at least 1 − N−ν for all sufficiently large N .
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We recall from Definition 5.11 that Q0 denotes the orthogonal projection defined
by restriction to the set (V\W)c. Since w = w|V\W + Q0w, we obtain from (5.38),
Q0 Ĥ τ Q0 = (Ĥ τ )(V\W), and ‖Ĥ τ‖ � √

d by (5.22) that

λ = 〈w , Ĥ τw〉 = 〈w , (Ĥ τ )(V\W)w〉 + o(1) = 〈w ,�Q(Ĥ τ )(V\W)�Qw〉 + o(1)

� λ1(�Q(Ĥ τ )(V\W)�Q) + o(1) � λ1(�(Ĥ τ + (EH))(V\W)�) + o(1)

� λ1(�H (V\W)�) + o(1). (5.39)

Here, the third step is a consequence of �Qw = w. In the fifth step, we used (5.26) and
(5.27) and the sixth step follows from (5.23) and ‖M (V\W)‖ � ‖M‖ for any matrix M .

We now apply the next result, whose proof is given in Sect. 5.7 below.

Lemma 5.16. Fixμ ∈ [0, 1/3).With high probability,λ1(�H (V\W)�) � 	(α∗)+o(1).

From Lemma 5.16 and (5.39), we deduce that λ � 	(α∗) + o(1), in contradiction
with the assumption λ � 	(α∗) + κ/2. We conclude that λ1(�Q�v Ĥ τ�v�Q) �
	(α∗) + κ/2. Owing to (5.34) and (5.35), this proves (5.28).

5.7. Proofs of auxiliary results. In this final subsection we prove Lemmas 5.13, 5.15,
and 5.16.

Proof of Lemma 5.13. For fixed y ∈ [N ], on the event � ∩ {y ∈ V\W}, if x ∈ W(y),
let u(y)(x) be the eigenvector of H ((V(y)∪{y})\{x}) with eigenvalue λ2(H ((V(y)∪{y})\{x}))
and satisfying 〈1x ,u(y)(x)〉 > 0. See Corollaries 3.6 and 3.7 for the existence and
uniqueness of u(y)(x).

In analogy to Definition 5.5, let ((u(y))⊥(x))x∈W(y) be the Gram-Schmidt orthonor-
malization of (u(y)(x))x∈W(y) . On � ∩ {y ∈ V\W}, we have V(y) ∪ {y} = V and
W(y) = W by Remark 5.4. Therefore, u(y)(x) = u(x) and, thus, (u(y))⊥(x) = u⊥(x)
for all x ∈ W(y) = W on � ∩ {y ∈ V\W}. Hence, for fixed x , y ∈ [N ] with x �= y, we
estimate

E�

[
1x∈W, y∈V\W‖u⊥(x)|Br (y)‖2

]

= E�

[
1x∈W(y)

∑

a∈[N ]\{y}
〈1a , (u(y))⊥(x)〉21a∈Br (y)1y∈V\W

]

� E

[
1x∈W(y)1

�
(y)
r

∑

a∈[N ]\{y}
〈1a , (u(y))⊥(x)〉2

∑

b∈B(y)
r−1(a)

E

[
1b∈S1(y)1α∗(μ)d�|S1(y)|�10 log N

∣∣∣ A(y)
]]

� E

[
1x∈W(y)1

�
(y)
r

∑

a∈[N ]\{y}
〈1a , (u(y))⊥(x)〉2|B(y)

r−1(a)|
]

× max
b∈[N ]\{y}P(b ∈ S1(y), α

∗(μ)d � |S1(y)| � 10 log N )
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� (log N )dr−1
P(x ∈ W(y)) max

b∈[N ]\{y}P(b ∈ S1(y), α∗(μ)d � |S1(y)| � 10 log N )

� (log N )2dr−1

N
P(x ∈ V)P(y ∈ V) � N−3+2μ+o(1).

Here, in the first step, we also used that 〈1y , (u(y))⊥(x)〉 = 0 for all y ∈ V\W and
x ∈ W(y). In the second step, we conditioned on A(y), employed the notations

B(y)
i (a) ..= ball of radius i around a in the graph G|[N ]\{y}
�

(y)
r

..= {|B(y)
r (z)| � (log N )dr−1 for all z ∈ [N ]\{y}}

and used that W(y), (u(y))⊥(x), and B(y)
r−1(a) are A(y)-measurable, that � ⊂ �

(y)
r by

Proposition 3.1, as r � log N
log d , and that a ∈ Br (y) is equivalent to b ∈ S1(y) for some

b ∈ B(y)
r−1(a). The third step follows from the independence of b ∈ S1(y) and |S1(y)|

from A(y). The normalization of (u(y))⊥(x) and the definition of �
(y)
r imply the fourth

step. In the fifth step, we argued as in the last steps of (5.8) and, finally, we used r � log N
log d

as well as the definitions of V in (2.1) and of α∗ in (1.6).
Therefore, a union bound over x , y ∈ [N ] with x �= y and Chebyshev’s inequality

complete the proof of Lemma 5.13.

Proof of Lemma 5.15. In order to prove Lemma 5.15, we follow [12, proof of Proposi-
tion 3.14 (i)]11, whose assumptions are all satisfied apart from the eigenvalue-eigenvector
relation Ĥw = λw.

We now explain the necessary, minor, modifications. We start with the case αx �
2 + ξ1/4 and w ⊥ vτ±(x) which corresponds to the case x ∈ V in [12, Proposition 3.14].
The eigenvalue-eigenvector relation is used in [12, proof of Proposition 3.14 (i)] only
in [12, eq. (3.55)]. Using (5.36) instead of the eigenvalue-eigenvector relation and the
notation of [12, proof of Proposition 3.14 (i)], we now verify the first two steps in [12,
eq. (3.55)]. We write P2r�−1 for the orthogonal defined by restriction to the set Bτ

2r�−1(x).
For any i < r�, since supp gi ⊂ Bτ

2r�−1(x) by [12, eq. (3.52)], we have P2r�−1gi = gi .
Therefore, for any i < r�, we obtain

λui = 〈gi , λP2r�−1w〉 = 〈(Ĥ τ − 	(αx )vτ
+(x)vτ

+(x) + 	(αx )vτ−(x)vτ−(x))gi ,w〉
= 〈Ĥ τ,xgi ,w〉.

Here, we used (5.36) and w ⊥ vτ±(x) in the second step and supp gi ⊂ Bτ
2r�−1(x) as

well as the definition of Ĥ τ,x from [12, eq. (3.48)] in the third step.
The remaining steps in [12, eq. (3.55)] and the remainder of [12, proof of Propo-

sition 3.14 (i)] including the case 2 + ξ1/4 > αx � τ , which corresponds to the case
x ∈ Vτ\V in [12], are obtained in the same way as in [12].

Proof of Lemma 5.16. We write H (V\W) in the block decomposition

H (V\W) = �H (V\W)� + �H (V\W)� + �H (V\W)� + �H (V\W)�.

11 Note that Vτ = {x ∈ [N ] .. αx � τ } and V = V2+ξ1/4 in [12], see [12, eq. (3.3)], which differs from the
definition of V in the present paper, see (2.1).
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The nonzero eigenvalues of the block diagonal arise as the eigenvalues of the individual
diagonal blocks, i.e.

spec(�H (V\W)� + �H (V\W)�)\{0}
= (

spec(�H (V\W)�) ∪ spec(�H (V\W)�)
)\{0},

counted with multiplicity. Therefore, for any 1 � i , j � N there are at least i + j
eigenvalues of the block diagonal larger than min{λi (�H (V\W)�), λ j (�H (V\W)�)}
provided this number is positive. Hence, we conclude

min{λ1(�H (V\W)�), λ1+|W |(�H (V\W)�)} � λ2+|W |(H (V\W)) + 2‖�H (V\W)�‖.
(5.40)

Moreover, using eigenvalue interlacing (Lemma D.3) and Proposition 3.4 (i), we obtain

λ2+|W |(H (V\W)) � λ2(H
(V)) � 	(α∗) + o(1). (5.41)

Lemma 5.16 follows from (5.40) and (5.41) provided that we show that there is a constant
c > 0 such that

λ1+|W |(�H (V\W)�) � 	(α∗) + c, (5.42)

and

‖�H (V\W)�‖ = o(1). (5.43)

For the proof of (5.42), we recall the projections �W from Definition 5.7 and Q0
from Definition 5.11. By the definition of u(x) for x ∈ W , we have �W = Q0�W .
Hence, (5.10) implies (H − D)Q0�W = o(1). Applying Q0 to the last relation yields

H (V\W)�W = D�W + o(1) (5.44)

as Q0HQ0 = H (V\W) and Q0DQ0 = D. Since ran �W ⊂ ran � and �WD�W = D,
the definition of D and (5.44) imply that �H (V\W)� has at least |W| many eigenvalues
in [minx∈W λ(x) − o(1), maxx∈W λ(x) + o(1)]. Note that minx∈W λ(x) � 	(α∗) + c
for some constant c > 0 by (3.3) and (2.2).

Furthermore, let q be as in Proposition 3.4 (iv) with r = 1. From ‖H (V\W)‖ �
‖H‖ �

√
d by (5.24) and ‖EH‖ �

√
d , Proposition 3.4 (iv) and H (V\W)q = Hq, we

deduce

H (V\W)w1 = H (V\W)q+o(1) = Hq+o(1) = Hw1 +o(1) = λ1(H)w1 +o(1). (5.45)

Hence, �H (V\W)� has an eigenvalue at λ1(H) + o(1) = √
d(1 + o(1)) �

√
d 	

maxx∈W λ(x)+o(1) by Proposition 3.4 (ii), (3.1) and (3.3). Therefore, �H (V\W)� has
1 + |W| many eigenvalues larger or equal to 	(α∗) + c for some constant c > 0. This
proves (5.42).

Finally, (5.43) follows from (5.44), ranD ⊂ ran �W ⊂ ran � and (5.45). This
completes the proof of Lemma 5.16.
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6. Eigenvalue spacing: Proof of Proposition 2.4

We recall the definition of the high-probability event � from Definition 3.5. In this
section we use the notation from (5.1), as well as the conditional versions

P�(A |F) ..= P(� ∩ A |F), E�[X |F] ..= E[X1� |F].
Throughout this section, we assume that d satisfies (1.5), μ ∈ (0, 1/3) and that η satisfies

0 <
η

2
< min

{
1

6
,

1

5
− μ

4
,

1

3
− μ

}
. (6.1)

Proposition 2.4 follows directly from the following result.

Proposition 6.1. For any a �= b ∈ [N ], we have
P�(a, b ∈ W, |λ(a) − λ(b)| � N−η) � N−2+2μ−η/4+o(1). (6.2)

Remark 6.2. If we restrict ourselves to the critical regime d � log N , then Proposition
6.1 can be improved by replacing the factor N−η inside the probability in (6.2) by N−η/2.
See Remark 6.27 below for more details.

Proof of Proposition 2.4. The condition (6.1) holds by assumptions on μ and η. A union
bound and Proposition 6.1 yield

P(∃x �= y ∈ W .. |λ(x) − λ(y)| � N−η)

� P(�c) +

(
N

2

)
sup

a �=b∈[N ]
P�

(
a, b ∈ W, |λ(a) − λ(b)| � N−η

)

� o(1) + N 2μ−η/4+o(1),

where we used that P(�c) = o(1) by definition of � (recall Definition 3.5). As η > 8μ,
we conclude that the right-hand side is o(1).

6.1. Key tools of the proof of Proposition 6.1. The rest of this section is devoted to the
proof of Proposition 6.1. Throughout, we fix deterministic vertices a �= b ∈ [N ] and
suppose that η satisfies (6.1). We use the following definitions. Let

r ..=
⌊

η

2

log N

log d

⌋
− 1. (6.3)

In particular, dr+1 � Nη/2 < dr+2. Note that r from (6.3) satisfies the condition of
Proposition 3.1 (ii) and (3.2), i.e. the condition of Proposition 3.2.

Definition 6.3. We define the σ -algebra

Fi
..= σ(Bi (b), A|Bi (b), A|Bi (b)c)

for 0 � i � r , and we abbreviate F ≡ Fr .

More explicitly, we define Fi inductively through the filtration G1 ⊂ G2 ⊂ · · · ⊂ Gi ,
where G1 = σ(A|{b}) and Gk+1 = σ(Gk, A|Sk (b)), since by construction Sk(b) is Gk-
measurable. Then we set Fi = σ(Gi , A|Bi (b)c), using that Bi (b), and hence Bi (b)c, is
Gi -measurable. See Fig. 7 for an illustration of Fi . The following lemma is an immediate
consequence of the definition of Fi and the independence of the family (Axy).
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Fig. 7. An illustration of the σ -algebra Fi . Here i = 3, and the vertex b is drawn in green. Conditioning on Fi
means that the graph is fixed in the ball Bi (b) and its complement, drawn in grey. The only randomness is the
choice of the edges from Si (b) to Bi (b)

c , drawn in blue. By Lemma 6.4, these edges are chosen independently
with probability d/N

Lemma 6.4. Conditionally on Fi , the random variables (Axy
.. x ∈ Si (b), y ∈ Bi (b)c)

are independent Bernoulli random variables with mean d/N.

Definition 6.5. For 0 � i � r define H(i) ..= H (Bi (b)∪V(Bi (b))) and G(i, z) ..= (H(i) −
z)−1.

By definition, H(i) is Fi -measurable. We shall need the following regularization of
the function t �→ t−1.

Definition 6.6. Define ι : R → R through

ι(t) ..=
{
t−1 if t ∈ [T−1, T ]
−t + T + T−1 otherwise,

(6.4)

with T ..= 10 max{√d−1 log N , κ−1}.
Remark 6.7. The function ι is an involution on R with Lipschitz constant T 2.

Definition 6.8. For x ∈ Si (b) we define S+
1 (x) ..= S1(x) ∩ Si+1(b).

Definition 6.9. For each z ∈ R, we define the family (gx (z))x∈Br (b)\{b} recursively
through

⎧
⎪⎨

⎪⎩

gx (z) = −ι
(
z + 1

d

∑
y∈S+

1 (x)\V(Br (b)) Gyy(r, z)
)

if x ∈ Sr (b)

gx (z) = −ι
(
z + 1

d

∑
y∈S+

1 (x) gy(z)
)

if x ∈ Br−1(b)\{b}.
(6.5)

The following remark contains a crucial independence property of the family (gx (z))x .

Remark 6.10. Conditioned on F , if G|Br (b) is a tree and z is F-measurable, then for
any 1 � i � r the family (gx (z))x∈Si (b) is independent. To see this, we first note that
(gx (z))x∈Sr (b) is independent conditioned on F because of Lemma 6.4. For i � r − 1,
the statement follows inductively by using the tree structure of G|Br (b).
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Remark 6.11. The function ι : R → R is a regularized version of the function t �→ t−1

as a function R+ → R+. The regularization acts on both small values of t (for t < T−1)
and large values of t (for t > T ). The former regularization is needed to ensure the
Lipschitz continuity of the function ι, which is used in the proof of Proposition 6.15 to
ensure the stability of gx (z) under change of the argument z. The latter regularization
is needed to ensure the Lipschitz continuity of the function ι−1, which is used in the
proof of Proposition 6.26 below to ensure that anticoncentration of a random variable
is preserved, up to a factor T 2, by applying ι. In the proof of Proposition 6.15 below,
we show and use that with high probability the argument of ι is always contained in the
interval [T−1, T ] where ι coincides with t �→ t−1. Moreover, we choose the lower and
upper bounds, T−1 and T , to be each other’s inverses for convenience, since in that case
ι is an involution. Actually, an inspection of our proof shows that the lower bound T−1

could be replaced with the larger value κ/10. Finally, we note that in the critical regime
d � log N , the parameter T is of order one. This observation can be used to improve
Proposition 6.1 somewhat in that regime; see Remarks 6.2 and 6.27.

We now state the three key propositions that underlie the proof of Propositions 6.1–
6.12, 6.14, and 6.15. Their proofs are postponed to Sects. 6.5, 6.3, and 6.4, respectively.

Using the independence from Remark 6.10, we obtain the following anticoncentration
estimate for the family (gx (z))x∈Br (b)\{b}.

Proposition 6.12 (Anticoncentration of gx ). Let z ∈ J be F-measurable and (gx (z))x
be defined as in Definition 6.9. Then for any a, b ∈ [N ] we have

P�

(
a, b ∈ W,

∣
∣∣∣
1

d

∑

x∈S1(b)

gx (z) + z

∣
∣∣∣ � N−η

)
� N−2+2μ−η/4+o(1). (6.6)

For each 0 � i � r we shall need the following Fi -measurable approximation of
λ(a).

Definition 6.13. For i ∈ [r ] we abbbreviate λ(a, i) ..= λ2(H ((V(Bi (b))∪Bi (b))\{a})).

By definition, λ(a, i) is Fi -measurable. The next results states that λ(a, i) is with
high probability close to λ(a).

Proposition 6.14 (Comparison of λ(a) and λ(a, i)). For any small enough ε > 0, we
have

P�

(
a, b ∈ W, ∃i ∈ [r ], |λ(a) − λ(a, i)| � ε

)
� ε−2N−3+2μ+η/2+o(1).

The next result states that, when choosing the spectral parameter z = λ(a, r), the
Green function entries of H (V) on S1(b) are well approximated by the family (gx ) from
Definition 6.9.

Proposition 6.15 (Approximation of Green function by gx ). Let (gx (z))x be defined as
in Definition 6.9 with z ..= λ(a, r). For any constant c > 0 and any ε � N−c, we have

P�

(
a, b ∈ W, ∃x, y ∈ S1(b), |(H (V) − z)−1

xy − gx (z)1x=y | � ε
)

� ε−2N−3+2μ+2η+o(1).
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6.2. Proof of Proposition 6.1. In this subsection we prove Proposition 6.1. We begin
by introducing the following events that we use throughout this section. Recall the
definitions of the sets V(X) and W(X) from (5.4) and (5.5).

Definition 6.16. We define
� ..= {a, b ∈ W},

and, 1 � i � r ,

�i
..= {a ∈ W(Bi (b)), b ∈ W}.

Remark 6.17. We record the following straightforward properties of � and �i .

(i) �i is Fi -measurable.
(ii) �i ⊂ � (by definition of W(Bi (b))).

(iii) On �, for any b ∈ W and 1 � i � r we have V(Bi (b)) = V\{b} and W(Bi (b)) =
W\{b} (see Proposition 3.2 (iii)). In particular, � ∩ �i = � ∩ � for all 1 � i � r .

Next, we state a basic result that, together with Lemma 3.8, is used throughout this
section to establish the boundedness of the Green function for certain spectral parameters.

Lemma 6.18. On � ∩ � we have λ(a, i) = 	(αa) + o(1) and λ(a, i) ∈ J for all
1 � i � r .

Proof. By Remark 6.17 (iii), on � the assumptions of Corollary 3.6 are satisfied for
x = a and X = (V(Bi (b)) ∪ Bi (b))\{a}. Therefore, λ(a, i) = 	(αa) + o(1), from
which we conclude that λ(a, i) � 	(α∗) + κ/4 by the definition (2.2) of W as well as
λ(a, i) � √

d by (3.1).

Proof of Proposition 6.1. By spectral decomposition of H (V\{b}), we have Im(H (V\{b})−
λ(b)−it)−1

bb � 〈1b ,u(b)〉2/t for any t > 0. By Corollary 3.7, on � we have 〈1b ,u(b)〉 �=
0, which implies

lim
t↓0

1

(H (V\{b}) − λ(b) − it)−1
bb

= 0,

and hence Schur’s complement formula yields

λ(b) +
1

d

∑

x,y∈S1(b)

(H (V) − λ(b))−1
xy = 0.

Therefore, with z = λ(a, r), we obtain from the definition of the family (gx (λ(a, r)))x
in Definition 6.9 that

∣∣∣∣λ(a, r) +
1

d

∑

x∈S1(b)

gx (λ(a, r))

∣∣∣∣

� |λ(a, r) − λ(b)| +
1

d

∑

x,y∈S1(b)

∣
∣(H (V) − λ(a, r))−1

xy − (H (V) − λ(b))−1
xy

∣
∣

+
1

d

∑

x,y∈S1(b)

|gx (λ(a, r))1x=y − (H (V) − λ(a, r))−1
xy |

� Cκ−2(log N )2(|λ(a) − λ(b)| + |λ(a, r) − λ(a)|)
+

1

d

∑

x,y∈S1(b)

|gx (λ(a, r))1x=y − (H (V) − λ(a, r))−1
xy |
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on the event �, where we used (3.5) and Proposition 3.2 (i) for the second inequality.
Here C is some positive constant. Thus, for any γ � 0, we obtain

P�∩�(Cκ−2(log N )2|λ(b) − λ(a)| � γ )

� P�∩�

(∣∣∣∣
1

d

∑

x∈S1(b)

gx (λ(a, r)) + λ(a, r)

∣∣∣∣ � 3γ

)

+P�∩�

(
Cκ−2(log N )2|λ(a) − λ(a, r)| � γ

)

+P�∩�

(
1

d

∑

x,y∈S1(b)

∣∣∣(H (V) − λ(a, r))−1
xy − gx (λ(a, r))1x=y

∣∣∣ � γ

)
.

Now Proposition 6.1 follows with the choice γ ..= N−η/3, applying Proposition 6.12 to
the first line, Proposition 6.14 to the second line, and Proposition 6.15 combined with
Proposition 3.2 (i) on � to the third line. Here we used Lemma 6.18 to ensure that
λ(a, i) ∈ J .

6.3. Proof of Proposition 6.14. In this subsection we prove Proposition 6.14.

Proof of Proposition 6.14. We follow the proof of Proposition 5.3. Let u(a, i) be a
normalized eigenvector of H ((V(Bi (b))∪Bi (b))\{a}) associated with the eigenvalue λ(a, i).
Then, as suppu(a, i) ⊂ (V(Bi (b)) ∪ Bi (b))c ∪ {a}, on the event � ∩ {a, b ∈ W}, using
Remark 6.17 (iii) we obtain

(H (V\{a})−λ(a, i))u(a, i)=(H (V\{a})−H ((V(Bi (b))∪Bi (b))\{a}))u(a, i)=
∑

y∈Si (b)
εay(i)1y,

(6.7)
where εay(i) ..= 1√

d

∑
v∈S+

1 (y)〈1v ,u(a, i)〉. From Lemma 6.4 we conclude, using Cauchy-
Schwarz,

E�

[ ∑

y∈Si (b)
(εay(i))

2
∣∣∣∣Fi

]

�
∑

y∈Si (b)

log N

d

∑

v∈Bi (b)c
E
[
1v∈S+

1 (y)〈1v ,u(a, i)〉2
∣∣Fi

]

=
∑

y∈Si (b)

log N

d

∑

v∈Bi (b)c
P(v ∈ S+

1 (y) |Fi ) 〈1v ,u(a, i)〉2 � log N

N
|Si (b)|, (6.8)

where we used that on � we have |S+
1 (y)| � log N , that u(a, i) is Fi -measurable, and

that by Lemma 6.4 we have P(v ∈ S+
1 (y) |Fi ) = d

N for any y ∈ Si (b) and v /∈ Bi (b).
By the definition (2.2) of W , we have 	(αa) � 	(α∗) + κ/2, and on � we have

	(αa) � √
d (recall (3.1)). Hence, by Corollary 3.6, for any small enough ε > 0, if there

are a scalar λ̂ and a normalized vector û such that, for some a ∈ W , ‖(H (V\{a})−λ̂)̂u‖ �
ε and λ̂ = 	(αa) + o(1), then |λ(a) − λ̂| � ε (as λ(a) = λ2(H (V\{a}))).

We apply this observation to the choices λ̂ = λ(a, i) and û = u(a, i), for which
Lemma 6.18 yields λ(a, i) = 	(αa) + o(1). Hence, for any small enough ε > 0, we
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have |λ(a)−λ(a, i)| � ε provided that ‖(H (V\{a}) −λ(a, i))u(a, i)‖ � ε. We can then
estimate

P�(a, b ∈ W, |λ(a) − λ(a, i)| > ε)

� P�

(
�i ∩

{∥∥(H (V\{a}) − λ(a, i))u(a, i)
∥∥2

> ε2
})

� ε−2
E

[
1�i1|Si (b)|�Nη/2+o(1)E�

[ ∑

y∈Si (b)
(εay(i))

2
∣∣∣∣Fi

]]

� ε−2
P(�i )

log N

N
Nη/2+o(1) � ε−2 N 2μ+η/2−3+o(1),

where in the first step we used Remark 6.17 (iii), in the second step (6.7), Remark
6.17 (i), and the estimate |Si (b)| � Nη/2+o(1) on � by Proposition 3.2 (ii) and (6.3), in
the third step (6.8), and the fourth step Remark 6.17 (ii) and Lemma 6.19 below. Now
Proposition 6.14 follows from a union bound over i ∈ [r ] with r � log N .

The following result is used throughout the rest of this section.

Lemma 6.19. For any a �= b ∈ [N ] we have P(a, b ∈ W) � N−2+2μ.

Proof. Since 0 � 	′(α) = α−2
2(α−1)3/2 � 1

2 for all α � 2, we have

P(a, b ∈ W) � P

(
min{|S1(a)|, |S1(b)|} � (α∗ + κ)d

)

= E

[
P

(
min{|S1(a)|, |S1(b)|} � (α∗ + κ)d

∣∣
∣ Aab

)]

� P
(|S1(a)| � (α∗ + κ)d − 1

)2 � P
(|S1(a)| � α∗d

)2 � N−2+2μ,

where we used in the third step that conditionally on Aab, S1(a) and S1(b) are indepen-
dent and in the last step the definition of α∗.

6.4. Proof of Proposition 6.15. This subsection is devoted to the proof of Proposition
6.4. We begin with the following result, which contains two estimates. The first one is
an approximate version of Schur’s complement formula, where G(i − 1, z) is related to
G(i, z) at the cost of an error term; this amounts to removing not just the vertex x ∈ Si (b)
at which the Green function is evaluated, but the entire ball Bi (b). The second estimate
provides an upper bound on the off-diagonal entries of the Green function.

Lemma 6.20.

(i) For 1 � i � r let zi ∈ J be Fi -measurable and x ∈ Si (b). Then

− 1

Gxx (i − 1, zi )
= zi +

1

d

∑

y∈S+
1 (x)

Gyy(i, zi ) + Ei (x) (6.9)

where the error term Ei (x) satisfies, for any ε > 0,

P� (|Ei (x)| > ε |Fi )1b∈W � d2κ−4(log N )2|Si (b)|2N−1ε−2. (6.10)

(ii) Let z ∈ J be F1-measurable. For any x �= y ∈ [N ] and ε > 0, we have

P�

(|(H (V) − z)−1
xy | � ε |F1

)
1b∈W1x,y∈S1(b) � κ−4(log N )N−1ε−2. (6.11)
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Proof of Proposition 6.15. We choose zi ..= λ(a, i), which is Fi -measurable, and set
z = zr . For ε > 0 we introduce the event � ..= �1 ∩ �2 ∩ �3 given by

�1
..= {∀i � r,∀x ∈ Si (b), |Ei (x)| � ε},

�2
..= {∀i � r, |z − zi | � ε},

�3
..= {∀x �= y ∈ S1(b), |(H (V) − z1)

−1
xy | � ε},

with Ei (x) defined as in Lemma 6.20. We estimate the probability of �c
1 using �i ∈ Fi ,

Lemmas 6.20 (i) and 6.19, Proposition 3.2 (ii), we well as Remark 6.17 as

P�∩�i (∃x ∈ Si (b), |Ei (x)| > ε) � P�(�)N−1+3η/2+o(1)ε−2 � N−3+2μ+3η/2+o(1)ε−2.

Similarly, we find using Lemma 6.20 (ii) that

P�∩�1(�
c
3) � P�(�)N−1+η+o(1)ε−2 � N−3+2μ+η/2+o(1)ε−2.

Hence, using Remark 6.17 and Proposition 6.14, we have

P�(�c ∩ �) �
r∑

i=1

(
P�∩�i (∃x ∈ Si (b), |Ei (x)| > ε) + P�∩�(|z − zi | > ε)

)

+ P�∩�1

(
�c

3

)

� N−3+2μ+2η+o(1)ε−2. (6.12)

We shall show below that there is a constant C > 0 such that on the event �∩�∩�

we have

|gx (z) − Gxx (i − 1, z)| � Cε

r−i+1∑

j=0

(Cκ−4d−1) j |S+
j (x)| � No(1)ε (6.13)

for all 1 � i � r and all x ∈ Si (b). The second inequality in (6.13) follows from
r � log N and d− j |S+

j (x)| � d− j |Bj (x)| � log N for all x ∈ [N ] by Proposition 3.2
(ii).

Before proving (6.13), we conclude Proposition 6.15 from (6.13) (after renaming
ε �→ N−o(1)ε) with i = 1, the definition of �3 and (6.12), where we used that G(0, z) =
(H (V) − z)−1 on � ∩ {b ∈ W} as V(Bi (b)) = V\{b}.

What remains, therefore, is the proof of (6.13). We prove it by inductively decreasing i
starting from i = r+1. By convention, for any x ∈ Sr+1(b) we denote gx (z) ..= Gxx (r, z),
so that (6.13) trivially holds for i = r + 1. Therefore, we can assume throughout the
following argument that gx (z) is defined by the second case in Definition 6.9 for all
x ∈ Br (b)\{b} (note that on the event � ∩ � we have S+

1 (x)\V(Br (b)) = S+
1 (x) for any

x ∈ Sr (b), by Proposition 3.2 (iii)).
To verify the induction step, we assume that (6.13) holds on S j (b) for all i + 1 �

j � r + 1 and consider x ∈ Si (b). We first show that on � ∩ � ∩ �

gx (z) = −
(
z +

1

d

∑

y∈S+
1 (x)

gy(z)

)−1

. (6.14)
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To that end, we conclude from the induction hypothesis, (3.5), the definition of �2 and
Proposition 3.2 (i) that

∣
∣∣∣
1

d

∑

y∈S+
1 (x)

Gyy(i, zi ) − 1

d

∑

y∈S+
1 (x)

gy(z)

∣
∣∣∣

� 1

d

∑

y∈S+
1 (x)

(|Gyy(i, z) − gy(z)| + |Gyy(i, zi ) − Gyy(i, z)|
)

� d−1|S1(x)|
(

max
y∈S+

1 (x)
|Gyy(i, z) − gy(z)| + (8/κ)2|z − zi |

)

� No(1)ε. (6.15)

By Lemma 6.18, on � ∩ � we have zi ∈ J . We recall from Lemma 3.9 that all Green
function entries Gxx (i − 1, zi ) and Gyy(i, zi ) are negative for zi ∈ J . We use the upper
bound (3.4) for −Gxx (i − 1, zi ) as well as (6.9) to obtain, on � ∩ � ∩ �1 ∩ �2,

10

9T
� κ

9
� − 1

Gxx (i − 1, zi )
− Ei (x) = zi +

1

d

∑

y∈S+
1 (x)

Gyy(i, zi )

� 	(αa) + o(1) �
√

2αa + o(1) � T

2
. (6.16)

Here, we also used Corollary 3.6, which is applicable asV(Bi (b)) = V\{b}on�∩{b ∈ W}
by Proposition 3.2 (iii), αa � 10d−1 log N on � by Proposition 3.2 (i), and the definitions
of 	 and T . Then, by the assumption ε � N−c, we find that (6.16) and (6.15) imply
T−1 � z + 1

d

∑
y∈S+

1 (x) gy(z) � T , which yields (6.14) by the definitions of ι and gx (z)
in (6.4) and Definition 6.9, respectively. This concludes the proof of (6.14).

Finally, we find on � ∩ � ∩ �

|gx (z) − Gxx (i − 1, z)|
� gx (z)Gxx (i − 1, zi )

∣
∣gx (z)−1 − Gxx (i − 1, zi )

−1
∣
∣ + (8/κ)2|z − zi |

� (8/κ)2
(∣∣
∣
∣

1

d

∑

y∈S+
1 (x)

Gyy(i, zi ) − 1

d

∑

y∈S+
1 (x)

gy(z)

∣∣
∣
∣ + |z − zi | + |Ei (x)|

)

� (8/κ)2
(

1

d

∑

y∈S+
1 (x)

r−i∑

j=0

(Cκ−4d−1) j |S+
j (y)|Cε + ((8/κ)2d−1|S+

1 (x)| + 1)|z − zi | + |Ei (x)|
)

� C−1
(

64
r−i+1∑

j=1

(Cκ−4d−1) j |S+
j (x)| + 642κ−4(d−1|S+

1 (x)| + 2)

)
Cε.

Here we used (3.5) in the first inequality, (6.9) and (6.14) in the second, (3.4) and the
iteration hypothesis in the third and that |S+

j+1(x)| = ∑
y∈S+

1 (x) |S+
j (y)| and the definitions

of �1 and �2 in the last one. We conclude (6.13) for large enough C .

What remains is the proof of Lemma 6.20.

Proof of Lemma 6.20. We begin with (i). Throughout the proof, we fix i and we con-
dition on Fi . We always assume that b ∈ W , which is an Fi -measurable event since
i � 1.
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Fig. 8. An illustration of the event �i for i = 3. The vertices of V are drawn in green. By definition of �i , the
red edges are forbidden

We start by observing that the event

�i
..= {V(Bi−1(b)) = V(Bi (b))} ∩ {A|Si (b) = 0}

satisfies � ⊂ �i , by Proposition 3.2 (ii), (iii). See Fig. 8 for an illustration of �i .
For the proof we abbreviate

Ti ..= Bi−1(b) ∪ V(Bi (b)), (6.17)

so that on the event �i we have H(i − 1) = H (Ti ). From Schur’s complement formula
we get on the event �i

− 1

Gxx (i − 1, zi )
= zi +

1

d

∑

u,v∈S+
1 (x)

(H (Ti∪{x}) − zi )
−1
uv , (6.18)

where we used that x has no neighbours in Si (b) by definition of �i .
We now decompose the error term Ei (x) from (6.9) into several summands estimated

separately. To that end, let {x, y1, . . . , y|Si (b)|−1} = Si (b) be an enumeration of Si (b).
We set y0

..= x and

E (0)
i

..= 1

d

∑

u,v∈S+
1 (x), u �=v

(
H (Ti∪{x}) − zi

)−1
uv

,

E ( j)
i

..= 1

d

∑

u∈S+
1 (x)

((
H (Ti∪{y0,...,y j }) − zi

)−1
uu − (

H (Ti∪{y0,...,y j−1}) − zi
)−1
uu

)
.

for j = 1, . . . , |Si (b)|−1. Then, from (6.18) we conclude that (6.9) holds with Ei (x) =
E (0)
i −∑|Si (b)|−1

j=1 E ( j)
i . Chebyshev’s and the Cauchy-Schwarz inequalities yield

P�(|Ei (x)| > ε |Fi ) � ε−2 |Si (b)|
(
E�[|E (0)

i |2 |Fi ] +
|Si (b)|−1∑

j=1

E�[|E ( j)
i |2 |Fi ]

)
.

(6.19)
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Fig. 9. An illustration of the σ -algebra Fi (X). Here i = 3, the vertex b is drawn in green, and the set
X ⊂ Si (b) is drawn in blue. Conditioning on Fi (X) means that we fix all edges within Bi (b), within Bi (b)

c ,
and connecting Si (b)\X with Bi (b)

c . The only randomness is the choice of the edges from X to Bi (b)
c ,

drawn in blue. After removal of the vertices in Ti ∪ X (see (6.17)), only black edges and edges within Bi (b)
c

remain, which shows that H (Ti∪X) is Fi (X)-measurable. Note that for X = Si (b) we have Fi (X) = Fi ,
and we recover the illustration from Fig. 7

Therefore, it remains to estimate E�[|E ( j)
i |2 |Fi ] for all j = 0, . . . , |Si (b)| − 1.

To that end, we introduce a σ -algebra refining Fi from Definition 6.3. For any subset
X ⊂ Si (b) we define the σ -algebra12

Fi (X) ..= σ
(
Fi , (S

+
1 (y))y∈Si (b)\X

)
,

using that Si (b) is Fi -measurable. See Fig. 9 for an illustration of Fi (X). Moreover, for
X ⊂ Si (b) we define the event

�i (X) ..=
{∥∥(H (Ti∪X) − zi )

−1
∥∥ � 8κ−1

}
.

We note that for any X ⊂ Si (b), the event �i (X) lies in Fi (X), since H (Ti∪X) is Fi (X)-
measurable (see the definition (6.17) and Fig. 9). Furthermore, by Lemma 3.8 for zi ∈ J
we have

� ⊂
⋂

X⊂Si (b)

�i (X). (6.20)

For the estimate of E (0)
i , we introduce the sets Q ..= {(u, v) ∈ (Bi (b)c)2 .. u �= v} and

Q ..= Q ∩ (S+
1 (x))2 and the family (Zq)q∈Q defined by Z(u,v)

..= (H (Ti∪{x}) − zi )−1
uv .

We first note that, for any q = (u, v) ∈ Q, we have

P(q ∈ Q |Fi ({x})) = P(u ∈ S+
1 (x), v ∈ S+

1 (x) |Fi ) = d2

N 2 . (6.21)

12 Somewhat more carefully (since the set X is random), the precise definition of Fi (X) is as follows. As the
underlying probability space is finite, any σ -algebra, in particular Fi , is atomic. Conditioning on Fi means
that we restrict ourselves to a single atom A of Fi . On this atom Si (b) and X are deterministic. Then Fi (X)

is by definition the smallest σ -algebra on A such that S+
1 (y) is measurable for all y ∈ Si (b)\X .
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In the last step we used that, by Lemma 6.4, for any X ⊂ Si (b), conditionally on Fi (X),
the random variables (Axy

.. x ∈ X, y ∈ Bi (b)c) are independent Bernoulli- d
N random

variables. Moreover, we get

∑

q∈Q
|Zq |21�i ({x}) � Tr((H (Ti∪{x}) − zi )

−2)1�i ({x}) � Nκ−2. (6.22)

Since E (0)
i = 1

d

∑
q∈Q Zq , the inclusion � ⊂ �i ∩ �i ({x}) and the Cauchy-Schwarz

inequality imply

E�

[|E (0)
i |2∣∣Fi ({x})

]

� 1

d2 E�

[
|Q|

∑

q∈Q
|Zq |2

∣
∣∣∣Fi ({x})

]

� (log N )2

d2 E

[∑

q∈Q
|Zq |21�i ({x})

∣∣
∣∣Fi ({x})

]

� (log N )2

d2 max
q∈Q

P(q ∈ Q |Fi ({x}))
∑

q∈Q
|Zq |21�i ({x}) � (log N )2

κ2N
, (6.23)

where we used that |S1(x)| � log N on �, by Proposition 3.2 (i), as well as the Fi ({x})-
measurability of |Zq |21�i ({x}). The last step follows from (6.21) and (6.22).

To bound E ( j)
i for a fixed j ∈ {1, . . . , |Si (b)|− 1}, we conclude on the event �i from

the resolvent identity that

E ( j)
i = 1

d3/2

∑

u∈S+
1 (x)

(
H (Ti∪{y0,...,y j−1}) − zi

)−1
uy j

∑

v∈S+
1 (y j )

(
H (Ti∪{y0,...,y j }) − zi

)−1
vu .

Therefore, by applying the Cauchy-Schwarz inequality twice and using (6.20) with
X = {y0, . . . , y j }, we obtain

|E ( j)
i |21� � 1�

|S+
1 (x)|
d3

∑

u∈S+
1 (x)

|(H (Ti∪{y0,...,y j−1}) − zi )
−1
uy j |2

∣∣∣
∣
∑

v∈S+
1 (y j )

(H (Ti∪{y0,...,y j }) − zi )
−1
vu

∣∣∣
∣

2

� 1�

|S+
1 (x)||S+

1 (y j )|
d3κ2

∑

u∈S+
1 (x)

|(H (Ti∪{y0,...,y j−1}) − zi )
−1
uy j |2

� 1�

(log N )2

d3κ2

∑

u∈S+
1 (x)

|(H (Ti∪{y0,...,y j−1}) − zi )
−1
uy j |2, (6.24)

where in the last step we used |S1(x)| + |S1(y j )| � log N from Proposition 3.2 (i) on �.
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We now set Yu ..= (H (Ti∪{y0,...,y j−1}) − zi )−1
uy j for u ∈ Bi (b)c, U ..= S+

1 (x) and
U ..= Bi (b)c. We apply E[ · |Fi ({y0, . . . , y j−1})] to (6.24) and, similarly as in (6.23),
obtain

E�[|E ( j)
i |2 |Fi ({y0, . . . , y j−1})]

� (log N )2

d3κ2 max
u∈U

P(u ∈ U |Fi ({y0, . . . , y j−1}))
∑

u∈U
|Yu |21�i ({y0,...,y j−1})

� (log N )2

d2κ4N
, (6.25)

where we used that (Yu)u∈U is Fi ({y0, . . . , y j−1})-measurable, and that
∑

u∈U
|Yu |21�i ({y0,...,y j−1}) = ‖(Yu)u∈Bi (b)c‖21�i ({y0,...,y j−1}) � κ−2. We also used the remark
following (6.21).

Finally, using the estimates (6.23) and (6.25) in (6.19) together with the tower property
of the conditional expectation complete the proof of (6.9) and (6.10). This concludes
the proof of (i).

Next, we prove (ii). For the proof of (6.11), we fix x, y ∈ S1(b) and conclude from
the resolvent identity [23, eq. (3.5)] that

(H (V) − z)−1
xy = −(H (V) − z)−1

xx

∑

u /∈V∪{x}
Hxu(H

(V∪{x}) − z)−1
uy

= − 1√
d

(H (V) − z)−1
xx

∑

u /∈V∪{x}
1u∈S+

1 (x)(H
(V∪{x}) − z)−1

uy .

Therefore, the Cauchy-Schwarz inequality and Lemma 3.8 imply

|(H (V) − z)−1
xy |21� � 1�

|S+
1 (x)|
κ2d

∑

u /∈T1∪{x}
1u∈S+

1 (x)|(H (T1∪{x}) − z)−1
uy |2,

where we also used that V = {b} ∪ V(B1(b)) = T1 on � by Proposition 3.2 (iii). Hence,
since |S1(x)| � log N on � by Proposition 3.2 (i), � ⊂ �1({x}) and �1({x}) ∈ F1({x}),
we obtain

E
[|(H (V) − z)−1

xy |21� |F1({x})
]

� log N

κ2d
max

u /∈T1∪{x}
P(u ∈ S+

1 (x) |F1({x}))
∑

u /∈T1∪{x}
|(H (T1∪{x}) − z)−1

uy |21�1({x})

� log N

κ4N
.

Here, in the last step, we usedP(u ∈ S+
1 (x) |F1({x})) � d/N and

∑
u /∈T1∪{x}|(H (T1∪{x})−

z)−1
uy |21�1({x}) � κ−2. Thus, Chebyshev’s inequality and the tower property of the con-

ditional expectation complete the proof of (6.11) and, therefore, the one of Lemma 6.20.
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Fig. 10. An illustration of the set R ≡ Rr (G, b) of robust vertices. Here r = 3 and d = 4. We draw the ball
Br (b) around the root b. The robust vertices are drawn in blue and the non-robust vertices in white. In this
example, the root b is robust

6.5. Proof of Proposition 6.12. This subsection is devoted to the proof of Proposition
6.12. We start by introducing the notion of a robust vertex.

Definition 6.21. Let b ∈ [N ] and r ∈ N
∗. We call a vertex y ∈ Br (b) robust if

(a) y ∈ Sr (b) or
(b) y ∈ Br−1(b) and at least d/2 vertices in S+

1 (y) are robust.

We denote by R ≡ Rr (G, b) ⊂ Br (b) the set of robust vertices.

Note that R is an F-measurable random set. See Fig. 10 for an illustration of Def-
inition 6.21. The following result states that with high probability the root b is robust,
conditioned on S1(a) and S1(b).

Proposition 6.22. (The root is robust) Suppose that
√

log N � d � log N and that r
satisfies (3.2). Then P�(b /∈ R | S1(a), S1(b)) � N−1/2 whenever a, b ∈ W .

The proof of Proposition 6.22 is given at the end of this subsection. From now on,
we choose r as in (6.3).

Definition 6.23. Let z ∈ J be an F-measurable real random variable. We introduce the
event ϒ on which the following conditions hold.

(A) G|Br (b) is a tree.
(B) b ∈ R.
(C) −Gyy(r, z) � (3z)−1 for all y ∈ (Br (b) ∪ V(Br (b)))c.
(D) |Br (b) ∪ V(Br (b))| � N 1/2.

Lemma 6.24. We have ϒ ∈ F and P�(ϒc | S1(a), S1(b)) = O(N−1/2) whenever
a, b ∈ W .

Proof. That ϒ ∈ F follows from the Definitions 6.5 and 6.21. The estimate follows
from Proposition 6.22 and the facts that on � the conditions (A), (C), and (D) hold
surely. That (C) holds surely on � follows from Lemma 3.9 and the observation that
V = V(Br (b)) on � (see Proposition 3.2 (iii)). That (D) holds surely on � follows from
the statements (i), (i), (ii) of Proposition 3.2 (recall the choice (6.3)).

We recall the definition of Lévy’s concentration function Q(X, L) from (2.13).
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Remark 6.25. The concentration function has the following obvious properties.

(i) For any u > 0 we have Q(uX, uL) = Q(X, L). More generally, if f is a continuous
bijection on R such that f −1 is K -Lipschitz, then Q( f (X), L) � Q(X, K L).

(ii) If X and Y are independent then Q(X + Y, L) � min{Q(X, L), Q(Y, L)}.
Property (ii) is in general not sharp, and in some situations it can be improved consid-
erably; see Proposition 2.8. Nevertheless, in some situations (ii) gives a better bound
than Proposition 2.8; this is due to the minimum in (ii) as opposed to the maximum in
Proposition 2.8. An important theme in the proof of Proposition 6.12 is a judicious mix
of (ii) and Proposition 2.8. How to do this mix is encoded by the set of robust vertices
from Definition 6.21.

We denote by QF Lévy’s concentration function with respect to the probability
measure P( · |F). The main tool behind the proof of Proposition 6.12 is the following
anticoncentration estimate for gx (z).

Proposition 6.26. Let z ∈ J be a F-measurable real random variable. There exists a
constant χ > 0 such that, on the event ϒ , for any 1 � i � r and x ∈ Si (b)∩R we have

QF
(
gx (z),

1

8z(T 2d)r−i+1

)
� 1

2(χd)(r−i)/2
.

Before proving Proposition 6.26, we use it to conclude the proof of Proposition 6.12.

Proof of Proposition 6.12. We estimate

P�

(
a, b ∈ W,

∣∣∣∣
1

d

∑

x∈S1(b)

gx (z) + z

∣∣∣∣ � N−η

)

� P�

(
�r ∩ ϒ ∩

{∣∣∣∣
1

d

∑

x∈S1(b)

gx (z) + z

∣
∣∣∣ � N−η

})
+ P�(� ∩ ϒc)

= E

[
1�r 1ϒ P

(∣∣
∣∣
1

d

∑

x∈S1(b)

gx (z) + z

∣∣
∣∣ � N−η

∣∣
∣∣F
)]

+ P�(� ∩ ϒc), (6.26)

where we used Remark 6.17 (i) and (iii) as well as ϒ ∈ F by Lemma 6.24. The second
term on the right-hand side of (6.26) is estimated as

P�(� ∩ ϒc) = E[1a∈W 1b∈W P�(ϒc | S1(a), S1(b))] � N−1/2
P(a, b ∈ W),

by Lemma 6.24.
To estimate the first term on the right-hand side of (6.26), we use Proposition 6.26

with i = 1 and the estimate

8zd(T 2d)r � d2r+3/2 � Nη (6.27)

where we used the definitions of r and T from (6.3) and Definition 6.6, as well as d 	√
log N . On ϒ we have b ∈ R and hence, by Definition 6.21, there exists x∗ ∈ S1(b)∩R.
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Using that (gx (z))x∈S1(b) is an independent family, on the event ϒ conditionally on F ,
this yields, on the event ϒ ,

P

(∣∣∣
∣
1

d

∑

x∈S1(b)

gx (z) + z

∣∣∣
∣ � N−η

∣∣∣
∣F
)

� QF
(

1

d

∑

x∈S1(b)

gx (z),
1

8zd(T 2d)r

)

� QF
(

1

d
gx∗(z),

1

8zd(T 2d)r

)
= QF

(
gx∗(z),

1

8z(T 2d)r

)
,

where in the second step we used Remark 6.25 (ii) and in the last step Remark 6.25 (i).
From Proposition 6.26 we therefore conclude that the first term on the right-hand side
of (6.26) is bounded by

1

2(χd)(r−i)/2
P(�r ) � N−η/4+o(1)

P(a, b ∈ W),

where we used the definition 6.3 and Remark 6.17 (ii). The claim now follows from
Lemma 6.19.

Remark 6.27. If we restrict ourselves to the critical regime d � log N , then the factor
N−η inside the probability in (6.6) can be improved to N−η/2. To see this, we note that
in this regime the parameter T from Definition 6.6 satisfies T = 10κ−1 since, in the
critical regime, the estimate (6.16) with small enough κ remains valid for this smaller
choice of T . Thus, the estimate (6.27) in the proof of Proposition 6.12 can be replaced
with 8zd(T 2d)r � (Cd)r , which is bounded by Nη/2+o(1).

The key tool behind the proof of Proposition 6.26 is Proposition 2.8 due to Kesten.

Proof of Proposition 6.26. Throughout the proof, the argument z of gx (z) for any x ∈
Br (b) will always be the random variable z from Definition 6.23. Therefore, we omit
this argument from our notation and write gx ≡ gx (z).

For i ∈ [r ] we define

Li
..= 1

8zT 2d

(
1

T 2d

)r−i

, Pi ..= 1

2

(√
2K

d1/2

)r−i

.

where K is the universal constant from Proposition 2.8. We prove Proposition 6.26 by
showing that, for all i ∈ [r ] and x ∈ Si (b) ∩ R we have

QF (gx , Li
)

� Pi . (6.28)

We show (6.28) by induction on i = r, r − 1, . . . , 1.
We start the induction at i = r . Abbreviate X ..= (Br (b) ∪ V(Br (b)))c, which is an

F-measurable set. For x ∈ Sr (b), conditioned on F , (1y∈S+
1 (x))y∈X are i.i.d. Bernoulli

random variables. Hence, conditioned on F we have

∑

y∈S+
1 (x)\V(Br (b))

Gyy(r, z)
d=

|X |∑

k=0

1|S+
1 (x)∩X |=k

k∑

i=1

Gσ(i)σ (i)(r, z), (6.29)
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where σ is a uniform random enumeration of X (i.e. a bijection [|X |] → X ) that is
independent of |S+

1 (x) ∩ X |. Because of the condition (C) in Definition 6.23, for any
k �= l, |∑l

i=1 Gσ(i)σ (i)(r, z)−∑k
i=1 Gσ(i)σ (i)(r, z)| � (3z)−1. Therefore, for any t ∈ R

we get on ϒ

P

(∣∣∣
∣

|X |∑

k=0

1|S+
1 (x)∩X |=k

k∑

i=1

Gσ(i)σ (i)(r, z) − t

∣∣∣
∣ � 1

8z

∣∣∣
∣ σ,F

)

� max
0�k�|X |

P(|S+
1 (x) ∩ X | = k |F) � 1

2
,

where in the last step we used that |S+
1 (x) ∩X | d= Binom(|X |, d/N ) conditioned on F ,

that |X | � N − N 1/2 by the condition (D) in Definition 6.23, and that d 	 1. From
(6.29) we therefore conclude that

QF
( ∑

y∈S+
1 (x)\V(Br (b))

Gyy(r, z),
1

8z

)
� 1

2
.

Hence, Remarks 6.7 and 6.25 (i) imply QF
(
gx ,

1
8zT 2d

)
� 1

2 , which is (6.28) for i = r .

For the induction step, we let i < r , choose x ∈ Si (b) ∩ R, and assume that
QF (gy, Li+1) � Pi+1 for all y ∈ Si+1(b)∩R. Note that S+

1 (x) andR areF-measurable,
and that the family (gy)y∈S1+(x) is independent on ϒ conditioned on F , by Remark
6.10 and Definition 6.23 (A). Hence, we can apply Proposition 2.8 to the concentration
function QF to obtain

QF
( ∑

y∈S+
1 (x)∩R

gy, Li+1

)
� K
√|S+

1 (x) ∩ R| Pi+1 � K
√

2Pi+1

d1/2 , (6.30)

where the last inequality follows from |S+
1 (x)∩R| � d/2, by Definition 6.21. Moreover,

the conditional independence of the sums
∑

y∈S+
1 (x)∩R gy and

∑
y∈S+

1 (x)\R gy combined
with Remark 6.25 (i) and (ii) yields

QF
(

1

d

∑

y∈S+
1 (x)

gy,
Li+1

d

)
= QF

( ∑

y∈S+
1 (x)

gy, Li+1

)

= QF
( ∑

y∈S+
1 (x)∩R

gy +
∑

y∈S+
1 (x)\R

gy, Li+1

)

� QF
( ∑

y∈S+
1 (x)∩R

gy, Li+1

)
.

Hence, by Remark 6.7, Remark 6.25 (i), Definition 6.9, and (6.30), we obtain

QF
(
gx ,

Li+1

T 2d

)
� K

√
2Pi+1

d1/2 ,

which is (6.28). This completes the proof of (6.28) and, hence, the one of Proposi-
tion 6.26.
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Proof of Proposition 6.22. The proof proceeds in two steps: first by establishing the
claim for the root of a Galton-Watson branching process with Poisson offspring distri-
bution with mean d, and then concluding by a comparison argument.

Denote byPs a Poisson random variable with expectation s. Let W denote the Galton-
Watson branching process with Poisson offspring distribution Pd , which we regard
as a random rooted ordered tree13 whose root we call o. We use the graph-theoretic
notations (such as Si (x)) from Sect. 2.1 also on rooted ordered trees. Moreover, we
extend Definition 6.21 to a rooted ordered tree T in the obvious fashion, and when
needed we use the notation R ≡ Rr (T, o) to indicate the radius r , the tree T , and the
root o explicitly.

We define the parameter δ ..= P(P3d/4 � d
2 ). By Bennett’s inequality (see Lemma

D.1 below), we find that δ � e−cd for some universal constant c > 0. We shall show by
induction on i that

P(o /∈ Ri (W, o)) � δ (6.31)

for all i � 0. For i = 0 we have P(o /∈ Ri (W, o)) = 0 since o ∈ R0(W, o) by (the
analogue of) Definition 6.21, and (6.31) is trivial.

To advance the induction, we suppose that (6.31) holds for some i � 0. By Definition
6.21,

P(o /∈ Ri+1(W, o)) = P

( ∑

x∈S1(o)

1x∈Ri+1(W,o) <
d

2

)
.

By definition of the branching process W , conditioned on S1(o), the random variables
(1x∈Ri+1(W,o))x∈S1(o) are independent Bernoulli random variables with expectation

P(x ∈ Ri+1(W, o)|S1(o)) = P(o ∈ Ri (W, o)) =.. 1 − ζi ,

where x ∈ S1(o). We conclude that
∑

x∈S1(o) 1x∈Ri+1(W,o)
d= Pd(1−ζi ). Using the in-

duction assumption ζi � δ from (6.31) and the bound δ � e−cd < 1/4 for large enough
d, we therefore conclude that

P(o /∈ Ri+1(W )) = P

(
Pd(1−P(o/∈Ri (W,o))) <

d

2

)
� P

(
P3d/4 � d

2

)
= δ.

This concludes the proof of (6.31) for all i � 0.
Hence, denoting by Bn,p a random variable with law Binom(n, p), we conclude that

if |S1(o)| � d then

P(o /∈ Rr (W, o) | S1(o))

= P

( ∑

x∈S1(o)

1x∈Rr−1(W,o) <
d

2

∣∣
∣∣ S1(o)

)
= P

(
B|S1(o)|,1−ζr−1 <

d

2

∣∣
∣∣ S1(o)

)

� P

(
Bd,1−δ <

d

2

)
= P

(
Bd,δ � d

2

)
� e−cdδ 1

2δ
log 1

2δ � e−cd2 � N−1 (6.32)

for some universal constant c > 0, where in the third step we used that |S1(o)| � d
and ζr−1 � δ by (6.31), in the fifth step Bennett’s inequality (see Lemma D.1 below),

13 A rooted ordered tree (also called plane tree) is a rooted tree in which an ordering is specified among the
children of each vertex.
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in the sixth step that δ � e−cd , and in the last step the assumption d 	 √
log N . This

concludes the estimate for the Galton-Watson process W .
Next, we analyse P�(b /∈ Rr (G, b) | S1(a), S1(b)). We note first that we can assume

that |B1(a)| � 1 + 10 log N and that B1(a) and B1(b) are disjoint, for otherwise the
above probability vanishes by definition of � and Proposition 3.2.

We observe that a rooted ordered tree can be regarded as an equivalence class of
(labelled) rooted trees up to a relabelling of the vertices that preserves the ordering of
the children of each vertex. We denote by [T, x] the equivalence class of the labelled
rooted tree (T, x), where x is the root. By convention, if T is not a tree (i.e. if it contains
a cycle) then its equivalence class is the empty tree. We denote by Tr the set of rooted
ordered trees of depth r . Moreover, we denote by T∗

r ⊂ Tr the subset of rooted ordered
trees with at most N 1/5 vertices and whose root is a robust vertex with |S1(b)| children.
Abbreviating � ..= {Br (b) ⊂ [N ]\B1(a)}, we can write

P�(b /∈ Rr (G, b) | S1(a), S1(b)) = P�([G|Br (b), b] /∈ T∗
r | S1(a), S1(b))

� P({[G|Br (b), b] /∈ T∗
r } ∩ � | S1(a), S1(b)),

(6.33)

where we used that, since a, b ∈ W ⊂ V , Proposition 3.2 implies that on the event �

the graph G|Br (b) is a tree with at most N 1/5 vertices, and that � ⊂ �.
For the following, let T ∈ T∗

r and denote by o its root. For 1 � i � r we introduce
the event

�i
..= {[G|Bi (b), b] = T |Bi (o)} ∩ {Bi (b) ⊂ [N ]\B1(a)}.

In particular, P(�1 | S1(a), S1(b)) = 1 because of the assumed disjointness of S1(a)

and S1(b). We now estimate

P({[G|Br (b), b] = T } ∩ � | S1(a), S1(b)) = P(�r | S1(a), S1(b)) (6.34)

recursively, for 1 � i � r − 1, using the expression

P(�i+1| S1(a), S1(b))

P(�i | S1(a), S1(b))

= (N ′ − |Bi (o)|)!
(N ′ − |Bi+1(o)|)!∏x∈Si (o)|S+

1 (x)|!
∏

x∈Si (o)

(
d

N

)|S+
1 (x)|(

1 − d

N

)N−|Bi (o)|−|S+
1 (x)|

,

where N ′ ..= N −|B1(a)|, and the graph-theoretic quantities on the left-hand side are in
terms of G and on the right-hand side in terms of the deterministic rooted ordered tree T .
Here, the multinomial factor in front arises from a choice of the |Si (o)| disjoint subsets
representing the children of the vertices in Si (o) from N ′ − |Bi (o)| available vertices,
and the remaining product follows by independence of the edges in G. We deduce that

P(�i+1| S1(a), S1(b))

P(�i | S1(a), S1(b))
= (1 + O(N−3/4))

(N ′ − |Bi (o)|)!
(N ′ − |Bi+1(o)|)! N |Si+1(o)|

∏

x∈Si (o)

d |S+
1 (x)|

|S+
1 (x)|! e−d

= (1 + O(N−3/5))
∏

x∈Si (o)

d |S+
1 (x)|

|S+
1 (x)|! e−d ,
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where we used that N − N ′ � 1 + 10 log N and |Br (o)| � N 1/5. By induction on i and
comparison with the Galton-Watson tree W , using that

P(W |Bi+1(o) = T |Bi+1(o) | S1(o))

P(W |Bi (o) = T |Bi (o) | S1(o))
=

∏

x∈Si (o)

d |S+
1 (x)|

|S+
1 (x)|!e−d ,

as well as P(�1|S1(a), S1(b)) = 1, we therefore conclude from (6.34) that if |S1(b)| =
|S1(o)| then

P({[G|Br (b), b] = T } ∩ � | S1(a), S1(b)) = (1 + O(N−1/2))P(W |Br (o) = T | S1(o))

for all T ∈ T∗
r . Thus,

P({[G|Br (b), b] /∈ T∗
r } ∩ � | S1(a), S1(b))

� 1 −
∑

T∈T∗
r

P({[G|Br (b), b] = T } ∩ � | S1(a), S1(b))

= 1 −
∑

T∈T∗
r

P(W |Br (o) = T | S1(o)) + O(N−1/2)

= P(o /∈ Rr (W, o) | S1(o)) + O(N−1/2).

The claim now follows from (6.32) and (6.33), noting that if b ∈ W then |S1(b)| =
|S1(o)| � d.
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A. Quantitative Behaviour of α∗

We recall the definition of α∗(μ) from (1.6) and remark that, besides μ, it depends on N
and d. Our analysis of α∗(μ) is based on quantitatively approximating the distribution of
α1 by a Poisson distribution. Owing to the Poisson approximation of binomial random
variables (see e.g. [12, Lemma A.6]) and the Stirling approximation of factorials, we
have

P(dα1 = k) = dk

k! e−d
(

1 + O

(
k2

N 2 +
d2

N

))
= exp(− fd(k/d) + O(k−1)) (A.1)

for k �
√
N , where fd(α) ..= d(α log α − α + 1) + 1

2 log(2παd) for α > 0.

Lemma A.1. If μ ∈ [0, 1 − ε] for some constant ε ∈ (0, 1) then there is a constant
T � 2 such that if d � 1 and t ..= log N

d � T then

α∗(μ) = (1 − μ)t

log t

(
1 + O

(
log log t

log t

))
. (A.2)

Lemma A.1 is proved in [15, Appendix A]. We use it to derive two simple consequences.

Lemma A.2. Let 1 � d � 3 log N and μ ∈ [0, 1 − ε] for some constant ε ∈ (0, 1). If
x ∈ V then

αx � log N

d log
( 10 log N

d

) .

Proof. Let T be as in Lemma A.1. If log N
d � T then Lemma A.2 follows directly from

Lemma A.1 and the definition of V in (2.1). If log N
d < T � 1 then αx � α∗(μ) � 2 + κ

directly implies the lemma as log N

d log
(

10 log N
d

) � 1.

Corollary A.3. Let μ, ν ∈ [0, 1 − ε] for some constant ε > 0. Then there is a constant
T ≡ T (ε) � 2 such that if t ..= log N

d � T then

	(α∗(ν))

	(α∗(μ))
=
√

1 − ν

1 − μ

(
1 + O

(
log log t

log t

))
.

Proof. Proof. Choose T as in Lemma A.1, which then yields that α∗(ν)
α∗(μ)

= 1−ν
1−μ

(
1 +

O
( log log t

log t

))
. Hence, using min{α∗(ν), α∗(μ)} � t

log t , we get

	(α∗(ν))

	(α∗(μ))
=
√

α∗(ν)

α∗(μ)

(
1 + O

(
1

α∗(ν)
+

1

α∗(μ)

))
=
√

1 − ν

1 − μ

(
1 + O

(
log log t

log t

))
.
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Fig. 11. Left: an illustration of the function μ �→ α∗(μ), the asymptotic version of α∗(μ). We plot it for
the values b = 2.0, 2.1, . . . , 2.5, corresponding to the graphs from top to bottom. Each graph crosses the
horizontal axis at μ = 1 − b

b∗ and the vertical axis at α = αmax(b). Right: the behaviour of the exponent
ρb of the density of states from (B.4), as a function of the energy λ. Here d = b log N with b = 1 and
λmax(b) ≈ 2.0737. We only plot a neighbourhood of the threshold energy 2. The jump at 2 of ρb is from
ρb(2

−) = 1 to ρb(2
+) = 1 − b/b∗ = 2 − 2 log 2

B. Qualitative Behaviour of Degree Sequence and of α∗

In this appendix we describe the qualitative behaviour of the normalized degree sequence
(αx )x∈[N ] and apply it to α∗(μ) from (1.6). For definiteness, we focus on the critical
regime, where d = b log N for some constant b, and consider the limit N → ∞ with
κ = o(1). For detailed proofs, we refer to [12, Appendix A.4].
For b � 0 and α � 2 define

θb(α) ..= 1 − b(α log α − α + 1). (B.1)

For any b � b∗, it is easy to see that for any μ ∈ [0, 1 − b
b∗
]

the equation μ = θb(α) has
a unique solution α � 2, which we denote by α∗(μ). By Poisson approximation from
(A.1), we deduce that, with high probability, for any α � 0 we have

|{x ∈ [N ] .. αx � α}| = N θb(α)+o(1) + o(1). (B.2)

Recalling the definition (1.6), we hence conclude that α∗(μ) = α∗(μ) + o(1). In other
words, α∗(μ) is the asymptotic value of α∗(μ). We refer to Fig. 11 for an illustration of
the function α∗(μ).
Next, we define

αmax(b) ..= α∗(0), λmax(b) ..= 	(αmax(b)), (B.3)

which, by (B.2) and Remark 1.2, have the interpretation of the asymptotic largest normal-
ized degree and largest nontrivial eigenvalue of H , respectively. Moreover, for b < b∗
we define

ρb(λ) ..=
{

θb(	
−1(λ))+ if |λ| � 2

1 if |λ| < 2,
(B.4)

where 	−1(λ) = λ2

2 (1+
√

1 − 4/λ2) for |λ| � 2. Then with high probability the density
of states around energy λ ∈ R equals Nρb(λ)+o(1). For λ > 2, this follows from Remark
1.2 and (B.2). The function ρb is illustrated in Fig. 11.
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C. Largest Eigenvalues of H and Some Submatrices: Proof of Proposition 3.4

The key tool to prove Proposition 3.4 is the following estimate.

Lemma C.1. Let d satisfy (1.5). With high probability, for all ν ∈ [0, 1], we have
‖(H − EH)({x :αx�α∗(ν)})‖ � 	(α∗(ν)) + o(1). (C.1)

The proof of Lemma C.1 is analogous to [12, Proof of Proposition 3.12]. How to deduce
Proposition 3.4 from Lemma C.1 is analogous to the corresponding arguments in [13,16].
In both cases, the details are given in [15, Appendix C].

D. Tools

In this appendix we summarize several well known results used throughout this paper.

D.1. Bennett’s inequality. Define the function h : [0,∞) → [0,∞) by

h(a) ..= (1 + a) log(1 + a) − a. (D.1)

We use the notation Pμ to denote a Poisson random variable with parameter μ � 0, and
Bn,p to denote a binomial random variable with parameters n ∈ N

∗ and p ∈ [0, 1]. The
following estimate is proved in [26, Section 2.7].

Lemma D.1 (Bennett). For 0 � μ � n and a > 0 we have

P(Bn,μ/n − μ � aμ) � e−μh(a), P(Bn,μ/n − μ � −aμ) � e−μa2/2 � e−μh(a),

and a2

2(1+a/3)
� h(a) � a2

2 . By taking n → ∞, the same estimates hold with Bn,μ/n

replaced with Pμ.

D.2. Perturbation theory. The following lemma contains simple perturbation estimates
for approximate eigenvalues and eigenvectors. Its proof can be found in [16, Lemma 4.10].

Lemma D.2. Let M be a real symmetric matrix. Let ε, � > 0 satisfy 5ε � �. Suppose
that M has a unique eigenvalue, λ, in [̂λ − �, λ̂ + �] for some λ̂ ∈ R. Let w be a
corresponding normalized eigenvector of M. If there exists a normalized vector v such
that ‖(M − λ̂)v‖ � ε then, for some σ ∈ {±},

λ − λ̂ = 〈v , (M − λ̂)v〉 + O

(
ε2

�

)
, ‖w − σv‖ = O

(
ε

�

)
.

D.3. Eigenvalue interlacing. For an N ×N Hermitian matrix M , we use the convention
that λi (M) = −∞ for i > N .

Lemma D.3 (Interlacing for minors). Let X ⊂ Y ⊂ [N ] and M be an N ×N Hermitian
matrix. Then, for all i ∈ [N ],

λi+|Y\X |(M (X))+ � λi (M
(Y ))+ � λi (M

(X))+,

where λ+
..= max{λ, 0}.

Lemma D.4 (Interlacing for rank-one perturbations). Let M be an N × N Hermitian
matrix and V a rank-one positive semidefinite N × N matrix. Then, for all i ∈ [N ],

λi+1(M + V ) � λi (M) � λi (M + V ).
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D.4. Resolvent of adjacency matrix of N∗. Define the infinite tridiagonal matrix

M ..=

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0

1 0 1
. . .

0 1 0
. . .

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟
⎠

, (D.2)

which we regard as a bounded operator on �2(N∗). Note that M is the adjacency matrix
of N∗ with the graph structure induced by regarding adjacent numbers as neighbours.

Lemma D.5. Let t > 2. Then 1 − t−1M is invertible with convergent Neumann series
and explicit inverse

(1 − t−1M)−1
1 j = t

(
2

t +
√
t2 − 4

) j

for any j ∈ N
∗.

Proof. By the Schur test,‖M‖ � 2. Therefore, t > 2 implies the invertibility of 1−t−1M
in �2(N∗) and the convergence of the Neumann series representation of its inverse. In
particular, a = (a j ) j∈N∗ ∈ �2(N∗) with a j

..= (1 − t−1M)−1
1 j for any j ∈ N

∗. With

e1
..= (δ1 j ) j∈N∗ , the definition of the resolvent yields (1 − t−1M)a = e1 and, thus,

a1 − t−1a2 = 1,

(
a j+1
a j

)
= T (t)

(
a j
a j−1

)
, T (t) ..=

(
t −1
1 0

)
(D.3)

for any j ∈ N satisfying j � 2. The transfer matrix T (t) has the two eigenvalues, γ and
γ −1, where γ ..= 2

t+
√
t2−4

. As t > 2, we have γ < 1 and, hence, a ∈ �2(N∗) implies

a j = γ a j−1 = γ j−1a1 for any j � 2. Together with the first relation in (D.3), we obtain
a1 = 2t

t+
√
t2−4

, which completes the proof.

Proof of Proposition 3.2. We show that each item holds individually with high probabil-
ity. For the proof of (i), we estimateP(|V| � t Nμ) � t−1N−μ

E|V| = t−1N−μNP(α1 �
α∗) � t−1 for t > 0 by the definitions of V and α∗ in (2.1) and (1.6), respectively. This
proves (i). Item (ii) is a consequence of [13, Lemma 5.5] with k = 1, Proposition 3.1
(i), r �

( 1
5 − μ

4

) log N
log d , and d � √

log N . Item (iii) follows from [16, eq. (9.5)] with the

choices τ = α∗ and n = 2, exp(−dh(α∗ − 1 − 3
d )) � Nμ−1+o(1) and r �

( 1
3 −μ

) log N
log d .

To prove (iv), we set η/2 ..= r log d
log N and conclude from (i), Proposition 3.1 (i) and (ii)

that |⋃x∈V Br (x)| � Nμ+η/2+o(1). Thus, we obtain (iv) by arguing similarly as in [16,
Proof of Proposition 4.4], see especially [16, eq. (9.10)].
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38. Erdős, L., Knowles, A.: The Altshuler–Shklovskii formulas for random band matrices I: the unimodular
case. Commun. Math. Phys. 333, 1365–1416 (2015)
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42. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdős–Rényi graphs I: Local semicircle
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