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Abstract: We are concerned with global finite-energy solutions of the three-dimensional
compressible Euler–Poisson equations with gravitational potential and general pres-
sure law, especially including the constitutive equation of white dwarf stars. In this
paper, we construct global finite-energy solutions of the Cauchy problem for the Euler–
Poisson equations with large initial data of spherical symmetry as the inviscid limit
of the solutions of the corresponding Cauchy problem for the compressible Navier–
Stokes–Poisson equations. The strong convergence of the vanishing viscosity solutions
is achieved through entropy analysis, uniform estimates in L p, and a more general com-
pensated compactness framework via several new ingredients. A key estimate is first
established for the integrability of the density over unbounded domains independent of
the vanishing viscosity coefficient. Then a special entropy pair is carefully designed via
solving a Goursat problem for the entropy equation such that a higher integrability of the
velocity is established, which is a crucial step. Moreover, the weak entropy kernel for
the general pressure law and its fractional derivatives of the required order near vacuum
(ρ = 0) and far-field (ρ = ∞) are carefully analyzed. Owing to the generality of the
pressure law, only the W −1,p

loc -compactness of weak entropy dissipation measures with
p ∈ [1, 2) can be obtained; this is rescued by the equi-integrability of weak entropy pairs
which can be established by the estimates obtained above, so that the div-curl lemma still
applies. Finally, based on the above analysis of weak entropy pairs, the L p compensated
compactness framework for the compressible Euler equations with general pressure law
is established. This new compensated compactness framework and the techniques devel-
oped in this paper should be useful for solving further nonlinear problems with similar
features.
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1. Introduction

We are concerned with global finite-energy solutions of the three-dimensional (3-D)
compressible Euler–Poisson equations (CEPEs) that take the form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ + ∇ · M = 0,

∂tM + ∇ ·
(M ⊗ M

ρ

)
+ ∇ P + ρ∇� = 0,

�� = kgρ,

(1.1)

for (t, x) := (t, x1, x2, x3) ∈ R
4
+ := R+ × R

3 = (0,∞) × R
3. System (1.1) is used to

model the motion of compressible gaseous stars under a self-consistent gravitational field
(cf. [7]), where ρ is the density, P = P(ρ) is the pressure, M ∈ R

3 is the momentum,
� represents the gravitational potential of gaseous stars as kg > 0, ∇ = (∂x1 , ∂x2 , ∂x3),
and � = ∂x1x1 + ∂x2x2 + ∂x3x3 . Without loss of generality, by scaling, we take kg = 1
throughout this paper.

The constitutive pressure-density relation P(ρ) depends on the types of gaseous stars.
The class of polytropic gases, i.e.,

P(ρ) = κργ for κ > 0 and γ ∈ (1, 3), (1.2)

has been widely investigated in mathematics. From the point view of astronomy, the
constitutive pressure P(ρ) for certain gaseous stars is not of the polytropic form. For
example, the pressure law of a white dwarf star takes the following form (cf. [7,66]):

P(ρ) = C1

∫ C2ρ
1
3

0

s4
√
C3 + s2

ds for ρ > 0, (1.3)

where C1, C2, and C3 are positive constants. It can be checked that P(ρ) ∼= κ1ρ
5
3 as

ρ → 0 and P(ρ) ∼= κ2ρ
4
3 as ρ → ∞ for some positive constants κ1 and κ2.

In this paper, we consider a general pressure law in which any pressure function P(ρ)
satisfies the following conditions:

(i) The pressure function P(ρ) is in C1([0,∞)) ∩ C4(R+) and satisfies the hyperbolic
and genuinely nonlinear conditions:

P ′(ρ) > 0, 2P ′(ρ) + ρP ′′(ρ) > 0 for ρ > 0. (1.4)
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(ii) There exists a constant ρ∗ > 0 such that

P(ρ) = κ1ρ
γ1

(
1 + P1(ρ)

)
for ρ ∈ [0, ρ∗), (1.5)

with some constants γ1 ∈ (1, 3) and κ1 > 0, and a function P1(ρ) ∈ C4(R+)

satisfying that |P( j)
1 (ρ)| ≤ C∗ργ1−1− j for ρ ∈ (0, ρ∗) and j = 0, · · · , 4, where

C∗ > 0 is a constant depending only on ρ∗.
(iii) There exists a constant ρ∗ > ρ∗ > 0 such that

P(ρ) = κ2ρ
γ2

(
1 + P2(ρ)

)
for ρ ∈ [ρ∗,∞), (1.6)

with some constants γ2 ∈ ( 6
5 , γ1] and κ2 > 0, and a function P2(ρ) ∈ C4(R+)

satisfying that |P( j)
2 (ρ)| ≤ C∗ρ−ε− j for ρ ∈ [ρ∗,∞) and j = 0, · · · , 4, where

ε > 0, and C∗ > 0 is a constant depending only on ρ∗.

It is direct to see that the polytropic gases in (1.2) satisfy assumptions (1.4)–(1.6).
Moreover, the white dwarf star (1.3) is also included with

γ1 = 5

3
, κ1 = 1

5
√C3

C1C5
2 , γ2 = 4

3
, κ2 = 1

4
C1C4

2 , ε = 2

3
. (1.7)

The restriction: γ2 > 6
5 is necessary to ensure the global existence of finite-energy

solutions with finite total mass. Such a condition is also needed for the existence of the
Lane–Emden solutions; see [7,47].

We consider the Cauchy problem of (1.1) with the initial data:

(ρ,M)(0, x) = (ρ0,M0)(x) → (0, 0) as |x| → ∞, (1.8)

subject to the far field condition:

�(t, x) → 0 as |x| → ∞. (1.9)

The global existence of solutions of the Cauchy problem (1.1) and (1.8)–(1.9) is a
longstanding open problem. Many efforts have been made for the polytropic gas case
(1.2). Considerable progress has been made on the smooth or special solutions under
some restrictions on the initial data. Among the most famous solutions of CEPEs (1.1)
are the Lane–Emden steady solutions (cf. [47]), which describe spherically symmetric
gaseous stars in equilibrium and minimize the energy among all possible configurations
(cf. [46]). There exist expanding solutions for the non-steady CEPEs (1.1). Hadzić–Jang
[34] proved the nonlinear stability of the affine solution (which is linearly expanding)
under small spherically symmetric perturbations for γ = 4

3 , while the stability problem
for γ = 4

3 is still widely open. A class of linearly expanding solutions for γ = 1 + 1
k

with k ∈ N\{1}, or γ ∈ (1, 14
13 ), was further constructed in [35]. For 1 < γ < 4

3 , the
concentration (collapse) phenomena may happen. Indeed, as γ = 4

3 , there exists an
homologous concentration solution; see [28,30,55]. More recently, Guo–Hadzić–Jang
[31] observed a continued concentration solution for 1 < γ < 4

3 ; see also [37]. A kind
of smooth radially symmetric self-similar solutions exhibiting gravitational collapse for
1 ≤ γ < 4

3 can be found in [32,33]. We refer to [51,54] for the local well-posedness of
smooth solutions.

Owing to the strong nonlinearity and hyperbolicity, the smooth solutions of (1.1)
with (1.2) may break down in a finite time, especially when the initial data are large
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(cf. [16,55]). Therefore, weak solutions have to be considered for large initial data. For
gaseous stars surrounding a solid ball, Makino [56] obtained the local existence of weak
solutions for γ ∈ (1, 5

3 ] with spherical symmetry; also see Xiao [69] for global weak
solutions with a class of initial data. For this case, the possible singularity at the origin is
prevented since the domain was considered outside a ball. Luo–Smoller [50] proved the
conditional stability of rotating and non-rotating white dwarfs and rotating supermassive
stars; see also Rein [61] for the conditional nonlinear stability of the Lane–Emden steady
solutions.

Another fundamental question is whether global solutions can be constructed via the
vanishing viscosity limit of the solutions of the compressible Navier–Stokes–Poisson
equations (CNSPEs):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ + ∇ · M = 0,

∂tM + ∇ ·
(M ⊗ M

ρ

)
+ ∇ P + ρ∇� = ε∇ ·

(
μ(ρ)D

(M
ρ

))
+ ε∇

(
λ(ρ)∇ · (M

ρ

))
,

�� = ρ,

(1.10)
where D(M

ρ
) = 1

2

(∇(M
ρ
) + (∇(M

ρ
))⊥

)
is the stress tensor, the Lamé (shear and bulk)

viscosity coefficients μ(ρ) and λ(ρ) depend on the density (that may vanish on the
vacuum) and satisfy

μ(ρ) ≥ 0, μ(ρ) + 3λ(ρ) ≥ 0 for ρ ≥ 0, (1.11)

and parameter ε > 0 is the inverse of the Reynolds number. Formally, as ε → 0, the
sequence of the solutions of CNSPEs (1.10) converges to a corresponding solution of
CEPEs (1.1). However, the rigorous proof has been one of the most challenging problems
in mathematical fluid dynamics; see Chen-Feldman [9] and Dafermos [21].

The limit problem with vanishing physical viscosity dates back to the pioneering
paper by Stokes [65]. Most of the known results were around the inviscid limit from
the compressible Navier–Stokes to the Euler equations for the polytropic gas case (1.2).
The first rigorous proof of the vanishing viscosity limit from the Navier–Stokes to the
Euler equations was provided by Gilbarg [29], in which he established the existence
and inviscid limit of the Navier–Stokes shock layers. For the case of large data, due
to the lack of L∞ uniform estimate, the L∞ compensated compactness framework
[22–24,36,48,49] fails to work directly in the inviscid limit of the compressible Navier–
Stokes equations. An L p compensated compactness framework was first studied by
LeFloch–Westdickenberg [43] for the isentropic Euler equations for the case γ ∈ (1, 5

3 )

in (1.2), and was further developed by Chen–Perepelitsa [13] to all γ > 1 for (1.2) with a
simplified proof; see also [17] for spherically symmetric solutions of the M-D isentropic
Euler equations. We also refer to [63,64] for the 1-D case of asymptotically isothermal
gas, i.e., γ2 = 1 in (1.6). More recently, Chen–He–Wang–Yuan [10] established both the
strong inviscid limit of CNSPEs (1.10) and the global existence of spherically symmetric
solutions of CEPEs (1.1) with large data for polytropic gases (1.2).

The main purpose of this paper is to establish the global existence of spherically
symmetric finite-energy solutions of (1.1) with general pressure law (1.4)–(1.6):

ρ(t, x) = ρ(t, r), M(t, x) = m(t, r)
x
r
, �(t, x) = �(t, r) for r = |x|, (1.12)
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subject to the initial condition:

(ρ,M)(0, x) = (ρ0,M0)(x) = (ρ0(r),m0(r)
x
r
) → (0, 0) as r → ∞, (1.13)

and the asymptotic boundary condition:

�(t, x) = �(t, r) → 0 as r → ∞. (1.14)

Systems (1.1) and (1.10) for spherically symmetric solutions take the following respec-
tive forms: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + mr +
2

r
m = 0,

mt +
(m2

ρ
+ P(ρ)

)

r
+

2

r

m2

ρ
+ ρ�r = 0,

�rr +
2

r
�r = ρ,

(1.15)

and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + mr +
2

r
m = 0,

mt +
(m2

ρ
+ P(ρ)

)

r
+

2

r

m2

ρ
+ ρ�r

= ε
(
(μ(ρ) + λ(ρ))

((m

ρ

)

r +
2

r

m

ρ

))

r
− 2ε

r
μ(ρ)r

m

ρ
,

�rr +
2

r
�r = ρ.

(1.16)

The study of spherically symmetric solutions is motivated by many important physical
problems such as stellar dynamics including gaseous stars and supernovae formation [7,
60,68]. An important question is how the waves behave as they move radially inward near
the origin, especially under the self-gravitational force for gaseous stars. The spherically
symmetric solutions of the compressible Euler equations may blow up near the origin
[20,44,57,68] at certain time in some situations. Considering the effect of gravitation,
a fundamental problem for CEPEs (1.1) is whether a concentration (delta-measure) is
formed at the origin. This problem was answered in [10] for polytropic gases in (1.2)
when the initial total-energy is finite that no delta-measure is formed for the density at
the origin for the two cases: (i) γ > 6

5 ; (ii) γ ∈ ( 6
5 ,

4
3 ] and the initial total-energy is

finite and the total mass is less than a critical mass.
In this paper, we establish the global existence of finite-energy solutions of the Cauchy

problem (1.1) and (1.13)–(1.14) with spherical symmetry as the inviscid limits of global
weak solutions of CNSPEs (1.10) with general pressure law (1.4)–(1.6), especially in-
cluding the white dwarf star (1.3). The L p compensated compactness framework for
the general pressure is also established. Moreover, it is proved that no delta-measure is
formed for the density at the origin in the limit, and the critical mass for the white dwarf
star is the same as the Chandrasekhar limit for the polytropic gas (1.2) with γ = 4

3 . The
precise statements of the main results are given in Sect. 2.

To achieve these, the main strategy is to develop entropy analysis, uniform estimates
in L p, and a more general compensated compactness framework to prove that there
exists a strongly convergent subsequence of solutions of CNSPEs (1.10) and show that
the limit is the finite-energy weak solution of CEPEs (1.1) with general pressure law.
This consists of the following three steps:
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• Establish the uniform L p estimates of the solutions of CNSPEs (1.10) independent
of ε for some p > 1;

• Show the compactness for weak entropy dissipation measures;
• Prove that the associated Young measure ν(t,r) is the delta measure almost ev-

erywhere which leads to a subsequence of solutions of CNSPEs (1.10) strongly
converging to the global finite-energy solution of CEPEs (1.1).

The generality of pressure P(ρ) causes essential difficulties in the analysis for all of
the above steps. We now describe these difficulties and show how they can be overcome:

(i) The crucial step in the L p estimates is to show that ρ|u|3 (u := m
ρ

is the velocity)

is uniformly bounded in L1
loc. This estimate might be obtained through constructing

appropriate entropy η̂, which is a solution of (ρ, u) to the entropy equation:

ηρρ − P ′(ρ)
ρ2 ηuu = 0, (1.17)

with corresponding entropy flux q̂ . If (ρ, u) is the solution of (1.16), any entropy-entropy
flux pair (entropy pair, for short) (η̂, q̂) satisfies

(η̂r2)t + (q̂r2)r + 2r (−q̂ + ρuη̂ρ + ρu2η̂m)

= ε r2((ρur )r + 2ρ
(u

r

)

r

)
η̂m − ρ

∫ r

a
ρ z2dz η̂m;

see (5.68) below. For the polytropic gas case (1.2), there is an explicit formula of the
entropy kernel χ(ρ, u) so that χ ∗ψ is the entropy, where ∗ denotes the convolution and
ψ(s) is any smooth function. By choosing ψ(s) = 1

2 s|s| as in [10], the corresponding
entropy flux q̂ satisfies that q̂ ≥ c0ρ|u|3 and −q̂ +ρuη̂ρ +ρu2η̂m ≤ 0. Then the uniform
bound of ρ|u|3r2 in L1

loc follows (cf. [10]).
However, there is no explicit formula of the entropy kernel χ for the general pressure

satisfying (1.4)–(1.6). Even for the special entropy pair generated by ψ(s) = 1
2 s|s|, it is

difficult to prove that q̂ ≥ c0ρ|u|3 and −q̂ +ρuη̂ρ+ρu2η̂m ≤ 0, due to the lack of explicit
formula of the entropy kernel χ . Hence, the above approach does not apply directly, so
we have to seek a new method to establish the uniform local integrability of ρ|u|3. One of
the novelties of this paper is that a special entropy η̂ is constructed by solving a Goursat
problem of the entropy equation (1.17) in the domain: |u| ≤ k(ρ) := ∫ ρ

0

√
P ′(y)/y dy,

so that η̂ is chosen as the mechanical energy η∗ (see (2.13)) when u ≥ k(ρ), −η∗
when u ≤ −k(ρ), and the boundary condition for the Goursat problem is given on the
characteristics curves: u ± k(ρ) = 0. One advantage of such a special entropy pair
(η̂, q̂) is that q̂ ≥ c0ρ|u|3 as |u| ≥ k(ρ), and |q̂| ≤ Cργ2+1 for large ρ as |u| ≤ k(ρ)
via careful analysis for the Goursat problem; see Lemma 5.8 for details. Moreover,
−q̂ +ρuη̂ρ +ρu2η̂m vanishes as |u| ≥ k(ρ). Similarly, |− q̂ +ρuη̂ρ +ρu2η̂m | ≤ Cργ2+1

for large ρ as |u| ≤ k(ρ).
To show ρ|u|3 is uniformly bounded in L1

loc, it remains to prove that

∫ T

0

∫ ∞

d
ργ2+1 rdrdt (1.18)

is uniformly bounded for any T > 0 and d > 0. It should be noted that the local
integrability

∫ T
0

∫ D
d ργ2+1 drdt ≤ C was obtained in [10], but it is not enough yet to



Global Finite-Energy Solutions of the Compressible Euler–Poisson Equations Page 7 of 85    77 

obtain the uniform L1
loc estimate for ρ|u|3. Fortunately, we can obtain even stronger

estimate than (1.18), i.e.,
∫ T

0

∫ ∞

d
ργ2+1 r2drdt ≤ C, (1.19)

by an elaborate analysis; see Lemma 5.6 and Corollary 5.7 for details.
(ii) For the polytropic gas case in (1.2), Chen–Perepelitsa [13,14] and Chen–He–

Wang–Yuan [10] proved the H−1
loc –compactness for weak entropy dissipation measures

via the explicit formula of the weak entropy kernel χ by convolution with any test
function of compact support, which also implies that the entropy pair (η, q) is in Lr

loc, r >
2. However, it is not clear how the H−1

loc –compactness for the general pressure satisfying
(1.4)–(1.6) can be shown by using the expansions of the weak entropy kernel established
in [11,12]. Motivated by [64], we instead show the W −1,p

loc –compactness for 1 ≤ p < 2,
so that an improved div-curl lemma (cf. [19]) applies, which leads to the commutation
identity for the entropy pairs. In fact, we can show that the entropy flux function q is

bounded by ρ
γ2+1

2 (see (4.81)) as ρ is large by careful analysis on the expansion of the
entropy pair so that q ∈ L2

loc. Then the interpolation compactness yields the W −1,p

compactness for 1 ≤ p < 2; see Lemma 7.1 for details.
(iii) The argument for the reduction of the associated Young measure ν(t,r)(ρ, u),

introduced in [10,13,14], for the polytropic gas case in (1.2), can be roughly stated as
follows: Show first that every connected subset of the support of the Young measure is
a bounded interval; then use the L∞ reduction technique introduced in [8,22,24,48] for
a bounded supported Young measure to show that the Young measure is either a delta
measure or supported on the vacuum line. This method essentially relies on the explicit
formula of the weak entropy kernelχ . For the general pressure law satisfying (1.4)–(1.6),
the above method does not apply directly, since it is difficult to show that every connected
subset of the support of the Young measure is a bounded interval. Motivated by [11,12,
48,63,64], we carefully analyze the singularities of ∂λ1+1χ with λ1 = 3−γ1

2(γ1−1) for large ρ

and fully exploit the property: (ργ2+1, ρ|u|3) ∈ L1(dν(t,r)) so that the ∂λ1+1−derivatives
can be operated in the commutation relation; see Lemmas 4.11–4.14 for details. Then we
prove that the Young measure is either a delta measure or supported on the vacuum line by
similar arguments as in [11,12,48,64]. This new compensated compactness framework
and the techniques developed in this paper should be useful for solving further nonlinear
problems with similar features.

Finally, we remark that there are some related results on CNSPEs (1.10) and the
compressible Euler equations. For weak solutions of CNSPEs (1.10), we refer to [26,
38,40,41] with constant viscosity, and [25,27,70] with density-dependent viscosity.
Recently, Luo-Xin-Zeng [51–53] proved the large-time stability of the Lane–Emden
solution for γ ∈ ( 4

3 , 2). We also refer to the BD entropy developed in [2–5], which
provides a new estimate for the gradient of the density. For the compressible Euler
equations, we refer to [8,15,39,44,62] and the references cited therein.

The rest of this paper is organized as follows: In Sect. 2, the finite-energy solutions of
the Cauchy problem (1.1) and (1.8)–(1.9) for CEPEs are introduced, and the main theo-
rems of this paper are given. In Sect. 3, some elementary quantities and basic properties
about the pressure and related internal energy are provided, and then some remarks on
Mc are also given. The entropy analysis for weak entropy pairs for the general pres-
sure satisfying (1.4)–(1.6) is presented in Sect. 4, especially a special entropy pair is
constructed by solving a Goursat problem for the entropy equation (2.14). In Sect. 5, a
free boundary problem (5.1)–(5.6) for (1.16) is analyzed, and some uniform estimates
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of solutions are derived, including the basic energy estimate, the BD-type entropy esti-
mate, and the higher integrabilities of the density and the velocity. In Sect. 6, the global
existence of weak solutions of CNSPEs (1.10) is established, and some uniform L p es-
timates in Theorem 2.1 are also obtained. In Sect. 7, we prove the W −1,p

loc –compactness
of the entropy dissipation measures for the weak solutions of (1.16) and complete the
proof of Theorem 2.1. In Sect. 8, the L p–compensated compactness framework for the
general pressure law (1.4)–(1.6) (Theorem 2.2) is established, which leads to the proof of
Theorem 2.3 by taking the inviscid limit of weak solutions of CNSPEs (1.10) in Sect. 9.
Appendix A is devoted to the presentation of both the sharp Sobolev inequality that is
used in Sect. 5 and some variants of Grönwall’s inequality which are used in the proof
of several estimates in Sect. 4.

Notations: Throughout this paper, we denote Cα(�), L p(�),W k,p(�), and Hk(�)

as the standard Hölder space, and the corresponding Sobolev spaces, respectively, on
domain � for α ∈ (0, 1) and p ∈ [1,∞]. Ck

0 (�) represents the space of continuously
differentiable functions up to the kth order with compact support over �, and D(�) :=
C∞

0 (�). We also use L p(I ; r2dr) or L p([0, T ) × I ; r2drdt) for an open interval I ⊂
R+ with measure r2dr or r2drdt correspondingly, and L p

loc([0,∞); r2dr) to represent
L p([0, R]; r2dr) for any fixed R > 0.

2. Mathematical Problem and Main Theorems

The spherically symmetric initial data function (ρ0,M0)(x) given in (1.13) is assumed
to be of both finite initial total-energy:

E0 :=
∫

R3

(1

2

∣
∣
∣
M0√
ρ0

∣
∣
∣
2

+ ρ0e(ρ0)
)
(x) dx = ω3

∫ ∞

0

(1

2

m2
0

ρ0
+ ρ0e(ρ0)

)
(r) r2dr < ∞,

(2.1)

and initial total-mass:

M :=
∫

R3
ρ0(x) dx = ω3

∫ ∞

0
ρ0(r) r2dr < ∞, (2.2)

where the internal energy e(ρ) is related to the pressure by

e′(ρ) = P(ρ)

ρ2 , e(0) = 0, (2.3)

and ωn := 2π
n
2

�( n
2 )

denotes the surface area of the unit sphere in R
n . The initial potential

�0(x) is determined by

��0(x) = ρ0(x), lim|x|→∞�0(x) = 0. (2.4)

For γ2 ∈ ( 6
5 ,

4
3 ], we define the critical mass Mc as follows:

(i) When γ2 = 4
3 ,

Mc := Mch, (2.5)
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where Mch is the Chandrasekhar limit that is the total mass of the Lane–Emden steady

solution (ρs(|x|), 0) for P(ρ) = κ2ρ
4
3 : ρs(|x|) has compact support and is determined

by the equations:

∇x P(ρs(|x|)) + ρs(|x|)∇x�(x) = 0, �x�(x) = ρs(|x|), P(ρs |x|) = κ2(ρs(|x|)) 4
3 ,

with the center density ρs(0) = �. It is well-known that Mch is a uniform constant with
respect to the center density � (cf. [7]).

(ii) When γ2 ∈ ( 6
5 ,

4
3 ),

Mc := sup
β>0

Mc(β) (2.6)

with

(4 − 3γ2)
( Bβ

3(γ2 − 1)

)− 3(γ2−1)
4−3γ2 Mc(β)

− 5γ2−6
4−3γ2 − ω−1

3 βMc(β) = E0

ω3
, (2.7)

and

Bβ := 2

3
ω

− 2
3

4 ω

4−3γ2
3(γ2−1)

3 (Cmax(β))
5γ2−6

3(γ2−1) ,

Cmax(β) := sup
ρ≥0

(
ργ2−1(β + e(ρ))−1)

1
5γ2−6 > 0.

(2.8)

It is clear in (2.6)–(2.8) that Mc(β) is well determined for β > 0 and γ2 ∈ ( 6
5 ,

4
3 ).

Some useful properties of Mc := supβ>0 Mc(β) will be presented in Proposition 3.3
below. We also point out that Mc in (2.5) is strictly larger than the one obtained in [10,
(2.8)] for γ2 = 4

3 (cf. [18]).
For the spherically symmetric initial data (ρ0,m0,�0)(r) imposed in (1.12)–(1.14)

satisfying (2.1)–(2.2), using similar arguments as in [10, Appendix A], we can construct
a sequence of approximate initial data functions (ρε0,mε

0,�
ε
0)(r) satisfying

∫ ∞

0
ρε0(r) r2dr = M

ω3
, �ε

0r = 1

r2

∫ r

0
ρε0(z) z2dz,

Eε
0 := ω3

∫ ∞

0

(1

2

∣
∣
∣

mε
0√
ρε0

∣
∣
∣
2

+ ρε0e(ρε0)
)

r2dr ≤ C(E0 + 1) < ∞,

Eε
1 := ε2ω3

∫ ∞

0

∣
∣∂r

√

ρε0(r)
∣
∣2

r2dr ≤ Cε(M + 1) < ∞.

(2.9)

Moreover, as ε → 0, (Eε
0, Eε

1) → (E0, 0) and

(ρε0, ρ
ε
0uε0)(r) → (ρ0, ρ0u0)(r) in Lq̃([0,∞); r2dr)× L1([0,∞); r2dr),

�ε
0r → �0r in L2([0,∞); r2dr),

where q̃ ∈ {1, γ2}. Furthermore, there exists ε0 ∈ (0, 1] such that, for any ε ∈ (0, ε0],

M < Mε
c for γ2 ∈ (

6

5
,

4

3
], (2.10)

where Mε
c is defined in (2.5)–(2.8) by replacing E0 with Eε

0.
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Now we introduce the weak entropy pairs of the 1-D isentropic Euler system (cf.
[11,42]):

⎧
⎨

⎩

ρt + mr = 0,

mt +
(m2

ρ
+ P(ρ)

)

r = 0.
(2.11)

A pair of functions (η(ρ,m), q(ρ,m)) is called an entropy pair of (2.11) if

∇q(ρ,m) = ∇η(ρ,m)∇
( m

m2

ρ
+ P(ρ)

)
. (2.12)

Moreover, η(ρ,m) is called a weak entropy if η(ρ,m)|ρ=0 = 0, and a convex entropy
if ∇2η(ρ,m) ≥ 0. The mechanical energy and energy flux pair is defined as

η∗(ρ,m) = 1

2

m2

ρ
+ ρe(ρ), q∗(ρ,m) = 1

2

m3

ρ
+ m(ρe(ρ))′, (2.13)

which is a convex weak entropy pair. From (2.12), any entropy satisfies

ηρρ − P ′(ρ)
ρ2 ηuu = 0 (2.14)

with u = m
ρ

. It is known in [11,12,48,49] that any regular weak entropy can be generated
by the convolution of a smooth function ψ(x) with the fundamental solution χ(ρ, u, s)
of the entropy equation (2.14), i.e.,

ηψ(ρ, u) =
∫

R

χ(ρ, u, s)ψ(s) ds. (2.15)

The corresponding entropy flux is generated from the flux kernel σ(ρ, u, s) (see (4.56)),
i.e.,

qψ(ρ, u) =
∫

R

σ(ρ, u, s)ψ(s) ds. (2.16)

We first consider the Cauchy problem of CNSPEs (1.10) with approximate initial
data:

(ρ,M,�)|t=0 = (ρε0,Mε
0,�

ε
0)(x) := (ρε0(r),mε

0(r)
x
r
,�ε

0(r)), (2.17)

subject to the far field condition:

�ε(t, x) −→ 0 as |x| → ∞. (2.18)

For concreteness, we take ε ∈ (0, 1] and the viscosity coefficients (μ(ρ), λ(ρ)) = (ρ, 0)
in (1.10).

Definition 2.1. A triple (ρε,Mε,�ε)(t, x) is said to be a weak solution of the Cauchy
problem (1.10) and (2.17) if
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(i) ρε(t, x) ≥ 0, and (Mε, Mε√
ρε
)(t, x) = 0 a.e. on {(t, x) : ρε(t, x) = 0} (vacuum),

ρε ∈ L∞(0, T ; Lγ2 (R3)), ∇√
ρε ∈ L∞(0, T ; L2(R3)),

Mε

√
ρε

∈ L∞(0, T ; L2(R3)), �ε ∈ L∞(0, T ; L6(R3)), ∇�ε ∈ L∞(0, T ; L2(R3)).

(ii) For any t2 ≥ t1 ≥ 0 and any ζ(t, x) ∈ C1
0([0,∞) × R

3), the mass equation (1.10)1
holds in the sense:
∫

R3
(ρεζ )(t2, x) dx −

∫

R3
(ρεζ )(t1, x) dx =

∫ t2

t1

∫

R3
(ρεζt + Mε · ∇ζ )(t, x) dxdt.

(iii) For any � = (�1, �2, �3)(t, x) ∈ (C2
0 ([0,∞) × R

3))3, the momentum equations
(1.10)2 hold in the sense:

∫

R
4
+

(
Mε ·�t +

Mε

√
ρε

· ( Mε

√
ρε

· ∇)
� + P(ρε)∇ ·�

)
dxdt +

∫

R3
Mε

0(x) ·�(0, x) dx

= −ε
∫

R
4
+

(1

2
Mε · (

�� + ∇(∇ ·�)) +
Mε

√
ρε

· (∇√
ρε · ∇)

�
)

dxdt

− ε

∫

R
4
+

∇√
ρε · ( Mε

√
ρε

· ∇)
� dxdt +

∫

R
4
+

(
ρε∇�ε ·�)

(t, x) dx.

(iv) For any t ≥ 0 and ξ(x) ∈ C1
0(R

3),
∫

R3
∇�ε(t, x) · ∇ξ(x) dx = −

∫

R3
ρε(t, x)ξ(x) dx.

Then we have

Theorem 2.1 (Global existence of spherically symmetric solutions for CNSPEs). As-
sume that the initial data function (ρε0,Mε

0,�
ε
0)(x) is given in (2.17)–(2.18) with

(ρε0,mε
0,�

ε
0)(r) satisfying (2.9)–(2.10). Then, for each fixed ε ∈ (0, 1], there exists

a global weak solution (ρε,Mε,�ε)(t, x) of the Cauchy problem (1.10) and (2.17)–
(2.18) in the sense of Definition 2.1 with following spherically symmetric form:

(ρε,Mε,�ε)(t, x) = (ρε(t, r),mε(t, r)
x
r
,�ε(t, r)) for r = |x| (2.19)

such that, for t ≥ 0,
∫

R3

(1

2

∣
∣
∣
Mε

√
ρε

∣
∣
∣
2

+ ρεe(ρε)− 1

2
|∇�ε|2

)
dx ≤

∫

R3

(1

2

∣
∣
∣
Mε

0√
ρε0

∣
∣
∣
2

+ ρε0e(ρε0)− 1

2
|∇�ε

0|2
)

dx.

(2.20)

Furthermore, for (ρε,mε,�ε)(t, r), there exists a measurable function uε(t, r) with

uε(t, r) := mε(t, r)

ρε(t, r)
a.e. on

{
(t, r) : ρε(t, r) = 0

}
,

and uε(t, r) := 0 a.e. on
{
(t, r) : ρε(t, r) = 0 or r = 0

}
such that mε(t, r) =

(ρεuε)(t, r) a.e. on R
2
+ := R+ × R+. Moreover, the following properties hold:

(i)
∫ ∞

0
ρε(t, r) r2dr =

∫ ∞

0
ρε0(r) r2dr = M

ω3
for t ≥ 0, (2.21)



   77 Page 12 of 85 G.-Q. G. Chen, F. Huang, T. Li, W. Wang, Y. Wang

(ii)
∫ ∞

0
η∗(ρε,mε)(t, r) r2dr + ε

∫

R
2
+

(ρε|uε|2)(t, r) r2drdt + ‖∇�ε‖L2(R3)

+ ‖�ε‖L6(R3) +
∫ ∞

0

( ∫ r

0
ρε(t, z) z2dz

)
ρε(t, r) rdr ≤ C (M, E0) for t ≥ 0,

(2.22)

(iii) sup
t∈[0,T ]

ε2
∫ ∞

0

∣
∣
∣

(√
ρε

)

r

∣
∣
∣
2

r2dr + ε
∫ T

0

∫ ∞

0

P ′(ρε)
ρε

∣
∣ρεr

∣
∣2

r2drdt

≤ C(M, E0, T ), (2.23)

(iv)
∫ T

0

∫ D

d
ρε

∣
∣uε

∣
∣3

r2drdt ≤ C(d, D, M, E0, T ), (2.24)

(v)
∫ T

0

∫ ∞

d
(ρε)γ2+1 r2drdt ≤ C(d, M, E0, T ), (2.25)

for any T ∈ R+ and interval [d, D] � (0,∞), where C(M, E0), C(M, E0, T ), and
C(d, D, M, E0, T ) are positive constants independent of ε. In addition, for ε ∈ (0, 1],

∂tη
ψ

(
ρε,mε

)
+ ∂r qψ

(
ρε,mε

)
is compact in W −1,p

loc (R2
+) (2.26)

for any p ∈ [1, 2), where ψ(s) is any smooth function with compact support on R.

Remark 2.1. In this paper, we require the density-dependent viscosity coefficients μ(ρ)
and λ(ρ) to satisfy the BD entropy relation (cf. [2–5]):

ρμ′(ρ) = μ(ρ) + λ(ρ), (2.27)

which is important for us to derive the estimate for the derivative of the density. Under the
physical restriction (1.11) and the BD entropy relation (2.27), λ(ρ) cannot be a non-zero
constant. Since we focus mainly on the global existence of weak solutions for CEPEs
by the vanishing viscosity limit of weak solutions of CNSPEs which means the viscous
terms will vanish eventually, we consider only the special case (μ(ρ), λ(ρ)) = (ρ, 0) in
the present paper, which corresponds to the well-known Saint-Venant model of shallow
water.

Recently, in [6,27], the global existence of weak solutions was established for the
compressible Navier–Stokes equations and CNSPEs for a class of general density-
dependent viscous coefficients satisfying the BD entropy relation, respectively. Moti-
vated by [6,27], it should be able to extend our results to a class of more general viscous
coefficients. However, for such general viscous coefficients μ(ρ) and λ(ρ) satisfying
the BD relation, we have to check the uniform estimates of the solutions and the validity
of vanishing viscosity limit ε → 0 so that major modifications to our present paper are
required, which is out of scope of this paper.

Now we introduce the notion of finite-energy solutions of CEPEs (1.1).

Definition 2.2. A measurable vector function (ρ,M,�) is said to be a finite-energy
solution of the Cauchy problem (1.1) and (1.8)–(1.9) provided that

(i) ρ(t, x) ≥ 0 a.e., and (M, M√
ρ
)(t, x) = 0 a.e. on {(t, x) ∈ R

4
+ : ρ(t, x) = 0}

(vacuum).
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(ii) For a.e. t > 0, the total energy is finite:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

R3

(1

2

∣
∣
∣
M√
ρ

∣
∣
∣
2

+ ρe(ρ) +
1

2
|∇�|2

)
(t, x) dx ≤ C(E0, M),

∫

R3

(1

2

∣
∣
∣
M√
ρ

∣
∣
∣
2

+ ρe(ρ)− 1

2
|∇�|2

)
(t, x) dx

≤
∫

R3

(1

2

∣
∣
∣
M0√
ρ0

∣
∣
∣
2

+ ρ0e(ρ0)− 1

2
|∇�0|2

)
(x) dx.

(2.28)

(iii) For any ζ(t, x) ∈ C1
0([0,∞)× R

3),

∫

R
4
+

(ρζt + M · ∇ζ ) dxdt +
∫

R3
(ρ0ζ )(0, x) dx = 0. (2.29)

(iv) For any �(t, x) = (�1, �2, �3)(t, x) ∈ (C1
0([0,∞)× R

3))3,

∫

R
4
+

(
M · ∂t� +

M√
ρ

· (M√
ρ

· ∇)� + P(ρ)∇ ·�
)

dxdt +
∫

R3
M0(x) ·�(0, x) dx

=
∫

R
4
+

(ρ∇� ·�)(t, x) dx. (2.30)

(v) For any ξ(x) ∈ C1
0(R

3),

∫

R3
∇�(t, x) · ∇ξ(x) dx = −

∫

R3
ρ(t, x)ξ(x) dx for a.e. t ≥ 0. (2.31)

Remark 2.2. In the spherically symmetric form, Definition 2.2 becomes the following:
A measurable vector function (ρ,M,�)(t, x) = (ρ(t, r),m(t, r) x

r ,�(t, r)) is said
to be a spherically symmetric finite-energy solution of the Cauchy problem (1.1) and
(1.13)–(1.14) provided that

(i) ρ(t, r) ≥ 0 a.e., and (m, m√
ρ
)(t, r) = 0 a.e. on {(t, r) ∈ R

2
+ : ρ(t, r) = 0} (vacuum).

(ii) For a.e. t > 0, the total energy is finite:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0

(1

2

∣
∣
∣

m√
ρ

∣
∣
∣
2

+ ρe(ρ) +
1

2
|�r |2

)
(t, r) r2dr ≤ C(E0, M),

∫ ∞

0

(1

2

∣
∣
∣

m√
ρ

∣
∣
∣
2

+ ρe(ρ)− 1

2
|�r |2

)
(t, r) r2dr

≤
∫ ∞

0

(1

2

∣
∣
∣

m0√
ρ0

∣
∣
∣
2

+ ρ0e(ρ0)− 1

2
|�0r |2

)
(r) r2dr.

(2.32)

(iii) For any ζ(t, r) ∈ C1
0([0,∞)× R),

∫

R
2
+

(ρζt + mζr )(t, r) r2drdt +
∫ ∞

0
ρ0(r)ζ(0, r) r2dr = 0. (2.33)
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(iv) For any ψ(t, r) ∈ C1
0([0,∞)× R) with ψ(t, 0) = 0 for all t ≥ 0,

∫

R
2
+

m(t, r)ψt (t, r) r2drdt +
∫

R
2
+

(m2

ρ

)
(t, r) ψr (t, r) r2drdt

+
∫

R
2
+

P(ρ(t, r)) (ψr +
2

r
ψ)(t, r) r2drdt +

∫ ∞

0
m0(r) ψ(0, r) r2dr

=
∫

R
2
+

(ρ�r )(t, r) ψ(t, r) r2drdt. (2.34)

(v) For any ξ(r) ∈ C1
0(R) and a.e. t ≥ 0,

∫ ∞

0
�r (t, r) ξr (r) r2dr = −

∫ ∞

0
ρ(t, r) ξ(r) r2dr. (2.35)

To establish the strong convergence of the inviscid limit of solutions
(ρε,Mε,�ε)(t, x) of CNSPEs (1.10) obtained in Theorem 2.1 as ε → 0, we estab-
lish the following L p compensated compactness framework for the 1-D Euler equations
(2.11) with general pressure law (1.4)–(1.6), in which restriction γ2 ∈ ( 6

5 , γ1] in (1.6)
can be relaxed to γ2 ∈ (1, γ1].
Theorem 2.2 (L p compensated compactness framework). Let

(ρε,mε)(t, r) = (ρε, ρεuε)(t, r)

be a sequence of measurable functions with ρε ≥ 0 a.e. on R
2
+ satisfying the following

two conditions:

(i) For any T > 0 and K � R+, there exists C(K , T ) > 0 independent of ε such that
∫ T

0

∫

K

(
(ρε)γ2+1 + ρε|uε|3) drdt ≤ C(K , T ).

(ii) For any entropy pair (ηψ, qψ) defined in (2.15)–(2.16) with any smooth function
ψ(s) of compact support on R,

∂tη
ψ(ρε,mε) + ∂r qψ(ρε,mε) is compact in W −1,1

loc (R2
+).

Then there exists a subsequence (still denoted) (ρε,mε)(t, r) and a vector function
(ρ,m)(t, r) such that, as ε → 0,

ρε(t, r) → ρ(t, r) in Lq1
loc(R

2
+) for q1 ∈ [1, γ2 + 1),

mε(t, r) → m(t, r) in Lq2
loc(R

2
+) for q2 ∈ [1, 3(γ2 + 1)

γ2 + 3
),

(2.36)

where L p
loc(R

2
+) represents L p([0, T ] × K ) for any T > 0 and compact set K � R+.

Now, we are ready to state our main theorem.

Theorem 2.3 (Global existence of finite-energy solutions). Let the pressure function
P(ρ) satisfy (1.4)–(1.6), and let the spherically symmetric initial data (ρ0,M0,�0)(x)
be given in (1.13)–(1.14) with (ρ0,m0,�0)(r) satisfying (2.1)–(2.2) and (2.4). Assume
that γ2 >

4
3 , or M < Mc as γ2 ∈ ( 6

5 ,
4
3 ]. Then there exists a global finite-energy solution

(ρ,M,�)(t, x) of (1.1) and (1.13)–(1.14) with spherical symmetry form (1.12) in the
sense of Definition 2.2.
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Remark 2.3. For the steady gaseous star problem, there is no white dwarf star if the
total mass is larger than the so-called Chandrasekhar limit when γ ∈ ( 6

5 ,
4
3 ]; see [7].

Theorem 2.3 requires similar restriction on the total mass when γ2 ∈ ( 6
5 ,

4
3 ] for non-

steady gaseous stars. Moreover, in view of (2.5), for the non-steady white dwarf star, the

critical mass is exactly the Chandrasekhar limit in the case that P(ρ) = κ2ρ
4
3 . It would

be interesting to analyze whether the critical mass defined in (2.6)–(2.8) for γ2 ∈ ( 6
5 ,

4
3 )

is optimal.

Remark 2.4. Theorem 2.3 can be extended to the 3-D compressible Euler equations, i.e.,
(1.1) with � = 0. Moreover, the inviscid limit from the compressible Navier–Stokes
equations to Euler equations with far-field vacuum can also be justified.

Remark 2.5. Theorem 2.3 also holds for the plasmas case, i.e., kg = −1 in (1.1), by
a similar proof. In this case, the restriction: M < Mc can be removed, and condition

γ2 >
6
5 can be relaxed to γ2 > 1 if the additional assumption: ρ0 ∈ L

6
5 (R3) is imposed.

We omit the proof in this paper for brevity and, instead, refer the reader to [10] for
details.

3. Properties of the General Pressure Law and Related Internal Energy

In this section, we present some useful estimates involving the general pressure P(ρ)
with (1.4)–(1.6) and the corresponding internal energy e(ρ), which are used in the
subsequent development.

Denote c(ρ) := √
P ′(ρ) as the speed of sound, and

k(ρ) :=
∫ ρ

0

√
P ′(y)
y

dy. (3.1)

By direct calculation, we can obtain the following asymptotic behaviors of P(ρ), e(ρ),
and k(ρ).

Lemma 3.1. Assume that ρ∗ given in (1.5) is small enough and ρ∗ given in (1.6) is large
enough such that the following estimates hold:

(i) When ρ ∈ (0, ρ∗],
⎧
⎪⎨

⎪⎩

κ1ρ
γ1 ≤ P(ρ) ≤ κ̄1ρ

γ1 ,

κ1γ1ρ
γ1−1 ≤ P ′(ρ) ≤ κ̄1γ1ρ

γ1−1,

κ1γ1(γ1 − 1)ργ1−2 ≤ P ′′(ρ) ≤ κ̄1γ1(γ1 − 1)ργ1−2,

(3.2)

and when ρ ∈ [ρ∗,∞),

⎧
⎪⎨

⎪⎩

κ2ρ
γ2 ≤ P(ρ) ≤ κ̄2ρ

γ2 ,

κ2γ2ρ
γ2−1 ≤ P ′(ρ) ≤ κ̄2γ2ρ

γ2−1,

κ2γ2(γ2 − 1)ργ2−2 ≤ P ′′(ρ) ≤ κ̄2γ2(γ2 − 1)ργ2−2,

(3.3)

where we have denoted κ i := (1 − a0)κi and κ̄i := (1 + a0)κi with a0 = 3−γ1
2(γ1+1) and

i = 1, 2.
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(ii) For e(ρ) and k(ρ), there exists C > 0 depending on (γ1, γ2, κ1, κ2, ρ∗, ρ∗) such that

C−1ργ1−1 ≤ e(ρ) ≤ Cργ1−1, C−1ργ1−2 ≤ e′(ρ) ≤ Cργ1−2 for ρ ∈ (0, ρ∗],
(3.4)

C−1ργ2−1 ≤ e(ρ) ≤ Cργ2−1, C−1ργ2−2 ≤ e′(ρ) ≤ Cργ2−2 for ρ ∈ [ρ∗,∞),

(3.5)

and, for i = 0, 1,

ρθ1−i

C
≤ k(i)(ρ) ≤ Cρθ1−i ,

ρθ1−2

C
≤ |k′′(ρ)| ≤ Cρθ1−2 for ρ ∈ (0, ρ∗],

(3.6)

ρθ2−i

C
≤ k(i)(ρ) ≤ Cρθ2−i ,

ρθ2−2

C
≤ |k′′(ρ)| ≤ Cρθ2−2 for ρ ∈ [ρ∗,∞),

(3.7)

where θ1 = γ1−1
2 and θ2 = γ2−1

2 .

It follows from (3.2)–(3.3) that

(3γ1 − 1)(γ1 − 1)

γ1 + 5
P ′(ρ) ≤ ρP ′′(ρ) ≤ (5 + γ1)(γ1 − 1)

3γ1 − 1
P ′(ρ) < 2P ′(ρ), (3.8)

when ρ ∈ [0, ρ∗] ∪ [ρ∗,∞). For later use, we denote

ν := 1 − (3γ1 − 1)(γ1 − 1)

2(5 + γ1)
< 1, d(ρ) := 2 +

ρk′′(ρ)
k′(ρ)

. (3.9)

Then it follows from (3.8) that

0 <
∣
∣
∣
ρk′′(ρ)
k′(ρ)

∣
∣
∣ = 1 − ρP ′′(ρ)

2P ′(ρ)
≤ ν < 1 for ρ ∈ (0, ρ∗] ∪ [ρ∗,∞). (3.10)

Motivated by [64], we have

Lemma 3.2. 0 < d(ρ) ≤ C for all ρ > 0, and
∣
∣d(ρ)− (1 + θ2)

∣
∣ ≤ Cρ−ε for ρ � 1. (3.11)

Proof. It follows from (1.4) that d(ρ) = 1+ ρP ′′(ρ)
2P ′(ρ) > 0.Moreover, by (3.10), it is direct

to see that d(ρ) is bounded. Using (1.6), we see that, for ρ ≥ ρ∗,
{

P ′(ρ) = γ2κ2ρ
γ2−1(1 + P2(ρ) + ρP ′

2(ρ)
)
,

P ′′(ρ) = γ2(γ2 − 1)κ2ρ
γ2−2(1 + P2(ρ) + 3ρP ′

2(ρ) + ρ2P ′′
2 (ρ)

)
.

Then, for ρ ≥ max{ρ∗, (8C∗)1/ε},
∣
∣
∣d(ρ)− (1 + θ2)

∣
∣
∣ =

∣
∣
∣
ρP ′′(ρ)
2P ′(ρ)

− θ2

∣
∣
∣ =

∣
∣
∣

θ2
(
2ρP ′

2(ρ) + ρ2P ′′
2 (ρ)

)

1 + P2(ρ) + 3ρP2(ρ) + ρ2P ′′
2 (ρ)

∣
∣
∣ ≤ C(θ2,C∗)ρ−ε,

where we have used that |P( j)
2 (ρ)| ≤ C∗ρ−ε− j for j = 0, 1, 2, in the last inequality. ��
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Hereafter, for simplicity of notation, we assume that (3.11) holds for ρ ≥ ρ∗. Fur-
thermore, using (1.6) and e′(ρ) = P(ρ)

ρ2 , we obtain that, for ρ ≥ ρ∗,

e(ρ) = κ2

γ2 − 1

(
ργ2−1 − (ρ∗)γ2−1) + κ2

∫ ρ

ρ∗
sγ2−2P2(s) ds +

∫ ρ∗

0

P(s)

s2 ds, (3.12)

which, with e(0) = 0 and |P2(ρ)| ≤ C∗ρ−ε , yields that, for any parameter β > 0,

lim
ρ→0

ρ
γ2−1
5γ2−6 (β + e(ρ))

− 1
5γ2−6 = 0, lim

ρ→∞ ρ
γ2−1
5γ2−6 (β + e(ρ))

− 1
5γ2−6 = (

κ2

γ2 − 1
)
− 1

5γ2−6 .

Then we see that

Cmax(β) := sup
ρ≥0

ρ
γ2−1
5γ2−6 (β + e(ρ))

− 1
5γ2−6 ∈ [( κ2

γ2 − 1
)
− 1

5γ2−6 , ∞), (3.13)

ρ
6(γ2−1)
5γ2−6 (βρ + ρe(ρ))

− 1
5γ2−6 ≤ Cmax(β)ρ for ρ > 0. (3.14)

With a careful analysis of Cmax(β), we obtain some estimates of Mc defined in (2.6).

Proposition 3.3. Let h(ρ) = P(ρ)ρ−1 − (γ2 − 1)e(ρ), and let M̃c be the critical mass
obtained in [10, (2.8)] for the polytropic gases in (1.2) with γ ∈ ( 6

5 ,
4
3 ). Then Mc

defined in (2.6)–(2.8) satisfies that Mc ≤ M̃c; in particular, Mc < M̃c when h′(ρ) >
0 for all ρ > 0. For example,

Pδ(ρ) :=
∫ ρ

1
3

0

s4

√
δ + s2+ε0

ds for δ > 0 and ε0 ∈ (0,
4

5
) (3.15)

satisfies conditions (1.4)–(1.6). If Mc(δ) is the critical mass defined in (2.6)–(2.8) for
pressure Pδ(ρ), then Mc(δ) < M̃c for any δ > 0.

Proof. For γ2 ∈ ( 6
5 ,

4
3 ), it follows from (2.6)–(2.8) and (3.13) that, for any fixed β > 0,

Mc(β)=
( 2

9(γ2−1)
(Cmax(β))

5γ2−6
3(γ2−1) ω

− 4−3γ2
3(γ2−1)

3 ω
− 2

3
4

)− 3(γ2−1)
5γ2−6

( E0 +ω−1
3 βMc(β)

4 − 3γ2

)− 4−3γ2
5γ2−6

≤
( 2

9(γ2 − 1)

( κ2

γ2 − 1

)− 1
3(γ2−1)

ω
− 4−3γ2

3(γ2−1)

3 ω
− 2

3
4

)− 3(γ2−1)
5γ2−6

( E0

4 − 3γ2

)− 4−3γ2
5γ2−6

= M̃c, (3.16)

which yields that Mc ≤ M̃c.

Let g(ρ) := ρ
γ2−1
5γ2−6

(
β + e(ρ)

)− 1
5γ2−6 . Then Cmax(β) = maxρ≥0 g(ρ). Since e′(ρ) =

P(ρ)
ρ2 , a direct calculation shows that

g′(ρ) = 1

5γ2 − 6
ρ5−4γ2

(
β + e(ρ)

)− 5(γ2−1)
5γ2−6

(
(γ2 − 1)β − h(ρ)

)
. (3.17)

If h′(ρ) > 0 for all ρ > 0, then h(ρ) ≥ h(0) = 0. Let K0 := maxρ>0 h(ρ) > 0. For
β small enough such that 0 < β < K0

γ2−1 , there exists a unique point ρβ > 0 such that
g′(ρβ) = 0, i.e.,

h(ρβ) = (γ2 − 1)β, (3.18)
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and Cmax(β) = g(ρβ) = (γ2 − 1)
1

5γ2−6
(
P(ρβ)ρ

−γ2
β

)− 1
5γ2−6 . Moreover, it follows from

(3.18) that limβ→0+ ρβ = 0. Thus, we see from (1.5) that

lim
β→0+

Cmax(β) = (γ2 − 1)
1

5γ2−6 lim
ρβ→0

(
P(ρβ)ρ

−γ2
β

)− 1
5γ2−6 = ∞,

which, with (3.161), implies that limβ→0+ Mc(β) = 0.
On the other hand, it follows directly from (3.13) and (3.16)1 that limβ→∞ Mc(β) =

0. Therefore, the maximum value Mc of Mc(β) must be attained at some point β0 ∈
(0,∞) with Mc = Mc(β0) < M̃c due to (3.16)1.

For the pressure function Pδ(ρ) in (3.15), it is direct to check that conditions (1.4)–
(1.6) are satisfied and γ2 = 4

3 − ε0
6 ∈ ( 6

5 ,
4
3 ). Let eδ(ρ) be the corresponding internal

energy with e′
δ(ρ) = Pδ(ρ)

ρ2 and eδ(0) = 0, and hδ(ρ) := Pδ(ρ)ρ−1 − (γ2 − 1)eδ(ρ). It
follows from a direct calculation that

h′
δ(ρ) = ρ−2( − γ2 Pδ(ρ) + ρP ′

δ(ρ)
) =: ρ−2Tδ(ρ),

Tδ(0) = 0, and T ′
δ (ρ) = −(γ2 − 1)P ′

δ(ρ) + ρP ′′
δ (ρ) = 2+ε0

18 δρ
2
3 (δ + ρ

2+ε0
3 )− 3

2 > 0 for
ρ > 0. Thus, Tδ(ρ) > 0 for ρ > 0, which implies that h′

δ(ρ) > 0 for ρ > 0, so that
Mc(δ) < M̃c for any δ > 0. ��

4. Entropy Analysis: Weak Entropy Pairs

Compared with the polytropic gas case in [10], there is no explicit formula of the entropy
kernel for the general pressure law (1.4)–(1.6) so that we have to analyze the entropy
equation (2.14) carefully to obtain several desired estimates.

4.1. A special entropy pair. In order to obtain the higher integrability of the velocity,
we are going to construct a special entropy pair such that ρ|u|3 can be controlled by the
entropy flux. Indeed, such a special entropy η̂(ρ, u) is constructed as

η̂(ρ, u) =
{

1
2ρu2 + ρe(ρ) for u ≥ k(ρ),
− 1

2ρu2 − ρe(ρ) for u ≤ −k(ρ),
(4.1)

for k(ρ) = ∫ ρ

0

√
P ′(y)
y dy and, in the intermediate region −k(ρ) ≤ u ≤ k(ρ), η̂(ρ, u) is

the unique solution of the Goursat problem of the entropy equation (2.14):

⎧
⎨

⎩

ηρρ − k′(ρ)2ηuu = 0,

η(ρ, u)|u=±k(ρ) = ±(1

2
ρu2 + ρe(ρ)

); (4.2)

see Fig. 1. Set

V1 = 1

2k′(ρ)
(
ηρ + k′(ρ)ηu

)
, V2 = 1

2k′(ρ)
(
ηρ − k′(ρ)ηu

)
. (4.3)
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Fig. 1. The schematic diagram of the characteristic curves of (4.4)

Then (4.2) can be rewritten as
⎧
⎪⎪⎨

⎪⎪⎩

∂V1

∂ρ
− k′(ρ)∂V1

∂u
= − k′′(ρ)

2k′(ρ)
(V1 + V2),

∂V2

∂ρ
+ k′(ρ)∂V2

∂u
= − k′′(ρ)

2k′(ρ)
(V1 + V2).

(4.4)

The corresponding characteristic boundary conditions become
⎧
⎪⎪⎨

⎪⎪⎩

V1|u=±k(ρ) = ± 1

2k′(ρ)
(1

2
u2 + e(ρ) + ρe′(ρ)

) ± 1

2
ρu,

V2|u=±k(ρ) = ± 1

2k′(ρ)
(1

2
u2 + e(ρ) + ρe′(ρ)

) ∓ 1

2
ρu.

(4.5)

Since k′′(ρ)
k′(ρ) has the singularity at vacuum ρ = 0, the Goursat problem (4.4)–(4.5) is

singular, which requires a careful analysis.
It follows from (4.4) that there exist two characteristic curves originating from origin

O(0, 0) in the (ρ, u)–plane:

�+ := {(ρ, u) : u = k(ρ)}, �− := {(ρ, u) : u = −k(ρ)}. (4.6)

For any given point O1(ρ0, u0) with u0 = 0, we can draw two backward characteristic
curves �±

0 through O1(ρ0, u0); see Fig. 1. Let O2(ρ
+
0 , u+

0) be the intersection point of �+
0

and �+, and let O3(ρ
−
0 , u−

0 ) be the intersection point of �−
0 and �−. Let � be the region

surrounded by arc ̂O O2 O1 O3, and let � be the closure of �.

Lemma 4.1. The Goursat problem (4.2) admits a unique solution η̂ ∈ C2(R+ ×R) such
that

(i) |η̂(ρ, u)| ≤ C
(
ρ|u|2 + ργ (ρ)

)
for (ρ, u) ∈ R+ × R, where γ (ρ) = γ1 if ρ ∈ [0, ρ∗]

and γ (ρ) = γ2 if ρ ∈ (ρ∗,∞).
(ii) If η̂ is regarded as a function of (ρ, u),

|η̂ρ(ρ, u)| ≤ C
(|u|2 + ρ2θ(ρ)), |η̂u(ρ, u)| ≤ C

(
ρ|u| + ρθ(ρ)+1) for (ρ, u) ∈ R+ × R,
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and, if η̂ is regarded as a function of (ρ,m),

|η̂ρ(ρ,m)| ≤ C
(|u|2 + ρ2θ(ρ)), |η̂m(ρ,m)| ≤ C(|u| + ρθ(ρ)) for (ρ,m) ∈ R+ × R,

where θ(ρ) := γ (ρ)−1
2 .

(iii) If η̂m is regarded as a function of (ρ, u),

|η̂mρ(ρ, u)| ≤ Cρθ(ρ)−1, |η̂mu(ρ, u)| ≤ C,

and, if η̂m is regarded as a function of (ρ,m),

|η̂mρ(ρ,m)| ≤ Cρθ(ρ)−1, |η̂mm(ρ,m)| ≤ Cρ−1.

(iv) If q̂ is the corresponding entropy flux determined by (2.12), then q̂ ∈ C2(R+ × R)

and

q̂(ρ, u) = 1

2
ρ|u|3 ± ρu

(
e(ρ) + ρe′(ρ)

)
for ± u ≥ k(ρ),

|q̂(ρ, u)| ≤ Cργ (ρ)+θ(ρ) for |u| < k(ρ),

q̂(ρ, u) ≥ 1

2
ρ|u|3 for |u| ≥ k(ρ),

|q̂ − uη̂| ≤ C
(
ργ (ρ)|u| + ργ (ρ)+θ(ρ)

)
for (ρ, u) ∈ R+ × R.

Proof. To prove that (4.2) has a unique C2–solution η̂ in R+ ×R, it suffices to prove that
(4.4)–(4.5) admits a unique C1–solution (V1, V2) in � for any given point O(ρ0, u0).
We use the Picard iteration and divide the proof into six steps.

1. For any point A(ρ, u) ∈ �, there are two backward characteristic curves through
A(ρ, u):

�1 := {
(s, u(1)(s)) : u(1)(s) = −k(s) + u + k(ρ), 0 < s ≤ ρ

}
,

�2 := {
(s, u(2)(s)) : u(2)(s) = −k(ρ) + u + k(s), 0 < s ≤ ρ

}
.

(4.7)

Let B(ρ1, u1) be the intersection point of �+ and �1, and let C(ρ2, u2) be the intersection
point of �− and �2. It follows from (4.6)–(4.7) that

u1 = k(ρ1) = k(ρ) + u

2
, u2 = −k(ρ2) = u − k(ρ)

2
. (4.8)

Using (4.4) and integrating V1 and V2 along the characteristic curves �1 and �2 respec-
tively, we have

Vi (ρ, u) = Vi (ρi , ui )−
∫ ρ

ρi

k′′(s)
2k′(s)

2∑

j=1

Vj (s, u(i)(s)) ds for i = 1, 2. (4.9)

Denote V (0)
i (ρ, u) := Vi (ρi , ui ). It follows from (4.5) and (4.8) that

V (0)
i (ρ, u) = (−1)i+1

(1

2
ρi k(ρi )+

1

4

k2(ρi )

k′(ρi )
+

e(ρi ) + ρi e′(ρi )

2k′(ρi )

)
for i = 1, 2. (4.10)
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We define the iterated scheme:

V (n+1)
i (ρ, u) := Vi (ρi , ui )−

∫ ρ

ρi

k′′(s)
2k′(s)

2∑

j=1

V (n)
j (s, u(i)(s)) ds for i = 1, 2.

(4.11)
Then we obtain two sequences {V (n)

i }∞n=0 for i = 1, 2. We now prove that {V (n)
i }∞n=0 are

uniformly convergent in �, which is equivalent to proving that

V (0)
i (ρ, u) +

∞∑

n=1

(
V (n)

i − V (n−1)
i

)
(ρ, u), i = 1, 2, (4.12)

are uniformly convergent in �.
From Lemma 3.1 and (4.10), we know that V (0)

i , i = 1, 2, are continuous in � and
there exists a constant C1 > 0 depending only on ρ∗ and ρ∗ such that

|V (0)
i (ρ, u)| ≤

{
C1ρ

1+θ1
i for ρi ≤ ρ∗,

C1ρ
1+θ2
i for ρi ≥ ρ∗,

i = 1, 2,

which, with the fact that ρi ≤ ρ, yields that

|V (0)
i (ρ, u)| ≤

⎧
⎪⎨

⎪⎩

C1ρ
1+θ1 for ρ ≤ ρ∗,

C̃1ρ
1+M1 for ρ∗ ≤ ρ ≤ ρ∗,

Ĉ1ρ
1+θ2 for ρ ≥ ρ∗,

i = 1, 2, (4.13)

where C̃1 ≥ C1(ρ∗)θ2−M1 , Ĉ1 ≥ C1, and M1 are positive constants to be chosen later.
It follows from (3.9) and (3.10) that there exist a constant ν < 1 and a constant

C0 � 1 depending on ρ∗ and ρ∗ such that

∣
∣
∣
k′′(ρ)
k′(ρ)

∣
∣
∣ ≤

{
νρ−1 for 0 < ρ ≤ ρ∗ and ρ ≥ ρ∗,
C0ρ

−1 for ρ∗ < ρ < ρ∗. (4.14)

For the estimate of |V (1)
i − V (0)

i |, we divide it into six cases:
Case 1. ρi ≤ ρ ≤ ρ∗: It follows from (4.11) and (4.13)–(4.14) that

∣
∣(V (1)

i − V (0)
i )(ρ, u)

∣
∣ ≤

∫ ρ

ρi

C1ν sθ1 ds ≤ C1ρ
1+θ1 �1, (4.15)

where �1 := ν
1+θ1

∈ (0, 1).
Case 2. ρi ≤ ρ∗ ≤ ρ ≤ ρ∗: Then

∣
∣(V (1)

i − V (0)
i )(ρ, u)

∣
∣ ≤

( ∫ ρ∗

ρi

+
∫ ρ

ρ∗

)∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (s, u(i)(s))
∣
∣ ds

≤
∫ ρ∗

ρi

ν

2s
(2C1s1+θ1) ds +

∫ ρ

ρ∗

C0

2s
(2C̃1s1+M1) ds

≤ C̃1
(
ρ1+M1 − (ρ∗)1+M1

)
�M1 + C1(ρ∗)1+θ1�1 ≤ C̃1ρ

1+M1 �M1 , (4.16)
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where �M1 := C0
1+M1

and, in the last inequality of (4.16), we have chosen

C̃1 ≥ C1(ρ∗)θ1−M1�1�
−1
M1
. (4.17)

Case 3. ρ∗ ≤ ρi ≤ ρ ≤ ρ∗: It is direct to see that

∣
∣(V (1)

i − V (0)
i )(ρ, u)

∣
∣ ≤

∫ ρ

ρi

C̃1C0 s M1 ds ≤ C̃1ρ
1+M1 �M1 . (4.18)

Case 4. ρi ≤ ρ∗ < ρ∗ ≤ ρ: Then

∣
∣(V (1)

i − V (0)
i )(ρ, u)

∣
∣ ≤

( ∫ ρ∗

ρi

+
∫ ρ∗

ρ∗
+

∫ ρ

ρ∗

)∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (s, u(i)(s))
∣
∣ ds

≤
∫ ρ∗

ρi

ν

2s
(2C1s1+θ1) ds +

∫ ρ∗

ρ∗

C0

2s
(2C̃1s1+M1) ds +

∫ ρ

ρ∗
ν

2s
(2Ĉ1s1+θ2) ds

≤ Ĉ1
(
ρ1+θ2 − (ρ∗)1+θ2

)
�2 + C̃1

(
(ρ∗)1+M1 − (ρ∗)1+M1

)
�M1 + C1(ρ∗)1+θ1�1

≤ Ĉ1ρ
1+θ2 �2, (4.19)

where �2 := ν
1+θ2

∈ (0, 1) and, in the last inequality of (4.19), we have used (4.17) and
chosen

Ĉ1 ≥ C̃1(ρ
∗)M1−θ2�M1�

−1
2 . (4.20)

Case 5. ρ∗ ≤ ρi ≤ ρ∗ ≤ ρ: It follows similarly that

∣
∣(V (1)

i − V (0)
i )(ρ, u)

∣
∣ ≤

( ∫ ρ∗

ρi

+
∫ ρ

ρ∗

)∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (s, u(i)(s))
∣
∣ ds

≤ Ĉ1
(
ρ1+θ2 − (ρ∗)1+θ2

)
�2 + C̃1(ρ

∗)1+M1�M1 ≤ Ĉ1ρ
1+θ2 �2, (4.21)

where we have used (4.20) in the last inequality of (4.21).
Case 6. ρ∗ ≤ ρi ≤ ρ: We see that

∣
∣(V (1)

i − V (0)
i )(ρ, u)

∣
∣ ≤

∫ ρ

ρi

Ĉ1ν sθ2 ds ≤ Ĉ1ρ
1+θ2 �2. (4.22)

Combining (4.15)–(4.22), we obtain

∣
∣(V (1)

i − V (0)
i )(ρ, u)

∣
∣ ≤

⎧
⎪⎨

⎪⎩

C1ρ
1+θ1 �1 for ρ ≤ ρ∗,

C̃1ρ
1+M1 �M1 for ρ∗ ≤ ρ ≤ ρ∗,

Ĉ1ρ
1+θ2 �2 for ρ ≥ ρ∗,

i = 1, 2, (4.23)

if (4.17) and (4.20) hold.
To utilize the induction arguments, we make the induction assumption for n = k:

∣
∣(V (k)

i − V (k−1)
i )(ρ, u)

∣
∣ ≤

⎧
⎪⎨

⎪⎩

C1ρ
1+θ1 � k

1 for ρ ≤ ρ∗,
C̃1ρ

1+M1 � k
M1

for ρ∗ ≤ ρ ≤ ρ∗,
Ĉ1ρ

1+θ2 � k
2 for ρ ≥ ρ∗,

i = 1, 2. (4.24)
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We now make the estimate for n = k + 1. To estimate
∣
∣V (k+1)

i (ρ, u) − V (k)
i (ρ, u)

∣
∣, it

suffices to consider the case: ρi ≤ ρ∗ < ρ∗ ≤ ρ, since the other cases can be done by
similar arguments as in (4.15)–(4.22). Noting (4.24) and ρi ≤ ρ∗ < ρ∗ ≤ ρ, and using
similar arguments in (4.19), we have
∣
∣(V (k+1)

i − V (k)
k )(ρ, u)

∣
∣

≤
( ∫ ρ∗

ρi

+
∫ ρ∗

ρ∗
+

∫ ρ

ρ∗

)∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣V (k)

j (s, u(i)(s))− V (k−1)
j (s, u(i)(s))

∣
∣ ds

≤
∫ ρ∗

ρi

νC1�
k
1 sθ1 ds +

∫ ρ∗

ρ∗
C0C̃1�

k
M1

s M1 ds +
∫ ρ

ρ∗
νĈ1�

k
2 sθ2 ds

≤ Ĉ1
(
ρ1+θ2 − (ρ∗)1+θ2

)
� k+1

2 + C̃1
(
(ρ∗)1+M1 − (ρ∗)1+M1

)
� k+1

M1
+ C1(ρ

∗)1+θ1 � k+1
1

≤ Ĉ1ρ
1+θ2� k+1

2 ,

where we have chosen C̃1 and Ĉ1 such that

C̃1 ≥ C1(ρ∗)θ1−M1
(
�1�

−1
M1

)k+1
, Ĉ1 ≥ C̃1(ρ

∗)M1−θ2
(
�M1�

−1
2

)k+1
. (4.25)

Therefore, under assumption (4.25), we obtain

∣
∣(V (k+1)

i − V (k)
i )(ρ, u)

∣
∣ ≤

⎧
⎪⎨

⎪⎩

C1ρ
1+θ1 � k+1

1 for ρ ≤ ρ∗,
C̃1ρ

1+M1 � k+1
M1

for ρ∗ ≤ ρ ≤ ρ∗,
Ĉ1ρ

1+θ2 � k+1
2 for ρ ≥ ρ∗.

i = 1, 2.

Recalling that θ1 ≥ θ2, we can take C0 and M1 large enough such that

0 < �1 ≤ �M1 ≤ �2 < 1. (4.26)

Combining (4.13) with (4.23)–(4.26), and taking

�M1 = �2, C̃1 = C1(ρ∗)θ2−M1 , Ĉ1 = C̃1(ρ
∗)M1−θ2 , (4.27)

by induction, we conclude that, for any n ≥ 1,

∣
∣(V (n)

i − V (n−1)
i )(ρ, u)

∣
∣ ≤

⎧
⎪⎨

⎪⎩

C1ρ
1+θ1 � n

1 for ρ ≤ ρ∗,
C̃1ρ

1+M1 � n
M1

for ρ∗ ≤ ρ ≤ ρ∗,
Ĉ1ρ

1+θ2 � n
2 for ρ ≥ ρ∗,

i = 1, 2. (4.28)

Noting that (4.26) and ρ ≤ ρ0 for (ρ, u) ∈ �, we have proved that the two sequences
in (4.12), i = 1, 2, are uniformly convergent in � so that sequence {(V (n)

1 , V (n)
2 )} is

uniformly convergent in �. Let (V1, V2) be the limit function of sequence (V (n)
1 , V (n)

2 ).

Noting the continuity and the uniform convergence of (V (n)
1 , V (n)

2 ), (V1, V2) is continu-
ous in�. Taking the limit: n → ∞ in (4.11), we conclude that (V1, V2) is the continuous
solution of (4.9).

2. It follows from (4.13) and (4.28) that, for (ρ, u) ∈ {ρ ≥ 0, |u| ≤ k(ρ)} and
i = 1, 2,

∣
∣Vi (ρ, u)

∣
∣ ≤ ∣

∣V (0)
i (ρ, u)

∣
∣ +

∞∑

n=1

∣
∣(V (n)

i − V (n−1)
i )(ρ, u)

∣
∣
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≤

⎧
⎪⎨

⎪⎩

Cρ1+θ1 for ρ ≤ ρ∗,
Cρ1+M1 for ρ∗ ≤ ρ ≤ ρ∗,
Cρ1+θ2 for ρ ≥ ρ∗.

(4.29)

On the other hand, we see from (4.3) that, for |u| ≤ k(ρ),

|η̂ρ(ρ, u)| = ∣
∣k′(ρ)(V1(ρ, u) + V2(ρ, u))

∣
∣ ≤ Cργ (ρ)−1,

|η̂u(ρ, u)| = |V1(ρ, u)− V2(ρ, u)| ≤ Cρ1+θ(ρ).
(4.30)

Hence, for |u| ≤ k(ρ), it holds that

|η̂(ρ, u)| ≤
∫ ρ

ρ̄

|η̂ρ(s, u)| ds + |η̂(ρ̄, u)| ≤ Cργ (ρ),

|η̂m(ρ,m)| = |ρ−1η̂u(ρ, u)| ≤ Cρθ(ρ),

(4.31)

where (ρ̄, u) is the point satisfying k(ρ̄) = |u|, and we have used the boundary data in
(4.2).

3. We now show that V1 and V2 have continuous first-order derivatives with respect
to (ρ, u). Using (4.7)–(4.8) and Lemma 3.1, we have

∂u(i)(s)

∂u
= 1,

∣
∣
∣
∂ρi

∂u

∣
∣
∣ = 1

2|k′(ρi )| ≤ C2ρ
1−θ(ρi )
i . (4.32)

Applying ∂u to (4.11) and using (4.32) yield that, for i = 1, 2,

∂V (n+1)
i

∂u
(ρ, u) = ∂Vi (ρi , ui )

∂u
+

k′′(ρi )

2k′(ρi )

2∑

j=1

V (n)
j (ρi , ui )

∂ρi

∂u

−
∫ ρ

ρi

k′′(s)
2k′(s)

2∑

j=1

∂V (n)
j

∂u
(s, u(i)(s)) ds. (4.33)

It follows from (4.10), (4.32), Lemma 3.1, and a direct calculation that, for i = 1, 2,

∣
∣
∣
∂V (0)

i

∂u
(ρ, u)

∣
∣
∣ =

∣
∣
∣
dVi (ρi , ui )

dρi

∂ρi

∂u

∣
∣
∣ ≤ C2ρi ≤

⎧
⎪⎨

⎪⎩

C̄2ρ for ρ ≤ ρ∗,
C̃2ρ

1+M2 for ρ∗ ≤ ρ ≤ ρ∗,
Ĉ2ρ for ρ ≥ ρ∗,

(4.34)

where C2 is chosen to be a common, fixed, and large enough constant in (4.32) and
(4.34) depending only on ρ∗ and ρ∗, and C̄2 ≥ C2, C̃2 ≥ C2(ρ∗)−M2 , Ĉ2 ≥ C2, and
M2 are some large positive constants to be chosen later.

To estimate
∣
∣(
∂V (1)

i
∂u )(ρ, u)− (

∂V (0)
i
∂u )(ρ, u)

∣
∣, we divide it into six cases:

Case 1. ρi ≤ ρ ≤ ρ∗: It follows from (4.13)–(4.14) and (4.33)–(4.34) that

∣
∣
∣
∂(V (1)

i − V (0)
i )

∂u
(ρ, u)

∣
∣
∣ ≤

∫ ρ

ρi

∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣
∣

(∂V (0)
j

∂u

)
(s, u(i)(s))

∣
∣
∣ ds

+
∣
∣
∣

k′′(ρi )

2k′(ρi )

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (ρi , ui )
∣
∣
∣
∣
∣
∂ρi

∂u

∣
∣
∣
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≤
∫ ρ

ρi

ν

2s
(2C̄2s) ds +

ν

2ρi
(2C1ρ

1+θ1
i ) (C2ρ

1−θ1
i )

= C̄2νρ − C̄2νρ1 + C1C2νρi ≤ C̄2νρ, (4.35)

where, in the last inequality of (4.35), we have chosen
C̄2 ≥ C1C2. (4.36)

Case 2. ρi ≤ ρ∗ ≤ ρ ≤ ρ∗: Then, similarly, we have
∣
∣
∣
∂(V (1)

i − V (0)
i )

∂u
(ρ, u)

∣
∣
∣

≤
( ∫ ρ∗

ρi

+
∫ ρ

ρ∗

)∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣
∣

(∂V (0)
j

∂u

)
(s, u(i)(s))

∣
∣
∣ ds

+
∣
∣
∣

k′′(ρi )

2k′(ρi )

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (ρi , ui )
∣
∣
∣
∣
∣
∂ρi

∂u

∣
∣
∣

≤ C̃2
(
ρ1+M2 − (ρ∗)1+M2

)
�M2 + C̄2ν(ρ∗ − ρi ) + C1C2νρi ≤ C̃2ρ �M2 , (4.37)

where�M2 := C0
1+M2

and, in the last inequality of (4.37), we have used (4.36) and chosen

C̃2 ≥ C̄2(ρ∗)−M2 ν�−1
M2
. (4.38)

Case 3. ρ∗ ≤ ρi ≤ ρ ≤ ρ∗: It follows that

∣
∣
∣
∂(V (1)

i − V (0)
i )

∂u
(ρ, u)

∣
∣
∣

≤
∫ ρ

ρi

∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣
∣

(∂V (0)
j

∂u

)
(s, u(i)(s))

∣
∣
∣ ds +

∣
∣
∣

k′′(ρi )

2k′(ρi )

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (ρi , ui )
∣
∣
∣
∣
∣
∂ρi

∂u

∣
∣
∣

≤ C̃2
(
ρ1+M2 − ρ

1+M2
i

)
�M2 + C̃1C2C0ρ

1+M1−θ2
i ≤ C̃2ρ �M2 , (4.39)

where, in the last inequality of (4.39), we have chosen

M1 ≥ M2 + θ2, C̃2 ≥ C̃1C2(1 + M2)(ρ
∗)M1−M2−θ2 . (4.40)

Case 4. ρi ≤ ρ∗ < ρ∗ ≤ ρ: For this case, similarly, we have

∣
∣
∣
∂(V (1)

i − V (0)
i )

∂u
(ρ, u)

∣
∣
∣

≤
( ∫ ρ∗

ρi

+
∫ ρ∗

ρ∗
+

∫ ρ

ρ∗

)∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣
∣

(∂V (0)
j

∂u

)
(s, u(i)(s))

∣
∣
∣ ds

+
∣
∣
∣

k′′(ρi )

2k′(ρi )

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (ρi , ui )
∣
∣
∣
∣
∣
∂ρi

∂u

∣
∣
∣

≤ Ĉ2(ρ − ρ∗)ν + C̃2
(
(ρ∗)1+M2 − (ρ∗)1+M2

)
�M2 + C̄2(ρ∗ − ρi )ν + C1C2ρiν

≤ Ĉ2ρ ν, (4.41)
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where, in the last inequality of (4.41), we have used (4.36) and (4.38) and chosen

Ĉ2 ≥ C̃2(ρ
∗)M2 ν−1�M2 . (4.42)

Case 5. ρ∗ ≤ ρi ≤ ρ∗ ≤ ρ: Then

∣
∣
∣
∂(V (1)

i − V (0)
i )

∂u
(ρ, u)

∣
∣
∣

≤
( ∫ ρ∗

ρi

+
∫ ρ

ρ∗

)∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣
∣

(∂V (0)
j

∂u

)
(s, u(i)(s))

∣
∣
∣ ds

+
∣
∣
∣

k′′(ρi )

2k′(ρi )

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (ρi , ui )
∣
∣
∣
∣
∣
∂ρi

∂u

∣
∣
∣

≤ Ĉ2(ρ − ρ∗)ν + C̃2
(
(ρ∗)1+M2 − ρ

1+M2
i

)
�M2 + C̃1C2C0ρ

1+M1−θ2
i ≤ Ĉ2ρ ν,

(4.43)

where we have used (4.40) and (4.42) in the last inequality of (4.43).
Case 6. ρ∗ ≤ ρi ≤ ρ: It follows similarly that

∣
∣
∣
∂(V (1)

i − V (0)
i )

∂u
(ρ, u)

∣
∣
∣

≤
∫ ρ

ρi

∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣
∣

(∂V (0)
j

∂u

)
(s, u(i)(s))

∣
∣
∣ ds +

∣
∣
∣

k′′(ρi )

2k′(ρi )

∣
∣
∣

2∑

j=1

∣
∣V (0)

j (ρi , ui )
∣
∣
∣
∣
∣
∂ρi

∂u

∣
∣
∣

≤ Ĉ2ρν − Ĉ2ρiν + Ĉ1C2ρiν ≤ Ĉ2ρ ν, (4.44)

where, in the last inequality of (4.44), we have chosen

Ĉ2 ≥ Ĉ1C2. (4.45)

Combining (4.35)–(4.45), we conclude that, for i = 1, 2,

∣
∣
∣
∂(V (1)

i − V (0)
i )

∂u
(ρ, u)

∣
∣
∣ ≤

⎧
⎪⎨

⎪⎩

C̄2ρ ν for ρ ≤ ρ∗,
C̃2ρ

1+M2 �M2 for ρ∗ ≤ ρ ≤ ρ∗,
Ĉ2ρ ν for ρ ≥ ρ∗,

(4.46)

provided (4.36), (4.38), (4.40), (4.42), and (4.45) hold.
To use the induction arguments, we make the induction assumption for n = k: For

i = 1, 2,

∣
∣
∣
∂(V (k)

i − V (k−1)
i )

∂u
(ρ, u)

∣
∣
∣ ≤

⎧
⎪⎨

⎪⎩

C̄2ρ ν
k for ρ ≤ ρ∗,

C̃2ρ
1+M2 �M2 for ρ∗ ≤ ρ ≤ ρ∗,

Ĉ2ρ ν
k for ρ ≥ ρ∗.

(4.47)

To estimate | ∂(V
(k+1)
i −V (k)

i )

∂u (ρ, u)|, it suffices to consider the case: ρi ≤ ρ∗ < ρ∗ ≤ ρ for
simplicity of presentation, since the other cases can be estimated by similar arguments
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in (4.35)–(4.45). In fact, for the case: ρi ≤ ρ∗ < ρ∗ ≤ ρ, it follows from (4.28) and
(4.47) that

∣
∣
∣
∂(V (k+1)

i − V (k)
i )

∂u
(ρ, u)

∣
∣
∣

≤
( ∫ ρ∗

ρi

+
∫ ρ∗

ρ∗
+

∫ ρ

ρ∗

)∣
∣
∣

k′′(s)
2k′(s)

∣
∣
∣

2∑

j=1

∣
∣
∣
∂(V (k)

j − V (k−1)
j )

∂u
(s, u(i)(s))

∣
∣
∣ds

+
∣
∣
∣

k′′(ρi )

2k′(ρi )

∣
∣
∣

∣
∣
∣
∂ρi

∂u

∣
∣
∣

2∑

j=1

∣
∣(V (k)

j − V (k−1)
j )(ρi , ui )

∣
∣

≤
∫ ρ∗

ρi

C̄2ν
k+1 ds +

∫ ρ∗

ρ∗
C0C̃2�

k
M2

s+M2 ds +
∫ ρ

ρ∗
Ĉ2ν

k+1 ds + C2νρ
−θ1
i C1�

k
M2
ρ

1+θ1
i

≤ Ĉ2(ρ − ρ∗) νk+1 + C̃2
(
(ρ∗)1+M2 − (ρ∗)1+M2

)
� k+1

M2
+ C̄2(ρ∗ − ρi )ν

k+1 + C1C2ρiν
k+1

≤ Ĉ2ρ ν
k+1,

where we have chosen

M1 ≥ M2 + θ2, C̄2 ≥ C1C2,

C̃2 ≥ max
{

C̃1C2(1 + M2)(ρ
∗)M1−M2−θ2

(1 + M2

1 + M1

)k
, C̄2

(
ν�−1

M2

)k+1

(ρ∗)M2

}
,

Ĉ2 ≥ max
{

Ĉ1C2, C̃2(ρ
∗)M2

(
ν−1�M2

)k+1
}
. (4.48)

Thus, under assumption (4.48), we conclude that, for i = 1, 2,

∣
∣
∣
∂(V (k+1)

i − V (k)
i )

∂u
(ρ, u)

∣
∣
∣ ≤

⎧
⎪⎨

⎪⎩

C̄2ρ ν
k+1 for ρ ≤ ρ∗,

C̃2ρ
1+M2 � k+1

M2
for ρ∗ ≤ ρ ≤ ρ∗,

Ĉ2ρ ν
k+1 for ρ ≥ ρ∗.

Combining (4.27) with (4.46)–(4.48) and taking

�M2 = ν, C̄2 = max{C2, C1C2},
C̃2 =max

{
C̄2(ρ∗)−M2 , C̃1C2(1+M2)(ρ

∗)M1−M2−θ2
}
, Ĉ2 =max

{
C̃2(ρ

∗)M2 , Ĉ1C2
}
,

we have proved that, for any n ≥ 1 and i = 1, 2,

∣
∣
∣
∂(V (n)

i − V (n−1)
i )

∂u
(ρ, u)

∣
∣
∣ ≤

⎧
⎪⎨

⎪⎩

C̄2ρ ν
n for ρ ≤ ρ∗,

C̃2ρ
1+M2 νn for ρ∗ ≤ ρ ≤ ρ∗,

Ĉ2ρ ν
n for ρ ≥ ρ∗.

(4.49)

Noting that ν < 1 and ρ ≤ ρ0 for (ρ, u) ∈ �, we know that
{ ∂V (n)

i
∂u

}
is uniformly

convergent in �. It is direct to check that the limit function is ∂Vi
∂u . Due to the continuity

and uniform convergence of { ∂V (n)
i
∂u }, it is clear that ∂Vi

∂u is continuous in �.
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On the other hand, it follows from (4.9) that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂V (n)
1

∂ρ
= k′(ρ)

∂V (n)
1

∂u
− k′′(ρ)

2k′(ρ)
(
V (n−1)

1 + V (n−1)
2

)
,

∂V (n)
2

∂ρ
= −k′(ρ)

∂V (n)
2

∂u
− k′′(ρ)

2k′(ρ)
(
V (n−1)

1 + V (n−1)
2

)
,

which, with (4.14), (4.28), and (4.49), yields that, for k ≥ 0 and i = 1, 2,

∣
∣
∣
∂(V (n)

i − V (n−1)
i )

∂ρ
(ρ, u)

∣
∣
∣

≤ k′(ρ)
∣
∣
∣
∂(V (n)

i − V (n−1)
i )

∂u
(ρ, u)

∣
∣
∣ +

∣
∣
∣

k′′(ρ)
2k′(ρ)

∣
∣
∣

2∑

j=1

∣
∣(V (n)

j − V (n−1)
j )(ρ, u)

∣
∣

≤

⎧
⎪⎨

⎪⎩

Cρθ1 νn for ρ ≤ ρ∗,
CρM1 νn for ρ∗ ≤ ρ ≤ ρ∗,
Cρθ2 νn for ρ ≥ ρ∗,

(4.50)

for some large constant C > 0. Thus,
∂V (n)

i
∂ρ

converges uniformly to ∂Vi
∂ρ

in �. It is clear

that ∂Vi
∂ρ

is continuous. Therefore, (V1(ρ, u), V2(ρ, u)) is a C1–solution of the Goursat

problem (4.4)–(4.5), which implies that η̂ is a C2–solution of (4.2).
4. From (4.34) and (4.49), we obtain that, for i = 1, 2,

∣
∣
∣
∂Vi

∂u
(ρ, u)

∣
∣
∣ ≤

∣
∣
∣
∂V (0)

i

∂u
(ρ, u)

∣
∣
∣ +

∞∑

n=1

∣
∣
∣
∂(V (n)

i − V (n−1)
i )

∂u
(ρ, u)

∣
∣
∣ ≤ Cρ (4.51)

for ρ ≥ 0 and |u| ≤ k(ρ). Similarly, using (4.50), we see that, for i = 1, 2,

∣
∣
∣
∂Vi

∂ρ

∣
∣
∣ ≤ Cρθ(ρ) for ρ ≥ 0 and |u| ≤ k(ρ).

Therefore, for |u| ≤ k(ρ), it follows from (4.3) and (4.51) that

|η̂uu(ρ, u)| = |∂u V1(ρ, u)− ∂u V2(ρ, u)| ≤ Cρ,

|η̂ρu(ρ, u)| = |k′(ρ)(∂u V1(ρ, u) + ∂u V2(ρ, u))| ≤ Cρθ(ρ).

If η̂m is regarded as a function of (ρ, u), we have

|η̂mρ(ρ, u)| ≤ Cρθ(ρ)−1, |η̂mu(ρ, u)| ≤ C for |u| ≤ k(ρ).

If η̂m is regarded as a function of (ρ,m), we see that, for |u| ≤ k(ρ),

|η̂mρ(ρ,m)| = |η̂mρ(ρ, u) + uη̂mu(ρ, u)| ≤ Cρθ(ρ)−1,

|η̂mm(ρ,m)| = |ρ−1η̂mu(ρ, u)| ≤ Cρ−1.

5. We now prove the uniqueness of η̂, which is equivalent to the uniqueness of
solutions of (4.4)–(4.5) in the class of C1–solutions satisfying (4.29). Suppose that
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there exist two C1 solutions (V1, V2) and (Ṽ1, Ṽ2) of (4.4)–(4.5) satisfying the uniform
estimate (4.29). Then it follows from (4.9) that, for i = 1, 2,

Vi (ρ, u)− Ṽi (ρ, u) = −
∫ ρ

ρi

k′′(s)
2k′(s)

2∑

j=1

(
Vj (s, u(i)(s))− Ṽ j (s, u(i)(s))

)
ds. (4.52)

Applying the uniform estimates (4.29) and similar arguments as in (4.28)–(4.52) yields

max
(ρ,u)∈R+×R

|u|≤k(ρ)

∣
∣Vi (ρ, u)− Ṽi (ρ, u)

∣
∣ ≤

⎧
⎪⎨

⎪⎩

Cρ1+θ1 � n
1 for ρ ≤ ρ∗,

Cρ1+M1 � n
M1

for ρ∗ ≤ ρ ≤ ρ∗,
Cρ1+θ2 � n

2 for ρ ≥ ρ∗,

for any n ≥ 0, where C � 1 is independent of n. Taking n → ∞, we obtain that
Vi (ρ, u) ≡ Ṽi (ρ, u) for |u| ≤ k(ρ) which, with (4.3) and η̂(0, u) ≡ 0, yields the
uniqueness of η̂.

6. We now estimate the entropy flux q̂ . It follows from (2.12) that, for all entropy
pairs,

qρ = uηρ + ρk′(ρ)2ηu, qu = ρηρ + uηu . (4.53)

Then there exists an entropy flux q̂(ρ, u) ∈ C2(R+ × R) corresponding to the special
entropy η̂:

q̂(ρ, u) = 1

2
ρ|u|3 ± ρu

(
e(ρ) + ρe′(ρ)

)
for ± u ≥ k(ρ).

It follows from (4.30) and (4.53) that |q̂ρ(ρ, u)| = |uη̂ρ + ρk′(ρ)2η̂u | ≤ Cργ (ρ)+θ(ρ)−1

for |u| ≤ k(ρ), which implies

|q̂(ρ, u)| =
∣
∣
∣

∫ ρ

ρ̄

q̂ρ(s, u) ds + q̂(ρ̄, u)
∣
∣
∣ ≤ Cργ (ρ)+θ(ρ) for |u| ≤ k(ρ), (4.54)

where (ρ̄, u) is the point satisfying k(ρ̄) = |u|.
For |u| ≤ k(ρ), it follows from (4.31) and (4.54) that |q̂ − uη̂| ≤ |q̂| + |u||η̂| ≤

Cργ (ρ)+θ(ρ). In region {(ρ, u) : |u| ≥ k(ρ)}, it is direct to check that all the estimates in
Lemma 4.1 hold by using (4.1). Therefore, the proof of Lemma 4.1 is now complete. ��

4.2. Estimates of the weak entropy pairs. In order to show the compactness of the weak
entropy dissipation measures below, we now derive some estimates of the weak entropy
pairs. To achieve this, from (2.15)–(2.16), it requires to analyze the entropy kernel and
entropy flux kernel, respectively.

The entropy kernel χ = χ(ρ, u, s) is a fundamental solution of the entropy equation
(2.14): ⎧

⎨

⎩

χρρ − P ′(ρ)
ρ2 χuu = 0,

χ |ρ=0 = 0, χρ |ρ=0 = δu=s .

(4.55)

As pointed out in [11] that equation (4.55) is invariant under the Galilean transformation,
which implies that χ(ρ, u, s) = χ(ρ, u − s, 0) = χ(ρ, 0, s − u). For simplicity, we
write it as χ(ρ, u, s) = χ(ρ, u − s) below when no confusion arises.
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The corresponding entropy flux kernel σ(ρ, u, s) satisfies the Cauchy problem for
σ − uχ :

⎧
⎨

⎩

(σ − uχ)ρρ − P ′(ρ)
ρ2 (σ − uχ)uu = P ′′(ρ)

ρ
χu,

(σ − uχ)|ρ=0 = 0, (σ − uχ)ρ |ρ=0 = 0.
(4.56)

We recall from [11] that σ − uχ is also Galilean invariant. From (1.4)–(1.6), P(ρ)
satisfies all the conditions in [11,12].

For later use, we introduce the definition of fractional derivatives (cf. [8,11,48]). For
any real α > 0, the fractional derivative ∂αs f of a function f = f (s) is

∂αs f (s) = �(−α) f ∗ [s]−α−1
+ ,

where �(x) is the Gamma function and the convolution should be understood in the
sense of distributions. The following formula:

∂αs (sg(s)) = s∂α+1
s g + (α + 1)∂αs g

holds for fractional derivatives. We now present two useful lemmas for the entropy kernel
χ(ρ, u) and the entropy flux kernel σ(ρ, u) when ρ is bounded.

Lemma 4.2 ([11, Theorems 2.1–2.2]). The entropy kernelχ(ρ, u) admits the expansion:

χ(ρ, u) = a1(ρ)Gλ1(ρ, u) + a2(ρ)Gλ1+1(ρ, u) + g1(ρ, u) for ρ ∈ [0,∞), (4.57)

where k(ρ) = ∫ ρ

0

√
P ′(y)
y dy and

Gλ1(ρ, u) = [k(ρ)2 − u2]λ1
+ , λ1 = 3 − γ1

2(γ1 − 1)
> 0,

a1(ρ) = Mλ1 k(ρ)−λ1 k′(ρ)−
1
2 , Mλ1 =

(
2λ1√

2λ1 + 1

∫ 1

−1
(1 − z2)λ1 dz

)−1

,

a2(ρ) = − 1

4(λ1 + 1)
k(ρ)−λ1−1k′(ρ)−

1
2

∫ ρ

0
k(s)λ1 k′(s)−

1
2 a′′

1 (s) ds.

(4.58)

Moreover, suppχ(ρ, u) ⊂ {(ρ, u) : |u| ≤ k(ρ)}, and χ(ρ, u) > 0 in {(ρ, u) : |u| <
k(ρ)}. The remainder term g1(ρ, ·) and its fractional derivative ∂λ1+1

u g1(ρ, ·) are Hölder
continuous. Furthermore, for any fixed ρmax > 0, there exists C(ρmax) > 0 depending
only on ρmax such that

|g1(ρ, u − s)| ≤ C(ρmax)[k(ρ)2 − (u − s)2]λ1+α0+1
+ , (4.59)

for any 0 ≤ ρ ≤ ρmax and some α0 ∈ (0, 1). In addition, for any 0 ≤ ρ ≤ ρmax,

|a1(ρ)| + ρ1−2θ1 |a′
1(ρ)| + ρ2−2θ1 |a′′

1 (ρ)| + |a2(ρ)| + ρ|a′
2(ρ)| + ρ2|a′′

2 (ρ)| ≤ C(ρmax).

(4.60)
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Proof. Since (4.57)–(4.59) have been derived in [11, Theorem 2.2], it suffices to prove
(4.60). From (3.6), we find that |a1(ρ)| ≤ C(ρmax) for 0 ≤ ρ ≤ ρmax. For |a′

1(ρ)|, a
direct calculation shows that

a′
1(ρ) = −λ1 Mλ1 k(ρ)−λ1−1k′(ρ)

1
2 − 1

2
Mλ1 k(ρ)−λ1 k′(ρ)−

3
2 k′′(ρ).

It follows from (1.5) that k(ρ) = C1ρ
θ1

(
1+ O(ρ2θ1)

)
as ρ ∈ [0, ρmax] for some constant

C1 > 0 that may depend on κ1 and γ1. Then, by direct calculation, we observe that the
term involving ρ−1 in a′

1(ρ) vanishes so that |a′
1(ρ)| ≤ C(ρmax)ρ

2θ1−1. Similarly, we
obtain that |a′′

1 (ρ)| ≤ C(ρmax)ρ
2θ1−2. Finally, using (4.58)3, we can obtain the estimates

of a2(ρ) in (4.60) by a direct calculation. This completes the proof. ��
Lemma 4.3 ([11, Theorem 2.3]). The entropy flux kernel σ(ρ, u) admits the expansion

(σ−uχ)(ρ, u) = −u
(
b1(ρ)Gλ1(ρ, u)+b2(ρ)Gλ1+1(ρ, u)

)
+g2(ρ, u) for ρ ∈ [0,∞),

where

b1(ρ) = Mλ1ρk(ρ)−λ1−1k′(ρ)
1
2 > 0,

b2(ρ) = − 1

4(λ1 + 1)
ρk′(ρ)

1
2 k(ρ)−(λ1+2)

∫ ρ

0
k(s)λ1k′(s)−

1
2 a′′

1 (s) ds

− 1

4(λ1 + 1)
k(ρ)−(λ1+2)k′(ρ)−

1
2

∫ ρ

0
k(s)λ1+1k′(s)−

1
2 b′′

1(s) ds

+
1

4(λ1 + 1)
k(ρ)−(λ1+2)k′(ρ)−

1
2

∫ ρ

0
sk(s)λ1k′(s)

1
2 a′′

1 (s) ds.

(4.61)

The remainder term g2(ρ, ·) and its fractional derivative ∂λ1+1
u g2(ρ, ·) are Hölder con-

tinuous. Moreover, for any fixed ρmax > 0, there exists C(ρmax) > 0 depending only on
ρmax such that

|g2(ρ, u − s)| ≤ C(ρmax)[k(ρ)2 − (u − s)2]λ1+α0+1
+ ,

for any 0 ≤ ρ ≤ ρmax and some α0 ∈ (0, 1). Furthermore, similar to the proof of (4.60),
for any 0 ≤ ρ ≤ ρmax,

|b1(ρ)| + ρ1−2θ1 |b′
1(ρ)| + ρ2−2θ1 |b′′

2(ρ)| + |b2(ρ)| + ρ|b′
2(ρ)| + ρ2|b′′

2(ρ)| ≤ C(ρmax).

(4.62)

Remark 4.1. In [11, Theorem 2.2], it is proved that a2(ρ) and b2(ρ) satisfy |a2(ρ)| +
|b2(ρ)| ≤ Cρk(ρ)−2 for the pressure law given in [11, (2.1)]. In this paper, we have
improved them to be (4.60) and (4.62) under conditions (1.4)–(1.6).

For later use, we recall a useful representation formula for χ(ρ, u).

Lemma 4.4 (First representation formula, [64, Lemma 3.4]). Given any (ρ, u) with
|u| ≤ k(ρ) and 0 ≤ ρ0 < ρ,

χ(ρ, u) = 1

2(ρ − ρ0)k′(ρ)

∫ ρ

ρ0

k′(s) d̃(s)χ(s, u + k(ρ)− k(s)) ds

+
1

2(ρ − ρ0)k′(ρ)

∫ ρ

ρ0

k′(s) d̃(s)χ(s, u − k(ρ) + k(s)) ds

− 1

2(ρ − ρ0)k′(ρ)

∫ k(ρ)−k(ρ0)

−(k(ρ)−k(ρ0))

χ(ρ0, u − s) ds,

where d̃(ρ) := 2 + (ρ − ρ0)
k′′(ρ)
k′(ρ) .
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Remark 4.2. In the statement of [64, Lemma 3.4], ρ0 is positive. However, the proof of
[64, Lemma 3.4] is also valid for ρ0 = 0 without modification; see also [11, (3.38)].

Given any ψ ∈ C2
0 (R), a regular weak entropy pair (ηψ, qψ) can be given by

ηψ(ρ, u) =
∫

R

ψ(s) χ(ρ, u, s) ds, qψ(ρ, u) =
∫

R

ψ(s) σ (ρ, u, s) ds. (4.63)

It follows from (4.55) that
{
ηψρρ − k′(ρ)2ηψuu = 0,

ηψ |ρ=0 = 0, ηψρ |ρ=0 = ψ(u).
(4.64)

Using Lemmas 4.2–4.4, we obtain the following lemma for the weak entropy pair
(ηψ, qψ).

Lemma 4.5. For any weak entropy (ηψ, qψ) defined in (4.63), there exists a constant
Cψ > 0 depending only on ρ∗ and ψ such that, for all ρ ∈ [0, 2ρ∗],

|ηψ(ρ, u)| + |qψ(ρ, u)| ≤ Cψρ.

If ηψ is regarded as a function of (ρ,m), then

|ηψm (ρ,m)| + |ρηψmm(ρ,m)| ≤ Cψ, |ηψρ (ρ,m)| ≤ Cψ

(
1 + ρθ1

)
.

Moreover, if ηψm is regarded as a function of (ρ, u), then

|ηψmu(ρ, u)| + |ρ1−θ1ηψmρ(ρ, u)| ≤ Cψ.

Proof. All the estimates can be found in [63, Lemma 3.8] or [64, Lemma 4.13] except
the estimate of ηψρ (ρ,m). In fact, applying Lemma 4.4 to (4.64) and using d(ρ) :=
2 +

ρk′′(ρ)
k′(ρ)

, we have

ηψ(ρ, u) = 1

2ρk′(ρ)

∫ ρ

0
k′(s) d(s) ηψ(s, u + k(ρ)− k(s)) ds

+
1

2ρk′(ρ)

∫ ρ

0
k′(s) d(s) ηψ(s, u − k(ρ) + k(s)) ds := I1 + I2. (4.65)

We regard ηψ as a function of (ρ,m). Then we have

∂ρη
ψ(ρ,m) = ∂ρη

ψ(ρ, u)− u

ρ
∂uη

ψ(ρ, u). (4.66)

Without loss of generality, we assume that suppψ ⊂ [−L , L] for some L > 0. Then
a direct calculation shows that ηψ(ρ, u) = 0 if |u| ≥ k(ρ) + L . Noticing ηψu (ρ, u) =
ρη

ψ
m (ρ,m), we have

∣
∣
∣
u

ρ
∂uη

ψ(ρ, u)
∣
∣
∣ ≤ |u| |ηψm (ρ,m)| ≤ Cψ(1 + ρθ1) for 0 ≤ ρ ≤ 2ρ∗. (4.67)
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Thus, it suffices to calculate ∂ρη
ψ(ρ, u). It follows from (4.65) that ∂ρηψ(ρ, u) =

∂ρ I1 + ∂ρ I2. A direct calculation shows that

∂ρ I1 = 1

2

( − ρ−2(k′(ρ))−1 − ρ−1(k′(ρ))−2k′′(ρ)
)

×
∫ ρ

0
k′(s) d(s) ηψ(s, u + k(ρ)− k(s)) ds

+
1

2ρ

∫ ρ

0
k′(s) d(s) ηψu (s, u + k(ρ)− k(s)) ds +

1

2ρ
d(ρ)ηψ(ρ, u). (4.68)

Using (3.6) and Lemma 3.2, we obtain that

|∂ρ I1| ≤ Cψ(1 + ρθ1) for 0 ≤ ρ ≤ 2ρ∗.

Similarly, we obtain that |∂ρ I2| ≤ Cψ(1 + ρθ1). Thus, we conclude that |∂ρηψ(ρ, u)| ≤
|∂ρ I1| + |∂ρ I2| ≤ Cψ(1 + ρθ1), which, with (4.66)–(4.67), implies that |∂ρηψ(ρ,m)| ≤
Cψ(1 + ρθ1). ��

We notice that all the above estimates for the weak entropy pairs in Lemmas 4.2–
4.5 hold when the density is bounded. To establish the L p-compensated compactness
framework, we need the entropy pair estimates when the density is large, namely ρ ≥ ρ∗.
From now on in this subsection, we use the representation formula of Lemma 4.4 to
estimate (ηψ, qψ) in the large density region ρ ≥ ρ∗.

Lemma 4.6. There exists a positive constant C > 0 depending only on ρ∗ such that

‖χ(ρ, ·)‖L∞
u

≤ Cρ for ρ ≥ ρ∗.

Proof. For ρ ≥ ρ∗, χ(ρ, u) satisfies
{
χρρ − k′(ρ)2χuu = 0,

χ(ρ, u)|ρ=ρ∗ = χ(ρ∗, u), χρ(ρ, u)|ρ=ρ∗ = χρ(ρ
∗, u).

where χ(ρ∗, u) and χρ(ρ∗, u) are given in Lemma 4.2. Then, applying Lemma 4.4, we
obtain that, for ρ > ρ∗,

‖k′(ρ)χ(ρ, ·)‖L∞
u

≤ 1

ρ − ρ∗

∫ ρ

ρ∗
d∗(s)‖k′(s)χ(s, ·)‖L∞

u
ds

+
1

2(ρ − ρ∗)

∫ k(ρ)−k(ρ∗)

−(k(ρ)−k(ρ∗))
‖χ(ρ∗, ·)‖L∞

u
ds

≤ 1

ρ − ρ∗

∫ ρ

ρ∗
d∗(s)‖k′(s)χ(s, ·)‖L∞

u
ds + Cρθ2−1,

where d∗(ρ) := 2 + (ρ − ρ∗) k′′(ρ)
k′(ρ) . By a similar proof to that for Lemma A.3, we have

‖k′(ρ)χ(ρ, ·)‖L∞
u

≤ Cρθ2 for ρ ≥ 2ρ∗,

which, with (3.7), yields that ‖χ(ρ, ·)‖L∞
u

≤ Cρ for ρ ≥ 2ρ∗. For ρ∗ ≤ ρ ≤ 2ρ∗, it
follows from Lemma 4.2 that ‖χ(ρ, ·)‖L∞

u
≤ C ≤ Cρ. ��
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Lemma 4.7. Let ρ ≥ ρ∗ and ψ ∈ C2
0 (R). Then, in the (ρ, u)–coordinates,

|ηψ(ρ, u)|+|ηψu (ρ, u)|+|ηψuu(ρ, u)| ≤ Cψρ, |ηψρ (ρ, u)|+ρ1−θ2 |ηψρρ(ρ, u)| ≤ Cψρ
θ2 .

In the (ρ,m)–coordinates, |ηψρ (ρ,m)| + ρθ2 |ηψm (ρ,m)| + ρ1+θ2 |ηψmm(ρ,m)| ≤ Cψρ
θ2 .

If ηψm (ρ,m) is regarded as a function of (ρ, u), then |ηψmu | + ρ1−θ2 |ηψmρ | ≤ Cψ .
All the above constants Cψ > 0 depend only on ‖ψ‖C2 and suppψ .

Proof. We divide the proof into five steps.
1. Using (4.63) and Lemma 4.6, we obtain that, for ρ ≥ ρ∗,

|ηψ(ρ, u)| + |ηψu (ρ, u)| + |ηψuu(ρ, u)| ≤ ‖χ(ρ, ·)‖L∞(R)‖(ψ,ψ ′, ψ ′′)‖L1(R) ≤ Cψρ.

(4.69)
2. For the estimate of ηψρ (ρ, u), the proof is similar to Lemma 4.5. Indeed, ηψ satisfies

{
ηψρρ − k′(ρ)2ηψuu = 0,

ηψ(ρ, u)|ρ=ρ∗ = ηψ(ρ∗, u), ηψρ (ρ, u)|ρ=ρ∗ = ηψρ (ρ
∗, u).

(4.70)

It follows from (4.70) and Lemma 4.4 that

ηψ(ρ, u) = 1

2(ρ − ρ∗)k′(ρ)

∫ ρ

ρ∗
d∗(s)k′(s)ηψ(s, u + k(ρ)− k(s)) ds

− 1

2(ρ − ρ∗)k′(ρ)

∫ ρ

ρ∗
d∗(s)k′(s)ηψ(s, u − k(ρ) + k(s)) ds

− 1

2(ρ − ρ∗)k′ (ρ)

∫ k(ρ)−k(ρ∗)

−(k(ρ)−k(ρ∗))
ηψ(ρ∗, u − s) ds, (4.71)

where d∗(ρ) = 2 + (ρ − ρ∗) k′′(ρ)
k′(ρ) and 0 < d∗(ρ) ≤ 3 for ρ ≥ ρ∗ from (3.10).

Then, following the similar arguments as in the proof of Lemma 4.5, we can obtain that
|ηψρ (ρ, u)| ≤ Cψρ

θ2 for ρ ≥ 2ρ∗. Moreover, from Lemma 4.5, |ηψρ (ρ, u)| ≤ Cψ ≤
Cψρ

θ2 for ρ ∈ [ρ∗, 2ρ∗] so that

|ηψρ (ρ, u)| ≤ Cψρ
θ2 for ρ ≥ ρ∗. (4.72)

3. For ηψρρ(ρ, u), it follows from (4.69)–(4.70) that

|ηψρρ(ρ, u)| ≤ |k′(ρ)2| |ηψuu(ρ, u)| ≤ Cψρ
2θ2−1 = Cψρ

γ2−2 for ρ ≥ ρ∗.

4. In the (ρ,m)–coordinates, it is clear that

ηψm (ρ,m) = ρ−1ηψu (ρ, u), ηψmm(ρ,m) = ρ−2ηψuu(ρ, u),

ηψρ (ρ,m) = ηψρ (ρ, u)− m

ρ2 η
ψ
u (ρ, u).

On the other hand, if ηψm is regarded as a function (ρ, u), it is direct to obtain

ηψmu(ρ, u) = ∂u
(
ρ−1ηψu (ρ, u)

) = ρ−1ηψuu(ρ, u).
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Thus, using (4.69) and (4.72),

|ηψm (ρ,m)| + |ηψmu(ρ, u)| + ρ|ηψmm(ρ,m)| ≤ Cψρ
−1,

|ηψρ (ρ,m)| ≤ |ηψρ (ρ, u)| +
|m|
ρ2

∣
∣ηψu (ρ, u)

∣
∣ ≤ Cψρ

θ2 + Cψ(L + k(ρ)) ≤ Cψρ
θ2 ,

where we have used that suppψ ⊂ [−L , L] and ηψu (ρ, u) = ρη
ψ
m (ρ,m).

5. For the estimates of ηψmρ(ρ, u) = ∂ρη
ψ
m (ρ, u), it follows from (4.71) that

ηψm (ρ,m) = 1

ρ
ηψu (ρ, u) = 1

2ρ(ρ − ρ∗)k′(ρ)

∫ ρ

ρ∗
d∗(s) k′(s) ηψu (s, u + k(ρ)− k(s)) ds

+
1

2ρ(ρ − ρ∗)k′(ρ)

∫ ρ

ρ∗
d∗(s) k′(s) ηψu (s, u − k(ρ) + k(s)) ds

− 1

2ρ(ρ − ρ∗)k′(ρ)

∫ k(ρ)−k(ρ∗)

−(k(ρ)−k(ρ∗))
ηψu (ρ

∗, u − s) ds

:= J1 + J2 + J3, (4.73)

and ∂ρη
ψ
m (ρ, u) = ∂ρ J1 + ∂ρ J2 + ∂ρ J3.

A direct calculation shows that

∂ρ J1 = ∂ρ

( 1

2ρ(ρ − ρ∗)k′(ρ)

) ∫ ρ

ρ∗
d∗(s) k′(s) ηψu (s, u + k(ρ)− k(s)) ds

+
1

2ρ(ρ − ρ∗)

∫ ρ

ρ∗
d∗(s) k′(s) ηψuu(s, u + k(ρ)− k(s)) ds

+
1

2ρ(ρ − ρ∗)
d∗(ρ) ηψu (ρ, u)

:= J1,1 + J1,2 + J1,3, (4.74)

∂ρ J2 = ∂ρ

( 1

2ρ(ρ − ρ∗)k′(ρ)

) ∫ ρ

ρ∗
d∗(s) k′(s) ηψu (s, u − k(ρ) + k(s)) ds

− 1

2ρ(ρ − ρ∗)

∫ ρ

ρ∗
d∗(s) k′(s) ηψuu(s, u − k(ρ) + k(s)) ds

+
1

2ρ(ρ − ρ∗)
d∗(ρ)ηψu (ρ, u)

:= J2,1 + J2,2 + J2,3. (4.75)

Clearly, we have

∣
∣
∣∂ρ

( 1

2ρ(ρ − ρ∗)k′(ρ)

)∣
∣
∣ = 1

2

∣
∣
∣

ρ − ρ∗

2ρ2 (ρ − ρ∗)2 k′(ρ)
+

k′′(ρ)
ρ (ρ − ρ∗) k′(ρ)2

∣
∣
∣

≤ C

(ρ − ρ∗)2ρθ2
,

which, with (4.69) and 0 < d∗(ρ) ≤ 3 for ρ ≥ ρ∗, yields

|J1,1 + J2,1| =
∣
∣
∣∂ρ

( 1

2ρ (ρ − ρ∗) k′(ρ)

) ∫ ρ

ρ∗
k′(s) d∗(s) ηψu (s, u + k(ρ)− k(s)) ds

∣
∣
∣
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+
∣
∣
∣∂ρ

( 1

2ρ (ρ − ρ∗) k′(ρ)

) ∫ ρ

ρ∗
k′(s) d∗(s) ηψu (s, u − k(ρ) + k(s)) ds

∣
∣
∣

≤ Cψ

(ρ − ρ∗)2 ρθ2

∫ ρ

ρ∗
sθ2 ds ≤ Cψ

ρ − ρ∗ . (4.76)

It follows from (4.69) and 0 < d∗(ρ) ≤ 3 for ρ ≥ ρ∗ that

|J1,2| + |J2,2| =
∣
∣
∣

1

2ρ(ρ − ρ∗)

∫ ρ

ρ∗
d∗(s) k′(s) ηψuu(s, u + k(ρ)− k(s)) ds

∣
∣
∣

+
∣
∣
∣

1

2ρ(ρ − ρ∗)

∫ ρ

ρ∗
d∗(s) k′(s) ηψuu(s, u − k(ρ) + k(s)) ds

∣
∣
∣

≤ Cψ

ρ(ρ − ρ∗)

∫ ρ

ρ∗
sθ2 ds ≤ Cψ

ρ(ρ − ρ∗)
ρθ2(ρ − ρ∗) ≤ Cψρ

θ2−1.

(4.77)
For J1,3 + J2,3, it is direct to see that

|J1,3 + J2,3| ≤
∣
∣
∣

1

ρ(ρ − ρ∗)
d∗(ρ) ηψu (ρ, u)

∣
∣
∣ ≤ Cψ

ρ − ρ∗ . (4.78)

For ∂ρ J3, we notice that

∂ρ J3 = −∂ρ
( 1

2ρ (ρ − ρ∗) k′(ρ)

) ∫ k(ρ)−k(ρ∗)

−(k(ρ)−k(ρ∗))
ηψu (ρ

∗, u − s) ds

− 1

2ρ (ρ − ρ∗)
(
ηψu (ρ

∗, u − k(ρ) + k(ρ∗)) + ηψu (ρ
∗, u + k(ρ)− k(ρ∗))

)
,

which, with 0 < θ2 ≤ 1, yields

|∂ρ J3| ≤ Cψρ
∗

(ρ − ρ∗)2
|k(ρ)− k(ρ∗)| +

Cψρ
∗

ρ (ρ − ρ∗)
≤ Cψ

ρ − ρ∗ (1 + ρθ2−1) ≤ Cψ

ρ − ρ∗ .

(4.79)

Combining (4.74)–(4.79) with (4.73) yields that |ηψmρ(ρ, u)| ≤ Cψρ
θ2−1 for ρ ≥ 2ρ∗.

For ρ∗ ≤ ρ ≤ 2ρ∗, it follows from Lemma 4.5 that |ηψmρ(ρ, u)| ≤ Cψρ
θ1−1 ≤ Cψ for

ρ∗ ≤ ρ ≤ 2ρ∗. Thus, we conclude that |ηψmρ(ρ, u)| ≤ Cψρ
θ2−1 for ρ ≥ ρ∗. ��

We now estimate qψ for ρ ≥ ρ∗. It follows from (4.56) that h := σ − uχ satisfies

⎧
⎨

⎩

hρρ − k′(ρ)2huu = P ′′(ρ)
ρ

χu,

h(ρ∗, u) = (σ − uχ)(ρ∗, u), hρ(ρ
∗, u) = (σ − uχ)ρ(ρ

∗, u),

where (σ − uχ)(ρ∗, u) and (σ − uχ)ρ(ρ∗, u) are given by Lemma 4.3. Similar to
Lemma 4.4, we have the following representation formula for h.
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Lemma 4.8 (Second representation formula [64, Lemmas 3.4 and 3.9]). For any (ρ, u)
with |u| ≤ k(ρ) and ρ > ρ∗,

h(ρ, u) = 1

2(ρ − ρ∗)k′(ρ)

∫ ρ

ρ∗
k′(s)d∗(s)

(
h(s, u + k(ρ)− k(s)) + h(s, u − k(ρ) + k(s))

)
ds

+
1

2(ρ − ρ∗)k′(ρ)

∫ ρ

ρ∗
(s − ρ∗) P ′′(s)

s
χ(s, u + k(ρ)− k(s)) ds

− 1

2(ρ − ρ∗)k′(ρ)

∫ ρ

ρ∗
(s − ρ∗) P ′′(s)

s
χ(s, u − k(ρ) + k(s)) ds

− 1

2(ρ − ρ∗)k′(ρ)

∫ k(ρ)−k(ρ∗)

−(k(ρ)−k(ρ∗))
h(ρ∗, u − s) ds, (4.80)

where d∗(ρ) = 2 + (ρ − ρ∗) k′′(ρ)
k′(ρ) .

Lemma 4.9. There exists a constant C > 0 depending only on ρ∗ such that

‖(σ − uχ)(ρ, u)‖L∞
u

≤ Cρ1+θ2 for ρ ≥ ρ∗.

Proof. It follows from (3.3), (4.80), and Lemma 4.6 that

‖k′(ρ)h(ρ, ·)‖L∞
u

≤ 1

ρ − ρ∗

∫ ρ

ρ∗
d∗(s)‖k′(s)h(s, ·)‖L∞

u
ds

+
C

ρ − ρ∗

∫ ρ

ρ∗
sγ2−1 ds + Cρθ2−1

≤ 1

ρ − ρ∗

∫ ρ

ρ∗
d∗(s)‖k′(s)h(s, ·)‖L∞

u
ds + Cρ2θ2 ,

which, with (3.7) and a similar proof to that for Lemma A.3, yields

‖k′(ρ)h(ρ, ·)‖L∞
u

≤ Cρ2θ2 �⇒ ‖h(ρ, ·)‖L∞
u

≤ Cρ1+θ2 for ρ ≥ 2ρ∗.

For ρ∗ ≤ ρ ≤ 2ρ∗, it follow from Lemma 4.3 that ‖h(ρ, ·)‖L∞
u

≤ C ≤ Cρ1+θ2 . ��
Lemma 4.10. For ρ ≥ ρ∗ and ψ ∈ C2

0 (R),

|qψ(ρ, u)| ≤ Cψρ
1+θ2 . (4.81)

Proof. Recall that

qψ(ρ, u) =
∫

R

(
σ(ρ, u, s)− uχ(ρ, u − s)

)
ψ(s) ds + u

∫

R

χ(ρ, u − s)ψ(s) ds

:= hψ(ρ, u) + u ηψ(ρ, u).
(4.82)

It follows from Lemma 4.9 that

|hψ(ρ, u)| ≤ C‖(σ − uχ)(ρ, ·)‖L∞
u (R)‖ψ‖L1(R) ≤ Cψρ

1+θ2 . (4.83)

Since there exists L > 0 such that suppψ ⊂ [−L , L], then it follows from Lemma 4.7
that |uηψ(ρ, u)| ≤ (k(ρ) + L)|ηψ(ρ, u)| ≤ Cψρ

1+θ2 for ρ ≥ ρ∗, which, with (4.82)–
(4.83), yields (4.81). ��
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4.3. Singularities of the entropy kernel and the entropy flux kernel. As indicated in
[11,63,64], understanding the singularities of the entropy kernel and the entropy flux
kernel is essential for the reduction of the Young measure. Thus, it requires some detailed
estimates of the singularities of the entropy kernel and the entropy flux kernel. The
arguments in this subsection are similar to [64, Sect. 6], the main difference is that
a more subtle Grönwall inequality (see Lemma A.3) is needed to obtain the desired
estimates of the singularities.

Lemma 4.11. For ρ ≥ ρ∗, the coefficient functions a1(ρ) and a2(ρ) and the remainder
term g1(ρ, u) in Lemma 4.2 satisfy

|a1(ρ)| + ρθ2 |a2(ρ)| ≤ Cρ
1
2 − θ2

2θ1 , ‖g1(ρ, u)‖L∞
u (R) ≤

{
Cρ if θ2 < θ1,

Cρ ln ρ if θ2 = θ1,

‖∂u g1(ρ, u)‖L∞
u (R) + ‖∂λ1+1

u g1(ρ, u)‖L∞
u (R) + ‖∂λ1+1+α0

u g1(ρ, u)‖L∞
u (R) ≤ Cρ,

where α0 ∈ (0, 1) is the Hölder exponent.

Proof. We divide the proof into five steps.
1. It follows from (4.60) that, for ρ ∈ [0, ρ∗],

|a1(ρ)| + ρ1−2θ1 |a′
1(ρ)| + ρ2−2θ1 |a′′

1 (ρ)| + |a2(ρ)| + ρ|a′
2(ρ)| + ρ2|a′′

2 (ρ)| ≤ C. (4.84)

For ρ ≥ ρ∗, it follows from (3.7), (4.58), and a direct calculation that

|a1(ρ)| + ρ|a′
1(ρ)| + ρ2|a′′

1 (ρ)| ≤ Cρ
1
2 − θ2

2θ1 , (4.85)

|a2(ρ)| =
∣
∣
∣

1

4λ1 + 1
k(ρ)−λ1−1k′(ρ)−

1
2

∫ ρ

0
k(s)λ1 k′(s)−

1
2 a′′

1 (s) ds
∣
∣
∣

≤ Cρ
1
2 − θ2

2θ1
−θ2

(
ρθ1∗ + 1 +

∫ ρ

ρ∗
s−1−θ2 ds

)
≤ Cρ

1
2 −θ2− θ2

2θ1 . (4.86)

Moreover, calculating the derivatives explicitly, we conclude

|a2(ρ)| + ρ|a′
2(ρ)| + ρ2|a′′

2 (ρ)| ≤ Cρ
1
2 −θ2− θ2

2θ1 for ρ ≥ ρ∗.

2. For the remainder term g1(ρ, u), it follows from [11, Proof of Theorem 2.1] that
⎧
⎨

⎩

∂ρρg1(ρ, u)− k′(ρ)2∂uu g1(ρ, u) = A(ρ)k(ρ)−1 fλ1+1(
u

k(ρ)
),

g1(0, ·) = 0, ∂ρg1(0, ·) = 0,

where fλ1(y) = [1−y2]λ1
+ and A(ρ) = −a′′

2 (ρ)k(ρ)
2λ1+3. By (4.84), A(ρ) ∼ O(ρ−1+2θ1)

as ρ → 0 and |A(ρ)| ≤ ρ
− 3

2 +θ2(1+ 1
2θ1

)
for ρ ≥ ρ∗. Similar to Lemma 4.4, we have the

following representation formula for g1(ρ, u):

k′(ρ)g1(ρ, u) = 1

2ρ

∫ ρ

0
d(s) k′(s)

(
g1(s, u + k(ρ)− k(s)) + g1(s, u − k(ρ) + k(s))

)
ds

+
1

2ρ

∫ ρ

0
s A(s) k(s)−1

( ∫ u+k(ρ)−k(s)

u−k(ρ)+k(s)
fλ1+1(

y

k(s)
) dy

)
ds, (4.87)
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where d(ρ) = 2 + ρ
k′′(ρ)
k′(ρ) satisfying (3.11). Since ρA(ρ)k(ρ)−1 ∼ O(ρθ1) as ρ → 0,

the second integral is well-defined. Then it follows directly from (3.6)–(3.7) and (4.87)
that

‖k′(ρ)g1(ρ, ·)‖L∞
u (R)

≤ 1

ρ

∫ ρ

0
d(s)‖k′(s)g1(s, ·)‖L∞

u (R) ds +
2k(ρ)

ρ

( ∫ ρ∗

0
+

∫ ρ∗

ρ∗
+

∫ ρ

ρ∗

)
|s A(s)k(s)−1| ds

≤ 1

ρ

∫ ρ

0
d(s)‖k′(s)g1(s, ·)‖L∞

u (R) ds + Cρθ2−1(ρ1+θ1∗ + 1 + ρ
1
2 + θ2

2θ1
)

≤ 1

ρ

∫ ρ

0
d(s)‖k′(s)g1(s, ·)‖L∞

u (R) ds + Cρ
− 1

2 + θ2
2θ1

+θ2 for ρ ≥ ρ∗. (4.88)

Since g1(ρ, u) is Hölder continuous and supp g1(ρ, ·) ⊂ [−k(ρ), k(ρ)], it follows from
(3.6)–(3.7) that ‖k′(ρ)g1(ρ, ·)‖L∞

u (R) is locally integrable with respect to ρ ∈ [0,∞).
Applying Lemma A.3 to (4.88), we obtain that, for ρ ≥ ρ∗,

‖k′(ρ)g1(ρ, ·)‖L∞
u (R) ≤

{
Cρθ2 if θ2 < θ1,

Cρθ2 ln ρ if θ2 = θ1,

which, with (3.7), yields that, for ρ ≥ ρ∗,

‖g1(ρ, ·)‖L∞
u (R) ≤

{
Cρ if θ2 < θ1,

Cρ ln ρ if θ2 = θ1.

3. Applying ∂u to (4.87), we have

k′(ρ)∂u g1(ρ, u)

= 1

2ρ

∫ ρ

0
d(s)k′(s)

(
∂u g1(s, u + k(ρ)− k(s)) + ∂u g1(s, u − k(ρ) + k(s))

)
ds

+
1

2ρ

∫ ρ

0
s A(s)k(s)−1 fλ1+1(

u + k(ρ)− k(s)

k(s)
) ds

− 1

2ρ

∫ ρ

0
s A(s)k(s)−1 fλ1+1(

u − k(ρ) + k(s)

k(s)
) ds. (4.89)

Since | fλ1+1(s)| ≤ 1, by similar arguments as in Step 2, we can obtain

‖∂u g1(ρ, ·)‖L∞
u (R) ≤ Cρ for ρ ≥ ρ∗.

4. Applying the fractional derivative ∂λ1
u to (4.89), we have

k′(ρ)∂λ1+1
u g1(ρ, u)

= 1

2ρ

∫ ρ

0
d(s)k′(s)

(
(∂λ1+1

u g1)(s, u + k(ρ)− k(s)) + (∂λ1+1
u g1)(s, u − k(ρ) + k(s))

)
ds

+
1

2ρ

∫ ρ

0
s A(s)k(s)−1−λ1(∂λ1

u fλ1+1)(
u + k(ρ)− k(s)

k(s)
) ds

− 1

2ρ

∫ ρ

0
s A(s)k(s)−1−λ1(∂λ1

u fλ1+1)(
u − k(ρ) + k(s)

k(s)
) ds,
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where we have taken into account the homogeneity of the factional derivative in the last
term. Using the Fourier transform relation as in [48, (I.26)–(I.27)], we can obtain

∣
∣F

(
(∂λ1

u fλ1+1)(u)
)
(ξ)

∣
∣ = Cλ1+1|ξ |− 3

2 |Jλ1+ 3
2
(|ξ |)| ≤ C̃λ1+1

1 + ξ2

for some positive constants Cλ1+1 and C̃λ1+1 depending only on λ1 + 1, where we have
used the asymptotic relations for the first kind of Bessel functions Jλ1+ 3

2
(|ξ |) to obtain the

final inequality. Since (1 + |ξ |2)−1 is integrable, applying the Fourier inversion theorem,
we see that (∂λ1

u fλ1+1)(u) is uniformly bounded. Hence, by similar arguments as in Step
2, we have

‖(∂λ1+1
u g1

)
(ρ, ·)‖L∞

u (R) ≤ Cρ for ρ ≥ ρ∗.

5. By Lemma 4.2, we assume thatα0 ∈ (0, 1) is the Hölder exponent of (∂λ1+1
u )g1(ρ, u).

Then, applying the fractional derivative ∂λ1
u to (4.89), we have

k′(ρ)∂λ1+1+α0
u g1(ρ, u)

= 1

2ρ

∫ ρ

0
d(s)k′(s)(∂λ1+1+α0

u g1)(s, u + k(ρ)− k(s)) ds

+
1

2ρ

∫ ρ

0
d(s)k′(s)(∂λ1+1+α0

u g1)(s, u − k(ρ) + k(s)) ds

+
1

2ρ

∫ ρ

0
s A(s)k(s)−1−λ1−α0(∂λ1+α0

u fλ1+1)(
u + k(ρ)− k(s)

k(s)
) ds

− 1

2ρ

∫ ρ

0
s A(s)k(s)−1−λ1−α0(∂λ1+α0

u fλ1+1)(
u − k(ρ) + k(s)

k(s)
) ds.

Noting

∣
∣F

(
(∂λ1+α0

u fλ1+1)(u)
)
(ξ)

∣
∣ = Cλ1+1|ξ |− 3

2 +α0
∣
∣Jλ1+ 3

2
(|ξ |)∣∣ ≤ C̃λ1+1

1 + ξ2−α0
,

and using the Fourier inversion theorem, we find that (∂λ1+α0
u fλ1+1)(u) is uniformly

bounded. By similar arguments as in Step 2, we obtain that ‖(∂λ1+1+α0
u g1

)
(ρ, ·)‖L∞

u (R) ≤
Cρ for ρ ≥ ρ∗. This completes the proof. ��

From Lemmas 4.2 and 4.11, we conclude

Corollary 4.12. χ(ρ, ·) is Hölder continuous and

‖χ(ρ, ·)‖C α̃
u

≤ C(1 + ρ| ln ρ|) for α̃ ∈ (0,min{λ1, 1}] and ρ ≥ 0.

Lemma 4.13. For ρ ≥ ρ∗, the coefficient functions b1(ρ) and b2(ρ) and the remainder
term g2(ρ, u) in Lemma 4.3 satisfy

|b1(ρ)| + ρθ2 |b2(ρ)| ≤ Cρ
1
2 − θ2

2θ1 , ‖g2(ρ, ·)‖L∞
u (R) ≤

{
Cρ1+θ2 if θ2 < θ1,

Cρ1+θ2 ln ρ if θ2 = θ1,

‖∂u g2(ρ, ·)‖L∞
u (R) + ‖(∂λ1+1

u g2
)
(ρ, ·)‖L∞

u (R) + ‖(∂λ1+1+α0
u g2

)
(ρ, ·)‖L∞

u (R) ≤ Cρ1+θ2 ,

where α0 ∈ (0, 1) is the Hölder exponent.
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Proof. We divide the proof into five steps.
1. It follows from (4.62) that, for ρ ∈ [0, ρ∗],

|b1(ρ)| + ρ1−2θ1 |b′
1(ρ)| + ρ2−2θ1 |b′′

1(ρ)| + |b2(ρ)| + ρ|b′
2(ρ)| + ρ2|b′′

2(ρ)| ≤ C. (4.90)

From (4.61) and (3.7), we have

|b1(ρ)| + |ρb′
1(ρ)| + |ρ2b′′

1(ρ)| ≤ Cρ
1
2 − θ2

2θ1 for ρ ≥ ρ∗. (4.91)

Using (4.84)–(4.85) and (4.90)–(4.91), we obtain that, for ρ ≥ ρ∗,

∣
∣
∣

∫ ρ

0
k(s)λ1 k′(s)−

1
2 a′′

1 (s) ds
∣
∣
∣ ≤ C

∫ ρ∗

0
s−1+θ1 ds + C

∫ ρ

ρ∗
s−1−θ2 ds ≤ C,

∣
∣
∣

∫ ρ

0
k(s)λ1+1k′(s)−

1
2 b′′

1(s) ds
∣
∣
∣ +

∣
∣
∣

∫ ρ

0
sk(s)−λ1 k′(s)

1
2 a′′

1 (s) ds
∣
∣
∣ ≤ C ln ρ,

which, with (4.61), yields that |b2(ρ)| ≤ Cρ
1
2 −θ2(1+ 1

2θ1
)

for ρ ≥ ρ∗. Moreover, by
calculating the derivatives explicitly, we obtain

ρ|b′
2(ρ)| + ρ2|b′′

2(ρ)| ≤ Cρ
1
2 −θ2(1+ 1

2θ1
)

for ρ ≥ ρ∗. (4.92)

2. For the remainder term g2(ρ, u), recalling from [11, Proof of Theorem 2.2], g2
satisfies

⎧
⎪⎨

⎪⎩

∂ρρg2(ρ, u)− k′(ρ)2∂uu g2(ρ, u) = ub′′
2(ρ)k(ρ)

2λ1+2 fλ1+1(
u

k(ρ)
) +

P ′′(ρ)
ρ

∂u g1(ρ, u),

g2(0, u) = 0, ∂ρg2(0, u) = 0,

where fλ1(y) = [1 − y2]λ1
+ . Similar to the arguments for Lemma 4.8, we obtain

k′(ρ)g2(ρ, u)

= 1

2ρ

∫ ρ

0
d(s)k′(s)

(
g2(s, u + k(ρ)− k(s)) + g2(s, u − k(ρ) + k(s))

)
ds

+
1

2ρ

∫ ρ

0
sb′′

2(s)k(s)
2λ1+2

( ∫ u+k(ρ)−k(s)

u−k(ρ)+k(s)
y fλ1+1(

y

k(s)
) dy

)
ds

+
1

2ρ

∫ ρ

0
P ′′(s)

(
g1(s, u + k(ρ)− k(s))− g1(s, u − k(ρ) + k(s))

)
ds, (4.93)

which yields

‖k′(ρ)g2(ρ, ·)‖L∞
u (R)

= 1

ρ

∫ ρ

0
d(s)‖k′(s)g2(s, ·)‖L∞

u (R) ds +
C

ρ

∫ ρ

0
s|b′′

2(s)|k(s)2λ1+4 ds

+
C

ρ

∫ ρ

0
P ′′(s)‖g1(s, ·)‖L∞

u (R) ds

:= 1

ρ

∫ ρ

0
d(s)‖k′(s)g2(s, ·)‖L∞

u (R) ds + I1 + I2. (4.94)
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It follows from (3.2)–(3.3), (3.6)–(3.7), (4.90), (4.92), and Lemma 4.11 that, for ρ ≥ ρ∗

|I1| =
∣
∣
∣
C

ρ

( ∫ ρ∗

0
+

∫ ρ∗

ρ∗
+

∫ ρ

ρ∗

)
s|b′′

2(s)|k(s)2λ1+4 ds
∣
∣
∣

≤ C

ρ

(
1 +

∫ ρ

ρ∗
s
− 1

2 +2θ2+ θ1
2θ2 ds

)
≤ Cρ

− 1
2 +2θ2+ θ1

2θ2 ≤ Cρ2θ2 , (4.95)

|I2| =
∣
∣
∣
C

ρ

( ∫ ρ∗

0
+

∫ ρ∗

ρ∗
+

∫ ρ

ρ∗

)
P ′′(s)‖g1(s, ·)‖L∞

u (R) ds
∣
∣
∣

≤ C

ρ

(
1 +

∫ ρ

ρ∗
s2θ2−1‖g1(s, ·)‖L∞

u (R) ds
)

≤
{

Cρ2θ2 if θ2 < θ1,

Cρ2θ2 ln ρ if θ2 = θ1.
(4.96)

Substituting (4.95)–(4.96) into (4.94), applying Lemma A.3 and Corollary A.4, and
using (3.7), we obtain that, for ρ ≥ ρ∗,

‖g2(ρ, ·)‖L∞
u (R) ≤

{
Cρ1+θ2 if θ2 < θ1,

Cρ1+θ2 ln ρ if θ2 = θ1.

3. Denoting f̃ (s) = s fλ1+1(s) and applying ∂u to (4.93), we have

k′(ρ)∂u g2(ρ, u)

= 1

2ρ

∫ ρ

0
d(s)k′(s)

(
∂u g2(s, u + k(ρ)− k(s)) + ∂u g2(s, u − k(ρ) + k(s))

)
ds

+
1

2ρ

∫ ρ

0
sb′′

2(s)k(s)
2λ1+3

(
f̃ (

u + k(ρ)− k(s)

k(s)
)− f̃ (

u − k(ρ) + k(s)

k(s)
)
)

ds

+
1

2ρ

∫ ρ

0
P ′′(s)

(
∂u g1(s, u + k(ρ)− k(s))− ∂u g1(s, u − k(ρ) + k(s))

)
ds.

(4.97)

Since | f̃ (s)| ≤ 1, by similar arguments as in Step 2, we obtain

‖∂u g2(ρ, ·)‖L∞
u (R) ≤ Cρ1+θ2 for ρ ≥ ρ∗.

4. Applying ∂λ1
u to (4.97), we have

k′(ρ)∂λ1+1
u g2(ρ, u)

= 1

2ρ

∫ ρ

0
d(s)k′(s)

(
(∂
λ1+1
u g2)(s, u + k(ρ)− k(s)) + (∂λ1+1

u g2)(s, u − k(ρ) + k(s))
)

ds

+
1

2ρ

∫ ρ

0
sb′′

2(s)k(s)
λ1+3

(
f̃ (λ1)(

u + k(ρ)− k(s)

k(s)
)− f̃ (λ1)(

u − k(ρ) + k(s)

k(s)
)
)

ds

+
1

2ρ

∫ ρ

0
P ′′(s)

(
(∂
λ1+1
u g1)(s, u + k(ρ)− k(s))− (∂

λ1+1
u g1)(s, u − k(ρ) + k(s))

)
ds,

where f̃ (λ1) := ∂
λ1
s f̃ (s). Since f̃ (λ1) is uniformly bounded, similar arguments as in Step

2 yield
‖(∂λ1+1

u g2
)
(ρ, ·)‖L∞

u (R) ≤ Cρ1+θ2 for ρ ≥ ρ∗.
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5. Applying ∂λ1+α0
u to (4.97), we have

k′(ρ)∂λ1+1+α0
u g2(ρ, u)

= 1

2ρ

∫ ρ

0
d(s)k′(s)(∂λ1+1+α0

u g2)(s, u + k(ρ)− k(s)) ds

+
1

2ρ

∫ ρ

0
d(s)k′(s)(∂λ1+1+α0

u g2)(s, u − k(ρ) + k(s)) ds

+
1

2ρ

∫ ρ

0
sb′′

2(s)k(s)
λ1+3−α0

(
f̃ (λ1)(

u + k(ρ)− k(s)

k(s)
)− f̃ (λ1)(

u − k(ρ) + k(s)

k(s)
)
)

ds

+
1

2ρ

∫ ρ

0
P ′′(s)(∂λ1+1+α0

u )g1(s, u + k(ρ)− k(s)) ds

− 1

2ρ

∫ ρ

0
P ′′(s)(∂λ1+1+α0

u )g1(s, u − k(ρ) + k(s)) ds.

Noting that f̃ (λ1+α0)(s) is uniformly bounded, by similar arguments as in Step 2, we
have

‖∂λ1+1+α0
u g2(ρ, ·)‖L∞

u (R) ≤ Cρ1+θ2 for ρ ≥ ρ∗.
This completes the proof. ��

The following lemma provides the explicit singularities of χ(ρ, u − s) and (σ −
uχ)(ρ, u − s).

Lemma 4.14. The fractional derivatives ∂λ1+1
u χ and ∂

λ1+1
u (σ − uχ) admit the expan-

sions:

∂λ1+1
s χ(ρ, u − s)

=
∑

±

(
A1,±(ρ) δ(s − u ± k(ρ)) + A2,±(ρ) H(s − u ± k(ρ))

)

+
∑

±

(
A3,±(ρ) PV (s − u ± k(ρ)) + A4,±(ρ)Ci(s − u ± k(ρ))

)

+ rχ (ρ, u − s), (4.98)

∂λ1+1
s (σ − uχ)(ρ, u − s)

=
∑

±
(s − u)

(
B1,±(ρ) δ(s − u ± k(ρ)) + B2,±(ρ) H(s − u ± k(ρ))

)

+
∑

±
(s − u)

(
B3,±(ρ) PV (s − u ± k(ρ)) + B4,± Ci(s − u ± k(ρ))

)

+
∑

±

(
B5,±(ρ) H(s − u ± k(ρ)) + B6,±(ρ)Ci(s − u ± k(ρ))

)

+ rσ (ρ, u − s), (4.99)

where δ is the Dirac measure, H is the Heaviside function, PV is the principle value
distribution, and Ci is the Cosine integral:

Ci(s) := −
∫ ∞

|s|
cos y

y
dy = log |s| +

∫ |s|

0

cos y − 1

y
dy + C0 for s ∈ R
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for some constant C0 > 0. The remainder terms rχ and rσ are Hölder continuous
functions. Moreover, there exists a positive constant C = C(γ1, γ2, ρ∗, ρ∗) such that,
for ρ ≥ ρ∗,

4∑

j=1,±
|A j,±(ρ)| +

6∑

j=1,±
|B j,±| ≤ Cρ

1
2 − θ2

2 ,

‖rχ (ρ, ·)‖Cα1 (R) ≤ Cρ, ‖rσ (ρ, ·)‖Cα1 (R) ≤ Cρ1+θ2 ,

where α1 ∈ (0, α0] is the common Hölder exponent of rχ and rσ .

Proof. From [64, Lemma 6.4], we obtain (4.98)–(4.99), where the coefficients are given
by

A1,±(ρ) = a1(ρ)k(ρ)
λ1 Aλ1

1 ,

A2,±(ρ) = ±a1(ρ)k(ρ)
λ1−1 Aλ1

3 + a2(ρ)k(ρ)
λ1+1 Aλ1+1

1 ,

A3,±(ρ) = ±a1(ρ)k(ρ)
λ1 Aλ1

2 ,

A4,±(ρ) = ±a1(ρ)k(ρ)
λ1−1 Aλ1

4 ± a2(ρ)k(ρ)
λ1+1 Aλ1+1

2 ,

rχ (ρ, u − s) = a1(ρ)k(ρ)
λ1−1q̃(

s − u

k(ρ)
) + a2(ρ)k(ρ)

λ1+1r̃(
s − u

k(ρ)
)

− Aλ1
4 k(ρ)λ1−1(logk(ρ))2 + ∂λ1+1

s g1(ρ, u − s),

where Aλ1
i , i = 1, . . . , 4, are constants depending only on λ1, and r̃ and q̃ are uniformly

bounded Hölder continuous functions. Thus, using Lemma 4.11, we see that, for ρ ≥ ρ∗,

|Ai,±(ρ)| ≤ Cρ
1
2 − θ2

2θ1 ρ
θ2(

1
2θ1

− 1
2 ) ≤ Cρ

1
2 − 1

2 θ2 for i = 1, 3,

|A j,±(ρ)| ≤ Cρ
1
2 − 3θ2

2 + Cρ
1
2 − θ2

2θ1
−θ2ρ

θ2(
1

2θ1
+ 1

2 ) ≤ Cρ
1
2 − θ2

2 for j = 2, 4.

‖rχ (ρ, ·)‖Cα(R) := ‖rχ (ρ, ·)‖L∞(R) + [rχ (ρ, ·)]Cα(R)

≤ C
(
ρ

1
2 − θ2

2 + ρ
θ2
2θ1

− 3
2 θ2 | ln ρ|2 + ρ

) ≤ Cρ.

Similarly, we have

B1,±(ρ) = b1(ρ)k(ρ)
λ1 Aλ1

1 , B2,±(ρ) = ±b1(ρ)k(ρ)
λ1−1 Aλ1

3 + b2(ρ)k(ρ)
λ1+1 Aλ1+1

1 ,

B3,±(ρ) = ±b1(ρ)k(ρ)
λ1 Aλ1

2 , B4,±(ρ) = ±b1(ρ)k(ρ)
λ1−1 Aλ1

4 ± b2(ρ)k(ρ)
λ1+1 Aλ1+1

2 ,

B5,±(ρ) = (λ1 + 1)b1(ρ)k(ρ)
λ1 Aλ1

1 , B6,±(ρ) = ±(λ1 + 1)b1(ρ)k(ρ)
λ1 Aλ1

2 ,

rσ (ρ, u − s)

= (s − u)k(ρ)λ1−1
(

b1(ρ)
( − Aλ1

4 (logk(ρ))2 + q̃(
s − u

k(ρ)
)
)

+ b2(ρ)k(ρ)
2r̃(

s − u

k(ρ)
)
)

+ (λ1 + 1)k(ρ)λ1
(

b1(ρ)r̃(
s − u

k(ρ)
) + b2(ρ)k(ρ)

2�̃(
s − u

k(ρ)
)
)

+ ∂λ1+1
s g2(ρ, u − s),

where �̃ is also a uniformly bounded Hölder continuous function. Using Lemma 4.13,
we conclude that, for ρ ≥ ρ∗,

|Bi,±(ρ)| ≤ Cρ
1
2 − θ2

2θ1 ρ
θ2(

1
2θ1

− 1
2 ) ≤ Cρ

1
2 − θ2

2 for i = 1, 3, 5, 6,
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|B j,±(ρ)| ≤ Cρ
1
2 − 3θ2

2 + Cρ
1
2 −( 1

2θ1
+1)θ2ρ

θ2(
1

2θ1
+ 1

2 ) ≤ Cρ
1
2 − θ2

2 for j = 2, 4,

‖rσ (ρ, ·)‖Cα(R) := ‖rσ (ρ, ·)‖L∞(R) + [rσ (ρ, ·)]Cα(R)

≤ C
(
ρ

1
2 − θ2

2 | ln ρ|2 + ρ1+θ2
) ≤ Cρ1+θ2 .

This completes the proof. ��

5. Uniform Estimates of Approximate Solutions

As in [10], we construct the approximate solutions via the following approximate free
boundary problem for CNSPEs:
⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρu)r +
2

r
ρu = 0,

(ρu)t + (ρu2 + P(ρ))r +
2

r
ρu2 +

ρ

r2

∫ r

a
ρ(t, y) y2dy = ε

(
ρ(ur +

2

r
u)

)

r
− 2ε

r
ρr u,

(5.1)
for (t, r) ∈ �T with

�T = {(t, r) ∈ [0,∞)× R : a ≤ r ≤ b(t), 0 ≤ t ≤ T }, (5.2)

where {r = b(t) : 0 ≤ t ≤ T } is a free boundary determined by

b′(t) = u(t, b(t)) for t > 0, b(0) = b, (5.3)

and a = b−1 with b � 1. On the free boundary r = b(t), we impose the stress-free
boundary condition:

(
P(ρ)− ερ(ur +

2

r
u)

)
(t, b(t)) = 0 for t > 0. (5.4)

On the fixed boundary r = a = b−1, we impose the Dirichlet boundary condition:

u(t, r)|r=a = 0 for t > 0. (5.5)

The initial condition is

(ρ, ρu)|t=0 = (ρ
ε,b
0 , ρ

ε,b
0 uε,b0 ) for r ∈ [a, b]. (5.6)

5.1. Basic estimates. Denote

Eε,b
0 := ω3

∫ b

a
ρ
ε,b
0

(1

2

∣
∣uε,b0

∣
∣2 + e(ρε,b0 )

)
r2dr, Eε,b

1 := ω3ε
2
∫ b

a

∣
∣
∣
(
√

ρ
ε,b
0

)

r

∣
∣
∣
2

r2dr.

For given total energy Eε,b
0 > 0, the critical mass Mε,b

c is defined in (2.5)–(2.8) by

replacing E0 with Eε,b
0 .

For the approximate initial data (ρε0,mε
0) imposed in (2.17) satisfying (2.9)–(2.10),

using similar arguments in [10, Appendix A], we can construct a sequence of smooth
functions (ρε,b0 , uε,b0 )defined on [a, b], which is compatible with the boundary conditions
(5.4)–(5.5), such that
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(i) There exists a constant Cε,b > 0 depending on (ε, b) so that, for all ε ∈ (0, 1] and
b > 1,

0 < C−1
ε,b ≤ ρ

ε,b
0 (r) ≤ Cε,b < ∞. (5.7)

(ii) For all ε ∈ (0, 1] and b > 1,
∫ b

a
ρ
ε,b
0 (r)r2dr = M

ω3
, Eε,b

0 ≤ C(1 + E0), Eε,b
1 ≤ C(1 + M)ε, (5.8)

ρ
ε,b
0 (b) ∼= b−(3−α) with α := min{1

2
,

3(γ1 − 1)

γ1
}. (5.9)

(iii) For each fixed ε ∈ (0, 1], as b → ∞, (Eε,b
0 , Eε,b

1 ) → (Eε
0, Eε

1) and

(ρ
ε,b
0 , ρ

ε,b
0 uε,b0 ) −→ (ρε0,mε

0) in Lq̃([a, b]; r2dr)× L1([a, b]; r2dr)

for q̃ ∈ {1, γ2}. (5.10)

(iv) For each fixed ε ∈ (0, ε0], there exists a large constant B(ε) > 0 such that

M < Mε,b
c for b ≥ B(ε) and γ2 ∈ (

6

5
,

4

3
], (5.11)

where Mε,b
c is defined in (2.5)–(2.8) by replacing E0 with Eε,b

0 .

We point out that (5.9) is important for us to close the BD-type entropy estimate in
Lemma 5.4 and to obtain the higher integrability of the density in Lemma 5.6 below.

Once the free boundary problem (5.1)–(5.6) is solved, we define the potential function
� to be the solution of the Poisson equation:

�� = ρI�t , lim|x|→∞�(x) = 0,

with �t := {x ∈ R
3 : a ≤ |x| ≤ b(t)}, for which ρ has been extended to be zero

outside �t . In fact, we can show that �(t, x) = �(t, r) with

�r (t, r) =
⎧
⎨

⎩

0 for 0 ≤ r ≤ a,
1
r2

∫ r
a ρ(t, y) y2dy for a ≤ r ≤ b(t),

M
ω3

1
r2 for r ≥ b(t),

(5.12)

so that �(t, r) can be recovered by integrating (5.12).

In this section, parameters (ε, b) are fixed with ε ∈ (0, ε0] and b ≥ max{ρ− γ1
3∗ ,B(ε)}

such that (5.11) holds and ρ
ε,b
0 (b) ≤ ρ∗. The global existence of smooth solutions of

our approximate problem (5.1)–(5.6) whose initial data satisfy (5.7)–(5.11) and pressure
satisfies (1.4)–(1.6) can be obtained by using similar arguments in [25, Sect. 3] with
γ2 ∈ ( 4

3 ,∞), or with γ2 ∈ ( 6
5 ,

4
3 ] and M < Mε,b

c (γ2), so the details are omitted here for
simplicity.

Noting that the upper and lower bounds of ρε,b in [25] depend on parameters (ε, b),
we now establish some uniform estimates, independent of b, such that the limit: b → ∞
can be taken to obtain the global weak solutions of problem (1.10) and (2.17)–(2.18) in
Sect. 6 below as approximate solutions of problem (1.1) and (1.13)–(1.14). Throughout
this section, we drop the superscript in both the approximate solutions (ρε,b, uε,b)(r)
and the approximate initial data (ρε,b0 , uε,b0 ) for simplicity.
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For smooth solutions, it is convenient to analyze (5.1)–(5.6) in the Lagrangian coor-
dinates. It follows from (5.3) that

d

dt

∫ b(t)

a
ρ(t, r) r2dr = (ρu)(t, b(t))b(t)2 −

∫ b(t)

a
(ρur2)r (t, r) dr = 0,

which implies

∫ b(t)

a
ρ(t, r) r2dr =

∫ b

a
ρ0(r) r2dr = M

ω3
for all t ≥ 0. (5.13)

For r ∈ [a, b(t)] and t ∈ [0, T ], the Lagrangian coordinates (τ, x) are defined by

τ = t, x(t, r) =
∫ r

a
ρ(t, y) y2dy,

which translate [0, T ] × [a, b(t)] into a fixed domain [0, T ] × [0, M
ω3

]. By direct calcu-

lation, we see that ∇(t,r)x = (−ρur2, ρr2), ∇(t,r)τ = (1, 0), ∇(τ,x)r = (u, ρ−1r−2),
and ∇(τ,x)t = (1, 0). In the Lagrangian coordinates, the initial-boundary value problem
(5.1)–(5.6) becomes

⎧
⎨

⎩

ρτ + ρ2(r2u)x = 0,

uτ + r2 Px = − x

r2 + εr2(ρ2(r2u)x )x − 2εrρx u,
(5.14)

for (τ, x) ∈ [0, T ] × [0, M
ω3

], and

u(τ, 0) = 0, (P − ερ2(r2u)x )(τ,
M

ω3
) = 0 for τ ∈ [0, T ], (5.15)

where r = r(τ, x) is defined by d
dτ r(τ, x) = u(τ, x) for (τ, x) ∈ [0, T ] × [0, M

ω3
], and

the fixed boundary x = M
ω3

corresponds to the free boundary: b(τ ) = r(τ, M
ω3
) in the

Eulerian coordinates.

Lemma 5.1 (Basic energy estimate). The smooth solution (ρ, u)(t, r) of problem (5.1)–
(5.6) satisfies

∫ b(t)

a

(1

2
ρu2 + ρe(ρ)

)
r2dr − 1

2

∫ ∞

a

1

r2

( ∫ r

a
ρ(t, z) z2dz

)2
dr

+ ε
∫ t

0

∫ b(s)

a

(
ρu2

r + 2
ρu2

r2

)
r2drds + 2ε

∫ t

0
(ρu2)(s, b(s))b(s) ds

=
∫ b

a

(1

2
ρ0u2

0 + ρ0e(ρ0)
)

r2dr − 1

2

∫ ∞

a

1

r2

( ∫ r

a
ρ0(t, z)z2dz

)2
dr,

where ρ(t, r) has been understood to be 0 for r ∈ [0, a]∪(b(t),∞) in the second term of
the left-hand side (LHS) and the second term of the right-hand side (RHS). In particular,
there exists a positive constant C(E0, M) depending only on the total initial energy E0
and initial-mass M such that the following estimates hold for the two separate cases:
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Case 1. γ2 ∈ (
6

5
,

4

3
] and M < Mε,b

c :

∫ b(t)

a
ρ
(1

2
u2 + e(ρ)

)
r2dr + ε

∫ t

0

∫ b(s)

a
ρ
(

u2
r +

2u2

r2

)
(t, r) r2drds

+ 2ε
∫ t

0
(ρu2)(s, b(s))b(s) ds ≤ C(E0, M). (5.16)

Case 2. γ2 >
4

3
:

∫ b(t)

a

1

2
ρ

(
u2 + e(ρ)

)
r2dr + ε

∫ t

0

∫ b(s)

a
ρ
(

u2
r +

2u2

r2

)
(t, r) r2drds

+ 2ε
∫ t

0
(ρu2)(s, b(s))b(s) ds ≤ C(E0, M). (5.17)

Proof. We divide the proof into three steps.
1. Using (2.3) and similar calculations as in the proof [10, Lemma 3.1], we have

∫ b(t)

a
ρ
(1

2
u2 + e(ρ)

)
r2dr −

∫ b(t)

a

( ∫ r

a
ρ(t, z) z2dz

)
ρ rdr

+ ε
∫ t

0

∫ b(s)

a

(
ρu2

r + 2ρ
u2

r2

)
r2drds + 2ε

∫ t

0
(ρu2)(s, b(s)) b(s)ds

=
∫ b

a
ρ0

(1

2
u2

0 + e (ρ0)
)

r2dr −
∫ b

a

( ∫ r

a
ρ0(z)z

2 dz
)
ρ0(r) rdr.

(5.18)

2. We now control the second term on the LHS of (5.18) and the second term on the
RHS of (5.18) to close the estimates. By similar calculations as in [10, Lemma 3.1], one
can obtain
∫ b(t)

a

( ∫ r

a
ρ z2dz

)
ρ rdr = 1

2ω3
‖∇�‖2

L2(R3)
= 1

2

∫ ∞

a

1

r2

( ∫ r

a
ρ z2dz

)2
dr, (5.19)

where we have understood ρ to be zero for r ∈ [0, a) ∪ (b(t),∞) in (5.19).
3. Now we use the internal energy to control the gravitational potential term. First,

we obtain from (3.12) that there exist two constants C1,C2 > 0 depending only on ρ∗
such that
∣
∣ρe(ρ)− κ2ρ

γ2

γ2 − 1

∣
∣ ≤ C1ρ

max{γ2−ε,0} for ρ ≥ ρ∗,
∣
∣ρe(ρ)− κ2ρ

γ2

γ2 − 1

∣
∣ ≤ C2ρ

γ2 for ρ ≤ ρ∗.

Thus, we have
∣
∣
∣

∫ b(t)

a

(
ρe(ρ)− κ2

γ2 − 1
ργ2

)
r2dr

∣
∣
∣

=
∫

ρ(t,r)≥K

∣
∣
∣ρe(ρ)− κ2

γ2 − 1

∫ b(t)

a
ργ2

∣
∣
∣ r2dr

+
∫

ρ(t,r)≤K

∣
∣
∣ρe(ρ)− κ2

γ2 − 1

∫ b(t)

a
ργ2

∣
∣
∣ r2dr

≤ C1 K − min{γ2,ε}
∫ b(t)

a
ργ2 r2dr + C2ω

−1
3 K γ2−1 M, (5.20)

where K > ρ∗ is some large constant to be chosen later.
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Multiplying (5.11) by � and integrating by parts yield

‖∇�‖2
L2(R3)

≤ ‖�‖L6(R3)‖ρ‖
L

6
5 (�t )

≤ √
A3‖∇�‖L2(R3)‖ρ‖

L
6
5 (�t )

, (5.21)

where we have used the positive constant A3 := 4
3ω

− 2
3

4 > 0 that is the sharp constant for
the Sobolev inequality in R

3 (see Lemma A.1). Then it follows from (5.19) and (5.21)
that

∫ b(t)

a

( ∫ r

a
ρ z2dz

)
ρ rdr = 1

2ω3
‖∇�‖2

L2(R3)
≤ 2

3ω3
ω

− 2
3

4 ‖ρ‖2

L
6
5 (�t )

≤ 2

3ω3
ω

− 2
3

4

( ∫

�t

ρ
6(γ2−1)
5γ2−6

(
βρ + ρe(ρ)

)− 1
5γ2−6 dx

) 5γ2−6
3(γ2−1)

( ∫

�t

(
βρ + ρe(ρ)

)
dx

) 1
3(γ2−1)

≤ 2

3
ω

− 2
3

4 ω

4−3γ2
3(γ2−1)

3

( ∫

�t

Cmax(β)ρ dx
) 5γ2−6

3(γ2−1)
( ∫ b(t)

a

(
βρ + ρe(ρ)

)
r2dr

) 1
3(γ2−1)

= BβM
5γ2−6

3(γ2−1)
( ∫ b(t)

a

(
βρ + ρe(ρ)

)
r2dr

) 1
3(γ2−1)

, (5.22)

where Bβ is the constant defined in (2.8).
When γ2 >

4
3 , i.e., 1

3(γ2−1) < 1, it follows from (5.22) by taking β = 1 that

∫ b(t)

a
ρe(ρ) r2dr −

∫ b(t)

a

( ∫ r

a
ρ z2dz

)
ρ rdr

≥
∫ b(t)

a
ρe(ρ) r2dr − B1 M

5γ2−6
3(γ2−1)

( (
ω−1

3 M
) 1

3(γ2−1)
+

( ∫ b(t)

a
ρe(ρ) r2dr

) 1
3(γ2−1)

)

≥ 1

2

∫ b(t)

a
ρe(ρ) r2dr − C(M), (5.23)

which, with (5.18), yields (5.17).
When γ2 = 4

3 , i.e., 1
3(γ2−1) = 1. It has been proved in [18, Theorem 3.1] that there

exists an optimal constant Cmin = 6κ2 M
− 3

2
ch such that

∫ b(t)

a

( ∫ r

a
ρ z2dz

)
ρ rdr = 1

2ω3
‖∇�‖2

L2(R3)
≤ Cmin

2ω3
‖ρ‖

2
3
L1(�t )

‖ρ‖
4
3

L
4
3 (�t )

= Cmin

2
M

2
3

∫ b(t)

a
ρ

4
3 r2dr, (5.24)

which, with (5.20), yields

∫ b(t)

a
ρe(ρ) r2dr −

∫ b(t)

a

( ∫ r

a
ρ z2dz

)
ρ rdr

≥
(

3κ2 − Cmin

2
M

2
3 − C1 K − min{γ2,ε}

) ∫ b(t)

a
ρ

4
3 r2dr − C(M, K ). (5.25)
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Since M < Mch, we can always choose K > ρ∗ large enough such that

3κ2 − Cmin

2
M

2
3 − C1 K − min{γ2,ε} > 0.

Then one can deduce (5.16) for γ2 = 4
3 from (5.18), (5.25), and the fact that ργ2 ≥

Cρe(ρ).
When γ2 ∈ ( 6

5 ,
4
3 ), we define

F(s;β) = s − BβM
5γ2−6

3(γ2−1)
(
ω−1

3 βM + s
) 1

3(γ2−1)
for s ≥ 0 and any fixed β > 0.

A direct calculation shows that
⎧
⎪⎪⎨

⎪⎪⎩

dF(s;β)
ds

= 1 − 1

3(γ2 − 1)
BβM

5γ2−6
3(γ2−1)

(
ω−1

3 βM + s
) 4−3γ2

3(γ2−1) ,

d2 F(s;β)
ds2 = − 4 − 3γ2

9(γ2 − 1)2
BβM

5γ2−6
3(γ2−1)

(
ω−1

3 βM + s
) 7−6γ2

3(γ2−1) ,

which yields that d2 F(s;β)
ds2 < 0 for s > 0 since γ2 <

4
3 . Thus, F(s;β) is concave with

respect to s > 0. We denote

s∗(β) =
( Bβ

3(γ2 − 1)

)− 3(γ2−1)
4−3γ2 M

− 5γ2−6
4−3γ2 − ω−1

3 βM, (5.26)

which is the critical point of F(s) satisfying dF(s;β)
ds (s∗(β)) = 0. The maximum of

F(s;β) with respect to s > 0 is

F(s∗(β);β) = (4 − 3γ2)
( Bβ

3(γ2 − 1)

)− 3(γ2−1)
4−3γ2 M

− 5γ2−6
4−3γ2 − ω−1

3 βM. (5.27)

It follows from the definition of Mε,b
c that, if M < Mε,b

c , there exists β0 > 0 such
that M < Mε,b

c (β0). Then, from (5.26)–(5.27), we have

F(s∗(β0);β0) >
Eε,b

0

ω3
, (5.28)

s∗(β0) >
( Bβ0

3(γ2 − 1)

)− 3(γ2−1)
4−3γ2

(
Mε,b

c (β0)
)− 5γ2−6

4−3γ2 − ω−1
3 β0 Mε,b

c (β0)

= 1

4 − 3γ2

(
Eε,b

0 + ω−1
3 β0 Mε,b

c (β0)
) − ω−1

3 β0 Mε,b
c (β0) >

Eε,b
0

ω3
, (5.29)

where we have used that 1
4−3γ2

> 5
2 > 1 for γ2 ∈ ( 6

5 ,
4
3 ). Then, combining (5.18) and

(5.22) with (5.28)–(5.29), we obtain

F(
∫ b(t)

a
ρe(ρ) r2dr;β0) ≤ Eε,b

0

ω3
< F(s∗(β0);β0),

∫ b

a

(
ρ0e(ρ0)

)
(r) r2dr ≤ Eε,b

0

ω3
< s∗(β0).

(5.30)
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Hence, due to the continuity of
∫ b(t)

a

(
ρe(ρ)

)
(t, r) r2dr with respect to t , the strict

inequality:
∫ b(t)

a

(
ρe(ρ)

)
(t, r) r2dr < s∗(β0) (5.31)

must hold. Otherwise, there exists t0 > 0 such that
∫ b(t0)

a

(
ρe(ρ)

)
(t0, r) r2dr = s∗(β0),

which yields

F
(
∫ b(t0)

a

(
ρe(ρ)

)
(t0, r) r2dr;β0

) = F(s∗(β0);β0) >
Eε,b

0

ω3
.

This contradicts (5.30). Thus, we prove (5.31) under condition (5.11).
Therefore, under condition (5.11), it follows from (5.26) and (5.31) that

F(
∫ b(t)

a
ρe(ρ) r2dr;β0)

≥
∫ b(t)

a
ρe(ρ) r2dr

− Bβ0 M
5γ2−6

3(γ2−1)
(
s∗(β0) + ω−1

3 β0 M
) 4−3γ2

3(γ2−1)
( ∫ b(t)

a
ρe(ρ) r2dr + ω−1

3 β0 M
)

= (4 − 3γ2)

∫ b(t)

a
ρe(ρ) r2dr − 3(γ2 − 1)ω−1

3 β0 M
5
3 . (5.32)

Combining (5.18) and (5.25) with (5.32), we conclude (5.16). ��
Corollary 5.2. Under the assumptions of Lemma 5.1 and noting (3.5),

∫ b(t)

a
ργ2(t, r) r2dr ≤ C

∫ b(t)

a

(
ρ + ρe(ρ)

)
(t, r) r2dr ≤ C(M, E0) for t ≥ 0.

Corollary 5.3. Under the assumptions of Lemma 5.1, it follows from (5.12), (5.16)–
(5.17), and (5.19) that, for t ≥ 0 and r ≥ 0,

∣
∣
∣r2�r (t, r)

∣
∣
∣ ≤ M

ω3
,

∫ b(t)

a

( ∫ r

a
ρ(t, y) y2dy

)
ρ(t, r) rdr + ‖�(t)‖L6(R3) + ‖∇�(t)‖L2(R3) ≤ C(M, E0).

For later use, we analyze the boundary value of density ρ. Using (5.14)1 and (5.15),
we have

ρτ (τ,
M

ω3
) = −1

ε
P(τ,

M

ω3
) ≤ 0, (5.33)

which yields that ρ(τ, M
ω3
) ≤ ρ0(

M
ω3
). In the Eulerian coordinates, it is equivalent to

ρ(t, b(t)) ≤ ρ0(b). (5.34)
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Moreover, noting (5.8) and b ≥ (ρ∗)−γ1/3, we see that ρ(t, b(t)) ≤ ρ0(b) ≤ ρ∗ for
all t ≥ 0. From (3.2)1 and (5.33), there exists a positive constant C̃ depending only on

(γ1, κ1) such that ρτ (τ, M
ω3
) = − 1

ε
P(τ, M

ω3
) ≥ − C̃

ε

(
ρ(τ, M

ω3
)
)γ1 , which implies

ρ(τ,
M

ω3
) ≥ ρ0(

M

ω3
)
(

1 +
C̃(γ1 − 1)

ε

(
ρ0(

M

ω3
)
)γ1−1

τ
)− 1

γ1−1
.

Therefore, in the Eulerian coordinates,

ρ(t, b(t)) ≥ ρ0(b)
(

1 +
C̃(γ1 − 1)

ε
(ρ0(b))

γ1−1t
)− 1

γ1−1
for t ≥ 0. (5.35)

Lemma 5.4. (BD-type entropy estimate). Under the conditions of Lemma 5.1, for any
given T > 0,

ε2
∫ b(t)

a

∣
∣
(√

ρ
)

r

∣
∣2

r2dr + ε
∫ t

0

∫ b(s)

a

P ′(ρ)
ρ

|ρr |2 r2drds +
1

3
P(ρ(t, b(t))) b(t)3

+
1

3ε

∫ t

0

(
P(ρ)P ′(ρ)

)
(s, b(s)) b(s)3 ds ≤ C(E0, M, T ) for t ∈ [0, T ]. (5.36)

Proof. We divide the proof into three steps.
1. Using (2.3) and similar calculations as in the proof [10, Lemma 3.3], we have
∫ b(t)

a

(1

2

(
u + ε

ρr

ρ

)2
ρ + ρe(ρ)

)
r2dr −

∫ b(t)

a

( ∫ r

a
ρ(t, y) y2dy

)
ρ rdr

+ ε
∫ t

0

∫ b(s)

a

P ′(ρ)
ρ

ρ2
r r2drds +

1

3
P(ρ(t, b(t))) b(t)3

+
1

3ε

∫ t

0

(
P(ρ)P ′(ρ)

)
(s, b(s)) b(s)3ds

=
∫ b

a

(1

2

(
u0 + ε

ρ0,r

ρ

)2 + e(ρ0)
)
ρ0 r2dr −

∫ b

a

( ∫ r

a
ρ0(y) y2dy

)
ρ0(r) rdr

+
1

3
P(ρ0 (b))b

3 + ε
∫ t

0

∫ b(s)

a
ρ2 r2drds − Mε

ω3

∫ t

0
ρ(s, b(s)) ds,

which, with Lemma 5.1, yields

ε2
∫ b(t)

a
| (√ρ

)

r |2 r2dr + ε
∫ t

0

∫ b(s)

a

P ′(ρ)
ρ

|ρr |2 r2drds

+
1

3
P(ρ(t, b(t))) b(t)3 +

1

3ε

∫ t

0

(
P(ρ)P ′(ρ)

)
(s, b(s)) b(s)3ds

≤ C(E0, M) +
1

3
P(ρ0(b))b

3 + ε
∫ t

0

∫ b(s)

a
ρ2 r2drds − Mε

ω3

∫ t

0
ρ(s, b(s)) ds.

(5.37)

2. For the second term on the RHS of (5.37), it follows from (5.8) and (3.2)1 that

1

3
P(ρ0(b))b

3 ≤ C. (5.38)



Global Finite-Energy Solutions of the Compressible Euler–Poisson Equations Page 53 of 85    77 

For the last term on the RHS of (5.37), using (5.34), we have

∣
∣
∣

Mε

ω3

∫ t

0
ρ(s, b(s)) ds

∣
∣
∣ ≤ C(M)ρ0(b)T ≤ C(M, T ). (5.39)

3. To close the estimates, we need to control the third term on the RHS of (5.37), that
is,

ε

∫ t

0

∫ b(s)

a
ρ2 r2drds = ε

ω3

∫ t

0
‖ρ(s, ·)‖2

L2(�s )
ds.

We divide the estimate of the above term into the following two cases:
Case 1. For γ2 ≥ 2, it follows from Corollary 5.2 that

ε

∫ t

0

∫ b(s)

a
ρ2 r2drds ≤ ε

∫ t

0

∫ b(s)

a
(ρ + ργ2) r2drds ≤ C(E0, M, T ). (5.40)

Case 2. For γ2 ∈ (
6

5
, 2), then 3γ2 > 2. A direct calculation shows that

ε

∫ t

0

∫ b(s)

a
ρ2I{ρ≤2ρ∗} r2drds ≤ 2ερ∗

∫ t

0

∫ b(s)

a
ρ r2drds ≤ C(M, ρ∗). (5.41)

Denote
√

F(ρ) := ∫ ρ

0

√
P ′(s)

s ds. Then it follows from (3.3)2 that

√
F(ρ) ≥ (

1 − 2− γ2
2
)2

√
(1 − a0)κ2γ2

γ2
ρ

γ2
2 := C(γ2)

− γ2
2ϑ ρ

γ2
2 for ρ ∈ [2ρ∗,∞),

which, with Corollary 5.2, implies that, for ϑ = 3(2−γ2)
4 ,

‖ρI{ρ≥2ρ∗}‖L2(�t )
≤ ‖ρI{ρ≥2ρ∗}‖ϑL3γ2 (�t )

‖ρI{ρ≥2ρ∗}‖1−ϑ
Lγ2 (�t )

≤ C(γ2)‖
√

F(ρ)‖
2ϑ
γ2
L6(�t )

‖ρ‖1−ϑ
Lγ2 (�t )

. (5.42)

For BR(0) ⊂ R
3, the following Sobolev’s inequality holds:

‖ f ‖L6(BR(0)) ≤ C
(‖∇ f ‖L2(BR(0)) + R−1‖ f ‖L2(BR(0))

)
. (5.43)

It follows from (5.13) and Corollary 5.2 that

M

ω3
=

∫ b(t)

a
ρ(t, r) r2dr ≤

( ∫ b(t)

a
ργ2 r2dr

) 1
γ2

( ∫ b(t)

a
r2dr

)1− 1
γ2

≤ Cb(t)
3(γ2−1)

γ2

( ∫ b(t)

a
ργ2 r2dr

) 1
γ2 ,

which yields

b(t)−1 ≤ C M
− γ2

3(γ2−1)
( ∫ b(t)

a
ργ2 r2dr

) 1
3(γ2−1) ≤ C (M, E0) . (5.44)
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Using (3.2)2–(3.3)2 leads to F(ρ) ≤ C(ρ + ργ2), which, with (5.43)–(5.44) and
Corollary 5.2, implies
∥
∥
√

F(ρ)
∥
∥

L6(�t )
≤ C

(∥
∥∇(√F(ρ))

∥
∥

L2(�t )
+ b(t)−1

∥
∥
√

F(ρ)
∥
∥

L2(�t )

)

≤ C
( ∫ b(t)

a

P ′(ρ)
ρ

|ρr |2 r2dr
) 1

2
+ C(M, E0)

( ∫ b(t)

a
F(ρ) r2drdt

) 1
2

≤ C(M, E0)
(

1 +
(
∫ b(t)

a

P ′(ρ)
ρ

|ρr |2 r2dr
) 1

2
)
. (5.45)

Substituting (5.45) into (5.42), we obtain

ε

∫ t

0

∫ b(s)

a
ρ2r2I{ρ≥2ρ∗} drds ≤ C(M, E0, T )ε

(
1 +

(
∫ t

0

∫ b(s)

a

P ′(ρ)
ρ

|ρr |2 r2drds
) 2ϑ
γ2

)

≤ C(M, E0, T ) +
ε

2

∫ t

0

∫ b(s)

a

P ′(ρ)
ρ

|ρr |2 r2drds, (5.46)

where we have used 2ϑ̄
γ2

∈ (0, 1) for γ2 > 6
5 . Finally, substituting (5.38)–(5.41) and

(5.46) into (5.37), we conclude (5.36). ��
In order to take the limit: b → ∞, we need to make sure that domain �T can be

expanded to [0, T ] × R+ for fixed ε > 0: lim
b→∞ b(t) = ∞.

Lemma 5.5 (Expanding of domain �T ). Given T > 0 and ε ∈ (0, ε0], there exists
C1(M, E0, T, ε) > 0 such that, if b ≥ C1(M, E0, T, ε),

b(t) ≥ 1

2
b for t ∈ [0, T ]. (5.47)

Proof. Noting b(0) = b and the continuity of b(t), we first make the a priori assumption:

b(t) ≥ 1

2
b. (5.48)

Integrating (5.3) over [0, t] yields

b(t) = b +
∫ t

0
u(s, b(s)) ds. (5.49)

It follows from (5.35), (5.48), and Lemma 5.1 that
∫ t

0
|u(s, b(s))| ds ≤ C√

ε

( ∫ t

0
ε(ρu2r)(s, b(s)) ds

) 1
2
( ∫ t

0

1

ρ(s, b(s))b(s)
ds

) 1
2

≤ C(M, E0)ε
− 1

2

( ∫ t

0

(1 + C̃(γ1 − 1)ε−1ρ
γ1−1∗ s)

1
γ1−1

ρ0(b)b
ds

) 1
2

≤ C(M, E0, T, ρ∗, γ1, γ2, ε)ρ0(b)
− 1

2 b− 1
2 . (5.50)

We take C1(M, E0, T, ε) := max
{
ρ

− γ1
3∗ , (4C(M, E0, T, ρ∗, γ1, γ2, ε))

2
α ,B(ε)},which,

with (5.8) and (5.50), implies that
∣
∣
∣

∫ t

0
u(s, b(s)) ds

∣
∣
∣ ≤

∫ t

0
|u(s, b(s))| ds ≤ 1

4
b, (5.51)
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provided that b ≥ C1(M, E0, T, ε). Combining (5.51) with (5.49), we have

b(t) ≥ 3

4
b. (5.52)

Thus, we have closed the a priori assumption (5.48). Finally, using (5.52) and the
continuity argument, we can conclude (5.47). ��

5.2. Higher integrability of the density and the velocity. As implied in [13], the higher
integrabilities of the density and the velocity are important for the L p compensated
compactness framework. However, for the general pressure law, due to the lack of an
explicit formula for the entropy kernel, for the special entropy pair (ηψ, qψ) by taking
the test function ψ = 1

2 s|s| in (2.15)–(2.16), we can not obtain that qψ � ρ|u|3 + ργ+θ

in general. To derive the higher integrability of the velocity, we use the special entropy
pair constructed in Lemma 4.1, at the cost of the higher integrability of the density over
domain [0, T ]× [d, b(t)] for some d > 0. Since b(t) → ∞ as b → ∞, we indeed need
the higher integrability of the density on the unbounded domain. We point out that this
is different from the case of [10] in which only the higher integrability on the bounded
domain [0, T ] × [d, D] for any given 0 < d < D < ∞ is needed.

Lemma 5.6 (Higher integrability on the density). Let (ρ, u) be a smooth solution of
(5.1)–(5.6). Then, under the assumption of Lemma 5.1, for any given d > 2b−1 > 0,

∫ T

0

∫ b(t)

d
ρP(ρ) r2drdt ≤ C(d, M, E0, T ). (5.53)

Proof. Let ω(r) be a smooth function with suppω ⊂ ( d
2 ,∞) and ω(r) = 1 for r ∈

[d,∞). Multiplying (5.1)2 by w(y)y2, we have

(y2ρuω)t + (y2ρu2ω)y + (y2 P(ρ)ω)y − ωy
(
y2ρu2 + y2 P(ρ)

)
+ ρω

∫ r

a
ρ z2dz

= 2y P(ρ)ω + ε(y2ρuyω)y − εωy y2ρuy − 2ερu ω. (5.54)

Integrating (5.54) with respect to y from d
2 to r and then multiplying the equation by

ρ(t, r) yield

r2ρ(t, r)P(ρ(t, r))ω(r)

= −ρ d

dt

∫ r

d
2

ρu ω y2dy − r2ρ2u2ω(r) + ρ
∫ r

d
2

ωyρu y2dy

+ ρ
∫ r

d
2

ωy P(ρ) y2dy + 2ρ
∫ r

d
2

P(ρ) ω ydy − ρ

∫ r

d
2

ρω
( ∫ y

a
ρ z2dz

)
dr

+ εr2ρ2urω(r)− ερ

∫ r

d
2

ωyρuy y2dy − 2ερ
∫ r

d
2

ρu ω dy. (5.55)

Using (5.1)1, we have

ρ
d

dt

∫ r

d
2

ρuω y2dy =
(
ρ

∫ r

d
2

ρuω y2dy
)

t
+

(
ρu

∫ r

d
2

ρuω y2dy
)

r

− ρ2u2ω(r)r2 +
2

r
ρu

∫ r

d
2

ρuω y2dy,
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which, with (5.55), yields that

r2ρ(t, r)P(ρ(t, r))ω(r)

= −
(
ρ

∫ r

d
2

ρuω y2dy
)

t
−

(
ρu

∫ r

d
2

ρuω y2dy
)

r

− 2

r
ρu

∫ r

d
2

ρuω y2dy + ρ
∫ r

d
2

ωyρu2 y2dy

+ ρ
∫ r

d
2

ωy P(ρ) y2dy + 2ρ
∫ r

d
2

P(ρ)ω ydy + ερ2urω(r)r
2 − ερ

∫ r

d
2

ρuyωy y2dy

− 2ερ
∫ r

d
2

ρuω dy − ρ

∫ r

d
2

ρω
( ∫ y

a
ρ z2dz

)
dy. (5.56)

Multiplying (5.56) by ω(r) leads to

r2ρ(t, r)P(ρ(t, r))ω2(r)

= −
(
ρω(r)

∫ r

d
2

ρuω(y) y2dy
)

t
−

(
ρuω(r)

∫ r

d
2

ρuω(y) y2dy
)

r
+ ωrρu

∫ r

d
2

ρuω y2dy

− 2

r
ρuω(r)

∫ r

d
2

ρuω y2dy + ρω(r)
∫ r

d
2

ρuωy y2dy + ρω(r)
∫ r

d
2

P(ρ) ωy y2dy

+ 2ρω(r)
∫ r

d
2

P(ρ)ω ydy − ρω(r)
∫ r

d
2

ρω
( ∫ y

a
ρ z2dz

)
dy − ερω(r)

∫ r

d
2

ρuy ωy y2dy

− 2ερω(r)
∫ r

d
2

ρu ω dy + εr2ρ2urω
2(r) :=

11∑

i=1

Ii . (5.57)

Using Lemma 5.1 and (5.13), we have
∣
∣
∣

∫ r

d
2

(
(ρu + P(ρ))ω(y) + ερuyωy

)
y2dy

∣
∣
∣

≤ C
∫ b(t)

a

(
ρu2 + ρ + ργ2

)
ω(y) y2dy

+ ε
∫ b(t)

a
ρ(u2

y + 1)|ωy | y2dy ≤ C(M, E0, ‖ω‖C1),

which yields
∣
∣
∣

∫ T

0

∫ b(t)

d
2

Ii drdt
∣
∣
∣ ≤ C(M, E0, T, ‖ω‖C1)(d−2 + d−4) for i = 3, 4, · · · , 10,

(5.58)
∣
∣
∣

∫ T

0

∫ b(t)

d
2

I1 drdt
∣
∣
∣ =

∣
∣
∣

∫ b(t)

d
2

ρ(T, r)ω(r)
( ∫ r

d
2

y2ρ(T, y)u(T, y)ω(y) dy
)

dr
∣
∣
∣

+
∣
∣
∣

∫ b(t)

d
2

ρ(0, r)ω(r)
( ∫ r

d
2

y2ρ(0, y)u(0, y)ω(y) dy
)

dr
∣
∣
∣

≤ C(M, E0, ‖ω‖C1)d−2. (5.59)
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For I2, using (5.8), (5.34), (5.51), and b � 1, we have

∣
∣
∣

∫ T

0

∫ b(t)

d
2

I2 drdt
∣
∣
∣ =

∣
∣
∣

∫ T

0

∫ b(t)

d
2

(
ρuω(r)

∫ r

d
2

ρuω(y) y2dy
)

r
drdt

∣
∣
∣

≤
∣
∣
∣

∫ T

0
(ρu)(t, b(t))

( ∫ b(t)

d
2

ρuω(y) y2dy
)

dt
∣
∣
∣

≤ C(E0, M)b−3+ 1
2 b ≤ C(E0, M). (5.60)

For I11, we obtain

∣
∣
∣

∫ T

0

∫ b(t)

d
2

I11 drdt
∣
∣
∣ = ε

∣
∣
∣

∫ T

0

∫ b(t)

d
2

ρ2urω
2 r2drdt

∣
∣
∣

≤ ε

∫ T

0

∫ b(t)

d
2

ρ3ω2 r2drdt + C(M, E0, T, ‖ω‖C1). (5.61)

We divide the estimate of
∫ T

0

∫ b(t)
d
2

ερ3ω2 r2drdt into two cases:

Case 1. γ2 ∈ ( 6
5 , 2): For t ∈ [0, T ], denoting A(t) := {r ∈ [ d

2 , b(t)] : ρ(t, r) ≥ ρ∗},
then it follows from (5.13) that |A(t)| ≤ C(d, ρ∗)M . For any r ∈ A(t), let r0 be the
closest point to r so that ρ(t, r0) = ρ∗ with |r − r0| ≤ |A(t)| ≤ C(d, ρ∗)M . Then, for
any smooth function f (ρ),

sup
r∈A(t)

(
f (ρ(t, r))ω2(r)

) ≤ f (ρ(t, r0))ω
2(r0) +

∣
∣
∣

∫ r

r0

∂y
(

f (ρ(t, y))ω2(y)
)

dy
∣
∣
∣

≤ C(‖ω‖C1)| f (ρ∗)| +
∫

A(t)

∣
∣∂y

(
f (ρ(t, y))ω2(y)

)∣
∣ dy.

Recalling (3.3) and (3.5), we notice that P(ρ) ∼= ργ2 and e(ρ) ∼= ργ2−1 for any r ∈ A(t).
Then

ε

∫ T

0

∫ b(t)

d
2

ρ3ω2 r2drdt

= ε

∫ T

0

∫ b(t)

d
2

ρ3I{ρ≤ρ∗}ω2 r2drdt + ε
∫ T

0

∫ b(t)

d
2

ρ3I{ρ≥ρ∗}ω2 r2drdt

≤ C(M, E0, ρ
∗, T ) + C(M, E0) ε

∫ T

0

( ∫ b(t)

d
2

ρe(ρ) r2dr
)

sup
r∈A(t)

( ρ2

e(ρ)
ω2

)
dt

≤ C(M, E0, ρ
∗, T ) + C(M, E0) ε

∫ T

0

∫

A(t)

∣
∣
∣

( ρ2

e(ρ)
ω2

)

r
(t, r)

∣
∣
∣ drdt

≤ C(M, E0) ε

∫ T

0

∫

A(t)

(( 2ρ

e(ρ)
− P(ρ)

e(ρ)2
)|ρr |ω2 +

ρ2

e(ρ)
ω|ωr |

)
drdt

+ C(M, E0, ρ
∗, T ). (5.62)
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A direct calculation shows that
∫ T

0

∫

A(t)
ε
( 2ρ

e(ρ)
− P(ρ)

e(ρ)2

)
|ρr |ω2 drdt

≤
∫ T

0

∫

A(t)
ε

P ′(ρ)
ρ

|ρr |2ω2 r2drdt +
∫ T

0

∫

A(t)
ε
( 2ρ

e(ρ)
− P(ρ)

e(ρ)2

)2 ρ

P ′(ρ)
ω2 r−2 drdt

≤ C(M, E0, T ) +
∫ T

0

∫

A(t)
ερ6−3γ2ω2 r−2 drdt

≤ C(M, E0, T ) + εC(M, E0)
−1

∫ T

0

∫

A(t)
ρ3ω2 r2 drdt

+ C(M, E0)ε

∫ T

0

∫

A(t)
(r2)

− 3−γ2
γ2−1ω2 drdt

≤ C(M, E0, T ) + εC(M, E0)
−1

∫ T

0

∫ b(t)

d
2

ρ3ω2 r2drdt. (5.63)

∫ T

0

∫

A(t)
ε
ρ2

e(ρ)
ω|ωr | drdt ≤

∫ T

0

(
ε sup

r∈A(t)
(ρω)(t, r)

∫

A(t)

ρ

e(ρ)
|ωr | dr

)
dt

≤ C(ρ∗)
∫ T

0

(
ε sup

r∈At

(ρω)(t, r)
∫

A(t)
ρ|ωr | dr

)
dt

≤ C(ρ∗, M, ‖ω‖C1)d−2
∫ T

0
ε sup

r∈A(t)
(ρω)(t, r) dt

≤ C(ρ∗, M, ‖ω‖C1 , T )d−2 + C(ρ∗, M, ‖ω‖C1)d−2
∫ T

0

∫

A(t)
ε
(|ρr |ω + ρ|ωr |

)
drdt

≤ C(ρ∗, M, ‖ω‖C1 , T )d−2
(

1 +
∫ T

0

∫

A(t)
ε
( P ′(ρ)

ρ
|ρr |2ω + ρ|ωr | + ρ2−γ2ω

)
drdt

)

≤ C(ρ∗, M, ‖ω‖C1 , T )d−2 + C(ρ∗, M, E0, T, ‖ω‖C1)d−4. (5.64)

Combining (5.62)–(5.64), we obtain that, for γ2 ∈ ( 6
5 , 2),

ε

∫ T

0

∫ b(t)

d
2

ρ3ω2 r2drdt ≤ C(M, E0, ρ
∗, T, ‖ω‖C1)(1 + d−4). (5.65)

Case 2. γ2 ∈ [2, 3): Using (5.13) and the same argument as for (5.64), we have

ε

∫ T

0

∫ b(t)

d
2

ρ3ω2 r2drdt ≤ C(M)

∫ T

0
ε sup

r∈[ d
2 ,b(t)]

(ρ2ω)(t, r) dt

≤ C(M, ρ∗, ‖ω‖C1 , T ) + C(M)

∫ T

0
ε sup

r∈A(t)
(ρ2ω)(t, r) dt

≤ C(M, ρ∗, ‖ω‖C1 , T ) + C(M, E0, ρ
∗, ‖ω‖C1 , T )d−2.

(5.66)

Finally, integrating (5.57) over [0, T ]×[ d
2 , b(t)] and using (5.58)–(5.61) and (5.65)–

(5.66), we conclude (5.53). ��
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Corollary 5.7. It follows from (3.3) and Lemma 5.6 that
∫ T

0

∫ b(t)

d
ργ2+1(t, r) r2drdt ≤ C

∫ T

0

∫ b(t)

d

(
ρ + ρP(ρ)

)
(t, r) r2drdt

≤ C(d, M, E0, T ). (5.67)

In order to use the L p compensated compactness framework, we still need to obtain
the higher integrability of the velocity (see [13]). With the help of Lemma 5.6, we use
the special entropy pair constructed in Lemma 4.1 to achieve this.

Lemma 5.8 (Higher integrability of the velocity). Let (ρ, u) be the smooth solution of
(5.1)–(5.6). Then, under the assumption of Lemma 5.1,
∫ T

0

∫ D

d
(ρ|u|3)(t, r) r2drdt ≤ C(d, D, ρ∗, M, E0, T ) for any (d, D) � [a, b(t)].

Proof. Considering (5.1)1 × η̂ρr2 + (5.1)2 × η̂mr2, we can obtain

(η̂r2)t + (q̂r2)r + 2r
( − q̂ + ρuη̂ρ + ρu2η̂m

)

= ε r2
(
(ρur )r + 2ρ

(u

r

)

r

)
η̂m − ρ

∫ r

a
ρ y2dy η̂m . (5.68)

Using (5.3), a direct calculation yields

d

dt

∫ b(t)

r
η̂ y2dy = (uη̂)(t, b(t)) b(t)2 +

∫ b(t)

r
∂t η̂(t, y) y2dy. (5.69)

Integrating (5.68) over [r, b(t)) and using (5.69), we have

q̂(t, r) r2 = −ε
∫ b(t)

r
η̂m(t, y)(ρuy y2)y dy + 2ε

∫ b(t)

r
η̂m(t, y) ρu dy

+
( ∫ b(t)

r
η̂(t, y) y2dy

)

t
+ (q̂ − uη̂)(t, b(t)) b(t)2

+ 2
∫ b(t)

r

( − q̂ + ρuη̂ρ + ρu2η̂m
)

ydy +
∫ b(t)

r

( ∫ y

a
ρ z2dz

)
ρ η̂m dy.

(5.70)

We now control the terms on the RHS of (5.70). For the third term on the RHS of
(5.70), it follows from (5.9), (5.34), (5.44), and Lemmas 4.1, 5.1, and 5.4–5.5 that

∫ T

0

∣
∣(q̂ − uη̂)(t, b(t))

∣
∣b(t)2 dt

≤ C
∫ T

0

(
(ρ(t, b(t)))γ1+θ1 + (ργ1 |u|)(t, b(t))

)
b(t)2 dt

≤ C
( ∫ T

0
ε(ρ|u|2)(t, b(t))b(t) dt

) 1
2
( ∫ T

0

1

ε
(ρ(t, b(t)))2γ1−1b(t)3 dt

) 1
2

+ C(M, E0, T )
∫ T

0
(ρ(t, b(t)))θ1b(t)−1 dt ≤ C(M, E0, T ). (5.71)
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For the first term on the RHS of (5.70), integrating by parts yields

ε

∫ b(t)

r
η̂m(t, y) (ρuy y2)y dy = εη̂m(t, b(t)) (ρur )(t, b(t)) b(t)2

− εη̂m(t, r) (ρur )(t, r) r2

− ε

∫ b(t)

r
ρuy

(
η̂muuy + η̂mρρy

)
y2dy. (5.72)

It follows from (5.4) and Lemma 4.1 that

|εη̂m(t, b(t)) (ρur )(t, b(t)) b(t)2|
=

∣
∣
∣η̂m(t, b(t))

(
ερ

(
ur +

2

r
u
)
(t, b(t))− 2εb(t)−1 (ρu)(t, b(t))

)
b(t)2

∣
∣
∣

=
∣
∣
∣η̂m(t, b(t)) p(ρ)(t, b(t)) b(t)2 − 2εη̂m(t, b(t)) (ρu)(t, b(t)) b(t)

∣
∣
∣

≤ C
(
(ργ1 |u|)(t, b(t)) + (ρ(t, b(t)))γ1+θ1

)
b(t)2

+ Cε
(
(ρ|u|2)(t, b(t)) + (ρ(t, b(t)))γ1

)
b(t).

which, with similar arguments as in (5.71), yields

∫ T

0

∣
∣
∣εη̂m(t, b(t)) (ρur )(t, b(t)) b2(t)

∣
∣
∣ dt ≤ C(M, E0, T ). (5.73)

Hence, using (5.36), (5.72)–(5.73), and Lemma 4.1, we have

∫ T

0

∫ D

d

∣
∣
∣ε

∫ b(t)

r
η̂m(ρuy y2)y dy

∣
∣
∣ drdt

≤
∫ T

0

∫ D

d
|εη̂m(t, b(t)) (ρur )(t, b(t))| b(t)2 drdt

+
∫ T

0

∫ D

d
|εη̂m(t, r) (ρur )(t, r)| r2drdt

+ ε
∫ T

0

∫ D

d

∣
∣
∣

∫ b(t)

r
ρ|uy |

(
η̂mu |uy | + η̂mρ |ρy |

)
y2dy

∣
∣
∣ drdt

≤ C(D, M, E0, T ) + C
∫ T

0

∫ D

d
ε|ρur |

(|u| + ρθ(ρ)
)

r2drdt

+ C(D)
∫ T

0

∫ D

d

∫ b(t)

r
ερ|uy |

(|uy | + ρθ(ρ)−1|ρy |
)

y2dydrdt

≤ C(D, M, E0, T ) + C
∫ T

0

∫ D

d
ε
(
ρ|u|2 + ρ|ur |2 + ργ (ρ)

)
r2drdt

+ C(D)
∫ T

0

∫ b(t)

d
ερ|uy |2 y2dydt + C(D)

∫ T

0

∫ b(t)

d
εργ (ρ)−2|ρy |2 y2dydt

≤ C(D, M, E0, T ). (5.74)



Global Finite-Energy Solutions of the Compressible Euler–Poisson Equations Page 61 of 85    77 

For the second term, third term, and sixth term on the RHS of (5.70), using (3.4)–(3.5)
and Lemmas 4.1 and 5.1, we obtain

∣
∣
∣

∫ T

0

∫ D

d

(
2ε

∫ b(t)

r
η̂m(t, y)ρu dy

)
drdt

∣
∣
∣

≤ C(d)
∫ T

0

∫ D

d

∫ b(t)

r
ε
(|u| + ρθ(ρ)

)
ρ|u| y2dydrdt

≤ C(d, D)
∫ T

0

∫ b(t)

d
ε
(
ρ|u|2 + ρ + ρe(ρ)

)
y2dydt ≤ C(d, D, M, E0, T ), (5.75)

∣
∣
∣

∫ T

0

∫ D

d

( ∫ b(t)

r
η̂(t, y) y2dy

)

t
drdt

∣
∣
∣

≤
∫ D

d

∫ b(t)

r
|η̂(T, y)| y2dydr +

∫ D

d

∫ b

r
|η̂(0, y)| y2dydr

≤ C sup
t∈[0,T ]

∫ D

d

∫ b(t)

r

(
ργ (ρ) + ρ|u|2) y2dydr

≤ C sup
t∈[0,T ]

∫ D

d

∫ b(t)

r

(
ρe(ρ) + ρ + ρ|u|2) y2dydr ≤ C(D, M, E0, T ), (5.76)

∣
∣
∣

∫ T

0

∫ D

d

( ∫ b(t)

r

( ∫ y

a
ρ z2dz

)
ρ η̂m dy

)
drdt

∣
∣
∣

≤
∫ T

0

∫ D

d

∣
∣
∣

∫ b(t)

r

( ∫ y

a
ρ z2dz

)
ρ η̂m dy

∣
∣
∣ drdt

≤ C(d, D, M)

∫ T

0

∫ b(t)

d
ρ
(|u| + ργ (ρ)

)
r2drdt

≤ C(d, D, M)

∫ T

0

∫ b(t)

d

(
ρ|u|2 + ρ + ρe(ρ)

)
r2drdt ≤ C(d, D, M, E0, T ).

(5.77)

For the fifth term on the RHS of (5.70), we note from (3.6)–(3.7) and Lemma 4.1
that

− q̂ + ρuη̂ρ + ρu2η̂m = 0 if |u| ≥ k(ρ), (5.78)

| − q̂ + ρuη̂ρ + ρu2η̂m | ≤ Cργ (ρ)+θ(ρ) ≤ C
(
ρ + ργ2+θ2

)
if |u| ≤ k(ρ). (5.79)

Then it follows from (5.78)–(5.79) and Corollary 5.7 that

∫ T

0

∫ D

d

∣
∣
∣

∫ b(t)

r

( − q̂ + ρuη̂ρ + ρu2η̂m
)

ydy
∣
∣
∣ drdt

≤ C(d, D)
∫ T

0

∫ b(t)

d

(
ρ + ργ2+θ2

)
y2dydt ≤ C(d, D, M, E0, T ), (5.80)

where we have used θ2 ∈ (0, 1) since γ2 ∈ ( 6
5 , 3). Combining (5.70)–(5.71), (5.74)–

(5.77), and (5.80), we obtain that
∫ T

0

∫ D
d q̂ r2drdt ≤ C(d, D, M, E0, T ), which, along
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with (5.67) and Lemma 4.1, gives

∫ T

0

∫

[d,D]∩{r :|u|≥k(ρ)}
ρ|u|3 r2drdt

≤ 2
∫ T

0

∫

[d,D]∩{r :|u|≥k(ρ)}
q̂ r2drdt

= 2
∫ T

0

∫ D

d
q̂ r2drdt − 2

∫ T

0

∫

[d,D]∩{r :|u|<k(ρ)}
q̂ r2drdt

≤ C(d, D, M, E0, T ) + C
∫ T

0

∫ D

d
(ρ + ργ2+1) r2drdt

≤ C(d, D, M, E0, T ). (5.81)

On the other hand, we have

∫ T

0

∫

[d,D]∩{r : |u|≤k(ρ)}
ρ|u|3 r2drdt

≤ C
∫ T

0

∫ D

d
ργ (ρ)+θ(ρ) r2drdt

≤ C
∫ T

0

∫ D

d

(
ρ + ρp(ρ)

)
r2drdt ≤ C(M, E0, T ). (5.82)

Combining (5.81) with (5.82), we obtain that
∫ T

0

∫ D
d ρ|u|3 r2drdt ≤ C(d, D, M, E0, T ).

This completes the proof of Lemma 5.8. ��

6. Existence of Global Weak Solutions of CNSPEs

In this section, for fixed ε > 0, we take the limit: b → ∞ to obtain the global existence
of solutions of the Cauchy problem for (1.10). Meanwhile, some uniform estimates in
Theorem 2.1 are obtained. To take the limit, some careful attention is required, since
the weak solutions may involve the vacuum. We use similar compactness arguments as
in [10,17] to handle the limit: b → ∞. Throughout this section, we denote the smooth
solutions of (5.1)–(5.6) as (ρε,b, uε,b) for simplicity.

First of all, we extend our solutions (ρε,b, uε,b) to be zero on ([0, T ] × [0,∞))\�T .
It follows from Lemma 5.5 that

lim
b→∞ min

t∈[0,T ] b(t) = ∞, (6.1)

which implies that domain [0, T ] × [a, b(t)] expands to [0, T ] × (0,∞) as b → ∞.
That is, for any set K � (0,∞), when b � 1, K � (a, b(t)) for all t ∈ [0, T ]. Now we
define

(ρε,b,Mε,b,�ε,b)(t, x) := (ρε,b(t, r),mε,b(t, r)
x
r
,�ε,b(t, r)) for r = |x|,
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where mε,b := ρε,buε,b. Then it is direct to check that the corresponding functions
(ρε,b,Mε,b,�ε,b)(t, x) are classical solutions of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ
ε,b + ∇ · Mε,b = 0,

∂tMε,b + ∇ ·
(Mε,b ⊗ Mε,b

ρε,b

)
+ ∇ P(ρε,b) + ρε,b∇�ε,b = ε∇ ·

(
ρε,b D

(Mε,b

ρε,b

))
,

��ε,b = ρε,b,

for (t, x) ∈ [0,∞)×�t with Mε,b|∂Ba(0) = 0.
Based on the estimates obtained in Sect. 5, by the same arguments as in [10, Sect.

4], we have

Lemma 6.1. For fixed ε > 0, as b → ∞ (up to a subsequence), there exists a vector
function (ρε,mε)(t, r)) such that

(i) (
√
ρε,b, ρε,b) → (

√
ρε, ρε) a.e. and strongly in C(0, T ; L p

loc) for any p ∈ [1,∞),
where L p

loc denotes L p(K ) for any compact set K � (0,∞). In particular, ρε ≥ 0
a.e. on R

2
+.

(ii) The pressure function sequence P(ρε,b) is uniformly bounded in L∞(0, T ; L p
loc(R))

for all p ∈ [1,∞], and

P(ρε,b) −→ P(ρε) strongly in L p(0, T ; L p
loc(R)) for p ∈ [1,∞).

(iii) The momentum function sequence mε,b converges strongly in L2(0, T ; L p
loc(R)) to

mε for all p ∈ [1,∞). In particular,

mε,b(t, r) = (ρε,buε,b)(t, r) −→ mε(t, r) a.e. in [0, T ] × (0,∞).

(iv) mε(t, r) = 0 a.e. on {(t, r) : ρε(t, r) = 0}. Furthermore, there exists a function
uε(t, r) such that mε(t, r) = ρε(t, r)uε(t, r) a.e., uε(t, r) = 0 a.e. on {(t, r) :
ρε(t, r) = 0}, and

mε,b −→ mε = ρεuε strongly in L2 (
0, T ; L p

loc(R)
)

for p ∈ [1,∞),

mε,b

√
ρε,b

−→ mε

√
ρε

= √
ρεuε strongly in L2(0, T ; L2

loc(R)).

Let (ρε,mε)(t, r) be the limit function obtained above. Using (5.13), (6.1), Lem-
mas 5.1–5.6, 5.8, and 6.1, Corollaries 5.2–5.3 and 5.7, Fatou’s lemma, and the lower
semicontinuity, we conclude the proof of (2.22)–(2.25).

Now we show the convergence of the potential functions �ε,b. Using the similar
arguments as in [10, Lemma 4.6], we have

Lemma 6.2. For fixed ε > 0, there exists a function �ε(t, x) = �ε(t, r) such that, as
b → ∞ (up to a subsequence),

�ε,b ⇀�ε weak-star in L∞(0, T ; H1
loc(R

3)) and weakly in L2(0, T ; H1
loc(R

3)),

(6.2)

�ε,b
r (t, r)r2 → �ε

r (t, r)r2 =
∫ r

0
ρε(t, y) y2dy in Cloc([0, T ] × [0,∞)), (6.3)
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‖�ε(t)‖L6(R3) + ‖∇�ε(t)‖L2(R3) ≤ C(M, E0) for t ≥ 0. (6.4)

Moreover, since γ2 >
6
5 ,

∫ ∞

0

∣
∣
(
�ε,b

r −�ε
r

)
(t, r)

∣
∣2

r2dr → 0 as b → ∞ ( up to a subsequence). (6.5)

Using (6.5), Fatou’s lemma, and Lemmas 5.1 and 6.1, we obtain the following energy
inequality:

∫ ∞

0

(1

2

∣
∣
∣

mε

√
ρε

∣
∣
∣
2

+ ρεe(ρε)
)
(t, r) r2dr − 1

2

∫ ∞

0
|�ε(t, r)|2 r2dr

≤
∫ ∞

0

(1

2

∣
∣
∣

mε
0√
ρε0

∣
∣
∣
2

+ ρε0e(ρε0)
)
(r) r2dr − 1

2

∫ ∞

0
|�ε

0(r)|2 r2dr. (6.6)

We denote

(ρε,Mε,�ε)(t, x) := (ρε(t, r),mε(t, r)
x
r
,�ε(t, r)).

Then (2.20) follows directly from (6.6). Moreover, we can prove that (ρε,Mε,�ε)

is a global weak solution of the Cauchy problem (1.10) and (2.17)–(2.18) in the sense of
Definition 2.1. In fact, by the same arguments in [10, Remark 4.7 and Lemmas 4.9–4.11],
we have

Lemma 6.3. Let 0 ≤ t1 < t2 ≤ T , and let ζ(t, x) ∈ C1
0([0, T ] × R

3) be any smooth
function with compact support. Then
∫

R3
ρε(t2, x)ζ(t2, x) dx =

∫

R3
ρε(t1, x)ζ(t1, x) dx +

∫ t2

t1

∫

R3
(ρεζt + Mε · ∇ζ ) dxdt.

(6.7)
Moreover, (2.21) holds, and the total mass is conserved:

∫

R3
ρε(t, x) dx =

∫

R3
ρε0(x) dx = M for t ≥ 0. (6.8)

Lemma 6.4. Let �(t, x) ∈ (C2
0 ([0, T ] × R

3))3 be any smooth function with compact
support so that �(T, x) = 0. Then

∫

R
4
+

{
Mε · ∂t� +

Mε

√
ρε

· ( Mε

√
ρε

· ∇)
� + P(ρε)∇ ·� − ρε∇�ε ·�

}
dxdt

+
∫

R3
Mε

0(x) ·�(0, x) dx

= −ε
∫

R
4
+

{1

2
Mε · (

�� + ∇(∇ ·�)) +
Mε

√
ρε

· (∇√
ρε · ∇)

�

+ ∇√
ρε · ( Mε

√
ρε

· ∇)
�

}
dxdt

= √
ε

∫

R
4
+

√
ρε

{
V ε x ⊗ x

r2 +

√
ε

r

mε

√
ρε

(
I3×3 − x ⊗ x

r2

)}
: ∇� dxdt (6.9)
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with V ε(t, x) ∈ L2(0, T ; L2(R3)) as a function satisfying

∫ T

0

∫

R3

∣
∣V ε(t, x)

∣
∣2 dxdt ≤ C(E0, M),

where C (E0, M) > 0 is a constant independent of T > 0.

Lemma 6.5. It follows from (6.3) that �ε satisfies Poisson’s equation in the classical
sense except for the origin: (t, x) ∈ [0,∞) × (R3\{0}). Moreover, for any smooth
function ξ(x) ∈ C1

0(R
3) with compact support,

∫

R3
∇�ε(t, x) · ∇ξ(x) dx = −

∫

R3
ρε(t, x) ξ(x) dx for t ≥ 0. (6.10)

7. W−1, p
loc –Compactness of Weak Entropy Dissipation Measures

In this section, using the estimates of the weak entropy pairs obtained in Lemmas 4.5, 4.7,
and 4.10, we establish the compactness of weak entropy dissipation measures:
∂tη

ψ(ρε,mε) + ∂r qψ(ρε,mε) for each weak entropy pair (ηψ, qψ). Unfortunately, we
fail to obtain the same H−1

loc -compactness as in [10,17], since we only obtain that qε is
uniformly bounded in L2

loc from Lemma 4.10 and Corollary 5.7. Instead, using similar

arguments as in [10, Lemma 4.2], we can obtain the compactness in W −1,p
loc for any

p ∈ [1, 2).

Lemma 7.1 (Compactness of the entropy dissipation measures). Let (ηψ, qψ) be a weak
entropy pair defined in (4.63) for any smooth and compactly supported function ψ(s)
on R. Then, for ε ∈ (0, ε0],

∂tη
ψ(ρε,mε) + ∂r qψ(ρε,mε) is compact in W −1,p

loc (R2
+) for any p ∈ [1, 2). (7.1)

Proof. To establish (7.1), we first need to study the equation: ∂tη
ψ(ρε,mε)+∂r q(ρε,mε)

in the distributional sense, which is more complicated than that in [13,14]. For simplicity,
we denote (ηε,b, qε,b) = (ηψ(ρε,b,mε,b), qψ(ρε,b,mε,b)) and (ηε, qε) = (ηψ(ρε,mε),

qψ(ρε,mε)). We divide it into four steps.
1. Considering (5.1)1 × ηε,bρ + (5.1)2 × η

ε,b
m , we obtain

∂tη(ρ
ε,b,mε,b) + ∂r q(ρε,b,mε,b) +

2

r
mε,b(ηε,bρ + uε,bηε,bm

)

= −ηε,bm
ρε,b

r2

∫ r

0
ρε,b(t, y) y2dy + εηε,bm

{(
ρε,b(uε,br +

2

r
uε,b)

)

r − 2

r
ρε,br uε,b

}
,

(7.2)

where ρε,b is understood to be zero in domain [0, T ] × [0, a) so that
∫ r

a ρ
ε,b(t, z) z2dz

can be written as
∫ r

0 ρ
ε,b(t, z) z2dz in the potential term. Let φ(t, r) ∈ C∞

0

(
R

2
+

)
and

b � 1 so that suppφ(t, ·) ∈ (a, b(t)). Multiplying (7.2) by φ and integrating by parts
yield
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∫

R
2
+

(∂tη
ε,b + ∂r qε,b)φ drdt

= −
∫

R
2
+

2

r
mε,b(ηε,bρ + uε,bηε,bm )φ drdt − ε

∫

R
2
+

ρε,b(ηε,bm )r
(
uε,br +

2

r
uε,b

)
φ drdt

− ε

∫

R
2
+

ρε,bηε,bm

(
uε,br +

2

r
uε,b

)
φr drdt − ε

∫

R
2
+

2

r
ηε,bm ρε,br uε,bφ drdt

−
∫

R
2
+

ρε,b

r2 ηε,bm

( ∫ r

0
ρε,b(t, y) y2dy

)
φ drdt :=

5∑

i=1

I ε,bi . (7.3)

2. From Lemmas 4.2 and 6.1, it is clear to see that

ηε,b −→ ηε a.e. in {(t, r) : ρε = 0} as b → ∞. (7.4)

In {(t, r) : ρε(t, r) = 0}, it follows from Lemmas 4.5 and 4.7 that

|ηε,b| ≤ Cρε,b −→ 0 = ηε as b → ∞. (7.5)

Combining (7.4)–(7.5), we obtain

ηε,b −→ ηε a.e. as b → ∞. (7.6)

Similarly, it follows from Lemmas 4.3, 4.10, and 6.1 that

qε,b −→ qε a.e. as b → ∞. (7.7)

For γ2 ∈ (1, 3) and any subset K � (0,∞), it follows from Lemmas 4.5, 4.7, 4.10,
and Corollary 5.7 that

∫ T

0

∫

K

(|ηε,b|γ2+1 + |qε,b|2) drdt ≤ Cψ(K )

∫ T

0

∫

K

(
1 + |ρε,b|γ2+1

)
drdt

≤ Cψ(K , M, E0, T ),

which implies that (ηε,b, qε,b) is uniformly bounded in L2
loc(R

2
+). This, with (7.6)–(7.7),

yields that, up to a subsequence,

(ηε,b, qε,b) ⇀ (ηε, qε) in L2
loc(R

2
+) as b → ∞.

Thus, for any φ ∈ C1
0(R

2
+), as b → ∞ (up to a subsequence),

∫

R
2
+

(
∂tη

ε,b + ∂r qε,b
)
φ drdt = −

∫

R
2
+

(
ηε,b∂tφ + qε,b∂rφ

)
drdt

−→ −
∫

R
2
+

(
ηε∂tφ + qε∂rφ

)
drdt. (7.8)

Furthermore, (ηε, qε) is uniformly bounded in L2
loc(R

2
+), which implies that

∂tη
ε + ∂r qε is uniformly bounded in ε > 0 in W −1,2

loc (R2
+). (7.9)
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Since qε,b is only uniformly bounded in L2
loc(R

2
+) in view of Lemma 4.10 and Corol-

lary 5.7, we cannot conclude that ∂tη
ε+∂r qε is uniformly bounded in ε > 0 in W −1,p

loc (R2
+)

with p > 2, which is different from [10].
3. For the terms on the RHS of (7.3), using Lemmas 4.5, 4.7, and 4.10, and similar

calculations as in [10, Lemma 5.11], we obtain that

I ε,b1 −→ −
∫

R
2
+

2

r
mε(ηερ + uεηεm)φ drdt up to a subsequence as b → ∞,

∫ T

0

∫

K

2

r

∣
∣mε(ηερ + uεηεm)

∣
∣

7
6 drdt ≤ Cψ(K , M, E0, T ),

(7.10)

and there exist local bounded Radon measures (με1, μ
ε
2, μ

ε
3) on R

2
+ such that, as b → ∞

(up to a subsequence),

− (ερε,b(ηε,bm )r (u
ε,b
r +

2

r
uε,b),

2ε

r
ηε,bm ρε,br uε,b, κηε,bm

ρε,b

rn−1

∫ r

0
ρε,b(t, z) z2dz)

⇀ (με1, μ
ε
2, μ

ε
3).

In addition, for i = 1, 2, 3,

μεi ((0, T )× V ) ≤ Cψ(K , T, E0) for any open subset V ⊂ K . (7.11)

Then, up to a subsequence, we have

I ε,b2 + I ε,b4 + I ε,b5 −→ 〈με1 + με2 + με3, φ〉 as b → ∞. (7.12)

Moreover, there exists a function f ε such that, as b → ∞ (up to a subsequence),

− √
ερε,bηε,bm

(
uε,br +

2

r
uε,b

)
⇀ f ε weakly in L

4
3
loc(R

2
+),

∫ T

0

∫

K

∣
∣ f ε

∣
∣

4
3 drdt ≤ Cψ(K , M, E0, T ).

(7.13)

Then it follows from (7.13) that

I ε,b3 −→ √
ε

∫ T

0

∫

K
f εφr drdt as b → ∞ (up to a subsequence). (7.14)

4. Taking b → ∞ (up to a subsequence) on both sides of (7.3), it follows from (7.8),
(7.10), (7.12), and (7.14) that

∂tη
ε + ∂r qε = −2

r
ρεuε(ηερ + uεηεm) + με1 + με2 + με3 − √

ε f εr

in the distributional sense. It follows from (7.10)–(7.11) that

−2

r
ρεuε

(
ηερ + uεηεm

)
+ με1 + με2 + με3 (7.15)

is a locally uniformly bounded Radon measure sequence. From (7.13), we know that

√
ε f εr −→ 0 in W

−1, 4
3

loc (R2
+) as ε → 0. (7.16)
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Then it follows from (7.15)–(7.16) that the sequence:

∂tη
ε + ∂r qε is confined in a compact subset of W −1,p2

loc (R2
+) for some p2 ∈ (1, 2),

(7.17)
which also implies that

∂tη
ε + ∂r qε is compact in W −1,p

loc (R2
+) with 1 ≤ p ≤ p2. (7.18)

On the other hand, the interpolation compactness theorem (cf. [8,22]) indicates that,
for p2 > 1, p1 ∈ (p2,∞], and p0 ∈ [p2, p1),

(
compact set of W −1,p2

loc (R2
+)

) ∩ (
bounded set of W −1,p1

loc (R2
+)

)

⊂ (
compact set of W −1,p0

loc (R2
+)

)
,

which is a generalization of Murat’s lemma in [58,67]. Combining this theorem for
1 < p2 < 2 and p1 = 2 with the facts in (7.9) and (7.17), we conclude that

∂tη
ε + ∂r qε is compact in W −1,p

loc (R2
+) with p2 ≤ p < 2. (7.19)

Combining (7.19) with (7.18), we conclude (7.1). ��

8. L p Compensated Compactness Framework

In this section, with the help of our understanding of the singularities of the entropy kernel
and entropy flux kernel obtained in Lemma 4.14, we now establish the L p compensated
compactness framework and complete the proof of Theorem 2.2. The key ingredient is
to prove the reduction of the Young measure. The arguments are similar to [63, Sect. 4]
and [64, Sect. 7], based on [11,13], so we only sketch the proof for self-containedness.

We denote the upper half-plane by

H := {(ρ, u) ∈ R
2 : ρ > 0}

and consider the following subset of continuous functions:

C(H) :=
{

φ ∈ C(H) : φ(ρ, u) is constant on the vacuum states {ρ = 0} and
the map: (ρ, u) �→ lim

s→∞φ(sρ, su) belongs to C(S1 ∩ H)

}

,

where S
1 ⊂ R

2 is the unit circle. Since C(H) is a complete sub-ring of the continuous
functions on H containing the constant functions, there exists a compactification H
of H such that C(H) is isometrically isomorphic to C(H) (cf. [43]), written C(H) ∼=
C(H). The topology of H is the weak-star topology induced by C(H), i.e., a sequence
{vn}n∈N in H converges to v ∈ H if |ϕ(vn) − ϕ(v)| → 0 for all ϕ ∈ C(H), which is
separable and metrizable (cf. [43]). Denote by V the weak-star closure of the vacuum
states {(ρ, u) ∈ R

2 : ρ = 0} and define H := H ∪ V . In view of the functions that lie
in C(H), the topology of H does not distinguish points in V . Since H is homeomorphic
to a compact metric space, we may apply the fundamental theorem of Young measures
in Alberti-Müller [1, Theorem 2.4].
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Lemma 8.1 ([1, Theorem 2.4]). Given any sequence of measurable functions (ρε, ρεuε) :
R

2
+ → H, there exists a subsequence (still denoted) (ρε, ρεuε) generating a Young mea-

sure ν(t,r) ∈ Prob(H) in the sense that, for any φ ∈ C(H),

φ(ρε(t, r), uε(t, r))
∗
⇀

∫

H
ι(φ)(ρ, u) dν(t,r)(ρ, u) in L∞(R2

+),

where ι : C(H) → C(H) is an isometrically isomorphism. Moreover, sequence (ρε, ρεuε)
converges to (ρ, ρu) : R

2
+ → H a.e. if and only if

ν(t,r)(ρ, u) = δ(ρ(t,r),m(t,r)) a.e. (t, r) ∈ R
2
+,

in the phase coordinates (ρ,m) with m = ρu.

From now on, we often use the same letter ν(t,r) for an element of
(
C(H)

)∗ or
(
C(H))∗, and use the same letter for ι(φ) and φ for simplicity, when no confusion

arises.
The following lemma shows that the Young measure ν(t,r), generated by the se-

quence of measurable approximate solutions (ρε, ρεuε) satisfying the assumptions of
Theorem 2.2, is only supported on the interior of H. Moreover, the Young measure ν(t,r)
can be extended to a larger class of test functions than just C(H). This is proved in [13,
Proposition 5.1]; also see [43, Proposition 2.3].

Lemma 8.2 ([13, Proposition 5.1]). The following statements hold:

(i) For the Young measure ν(t,r) generated by the sequence of measurable approximate
solutions (ρε, ρεuε) satisfying the assumptions in Theorem 2.2,

(t, r) �→
∫

H

(ργ2+1 + ρ|u|3) dν(t,r)(ρ, u) ∈ L1
loc(R

2
+).

(ii) Let φ(ρ, u) be a function such that
(a) φ is continuous on H and φ = 0 on ∂H,
(b) there exists a constant a > 0 such that suppφ ⊂ {u + k(ρ) ≥ −a, u − k(ρ) ≤ a},
(c) |φ(ρ, u)| ≤ ρβ(γ2+1) for all (ρ, u) with large ρ and some β ∈ (0, 1).
Then φ is ν(t,r)–integrable for (t, r) ∈ R

2
+ a.e. and

φ(ρε(t, r), uε(t, r)) ⇀
∫

H

φ(ρ, u) dν(t,r)(ρ, u) in L1
loc(R

2
+).

(iii) ν(t,r) ∈ Prob(H) for (t, r) ∈ R
2
+ a.e., that is, ν(t,r)

(H\(H ∪ V )
) = 0.

We now prove the commutation relation. Since we only have the W −1,p
loc –compactness

of the entropy dissipation measures for p ∈ [1, 2), the classical div-curl lemma in [58]
fails to obtain the commutation relation. Thus, we adopt an improved version of the
div-curl lemma.

Lemma 8.3 ([19, Theorem]). Let � ⊂ R
n be an open bounded set, and p, q ∈ (1,∞)

with 1
p + 1

q = 1. Let vε and wε are sequences of vector fields such that

vε ⇀ v in L p(�; R
n), wε ⇀ w in Lq(�; R

n) as ε → 0.
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Suppose that vε · wε is equi-integrable uniformly in ε, and

div vε is (pre-)compact in W −1,1(�),

curl wε is (pre-)compact in W −1,1(�; R
n×n).

Then vε · wε ⇀ v · w in D′(�).

Lemma 8.4 (Commutation relation). Let {(ρε, ρεuε)}ε>0 be the measurable approx-
imate solutions satisfying the assumptions of Theorem 2.2, and let ν(t,r) be a Young
measure generated by the family {(ρε, ρεuε)}ε>0 in Lemma 8.2. Then

χ(s1)σ (s2)− χ(s2)σ (s1) = χ(s1) σ (s2)− χ(s2) σ (s1) (8.1)

for all s1, s2 ∈ R, where f :=
∫

f dν(t,r), χ(si ) = χ(·, ·−si ), and σ(si ) = σ(·, ·−si ).

Proof. For any ψ ∈ C2
0 (R), it follows from Lemmas 4.5, 4.7, and 4.10 that

|ηψ(ρ,m)| ≤ Cψρ, |qψ(ρ,m)| ≤ Cψ

(
ρ + ρ1+θ2

)
. (8.2)

It is clear that the support of (ηψ, qψ) is contained in {k(ρ) + u ≥ −L , u − k(ρ) ≤ L}
for some L > 0 depending only on supp ψ . For any ψ1, ψ2 ∈ C2

0 (R), we consider the
sequences of vector fields:

vε = (ηψ1(ρε, ρεuε), qψ1(ρε, ρεuε)), wε = (qψ2(ρε, ρεuε),−ηψ2(ρε, ρεuε)).

Noting ρε ∈ L1+γ2
loc (R2

+) and (8.2), we see that both vε and wε are uniformly bounded
sequences in L2

loc(R
2
+). Moreover, by Lemma 8.2 and the uniqueness of weak limits, we

obtain

vε ⇀ (ηψ1 , qψ1) in L2
loc(R

2
+), wε ⇀ (qψ2 ,−ηψ2) in L2

loc(R
2
+).

By direct calculation, we see that

div vε = ∂tη
ψ1(ρε, ρεuε) + ∂r qψ1(ρε, ρεuε) are compact in W −1,1

loc (R2
+),

curl wε = ∂tη
ψ2(ρε, ρεuε) + ∂r qψ2(ρε, ρεuε) are compact in W −1,1

loc (R2
+).

Using (8.2), we obtain that |vε · wε| ≤ C
(
(ρε)2 + (ρε)2+θ2

)
for ρ > 0 which, with

(2.25), yields that vε · wε ∈ L
1+γ2
2+θ2
loc (R2

+) uniformly in ε. Thus, vε · wε is equi-integrable

uniformly in ε since 1+γ2
2+θ2

> 1. It follows from Lemma 8.3 that

vε · wε → ηψ1 qψ2 − ηψ2 qψ1 in the sense of distributions in R
2
+. (8.3)

On the other hand, using (8.2) and Lemma 8.2, we find that

vε · wε → ηψ1qψ2 − ηψ2qψ1 in L1
loc(R

2
+),

which, with (8.3), yields that

ηψ1qψ2 − ηψ2qψ1 = ηψ1 qψ2 − ηψ2 qψ1 . (8.4)
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It follows from (8.4) and Fubini’s theorem that
∫

R2

(
χ(s1)σ (s2)− χ(s2)σ (s1)− χ(s1) σ (s2) + χ(s2) σ (s1)

)
ψ1(s1)ψ2(s2) ds1ds2 = 0.

Since ψ1, ψ2 ∈ C2
0 (R) are arbitrary, we conclude

χ(s1)σ (s2)− χ(s2)σ (s1) = χ(s1) σ (s2)− χ(s2) σ (s1) for any s1, s2 ∈ R.

This completes the proof. ��
Theorem 8.5 (Reduction of the Young measure). Let ν(t,r) ∈ Prob(H) be the Young
measure generated by sequence {(ρε, ρεuε)}ε>0 in Lemma 8.2. Then either ν(t,r) is
contained in V or the support of ν(t,r) is a single point in H.

Proof. The proof is similar to [11,48,63,64]. Since the estimates of the entropy kernel
and entropy flux kernel are different, we sketch the proof for self-containedness.

Taking s1, s2, s3 ∈ R and multiplying (8.1) by χ(s3), one obtains

χ(s3) χ(s1) σ (s2)− χ(s2) σ (s1) = χ(s3) χ(s1) σ (s2)− χ(s3) χ(s2) σ (s1).

Cyclically permuting index s j and adding the resultant equations together, we have

χ(s1) χ(s2)σ (s3)− χ(s3)σ (s2)

= χ(s3) χ(s2)σ (s1)− χ(s1)σ (s2)− χ(s2) χ(s3)σ (s1)− χ(s1)σ (s3).

Applying the fractional derivative operators P2 := ∂
λ1+1
s2 and P3 := ∂

λ1+1
s3 in the sense

of distributions to obtain

χ(s1) P2χ(s2) P3σ(s3)− P3χ(s3) P2σ(s2)

= P3χ(s3) P2χ(s2) σ (s1)− χ(s1) P2σ(s2)

− P2χ(s2) P3χ(s3) σ (s1)− χ(s1) P3σ(s3), (8.5)

where, for example, distribution P2χ(s2) is defined by

〈P2χ(s2), ψ〉 = −
∫

R

∂
λ1
s2 χ(s2) ψ

′(s2) ds2 for ψ ∈ D(R).

We take two standard but different functionsφ2, φ3 ∈ C∞
0 (−1, 1) such that

∫

R

φ j (s j )

ds j = 1 with φ j ≥ 0 for j = 2, 3. For τ > 0, denote φτj (s j ) := 1
τ
φ j (

s j
τ
). As indicated

in [43], we can always choose φ2 and φ3 such that

Y (φ2, φ3) =
∫ ∞

−∞

∫ s2

−∞
(
φ2(s2)φ3(s3)− φ2(s3)φ3(s2)

)
ds3ds2 > 0. (8.6)

Multiplying (8.5) by φτ2 (s1 − s2)φ
τ
3 (s1 − s3) and integrating the resultant equation with

respect to (s2, s3) yield

χ(s1) P2χ
τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2

= P3χ
τ
3 P2χ

τ
2 σ1 − χ1 P2σ

τ
2 − P2χ

τ
2 P3χ

τ
3 σ1 − χ1 P3σ

τ
3 , (8.7)
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where we have used the notion: Pjχ
τ
j = Pjχ j ∗ φτj (s1) = ∫

R
∂λs j
χ(s j )

1
τ 2 φ

′
j (

s1−s j
τ

) ds j

for j = 2, 3.
Multiplying (8.7) by ψ(s1) ∈ D(R), integrating the resultant equation with respect

to s1, then taking limit τ → 0 and applying Lemmas 8.8–8.9 below, we obtain

Y (φ2, φ3)

∫

H
Z(ρ)

∑

±
(K ±)2 χ(u ± k(ρ)) ψ(u ± k(ρ)) dν(t,r)(ρ, u) = 0. (8.8)

Noting that Z(ρ) > 0 for ρ > 0 from Lemma 8.7 below, Y (φ2, φ3) > 0 from (8.6), and
ψ(s) is an arbitrary test function, we deduce from (8.8) that

∫

H
Z(ρ) χ(u ± k(ρ)) dν(t,r)(ρ, u) = 0. (8.9)

We define S = {s ∈ R : χ(s) > 0}. It follows from [63] that S admits the representation:

S = {
s ∈ R : u − k(ρ) < s < u + k(ρ) with (ρ, u) ∈ supp ν(t,r)

}
.

For the case: S = ∅, it is clear that χ(s) = 0 for all s ∈ R so that supp ν(t,r) ⊂ V ,
since χ(s) > 0 for all ρ > 0 and s ∈ (u − k(ρ), u + k(ρ)).

For the case: S = ∅, it follows from (8.15) below that s �→ χ(s) is a continuous map.
Then S is an open set so that S is at most a countable union of open intervals. Thus, we
may write

S = ∪
k
(ζk, ξk)

for at most countably many numbers ζk := uk − k(ρk) and ξk := uk + k(ρk) with
(ρk, uk) ∈ suppν(t,r) in the extended real line R ∪ {±∞} such that ζk < ξk ≤ ζk+1
for all k. For later use, we denote the Riemann invariants z(ρ, u) := u − k(ρ) and
w(ρ, u) := u + k(ρ). Thus, noting that suppχ(s) = {(ρ, u) : z(ρ, u) ≤ s ≤ w(ρ, u)},
we obtain

supp ν(t,r) ⊂ ∪
k

{(ρ, u) ∈ H : ζk ≤ z(ρ, u) < w(ρ, u) ≤ ξk} ∪ V .

If ζk and ξk are both finite, due to the fact that k(ρ) is a strictly monotone increasing
and unbounded function of ρ, it is clear that {(ρ, u) : ζk ≤ z(ρ, u) ≤ w(ρ, u) ≤ ξk} is
bounded. Now we deduce from (8.9) that

supp ν(t,r) ∩ {(ρ, u) ∈ H : ζk < z(ρ, u) < w(ρ, u) < ξk} = ∅ for all k.

Thus, the support of measure ν(t,r) must be contained in the vacuum set V and at most
a countable union of points Pk(ρk, uk):

supp ν(t,r) ⊂ V ∪ ( ∪{k:ζk ,ξk are finite} Pk(ρk, uk)
)
.

Therefore, we may write

ν(t,r) = νV +
∑

k

αkδPk for all αk ∈ [0, 1] (8.10)
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with measure νV supported on the vacuum set V . For later use, we denote

χ(Pk, s) := χ(ρk, uk, s), σ (Pk, s) := σ(ρk, uk, s) for s ∈ R.

We claim that, if χ(Pk, s) > 0, then χ(Pk′ , s) = 0 for all k = k′. Indeed, recall that
suppχ(s) = {(ρ, u) : z(ρ, u) ≤ s ≤ w(ρ, u)} and that χ(ρ, u, s) > 0 if and only if
z(ρ, u) < s < w(ρ, u). If χ(Pk, s) > 0, then ζk < s < ξk . If, in addition, χ(Pk′ , s) > 0
for some k = k′, it must hold that ζk′ < s < ξk′ . However, since ξk−1 ≤ ζk < ξk ≤ ζk+1,
this is impossible for any Pk′ with k′ = k.

Thus, taking s1, s2 ∈ R such that χ(Pk, s1)χ(Pk, s2) > 0, we deduce from the
commutation relation (8.1) and (8.10) that

(αk − α2
k )

(
χ(Pk, s1)σ (Pk, s2)− χ(Pk, s2)σ (Pk, s1)

) = 0.

Now, choosing s1 and s2 such that the second factor in this expression is non-zero, we
obtain that αk = 0 or 1 for all k. This completes the proof. ��

Combining Theorem 8.5 with Lemma 8.1, we conclude that (ρε,mε) converges to

(ρ,m) almost everywhere. Moreover, noting that |mε|
3(γ2+1)
γ2+3 ≤ C

(
(ρε)γ2+1 + ρε|uε|3)

for any T, d, D > 0, we have
∫ T

0

∫ D

d
|mε|

3(γ2+1)
γ2+3 drdt ≤ C

∫ T

0

∫ D

d

(
(ρε)γ2+1 + ρε|uε|3) drdt ≤ C(d, D, T ),

which implies that mε is uniformly bounded in L
3(γ2+1)
γ2+3

loc (R2
+) with respect to ε. This

implies that (2.36) holds. Therefore, the proof of Theorem 2.2 is complete.
Now, we are going to prove the auxiliary lemmas, Lemmas 8.8–8.9, which are used

in the proof of Theorem 8.5. We first recall two useful lemmas in [11,43].

Lemma 8.6 ([43, Lemmas 3.8–3.9]). Let R ∈ Cα
loc(R) be a Hölder continuous function

for some α ∈ (0, 1), and let g ∈ Cα
0 (R) be a Hölder continuous function with compact

support. Assume L0 > 2 such that supp g ⊂ BL0−2(0).

(i) For any pair of distributions T2, T3 ∈ D′(R) from the following collection:

(T2, T3) = (δ, Q3), (PV, Q3), (Q2, Q3)

with Q2, Q3 ∈ {H,Ci,R}, there exists a constant C > 0 independent of (ρ, u) such
that

sup
τ∈(0,1)

∣
∣
∣

∫ ∞

−∞
g(s1)

{(
T2(s2 − u ± k(ρ))T3(s3 − u ± k(ρ))

− T2(s3 − u ± k(ρ))T3(s2 − u ± k(ρ))
) ∗ φτ2 ∗ φτ3

}
(s1) ds1

∣
∣
∣

≤ C‖g‖Cα(R)

(
1 + ‖R‖Cα(BL0 (0))

)2
.

(ii) For any pair of distributions from

(T2, T3) = (δ, δ), (PV, PV ), (Q2, Q3), (δ, PV ), (PV, Q3),

with Q2, Q3 ∈ {H,Ci,R}, there exists C > 0 independent of (ρ, u) such that

sup
τ∈(0,1)

∣
∣
∣

∫ ∞

−∞

{(
(s2 − s3)T2(s2 − u ± k(ρ))T3(s3 − u ± k(ρ))

) ∗ φτ2 ∗ φτ3
}
(s1) ds1

∣
∣
∣

≤ C‖g‖Cα(R)

(
1 + ‖R‖Cα(BL0 (0))

)2
.
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Motivated by [11], it follows from Lemmas 4.2–4.3, (1.4), and a direct calculation
that

D(ρ) := a1(ρ)b1(ρ)− 2k(ρ)2(a1(ρ)b2(ρ)− a2(ρ)b1(ρ))

= M2
λ1

2(λ1 + 1)
k(ρ)−2λ1 k′(ρ)−2(k′(ρ) + (ρk′(ρ))′

)
> 0 for ρ > 0. (8.11)

Lemma 8.7 ([11, Lemmas 4.2–4.3]). The mollified fractional derivatives of the entropy
kernel and the entropy flux kernel satisfy the following convergence properties:

(i) When 0 ≤ ρ < ∞,

P2χ
τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2 −→ Y (φ2, φ3)Z(ρ)

∑

±
(K ±)2δs1=u±k(ρ)

as τ → 0 weakly-star in measures in s1 and locally uniformly in (ρ, u), where
Y (φ2, φ3) satisfies (8.6), Z(ρ) := (λ1 + 1)M−2

λ k(ρ)2λD(ρ) > 0 with D(ρ) defined
in (8.11), and K ± = 0 are some constants.

(ii) For j = 2, 3, χ1 Pjσ
τ
j − σ1 Pjχ

τ
j are Hölder continuous in (ρ, u, s1), uniformly in

τ , and there exists a Hölder continuous function X = X (ρ, u, s1), independent of
the mollifying sequence φ j , such that

χ(s1)Pjσ
τ
j − Pjχ

τ
j σ(s1) −→ X (ρ, u, s1) as τ → 0

uniformly in (ρ, u, s1) on the sets on which ρ is bounded.

Lemma 8.8. For any test function ψ ∈ D(R),

lim
τ→0

∫

R

χ(s1) P2χ
τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2 (s1)ψ(s1) ds1

= Y (φ2, φ3)

∫

H
Z(ρ)

∑

±
(K ±)2 χ(u ± k(ρ)) ψ(u ± k(ρ)) dν(t,r)(ρ, u), (8.12)

where Y (φ2, φ3) is defined by (8.6) and Z(ρ) is given in Lemma 8.7.

Proof. It follows from Lemma 8.7 that, when ρ is bounded,

P2χ
τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2 → Y (φ2, φ3)Z(ρ)

∑

±

(
K ±)2

δs1=u±k(ρ) as τ → 0

locally uniform in (ρ, u) and hence pointwise for all (ρ, u). Therefore, we have
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lim
τ→0

∫ ∞

−∞
χ(s1)〈 ν(t,r), (P2χ

τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2 )I{ρ≤ρ∗}〉ψ(s1) ds1

= lim
τ→0

〈 ν(t,r),
∫ ∞

−∞
χ(s1)(P2χ

τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2 )ψ(s1) ds1I{ρ≤ρ∗}〉

= 〈 ν(t,r), Y (φ2, φ3)Z(ρ)
∑

±
(K ±)2χ(u ± k(ρ))ψ(u ± k(ρ))I{ρ≤ρ∗}〉

= Y (φ2, φ3)
∑

±
(K ±)2〈 ν(t,r), Z(ρ)χ(u ± k(ρ))ψ(u ± k(ρ))I{ρ≤ρ∗}〉. (8.13)

For ρ ≥ ρ∗, we notice that

P2χ
τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2 = P2χ

τ
2 P3(σ

τ
3 − uχτ3 )− P3χ

τ
3 P2(σ

τ
2 − uχτ2 ). (8.14)

Using Lemma 4.14, we see that (8.14) consists of a sum of terms of the form:

Ai,±(ρ)B j,±(ρ)(s3 − s2)T2(s2 − u ± k(ρ))T3(s3 − u ± k(ρ))

with T2, T3 ∈ {δ,PV, H,Ci}, the terms of the form:

Ai,±(ρ)B j,±(ρ)
(
T2(s2 − u ± k(ρ))T3(s3 − u ± k(ρ))

−T2(s3 − u ± k(ρ))T3(s2 − u ± k(ρ))
)
,

and the terms of the form:

Ai,±(ρ)B j,±(ρ)(s3 − u)
(
T2(s2 − u ± k(ρ))T3(s3 − u ± k(ρ))

−T2(s3 − u ± k(ρ))T3(s2 − u ± k(ρ))
)

with T2 ∈ {δ, H,PV,Ci, rχ } and T3 ∈ {H,Ci, rσ }. We emphasize that, in the last two
cases, when T2, T3 ∈ {rχ , rσ }, Ai,±(ρ)B j,±(ρ) or Ai,±(ρ)B j,±(ρ)(sk − u) should be
replaced by 1.

Before applying Lemma 8.6, we now show that χ(s) is Hölder continuous. In
fact, it follows from Corollary 4.12 and Lemma 8.2 that, for any s, s′ ∈ R and α ∈
(0,min{λ1, 1}],

sup
s,s′∈R

|χ(s)− χ(s′)|
|s − s′|α =

∫

H
|χ(s)− χ(s′)|

|s − s′|α dν(t,r) ≤
∫

H
C

(
1 + ρ| ln ρ|) dν(t,r) < ∞,

(8.15)
which implies that χ(s) is Hölder continuous. Hence, using Lemma 8.6 and the fact that
|s j − u| ≤ k(ρ) for j = 2, 3, we obtain

∣
∣
∣

∫ ∞

−∞
χ(s1)(P2χ

τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2 )ψ(s1) ds1I{ρ≥ρ∗}

∣
∣
∣

≤ C max
j,k,±

{
|A j,±k(ρ)|(|Bk,±| + ‖rσ (ρ, ·)‖Cα1 (BL0 )

)
,

‖rχ (ρ, ·)‖Cα1 (BL0 )

(|B j,±k(ρ)| + ‖rσ (ρ, ·)‖Cα1 (BL0 )

)}

≤ C
(
1 + ρ2+θ2

) = C
(
ρβ(γ2+1) + 1

)
for ρ ≥ ρ∗,
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with L0 := | suppψ | + 2 and β = θ2+2
γ2+1 ∈ (0, 1). Thus, using Lemmas 8.2 and 8.7, and

Lebesgue’s dominated convergence theorem, we obtain

lim
τ→0

∫ ∞

−∞
χ(s1)〈 ν(t,r), (P2χ

τ
2 P3σ

τ
3 − P3χ

τ
3 P2σ

τ
2 )I{ρ≥ρ∗}〉ψ(s1) ds1

= Y (φ2, φ3)
∑

±
(K ±)2〈ν(t,r), Z(ρ) χ(u ± k(ρ)) ψ(u ± k(ρ))I{ρ≥ρ∗}〉,

which, with (8.13), yields (8.12). This completes the proof. ��
Lemma 8.9. For any test function ψ ∈ D(R),

lim
τ→0

∫

R

(
P3χ

τ
3 P2χ

τ
2 σ(s1)− χ(s1) P2σ

τ
2

− P2χ
τ
2 P3χ

τ
3 σ(s1) + χ(s1) P3σ

τ
3

)
ψ(s1) ds1 = 0. (8.16)

Proof. Fix (ρ, u) ∈ H. It follows from Lemma 8.7 that
(
χ(s1) P3σ

τ
3 − P3χ

τ
3 σ(s1)

)
(ρ, u, s1) −→ X (ρ, u, s1) uniformly in s1 as τ → 0.

It is clear that
∫

R

P2χ
τ
2

(
χ(s1) P3σ

τ
3 − P3χ

τ
3 σ(s1)

)
ψ(s1) ds1

=
∫

H

∫

R

(P2χ
τ
2 )(ρ̃, ũ, s1)

(
χ(s1) P3σ

τ
3 −P3χ

τ
3 σ(s1)

)
(ρ, u, s1) ψ(s1) ds1dν(t,r)(ρ̃, ũ).

It follows from Lemma 4.14 that Pjχ
τ
j , j = 2, 3, are measures in s1 such that

‖Pjχ
τ
j (ρ̃, ũ, ·)‖M,α ≤ Cαρ̃ for large ρ̃,

where ‖μ‖M,α = sup
{|〈μ, f 〉| : f ∈ Cα

0 (R) and ‖ f ‖Cα(R) ≤ 1
}

with α ∈ (0, 1).
Then we use Lemma 8.2 and Lebesgue’s dominated convergence theorem to pass the
limit inside the Young measure to obtain

∫

R

P2χ
τ
2

(
χ(s1) P3σ

τ
3 − P3χ

τ
3 σ(s1)

)
ψ(s1) ds1

−→
∫

H

∫

R

(P1χ)(ρ̃, ũ, s1)X (ρ, u, s1)ψ(s1) ds1dν(t,r)(ρ̃, ũ)

pointwise in (ρ, u) as τ → 0. Now we are going to prove
∣
∣
∣

∫

R

P2χ
τ
2

(
χ(s1) P3σ

τ
3 − P3χ

τ
3 σ(s1)

)
ψ(s1) ds1

∣
∣
∣ ≤ C

(
ρβ(γ2+1) + 1

)
(8.17)

for some constants C > 0 and β ∈ (0, 1], which are both independent of τ . Once (8.17)
is proved, it follows from Lebesgue’s dominated convergence theorem that

lim
τ→0

∫

R

P2χ
τ
2 (s1) χ(s1) P3σ

τ
3 − P3χ

τ
3 σ(s1)) ψ(s1) ds1

= lim
τ→0

∫

H

∫

R

P2χ
τ
2 (s1)

(
χ(s1) P3σ

τ
3 − P3χ

τ
3 σ(s1)

)
(ρ, u, s1) ψ(s1) ds1dν(t,r)(ρ, u)

=
∫

H

∫

H

∫

R

(P1χ)(ρ̃, ũ, s1)X (ρ, u, s1)ψ(s1) ds1dν(t,r)(ρ̃, ũ) dν(t,r)(ρ, u).
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Since X (ρ, u, s1) is independent of the choice of the mollifying functions φτ2 and φτ3
from Lemma 8.7, we may interchange the roles of s2 and s3 to conclude the proof of
(8.16).

To see the validity of (8.17), we begin by observing that, for j = 2, 3, Pjχ
τ
j (s1) and

ψ(s1) are independent of (ρ, u). Then it suffices to estimate the function:

χ(s1) Pjσ
τ
j − Pjχ

τ
j σ(s1) = χ(s1) Pj (σ

τ
j − uχτj )− (σ (s1)− uχ(s1)) Pjχ

τ
j . (8.18)

It follows from Lemmas 4.2–4.3 and 4.14 (also see [11, Proof of Lemma 4.2]) that

RHS of (8.18) = E1,τ + E2,τ + E3,τ + E4,τ ,

with

E1,τ =
∑

±

(
A1,±(ρ)b1(ρ)Gλ1(s1) + A1,±(ρ)b2(ρ)Gλ1+1(s1)

)

× (
(s j − s1)δ(s j − u ± k(ρ))

) ∗ φτj
+

∑

±

(
A3,±(ρ)b1(ρ)Gλ1(s1) + A3,±(ρ)b2(ρ)Gλ1+1(s1)

)

× (
(s j − s1)PV (s j − u ± k(ρ))

) ∗ φτj
:= E1,τ

1 + E1,τ
2 ,

E2,τ = −
∑

±
A1,±(ρ)g2(s1)

(
δ(s j − u ± k(ρ)) ∗ φτj

)

−
∑

±
A3,±(ρ)g2(s1)

(
PV (s j − u ± k(ρ)) ∗ φτj

)

:=E2,τ
1 + E2,τ

2 ,

E3,τ =
∑

±

(
B1,±(ρ)a1(ρ)− A1,±(ρ)b1(ρ)

)
Gλ1(s1)

(
(s j − u)δ(s j − u ± k(ρ))

) ∗ φτj

+
∑

±

(
B1,±(ρ)a2(ρ)− A1,±(ρ)b2(ρ)

)
Gλ1+1(s1)

(
(s j − u)δ(s j − u ± k(ρ))

) ∗ φτj

+
∑

±
B1,±(ρ)g1(s1)

(
(s j − u)δ(s j − u ± k(ρ))

) ∗ φτj

+
∑

±

(
B3,±(ρ)a1(ρ)− A3,±(ρ)b1(ρ)

)
Gλ1(s1)

(
(s j − u)PV (s j − u ± k(ρ))

) ∗ φτj

+
∑

±

(
B3,±(ρ)a2(ρ)− A3,±(ρ)b2(ρ)

)
Gλ1+1(s1)

(
(s j − u)PV (s j − u ± k(ρ))

) ∗ φτj

+
∑

±
B3,±(ρ)g1(s1)

(
(s j − u)PV (s j − u ± k(ρ))

) ∗ φτj

:= E3,τ
1 + E3,τ

2 + E3,τ
3 + E3,τ

4 + E3,τ
5 + E3,τ

6 ,

and E4,τ is the remainder term which consists of the mollification of continuous func-
tions, where we have used the notation: Gλ1(s1) = [k(ρ)2 − (u − s1)

2]λ1 , and gi (s1) =
gi (ρ, u − s1) for i = 1, 2.
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We first demonstrate the uniform bound on the term involving the delta measures.
By direct calculation, we have

δ(s j − u + k(ρ)) ∗ φτj = 1

τ
φ j (

s1 − u + k(ρ)

τ
),

(
(s j − s1)δ(s j − u + k(ρ))

) ∗ φτj = − s1 − u + k(ρ)

τ
φ j (

s1 − u + k(ρ)

τ
),

(
(s j − u)δ(s j − u + k(ρ))

) ∗ φτj
= (

(s j − s1)δ(s j − u + k(ρ))
) ∗ φτj +

(
(s1 − u)δ(s j − u + k(ρ))

) ∗ φτj
= (s1 − u)τ−1φ j (

s1 − u + k(ρ)

τ
)− s1 − u + k(ρ)

τ
φ j (

s1 − u + k(ρ)

τ
). (8.19)

Noting that

Gλ1+1(s1) = Gλ1(s1) (k(ρ)− u + s1) (k(ρ) + u − s1),

|gi (s1)| ≤ ‖∂u gi (ρ, ·)‖L∞(R)|s1 − u ± k(ρ)| for i = 1, 2,
(8.20)

using (8.19)–(8.20) and Lemmas 4.2–4.3 and 4.11–4.14, we obtain

E3,τ
1 = 0, |E1,τ

1 | + |E2,τ
1 | + |E3,τ

2 | + |E3,τ
3 | ≤ Cφ

(
1 + ρ

3
2 + θ2

2
)
. (8.21)

For the term involving with the principal value distribution, a direct calculation shows
that

|PV ∗ φτj (x)| =
∣
∣
∣

∫ ∞

0

φτj (x − y)− φτj (x + y)

y
dy

∣
∣
∣

= 1

τ

∣
∣
∣

∫ ∞

0

1

y

(
φ j (

x + y

τ
)− φ j (

x − y

τ
)
)

dy
∣
∣
∣.

If |x | ≤ 2τ , we have

|PV ∗ φτj (x)| ≤ 1

τ

∫ 4τ

0

1

|y|
∣
∣φ j (

x − y

τ
)− φ j (

y + x

τ
)
∣
∣ dy ≤ C

1

τ
‖φ′

j ‖L∞ = Cφ

|x | . (8.22)

On the other hand, if |x | ≥ 2τ , we can obtain

|PV ∗ φτj (x)| ≤ 2

τ

∫ |x |+τ

|x |−τ
‖φ‖L∞

|x | − τ
dy ≤ Cφ

|x | . (8.23)

Notice that
(
(s j − s1)PV (s j − u − k(ρ))

) ∗ φτj
= (

(s j − u + k(ρ))PV (s j − u + k(ρ))
) ∗ φτj

+
(
(u − k(ρ)− s1)PV (s j − u + k(ρ))

) ∗ φτj ,
(
(s j − u)PV (s j − u − k(ρ))

) ∗ φτj
= (

(s j − u + k(ρ))PV (s j − u + k(ρ))
) ∗ φτj − k(ρ)PV (s j − u + k(ρ)) ∗ φτj ,

(8.24)
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which, with (8.20), (8.22)–(8.24), and Lemmas 4.2–4.3 and 4.11–4.14, yields

E3,τ
4 = 0, |E1,τ

2 | + |E2,τ
2 | + |E3,τ

5 | + |E3,τ
6 | ≤ Cφ

(
1 + ρ

3
2 + θ2

2
)
. (8.25)

Combining (8.21) with (8.25) yields that there exists β1 = 3+θ2
2(γ2+1) ∈ (0, 1) such that

|E1,τ + E2,τ + E3,τ | ≤ Cφ(1 + ρ
3
2 + θ2

2 ) ≤ Cφ(1 + ρβ1(γ2+1)). (8.26)

For E4,τ consisting of the mollification of continuous functions, direct calculations
show that

|E4,τ | ≤ Cφ

(
1 + ρ2+θ2 | ln ρ|) ≤ Cφ

(
1 + ρβ2(γ2+1)), (8.27)

with β2 = 4+3θ2
2(γ2+1) ∈ (0, 1). Combining (8.27) with (8.26), we conclude the proof of

(8.17). ��

9. Existence of Global Finite-Energy Solutions of CEPEs

In this section, we complete the proof of Theorem 2.3. Since the proof is similar to [10],
we sketch the proof for the self-containedness of this paper. We divide the proof into
four steps.

1. Since (ρε,mε)(t, r) obtained in Theorem 2.1 satisfies all the assumptions of Theo-
rem 2.2, then it follows from Theorem 2.2 that there exists a vector function (ρ,m)(t, r)
such that, up to a subsequence as ε → 0,

(ρε,mε) −→ (ρ,m) a.e. (t, r) ∈ R
2
+, (9.1)

(ρε,mε) −→ (ρ,m) in L p1
loc(R

2
+)× L p2

loc(R
2
+) (9.2)

for p1 ∈ [1, γ2 + 1) and p2 ∈ [1, 3(γ2+1)
γ2+3 ), where L

p j
loc(R

2
+) represents L p j ([0, T ] × K )

for any T > 0 and K � (0,∞), j = 1, 2.
Noting (9.1) and ρε ≥ 0 a.e. from Lemma 6.1, it is direct to show that ρ(t, r) ≥ 0

a.e. on R
2
+. Moreover, it follows from (2.22) that

√
ρεuεr = mε√

ρε
r is uniformly bounded

in L∞(0, T ; L2(R)). Then using Fatou’s lemma yields
∫ T

0

∫ ∞

0

|m(t, r)|2
ρ(t, r)

r2drdt ≤ lim inf
ε→0

∫ T

0

∫ ∞

0

|mε(t, r)|2
ρε(t, r)

r2drdt < ∞.

Thus, m(t, r) = 0 a.e. on {(t, r) : ρ(t, r) = 0}, and we can define the limit velocity
u(t, r) as

u(t, r) = m(t, r)

ρ(t, r)
a.e. on {(t, r) : ρ(t, r) = 0},

u(t, r) = 0 a.e. on {(t, r) : ρ(t, r) = 0 or r = 0}.
Therefore, m(t, r) = ρ(t, r)u(t, r) a.e. on R

2
+. Also, we can define

( m√
ρ

)
(t, r) :=√

ρ(t, r)u(t, r), which is zero a.e. on {(t, r) : ρ(t, r) = 0}. Moreover, using (2.24) and
Fatou’s lemma, we obtain

∫ T

0

∫ D

d
ρ|u|3 drdt ≤ lim inf

ε→0

∫ T

0

∫ D

d
ρε|uε|3 drdt ≤ C(d, D, M, E0, T ) < ∞

for any [d, D] � (0,∞).
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By similar calculations as in [10, Sect. 5], we obtain that, as ε → 0,

mε

√
ρε

≡ √
ρεuε −→ m√

ρ
≡ √

ρu strongly in L2([0, T ]×[d, D]; rn−1 drdt) (9.3)

for any T > 0 and [d, D] � (0,∞).
From (9.2)–(9.3), we also obtain the convergence of the mechanical energy as ε → 0:

η∗(ρε,mε) −→ η∗(ρ,m) in L1
loc(R

2
+). (9.4)

Using (9.2), (9.4), and Fatou’s lemma, and taking limit ε → 0 in (2.21)–(2.22), we have
∫ t2

t1

∫ ∞

0

(
η∗(ρ,m)(t, r) + ργ2(t, r) + ρ(t, r)

)
r2drdt ≤ C(M, E0)(t2 − t1), (9.5)

which implies

sup
0≤t≤T

∫ ∞

0

(
η∗(ρ,m)(t, r) + ργ2(t, r) + ρ(t, r)

)
r2dr ≤ C(M, E0). (9.6)

This indicates that ρ(t, r) ∈ L∞([0, T ]; Lγ2(R; r2dr)), which implies that ρ(t, x) is a
function in L∞([0, T ]; Lγ2(R3))withγ2 > 1 (rather than a measure in (t, x)). Therefore,
no delta measure (i.e., concentration) is formed in the density in the time interval [0, T ],
especially at the origin: r = 0.

2. For the convergence of the gravitational potential functions �ε(t, r), by similar
calculation in [10, Sect. 5], we obtain that, as ε → 0 (up to a subsequence),

�ε
r (t, r)r2 =

∫ r

0
ρε(t, y) y2dy −→

∫ r

0
ρ(t, y) y2dy a.e. (t, r) ∈ R

2
+. (9.7)

Thus, using (6.3), (9.1), (9.7), Fatou’s lemma, and similar arguments as in (9.5)–(9.6),
we have

∫ ∞

0

( ∫ r

0
ρ(t, y) y2dy

)
ρ(t, r) rdr ≤ C(M, E0) for a.e. t ≥ 0.

On the other hand, it follows from (6.4) that there exists a function �(t, x) = �(t, r)
such that, as ε → 0 (up to a subsequence),

�ε ⇀ � weak-star in L∞(0, T ; H1
loc(R

3)) and weakly in L2(0, T ; H1
loc(R

3),

‖�(t)‖L6(R3) + ‖∇�(t)‖L2(R3) ≤ C(M, E0) a.e. t ≥ 0.

Thus, by (9.7) and the uniqueness of limit, we obtain that �r (t, r)r2 = ∫ r
0 ρ(t, z)z2 dz

a.e. (t, r) ∈ R
2
+. By similar arguments in [10, Sect. 5], we also have the strong conver-

gence of the potential functions:

lim
ε→0

∫ T

0

∫ ∞

0

∣
∣(�ε

r −�r )(t, r)
∣
∣2

r2 drdt = 0 for γ2 >
6

5
. (9.8)

3. Now we define

(ρ,M,�)(t, x) := (ρ(t, r),m(t, r)
x
r
,�(t, r)).
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Then it follows from (2.20), (9.8), and Fatou’s lemma that
∫ t2

t1

∫

R3

(1

2

∣
∣
∣
M√
ρ

∣
∣
∣
2

+ ρe(ρ)− 1

2
|∇�|2

)
(t, x) dxdt

≤ (t2 − t1)
∫

R3

(1

2

∣
∣
∣
M0√
ρ0

∣
∣
∣
2

+ ρ0e(ρ0)− 1

2
|∇�0|2

)
(x) dx,

which implies that, for a.e. t ≥ 0,
∫

R3

(1

2

∣
∣
∣
M√
ρ

∣
∣
∣
2

+ ρe(ρ)− 1

2
|∇�|2

)
(t, x) dx

≤
∫

R3

(1

2

∣
∣
∣
M0√
ρ0

∣
∣
∣
2

+ ρ0e(ρ0)− 1

2
|∇�0|2

)
(x) dx. (9.9)

On the other hand, using (2.22), (9.6), and (9.8), we obtain
∫

R3

(1

2

∣
∣
∣
M√
ρ

∣
∣
∣
2

+ ρe(ρ) +
1

2
|∇�|2

)
(t, x) dx ≤ C(M, E0). (9.10)

Combining (9.9) with (9.10), we complete the proof of (2.28).
4. Using (6.7), (6.9)–(6.10), and similar arguments as in [17, Sect. 5], we conclude the

proof of (2.29)–(2.31) which, along with Steps 1–3, shows that (ρ,M,�)(t, x) is indeed
a global weak solution of problem (1.1) and (1.13)–(1.14) in sense of Definition 2.2.
This completes the proof. ��
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Appendix A. Some Inequalities

A.1. A sharp Sobolev inequality. In this subsection, we recall a sharp Sobolev inequality,
which is used in Sect. 5.1. The proof can be found in [45, Sect. 8.3].

http://creativecommons.org/licenses/by/4.0/
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Lemma A.1 (Sobolev inequality). Let n ≥ 3 and ∇ f ∈ L2(Rn) with lim|x|→∞ f (x) =
0. Then

‖ f ‖2

L
2n

n−2
≤ An‖∇ f ‖2

L2 ,

where An = 4
n(n−2)ω

− 2
n

n+1 is the best constant and ωk = 2π
k
2

�( k
2 )

is the surface area of the

unit sphere in R
k .

A.2. Some variants of the Grönwall inequality. In this subsection, we introduce some
variants of the Grönwall inequality, which plays an essential role in identifying the
singularities of the entropy kernel and entropy flux kernel; see also [64].

Lemma A.2 (A variant of Grönwall inequality [59, Theorem 1.2.4]). Let x(t), y(t), z(t),
and w(t) be non-negative continuous functions on J = [t0, t1] with t0 ≥ 0. If

x(t) ≤ y(t) + z(t)
∫ t

t0
w(s)x(s) ds for t ∈ J,

then

x(t) ≤ y(t) + z(t)
∫ t

t0
w(s)y(s) exp

( ∫ t

s
w(r)z(r) dr

)
ds for t ∈ J.

Lemma A.3. Let θ ≥ 0, and let d(s) be defined in (3.9). Assume that x(t) ≥ 0 is
measurable and locally integrable, and satisfies

x(t) ≤ Ctθ +
1

t

∫ t

0
d(s)x(s) ds for t ≥ ρ∗ (A1)

for some constant C > 0. Then there exists a possibly larger constant C̃ > 0 independent
of t such that, for t ≥ ρ∗,

x(t) ≤

⎧
⎪⎨

⎪⎩

C̃tθ2 if 0 ≤ θ < θ2,

C̃tθ2 ln t if θ = θ2,

C̃tθ if θ > θ2.

Proof. Since x(t) is positive and locally integrable, then, using Lemma 3.2, there exists
a constant C > 0 that may depend on ρ∗, but independent of t , such that

1

t

∫ ρ∗

0
d(s)x(s) ds ≤ Ct−1 for t ≥ ρ∗.

This, with (A1), yields that x(t) ≤ Ctθ + 1
t

∫ t
ρ∗ d(s)x(s) ds for t ≥ ρ∗. Applying

Lemma A.2, we obtain

x(t) ≤ Ctθ +
1

t

∫ t

ρ∗
Csθd(s)exp

( ∫ t

s

d(r)

r
dr

)
ds for t ≥ ρ∗. (A2)

It is clear that
∣
∣
∣

∫ t

s

d(r)

r
dr

∣
∣
∣ ≤

∫ t

s

1 + θ2

r
dr +

∫ t

s

|d(r)− (1 + θ2)|
r

dr. (A3)
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It follows from Lemma 3.2 that |d(r)−(1+θ2)|
r ≤ Cr−ε−1 for r ≥ ρ∗ which, with (A3),

yields

exp
( ∫ t

s

d(r)

r
dr

)
≤ C

( t

s

)1+θ2
for t ≥ s ≥ ρ∗.

Combining (A2) with |d(s)| ≤ 3, we obtain that, for t ≥ ρ∗,

x(t) ≤ Ctθ +
1

t

∫ t

ρ∗
Csθ

( t

s

)1+θ2
ds ≤ Ctθ + Ctθ2

∫ θ

ρ∗
s−1−θ2+θ ds. (A4)

Case 1. If 0 ≤ θ < θ2, it follows from (A4) that

x(t) ≤ Ctθ + Ctθ2
( ∫ ∞

ρ∗
s−1−θ2+θ ds

)
≤ C̃tθ2 for t ≥ ρ∗.

Case 2. If θ = θ2, it follows from (A4) that

x(t) ≤ Ctθ2 + Ctθ2
( ∫ t

ρ∗
s−1 ds

)
≤ C̃tθ2 ln t for t ≥ ρ∗.

Case 3. If θ > θ2, then it follows from (A4) that

x(t) ≤ Ctθ + Ctθ2
( ∫ t

ρ∗
s−1−θ2+θ ds

)
≤ C̃tθ for t ≥ ρ∗.

This completes the proof. ��
Corollary A.4. If x(t) satisfies

x(t) ≤ Ctθ ln t +
1

t

∫ t

0
d(s)x(s) ds for t ≥ ρ∗,

with θ > θ2, then x(t) ≤ Ctθ ln t for t ≥ ρ∗.
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31. Guo, Y., Hadzić, M., Jang, J.: Continued gravitational collapse for Newtonian stars. Arch. Ration. Mech.

Anal. 239, 431–552 (2021)
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