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Abstract: We prove the following formula for the ground state energy density of a
dilute Bose gas with density ρ in 2 dimensions in the thermodynamic limit

e2D(ρ) = 4πρ2Y
(

1 − Y | log Y | +
(

2� +
1

2
+ log(π)

)
Y
)

+ o(ρ2Y 2),

as ρa2 → 0. Here Y = |log(ρa2)|−1 and a is the scattering length of the two-body
potential. This result in 2 dimensions corresponds to the famous Lee–Huang–Yang for-
mula in 3 dimensions. The proof is valid for essentially all positive potentials with finite
scattering length, in particular, it covers the crucial case of the hard core potential.
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1. Introduction

The calculation of the ground state energy of a dilute gas of bosons is of fundamental
importance and has been the focus of much attention in recent years. This question can
be posed in all dimensions of the ambient space, but of course, the most important case
from the point of view of Physics is the 3-dimensional situation. However, also 1 and
2 dimensions are experimentally realizable. In this paper we study the 2-dimensional
setting and prove an asymptotic formula analogous to the famous Lee–Huang–Yang
formula in 3-dimensions.

Let us be more precise about the setting of the result. We consider positive, measurable
potentials v : R

2 → [0, +∞] that are radial. Given such a potential, we will let a = a(v)
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be its scattering length (for details on the scattering length see Sect. 3) and define the
Hamiltonian

H(N , L) =
N∑

j=1

−� j +
∑
j<k

v(x j − xk), (1.1)

on L2(�N ), with � = [− L
2 , L

2 ]2. The ground state energy density in the thermodynamic
limit e2D(ρ) is then defined by

e2D(ρ) := lim
L→∞

N/L2→ρ

L−2 inf
�∈C∞

0 (�N )

〈�, H(N , L)�〉
‖�‖2 . (1.2)

It is a standard result that the limit exists, and actually our analysis of e2D(ρ) proceeds by
giving upper bounds on the lim sup and lower bounds on the lim inf. It is also well-known
that the limit is independent of the boundary conditions. The fact that we consider � ∈
C∞

0 in the formula above, corresponds to the choice of Dirichlet boundary conditions
for concreteness.

Theorem 1.1 (Main result). For any constants C0, η0 > 0, there exist C, η > 0 (de-
pending only on C0 and η0) such that the following holds. If the (measurable) potential
v : R

2 → [0, +∞] is non-negative and radial with scattering length a and ρa2 < C−1,
and, furthermore,

v(x) ≤ C0

|x |2
( a

|x |
)η0

, for all |x | ≥ C0a. (1.3)

Then
∣∣∣e2D(ρ) − 4πρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)∣∣∣ ≤ Cρ2δ
2+η
0 , (1.4)

with

δ0 := |log(ρa2|log(ρa2)|−1)|−1, (1.5)

where � = 0.577 . . . is the Euler–Mascheroni constant.

In terms of the simpler parameter Y = |log(ρa2)|−1, we get from (1.4), expanding
δ0 in terms of Y , the three-term asymptotics

e2D(ρ) = 4πρ2Y
(

1 − Y | log Y | +
(

2� +
1

2
+ log(π)

)
Y
)

+ O(ρ2Y 2+η). (1.6)

Here the third term in the asymptotics is analogous to the famous Lee–Huang–Yang
term in the 3-dimensional situation.

Notice, in particular, that the decay assumption (1.3) is valid for potentials with
compact support. So Theorem 1.1 applies to the very important special case of the hard
core potential of radius a:

vhc(x) =
{

0, |x | > a,

+∞, |x | ≤ a.
(1.7)
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For this potential the radius of the support is equal to its scattering length.
The proof of Theorem 1.1 will proceed by establishing upper and lower bounds. In

Theorems 2.1 and 2.3 below, we will state more precisely the estimates for the upper and
lower bounds, respectively, and the assumptions necessary for each of these. In Sect. 2
below, we will give an outline of the paper as well as these precise statements.

The first term 4πρ2Y in (1.6) was understood in [1] but a full proof was only given in
2001 in the paper [2]. Calculations beyond leading order were given in [3–6], but have so
far not been rigorously proven. The recent papers [7,8] give an analogous expansion of
the ground state energy in the setting of the Gross–Pitaevskii regime, giving furthermore
information about the excitation spectrum. The constant in the second order term was
also found in [9] by restricting to quasi-free states in a special scaling regime.

In the 3-dimensional case, the asymptotic formula for the energy density (with e3D(ρ)

defined analogously to (1.2) and a being here the 3-dimensional scattering length) is

e3D(ρ) = 4πaρ2
(

1 +
128

15
√

π

√
ρa3

)
+ o(aρ2

√
ρa3). (1.8)

This is the famous Lee–Huang–Yang formula. The leading order term goes back to
[10], and the second term—the Lee–Huang–Yang (LHY) term—were given in [11,12].
Mathematically rigorous proofs of the leading order term were given in [13] (upper
bound) and [14] (matching lower bound). Upper bounds for sufficiently regular potentials
to the precision of the LHY-term were given in [15] (correct order only), [16] (first upper
bound with correct constant on the LHY-term) with recent improvements in [17]. Lower
bounds of second order were given in [18] (potentials in L1) and [19] (general case
including the hard core potential). The upper bound in 3-dimensions in the case of
potentials with large L1-norm, in particular the key example of hard core potentials, is
still open.

As can be understood from this overview of results from the analysis of the 3D case,
it is difficult to prove precise results on the energy when

∫
R3 v is much larger than the

scattering length a(v), i.e., the hard core case. In 2-dimensions the analogous comparison
is between

∫
R2 v and δ0, which always satisfy

∫
R2 v � δ0. So in 2-dimensions we face

similar challenges as in the 3D hard core case, even for regular potentials. This is one of
the reasons why progress on the 2D problem has been slower. It is therefore remarkable
that Theorem 1.1 can be established, including both upper and lower bounds, without any
extra assumptions on the potentials. Also, the 2D case comes with its own challenges
due to the logaritmic divergences and changes of the lengthscales. In particular, the
small parameter in 3D is (ρa3), i.e. it is a power of the density parameter, whereas in
the present 2D case, our small parameter is Y = |log(ρa2)|−1 which is logarithmic in
the density.

Throughout the paper we will use the standard convention that C > 0 will denote an
arbitrarily large universal constant whose value can change from one line to the other.
Notation We will use the following notation for Fourier transforms,

f̂ (p) = f̂ p =
∫

e−i xp f (x) dx .

In the paper we will use the notation A  B in a precise sense given by (H1).

2. Strategies of the Proofs

2.1. Upper bound . As upper bound we prove the following theorem.



GSE 2D Gas Page 5 of 104 59

Theorem 2.1. For any constants C0, η0 > 0, there exists C (that depends only on C0 and
η0) such that the following holds. Let v : R

2 → [0,∞] be a non-negative, measurable
and radial potential with scattering length a < ∞, and satisfying the following decay
property,

v(x) ≤ C0

|x |2
( a

|x |
)η0

for |x | ≥ C0a. (2.1)

Then, if ρa2 < C−1,

e2D(ρ) ≤ 4πρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)
+ Cρ2δ3

0 | log(δ0)|,

with δ0 given by (1.5).

In order to prove Theorem 2.1, we will reduce the analysis to the case of compactly
supported potentials on a smaller periodic box � = �β = [− Lβ

2 ,
Lβ

2 ]2 with length

Lβ = ρ−1/2Y −β, β > 0. (2.2)

In this box, if the density is ρ, the number of particles is N = ρL2
β = Y −2β � 1.

Throughout the paper we find conditions on β over which we will optimize. For a
potential v with supp v ⊆ B(0,

Lβ

2 ), we consider the following Hamiltonian acting on
the Fock space Fs(L2(�β)),

Hv =
⊕
n≥0

( n∑
i=1

−�
per
xi +

∑
1≤i< j≤n

vper(xi − x j )

)
. (2.3)

Here �per is the periodic Laplacian, and vper(x) = ∑
m∈Z2 v(x + Lβm) is the periodic

version of v. Note that for any p ∈ 2π
Lβ

Z
2, the Fourier coefficient of vper is equal to the

Fourier transform v̂(p), because the radius of the support of v is smaller than Lβ . In this
setting we prove the following result.

Theorem 2.2. For any β ≥ 3
2 , there exists C > 0, depending only on β such that the

following holds. Let ρ > 0 and v : R
2 → [0,∞] be a non-negative, measurable and

radial potential with scattering length a and supp v ⊂ B(0, R) for some R > 0. If ρR2 ≤
Y 2β+2 and ρa2 ≤ C−1, then there exists a normalized trial state � ∈ Fs(L2(�β)),
such that,

〈Hv〉� ≤ 4π L2
βρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)
+ C L2

βρ2δ3
0 | log(δ0)|.

Moreover � satisfies 〈N 〉� ≥ N (1−CY 2), and 〈N 2〉� ≤ 9N 2, whereN is the number
operator on Fs(L2(�β)) and N = ρL2

β = Y −2β .
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2.1.1. Strategy for the upper bound

1. We will show in “Appendix A” how Theorem 2.1 follows from Theorem 2.2. This
corresponds to go from the result on the box �β to the thermodynamic limit.

2. The rest of the proof, Sects. 4 and 5, is dedicated to the proof of Theorem 2.2. We
first prove in Sect. 4 a weaker upper bound with the assumption that the potential is
regular enough. We call it a soft potential. Under this assumption, we use a quasi-free
trial state � built over a Weyl transform WN0 to create the condensate and a unitary Tν

to deal with the excitations. We then minimize over the parameters of this state. This
is an adaptation of the method of [15,20–22] to the 2D case. We show in Theorem 4.1
that, with a good choice of � to our level of precision, we have

〈Hv〉� ≤ 4π L2
βρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)

+C L2
βρ2δ0(̂v0 − ĝ0) + C L2

βρ2δ2
0 v̂0. (2.4)

Here g = ϕv and ϕ is the scattering solution associated to v (see Sect. 3 for the
precise definition of ϕ and with parameter δ0). This provides a first upper bound, but
it is not enough to prove Theorem 2.2, unless v admits a Fourier transform and v̂0 is
of order ĝ0.

3. In Sect. 5 we explain how to reduce from any v to a soft potential. To this end, we take
care of the influence of the potential on a much shorter length scale by introducing
ϕb as the scattering solution normalized at

b = ρ− 1
2 Y β+ 1

2 (2.5)

and use it to build a Jastrow function as follows

Fn(x1, . . . , xn) =
∏

1≤i< j≤n

f (xi − x j ), (2.6)

with f = min(1, ϕb). Then our complete trial state will be the following product
state

� =
⊕
n≥1

Fn�n, Fn,�n ∈ L2
s (�

n
β), (2.7)

where � = ∑
�n is a quasi-free state. When we compute the energy of such a state

� we get

〈Hv〉� ≤ 〈Hṽ〉� + 〈R〉�, (2.8)

where R is an error term and ṽ is the following soft potential,

ṽ = 2 f ′(b)δ{|x |=b}. (2.9)

The power of Y driven by the parameter β in b is chosen minimal such that ‖�‖2 =
‖�‖2+O(Y 2), see Lemma 5.3. For the result to apply for the widest range of potentials
we will want to choose β as small as possible.

The potential in (2.9) is soft in the sense that it has a decaying Fourier transform and
̂̃v0 � ̂̃g0 (see Lemma 3.10 for precise estimates). Then we can take for � the optimal
quasi-free state satisfying (2.4) for ṽ and this turns out to be enough to prove Theorem 2.2.
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2.1.2. Remarks Since the Jastrow factor (2.6) encodes all 2-particle interactions—at
least on short scales—it is a natural trial state for getting upper bounds on the energy. In
particular, it has been used to get the correct first order upper bound, both in 3D [13] and
2D [2]. In the product state �, the Jastrow factor deals with short distance correlations
between particles (when |xi − x j | ≤ b), while long range effects are dealt with by the
quasi-free state �. In the case of hard core potentials, the Jastrow factor also imposes
the necessary condition that our state vanishes whenever two particles are too close.

We emphasize the following major differences between 2D and 3D. To be able to
reduce to the quasi-free state �, we need to bound O(N 2) terms of the form f (xi − x j )

by 1. The number of particles N in our box is not too large (powers of |log(ρa2)|,
since the relevant length-scale is ρ−1/2 up to logarithmic factors) thus making this error
controllable. This is not at all the case in dimension 3, because the number of particles in
the box is of order (ρa3)−2 (since the relevant length-scale in this case is 1

ρa2 ). However,
a similar state as ours was successfully used in the 3D Gross–Pitaevskii regime [22]

(length-scale 1√
ρa ). In this regime the number of particles is (ρa3)− 1

2 , which allows
the authors, with substantially more work, to get through to a good upper bound. More
precisely, they use more accurate bounds on the Jastrow factor compared to our Sect. 5
and obtain the LHY order in the box. See Remark 5.1 for additional information.

Finally, one should notice that � is a quasi-free state, and does not include the soft
pair interactions that were necessary in [16,17] to get the correct upper bound in 3D.
Indeed, for a quasi-free state � the second order energy bounds are in terms of v̂0 and
to get the correct constant one needs to change v̂0’s into ĝ0’s. This is the role of soft
pairs. However, our potential ṽ from (2.9) already satisfieŝ̃v0 −̂̃g0 = O(Y 2| log Y |) (see
Lemma 3.10) and this replacement only gives errors of order ρ2Y 3| log Y |. It is possible
that we could add the soft pair interactions into � to reduce this error at the expense of
a much longer and more technical proof.

We conclude this section by proving Theorem 2.1 using Theorem 2.2 and the classical
theory of localization to smaller boxes which is added for convenience in “Appendix A”.

2.2. Lower bound. In this section we provide the strategy of proof for the theorem below.

Theorem 2.3. For any constant η1 > 0 there exist C, η > 0 (depending only on η1)
such that the following holds. Let ρ > 0 and v : R

2 → [0, +∞] be a non-negative,
measurable and radial potential with scattering length a < ∞. If ρa2 < C−1 and

∫

{|x |>ρ−1/2}
v(x) log

( |x |
a

)2
dx ≤ Y η1 , (2.10)

then

e2D(ρ) ≥ 4πρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)
+ Cρ2δ

2+η
0 , (2.11)

with δ0 as defined in (1.5).

We introduce the lengths

� = ρ−1/2Y −1/2−α, �δ0 = 1

2
e�ρ−1/2Y −1/2, (2.12)
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for a certain α ∈ (0, 1), the second of which being called the healing length. The proof of
Theorem 2.3 will depend on a precise choice of a number of parameters. For convenience
these and the relations between them have been collected in “Appendix H”.

We work at three different lengthscales:

• the thermodynamical scale, in the box � = [−L/2, L/2]2, where we state the main
result in the limit L → +∞;

• the large box scale � = [−�/2, �/2]2, where we prove most of the results and
by the sliding localization techniques we integrate over all these boxes to prove the
lower bound in the whole thermodynamical box;

• the small box scale B = [−d�/2, d�/2]2, with d  1, where we derive a bound for
the number of particles excited out from the condensate, fundamental for the general
strategy, obtaining the Bose–Einstein condensation (BEC).

The relations

d�  �δ0  �  L , (2.13)

guarantee that the boxes are in a chain of inclusions.

2.2.1. Strategy for the lower bound The overall strategy for the lower bound has the
same structure as in the 3D hard core case analyzed in [19]. Therefore, many of the
steps below are the same as in that case. We will only indicate when a step differs from
its 3D counterpart. However, the 2D case comes with its own challenges due to the
logaritmic divergences and changes of the lengthscales.

1. In Sect. 6.1 we reformulate the problem in a grand canonical setting, adding a chem-
ical potential ρμ to the Hamiltonian, in order to control the distribution of particles in
later localization steps. The resulting Hamiltonian Hρμ acts on the symmetric Fock
spaceFs(L2(�)). We also reduce the analysis to compactly supported potentials with
norm1 ‖v‖1 ≤ Y −1/8, using the analysis of the scattering equation from Sect. 3 (the
details of this part are different from the 3D case). Theorem 2.3 is shown to be a
consequence of Theorem 6.1.

2. In order to prove Theorem 6.1, in Sect. 6.2 we use a sliding localization technique to
reduce the problem from the thermodynamical box � to the large box �. The result
of this procedure is an inequality of the form (in the quadratic form sense)

Hρμ ≥
∫

R2
H�u (ρμ) du,

where H�u (ρμ) is a Hamiltonian localized to a box �u which is the translation of
the fixed box � to be centered at u. The main result is then reduced to the proof of an
analogous lower bound for H�(ρμ), namely Theorem 6.7. The next sections focus
on this proof.

3. We split the potential energy on the large box in Sect. 7.1 by means of projectors P
and Q onto and outside the condensate, respectively, or in other words onto the zero
momentum sector and its complement. The splitting produces terms involving from
0 to 4 Q projectors. This is similar to the approach in [11,12].
By an algebraic identity (see Lemma 7.1), we identify a positive term Qren

4 that can
be discarded for a lower bound. This procedure also changes the terms with 0 to 3

1 The power 1
8 is not optimal but chosen for convenience, in particular to be in agreement with (H24).
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Q’s. By this procedure, all occurrences of the potential v are replaced by the function
g related to the scattering equation and to the parameter δ0. This idea has its roots in
[23] and was a key step in [18,19]. Since ĝ(0) = 8πδ0  v̂(0), this can be interpreted
as a renormalization procedure.

4. In [16] it was understood how the interaction of the so-called soft pairs contributes
significantly to the energy. These correspond to two interacting high-momenta pro-
ducing one 0-momentum and one low-momentum. This is the main contribution of
the 3Q term. The soft pairs appear after estimating the other parts of the 3Q term
to be of lower order. This is done in two steps, the first (restriction to low outgoing
momentum) is proved in Sect. 7.2 and the second one (high incoming momenta) in
Lemma 8.2, the latter being easier treated in second quantization.

5. A key step in both 2 and 3 dimensions is to be able to focus on states where the
operator counting the number of excitations satisfies a norm bound. To handle the 3
dimensional hard-core case, in [19] it was realized that such a bound is only possible
when restricting to excitations with low momentum. In the 2 dimensional case, we
face this difficulty even if the potential v has small integral (i.e., it is soft).
The reason for this difficulty is that the bound on the excitations involves the integral of
v, i.e. v̂(0). This has to be compared to the main term of the energy, where the relevant
parameter is ĝ(0), and as previously noticed, in 2 dimensions ĝ(0) = 8πδ0  v̂(0).
The solution to this problem follows the same general approach as in [19], namely to
not bound all excitations but only those with low momentum. This is the result of The-
orem 7.7. The analysis for this bound is carried out in Sect. 7.3 and based on estimates
on Bose–Einstein Condensation from Theorem 7.6 proven in “Appendix D”. Some
other important ingredients of the proof are delegated to “Appendix E”. Theorem 7.7
and its proof are somewhat simpler and more along the lines of an IMS-localization
estimate than the ones in [19].

6. Section 8 contains lower bounds that use a second quantization formalism in momenta
space. We first write the Hamiltonian in this formalism in Sect. 8.2. Then we use
the c-number substitution in Sect. 8.3, thus reducing to a problem of minimization
for particles outside the condensate. The operators related to the condensate act
as numbers over the class of coherent states over which we minimize. After this
procedure we arrive at an operator containing terms of order up to 3 creation and
annihilation operators of non-zero momenta.

7. In Sect. 9 we distinguish the two cases where the density of particles in the condensate
ρz is far from or close to ρμ, the expected density. Since we have Bose–Einstein
condensation, we expect on physical grounds to be in the second case, and indeed
fairly rough bounds suffice in the first case. These are given in Sect. 9.1. In the
second case, ρz ≈ ρμ, a more careful analysis is needed. We use standard techniques,
collected in “Appendix B”, to diagonalize the main quadratic part of the Hamiltonian
the ground state energy of which appears as an integral.
This integral is calculated in “Appendix C”, and we show how together with the
constant term of the Hamiltonian, we get the energy to the desired precision.
What remains at this point is to show how the remainders, including the localized 3Q
term, are error terms, and this is the content of the technical Sect. 9.3. There we show
how the contribution of the soft pairs is compensated by the remaining quadratic part
of the Hamiltonian. Here in particular, the logarithmic divergencies specific to the 2-
dimensional situation makes many estimates delicate and require extra localizations
in momentum space.
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8. Finally, in Sect. 9.4 we use all the previous results to give a proof of Theorem 6.7,
with the choices of the parameters in “Appendix H”, where all the conditions used
to prove the lower bound are collected.

9. In the proof we need two technical estimates, namely (8.12), (8.13) and (E1), which
are taken from the 3D case and are independent of dimension. They are only stated
and we refer to [19] for the proof.

3. The Scattering Solution in 2 Dimensions

3.1. Basic theory. In this section we establish the notation and results surrounding the
two dimensional two body scattering problem. The standard properties of the scattering
solutions stated below are well known and can be found in [24, Appendix A]. We will only
consider radial and positive potentials v : R

2 → [0,∞], furthermore if v is compactly
supported we denote by R the radius of the support of v, i.e., v(x) = 0 if |x | ≥ R.

Definition 3.1. For a compactly supported v its scattering length a = a(v) is defined as

2π

log( R̃
a )

= inf
{ ∫

B(0,R̃)

(
|∇u|2 +

1

2
v|u|2

)
dx

∣∣∣ u ∈ H1(B(0, R̃)), u|∂ B(0,R̃) = 1
}
,

(3.1)

where R̃ > R is arbitrary.

By the positivity of the right hand side we find a ≤ R. It is also easy to verify that a is an
increasing function of v and is independent of R̃ > R. Furthermore for any R̃ the above
functional has a unique minimizer ϕv,R̃ = log( R̃

a(v)
)−1ϕ

(0)
v (x), where, for v ∈ L1(R2),

we have

− �ϕ(0)
v +

1

2
vϕ(0)

v = 0 on R
2, (3.2)

in the distributional sense. Furthermore,

ϕ(0)
v (r) = log

( r

a(v)

)
, for r ≥ R,

and ϕ
(0)
v is a monotone, non-decreasing and non-negative, radial function. We will omit

the v in the notation of the scattering length if the potential is clear from the context.
The logarithm in the 2D-scattering solution is clearly unbounded for large values of

r . This is a major difference to the 3D behaviour (where the scattering solution behaves
as 1 − a

r at infinity). Therefore the scattering solution normalized to 1 at a certain length
R̃ is of much greater importance. Using the parameter

δ = 1

2
log

( R̃

a

)−1
, i.e. R̃ = ae

1
2δ , (3.3)

we define on R
2

ϕ = ϕv,δ = 2δϕ(0), ω = 1 − ϕ, g = vϕ = v(1 − ω). (3.4)
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Clearly,

−�ω = 1

2
g, (3.5)

and, using the divergence theorem,
∫

g dx = 8πδ. (3.6)

We remark here again a difference between the 2D and 3D case: in 3D, ϕ would be
normalized to 1 at infinity and (3.6) would have an a instead of δ.

Remark 3.2. (On the parameters δ and R̃) We clearly have some freedom in the choice
of δ, which amounts to determine a normalization lengthscale R̃ for ϕ. Throughout the
paper, we will need δ to be of the same order as Y = | log(ρa2)|−1, namely

Y

2
≤ δ ≤ 2Y, or, equivalently, (ρa2)−1/4 ≤ R̃

a
≤ (ρa2)−1. (3.7)

With this condition we can always exchange Y and δ when estimating errors. We thus
get upper and lower bounds on the energy depending on the parameter δ. In both cases,
it turns out that the optimal choice is given by (1.5), i.e.

δ = δ0 = |log(ρa2|log(ρa2)|−1)|−1, (3.8)

which corresponds to

R̃

a
= (ρa2Y )−1/2. (3.9)

See also Remarks 4.9 and C.4.

3.2. Potentials without compact support.

Definition 3.3. For a potential v without compact support the scattering length is defined
as

a(v) = lim
n→∞ a(v1B(0,n)).

Since a is an increasing function of v the limit exits if and only if {a(v1B(0,n))}n is
bounded, which by [25, Lemma 1] is true if and only if there exists a b̃ > 0 such that

∫

{|x |>b̃}
v(x) log

( |x |
b̃

)2
dx < ∞.

We need to localize our potentials to have compact support. The next result estimates
the change this localization induces in the scattering length.

Lemma 3.4. For a potential v with finite scattering length a and R > a, let vR =
1B(0,R)v and aR be its associated scattering length. Then,

0 ≤ 2π

log( R
a )

− 2π

log( R
aR

)
≤ 1

2

∫

{|x |>R}
v(x)

log(
|x |
a )2

log( R
a )2

dx . (3.10)
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Proof. Let ϕ1 be the scattering solution for vR normalized at R, and let

ϕn(x) :=
⎧⎨
⎩

ϕ1(x)
log( R

a )

log(n)
, |x | ≤ R,

log(
|x |
a )

log(n)
, |x | ≥ R.

(3.11)

Notice that ϕn is normalized at a · n and continuous. We use it as a trial function in the
variational problem of vn = 1B(0,a·n)v, with n · a > R, to get (with an := a(vn))

2π

log( a·n
an

)
≤

∫

{|x |<R}

(
|∇ϕn|2 +

1

2
vnϕ2

n

)
dx +

∫

{R<|x |<a·n}

(
|∇ϕn|2 +

1

2
vnϕ2

n

)
dx .

(3.12)

Since ϕn is just a multiple of the scattering solution of ϕ1 inside R the first integral gives

∫

{|x |<R}

(
|∇ϕn|2 +

1

2
vnϕ2

n

)
dx = 2π

log( R
aR

)

log( R
a )2

log(n)2 . (3.13)

The second term is directly calculated using the explicit formula for ϕn ,
∫

{R<|x |<a·n}

(
|∇ϕn|2 +

1

2
vnϕ2

n

)
dx

≤ 2π log( a·n
R )

log(n)2 +
1

2 log(n)2

∫

{|x |>R}
v log

( |x |
a

)2
. (3.14)

By (3.13), multiplying (3.12) through with log(n)2 and letting n → ∞, whereby an → a,
yields

2π log
( R

a

)
≤ 2π log( R

a )2

log( R
aR

)
+

1

2

∫

{|x |>R}
v log

( |x |
a

)2
dx .

The result then follows by dividing through with log( R
a )2. ��

3.3. Compactly supported potentials with large integrals. We state and prove here in
the 2D setting a similar approximation result as the one found in [19, Theorem 1.6] for
the scattering length in 3D.

Lemma 3.5. For a radial, positive v ∈ L1(R2) with support contained in B(0, R) there
exists, for any T > 0, a vT : R

2 → [0, +∞] satisfying

0 ≤ vT (x) ≤ v(x), for all x ∈ R
2, and

∫
vT ≤ 4πT, (3.15)

and such that

2π

log( R
a )

− 2π

log( R
aT

)
≤ 2π

log( R
a )2T

. (3.16)
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Proof. Due to the integrability assumption on v we may define

RT = inf
{

R′ > 0 :
∫

{|x |≥R′}
vdx < 4πT

}

and

vT := v1{|x |>RT }. (3.17)

Clearly,
∫

vT = 4πT . (3.18)

Also, we may assume RT > 0. Otherwise there is nothing to prove.
Let ϕ be the scattering solution of v and ϕT the scattering solution of vT both nor-

malized at R̃ > R. We have from (3.6), using that ϕT is a non-decreasing function,

4π

log( R̃
aT

)
=

∫
vT ϕT dx ≥ ϕT (RT )

∫
vT = 4πϕ(RT )T,

and hence

ϕ(RT ) ≤ 1

log( R̃
aT

)T
. (3.19)

Next we define

u = 1{|x |>RT }(ϕT − ωT ϕT (RT )) where ωT (x) = 1 − log(
|x |
RT

)

log( R̃
RT

)
.

Observe that u(R̃) = 1 and we may therefore apply it as a trial function in the functional
for a to get

2π

log( R̃
a )

≤
∫

{|x |<R̃}

(
|∇u|2 +

1

2
vu2

)
dx := E1 + E2 + E3, (3.20)

with

E1 =
∫

{RT <|x |<R̃}

(
|∇ϕT |2 +

1

2
vT ϕ2

T

)
dx = 2π

log( R̃
aT

)
,

E2 = −2ϕT (RT )

∫

{RT <|x |<R̃}

(
∇ϕT ∇ωT +

1

2
vT ϕT ωT

)
dx = 0,

E3 = ϕT (RT )2
∫

{RT <|x |<R̃}

(
|∇ωT |2 +

1

2
vT ω2

T

)
dx .

For E2 we integrated by parts and used that ϕT is harmonic inside B(0, RT ), thus
constant, which makes the boundary term vanish. For E3 we use that ωT ≤ 1 on the
given interval, so combining (3.18), (3.19) and (3.20) yields

2π

log( R̃
a )

− 2π

log( R̃
aT

)
≤ E3 ≤ 2π

log( R̃
aT

)2

(
1

log( R̃
RT

)T 2
+

1

T

)
. (3.21)
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Using that a ≥ aT we may replace aT with a on the right hand side. Secondly, we
observe that the function

(
1

log( R̃
a )

− 1

log( R̃
aT

)

)
log

( R̃

a

)2
,

is increasing in R̃ so we may replace R̃ with R in the above expression and use (3.21)
to get

2π

log( R
a )

− 2π

log( R
aT

)
≤ 2π

log( R
a )2

(
1

log( R̃
RT

)T 2
+

1

T

)
.

Now the result follows by letting R̃ go to infinity. ��
We are ready to prove the main theorem of this section which gives us the ability to deal
with a wide range of potentials including, most notably, the hard core.

Theorem 3.6. For a radial, positive potential v : R
2 → [0,∞] with finite scattering

length a there exists, for any R > a and T, ε > 0, a potential vT,R,ε such that

supp(vT,R,ε) ⊂ B(0, R), 0 ≤ vT,R,ε(x) ≤ v(x),

∫
vT,R,ε ≤ 4πT, (3.22)

and its scattering length aT,R,ε satisfies

2π

log( R
a )

− 2π

log( R
aT,R,ε

)
≤ 1

log( R
a )2

(
2π

T
(1 + ε) +

1

2

∫

{|x |>R}
v(x) log

( |x |
a

)2
)

dx .

(3.23)

Proof. Lemma 3.5 applied to vn
R = 1B(0,R) min(n, v) yields a vn

R,T satisfying all three
conditions of (3.22) and

2π

log( R
an

R
)

− 2π

log( R
an

T,R
)

≤ 2π

log( R
a )2T

, (3.24)

for all n ∈ N. In the above we used that an
T,R ≤ an

R ≤ aR ≤ a (where an
T,R, an

R, aR

are the scattering lengths of vn
T,R, vn

R, vR , respectively). Choosing n0 large enough such
that an0

R is close enough to aR gives an aT,R,ε := an0
T,R satisfying

2π

log( R
aR

)
− 2π

log( R
aT,R,ε

)
≤ 2π

log( R
a )2T

(1 + ε). (3.25)

We conclude using (3.10) which gives the integral term of (3.23). ��
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3.4. Fourier analysis on the scattering equation. Due to Theorem 3.6 we may assume
our potentials to be compactly supported and L1, thus making the Fourier transform well
defined. The scattering solution ϕ will be the one defined in (3.4) which is normalized
to 1 outside the support of v. In order to discuss the Fourier transform of the scattering
solution, we recall some standard results surrounding the Fourier transform of the loga-
rithm. We denote by S and S ′ the Schwartz space and the space of tempered distribution
on R

2, respectively.

Lemma 3.7. For D > 0, let L D denote the tempered distribution given by the function
log(|x |/D) in R

2. The Fourier transform of L D satisfies for any h ∈ S

〈L̂ D, h〉S ′,S = −(2π)

∫

R2

h(p) − h(0)1{|p|≤2e−� D−1}
p2 d p, (3.26)

where � denotes the Euler–Mascheroni constant,

� := −
∫ ∞

0
e−x log x dx ≈ 0.5772. (3.27)

The proof is an exercise in distribution theory, with details for instance given in the
recent book [26, Theorem 4.73].

It follows from (3.26) that, for any f ∈ S,
∫∫

R2×R2
f (x) f (y) log

( |x − y|
D

)
dxdy

= −2π

∫

R2

| f̂ (p)|2 − | f̂ (0)|21{|p|≤2e−� D−1}
p2 d p. (3.28)

Using the notation from (3.4) and (3.5), we may compute the Fourier transform of ω.
In the 3D case one gets that ω̂(p) = ĝ(p)

2p2 , but in 2D this formula has to be corrected by
a distribution supported at the origin according to Lemma 3.7, see Lemma 3.8 below.

Lemma 3.8. Let ω̂ denote the Fourier transform of ω. Then ω̂ is the tempered distribution
given by

〈ω̂, u〉S ′,S =
∫ ĝ(p)u(p) − ĝ(0)u(0)1{|p|≤�−1

δ }
2p2 d p, (3.29)

for any u ∈ S where, recalling the definition of R̃ in (3.3),

�δ := ae�

2
e

1
2δ = 1

2
e� R̃. (3.30)

Notice that if δ = δ0 from (1.5), then �δ coincides with �δ0 introduced in (2.12).

Proof. We first recall the definition (3.4) of ω and write

ω = − ĝ(0)

4π
log

( r

R̃

)
+ ω̃, (3.31)

where ω̃ is compactly supported, and we recall ĝ(0) = 8πδ. Hence, using the Fourier
transform of the logarithm as recalled in Lemma 3.7,

〈ω̂, u〉S ′,S = ĝ(0)

∫

R2

u(p) − u(0)1{|p|≤2e−� R̃−1}
2p2 d p +

∫
̂̃ω(p)u(p) d p. (3.32)
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Using the scattering equation (3.5) we find ĝ(p) = 2p2ω̂(p) = ĝ(0) + 2p2̂̃ω(p), where
we used that the logarithm is the fundamental solution of the Laplacian. Since ̂̃ω is a
smooth function we deduce

̂̃ω(p) = ĝ(p) − ĝ(0)

2p2 ,

and this concludes the proof. ��
Thanks to the previous lemma we are able to prove some important properties of

ĝω(0) which are going to be key through all the paper.

Lemma 3.9. The following identity holds

ĝω(0) =
∫

R2

ĝ(k)2 − ĝ(0)21{|k|≤�−1
δ }

2k2 dk (3.33)

and, furthermore, the following bounds hold

|ĝω(0)| ≤ Cδ, (3.34)∣∣∣∣
∫

{|k|≤�−1
δ }

ĝ(k)2 − ĝ(0)2

2k2 dk

∣∣∣∣ ≤ C R2δ2�−2
δ , (3.35)

∣∣∣∣
∫

{|k|≥�−1
δ }

ĝ(k)2

2k2 dk

∣∣∣∣ ≤ Cδ. (3.36)

Proof. Formula (3.33) is formally given by an application of Lemma 3.8 choosing u = ĝ.
Since ĝ is not a Schwartz function, we need to apply a regularization argument, by
truncating in momentum space. This truncation can then be removed at the end and one
arrives at (3.33).

The first bound (3.34) follows because in the support of g, ω ≤ 1 and ĝ0 = 8πδ.
The last bound (3.36) follows once we have proved the second one. In order to do that,
we consider a Taylor expansion to the second order of |̂gk − ĝ0| ≤ C |k|2‖ĝ′′

k ‖∞ as a
radial function, due to the symmetry of g. We use that v has a compact support R and
the definition

ĝk =
∫

R2
vϕe−ik.x dx (3.37)

to bound ĝ′′
k by R2 ĝ0 to obtain

∣∣∣∣
∫

{|k|≤�−1
δ }

ĝ2
k − ĝ2

0

2k2 dk

∣∣∣∣ ≤ C R2 |̂g0|2
∫

{|k|≤�−1
δ }

dk = C R2δ2�−2
δ . (3.38)

��
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3.5. Spherical measure potentials. For the upper bound, we will change the potential
in order to ensure small L1 norm. For a potential v supported in B(0, R) and b > R, let

f (x) := min
(

1, ϕ(0)(x) log
(b

a

)−1)
.

Thus, f is the scattering solution in B(0, b) normalized at b and extended by one. The
new potential ṽ will then be described by the deviation of f being the actual scattering
solution, i.e.,

ṽ = 2
(

− � f +
1

2
v f

)
, (3.39)

where the above equality is to be thought of in a distributional sense. The factor 2 is
important and should be thought of as the number of particles involved in the scattering
process. A quick calculation shows that

ṽ = 2 f ′(b)δ{|x |=b} = 2
1

b log( b
a )

δ{|x |=b}, (3.40)

where δ{|x |=b} is the uniform measure on the circle {|x | = b} normalized so that∫
δ{|x |=b} = 2πb, and where f ′(b) is to be understood as the radial derivative (from the

left) of f at length b. We show in Sect. 5 how we reduce to this potential. The simple,
but essential properties of ṽ are stated in the lemma below.

Lemma 3.10. Let v and ṽ be given as above. We use the notation ã = a(̃v) and a = a(v).
Furthermore, let ϕ̃ be the scattering solution of ṽ normalized at R̃ > b and g̃ = ṽϕ̃.
Then

1 The scattering lengths agree, i.e., ã = a.
2 ̂̃v(p) = 2 f ′(b)bJ0(b|p|), where J0 is the zeroth spherical Bessel function. In partic-

ular there exists a universal constant C > 0 such that

|̂̃v(p)| ≤ C
̂̃v(0)√

b|p| . (3.41)

3 ̂̃v(0) := 〈v, 1〉 = 4π

log(b/a)
, and ̂̃g(0) = ̂̃vϕ̃(0) = 4π

log(R̃/a)
.

Proof. The potential ṽ is a spherical measure on the sphere {|x | = b} and thus ϕ̃ is
harmonic both inside and outside this sphere. We may therefore conclude from the
continuity of ϕ̃ that

log(R̃/̃a)ϕ̃ (r) =
{

log(b/̃a), if r ≤ b,

log(r/̃a), if r > b.
(3.42)

From the scattering equation

−�ϕ̃ +
1

2
ṽϕ̃ = 0,

applied to a u ∈ C∞
c (R2) we obtain, using Green’s formula,

−
∫

{|x |=b}
u∇ϕ̃ · dn = f ′(b)ϕ̃(b)

∫

{|x |=b}
u (3.43)



59 Page 18 of 104 S. Fournais, T. Girardot, L. Junge, L. Morin, M. Olivieri

and then deduce

ϕ̃′(b) = f ′(b)ϕ̃(b) (3.44)

where ϕ̃′(b) denotes the outgoing radial derivative of ϕ̃ at length b. Combining (3.42)
and (3.44) yields 1. Property 2. is a direct consequence of ṽ being a uniform measure
on the sphere {|x |} = b and the behaviour of J0 at infinity. Finally, the identities in 3..
follow immediately after realizing that

g = ϕ̃(b)v.

��

4. Upper Bound for a Soft Potential

We denote by Mc the set of potentials of the form v = vreg + vm, where vreg ∈ L1(R2)

is radial, positive and has compact support, and where vm = Cδ{|x |=r} for some C ≥ 0
and r > 0. If v ∈ Mc, it admits a bounded and continuous Fourier transform v̂. The aim
of this section is to prove an upper bound on the ground state energy of

Hv =
⊕
n≥0

( n∑
i=1

−�
per
xi +

∑
1≤i< j≤n

vper(xi − x j )

)
(4.1)

on the box �β = [− Lβ

2 ,
Lβ

2 ]2 for potentials v ∈ Mc, under some additional decay

assumption on the Fourier transform of v. We recall that Lβ = ρ− 1
2 Y −β .

In this section, we will denote by ϕ the scattering solution of the given v, normalized
at length R̃, and g = ϕv, see (3.4). Notice here that the theory of Sect. 3 extends to
potentials v ∈ Mc; for this we use in particular, that if u ∈ H1(R2), then u|{|x |=r} ∈ L2

so the variational problem in Definition 3.1 is well posed. In particular, the scattering
equation (3.2) is valid in the distributional sense. We recall that 0 ≤ ĝ0 = 8πδ ≤ CY
by (3.6) and (3.3). We prove the following upper bound, which is very similar in spirit
to the upper bound of [15] in the 3D case.

Theorem 4.1. For any given c0 > 0 and β ≥ 3
2 , there exists Cβ > 0 (only depending

on c0 and β) such that the following holds. Let ρ > 0 and v ∈ Mc be a radial positive
measure with scattering length a and supp v ⊂ B(0, R), for some R > 0. Let Hv be as
defined in (2.3). Assume that

|̂gp| ≤ c0
ĝ0√
R|p| , ∀|p| ≥ a−1. (4.2)

Then, if ρR2 ≤ Y and ρa2 ≤ C−1
β , one can find a normalized trial state � ∈

Fs(L2(�β)) satisfying

〈Hv〉� ≤ 4π L2
βρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)
+ C L2

βρ2δ0(̂v0 − ĝ0) + C L2
βρ2δ2

0 v̂0

with 〈N 〉� = N , and 〈N 2〉� ≤ 9N 2, where N = ρL2
β = Y −2β .
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Remark 4.2. Note that this result is much weaker than Theorem 2.2. Indeed, the remain-
ders are only of order ρ2 L2

βδ2
0 and ρ2L2

βδ0 and thus much larger than the 2D-LHY term,
unless v̂0 = ĝ0 + o(δ0). Moreover, Theorem 4.1 only holds for potentials with finite
integral and, in particular, it does not allow for a hard core. However, in the proof of
Theorem 2.2 in Sect. 5 we will show how to reduce to such potentials. More precisely,
we will apply Theorem 4.1 to a surface potential of the form (3.40) (with the choice of
b given in (2.5)).

Remark 4.3. The specific δ = δ0 defined in (1.5) is chosen to minimize the upper bound
(4.22) up to the LHY precision. This corresponds to fixing the normalisation length of

the soft potential R̃ = ae
1
2δ . See also Remarks 3.2, 4.9 and C.4.

The rest of Sect. 4 is dedicated to the proof of Theorem 4.1. We will give an explicit
trial state and state several technical calculations as lemmas. In the end we collect the
pieces and finish the proof.

4.1. A quasi-free state. We will define our trial state � in second quantization formalism.
On the bosonic Fock space F (L2(�β)), we will denote by a†

p and ap the creation and

annihilation operators associated to the function x �→ |�β |− 1
2 exp(i px), for p ∈ �∗

β =
( 2π

Lβ
Z)2. Our quasi-free state is � = TνWN0� where � is the vacuum, WN0 creates the

condensate and Tν the excitations:

WN0 = exp
(√

N0(a
†
0 − a0)

)
, Tν = exp

(1

2

∑
p �=0

νp(a
†
pa†

−p − apa−p)
)
, (4.3)

for a given N0 ≤ N associated with ρ0 := N0/L2
β . These operators have the nice

properties that

W ∗
N0

a0WN0 = a0 +
√

N0, and T ∗
ν apTν = cosh(νp)ap + sinh(νp)a

†
−p. (4.4)

In particular, for any p, q ∈ �∗
β ,

〈a†
qap〉� =

⎧⎪⎨
⎪⎩

N0, if p = q = 0,

0, if p �= q,

γq , if p = q �= 0,

and

〈aqap〉� = 〈a†
qa†

p〉� =

⎧⎪⎨
⎪⎩

N0, if p = q = 0,

0, if p �= −q,

αq , if p = −q �= 0,

(4.5)

where αp = cosh(νp) sinh(νp) and γp = sinh(νp)
2. We choose the coefficient νp such

that

αp = −ρ0 ĝp

2
√

p4 + 2ρ0 ĝp p2
, γp =

p2 + ρ0 ĝp −
√

p4 + 2ρ0 ĝp p2

2
√

p4 + 2ρ0 ĝp p2
≥ 0, (4.6)
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this specific choice coming from a minimization of the energy

(p2 + ρ0 ĝp)γp + ρ0 ĝpαp

obtained in Lemma 4.6 up to changing v̂ into ĝ. Note that by (cosh(x)2 − sinh(x)2) = 1
we have α2

p = γp(γp + 1), making it a possible choice. These coefficients satisfy the
following estimates.

Lemma 4.4. We estimate the sum (over �∗
β ) of αp and γp:

∑
p �=0

∣∣αp
∣∣ ≤ C N , and

∑
p �=0

γp ≤ C Nδ. (4.7)

Proof. We start from the expression of αp (4.6) and split the sum between |p| ≤ √
ρ0 ĝ0

and |p| ≥ √
ρ0 ĝ0:

∑
p �=0

∣∣αp
∣∣ ≤ C

√
ρ0 ĝ0

∑

0<|p|≤√
ρ0 ĝ0

1

|p| + Cρ0

∑

|p|≥√
ρ0 ĝ0

|̂gp|
|p|2

≤ C L2
β

√
ρ0 ĝ0

∫ √
ρ0 ĝ0

0
du + C L2

βρ0 ĝ0

∫ a−1

√
ρ0 ĝ0

du

u
+ C L2

βρ0

∫ +∞

a−1

ĝ0

R1/2u3/2 du

≤ C L2
βρ0 ĝ0(1 + | log(a2ρ0 ĝ0)|) ≤ C N ,

where we used the decay of ĝp at infinity (4.2) and the bound a ≤ R.
For γp we also split the sum this way. For p ≤ √

ρ0 ĝ0 we obtain that

∑

|p|≤√
ρ0 ĝ0

|γp| ≤ C
∑

|p|≤√
ρ0 ĝ0

√
ρ0 ĝ0

|p| ≤ C L2
βρ0 ĝ0 ≤ C N0δ.

For p ≥ √
ρ0 ĝ0 we expand the square root and find

∑

|p|≥√
ρ0 ĝ0

|γp| ≤ C
∑

|p|≥√
ρ0 ĝ0

(ρ0 ĝ0)
2

|p|4 ≤ C L2
βρ0 ĝ0 ≤ C N0δ,

which concludes the proof. ��
Finally choose N0 such that

ρL2
β = N = N0 +

∑
p �=0

γp. (4.8)

Note that with this choice � has the expected average number of particles as stated in
the next lemma.

Lemma 4.5. The state � = TνWN0� satisfies

〈N 〉� = N , 〈N 2〉� ≤ C N 2,

where N = ∑
p∈�∗

β
a†

pap is the number operator.
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Proof. First we can use the property (4.5) to find

〈N 〉� = N0 +
∑
p �=0

γp = N . (4.9)

For N 2 we split the sums according to zero and non-zero momenta, and then conjugate
by WN0 ,

〈N 2〉� =
∑
q,p

〈a†
papa†

qaq〉� = N 2
0 + N0 +

∑
q �=0

〈a†
0a0a†

qaq + h.c〉� +
∑

q �=0,p �=0

〈a†
papa†

qaq〉�

= N 2
0 + N0

(
1 + 2

∑
p �=0

γp

)
+

∑
q �=0,p �=0

〈a†
papa†

qaq〉�.

Now we use Lemma 4.4 and apply Wick’s Theorem [27, Theorem 10.2] to the state Tν�

to find

〈N 2〉� ≤ 4N 2 +
∑

q �=0,p �=0

(
〈a†

pap〉�〈a†
qaq〉� + 〈a†

pa†
q〉�〈apaq〉� + 〈a†

paq〉�〈apa†
q〉�

)

≤ 4N 2 +
( ∑

p �=0

γp

)2
+

∑
p �=0

α2
p +

∑
p �=0

(γ 2
p + γp) ≤ C N 2

using Lemma 4.4. ��

4.2. Energy of �. In order to get an upper bound on the energy of � we first introduce
the quantity

D(A, B) = 1

(4π2)2

∫
v̂ ∗ A(p)B(p)d p = 1

(4π2)2 〈B, v̂ ∗ A〉, (4.10)

and observe that it is symmetric in the entries. Then we prove the following result.

Lemma 4.6. Under the assumptions of Theorem 4.1, there exists a constant C > 0,
independent of v and ρ, such that

|�β |−1〈Hv〉� ≤ ρ2

2
v̂0 +

∫ (
(p2 + ρ0v̂p)γp + ρ0v̂pαp

) d p

4π2 +
1

2
D(α, α) + C v̂0ρ

2Y 3.

Proof. One can write Hv in second quantization in momentum variable,

Hv =
∑

p∈�∗
β

p2a†
pap +

1

2|�β |
∑
p,q,r

v̂r a†
p+r a†

qaq+r ap,

and express the energy of � in terms of αp and γp as follows. We conjugate by WN0

using (4.4), which amounts to change the a0’s in
√

N0. Since � = TνWN0� with no a0
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in Tν (see (4.3)), when we apply � we find

〈Hv〉� =
∑
p �=0

p2〈a†
pap〉� +

N 2
0

2|�β | v̂0 +
N0

|�β |
∑
p �=0

(̂v0 + v̂p)〈a†
pap〉�

+
N0

|�β |
∑
r �=0

v̂r 〈ar a−r 〉� +

√
N0

|�β |
∑

q,r �=0
q+r �=0

v̂r 〈a†
r a†

qaq+r 〉�

+

√
N0

|�β |
∑

p,r �=0
p+r �=0

v̂r 〈a†
p+r a†

−r ap〉� +
1

2|�β |
∑

p,q �=0
p+r,q+r �=0

v̂r 〈a†
p+r a†

qaq+r ap〉�.

(4.11)

We can use Wick’s Theorem [27, Theorem 10.2] to the state Tν�. By definition of αp

and γp in (4.5) together with N 2 = (N0 +
∑

p �=0 γp)
2 we deduce

〈Hv〉� = N 2

2|�β | v̂0 +
∑
p �=0

p2γp +
N0

|�β |
∑
p �=0

(
v̂pγp + v̂pαp

)

+
1

2|�β |
∑
q �=0

q+r �=0

v̂rαqαq+r +
1

2|�β |
∑
q �=0

q+r �=0

v̂rγqγq+r . (4.12)

We bound the last term in the above using Lemma 4.4. With ρ = N |�β |−1 and ρ0 =
N0|�β |−1 we deduce

|�β |−1〈Hv〉� ≤ 1

2
ρ2v̂0 +

1

|�β |
∑
p �=0

(
(p2 + ρ0v̂p)γp + ρ0v̂pαp

)

+
1

2|�β |2
∑
q �=0

q+r �=0

v̂rαqαq+r + C v̂0ρ
2Y 2. (4.13)

Up to errors E ≤ C v̂0ρ
2Y

1
2 +β , we can approximate these Riemann sums by integrals (see

Lemma G.1) and the lemma follows. In fact, the requirement β ≥ 3/2 in Theorem 4.1
comes from here. ��
Lemma 4.7. Under the assumptions of Theorem 4.1, there exists a constant C > 0,

independent of v and ρ, such that

|�β |−1〈Hv〉�
≤ ρ2

2
ĝ0 +

1

2

∫ (√
p4 + 2ρ0 p2 ĝp − p2 − ρ0 ĝp + ρ2

0

ĝ2
p − ĝ2

01{p≤2e−� R̃−1}
2p2

) d p

4π2

+
1

2
D(α + ρ0ω̂, α + ρ0ω̂) + Cρ2Y (̂v0 − ĝ0) + C v̂0ρ

2Y 2.
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Proof. We recall the definition (3.4) of ω, and we insert ρ0ω̂ into D(α, α),

D(α, α) = −ρ2
0 D(ω̂, ω̂) − 2ρ0 D(α, ω̂) + D(α + ρ0ω̂, α + ρ0ω̂).

Inserting this into Lemma 4.6 we find

〈Hv〉�
|�β | ≤ ρ2

2
v̂0 − ρ2

0

2
D(ω̂, ω̂) +

∫ (
(p2 + ρ0v̂p)γp + ρ0(̂vp − v̂ωp)αp

) d p

4π2

+
1

2
D(α + ρ0ω̂, α + ρ0ω̂) + C v̂0ρ

2Y 2. (4.14)

Now note that ĝp = v̂p − (̂v ∗ ω̂)p and,

ρ2

2
v̂0 = ρ2

2
ĝ0 +

ρ2
0

2
(v̂ω)0 +

ρ2 − ρ2
0

2
(v̂ω)0

= ρ2

2
ĝ0 +

ρ2
0

2
(ĝω)0 +

ρ2
0

2
(̂vω2)0 +

ρ2 − ρ2
0

2
(v̂ω)0.

This equality inserted in (4.14), together with D(ω̂, ω̂) = (̂vω2)0 implies

〈Hv〉�
|�| = ρ2

2
ĝ0 +

ρ2
0

2
(ĝω)0 +

∫ (
(p2 + ρ0v̂p)γp + ρ0 ĝpαp

) d p

4π2

+
1

2
D(α + ρ0ω̂, α + ρ0ω̂) +

ρ2 − ρ2
0

2
(v̂ω)0 + C v̂0ρ

2Y 2. (4.15)

Our choice of γ and α minimizes the integral where we replaced v̂p by ĝp, and by
explicit computation using the definition (4.6) of α and γ we find∫

(p2 + ρ0 ĝp)γp + ρ0 ĝpαp
d p

2π2 = 1

2

∫ (√
p4 + 2ρ0 p2 ĝp − p2 − ρ0 ĝp

) d p

4π2 .

(4.16)

Moreover the formula for ĝω from Lemma 3.9 yields

(ĝω)0 = 〈ω̂, ĝ〉 =
∫ ĝ2

p − ĝ2
01{p≤�−1

δ }
2p2

d p

4π2 ,

where �δ = 1
2 e� R̃. Inserting this and (4.16) into (4.15) we find

〈Hv〉�
|�| = ρ2

2
ĝ0 +

1

2

∫ (√
p4 + 2ρ0 p2 ĝp − p2 − ρ0 ĝp + ρ2

0

ĝ2
p − ĝ2

01{p≤�−1
δ }

2p2

) d p

4π2

+
1

2
D(α + ρ0ω̂, α + ρ0ω̂)

+
ρ2 − ρ2

0

2
(v̂ω)0 + ρ0

∫
(̂vp − ĝp)γp

d p

4π2 + C v̂0ρ
2Y 2,

where the last integral comes from the replacement of v̂p by ĝp in the first term of the
integral in (4.15). Since ρ − ρ0 ≤ CρY (Lemma 4.4 and Lemma G.1) and |̂vp − ĝp| ≤
(v̂ω)0 = v̂0 − ĝ0, we can bound

ρ2 − ρ2
0

2
(v̂ω)0 + ρ0

∫
(̂vp − ĝp)γp

d p

4π2 ≤ Cρ2Y (̂v0 − ĝ0),

and the lemma follows. ��
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In the following lemma we estimate the remainder term from Lemma 4.7.

Lemma 4.8. There is a C > 0 independent of v and ρ such that:

D(α + ρ0ω̂, α + ρ0ω̂) ≤ ρ2
0δ2v̂0

∣∣∣1

δ
− 1

Y
+ log δ

∣∣∣ + ρ2
0δ2v̂0

(1

δ
− 1

Y
+ log δ

)2
+ C v̂0ρ

2
0 ĝ2

0 .

In particular, with δ = δ0 defined in (1.5) we deduce

D(α + ρ0ω̂, α + ρ0ω̂) ≤ C v̂0ρ
2δ2

0 .

Proof. We recall the definition of �δ in (3.30). We first estimate h p := 〈α + ρ0ω̂, v̂p−·〉,
using Lemma 3.8 as

h p =
∫ (ρ0 ĝq v̂p−q − ρ0 ĝ0v̂p1{|q|<√

ρ0 ĝ0}
2q2 +

ρ0 ĝ0v̂p1{�−1
δ <|q|<√

ρ0 ĝ0}
2q2

− ρ0 ĝq v̂p−q

2
√

q4 + 2ρ0q2 ĝq

) dq

4π2

= h(1)
p + h(2)

p + h(3)
p , (4.17)

with

|h(1)
p | =

∣∣∣
∫

{|q|>√
ρ0 ĝ0}

ρ0 ĝq v̂p−q

2q2

(
1 − 1√

1 + 2ρ0 ĝq

q2

) dq

4π2

∣∣∣

≤ C v̂0

∫

{|q|>√
ρ0 ĝ0}

(ρ0 ĝ0)
2

q4 dq ≤ C v̂0ρ0 ĝ0. (4.18)

We also calculate

|h(2)
p | =

∣∣∣
∫

{�−1
δ <|q|<√

ρ0 ĝ0}
ρ0 ĝ0v̂p

2q2

dq

4π2

∣∣∣

≤ Cρ0 ĝ0v̂0

∣∣∣ log
(√

ρ0a2
√

ĝ0
e�

2
e

1
2δ

)∣∣∣

= ρ0δv̂0

∣∣∣1

δ
− 1

Y
+ log δ + C

∣∣∣. (4.19)

In the case where �−1
δ ≥ √

ρ0 ĝ0, the same estimates hold true. Only the inequalities
inside the indicator function in (4.17) change. Using (3.30) we have,

|h(3)
p | =

∣∣∣
∫

{|q|<√
ρ0 ĝ0}

ρ0(ĝq v̂p−q − ĝ0v̂p)

2q2

dq

4π2 −
∫

{|q|<√
ρ0 ĝ0}

ρ0 ĝq v̂p−q

2
√

q4 + 2ρ0q2 ĝq

dq

4π2

∣∣∣

≤
∫

{|q|<√
ρ0 ĝ0}

ρ0 ĝ0 |̂vp−q − v̂p| + ρ0 |̂gq − ĝ0 |̂v0

2q2

dq

4π2

+ C v̂0
√

ρ0 ĝ0

∫

{|q|<√
ρ0 ĝ0}

1

|q|dq

≤ C‖∇v̂‖∞
∫

{|q|<√
ρ0 ĝ0}

ρ0 ĝ0

|q| dq + C v̂0ρ0 ĝ0 ≤ C v̂0ρ0 ĝ0,
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where we used �−1
δ ∼ √

ρ ĝ0 ≤ R and ‖∇v̂0‖∞ ≤ Rv̂0. In the end we obtain

|h p| ≤ C v̂0ρ0 ĝ0 + ρ0δv̂0

(1

δ
− 1

Y
+ log δ + C

)
.

Similarly we have bounds on the gradient of h, namely

|∇h p| ≤ C Rv̂0ρ0 ĝ0. (4.20)

Now we turn to

D(α + ρ0ω̂, α + ρ0ω̂) = 〈α + ρ0ω̂, h〉

=
∫ (ρ0 ĝq hq − ρ0 ĝ0h01{|q|>�−1

δ }
2q2 − ρ0 ĝq hq

2
√

q4 + 2ρ0q2 ĝq

) dq

4π2 ,

which we in the same way write as D1 + D2 + D3 with

|D1| =
∣∣∣
∫

{|q|>√
ρ0 ĝ0}

ρ0 ĝq hq

2q2

(
1 − 1√

1 + 2ρ0 ĝq

q2

) dq

4π2

∣∣∣

≤ ‖h‖∞
8π2

∫

{|q|>√
ρ0 ĝ0}

(ρ0 ĝ0)
2

q4 dq

≤ C v̂0ρ
2
0 ĝ2

0 + ρ2
0δ2v̂0

(1

δ
− 1

Y
+ log δ + C

)
,

and using the bounds on h, we find |D1| ≤ C v̂0ρ
2
0 ĝ2

0. The technique to bound D2 is the
same as for h(2) and its provides

|D2| =
∣∣∣
∫

{�−1
δ <|q|<√

ρ0 ĝ0}
ρ0 ĝ0h0

2q2

dq

4π2

∣∣∣ ≤ v̂0ρ
2
0δ2

(1

δ
− 1

Y
+ log δ + C

)2
.

Lastly D3 is bounded just as h(3),

|D3| =
∣∣∣
∫

{|q|<√
ρ0 ĝ0}

ρ0(ĝq hq − ĝ0h0)

2q2

dq

4π2 −
∫

{|q|<√
ρ0 ĝ0}

ρ0 ĝq hq

2
√

q4 + 2ρ0q2 ĝq

dq

4π2

∣∣∣

≤ C v̂0ρ
2
0 ĝ2

0,

from which the first result follows. The second comes from the fact that when δ = δ0
we have

δ−1
0 = Y −1 + | log Y | + O(Y | log Y |2),

log δ0 = log Y + log(1 − Y | log Y |),
providing that

|δ−1
0 − Y −1 + log δ0| ≤ C. (4.21)

��
Now we have all necessary ingredients to conclude the proof of Theorem 4.1.
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Proof of Theorem 4.1. We take the trial state � defined in Sect. 4.1, which has the
expected bounds on number of particles from Lemma 4.5. The energy of � is bounded
by Lemma 4.7 together with Lemma 4.8, and using δ0 ≥ 1

2 Y we find

〈Hv〉�
|�β | ≤ ρ2

2
ĝ0 +

1

2

∫ (√
p4 + 2ρ0 p2 ĝp − p2 − ρ0 ĝp + ρ2

0

ĝ2
p − ĝ2

01{|p|≤�−1
δ }

2p2

) d p

4π2

+ ρ2
0δ2v̂0

(1

δ
− 1

Y
+ log δ

)
+ ρ2

0δ2v̂0

(1

δ
− 1

Y
+ log δ

)2

+ Cρ2δ(̂v0 − ĝ0) + C v̂0ρ
2
0 ĝ2

0 .

Now this integral can be estimated by Proposition C.3 and using ρ −ρ0 ≤ CρY we find

〈Hv〉�
|�β | ≤ ρ2

2
ĝ0 + 4πρ2δ2

(1

δ
− 1

Y
+ log δ +

(1

2
+ 2� + log π

))

+
1

2
ρ2δ2v̂0

∣∣∣1

δ
− 1

Y
+ log δ

∣∣∣ +
1

2
ρ2δ2v̂0

(1

δ
− 1

Y
+ log δ

)2

+ Cρ2δ(̂v0 − ĝ0) + C v̂0ρ
2 ĝ2

0 . (4.22)

Finally, with ĝ0 = 8πδ and the specific choice δ = δ0 we deduce

〈Hv〉�
|�β | ≤ 4πρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)
+ Cρ2δ0(̂v0 − ĝ0) + Cρ2δ2

0 v̂0. (4.23)

��
Remark 4.9. In the case of the spherical measure potential (3.40) (with the choice of b
given in (2.5)), one can see that the upper bound (4.22) is minimized (to the available
energy precision) by the choice δ = δ0. Indeed, even though the first three terms sug-
gest to choose the smallest δ possible, including the remaining contributions yields a
minimizer of the form

δ = Y (1 + cY | log Y |). (4.24)

Notice that first line in (4.22) is independent of the choice of c to our precision. We pick
for simplicity c = −1 to obtain our δ0 providing useful cancelations, see (4.21). This

also fixes the value of R̃ = ae
1
2δ .

5. General Upper Bound

In this section we prove Theorem 2.2, using the results of Sect. 4. We let β ≥ 3
2 be

given and we work on the box �β = [− Lβ

2 ,
Lβ

2 ]2 of size Lβ = ρ− 1
2 Y −β . Moreover, the

number of particles at density ρ is N = Y −2β .
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5.1. Trial state. Let v be a non-negative measurable and radial potential with scattering
length a and supp(v) ⊂ B(0, R), with ρR2 ≤ Y 2β+2. We consider ϕb the associated

scattering solution normalized at length b = ρ−1/2Y β+ 1
2 . In other words ϕb = 2δβϕ(0)

with δβ = 1
2 log (b/a)−1, see (3.3). Note that R  b. Let f = min (1, ϕb) be the

truncated scattering solution. It satisfies

− � f (x) +
1

2
v(x) f (x) = 0 on B(0, b), (5.1)

and is normalized such that f (x) = 1 for |x | ≥ b. We define a grand canonical trial
state as

� =
∑
n≥0

�n Fn ∈ Fs
(
L2 (

�β

) )
(5.2)

where � = ∑
n �n ∈ Fs

(
L2

(
�β

) )
is a quasi-free state defined in (4.3) and Fn is the

Jastrow factor

Fn(x1, . . . , xn) =
∏

1≤i< j≤n

f (xi − x j ). (5.3)

We will use the notation f (xi − x j ) = fi j and ∇ f (xi − x j ) = ∇ fi j . Finally note that

∇i Fn(x1, . . . , xn) =
n∑

j=1
j �=i

∇i fi j
Fn

fi j
. (5.4)

Remark 5.1. To estimate the energy of � we use the bound

1 ≥
∏

1≤i< j≤n

f (xi − x j )
2 ≥ 1 −

∑
1≤i< j≤n

(1 − f (xi − x j )
2). (5.5)

A similar trial state is used in [22] in 3 dimensions but there it is necessary to expand the
product (5.5) to one order higher to be able to reach the LHY precision. This substantially
complicates the estimates in that case.

5.2. Reduction to a soft potential. In this section we prove that the energy 〈�,Hv�〉
can be bounded by 〈�,Hṽ�〉 where ṽ is a nicer potential. This is the effect of the Jastrow
factor Fn , and we are thus reduced to optimizing the choice of the quasi-free state �

according to the potential ṽ.

Lemma 5.2. Consider the radial potential ṽ(x) = 2 f ′(b)δ{|x |=b} (with f ′ being under-
stood as the radial derivative). Then the state � defined in (5.2) satisfies

〈�,Hv�〉 ≤ 〈�,Hṽ�〉 − 〈�,R�〉,
where R = ⊕nRn with

Rn =
∑

{i, j,k}

∇ fi j

fi j
· ∇ fik

fik
F2

n ,

where we introduced the notation

{i, j, k} = {set of pairwise distinct indices i, j, k running from 1 to n}.



59 Page 28 of 104 S. Fournais, T. Girardot, L. Junge, L. Morin, M. Olivieri

Proof. The energy of the n-th sector state is

〈�n,Hn�n〉 =
n∑

i=1

∫

�n

(
F2

n |∇i�n|2 + |∇i Fn|2�2
n + 2Fn∇i Fn · �n∇i�n

)
dx

+
∑

1≤i< j≤n

∫

�n
v(xi − x j )F2

n �2
ndx . (5.6)

The second term in (5.6) can be written via (5.4) as
n∑

i=1

∫

�n
|∇i Fn|2�2

ndx =
∑
i �= j

∫

�n
|∇ fi j |2 F2

n

f 2
i j

�2
ndx +

∑
{i, j,k}

∫

�n

∇ fi j

fi j
· ∇ fik

fik
F2

n �2
ndx .

(5.7)

Note that, in the first part of (5.7) the integration in xi is only supported on the ball
|xi − x j | ≤ b, because fi j = 1 outside this ball. We integrate by parts on this ball to find

n∑
i=1

∫

�n
|∇i Fn|2�2

ndx (5.8)

= −
∑
i �= j

∫

{|xi −x j |≤b}
� fi j

F2
n

fi j
�2

ndx −
∑
i �= j

∫

�n
∇ fi j

F2
n

fi j
· ∇i (�

2
n)dx

−
∑

{i, j,k}

∫

�n

∇ fi j

fi j
· ∇ fik

fik
F2

n �2
ndx +

∑
i �= j

∫

�n−1

∫

{|xi −x j |=b}
∂r f (b)F2

n �2
ndxi dx̂i ,

where x̂i = (x1, . . . xi−1, xi+1, . . . , xn). The second term in the right hand side of (5.8)
is precisely −2Fn∇i Fn · �n∇i�n thanks to (5.4). We use the scattering equation (5.1)
to transform

∑
i �= j

∫

{|xi −x j |≤b}
� fi j

F2
n

fi j
�2

ndx =
∑

1≤i< j≤n

v(xi − x j )F2
n �2

ndx, (5.9)

in (5.8) (note that there is no half factor because the sum is on i < j). Using (5.8) and
(5.9) in (5.6) we deduce

〈�n,Hn�n〉 =
n∑

i=1

∫

�n
F2

n |∇i�n|2 + 2
∑
i< j

∫

�n−1

∫

{|xi −x j |=b}
∂r f (b)F2

n �2
ndxi dx̂i

−
∑

{i, j,k}

∫

�n

∇ fi j

fi j
· ∇ fik

fik
F2

n �2
ndx . (5.10)

In the first two terms we bound Fn by 1, and the last one we consider as a remainder.
Thus,

〈�n,Hn�n〉 ≤
∫

�n
|∇�n|2 +

∑
i< j

∫

�n
�2

n ṽ(xi − x j )dx − Rn .

��
We comment here how in the proof we used nowhere that � is a quasi-free state, therefore
the lemma holds true for more general � ∈ Fs(L2(�β)).
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5.3. Number of particles in our trial state. Now for � we choose the quasi-free state
given by Theorem 4.1, applied to the potential ṽ. We recall that � = WN0 Tν� is defined
in (4.3), and � in (5.2). In this section we prove the following two lemmas, giving
estimates on the norm of � and the average number of particles in �. The idea is to
use the properties of Fn to derive the bounds on �n = Fn�n from the bounds on the
quasi-free state �.

Lemma 5.3. There is a C > 0, independent of v and ρ, such that

‖�‖2 ≥ ‖�‖2
(

1 − C NY 2β+2
)
.

Proof. The norm of our trial state is bounded from below by

‖�‖2 =
∑
n≥0

∫

�n
F2

n (x)�2
n(x)dx

≥
∑
n≥0

( ∫

�n
�2

ndx −
∑

1≤i< j≤n

∫

�n
(1 − f (xi − x j )

2)�2
n(x)dx

)
, (5.11)

where we used the inequality

∏
1≤i< j≤n

f (xi − x j )
2 ≥ 1 −

∑
1≤i< j≤n

(1 − f (xi − x j )
2). (5.12)

The second term is the 2-body interaction potential energy of �, thus we can write it as

∑
n≥0

∑
1≤i< j≤n

∫
(1 − f (xi − x j )

2)�2
ndx = 1

2|�β |
∑
p,q,r

̂(1 − f 2)r 〈a∗
q a∗

p+r aq+r ap�,�〉

≤
̂(1 − f 2)0

2|�β |
∑
p,q,r

〈a∗
q a∗

p+r aq+r ap�,�〉.
(5.13)

Since � = WN0 Tν� is a quasi-free state we can estimate this term as already done
in (4.11). We first conjugate by WN0 which amounts to change the a0’s into N0 ≤ N .
Together with Lemma 4.4 and Wick’s theorem we deduce

∑
p,q,r

〈a∗
q a∗

p+r aq+r ap〉� ≤ C N 2 +
∑

p �=0,q �=0,r �=0
p+r �=0,q+r �=0

〈a∗
q a∗

p+r aq+r ap〉�. (5.14)

Then we use again Wick’s Theorem to estimate the remaining sum, which is then bounded
by C N 2 by Lemma 4.4. Thus Eq. (5.13) gives

∑
n≥0

∑
1≤i< j≤n

∫
(1 − f (xi − x j )

2)�2
ndx ≤ C

N 2

|�β |
∫

�

(1 − f (x)2)dx ‖�‖2. (5.15)
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Using d
dr [r2 log

( r
a

)2 − r2 log
( r

a

)
+ r2

2 ] = 2r log
( r

a

)2 and a ≤ R ≤ b we have that

∫

�

(1 − f (x)2)dx = 2π

∫ b

R

(
1 − log

( r
a

)2

log
( b

a

)2

)
rdr + 2π

∫ R

0
(1 − f (r)2)rdr

≤ C
b2

log
( b

a

) + C R2 ≤ Cρ−1Y 2β+2, (5.16)

where we used ρR2 ≤ Y 2β+2 and b2 = ρ−1Y 2β+1. We use this last bound in (5.15) and
(5.11) to get

‖�‖2 ≥ ‖�‖2(1 − C NY 2β+2).
��

Lemma 5.4. There is a C > 0 independent of ρ and v such that,

〈�,N�〉 ≥ N (1 − CY 2)‖�‖2, 〈�,N 2�〉 ≤ C N 2‖�‖2.

Proof. First we have by Lemmas 4.5 and 5.3 that

〈�,N 2�〉 =
∑
n≥0

n2
∫

�n
F2

n �2
ndx ≤

∑
n≥0

n2‖�n‖2 = 〈�,N 2�〉 ≤ C N 2‖�‖2.

For the bound on 〈N 〉� we use the same idea as in the proof of Lemma 5.3. From
inequality (5.12) we deduce

〈�,N�〉 =
∑
n≥0

n
∫

�n
F2

n �2
ndx

≥
∑
n≥0

n
( ∫

�n
�2

ndx −
∑
i< j

∫

�n
(1 − f (xi − x j )

2)�2
ndx

)
. (5.17)

In the second term we recognize a number operator and a 2-particles interaction energy,
which can be rewritten as

∑
n≥0

n
∑
i< j

∫

�n
(1 − f (xi − x j )

2)�2
ndx =

∑
k,p,q,r∈�∗

̂(1 − f 2)r

2L2
β

〈a∗
k aka∗

p+r a∗
q aq+r ap�,�〉.

We can compute this term using the same techniques as for (5.13), i.e., extract the
a0’s and then apply Wick’s Theorem yielding many terms of the form A1 A2 A3 with
Ai ∈ {〈a†

0a0〉�,
∑

p �=0 αp,
∑

p �=0 γp} (see (4.5)). These terms are bounded by N 3 by
Lemma 4.4. Thus

∑
n≥0

n
∑
i< j

∫

�n
(1 − f (xi − x j )

2)�2
ndx ≤ C

N 3

L2
β

∫
(1 − f (x)2)dx‖�‖2.

Now we use the inequality (5.16) to bound the right hand side of the quantity above and
plug it in (5.17) to obtain

〈�,N�〉 ≥ (N − C N 2Y 2β+2)‖�‖2 = N (1 − CY 2)‖�‖2,

where in the equality used that N = Y −2β . ��
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5.4. Remainder term. Here we prove that the remainder term in Lemma 5.2 is indeed
small.

Lemma 5.5. There is a C > 0 independent of v and ρ such that

|〈�,R�〉| ≤ C L2
βρ2Y 2β+2‖�‖2.

Proof. The remainder term can be bounded by

|〈�,R�〉| ≤
∑
n≥3

∑
{i, j,k}

∫

�n
W (xi − xk)W (xi − x j )�

2
ndx,

where W (x) = | f (x)∇ f (x)|. This is a three-body interaction potential, which can be
rewritten in second quantization as

|〈�,R�〉| ≤ 1

|�β |2
∑

p,q,r,k,�∈�∗
Ŵk Ŵ�〈a∗

p+�+ka∗
q−ka∗

r−�ar aqap〉� ‖�‖2.

We can again use Wick’s Theorem to estimate this part, and since Lemma 4.4 provides

max
{ ∑

p �=0

αp,
∑
p �=0

γp

}
≤ N ,

we find

|〈�,R�〉| ≤ C
N 3

|�β |2 Ŵ 2
0 ‖�‖2. (5.18)

Now since f (x) = log
( b

a

)−1
log

( |x |
a

)
outside the support of v and is radially increasing,

we have

Ŵ0 ≤ 2π

∫ b

R

log
( r

a

)

log
( b

a

)2 dr + 2π

∫ R

0
f (r) f ′(r)rdr

≤ C
b

log
( b

a

) + C R
( log

( R
a

)

log
( b

a

)
)2 ≤ Cρ−1/2Y β+1,

where we used | log
( b

a

) |−1 ≤ Y and | log
( R

a

) | ≤ | log
( b

a

) |. Inserting this bound in
(5.18) we get the result. ��

5.5. Conclusion: Proof of Theorem 2.2. Using Lemmas 5.2, 5.3 and 5.5 we know that
our trial state � satisfies

〈Hv〉� ≤
(
〈Hṽ〉� + C L2

βρ2Y 2β+2
)(

1 + C NY 2β+2
)
. (5.19)

For � we choose the quasi-free state given by Theorem 4.1 applied to the soft potential
ṽ. Recall the definition of g̃ from Lemma 3.10. We deduce that

1

|�β | 〈Hṽ〉� ≤ 4πρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)
+ Cρ2δ0

(̂̃
v(0) − ̂̃g(0)

)
+ Cρ2δ2

0
̂̃v(0).

(5.20)
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From Lemma 3.10 we have

̂̃v(0) = 4π

log b/a
and ̂̃g(0) = 4π

log R̃/a
= 8πδ0,

where we recall from (3.3) that R̃ = ae
1

2δ0 . Therefore, remembering the choices b =
ρ−1/2Y 1/2+β and β ≥ 3/2, we can estimate (̂̃v(0) − ̂̃g(0)) ≤ CY 2 log Y and we get

1

|�β | 〈Hṽ〉� ≤ 4πρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)
+ βCρ2δ3

0 | log(δ0)| + Cρ2δ3
0 .

(5.21)

We insert this into (5.19) together with N = ρL2
β = Y −2β and Y ≤ 2δ0, which concludes

the proof of Theorem 2.2. ��

6. Localization to Large Boxes for the Lower Bound

In this section we reduce the proof of Theorem 2.3 to an analogous statement localized
to a box of size � defined in (6.6), namely Theorem 6.7.

6.1. Grand canonical ensemble. We rewrite the Hamiltonian in a grand canonical setting
to approach the problem in the Fock space description. To emphasize the fact that the
density parameter appears through a chemical potential in this setting, we introduce the
notation ρμ > 0 as new parameter. The corresponding Y will be Y = | log(ρμa2)|−1

and we fix δ to be

δ = δμ, δμ := 1

|log(ρμa2|log(ρμa2)|−1)| . (6.1)

This corresponds to normalizing the scattering solution at length R̃ = (ρμY )−1/2 in
(3.3). With this choice we recall the definition (3.4) of g. This definition is analogous
to the one of δ0 (1.5) but with ρμ in place of ρ. We are going to choose, a posteriori,
ρμ = ρ which implies δμ = δ0.

That this choice of δ is optimal follows by an evaluation of the relevant integral giving
the constant in the correction term in (1.4). Please see Remark C.4 for the evaluation of
this integral and the discussion of the optimal choice.

We consider the operator Hρμ acting on the symmetric Fock space Fs(L2(�)) and
commuting with the number operator, whose action on the N -bosons space is

Hρμ,N = H(N , L) − 8πδρμN =
N∑

j=1

−� j +
∑
i< j

v(xi − x j ) − 8πδρμN

=
N∑

j=1

(
− � j − ρμ

∫

R2
g(x j − y) dy

)
+
∑
i< j

v(xi − x j ). (6.2)

We define the ground state energy density of Hρμ :

e0(ρμ) := lim|�|→+∞
1

|�| inf
�∈Fs (L2(�))\{0}

〈� |Hρμ | �〉
‖�‖2 . (6.3)

In the rest of the paper we prove the following lower bound on e0(ρμ).
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Theorem 6.1. There exists C, η > 0 such that the following holds. Let ρμ > 0 and
v ∈ L1(�) be a positive, spherically symmetric potential with scattering length a and
supp(v) ⊂ B(0, R) such that ‖v‖1 ≤ Y −1/8 and R ≤ ρ

−1/2
μ . Then, if ρμa2 ≤ C−1, we

have, for any ρμ > 0,

e0(ρμ) ≥ −4πρ2
μδ

(
1 −

(
2� +

1

2
+ log π

)
δ
)

− Cρ2
μδ2+η. (6.4)

We now show that Theorem 6.1 implies the main lower bound Theorem 2.3.

Proof of Theorem 2.3. We start by reducing the problem to a potential which is L1 and
compactly supported. For a given v satisfying the assumptions of Theorem 2.3, we
apply Theorem 3.6 with T = (4πY )−1/8, R = ρ−1/2 and ε = 1. This provides us with
a potential ṽ = vT,R,ε to which we can apply Theorem 6.1. Then for this new potential
we use the ground state of HN as a trial function for Hρμ and get

e2D(ρ, ṽ) ≥ e0(ρμ, ṽ) + 8πδ̃ρρμ

≥ −4πρ2
μδ̃

(
1 −

(
2� +

1

2
+ log π

)
δ̃
)

− Cρ2
μδ̃2+η + 8πδ̃ρρμ,

where δ̃ = 1
| log(ρã2| log(ρã2)|−1)| and ã is the scattering length of ṽ. Since ṽ ≤ v we have

e2D(ρ, v) ≥ e2D(ρ, ṽ). Moreover, by Eq. (3.23) we can change δ̃ into δ up to an error
of order

1

log
( R

a

)2
T

+
1

log
( R

a

)2

∫

{|x |>R}
v(x) log

( |x |
a

)2
dx ≤ Cδ

2+min
(

1
8 ,η1

)
. (6.5)

Choosing ρμ = ρ concludes the proof. ��

6.2. Reduction to large boxes. We now make use of the sliding localization technique
developed in [28] to reduce the proof of Theorem 2.3 to a localized problem in a large
box � ⊂ �. We introduce the length scale

� := K� ρ−1/2
μ Y − 1

2 , (6.6)

where K� � 1 is a parameter fixed in “Appendix H”, and we carry out the analysis in
the large box

� :=
[

− �

2
,
�

2

]2
. (6.7)

For any u ∈ R
2, we denote by

�u := �u + � (6.8)

the translated large box. Let us introduce the localization functions: the sharp character-
istic function

θu := 1�u (6.9)
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and the regular one: let χ ∈ C M
0 (R2), for M ∈ N with supp χ = [− 1

2 , 1
2 ]2 be the

spherically symmetric function defined in “Appendix F”, and

χ�(x) := χ
( x

�

)
, χu(x) := χ�(x − �u). (6.10)

The parameter M is fixed in “Appendix H”. Define the following projections on L2(�),

P := �−2|1�〉〈1�|, Q := 1 − P, (6.11)

i.e. P is the orthogonal projection in L2(�) onto the constant functions and Q is the or-
thogonal projection to the complement. Using these definitions, we define the following
operators on Fs(L2(�)) through their action on any N -particles sector:

n0 :=
N∑

j=1

Pj , n+ :=
N∑

j=1

Q j = N − n0. (6.12)

The definition is based on the idea that low energy eigenstates of the system should
concentrate in the constant function. Thus, n0 counts the number of particles in the
condensate and n+ the number of particles excited out of the condensate.

We start by stating the result for the kinetic energy.

Lemma 6.2 (Kinetic energy localization). Let −�N
u denote the Neumann Laplacian in

�u and −� the Laplacian on R
2. If the regularity of χ is M > 5 and the positive

parameters εN , εT , d, s, b are smaller than some universal constant, then for all � > 0
we have

− � ≥
∫

R2
Tu du, (6.13)

in terms of quadratic forms in H1(R2), where

Tu := εN (−�N
u ) + (1 − εN )(T Neu,s

u + T Neu,l
u + T gap

u + T kin
u ), (6.14)

with

T Neu,s
u := εT

2(d�)2

−�N
u

−�N
u + (d�)−2

, (6.15)

T Neu,l
u := b

�2 Qu, (6.16)

T gap
u := b

εT

(d�)2 Qu1(d−2�−1,+∞)(
√−�)Qu, (6.17)

T kin
u := Quχu

{
(1 − εT )

[√−� − 1

2s�

]2

+
+ εT

[√−� − 1

2ds�

]2

+

}
χu Qu . (6.18)

Proof. The proof is identical to the one of [28, Lemma 3.7] and its adaptation to our
context in [19, Lemma 6.4], which are independent of dimension. ��
Remark 6.3. The kinetic energy is composed of several terms which have to remedy
some problems related to the main kinetic energy term and play the following roles:

• T kin
u is the main kinetic energy term;
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• −�N is the Neumann Laplacian and compensates the loss of ellipticity at the
boundary caused by the localization function χ in T kin

u ;
• T Neu,s

u is the Neumann gap in the small box. Worth to remark is that, for large
momenta, it behaves like a gap, while for small momenta its action is like a Neumann
Laplacian;
• T Neu,l

u is a fraction b of the Neumann gap in the large box. We don’t think of b as a
parameter but as a fixed small constant. In the remaining we then choose and fix the
value of b.
• T gap

u is another spectral gap which we need in order to control the number of
excitations with large momenta.

The localization of the potential energy relies on a direct calculation of the integral
which can be found in [28, Proposition 3.1]. Assuming that R�−1 is sufficiently small,
we can introduce the following localized potentials

W (x) := v(x)

χ ∗ χ(x/�)
, w(x, y) := χ�(x)W (x − y)χ�(y), (6.19)

W1(x) := g(x)

χ ∗ χ(x/�)
, w1(x, y) := χ�(x)W1(x − y)χ�(y), (6.20)

W2(x) := g(x) + g(x)ω(x)

χ ∗ χ(x/�)
, w2(x, y) := χ�(x)W2(x − y)χ�(y), (6.21)

where we observe that W, W1, W2 and w,w1, w2 are localized versions of v, g, (1+ω)g,
respectively, defined in (3.4).

Furthermore, we introduce the translated versions for u ∈ �

w1,u(x, y) = w1(x − �u, y − �u) (6.22)

and similarly for w2,u and wu . We are going to make use of the following approximation
result. We recall the defintion of the lengthscale �δ from (3.30), which, with our choice
δ = δμ from (6.1) becomes

�δ = e�

2
ρ−1/2

μ Y −1/2, (6.23)

and corresponds to the so-called healing length.

Lemma 6.4. There exists a universal constant C > 0 such that, if R�−1 < C−1, we
have

• W1 can be approximated by g up to the following error

0 ≤ W1(x) − g(x) ≤ Cg(x)
min{|x |2, R2}

�2 , (6.24)

and in particular ‖W1‖L1 ≤ 8πδ(1 + C R2�−2) due to (3.6).
• For any h ∈ L1(R2) such that h(x) = h(−x) and supp h ⊆ B(0, R),

∣∣∣∣h ∗ χ�(x) − χ�(x)

∫

R2
dx h(x)

∣∣∣∣ ≤ C max
i, j

‖∂i∂ jχ‖∞
R2

�2 ‖h‖L1 . (6.25)
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• It also holds

∣∣∣∣
1

(2π)2

∫

R2
dk

Ŵ1(k)2 − Ŵ 2
1 (0)1{|k|≤�−1

δ }
2k2 − ĝω(0)

∣∣∣∣ ≤ C
R2

�2 δ. (6.26)

• It holds

∣∣∣∣
∫

R2

(Ŵ1(k) − ĝ(k))2 − (Ŵ1(0) − ĝ(0))21{|k|≤�−1
δ }

2k2 dk

∣∣∣∣ ≤ C
R4

�4 ĝω(0). (6.27)

Proof. For (6.24) we use that the support of g is contained in the set {|x | < R}, therefore
it is enough to give here our estimate. Using the symmetries of χ , the normalization
‖χ‖2 = 1 (Appendix F) and a Taylor expansion we see that

∣∣∣∣1 − 1

χ ∗ χ(x/�)

∣∣∣∣ ≤ 1

|χ ∗ χ(x/�)|
∣∣∣∣
∫

R2
χ(y)[χ(y) − χ(x/� − y)]

∣∣∣∣ dy

≤ C
|x |2
�2 max

i, j
‖∂i∂ jχ‖∞,

which implies the first bound. (6.25) is proved similarily. For the bound (6.26), by the
Lemma 3.8 we know that

(ĝω)0 = 1

(2π)2

∫

R2

ĝ2
k − ĝ2

01{|k|≤�−1
δ }

2k2 dk, (6.28)

and using (3.28) for both the expressions of W and g we get

1

(2π)2

∣∣∣∣
∫

R2

ĝ2
k − ĝ2

01{|k|≤�−1
δ } − Ŵ 2

1 (k) + Ŵ 2
1 (0)1{|k|≤�−1

δ }
2k2 dk

∣∣∣∣

≤ −C
∫∫

|g(x)g(y) − W1(x)W1(y)| log
( x − y

�δ

)
dxdy

≤ − C

�2

∫∫
|x |2g(x)g(y) log

( x − y

�δ

)
dxdy

= C

�2

∫
|x |2g(x)ω(x)dx

≤ C
R2

�2 δ,

where we used first (6.24), then the fact that in 2 dimension the log term produces a
convolution with the Green’s function of the Laplacian and finally formulas (3.5) and
(3.6) (together with the bounds ω ≤ 1 in the support of g and 2R < �δ). The last
inequality has a similar proof and is omitted. ��

We now give a result of localization to large boxes for the potential part in the
Hamiltonian (6.2).
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Lemma 6.5 (Localization of the potential). The following identity holds

−ρμ

N∑
j=1

∫

R2
g(x j − y)dy +

∑
i< j

v(xi − x j )

=
∫

R2

[
− ρμ

N∑
j=1

∫

R2
w1,u(x j , y)dy +

∑
i< j

wu(xi , x j )

]
du. (6.29)

Proof. It is proven by direct calculation following the same lines as [28, Proposition
3.1]. ��

Therefore, joining the results from Lemmas 6.2, 6.5 and introducing the large box
Hamiltonian acting on Fs(L2(�u)) as

H�u (ρμ)N :=
N∑

j=1

T ( j)
u − ρμ

N∑
j=1

∫

R2
w1,u(x j , y)dy +

∑
i< j

wu(xi , x j ), (6.30)

where T ( j)
u is (6.14) for the x j variable, and the ground state energy and its density

E�(ρμ) := inf Spec(H�(ρμ)), e�(ρμ) := 1

�2 E�(ρμ), (6.31)

we are able to prove the following. Recall that e0 is defined in (6.3).

Lemma 6.6. Under the assumptions of Lemma 6.2,

e0(ρμ) ≥ e�(ρμ). (6.32)

Proof. By direct application of Lemma 6.2 and Lemma 6.5 we have

Hρμ,N (ρμ) ≥
∫

�−1(�+B(0,�/2))

H�u (ρμ)N du ≥ �−2|� + B(0, �/2)|E�(ρμ),(6.33)

where the last inequality is guaranteed by the unitary equivalence H�u
∼= H�u′ via the

relation

wu′(x, y) = wu(x − �(u′ − u), y − �(u′ − u)). (6.34)

The proof is concluded taking the infimum of the spectrum of the left-hand side and
dividing by |�| observing that |�+B(0,�/2)|

|�| −−−−−→|�|→+∞ 1. ��
Therefore, Lemma 6.6 shows that in order to prove our main result Theorem 6.1, it

is enough to give an analogous estimate on the Hamiltonian on the large box, and it is
the content of the next theorem.

Theorem 6.7. There exist C, η > 0 such that the following holds. Let ρμ > 0 and
v ∈ L1(�) be a positive, spherically symmetric potential with scattering length a and
supp(v) ⊂ B(0, R) such that ‖v‖1 ≤ Y −1/8 and R ≤ ρ

−1/2
μ . Then, if ρμa2 ≤ C−1, and

the parameters are chosen as in “Appendix H”, we have

E�(ρμ) ≥ −4π�2ρ2
μδ

(
1 −

(
2� +

1

2
+ log π

)
δ
)

− C�2ρ2
μδ2+η. (6.35)

The proof of Theorem 6.7 is given in the remaining sections of the article.
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7. Lower Bounds in Position Space

7.1. Splitting of the potential. By the definitions (6.11) of the projectors P and Q, we
see that we can split the potential in a way presented in the lemma below.

Lemma 7.1. We have, recalling the definitions in (6.19), that

−ρμ

N∑
j=1

∫

R2
w1(x j , y)dy +

1

2

∑
i �= j

w(xi , x j ) =
4∑

j=0

Qren
j (7.1)

with

0 ≤ Qren
4 := 1

2

∑
i �= j

[
Qi Q j +

(
Pi Pj + Pi Q j + Qi Pj

)
ω(xi − x j )

]
w(xi , x j )

×
[

Q j Qi + ω(xi − x j )
(
Pj Pi + Pj Qi + Q j Pi

) ]
, (7.2)

Qren
3 :=

∑
i �= j

Pi Q jw1(xi , x j )Qi Q j + h.c., (7.3)

as well as

Qren
2 :=

∑
i �= j

Pi Q jw2(xi , x j )Qi Pj +
∑
i �= j

Pi Q jw2(xi , x j )Pi Q j (7.4)

+
1

2

∑
i �= j

Pi Pjw1(xi , x j )Qi Q j + h.c. − ρμ

N∑
j=1

Qi

∫

R2
w1(xi , y)dy Qi , (7.5)

Qren
1 :=

∑
i, j

Qi Pjw2(xi , x j )Pi Pj − ρμ

N∑
i=1

Qi

∫

R2
w1(xi , y)dy Pi + h.c., (7.6)

and

Qren
0 := 1

2

∑
i �= j

Pi Pjw2(xi , x j )Pi Pj − ρμ

N∑
j=1

Pj

∫

R2
w1(x j , y)dy Pj . (7.7)

Proof. It follows from an elementary calculation, using that P + Q = 1 on L2(�) and,
where needed, the identity

w1 = w2 − wω + wω2. (7.8)

��
We rewrite now some of the previous Q terms in the lemma below.
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Lemma 7.2. With the notation ρ0 = n0
�2 we have

Qren
0 = ρ0(n0 − 1)

2
(ĝ(0) + ĝω(0)) − ρμn0 ĝ(0), (7.9)

Qren
1 = (ρ0 − ρμ)

N∑
i=1

Qiχ�(xi )W1 ∗ χ�(xi )Pi + h.c.

+ ρ0

N∑
i=1

Qiχ�(xi )((W1ω) ∗ χ�)(xi )Pi + h.c., (7.10)

and

Qren
2 ≥

∑
i �= j

Pi Q jw2(xi , x j )Qi Pj +
1

2

∑
i �= j

(Pi Pjw1(xi , x j )Qi Q j + h.c.)

+ ((ρ0 − ρμ)Ŵ1(0) + ρ0Ŵ1ω(0))

N∑
j=1

Q jχ�(x j )
2 Q j − C(ρμ + ρ0)δ

( R

�

)2
n+.

(7.11)

Proof. The first two identities are straightforward after having observed that

N∑
j=1

Pjw1(xi , x j )Pj = 1

�2

N∑
j=1

Pj

∫

�

w1(xi , y)dy = ρ0

∫

�

w1(xi , y)dy, (7.12)

and
∫

�

w1(xi , y)dy = χ�(xi )(W1 ∗ χ�)(xi ). (7.13)

For the Qren
2 term, the only parts which require a different approach are

(ρ0 − ρμ)

N∑
j=1

Q jχ�(x j )W1 ∗ χ�(x j )Q j + ρ0

N∑
j=1

Q jχ�(x j )((W1ω) ∗ χ�)(x j )Q j .

(7.14)

Using Eq. (6.25) of Lemma 6.4 we can bound

N∑
j=1

Q jχ�(xi )W1 ∗ χ�(xi )Q j ≥ ‖W1‖L1

N∑
j=1

Q jχ�(x j )
2 Q j

− C max
i, j

‖∂i∂ jχ‖∞
R2

�2 ‖W1‖L1‖χ‖∞n+. (7.15)

Recalling that ‖W1‖L1 ≤ Cδ (Lemma 6.4) and acting similarly for the other term, this
concludes the proof. ��

As a direct consequence of the lemma above, we can derive the following first lower
bound for the large box Hamiltonian.
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Corollary 7.3. The following bound holds for the Hamiltonian in the large box

H�(ρμ)
∣∣
N ≥

N∑
j=1

T ( j) +
ρ0(n0 − 1)

2
(ĝ(0) + ĝω(0)) − ρμn0 ĝ0 (7.16)

+
(
ρ0 − ρμ

) N∑
i=1

Qiχ�(xi )W1 ∗ χ�(xi )Pi + h.c. (7.17)

+ ρ0

N∑
i=1

Qiχ�(xi )((W1ω) ∗ χ�)(xi )Pi + h.c. (7.18)

+
∑
i �= j

Pi Q jw2(xi , x j )Qi Pj +
1

2

∑
i �= j

(Pi Pjw1(xi , x j )Qi Q j + h.c.)

(7.19)

+ ((ρ0 − ρμ)Ŵ1(0) + ρ0Ŵ1ω(0))

N∑
j=1

Q jχ�(x j )
2 Q j (7.20)

− C(ρμ + ρ0)δ
( R

�

)2
n+ + Qren

3 + Qren
4 . (7.21)

In the lemma below we prove an estimate which is going to be useful in Sect. 7.2 to
localize the Qren

3 term.

Lemma 7.4. Let Q′ be a possibly non self-adjoint operator on L2(�) such that Q Q′ =
Q′ and ‖Q′‖ ≤ 1. Then for all c ∈ (0, 1) there is a C > 0 such that, if R ≤ �,
∑
i �= j

(Pi Q′
jw1(xi , x j )Qi Q j + h.c.)

≥ −1

4
Qren

4 −
∑
i �= j

(Pi Q′
jw1ωPi Pj + h.c.) − δn0

(
cK −2

�

n+

�2 + C
K 2

�

�2

N∑
j=1

Q′
j (Q′

j )
†
)
.

Proof. The idea is to reobtain the Q4 term in the inequalities.
∑
i �= j

(Pi Q′
jw1 Qi Q j + h.c.) =

∑
i �= j

Pi Q′
jw1

[
Qi Q j + ω(Pi Pj + Pi Q j + Qi Pj )

]
+ h.c.

−
∑
i �= j

Pi Q′
jw1ω(Pi Pj + Pi Q j + Qi Pj ) + h.c. (7.22)

We use Cauchy–Schwarz inequality on both the terms on the right-hand side. The first
line of (7.22), using that w1 ≤ w, is controlled by

C
∑
i �= j

Pi Q′
jw1(Pi Q′

j )
† +

1

4
Qren

4 = C
n0

�2

N∑
j=1

Q′
jχ�(x j )(W1 ∗ χ�)(x j )(Q′

j )
† +

1

4
Qren

4

≤ C
n0

�2 ‖χ�‖2∞δ

N∑
j=1

Q′
j (Q′

j )
† +

1

4
Qren

4 ,
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where we used (7.12), (7.13), the bound ‖W1‖L1 ≤ Cδ(1 + R2�−2) and R ≤ �. For the
second line of (7.22) we keep the P P contribution and treat the other terms separately.
They can be estimated as above. For instance,

∑
i �= j

(Pi Q′
jw1ωPi Q j + h.c.) ≤ ε−1

∑
i �= j

Pi Q′
jw1ω(Pi Q′

j )
† + ε

∑
i �= j

Pi Q jw1ωPi Q j

≤ Cδ
n0

�2

(
ε−1

N∑
j=1

Q′
j (Q′

j )
† + εn+

)
, (7.23)

where we used the Cauchy–Schwarz inequality with weight ε > 0. Choosing ε =
cC−1 K −2

� with c ∈ (0, 1), we get

∑
i �= j

Pi Q′
jw1ωPi Q j ≤ c−1C2δ

n0d2 K 2
�

(d�)2

N∑
j=1

Q′
j (Q′

j )
† + cδn0 K −2

�

n+

�2 , (7.24)

and the lemma follows. ��

7.2. Localization of 3Q term. In this section we show how we can restrict the action of
one of the Q projectors in the Qren

3 term to low momenta. More precisely we define the
following two sets of low and high momenta respectively,

PL := {p ∈ R
2 | |p| ≤ d−2�−1}, PH := {p ∈ R

2 | |p| ≥ K H �−1}. (7.25)

We choose the parameters d and K H satisfying (H6) so that the two sets are disjoint.
We will localize the Q projector using the following cutoff function,

fL(r) := f (d2�r), f (r) :=
{

1, if r ≤ 1,

0, if r ≥ 2,
(7.26)

where f ∈ C∞(R) is a non-increasing function. The localized projectors are

QL := Q fL(
√−�), QL := Q − QL , (7.27)

and the localized version of Qren
3 is

Qlow
3 :=

∑
i �= j

(Pi QL , jw1(xi , x j )Qi Q j + h.c.). (7.28)

The number of high excitations, namely the number of bosons outside from the conden-
sate and with momenta not in PL is

nH
+ :=

N∑
j=1

Q j 1(d−2�−1,∞)(
√−� j )Q j . (7.29)

It is easy to see that

N∑
j=1

QL , j Q
†
L , j ≤ nH

+ . (7.30)

The next lemma shows how the Qren
3 term added to a small contribution from Qren

4 and
to the spectral gap from the kinetic energy (see (6.14)), can be bounded above by Qlow

3 .
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Lemma 7.5. Assume R ≤ � and the relation (H26) between the parameters. Then there
exists C > 0 such that, for any n-particles state � ∈ Fs(L2(�)) with n ≤ 2ρμ�2,

〈Qren
3 〉� +

1

4
〈Qren

4 〉� +
b

100

( 〈n+〉�
�2 + εT

〈nH
+ 〉�

(d�)2

)
≥ 〈Qlow

3 〉� − Cδ
n2

�2 (d2M−2 + R2�−2)

where the fixed number b was introduced in Lemma 6.2.

Proof. By definition

Qren
3 − Qlow

3 =
∑
i �= j

(Pi QL , jw1(xi , x j )Qi Q j + h.c.). (7.31)

We use now Lemma 7.4 with Q′ = QL and the estimate (7.30) to get

Qren
3 − Qlow

3 ≥ −1

4
Qren

4 −
∑
i �= j

(Pi QL , jw1ωPi Pj + h.c.)

− δn0

(
cK −2

�

n+

�2 + C
d2 K 2

�

(d�)2 nH
+

)
. (7.32)

By (7.12) we have
∑
i �= j

(Pi QL , jw1ωPi Pj + h.c.)

= n0

�2

( N∑
j=1

QL , jχ�(x j )
(‖W1ω‖L1χ�(x j ) + ε(x j )

)
Pj + h.c.

)
, (7.33)

with ε(x j ) = W1ω ∗ χ�(x j ) − ‖W1ω‖L1χ�(x j ). The ε(x j )-term can be bounded using
a Cauchy–Schwarz inequality and (6.25),

n0

�2

( N∑
j=1

QL , jχ�(x j )ε(x j )Pj + h.c.

)
≤ C

n0

�2

N∑
j=1

(QL , jχ�εQ
†
L , j + Pjχ�εPj )

≤ C
n0 R2

�4 δ(nH
+ + n0). (7.34)

For the other term we take M − 1 ≤ 2M̃ ≤ M and using the notation DM := (�−2 −
� j )

M̃ , we write

QL , jχ�(x j )
2 Pj + h.c. = QL , j D−1

M [DMχ�(x j )
2]Pj + h.c. (7.35)

Therefore, by Cauchy–Schwarz inequality with weight ε0 > 0,

QL , jχ�(x j )
2 Pj + h.c. ≤ ε0 Pj + ε−1

0 ‖DMχ2
�‖2∞QL , j D−2

M (QL , j )
†.

Now using that ‖DMχ2
�‖ ≤ C�−2M̃ and that QL cut momenta lower than d−2�−1 we

obtain

QL , jχ�(x j )
2 Pj + h.c. ≤ ε0 Pj + ε−1

0 C�−4M̃ QL , j (�
−2 − � j )

−2M̃ (QL , j )
†

≤ ε0 Pj + ε−1
0 Cd8M̃ QL , j (QL , j )

†. (7.36)
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Therefore choosing ε0 = d4M̃ , we have

n0

�2

( N∑
j=1

QL , jχ�(x j )
2‖W1ω‖L1 Pj + h.c.

)
≤ Cδd2M−2 n0

�2 (nH
+ + n0). (7.37)

Inserting (7.34) and (7.37) into (7.33) we find

∑
i �= j

(Pi QL , jw1ωPi Pj + h.c.) ≤ Cδ
n0

�2 (nH
+ + n0)(d

2M−2 + R2�−2). (7.38)

We use this last bound in (7.32) and apply it to the state �,

〈Qren
3 〉� − 〈Qlow

3 〉�
≥ −1

4
〈Qren

4 〉� − Cδ
n

�2 (〈nH
+ 〉� + n)(d2M−2 + R2�−2)

− cδnK −2
�

〈n+〉�
�2 − Cδnd2 K 2

�

〈nH
+ 〉�

(d�)2

≥ −1

4
〈Qren

4 〉� − Cδ
n2

�2 (d2M−2 + R2�−2) − c
〈n+〉�

�2 − Cd2 K 4
�

〈nH
+ 〉�

(d�)2 , (7.39)

where we used n ≤ 2ρμ�2 and �2 = K 2
� ρ−1

μ Y −1. We conclude by choosing c = b
100

and using the relation (H26) between the parameters. ��

7.3. A priori bounds and localization of the number of excitations. The purpose of
this section is to get bounds on the number of excitations of the system. First of all,
Theorem 7.6 gives a priori bounds on n+.

Theorem 7.6. There exists a universal constant C > 0 such that, if � ∈ Fs(L2(�)) is
a normalized n-bosons vector which satisfies

〈H�(ρμ)〉� ≤ −4πρ2
μ�2Y

(
1 − C K 2

BY | log Y |
)

, (7.40)

with K B fixed in “Appendix H”, then

〈n+〉� ≤ C K 2
B K 2

� ρμ�2Y | log Y |, (7.41)

〈Qren
4 〉� ≤ C K 2

B K 2
� ρ2

μ�2Y 2| log Y |, (7.42)∣∣∣ρμ − n

�2

∣∣∣ ≤ C K B K�ρμY 1/2| log Y |1/2. (7.43)

Proof. It is proved in “Appendix D”, using a second localization to "small boxes" of
size  �δ . ��

We also need to bound the number of low excitations, defined in terms of our modified
kinetic energyT . More precisely we define, for a certain K̃ H � 1 fixed in “Appendix H”,
the projectors

Q H = 1(0,K̃ 2
H �−2)(T ), Q H = Q − Q H , (7.44)
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which satisfy

P + Q H + Q H = 1�. (7.45)

We will consider the operators

nL
+ :=

∑
j

Q H, j , ñH
+ :=

∑
j

Q H, j , (7.46)

for which we prove the following result.

Theorem 7.7 (Restriction on nL
+ ). There exist C, η > 0 such that the following holds.

Let � ∈ Fs(L2(�)) be a normalized n-particle vector which satisfies (7.40). Assume
that the potential v is such that ‖v‖1 ≤ Y −1/8. Then, for M � 1 satisfying condition
(H24) there exists a sequence {�m}m∈Z ⊆ Fs(L2(�)) such that

∑
m ‖�m‖2 = 1 and

�m = 1[0,M2 +m](n
L
+ )�m, (7.47)

and such that the following lower bound holds true

〈�,H�(ρμ)�〉 ≥
∑

2|m|≤M
〈�m,H�(ρμ)�m〉 − Cρ2

μ�2Y 2+η

−4πρ2
μ�2Y

(
1 − C K 2

BY | log Y |
) ∑

2|m|>M
‖�m‖2.

Notice that, if such a state � does not exist, then our lower bound is already proven
(see when we apply Theorem 7.7 in (9.80)). From this result we see that, in order to
prove Theorem 6.7, we only need to bound the energy of states satisfying the bound
nL

+ ≤ M. In the remainder of this section, we prove Theorem 7.7. The following lemma
states that for a lower bound we can restrict to states with finitely many excitations n+,
up to small enough errors. The proof of this lemma is inspired by the localization of
large matrices result in [29]. It is also really similar to the bounds in [30, Proposition
21]. It could be interpreted as an analogue of the standard IMS localization formula. The
error produced is written in terms of the following quantities d L

1 and d L
2 :

d L
1 := −ρμ

∑
i

(Pi + Q H,i )

∫
w1(xi , y)dy Q H,i + h.c.

+
∑
i �= j

(Pi + Q H,i )Q H, jw(xi , x j )Q H,i Q H, j + h.c.

+
∑
i �= j

Q H,i (Pj + Q H, j )w(xi , x j )(Pi + Q H,i )(Pj + Q H, j ) + h.c. (7.48)

and

d L
2 :=

∑
i �= j

(Pi + Q H,i )(Pj + Q H, j )w(xi , x j )Q H, j Q H,i + h.c. (7.49)
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Lemma 7.8. Let θ : R → [0, 1] be any compactly supported Lipschitz function such
that θ(s) = 1 for |s| < 1

8 and θ(s) = 0 for |s| > 1
4 . For any M > 0, define cM > 0

and θM such that

θM(s) = cMθ
( s

M
)
,

∑
s∈Z

θM(s)2 = 1.

Then there exists a C > 0 depending only on θ such that, for any normalized state
� ∈ Fs(L2(�)),

〈�,H�(ρμ)�〉 ≥
∑
m∈Z

〈�m,H�(ρμ)�m〉 − C

M2

(
|〈d L

1 〉� | + |〈d L
2 〉� |

)
, (7.50)

where �m = θM(nL
+ − m)�.

Proof. Notice that H� only contains terms that change nL
+ by 0,±1 or ±2. Therefore,

we write our operator as H�(ρμ) = ∑
|k|≤2 Hk , with HknL

+ = (nL
+ + k)Hk . Moreover,

Hk + H−k = d L
k for k = 1, 2. We use this decomposition to estimate the localized

energy,
∑
m∈Z

〈�m,H��m〉 =
∑
m∈Z

∑
|k|≤2

〈θM(nL
+ − m)θM(nL

+ − m + k)�,Hk�〉

=
∑

m,s∈Z

∑
|k|≤2

〈θM(s − m)θM(s − m + k)1{nL
+ =s}�,Hk�〉

=
∑

m,s∈Z

∑
|k|≤2

θM(m)θM(m + k)〈1{nL
+ =s}�,Hk�〉,

where in the last line we changed the index m into s − m. We can sum on s to recognize
∑
m∈Z

〈�m,H��m〉 =
∑
m∈Z

∑
|k|≤2

θM(m)θM(m + k)〈�,Hk�〉. (7.51)

Furthermore the energy of � can be rewritten as

〈�,H��〉 =
∑
|k|≤2

〈�,Hk�〉 =
∑
m∈Z

∑
|k|≤2

θM(m)2〈�,Hk�〉, (7.52)

by definition of θM. Thus, the localization error is
∑
m∈Z

〈�m,H��m〉 − 〈�,H��〉 =
∑
|k|≤2

δk〈�,Hk�〉, (7.53)

with

δk =
∑
m∈Z

(
θM(m)θM(m + k) − θM(m)2) = −1

2

∑
m

(
θM(m) − θM(m + k)

)2
.

(7.54)

Since δ0 = 0, δk = δ−k and d L
k = Hk + H−k we find

∑
m∈Z

〈�m,H��m〉 − 〈�,H��〉 = δ1〈d L
1 〉� + δ2〈d L

2 〉�, (7.55)
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and only remains to prove that |δk | ≤ CM−2. Using (7.54) and the definition of θM,

|δk | = c2
M
2

∑
m∈Z

[
θ
( m

M
)

− θ
(m + k

M
)]2

. (7.56)

We can restrict the sum to m ∈ [− M
2 , M

2

]
, since the other terms vanish due to θ being a

cutoff function. This sum contains M+ 1 terms which we can bound using the Lipschitz
constant L of θ ,

|δk | ≤ c2
M

M + 1

2

L2k2

M2 ≤ 2L2k2

M2 , (7.57)

where in the last inequality we used

c2
M =

(∑
s∈Z

θ
( s

M
)2)−1 ≤ 1

M/4 + 1
. (7.58)

��
To estimate the error in (7.50), we need the following bounds on d L

1 and d L
2 .

Lemma 7.9. Let M̃ > 0 and � ∈ Fs(L2(�)) be a normalized n-bosons vector satis-
fying

� = 1[0,M̃](n
L
+ )�.

Then, assuming the choices of parameters in “Appendix H” we have

|〈d L
1 〉� | + |〈d L

2 〉� | (7.59)

≤ ρ2
μ�2‖v‖1

( 〈n+〉1/2
�

n1/2 +
M̃1/2〈n+〉1/2

�

n
ε
−1/4
N K̃ H +

M̃〈n+〉�
n2 ε

−1/2
N K̃ 2

H

)
+ C〈Qren

4 〉�.

Proof. We give the proof in “Appendix E”. ��
Now we can combine Lemmas 7.8, 7.9 and Theorem 7.6 to prove Theorem 7.7.

Proof of Theorem 7.7. Given a n-sector state � ∈ L2(�n) satisfying (7.40), we can
apply Lemma 7.8 and write �m = θM(nL

+ − m)�. In (7.50) we split the sum into two.
The first part, for |m| < 1

2M, we keep. For |m| > 1
2M, �m satisfies

〈n+〉�m ≥ 〈nL
+ 〉�m ≥ M

4
‖�m‖2, (7.60)

due to the cutoff θM(nL
+ − m). Thanks to condition (H24) on M, this is a larger bound

than (7.41), and thus the assumption of Theorem 7.6 cannot be satisfied for �m and we
must have the lower bound

〈�m,H�(ρμ)�m〉 ≥ −4πρ2
μ�2Y

(
1 − C K 2

BY | log Y |
)
‖�m‖2. (7.61)

We finally bound the last term in (7.50), using Lemma 7.9 with M̃ = n,

|〈d L
1 〉� | + |〈d L

2 〉� | ≤ ρ2
μ�2‖v‖2

1

(1 + ε
−1/4
N K̃ H

n1/2 〈n+〉� +
ε
−1/2
N K̃ 2

H

n
〈n+〉�

)
+ C〈Qren

4 〉�.
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Now we use the condensation estimate (7.41) and the bound (7.42) on Qren
4 to obtain

|〈d L
1 〉� | + |〈d L

2 〉� | (7.62)

≤ ρ2
μ�2‖v‖1

(
Y 1/2| log Y |1/2 K�K B K̃ H ε

−1/4
N + Y | log Y |K 2

� K 2
B K̃ 2

H ε
−1/2
N

)
.

The relation (H13) between the parameters implies that the largest term in (7.62) is the
first one. Using the conditions (H11) and (H24) on εN and M respectively, and the
assumptions on ‖v‖1 we find

|〈d L
1 〉� | + |〈d L

2 〉� |
M2 ≤ ρ2

μ�2Y 2+η. (7.63)

Using the estimates (7.61) for m > 1
2M and (7.63) in formula (7.50) we conclude the

proof. ��

8. Lower Bounds in Second Quantization

8.1. Second quantization formalism. We rewrite the Hamiltonian in the second quan-
tization formalism. Let us introduce the operators, where # can be nothing or † for the
annihilation or creation operators on the space Fs(L2(�)), respectively,

a#
0 := 1

�
a#(θ), and [a0, a†

0] = 1, (8.1)

being the creation and annihilation operators for bosons with zero momentum, where θ

is the sharp localization function on � (see (6.9)). For k ∈ R
2 \ {0} we also define

ã#
k := 1

�
a#(Qeikxθ), (8.2)

the creation and annihilation operators for bosons with non-zero momentum with Q
defined in (6.11), and their regular analogous

a#
k := 1

�
a#(Qeikxχ�), (8.3)

where χ� is the regular localization function defined in “Appendix F”. We have the usual
commutation relations, for k, h ∈ R

2 \ {0}

[̃ak, ãh] = [ak, ah] = 0, and [̃ak, ã†
h] = 1

�2 〈Qeikx , Qeihx 〉. (8.4)

Using that P = 1 − Q and χ̂�(k) = �2χ̂ (k�),

[ak, a†
h] = 1

�2 〈Qeikxχ�, Qeihxχ�〉 = χ̂2((k − h)�) − χ̂(k�)χ̂(h�), (8.5)

and

[ak, a†
h] ≤ 1. (8.6)
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Let us observe, first of all, that

n0 = a†
0a0, n+ = �2

(2π)2

∫
ã†

k ãkdk. (8.7)

Let us introduce, for k ∈ R
2, the kinetic Fourier multiplier

τ(k) := (1 − εT )
[
|k| − 1

2s�

]2

+
+ εT

[
|k| − 1

2ds�

]2

+
. (8.8)

We will need the following technical lemma to control the number operators.

Lemma 8.1. Assume the relation (H27) between the parameters. Let � ∈ Fs(L2(�))

be a normalized state satisfying

1[0,M](nL
+ )� = �, 1[0,2ρμ�2](n+)� = �, (8.9)

then the following bounds hold
〈
�2

∫

{|k|≤2K H �−1}
(a†

k ak + ã†
k ãk)dk

〉
�

≤ CM, (8.10)

〈
�2

∫

R2
(a†

k ak + ã†
k ãk)dk

〉
�

≤ CM + C〈nH
+ 〉�. (8.11)

Proof. The proof is analogous for both the addends, therefore we give the proof only
for the a#

k . We want to compare localization in terms of kinetic energy with localization
in momenta. We use [19, Lemma 5.2] adapted to dimension 2:

Qχ�1{|p|≤K H �−1}χ�Q ≤ C Q H + C
(( K H

K̃ H

)M
+ ε

3/2
N

)
, (8.12)

Q1{|p|≤K H �−1}Q ≤ C Q H + C
(( K H

K̃ H

)M
+ ε

3/2
N

)
, (8.13)

where we recall the definition (7.44) of Q H . Using (8.12) we have the following in-
equality in the N -th Fock sector

�2

(2π)2

∫

{|k|≤2K H �−1}
a†

k akdk

∣∣∣∣
N

=
N∑

j=1

Q jχ�(x j )1(0,2K H �−1](
√−� j )χ�(x j )Q j

≤ CnL
+ +

(( K H

K̃ H

)M
+ ε

3/2
N

)
n+.

Using the bounds from (8.9) and the relation (H27) we deduce
〈
�2

∫

{|k|≤2K H �−1}
a†

k akdk
〉
�

≤ CM + C
(( K H

K̃ H

)M
+ ε

3/2
N

)
ρμ�2 ≤ CM, (8.14)

thus proving (8.10). In order to obtain (8.11) it is enough to estimate the integral on the
complementary subset. We have, again on the N -th sector,

�2
∫

{|k|≥2K H �−1}
a†

k akdk

∣∣∣∣
N

=
N∑

j=1

Q jχ�(x j )1{|k|≥2K H �−1}(
√−� j )χ�(x j )Q j .

(8.15)
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We insert 1 = 1PL + 1Pc
L

and use the Cauchy–Schwarz inequality to estimate the
right-hand side,

Qχ�1[2K H �−1,+∞)(
√−�)χ�Q

≤ 2Q1Pc
L
(
√−�)χ�1[2K H �−1,+∞)(

√−�)χ�1Pc
L
(
√−�)Q.

+ 2Q1PL (
√−�)χ�1[2K H �−1,+∞)(

√−�)χ�1PL (
√−�)Q.

On Pc
L we can use the bound

Q1Pc
L
(
√−�)χ�1[2K H �−1,+∞)(

√−�)χ�1Pc
L
(
√−�)Q ≤ ‖χ�‖2∞Q1Pc

L
(
√−�)Q.

On PL we bound the operator norm, multiplying and dividing by an M power of the
Laplacian and using that χ has M bounded derivatives,

‖1PL (
√−�)χ�1[2K H �−1,+∞)‖

≤ ‖1PL (
√−�)χ�(−�)M/2‖‖(−�)−M/21[2K H �−1,+∞)‖ ≤ C(d2 K H )−M .

We deduce

�2
∫

{|k|≥2K H �−1}
a†

k akdk ≤ CnH
+ + C(d2 K H )−2M n+, (8.16)

and we conclude using (H27) and the assumptions on �. ��

8.2. Second quantized Hamiltonian. We can rewrite the Qlow
3 term (7.28) in second

quantized formalism

Qlow
3 = �2

(2π)4

∫

R2×R2
fL(p)Ŵ1(k)a†

0 ã†
pap−kakdkd p + h.c. (8.17)

An important consideration is that we can restrict the contributions in Qlow
3 to the high

momenta. This is the content of the next lemma.

Lemma 8.2 (Localization of Qlow
3 to high momenta). Assume R ≤ � and the relations

(H16), (H17), (H27) between the parameters. If � ∈ Fs(L2(�)) is a n-particle state
satisfying (7.40) and 1[0,M](nL

+ )� = � then we have

〈� |Qlow
3 �〉 ≥ 〈� |Qhigh

3 �〉 − b

100�2 〈n+〉�, (8.18)

where

Qhigh
3 = �2

(2π)4

∫

PH ×R2
fL(p)Ŵ1(k)a†

0 ã†
pap−kakdkd p + h.c., (8.19)

with PH defined in (7.25).
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Proof. First note that

〈� | (Qlow
3 − Qhigh

3 )�〉 = �2

(2π)4

∫

Pc
H ×R2

fL(p)Ŵ1(k)〈� | a†
0 ã†

pap−kak�〉dkd p + h.c.

(8.20)

For any ε > 0, using Cauchy–Schwarz on the creation and annihilation operators,

〈� | (Qlow
3 − Qhigh

3 )�〉
≥ −Cδ�2

∫

Pc
H ×R2

fL(p)
(
ε〈� | ã†

pa†
0a0ãp�〉 + ε−1〈� | a†

k a†
p−kap−kak�〉

)
dkd p,

(8.21)

where we used the fact that ‖Ŵ1‖∞ ≤ ‖W1‖1 ≤ Cδ (from Lemma 6.4). We now use
the following inequalities, obtained by Lemma 8.1 and bounding fL by 1,

�2
∫

Pc
H ×R2

fL (p)〈� | ã†
pa†

0a0ã p�〉dkd p ≤ n〈n+〉�
∫

Pc
H

dk = n〈n+〉�
�2 K 2

H , (8.22)

�4
∫

Pc
H ×R2

fL (p)〈� | a†
k a†

p−kap−kak�〉dkd p ≤ CM〈n+〉�. (8.23)

Therefore, applying to (8.21) we obtain

〈� | (Qlow
3 − Qhigh

3 )�〉 ≥ −Cδ
〈n+〉�

�2 n
(
εK 2

H + ε−1M
n

)
. (8.24)

Choosing ε = K −1
H

M1/2

n1/2 , we obtain

〈� | (Qlow
3 − Qhigh

3 )�〉 ≥ −Cδ
〈n+〉�

�2 n
K HM1/2

n1/2 . (8.25)

We use Theorem 7.6 and (H17) to bound n1/2 by 2ρ
1/2
μ � and get

〈� | (Qlow
3 − Qhigh

3 )�〉 ≥ −Cδρ1/2
μ �K HM1/2 〈n+〉�

�2 .

By the assumption (H16) the error can be absorbed in a small fraction of the spectral
gap. ��

We are ready to state a bound for the second quantized Hamiltonian.

Proposition 8.3. Assume R  (ρμδ)−1/2 and the relations of “Appendix H” between
the parameters. Let � be a normalized n-particle state satisfying (7.40) and � =
1[0,M](nL

+ )�. Then

〈� |H�(ρμ)�〉 ≥ 〈� |H2nd
� (ρμ)�〉 − C�2ρ2

μδ
(

d2M−2 + R2�−2
)
, (8.26)
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where

H2nd
� := �2

(2π)2

∫

R2
(1 − εN )τ (k)a†

k akdk +
b

2�2 n+ + b
εT

8d2�2 nH
+ + b

εT n0nH
+

16d2�2(ρμ�2)

(8.27)

+
1

2�2 a†
0a†

0a0a0(ĝ0 + ĝω(0)) − ρμa†
0a0 ĝ0 (8.28)

+
(( 1

�2 a†
0a0 − ρμ

)
Ŵ1(0)

1

(2π)2

∫

R2
χ̂�(k)a†

k a0dk + h.c.
)

(8.29)

+
( 1

�2 a†
0a0ω̂W1(0)

1

(2π)2

∫

R2
χ̂�(k)a†

k a0dk + h.c.
)

(8.30)

+ Qrest
2 + Qhigh

3 (8.31)

+
(( 1

�2 a†
0a0 − ρμ

)
Ŵ1(0) +

1

�2 a†
0a0Ŵ1ω(0)

) �2

(2π)2

∫

R2
a†

k akdk, (8.32)

where τ(k) is defined in (8.8) and with

Qrest
2 = 1

(2π)2

∫

R2
(Ŵ1(k) + (̂W1ω)(k))a†

0a†
k aka0dk

+
1

2

∫

R2
Ŵ1(k)

(
a†

0a†
0aka−k + a†

k a†
−ka0a0

)
dk.

Proof. We use the lower bound for H�(ρμ) from Corollary 7.3. First of all, in the
kinetic energy expression (6.14) we remove the positive parts depending on the Neumann
Laplacian, namely εN (−�N ) and T Neu,s. Using the quantization, we obtain from (6.14)
the expressions in (8.27) with the main kinetic energy term and the spectral gaps. We
bounded part of the spectral gap to get the last term in (8.27) using n0 ≤ 2ρμ�2 (which
follows from (7.43) and (H17)). This term will be useful later (in particular in the proof
of Lemma 9.2).

The expressions (8.28), (8.29), (8.30), Qrest
2 and (8.32) are obtained from (7.16),

(7.17), (7.18), (7.19) and (7.20) respectively, via a straightforward application of the
quantization rules. Note that in (8.29) and (8.30) we have changed a Ŵ1(k) (resp.
ω̂W1(k)) into Ŵ1(0) (resp. ω̂W1(0)). This can be justified by using (6.25) in (7.17)
and (7.18), the error being of order R2ρ2

μδ. We can reabsorb the term

−C(ρμ + ρ0)δR2 n+

�2 ,

in a fraction of the spectral gap because R  (ρμδ)−1/2. Let us observe that thanks to
Lemma 7.5 we can replaceQren

3 + 1
4Qren

4 byQlow
3 inH�(ρμ). Part of the error is absorbed

in the spectral gap, other part appears in (8.26). Finally we change Qlow
3 into Qhigh

3 using
Lemma 8.2, the error being absorbed in a fraction of the spectral gap again. ��

8.3. c-number substitution. In this section we show how the energy can be bounded if
we minimize over a specific class of coherent states, which are eigenvectors for the anni-
hilation operator of the condensate. In this way we can turn the action of the condensate
operators in the form of multiplication per complex numbers. Let us define

|z〉 = e−
( |z|2

2 +za†
0

)
�, (8.33)
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for any z ∈ C. As anticipated, we have

a0|z〉 = z |z〉. (8.34)

Given any state � we define the z-dependent state

�(z) := 〈z | �〉, (8.35)

obtained by the partial inner product in Fs(RanP). One can verify that these states
generate the space Fs(RanQ). Moreover,

1 = 1

π

∫

C

|z〉〈z| dz. (8.36)

We define the following z-dependent density,

ρz := |z|2
�2 , (8.37)

and z-dependent Hamiltonian,

K(z) = 1

2
ρ2

z �2(ĝ0 + ĝω(0)) − ρμρz ĝ0�
2 (8.38)

+ KBog +
b

2�2 n+ +
εT b

8d2�2 nH
+ + b

εT |z|2nH
+

16d2�2(ρμ�2)
+ εR(ρμ − ρz)

2δ�2 (8.39)

+ (ρz − ρμ)Ŵ1(0)
�2

(2π)2

∫

R2
a†

k akdk + Qex
1 (z) + Qex

2 (z) + Q3(z), (8.40)

where εR  1 is fixed in “Appendix H”, and

KBog := �2

2(2π)2

∫

R2

(
A(k)(a†

k ak + a†
−ka−k) + B(k)(aka−k + a†

k a†
−k)

+ C(k)(a†
k + a†

−k + ak + a−k)
)

dk, (8.41)

with

A(k) := (1 − εN )τ (k) + B(k), B(k) := ρz Ŵ1(k),

C(k) := (ρz − ρμ)

�2 Ŵ1(0)χ̂�(k)z,

Qex
1 (z) := ρz (̂ωW1)(0)

1

(2π)2

∫

R2
χ̂�(k)a†

k zdk + h.c.,

Qex
2 (z) := �2

(2π)2 ρz

∫

R2
(ω̂W1(0) + ω̂W1(k))a†

k akdk,

Q3(z) := �2

(2π)4

∫

PH ×R2
fL(p)Ŵ1(k)

(
z̄ã†

pap−kak + h.c.
)

dkd p (8.42)

and τ(k) defined in (8.8). With these notations, the following theorem holds. Recall that
H2nd

� is given by Proposition 8.3.
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Theorem 8.4. Assume R ≤ � and (H17). For any normalized n-particle state � satis-
fying � = 1[0,M](nL

+ )� and (7.40) we have

〈� |H2nd
� �〉 ≥ inf

z∈R+
inf
�

〈� |K(z)�〉 − Cρμδ(1 + εR K 4
� K 2

B | log Y |), (8.43)

where the second infimum is over all the normalized states in F (RanQ) such that

� = 1[0,M](nL
+ )�, and � = 1[0,2ρμ�2](n+)�. (8.44)

Proof. The theorem is proven via a standard technique of calculating the actions of
creation and annihilation operators for the condensate on the coherent state and using its
eigenvector properties, for details see [19, Theorem 8.5]. Practically speaking it consists
in the formal substitutions

a0 �→ z, a†
0 �→ z, a†

0a0 �→ |z|2 − 1, (8.45)

and getting rid of the lower order terms in |z| because they produce errors of the form

ρμδ = ρ2
μ�2δ2 K −2

� . (8.46)

In order to make the last term in (8.39) appear, we add and subtract εR(ρμ −n0�
−2)2δ�2

to H2nd
� and estimate the negative contribution, recalling the estimates in Theorem 7.7

and that n2
+ ≤ nn+ we get

−εR

(
ρμ − n0

�2

)2
δ�2 ≥ −2εRδ�−2((ρμ�2 − n)2 + n+n)

≥ −CεR
δ

�2 n2 K 2
BY | log Y |K 2

� = −CεRρμδK 2
B | log Y |K 4

� ,

which is coherent with the error terms. ��

9. Lower Bounds for the Hamiltonian K
9.1. Estimate of K for ρz far from ρμ. The purpose of this section is to show that for
values of ρz far from the density ρμ it is possible to prove a rough estimate on the energy
and eliminate these values from the analysis. This is the content of the proposition below.
We recall that K(z) is defined in (8.38), and we use the notations εM = M

ρμ�2 and

δ1 = ε2
T εM

d8 K 4
�

(
1 +

K 2
�

K 2
H

)
, δ2 = ε

1/2
M , δ3 = δ| log(dsK�)| +

(d K�)
4

ε2
T

. (9.1)

Proposition 9.1. Assume the relations between the parameters in “Appendix H”. There
exists a C > 0, such that if we have ρμa2 ≤ C−1 and

|ρμ − ρz | ≥ Cρμ max
(
(δ1 + δ2 + δ3)

1/2, δ1/2
)
, (9.2)

then for any state � ∈ F (RanQ) satisfying (8.44), we have

〈� |K(z)�〉 ≥ −4πρ2
μ�2δ + 8π

(1

2
+ 2� + log π

)
ρ2

μ�2δ2. (9.3)
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Notice that the second order term in (9.3) is larger than the one aimed for in Theorem 6.7.
So the statement of the proposition is that the energy is too large unless |ρμ − ρz | is
small. The proof of the proposition relies on the technical estimate given by the following
lemma.

Lemma 9.2. Assume the relations between the parameters in “Appendix H”. For any
normalized � ∈ F (RanQ) such that (8.44) holds,

〈� |K(z)�〉 ≥ −4πρ2
μ�2δ + 4π�2(ρμ − ρz)

2δ − Cρzρμ�2δδ1

− Cρ1/2
μ (ρμ + ρz)

3/2�2δδ2 − Cρ2
z �2δδ3 − Cρμδ2 K −2

� (ds)−4. (9.4)

Proof of Lemma 9.2. We start by estimating the Q1 terms. We have for any ε > 0
∫

R2
χ̂�(k)(a†

k z + ak z̄)dk

≤
∫

R2
|χ̂�(k)|(ε|z|2 + ε−1a†

k ak)dk

≤ C
(
ε|z|2 + ε−1|χ̂�(0)|

∫

k∈Pc
H

a†
k akdk + ε−1

∫

k∈PH

|χ̂�(k)|a†
k akdk

)
.

Considering a � like in the assumption we have, using |χ̂�(0)| = �2‖χ‖1 together with
Lemma 8.1,

〈
|χ̂�(0)|

∫

k∈Pc
H

a†
k akdk +

∫

k∈PH

|χ̂�(k)|a†
k akdk

〉
�

≤ C
(
M + ρμ�2 sup

k∈PH

(�−2|χ̂�(k)|)
)
. (9.5)

Now, using (F4) and optimizing with ε = √
M/|z|2,

〈− �2

(2π)2

∫

R2
C(k)(a†

k + a†
−k + ak + a−k)dk + Qex

1 (z)〉�
≥ −Cδ

√
M|z|(|ρz − ρμ| + ρz)

≥ −C
( M
ρμ�2

)1/2
ρ1/2

μ �2δ(ρμ + ρz)
3/2. (9.6)

For the terms that are quadratic in the field operators, we use the estimate
∣∣∣∣
〈
�2

∫

R2
Ŵ1(k)a†

k akdk

〉

�

∣∣∣∣ ≤ Cδ(M + 〈nH
+ 〉�), (9.7)

from Lemma 8.1 to obtain that
〈
Qex

2 + (ρz − ρμ)Ŵ1(0)
�2

(2π)2

∫

R2
a†

k akdk +
�2

(2π)2

∫

R2
Bka†

k akdk

〉

�

≥ −C(ρz + ρμ)
(
ρμ�2δεM + δ〈nH

+ 〉�
)
, (9.8)

where the Bk has been extracted from the expression of the Ak . The first term is coherent
with the error in the result and the last one can be reabsorbed in a fraction of the spectral
gap because of relation (H8).
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For the remaining part of Ak involving τk we add and subtract −ρzδε
−1/2 +ετk , with

ε ≥ εN and estimate

(1 − εN )τk ≥ Ãk − ρzδε
−1/2 + ετk, (9.9)

with

Ãk = (1 − 2ε)
[
|k| − 1

2ds�

]2

+
+ ρzδε

−1/2. (9.10)

We treat the terms in (9.9) separately, adding them to the remaining parts of the Hamil-
tonian. The simplest one is

− �2

(2π)2 ρzε
−1/2δ

〈 ∫

R2
a†

k akdk
〉
�

≥ −Cε−1/2ρzδ(M + 〈nH
+ 〉�), (9.11)

where we used Lemma 8.1. We use this estimate to fix the choice of ε in order to absorb
the last term in the fraction of the spectral gap represented by the second to last term in
(8.39). This yields

ε = C−1ε−2
T (d K�)

4, (9.12)

for some sufficiently large constant C and the relations (H23), (H8) ensure that εN ≤
ε  1. For the Ã term plus the B terms in the Hamiltonian we use the Bogoliubov
diagonalization procedure stated in Theorem B.1 to obtain

�2

(2π)2

∫

R2
Ãka†

k ak +
Bk

2
(a†

k a†
−k + aka−k) dk ≥ − �2

2(2π)2

∫

R2
Ãk −

√
Ã2

k − B2
k dk,

(9.13)

and then we use Lemma C.5 and its proof choosing the parameters K1 = ρzε
−1/2/2,

K2 = 2ρz , K = (2ds�)−1 and κ = (1 − 2ε) to derive that

(9.13) ≥ − �2

2(2π)2

(
ρ2

z
1 + ε

1 − 2ε

∫

R2
dk

Ŵ 2
1 (k) − Ŵ 2

1 (0)1{|k|≤�−1
δ }

2|k|2 + Cρzε
1/2δ(ds�)−2

+
C

(1 − 2ε)
ρ2

z δ2(1 + R2�−2
δ ) +

Cρ2
z

1 − 2ε
δ2| log((ds�)−1�δ)|

)
. (9.14)

Using now Cauchy–Schwarz on the second term, Lemma 6.4, writing only the dominant
terms due to the relations between the parameters and recalling the definition (6.23) of
�δ we obtain

(9.13) ≥ −1

2
ρ2

z �2 ĝω(0) − Cρ2
z �2δ

(
ε + δ2ρμ R2 + δ| log(dsK�)|

) − Cδ�2(ds�)−4.

(9.15)

Due to relation (H3) the second term gives δ3, while the third one gives the last term in
(9.4).
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We continue considering the third term in (9.9) and adding it to the Q3. The latter is
an integral for k ∈ PH , and dropping the part of the τk for k ∈ Pc

H and using that for
k ∈ PH then τk ≥ |k|2/2, we have to estimate

�2

(2π)2

∫

k∈PH

(ε

2
k2a†

k ak +
1

(2π)2

∫
fL(p)Ŵ1(k)(z̄ã†

pap−kak + a†
k a†

p−k ãpz)
)

d pdk.

(9.16)

We complete the square in the previous expression, introducing the operators

σk := ak +
2

(2π)2

∫
fL(p)

Ŵ1(k)

ε|k|2 za†
p−k ãpd p, (9.17)

so that

(9.16) = �2

(2π)2

∫

k∈PH

(ε

2
k2σ

†
k σk

− 2|z|2
ε(2π)4

∫∫
fL(p) fL(s)

Ŵ1(k)2

k2 ã†
s as−ka†

p−k ãp

)
d pdsdk

≥ − 2|z|2�2

ε(2π)6

∫

k∈PH

Ŵ1(k)2

k2
∫∫

fL(p) fL(s )̃a†
s (a†

p−kas−k + [as−k, a†
p−k])̃apd pdsdk.

For the term without commutator, estimated on a state � which satisfies (8.44) and using
Cauchy–Schwarz

ã†
s a†

p−kas−k ãp ≤ C (̃a†
s a†

p−kap−k ãs + ã†
pa†

s−kas−k ãp), (9.18)

we have

2|z|2�2

ε(2π)6

〈∫

k∈PH

dk
Ŵ1(k)2

k2

∫∫
fL(p) fL(s )̃a†

s a†
p−kap−k ãsd pds

〉

�

≤ C |z|2ε−1 �4δ2

K 2
H

〈∫

k∈PH

∫
fL(s )̃a†

s a†
k akãsdsdk

〉

�

∫

p∈PL

d p

≤ Cε−1 δ2

K 2
H

d−4Mρμρz�
2, (9.19)

where we used Lemma 8.1 since the support of fL is included in the complement of
PH , and the estimate, for k ∈ PH ,

Ŵ1(k)2

2k2 ≤ C K −2
H δ2�2. (9.20)

For the commutator part we use the estimate (8.6), the Cauchy–Schwarz inequality

ã†
s [as−k, a†

p−k ]̃ap ≤ Cã†
s ãs + Cã†

pãp, (9.21)
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and Lemma 3.9 applied to Ŵ1 instead of ĝ paying a small error, we get

−2|z|2�2

ε(2π)6

〈∫

k∈PH

Ŵ1(k)2

k2

∫∫
fL(p) fL(s )̃a†

s [as−k, a†
p−k ]̃apd pdsdk

〉

�

≥ −C
|z|2�2

ε
δ

〈∫∫
fL(p) fL(s )̃a†

pãpd pds

〉

�

≥ −Cε−1ρzδMd−4, (9.22)

where in the last inequality we used Lemma 8.1.
Collecting formulas (9.6), (9.8), (9.15), (9.19) and (9.22) and observing that

1

2
ρ2

z �2 ĝ0 − ρzρμ�2 ĝ0 = 1

2
(ρz − ρμ)2�2 ĝ0 − 1

2
ρ2

μ�2 ĝ0, (9.23)

we obtain the result. ��
Proof of Proposition 9.1. We observe that, thanks to the relations (H6), (H8), (H22), we
have δ j  1 for j = 1, 2, 3. Each coefficient of the δ j in formula (9.4) can be bounded
by

Cδ(ρμ − ρz)
2�2 + Cρ2

μ�2δ. (9.24)

Therefore, Lemma 9.2 and ĝ0 = 8πδ implies the bound

〈K(z)〉� ≥ − 1

2
ρ2

μ�2 ĝ0 +
1

2
(ρμ − ρz)

2�2 ĝ0(1 − C(δ1 + δ2 + δ3))

− Cρ2
μ�2δ(δ1 + δ2 + δ3 + δ2(K�ds)−4)

≥ − 1

2
ρ2

μ�2 ĝ0 +
1

4
�2 ĝ0(ρμ − ρz)

2 − Cρ2
μ�2δ(δ1 + δ2 + δ3 + δ2(K�ds)−4).

Note that δ2(K�ds)−4  δ due to (H12) and (H17). By the assumption on (ρμ − ρz)
2

the second term is of higher order both of the δ j errors and of the desired quantity in the
statement of the Proposition. ��

9.2. Estimate of K for ρz � ρμ. We study here the main case, that is when ρz is close
to ρμ. More precisely, we consider the complementary situation to (9.2), when

|ρμ − ρz | ≤ K −2
� ρμ, (9.25)

where we used that, thanks to the choices of the parameters (H8), (H17) and (H22), we
have

K 2
� max

(
(δ1 + δ2 + δ3)

1/2, δ1/2
)

≤ C−1. (9.26)

Using again (9.23) and reabsorbing the term (ρz − ρμ)Ŵ1(0) �2

(2π)2

∫
a†

k akdk in part
of the spectral gap of n+, we have the estimate of K(z) from (8.38),

K(z) ≥ − 1

2
ρ2

μ�2 ĝ0 +
1

2
ρ2

z �2 ĝω(0) +
1

2
(ρz − ρμ)2�2 ĝ0

+ KBog +
b

4�2 n+ + b
εT

8d2�2 nH
+ + b

εT |z|2nH
+

16d2�2(ρμ�2)
+ εR(ρμ − ρz)

2δ�2

+ Qex
1 (z) + Qex

2 (z) + Q3(z), (9.27)
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and in the following we want to give a lower bound for the expression above using
a diagonalization method for the Bogoliubov Hamiltonian. In order to do that, let us
introduce a couple of new creation and annihilation operators

bk := 1√
1 − α2

k

(ak + αka†
−k + ck), (9.28)

where

αk := B(k)−1
(
A(k) −

√
A(k)2 − B(k)2

)
,

ck := 2C(k)

A(k) + B(k) +
√
A(k)2 − B(k)2

1{|k|≤ 1
2 K H �−1},

with A,B, C are defined in (8.41) and the diagonalized Bogoliubov Hamiltonian

KDiag
H := �2

(2π)2

∫

{|k|≥ 1
2 K H �−1}

D(k)b†
k bkdk, (9.29)

where

D(k) := 1

2

(
A(k) +

√
A(k)2 − B(k)2

)
. (9.30)

Theorem 9.3. Assume the relations between the parameters in “Appendix H”. For any
state � ∈ Fs(L2(�)) such that (8.44) holds and 9

10ρμ ≤ ρz ≤ 11
10ρμ we have

〈KBog〉� +
1

2
ρ2

z �2(ĝω)0 +
1

2
(ρz − ρμ)2�2 ĝ0

≥ (1 − εK )
〈
KDiag

H

〉
�

+ 4π
(

2� +
1

2
+ log π

)
ρ2

z �2δ2

− C(ρμ − ρz)
2�2δ2ρμ R2 − Cρ2

μ�2δ(K 4−M
H K�δ

−1/2) + Cr(ρμ)�2,

where the error term is given by

r(ρμ) := ρ2
μδ2(δ| log(δ)|R2ρμ + δ| log(δ)| + d + εT | log δ| + (sK�)

−1 + εN δ−1).
In the proof of Theorem 9.3 we are going to use the following formulas and estimates

for the commutators of the operators, recalling that χ̂� is even,

[bk, bh] = αk − αh√
1 − α2

k

√
1 − α2

h

(
(̂χ2)((k + h)�) − χ̂(k�)χ̂(h�)

)
, (9.31)

[bk, b†
h] = 1 − αkαh√

1 − α2
k

√
1 − α2

h

(
(̂χ2)((k − h)�) − χ̂(k�)χ̂(h�)

)
, (9.32)

[̃a†
p, b†

k ] = αk√
1 − α2

k

[̃a†
p, ak] = αk√

1 − α2
k

�−2〈eipx , Qχ�eikx 〉, (9.33)

[̃ap, b†
−k] = 1√

1 − α2
k

[̃ap, a†
−k] = 1√

1 − α2
k

(χ̂((p + k)�) − θ̂ (p�)χ̂(k�)). (9.34)
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Proof. Let us start by showing that the contribution coming from the C(k) gives an error
term for |k| > 1

2 K H �−1.

By Cauchy–Schwarz we have a†
k + ak ≤ a†

k ak + 1 and then we recognize n+ (8.7),

�2

2(2π)2

∫

{|k|> 1
2 K H �−1}

C(k)(a†
k + a†

−k + ak + a−k) dk

≥ −C |ρμ − ρz ||Ŵ1(0)||z|
∫

{|k|> 1
2 K H �−1}

|χ̂�(k)|(a†
k ak + 1) dk

≥ −Cρμδ|z|(n+ + 1)K 4−M
H ,

where we use the assumption on ρz and that by Lemma F.1,

�−2 sup
|k|> 1

2 K H �−1

(1 + (k�)2)2|χ̂�(k)| ≤ C K 4−M
H . (9.35)

When we apply to � we have n+ ≤ 2ρμ�2 and

�2

2(2π)2

∫

{|k|> 1
2 K H �−1}

C(k)〈a†
k + a†

−k + ak + a−k〉� dk ≥ −Cρ2
μ�2δ(K 4−M

H
√

ρμ�).

(9.36)

Therefore

KBog ≥ K̃Bog − Cρ2
μ�2δ(K 4−M

H K�δ
−1/2), (9.37)

where K̃Bog is the same as KBog but with C(k) substituted by

C̃(k) := C(k)1{|k|≤ 1
2 K H �−1}. (9.38)

The bound on the commutator (8.6) allows us to use Theorem B.1 to diagonalize the
Bogoliubov Hamiltonian

K̃Bog ≥ K̃Diag − �2

2(2π)2

∫

R2

(
A(k) −

√
A(k)2 − B(k)2

)
dk

− (ρz − ρμ)2Ŵ1(0)2 z2

(2π)2�2

∫

{|k|≤ 1
2 K H �−1}

|χ̂�(k)|2
A(k) + B(k)

dk,

where

K̃Diag = �2

(2π)2

∫
(1 − α2

k )Dkb†
k bkdk ≥ �2

(2π)2

∫

{|k|> 1
2 K H �−1}

(1 − α2
k )Dkb†

k bkdk.

(9.39)

Using the inequality |αk | ≤ Cρzδk−2 ≤ C K 2
� K −2

H we find

K̃Diag ≥ KDiag
H (1 − C K 4

� K −4
H ). (9.40)
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The calculation of the Bogoliubov integral is given in “Appendix C”. Combining the
results of Lemma C.1, Lemma C.2 and Proposition C.3 and multiplying everything by
�2 we find

− �2

2(2π)2

∫

R2

(
A(k) −

√
A(k)2 − B(k)2

)
dk +

1

2
ĝω(0)ρ2

z �2

≥ 4π
(

2� +
1

2
+ log π

)
ρ2

z �2δ2 + r(ρμ)�2, (9.41)

where r(ρμ) is defined in the statement of the theorem. For the remaining term we use
the estimate

A(k) + B(k) ≥ 2ρz Ŵ1(k) ≥ 2ρz Ŵ1(0)(1 − Cδ(k R)2), (9.42)

where we used a Taylor expansion and the fact that W1 is even. By this last estimate,
together with Lemma F.1 and (6.24) we obtain

−(ρz − ρμ)2Ŵ 2
1 (0)

z2

(2π)2�2

∫

{|k|≤ 1
2 K H �−1}

|χ̂�(k)|2
A(k) + B(k)

≥ −(ρz − ρμ)2 Ŵ1(0)

2
�2(1 + Cρμδ2 R2 K 2

H K −2
�

)

≥ −(ρz − ρμ)2 ĝ(0)

2
�2(1 + CρμδR2),

where in the last line we used K H  δ−1/2 from (H16). ��

9.3. Contribution of Q3. The aim of this section is to bound the 3Q term from below,
namely

Q3(z) = z̄�2

(2π)4

∫

PH ×R2
Ŵ1(k) fL(p)(̃a†

pap−kak + h.c.)dkd p,

which turns out to be controlled by the quadratic Hamiltonian KDiag
H defined in (9.29),

absorbing Qex
2 and Qex

1 . More precisely we prove

Theorem 9.4. Assume the relations between the parameters in “Appendix H” to be
satisfied. Then there exists a universal constant C > 0 such that for any state � satisfying
(8.44) we have

〈
(1 − εK )KDiag

H + Q3(z) + Qex
2 + Qex

1 +
b

100

n+

�2 +
εT b

100

nH
+

(d�)2

〉

�

≥ −Cρ2
z �2δ2

(
δK −8

H K 10
� d−4 + ε−1

K K −12
H K 10

� d−8 + d−8 K 2
� K −4

H

+ ε−1
K K −2M−8

H K 6
� d−8 + δK 2

� | log δ|2 + δ−1 K 2
� d8M−2ε−1

T

+ ε
1/2
M (K 4

� K −4
H + δ−1 K −M

H d−2)
)
.
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Remark 9.5. Note that we controlQ3 +Qex
2 using a large fraction ofKDiag

H . It is important

to remember that KDiag
H is not the kinetic energy, but the Hamiltonian arising from the

Bogoliubov diagonalization—sometimes KDiag is called the excitation Hamiltonian.
The kinetic energy is already contributing to main order in the energy, and we use it to
obtain the LHY term (Theorem 9.3). The operator KDiag

H is much smaller than the kinetic
energy, and this is why we can use all of it to control Q3 + Qex

2 .

In order to prove this theorem, we start by rewriting Q3(z) in terms of the bk’s defined
in (9.28). Notice that ck = cp−k = 0 if k ∈ PH and p ∈ PL , and

ak = bk − αkb†
−k√

1 − α2
k

, ap−k = bp−k − αp−kb†
k−p√

1 − α2
p−k

. (9.43)

Therefore,

ap−kak = bp−kbk − αkbp−kb†
−k − αp−kb†

k−pbk + αp−kαkb†
k−pb†

−k√
1 − α2

k

√
1 − α2

p−k

,

and Q3(z) = Q(1)
3 + Q(2)

3 + Q(3)
3 + Q(4)

3 where

Q(1)
3 = z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)√
1 − α2

k

√
1 − α2

p−k

(̃
a†

pbp−kbk + αkαp−k ã†
pb†

k−pb†
−k + h.c.

)
,

(9.44)

Q(2)
3 = − z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)αk√
1 − α2

k

√
1 − α2

p−k

(̃
a†

pb†
−kbp−k + b†

p−kb−k ãp
)
, (9.45)

Q(3)
3 = − z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)αp−k√
1 − α2

k

√
1 − α2

p−k

(̃
a†

pb†
k−pbk + b†

k bk−pãp
)
, (9.46)

Q(4)
3 = − z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)√
1 − α2

k

√
1 − α2

p−k

αk[bp−k, b†
−k](̃a†

p + ãp). (9.47)

In the remaining of this section, we get lower bounds on those four terms (Lem-
mas 9.7, 9.9 and 9.11 below) hence proving Theorem 9.4.

We collect here some important technical estimates which are going to be useful in
the following.

Lemma 9.6. The following bounds hold:

|αk | ≤ Cρzδ|k|−2 ≤ C K 2
� K −2

H , for |k| ≥ 1

2
K H �−1, (9.48)

Dk ≥ 1

2
|k|2 ≥ 1

8
K 2

H �−2, for |k| ≥ 1

2
K H �−1, (9.49)

∣∣∣∣ρz (̂ωW1)(0) − 1

(2π)2

∫

PH

Ŵ1(k)αkdk

∣∣∣∣ ≤ Cρzδ
2| log δ|, (9.50)

∣∣∣∣(̂ωW1)(0) − 1

(2π)2

∫

PH

Ŵ1(k)2

2Dk
dk

∣∣∣∣ ≤ Cδ2| log δ|, (9.51)
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and

ρz
�2

(2π)2

∫

R2
(̂W1ω)(k)a†

k akdk

≥ ρz (̂W1ω)(0)
�2

(2π)2

∫

R2
a†

k akdk − 4ρzδnH
+ − Cρzδd−2 R

�
n+. (9.52)

Proof. The first two inequalities are straightforward from the definitions of the terms.
For the third one we split the difference in the following way,

∣∣∣∣ρz (̂ωW1)(0) − 1

(2π)2

∫

k∈PH

Ŵ1(k)αkdk

∣∣∣∣

≤ C

∣∣∣∣ρz

∫

k /∈PH

Ŵ1(k)ĝk − Ŵ1(0)ĝ01{|k|≤�−1
δ }

2k2 dk

∣∣∣∣ + C

∣∣∣∣
∫

k∈PH

Ŵ1(k)
(
αk − ρz

ĝk

2k2

)
dk

∣∣∣∣
=: (I ) + (I I ). (9.53)

For the first integral we do a further splitting of the domain of integration, considering
(I ) ≤ (I,<) + (I,>) for |k| ≤ �−1

δ or otherwise, respectively. For (I,<) we consider
a Taylor expansion of the numerator and we get, recalling the symmetry of g which in
the integration drops the first order,

(I,<) ≤ Cρz R2δ2
∫

{|k|≤�−1
δ }

≤ Cρz R2δ2�−2
δ . (9.54)

For the (I,>) we proceed by a direct calculation and obtain

(I,>) ≤ Cρzδ
2 log(K H �−1�δ). (9.55)

Let us analyze the second integral. We have that |Bk/Ak | ≤ 1/2 and therefore we can
expand in the following way

Ŵ1(k)αk = ρ−1
z Ak

(
1 −

√
1 − B2

k

A2
k

)
� ρz

Ŵ1(k)2

2Ak
+ Cρ3

z
Ŵ1(k)4

A3
k

. (9.56)

We deduce

(I I ) ≤ C

∣∣∣∣
∫

k∈PH

(
Ŵ1(k)αk − ρz

Ŵ1(k)2

2Ak

)
dk

∣∣∣∣ + Cρz

∣∣∣∣
∫

k∈PH

Ŵ1(k)

(
Ŵ1(k)

2Ak
− ĝk

2k2

)
dk

∣∣∣∣

≤ Cρ3
z

∫

k∈PH

Ŵ1(k)4

A3
k

dk + Cρz

∣∣∣∣
∫

k∈PH

Ŵ1(k)

(
Ŵ1(k)

2Ak
− ĝk

2k2

)
dk

∣∣∣∣

≤ Cρ3
z �4δ4 K −4

H + Cρz

∣∣∣∣
∫

k∈PH

Ŵ1(k)2
(

1

2Ak
− 1

|k|2
)

dk

∣∣∣∣

+ Cρz

∣∣∣∣
∫

k∈PH

(
Ŵ1(k)

Ŵ1(k) − ĝk

2k2

)
dk

∣∣∣∣,
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where we used that Ak ≥ 1
2 |k|2 for k ∈ PH . For the remaining terms, we use that in PH

we have 0 < k2 − τk ≤ 2|k|(ds�)−1,

Cρz

∣∣∣∣
∫

k∈PH

Ŵ1(k)2

k2

(
k2 − Ak

Ak

)
dk

∣∣∣∣ ≤ Cρz

∫

k∈PH

Ŵ1(k)2

k2

(
2|k|(ds�)−1

k2 + ρz
Ŵ1(k)

k2

)

≤ Cρzδ
2(ds)−1 K −1

H + Cρ2
z �2δ3 K −2

H .

By Cauchy–Schwarz inequality we get for the last term

ρz

∣∣∣∣
∫

k∈PH

(
Ŵ1(k)

Ŵ1(k) − ĝk

2k2

)
dk

∣∣∣∣

≤ Cρzδ

∫

k∈PH

Ŵ1(k)2

2k2 dk + Cρzδ
−1

∫

k∈PH

(Ŵ1(k) − ĝk)
2

2k2 dk.

We complete the domain of the integrals: by Lemma 6.4 we get

ρzδ

∫

k∈PH

Ŵ1(k)2

2k2 dk ≤ Cρzδĝω(0) + Cρzδ

∫

k /∈PH

Ŵ1(k)2 − Ŵ1(0)21{|k|≤�−1
δ }

2k2 dk

≤ Cρzδ
2 + Cρzδ

3(R2�−2
δ + log(K H �−1�δ)),

and

ρzδ
−1

∫

k∈PH

(Ŵ1(k) − ĝk)
2

2k2 dk

≤ Cρzδ
−1 R4

�4 ĝω(0) + Cρzδ
−1

∣∣∣∣
∫

k /∈PH

(Ŵ1(k) − ĝk)
2 − (Ŵ1(0) − ĝ0)

21{|k|≤�−1
δ }

2k2 dk

∣∣∣∣

≤ Cρz
R4

�4 + Cρzδ
(

R2�−2
δ +

R2

�2 log(K H �−1�δ)
)
.

We conclude the proof of (9.50) by collecting all the previous estimates and exploiting
the relations between the parameters so that ρzδ

2| log δ| is the dominant term.
For the inequality (9.51), we can derive it from (9.50) and the control on the first term

of (I I ) above using that, for k ∈ PH ,
∣∣∣1 − Ak

Dk

∣∣∣ ≤ B2
k

Ak
≤ Cρ2

z δ2|k|−4.

For the last inequality, we estimate the difference, splitting the integral for |k| ≤ ξ�−1

or otherwise,

ρz
�2

(2π)2

∫

R2
((̂W1ω)(k) − (̂W1ω)(0))a†

k akdk

≥ −Cρzξ
2δ

R2

�2 n+ − 2�2

(2π)2 ρzδ

∫

R2
a†

k1{|k|≥ξ�−1}akdk

where we used a Taylor expansion and estimated the integral for |k| ≤ ξ�−1. For the
second term we exploit the second quantization in a N -bosons sector and we insert
symmetrically the sum of projectors 1 = 1{√−�∈PL } + 1{√−�∈Pc

L }

�2

(2π)2

∫

R2
a†

k1{|k|≥ξ�−1}akdk
∣∣∣
N

=
N∑

j=1

Q jχ�(x j )1{√−� j ≥ξ�−1}χ�(x j )Q j

≥ 2nH
+ + 2Nn+
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where we estimated by a Cauchy–Schwarz the cross terms (PL ,Pc
L) to make them

comparable to the diagonal terms and denoted by

N := ‖1{√−�∈PL }χ�(x)1{√−�≥ξ�−1}‖2 ≤ Cξ−2d−4. (9.57)

Here we used the regularity properties of χ� dividing and multiplying by −�. We
conclude optimizing ξ by the choice ξ2 = d−2 �

R . ��

9.3.1. Estimates on Q(1)
3 The first part Q(1)

3 will absorb Qex
2 using KDiag

H .

Lemma 9.7 (Estimates on Q(1)
3 ). For any state � satisfying (8.44) we have

〈
Q(1)

3 + Qex
2 +

(
1 − 2εK

)
KDiag

H +
b

100

n+

�2 +
b

100

εT nH
+

(d�)2

〉

�

≥ −Cρ2
z �2δ2

(
δK −8

H K 10
� d−4 + ε−1

K K −12
H K 10

� d−8 + d−8 K 2
� K −4

H

)
.

Proof. We first reorder the creation an annihilation operators, applying a change of
variables k �→ −k, p �→ −p in the α terms,

Q(1)
3 = z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)√
1 − α2

k

√
1 − α2

p−k

× (̃
a†

pbp−kbk + αkαp−k ã†
−pb†

p−kb†
k + b†

k b†
p−k ãp + αkαp−kbkbp−k ã−p

)
dkd p

= z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)√
1 − α2

k

√
1 − α2

p−k

((̃
a†

pbp−k + αkαp−kbp−k ã−p
)
bk

+ b†
k

(
b†

p−k ãp + αkαp−k ã†
−pb†

p−k

)

+ αkαp−k
( [

bk, bp−k ã−p
]

+
[̃
a†
−pb†

p−k, b†
k

]))
dkd p.

We can complete the square to get, for εK  1 fixed in “Appendix H”,

Q(1)
3 + (1 − 3εK )KDiag

H = (1 − 3εK )
�2

(2π)2

∫

PH

Dk b̃†
k b̃kdk

+
�2

(2π)2

∫

PH

(
T1(k) + T2(k)

)
dk, (9.58)
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where we mantained a small portion of KDiag
H in order to bound other error terms and

we defined

b̃k := bk +
z

Dk(1 − 3εK )(2π)2

∫
fL(p)Ŵ1(k)√

1 − α2
k

√
1 − α2

p−k

(
b†

p−k ãp + αkαp−k ã†
−pb†

p−k

)
d p, (9.59)

T1(k) := z

(2π)2

∫

R2

fL(p)Ŵ1(k)√
1 − α2

k

√
1 − α2

p−k

αkαp−k
([

b†
k , ã†

−pb†
p−k

]
+ h.c.

)
d p, (9.60)

T2(k) := − |z|2Ŵ1(k)2

(1 − 3εK )Dk(1 − α2
k )(2π)4

∫
fL(p) fL(s)√

1 − α2
s−k

√
1 − α2

p−k

× (̃
a†

pbp−k + αkαp−kbp−k ã−p
)(

b†
s−k ãs + αkαs−k ã†

−sb†
s−k

)
d pds. (9.61)

• Let us estimate the error term T1(k). We use
[
b†

k , ã†
−pb†

p−k

] = ã†
−p

[
b†

k , b†
p−k

]
+[

b†
k , ã†

−p

]
b†

p−k and the Cauchy–Schwarz inequality with weights ε1, ε2 > 0,

T1(k) ≥ −Cz
∫

R2

fL(p)Ŵ1(k)√
1 − α2

k

√
1 − α2

p−k

|αkαp−k |
((

ε1ã†
−pã−p + ε−1

1

)|[b†
k , b†

p−k]| + |[b†
k , ã†

−p]|
(
ε2b†

p−kbp−k + ε−1
2

))
d p.

By (9.33) and (9.31) we have |[b†
k , ã†

−p]| ≤ C |αk | and |[b†
k , b†

p−k]| ≤ C |αk |. There-
fore using (9.48),

�2

(2π)2

∫

PH

T1(k)dk ≥ −C
z�2

(2π)4

∫

PH ×R2

| fL(p)|ρ3
z δ4

k6

×
(
(ε1ã†

−pã−p + ε−1
1 ) + (ε2b†

p−kbp−k + ε−1
2 )

)
dkd p.

Due to the presence of the cutoff fL on low momenta and the bounds

∫

PL

(ε1ã†
−pã−p + ε−1

1 )d p ≤ C
ε1n+

�2 + ε−1
1

d−4

�2 , (9.62)

∫

PL

(ε2b†
k bk + ε−1

2 )d p ≤ C
d−4

�2 (ε2b†
k bk + ε−1

2 ), (9.63)

where we changed the k variable, we find,

�2

(2π)2

∫

PH

T1(k)dk ≥ −Czρ3
z δ4

∫

PH

1

k6

(
(ε1n+ + ε−1

1 d−4) + d−4(ε2b†
k bk + ε−1

2 )
)
dk.
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We insert Dk ≥ C−1k2 in front of b†
k bk and get the bound

�2

(2π)2

∫

PH

T1(k)dk

≥ −Czρ3
z δ4�6 K −4

H ε1
n+

�2 − Czε−1
1 d−4ρ3

z δ4�4 K −4
H

− Cε2�
6zρ3

z δ4 K −8
H d−4�2

∫

PH

Dkb†
k bkdk − Cε−1

2 �4zρ3
z δ4d−4 K −4

H .

One can choose ε1, ε2 such that the first and third terms are absorbed in the positive
b

100
n+
�2 and εKKDiag

H respectively. With this choice the second and fourth terms are errors
of respective sizes

C�2ρ2
z δ2(δK 10

� K −8
H d−4) and C�2ρ2

z δ2(δK 10
� K −12

H d−4ε−1
K ).

• Let us now focus on the square term T2(k) in (9.61). One can write, in normal order,

ã†
pbp−k + αkαp−kbp−k ã−p = ã†

pbp−k + αkαp−k ã−pbp−k + αkαp−k[bp−k, ã−p],

and use the Cauchy–Schwarz inequality with weight εK on the cross terms to find

T2(k) ≥ (1 + εK )T ′
2 (k) + (1 + ε−1

K )T ′′
2 (k), (9.64)

with

T ′
2 (k) = − |z|2Ŵ1(k)2

(1 − 3εK )Dk(1 − α2
k )(2π)4

∫
fL(p) fL(s)√

1 − α2
p−k

√
1 − α2

s−k

× (̃a†
p + αkαp−k ã−p)bp−kb†

s−k (̃as + αkαs−k ã†
−s)d pds,

T ′′
2 (k) = − |z|2Ŵ1(k)2

(1 − 3εK )Dk(1 − α2
k )(2π)4

∫
fL(p) fL(s)√

1 − α2
s−k

√
1 − α2

p−k

× α2
k αp−kαs−k |[bp−k, ã−p]||[̃a†

−s, b†
s−k]|d pds.

T ′′
2 we can estimate (for k ∈ PH ),

�2

(2π)2

∫

PH

T ′′
2 (k)dk ≥ −Cρz�

4
( ∫

PH

Ŵ1(k)2

(1 − 3εK )Dk
|αk |4dk

)
d−8�−4 sup |[bp−k , ã−s]|2,

and by (9.51), (9.33) and (9.48) we get

(1 + ε−1
K )

�2

(2π)2

∫

PH

T ′′
2 (k)dk ≥ −Cρ2

z �2δ2(ε−1
K K −12

H K 10
� d−8). (9.65)
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Now we use a commutator to write T ′
2 = T ′

2,op + T ′
2,com in normal order for the bk , with

T ′
2,op(k) = − |z|2Ŵ1(k)2

(2π)4(1 − 3εK )Dk(1 − α2
k )

∫
fL(p) fL(s)√

1 − α2
p−k

√
1 − α2

s−k

× (̃a†
p + αkαp−k ã−p)b

†
s−kbp−k (̃as + αkαs−k ã†

−s)d pds,

T ′
2,com(k) = − |z|2Ŵ1(k)2

(2π)4(1 − 3εK )Dk(1 − α2
k )

∫
fL(p) fL(s)√

1 − α2
p−k

√
1 − α2

s−k

× (̃a†
p + αkαp−k ã−p)[bp−k, b†

s−k](̃as + αkαs−k ã†
−s)d pds. (9.66)

• In order to estimate the error term T ′
2,op, we introduce

τs := ãs + αkαs−k ã†
−s and C := sup

p,s∈PL ,k∈PH

|[bp−k, τs]|. (9.67)

In T ′
2,op we commute the b’s trough the a’s,

τ †
pb†

s−kbp−kτs = b†
s−kτ

†
pτsbp−k + [τ †

p, b†
s−k]τsbp−k

+ b†
s−kτ

†
p[bp−k, τs] + [τ †

p, b†
s−k][bp−k, τs],

and use the Cauchy–Schwarz inequality

τ †
pb†

s−kbp−kτs ≤ C(b†
s−kτ

†
pτpbs−k + b†

p−kτ
†
s τsbp−k + C2).

Inserting it in T ′
2,op, bounding (1 − 3εK )(1 − αk) ≥ 1/2 and noticing that we can

exchange s and p in the integral, we find

T ′
2,op(k) ≥ −C

|z|2Ŵ1(k)2

Dk

∫
fL(p) fL(s)√

1 − α2
p−k

√
1 − α2

s−k

(b†
s−kτ

†
pτpbs−k + C2)d pds.

When we apply this operator to the state � which satisfies 1[0,M](nL
+ )� = � we can

apply Lemma 8.1 for the vector bs−k� to get the estimate

〈T ′
2,op(k)〉� ≥ −C

|z|2Ŵ1(k)2

Dk

(
�−2M

∫
fL(s)〈b†

s−kbs−k〉�ds + d−8�−4C2
)
,

and finally, using again (9.51) and (9.49), and the fact that C ≤ C K 2
� K −2

H by (9.33) and
Lemma F.1,

�2

(2π)2

∫

PH

〈T ′
2,op(k)〉�dk ≥ −Cρz�

2δ2 K −4
H d−4M〈KDiag

H 〉� − Cρzδd−8 K 4
� K −4

H

≥ −C K 4
� K −4

H d−4εMKDiag
H − Cρ2

z �2δ2d−8 K 2
� K −4

H .

(9.68)

The first part can be absorbed in the positive εKKDiag
H , as long as the relation (H21)

holds, and the second part contributes to the error term.
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• We now turn to T ′
2,com given in (9.66). This term will absorb Qex

2 . We first use
Lemma F.1, (9.32) and (9.48) to estimate the commutator,

|[ bp−k, b†
s−k] − χ̂2((p − s)�)

∣∣∣ =
∣∣∣αp−kαs−k χ̂2((p − s)�)

∣∣∣
+
∣∣(1 − αp−kαs−k)χ̂((p − k)�)χ̂((s − k)�)

∣∣
≤ C K 4

� K −4
H ,

and bounding then by a Cauchy–Schwarz inequality

(̃a†
p + αkαp−k ã−p)((̂χ2)((p − s)�) + C K 4

� K −4
H )(̃as + αkαs−k ã†

−s)

≤ ã†
pχ̂

2((p − s)�)̃as + C (̃a†
−pã−p + ã†

s ãs)K 4
� K −4

H .

We get, by using Lemma 8.1

�2

(2π)2

∫

PH

T ′
2,com(k)dk ≥ − �2

(2π)2

∫

PH

|z|2Ŵ1(k)2

(2π)4(1 − 3εK )Dk(1 − α2
k )

×
∫

fL(p) fL(s)√
1 − α2

p−k

√
1 − α2

s−k

ã†
pχ̂

2((p − s)�)̃asd pdsdk

− C
( ∫

PH

|z|2Ŵ1(k)2

Dk
dk

)
d−4 K 4

� K −4
H

n+

�2 .

Using (9.49) the last part is of order K 6
� K −4

H d−4 n+
�2 and can be absorbed in a fraction of

the positive b
100

n+
�2 by (H8). For the first term we use the following formula valid in a

Fock sector with N bosons

�4

(2π)4

∫
fL(p) fL(s )̃a†

pχ̂
2((p − s)�)asdsd p|N =

N∑
j=1

Q†
L , jχ

2
�(x j )QL , j , (9.69)

to rewrite, due to (H8) and by (9.49),

�2

(2π)2

∫

PH

T ′
2,com(k)dk

≥ − (1 + CεK )

(2π)2

∫
ρz Ŵ1(k)2

Dk(1 − α2
k )

dk
N∑

j=1

Q†
L , jχ

2
�(x j )QL , j − b

200

n+

�2

≥ −(1 + CεK + C K 4
� K −4

H )

×
(

2ρz (̂ωW1)(0) + Cρzδ
2| log δ|

) N∑
j=1

Q†
L , jχ

2
�QL , j − b

200

n+

�2 .

In this last expression we want to replace QL , j by Q j . Using Cauchy–Schwarz with
weight ε0 we find

Q†
L , jχ

2
�QL , j ≤ (1 + ε0)Q jχ

2
�Q j + (1 + ε−1

0 )Q j ( fL − 1)χ2
j ( fL − 1)Q j , (9.70)
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and since fL localizes on low momenta we can bound the second term by nH
+ , and the

term ε0 Q jχ
2
j Q j by Cε0n+,

�2

(2π)2

∫

PH

T ′
2,com(k)dk ≥ −2ρz (̂ωW1)(0)

N∑
j=1

(
Q jχ

2
j Q j + Cε−1

0 nH
+ + Cε0n+

)

− C
(
ρz�

2δ2| log δ| + ρz�
2δεK + ρz�

2δK 4
� K −4

H +
b

200

)n+

�2 .

The nH
+ -part can be absorbed by the positive b

100
εT nH

+
(d�)2 if we choose ε0 � ρzδd2�2

εT
� d2 K 2

�

εT
.

With this choice the n+ terms are of order

(d2 K 4
�

εT
+ δK 2

� | log δ| + K 2
� εK + K 6

� K −4
H +

b

200

)n+

�2 . (9.71)

Those terms are absorbed in a fraction of the positive b
100

n+
�2 , as long as we have the

relations (H8), (H10), (H17) and (H20). We deduce

�2

(2π)2

∫

PH

T ′
2,com(k)dk ≥ −2ρz (̂ωW1)(0)

N∑
j=1

Q jχ
2
j Q j − b

150

n+

�2 − b

100

εT nH
+

(d�)2 .

To compare the remaining part with Qex
2 we use (9.52) to find

Qex
2 = ρz

�2

(2π)2

∫ (̂
Wω(k) + Ŵω(0)

)
a†

k akdk

≥ 2ρz
�2

(2π)2 Ŵ1ω(0)

∫
a†

k akdk − Cρzδ(d
−2 R�−1n+ + CnH

+ )

= 2ρz Ŵ1ω(0)
∑

j

Q jχ
2
�Q j − Cρzδd−2 R�−1n+ + CρzδnH

+ .

Using that ρz � ρμ, the remaining parts are absorbed by the spectral gaps and then we
get

�2

(2π)2

∫

PH

T ′
2,com(k)dk + Qex

2 ≥ − b

100

n+

�2 − b

100

εT nH
+

(d�)2 .

This last estimate, together with (9.58), (9.64), (9.65) and (9.68) concludes the proof. ��
Remark 9.8. It was necessary to replace ak’s by bk’s before estimating Q3(z) + Qex

2 ,

otherwise we would need a fraction of the kinetic energy instead of Kdiag
H in Lemma 9.7,

and this we cannot allow (see Remark 9.5). In other words, it is important that the positive
term in (9.58) is given in terms of b̃k (Eq. (9.59)) whose main part is bk .
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9.3.2. Estimates on Q(2)
3 and Q(3)

3

Lemma 9.9 (Estimates on Q(2)
3 and Q(3)

3 ). For any normalized state � satisfying (8.44)
we have 〈

Q(2)
3 + Q(3)

3 +
εK

100
KDiag

H

〉
�

≥ −Cρ2
z �2δ2ε−1

K K −2M−8
H K 6

� d−8.

Proof. We focus on Q(3)
3 (the estimates on Q(2)

3 are similar), and decompose it into

Q(3)
3 = I + I I , where

I = − z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)αp−k√
1 − α2

k

√
1 − α2

p−k

(
b†

k−pã†
pbk + b†

k ãpbk−p
)
dkd p, (9.72)

and

I I = − z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)αp−k√
1 − α2

k

√
1 − α2

p−k

([̃a†
p, b†

k−p]bk + b†
k [bk−p, ãp]

)
dkd p.

(9.73)

The first part we estimate using Cauchy–Schwarz with weight ε, and by (9.48)

I ≥ − z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)αp−k√
1 − α2

k

√
1 − α2

p−k

(εb†
k−pã†

pãpbk−p + ε−1b†
k bk)dkd p

≥ −Cz�2δK 2
� K −2

H

∫

PH ×R2
fL(p)(εb†

k−pã†
pãpbk−p + ε−1b†

k bk)dkd p,

and using Lemma 8.1,

〈�,

∫
fL(p)b†

k−pã†
pãpbk−pd p�〉 ≤ C�−2M〈�, b†

k bk�〉. (9.74)

We choose ε = √
d−4/M, and insert Dk ≥ K 2

H �−2,

〈I 〉� ≥ −CzδK 2
� K −2

H (εM + ε−1d−4)

∫

k∈PH

〈b†
k bk〉�dk

≥ −C(ρ
1/2
z �δK 2

� K −4
H M1/2d−2)�2

∫

k∈PH

Dk〈b†
k bk〉�dk. (9.75)

Thanks to condition (H21), I can be absorbed in the positive εK
100K

Diag
H term. Now

we return to the commutator term, which can be estimated using a Cauchy–Schwarz
inequality with new weight ε,

I I ≥ −2
z�2

(2π)4

∫

PH ×R2
|[bk−p, ãp]| fL(p)|Ŵ1(k)αk |(εb†

k bk + ε−1)dkd p.

We use the commutator bound |[bk−p, ãp]| ≤ Cαk−p supk∈PH
χ̂ (k�) from (9.33),

I I ≥ −CzK 2
� K −2

H

(
sup

k∈PH

χ̂(k�)
)

d−4
(
εK 2

� K −4
H δ�2

∫

PH

Dkb†
k bkdk + ε−1

∫

PH

Ŵ1(k)αkdk
)
.
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With ε−1 � ε−1
K zd−4 K 4

� K −6
H δ

(
sup χ̂

)
and our choice of parameters, the first part

is absorbed in the positive εKKDiag term. We estimate the last part using (9.50) and
Lemma F.1, and then I I contributes with an error of order ε−1

K ρ2
z �2δ2 K −2M−8

H K 6
� d−8.

��

9.3.3. Estimates on Q(4)
3 First we rewrite Qex

1 as a term appearing in Q(4)
3 .

Lemma 9.10. Assume that Assumptions of “Appendix H” are satisfied. Then there exists
a universal constant C > 0 such that

Qex
1 +

b

100

n+

�2 +
b

100

εT nH
+

(d�)2 ≥ z�2

(2π)4

∫

PH ×R2
Ŵ1(k)αk χ̂2(p�) fL(p)(̃a†

p + ãp)dkd p

− Cρ2
z �2δ3 K 2

� | log δ|2 − ρ2
z �2δK 2

� d8M−2ε−1
T .

Proof. First we can rewrite Qex
1 in terms of the ãp’s,

Qex
1 = zρzω̂W1(0)

�2

(2π)2

∫
χ̂2(p�)(̃a†

p + ãp)d p,

and then we use (9.50) to compare ω̂W1(0) with an integral in k, and using the bound
K 2

� K −2
H  1,

Qex
1 ≥ z�2

(2π)4

∫

PH ×R2
Ŵ1(k)αk χ̂2(p�)(̃a†

p + ãp)dkd p

− Cρzδ
2| log δ|z�2

∫

R2
χ̂2(p�)(̃a†

p + ãp)d p. (9.76)

The second integral can be estimated using a Cauchy–Schwarz inequality with weight
ε,

ρz�
2δ2z

∫

R2
χ̂2(p�)(̃a†

p + ãp)d p

≤ ερz�
2δ2z

∫
|χ̂2(p�)| + Cε−1ρz�

2δ2z
∫

|χ̂2(p�)|̃a†
pãpd p

≤ Cερzδ
2z + Cε−1ρzδ

2zn+. (9.77)

where we used Lemma (F.1). With ε � zδK 2
� | log δ|, the second part is absorbed by the

positive fraction of n+
�2 , and the first term is of order ρ2

z �2δ3 K 2
� | log δ|. Hence,

Qex
1 ≥ z�2

(2π)4

∫

PH ×R2
Ŵ1(k)αk χ̂2(p�)(̃a†

p + ãp)dkd p

−Cρ2
z �2δ3 K 2

� | log δ|2 − b

100

n+

�2 . (9.78)
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Finally we want to insert the cutoff fL(p) inside the integral. The error we make is
estimated similarly,

z�2

(2π)4

∫

PH ×R2
Ŵ1(k)αk χ̂2(p�)(1 − fL(p))(̃a†

p + ãp)dkd p

≥ −Cz�2ρzδ

∫

Pc
L

χ̂2(p�)(̃a†
p + ãp)d p

≥ −Cεzρzδ�
2
∫

Pc
L

|χ̂2(p�)|d p − Cε−1zρzδ�
2
∫

Pc
L

|χ̂2(p�)|̃a†
pãpd p

≥ −Cεzρzδd4M−4 − Cε−1zρzδd4M nH
+ ,

where we used supp∈Pc
L
|χ̂2(p�)| ≤ Cd4M . With ε � zK 2

� d4M+2ε−1
T the first part is of

order ρ2
z �2δK 2

� d8M−2ε−1
T and the second is absorbed in a fraction of εT nH

+
(d�)2 . ��

Now we have all we need to estimate Q(4)
3 .

Lemma 9.11 (Estimates on Q(4)
3 ). For any state � satisfying (8.44) we have

〈
Q(4)

3 + Qex
1 +

b

100

n+

�2 +
b

100

εT nH
+

(d�)2

〉

�

≥ − Cρ2
z �2δ3 K 2

� | log δ|2 − Cρ2
z �2δK 2

� d8M−2ε−1
T

− Cρ2
z �2δ2ε

1/2
M (K 4

� K −4
H + δ−1 K −M

H d−2).

Proof. We use the commutator formula

[bp−k, b†
−k] = (1 − αkαp−k)

(
χ̂2(p�) − χ̂ (k�)χ̂((p − k)�)

)
,

and split into Q(4)
3 = I + I I , with

I = − z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)√
1 − α2

k

√
1 − α2

p−k

αk(1 − αkαp−k)χ̂2(p�)(̃a†
p + ãp)dkd p,

and

I I = − z�2

(2π)4

∫

PH ×R2

fL(p)Ŵ1(k)√
1 − α2

k

√
1 − α2

p−k

× αk(1 − αkαp−k)χ̂(k�)χ̂((p − k)�)(̃a†
p + ãp)dkd p.

In I we recognize the lower bound on Qex
1 given by Lemma 9.10 with opposite sign,

up to an error term:

I + Qex
1 +

b

100

n+

�2 +
b

100

εT nH
+

(d�)2 + Cρ2
z �2δ3 K 2

� | log δ|2 + ρ2
z �2δK 2

� d8M−2ε−1
T

≥ −Cz�2
∫

PH ×R2
fL(p)Ŵ1(k)α3

k χ̂2(p�)(̃a†
p + ãp)dkd p.
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This remaining integral can be estimated, by (9.48), as
∣∣∣∣z�2

∫

PH ×R2
fL(p)Ŵ1(k)α3

k χ̂2(p�)(̃a†
p + ãp)dkd p

∣∣∣∣

≤ C |z|�2ρ3
z δ4

∫

PH

k−6dk
∫

PL

|χ̂2(p�)|(̃a†
p + ãp)d p,

and after applying to the state � we use a Cauchy–Schwarz inequality with weight
√
M,

∣∣∣z�2
∫

PH ×R2
fL(p)Ŵ1(k)α3

k χ̂2(p�)〈̃a†
p + ãp〉�dkd p

∣∣∣

≤ Czρ3
z �6δ4 K −4

H

(√
M

∫

PL

|χ̂2(p�)|d p +
1√
M

∫

PL

|χ̂2(p�)|〈̃a†
pãp〉�d p

)

≤ Czρ3
z �4δ4 K −4

H

√
M ≤ Cρ2

z �2δ2(K 4
� K −4

H
√

εM
)
.

Finally we bound, by (F4) and (9.50),

|〈I I 〉�| ≤ z�2 sup
h∈PH

|χ̂(h�)|
∫

PH

|Ŵ1(k)|αk |χ̂(k�)|dk
∫

PL

〈̃a†
p + ãp〉�d p

≤ Czρz�
2δK −M

H

(
d2M1/2

∫

PL

d p + d−2M−1/2
∫

PL

〈̃a†
pãp〉�d p

)
,

where we used a Cauchy–Schwarz inequality with weight d2
√
M. Thus,

|〈I I 〉�| ≤ Cρ2
z �2δK −M

H d−2ε
1/2
M .

��

9.4. Conclusion: Proof of Theorem 6.7. In Sect. 6 we showed how the proof of Theo-
rem 2.3 is reduced to the proof of Theorem 6.7, which we give here.

Proof of Theorem 6.7. Recall the choices of the parameters in “Appendix H”. Let us
consider a normalized n-particle state � ∈ Fs(L2(�)) which satisfies (7.40) for a
certain large constant C0 > 0,

〈H�(ρμ)〉� ≤ −4πρ2
μ�2Y

(
1 − C0 K 2

BY | log Y |). (9.79)

If such a state does not exists, our desired lower bound follows, because

− 4πρ2
μ�2Y

(
1 − C0 K 2

BY | log Y |) ≥ −4πρ2
μ�2δ

(
1 −

(
2� +

1

2
+ log π

)
δ
)
.

(9.80)

So we can assume the existence of �. By Theorem 7.7 there exists a sequence of
n-particle states {�m}m∈Z ⊆ Fs(L2(�)) and C1, η1 > 0 such that

〈�,H�(ρμ)�〉 ≥
∑

2|m|≤M
〈�(m),H�(ρμ)�m〉 − C1ρ

2
μ�2δ2+η1

−4πρ2
μ�2Y

(
1 − C1 K 2

BY | log Y |)
∑

2|m|>M
‖�m‖2.
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For |m| ≤ M
2 , we have that �m = 1[0,M](nL

+ )�m . If we prove the lower bound for all

�m such that |m| ≤ M
2 then we would get (using (9.80) with C0 replaced by C1)

〈�,H�(ρμ)�〉 ≥ − 4πρ2
μ�2δ

(
1 −

(
2� +

1

2
+ log π

)
δ
)∑

m

‖�(m)‖2 − C1ρ
2
μ�2δ2+η1 ,

Therefore, the theorem is proven if we derive the corresponding lower bound for any
n-particle, normalized state �̃ ∈ Fs(L2(�)) such that

�̃ = 1[0,M](nL
+ )�̃. (9.81)

By Proposition 8.3, for such a state there exists a constant C2 > 0 such that

〈�̃,H�(ρμ)�̃〉 ≥ 〈�̃,H2nd
� (ρμ)�̃〉 − C2�

2ρ2
μδ

(
d2M−2 + R2�−2), (9.82)

where the last term is an error term of order ρ2
μ�2δ2+η2 , for some η2 > 0, thanks to

relations (H25) and (H3). Then, by Theorem 8.4, there exists a constant C3 > 0 such
that

〈�̃,H2nd
� �̃〉 ≥ inf

z∈R+
inf
�

〈�,K(z)�〉 − C3ρμδ(1 + εR K 4
� K 2

B | log Y |), (9.83)

where the infimum is over the �’s which satisfy (8.44). The last term is an error term of
order ρ2

μ�2δ2+η3 for some η3 > 0, thanks to relation (H19). The proof is reduced now to
getting a lower bound for K(z). We have two cases, according to different values of z:

• If |ρz − ρμ| ≥ Cρμ max((δ1 + δ2 + δ3)
1/2, δ1/2) then Proposition 9.1 implies the

bound

〈K(z)〉� ≥ −1

2
ρ2

μ�2 ĝ0 + 8π
(

2� +
1

2
+ log π

)
ρ2

μ�2δ2, (9.84)

and the second term is twice the LHY-term and positive, therefore there is nothing
more to prove;

• Otherwise |ρz − ρμ| ≤ ρμK −2
� (see Sect. 9.2). In this case we can use (9.27) and

Theorem 9.3 to obtain C4, η4 > 0, such that

〈K(z)〉� ≥ −1

2
ρ2

μ�2 ĝ0 + (1 − εK )〈KDiag
H 〉� + 4π

(
2� +

1

2
+ log π

)
ρ2

z �2δ2

+
〈
b

n+

4�2 + b
εT nH

+

8d2�2 + Qex
1 (z) + Qex

2 + Q3(z)
〉
�

− C4ρ
2
μ�2δ2+η4 , (9.85)

where we used that Cρ2
μ�2δ(K 4−M

H K�δ
−1/2) + |r(ρμ)|�2 ≤ Cρ2

μ�2δ2+η4 , thanks to
the relations (H7), (H8) and that M > 4. We conclude observing that, thanks to
Theorem 9.4, we have the existence of C5, η5 > 0 such that
〈
(1 − εK )KDiag

H + Q3(z) + Qex
2 + Qex

1 +
b

100

n+

�2 +
bεT

100

nH
+

(d�)2

〉
�

≥ −C5ρ
2
z �2δ2+η5 ,

(9.86)

where the error has been obtained using relations (H10), (H18), (H21), (H26) and
(H27). Thanks to the assumptions on ρz and ρμ, there exist C6, η6 > 0 such that

|ρ2
z �2δ2 − ρ2

μ�2δ2| ≤ C6ρ
2
μ�2δ2 K −2

� = C6ρ
2
μ�2δ2+η6 , (9.87)

so that, plugging (9.86) into (9.85) and substituting the ρz by the ρμ using (9.87)
gives the desired lower bound and the right order for the error terms.
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We choose C = ∑6
j=1 C j and η = min j=1,...,6 η j . We conclude using that ĝ0 = 8πδ

to get that

inf
z∈R+

inf
�

〈�,K(z)�〉 ≥ −4π�2ρ2
μδ

(
1 −

(
2� +

1

2
+ log π

)
δ
)

− Cρ2
μ�2δ2+η.

This finishes the proof of Theorem 6.7. ��
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Appendix A: Reduction to Smaller Boxes for the Upper Bound

We provide here the necessary tools to go from a fixed box with compactly support
potentials in the grand canonical setting, Theorem 2.2, to the thermodynamic limit with
potentials allowing a tail, Theorem 2.1. The same techniques can be found in [17] with
only minor deviations surrounding the non-compactness of the potential.

Given a potential v, we define

e(ρ) := lim
L→∞ eL(ρ) = lim

L→∞ inf
ψ∈H1

0 (�
ρL2
L )

〈ψ,HρL2

v ψ〉
L2 ,

where the limit is taken such that ρL2 = N ∈ N and

HN
v =

N∑
i=1

−�i +
N∑

i< j

v(xi − x j ).

We write v = v1B(0,R)+v1B(0,R)c = vR+vtail where the vtail will always be treated as an
error term. Let v per

R (x) = ∑
k∈Z2 vR(x +kL). In order for this to be finite we understand

http://creativecommons.org/licenses/by/4.0/
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R to be smaller than L . We omit the N in the hamiltonian when it is operating on the
Fock space.

The result below evaluates the error when going from periodic boundary conditions
to Dirichlet boundary conditions.

Lemma A.1. There exists a universal C > 0, such that given R0 > 0 and a periodic,
bosonic trial function �L ∈ F (�L), there exists a Dirichlet trial function �D

L+2R0
∈

F (L2(�L+2R0)) satisfying, for j ∈ N0,

〈�D
L+2R0

,N j�D
L+2R0

〉 = 〈�L ,N j�L〉, (A1)

and

〈�D
L+2R0

,HvR �D
L+2R0

〉 ≤ 〈�L ,Hv
per
R

�L〉 +
C

L R0
〈�L ,N�L 〉. (A2)

Proof. The result is independent of dimension, see [31, Lemma 2.1.3] or [17, Lemma
A.1] for a proof in the 3D case. ��
Next step is to glue the Dirichlet boxes together in order to construct a trial function on
a thermodynamic box.

Theorem A.2. Let �D
L+2R0

∈ Fs(L2(�L+2R0)) be a trial function with Diriclet bound-

ary conditions and extend it to R
2 by 0. Then for Lk = k(L + 2R0 + R), k ∈ N, we define

�Lk ∈ Fs(L2(�Lk )) by

�
(m)
Lk

(x1, . . . , xm) = 1

‖(�D
L+2R0

)(n)‖k2−1

k2∏
i=1

(�D
L+2R0

)(n)(x1+n(i−1) − ci , . . . , xin − ci ),

(A3)

if m = nk2, and �
(m)
Lk

= 0 otherwise. Here ci defines an enumeration of the lattice

points on Z
2(L + 2R0). Then �Lk satisfies

〈�Lk ,N j�Lk 〉 = k2 j 〈�D
L+2R0

,N j�D
L+2R0

〉, j ∈ N0. (A4)

Furthermore if v satisfies the decay condition (1.3) of Theorem 1.1, then there exits a
constant C only depending on η0 and C0 such that

〈�Lk ,Hv�Lk 〉 ≤ k2〈�D
L+2R0

,HvR �D
L+2R0

〉 + k2〈�D
L+2R0

,N 2�D
L+2R0

〉 Caη0

R2+η0
. (A5)

Proof. The expectation of N j can be computed using that

‖�(m)
Lk

‖2 =
{

‖�(n)
L+2R0

‖2 if m = k2n,

0 otherwise.

However for the potential energy we need to estimate the interaction between the boxes
and the long range interaction inside the box. We observe that

〈�Lk ,Hv�Lk 〉 − k2〈�D
L+2R0

,HvR �D
L+2R0

〉 = ∑
n≥0

∑k2n
i< j

∫ |�(k2n)
Lk

|2vtail(xi − x j )dx,

(A6)
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where we used that the kinetic energy of the two terms are equal and only the tail of the
potential survives due to the corridors between the boxes. We further estimate

∑
n≥0

k2n∑
i< j

∫
|�(k2n)

Lk
|2vtail(xi − x j )dx ≤

∑
n≥0

k2n
k2n∑
j=2

∫
|�(k2n)

Lk
|2vtail(x1 − x j )dx

≤
∑
n≥0

k2n
k2n∑
j=2

∫
|�(k2n)

Lk
|2 Caη0

|x1 − x j |2+η0
dx,

(A7)

where we used (1.3). If s ∈ N denotes the number of aligned boxes separating x1 from
x j , then |x1 − x j | ≥ (s − 1)L + R and there are 4(s + 1) + 1 of such possible boxes.
Summing on s we get

(A7) ≤
∑
n≥0

k2n
k∑

s=1

C0aη0 n(4(s + 1) + 1)

((s − 1)L + R)2+η0
‖�(k2n)

Lk
‖2

≤ k2〈�D
L+2R0

,N 2�D
L+2R0

〉C0

( 9aη0

R2+η0
+

aη0

L2+η0

∞∑
s=1

4

s1+η0
+

9

s2+η0

)
.

In fact the largest term is the contribution of vtail inside the box and its 8 neighbours
which here is represented by the term 9aη0

R2+δ . ��
We have thus far constructed a sequence of grand canonical trial functions on larger

and larger boxes, where we control the energy and the expected number of particles.
The last part will be to relate this sequence to e(ρ). For this we will use the continu-
ity and convexity of e(ρ) see [32, Thm. 3.5.8 and 3.5.11] together with the Legendre
transformation being an involution on such functions.

Theorem A.3. Let �Lk ∈ F (L2(�Lk )) be a sequence with Dirichlet boundary condi-
tions such that Lk → ∞ as k → ∞. Assume that there exist C, c > 0 such that, for all
k ∈ N,

〈�Lk ,N�Lk 〉 ≥ ρ(1 + cρ)L2
k, 〈�Lk ,N 2�Lk 〉 ≤ C(ρL2

k)
2,

then

e(ρ) ≤ lim
k→∞

〈�Lk ,Hv�Lk 〉
L2

k

.

Proof. We insert a chemical potential μ, and find that, using the positivity of Hv and
N , for any μ ≥ 0 and M > 0 we have

〈�Lk ,Hv�Lk 〉
L2

k

≥ 〈�Lk , (Hv − μN )χ(N ≤ M L2
k )�Lk 〉

L2
k

+
μ

L2
k

(〈�Lk ,N�Lk 〉 − 〈�Lk ,Nχ(N ≥ M L2
k )�Lk 〉)

≥
M L2

k∑
m=0

(
eLk

( m

L2
k

)
− μ

m

L2
k

)
‖�(m)

Lk
‖2 +

μ

L2
k

(
〈�Lk ,N�Lk 〉 − 1

M L2
k

〈�Lk ,N 2�Lk 〉
)
.
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Fixing M large enough in terms of C and c then gives

〈�Lk ,H�Lk 〉
L2

k

≥
M L2∑
m=0

(
eLk

( m

L2
k

)
− μ

m

L2
k

)
‖�(m)

Lk
‖2 + μρ. (A8)

As in Theorem A.2, we glue several copies of a minimizer of eLk (ρ), each copy living
on a different box. We leave corridors of size L1−ε

k between the boxes and this has the
consequence of changing the density to ρ(1 + L−ε

k )−2. Assuming further that v satisfies
the conditions of Theorem 1.1 we estimate the ignored interactions to find

e(ρ(1 + L−ε
k )−2) ≤ eLk (ρ)(1 + L−ε

k )−2 +
C(ρL2

k)
2

L4+η0−(2+η0)ε
k

. (A9)

Using (A9) in (A8) yields

L−2
k 〈�Lk ,H�Lk 〉 ≥ μρ + (1 + L−ε

k )2
M L2

k∑
m=0

(
e
( m

L2
k

(1 + L−ε
k )−2

)

− (1 + L−ε
k )−2μ

m

L2
k

− Cm2

L4+η0−(2+η0)ε
k

)
‖�(m)

Lk
‖2

≥ μρ − (1 + L−ε
k )2e∗(μ) − Cρ2 L−η0+(2+η0)ε

k ,

where ∗ defines the Legendre transformation with respect to the interval [0, M]. Choosing
ε > 0 small enough and letting k go to infinity yields

lim
k→∞

〈�Lk ,H�Lk 〉
L2

k

≥ sup
μ∈[0,∞)

(μρ − e∗(μ)) = sup
μ∈R

(μρ − e∗(μ)) = e(ρ), (A10)

where we used that e∗(μ) ≥ 0 for all μ ∈ R and that the Legendre transformation is an
involution. ��
We end the section by giving the proof of the final upper bound Theorem 2.1 using the
result of Theorem 2.2.

Proof of Theorem 2.1. We first cut our potential in order to apply Theorem 2.2. We write

v = v1B(0,R) + v1B(0,R)c = vR + vtail ,

where R = ρ− 1
2 Y β+2. We denote by aR the scattering length of vR . To get estimates

on the energy density e(ρ) we use the standard theory developed in “Appendix A”. The
idea is to extend Lβ with R0 and force the trial function to have Dirichlet boundary
conditions on the box of sidelength Lβ + R0. Thereafter one glues together these small
Dirichlet boxes, separated by corridors of size R. Since this process will slightly change
the density, we choose for a given ρ > 0, the larger density ρ̃ satisfying

ρ = ρ̃(1 − 2CỸ 2)
(

1 +
2R0

Lβ

+
R

Lβ

)−2
,

where C is the same as in Theorem 2.2, and R0 = ρ− 1
2 Y − 1

2 . This choice of R0 is in fact
optimal as one can see from the error term C ρ

Lβ R0
coming from the glueing process in
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(A17). Here we use the notation Ỹ = | log(ρ̃a2
R)|−1 and δ̃0 = | log(ρ̃a2

RỸ )|−1. If ρa2

is small enough then ρ̃a2
R ≤ C−1, and we may use Theorem 2.2 to find a periodic trial

state � for the density ρ̃ and potential vR satisfying

〈HvR 〉� ≤ 4π L2
βρ̃2δ̃0

(
1 +

(
2� +

1

2
+ log(π)

)
δ̃0

)
+ C L2

βρ̃2δ̃0
3| log(δ̃0)|, (A11)

with 〈N 〉� ≥ ρ̃L2
β(1 − CỸ 2), and 〈N 2〉� ≤ C ρ̃2 L4

β .

Since R
Lβ

 R0
Lβ

= Y − 1
2 +β  1, we have |ρ − ρ̃| ≤ CρY − 1

2 +β , and we can change
ρ̃ into ρ in (A11) up to smaller errors if

β ≥ 5

2
. (A12)

One can show that the C appearing in (A11) only increases in β (see (5.21)). Thus we
find β = 5/2 to be optimal. We can also change aR into a because the right-hand side
of (A11) is an increasing function of the scattering length and aR ≤ a. Thus,

〈HvR 〉� ≤ 4π L2
βρ2δ0

(
1 +

(
2� +

1

2
+ log(π)

)
δ0

)
+ C L2

βρ2δ3
0 | log(δ0)|, (A13)

and the bounds on the number of particles become

〈N 〉� ≥ (ρ + cρ2)(Lβ + 2R0 + R)2, and 〈N 2〉� ≤ C(ρL2
β)2, (A14)

for some c > 0.
Now we can use Lemma A.1 and Theorem A.2 to glue small boxes together. We get a

sequence �k(Lβ+2R0+R) ∈ Fs
(
L2

(
�k(Lβ+2R0+R)

))
with Dirichlet boundary conditions,

for k ∈ N, on the box

�k(Lβ+2R0+R) =
[

− 1

2
k(Lβ + 2R0 + R),

1

2
k(Lβ + 2R0 + R)

]2
,

satisfying

〈N 〉�k(Lβ +2R0+R)
= k2〈N 〉�, 〈N 2〉�k(Lβ +2R0+R)

= k4〈N 2〉�, (A15)

and

〈Hv〉�k(Lβ +2R0+R)
≤ k2

(
〈HvR 〉� + 〈N 〉� C

Lβ R0
+ 〈N 2〉� Caη0

R2+η0

)
, (A16)

where C only depends on η0 and C0. Note that we have the original potential in the left-
hand side of (A16) because by (A5), vtail only produces an error term. By construction
this sequence satisfies the conditions on the number of particles for Theorem A.3, and
we conclude

e2D(ρ) ≤ lim
k→∞

〈Hv〉�k(Lβ +2R0+R)

k2L2
β

≤ 〈HvR 〉�
L2

β

+ C
ρ

Lβ R0
+ Caη0

ρ2 L2
β

R2+η0
, (A17)

where in the last inequality we used (A16), (A14) and that 〈N 〉2
� ≤ 〈N 2〉� . With our

choice of parameters including (A12), the two last terms in (A17) are errors. Theorem 2.1
follows from (A17) and (A13). ��
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Appendix B: Bogoliubov Diagonalization

Theorem B.1. Let a± be operators on a Hilbert space satisfying
[
a+, a−

] = 0. For
A > 0, B ∈ R satisfying either |B| < A or B = A and arbitrary κ ∈ C, we have the
operator identity

A(a†
+a+ + a†

−a−) + B(a†
+a†

− + a+a−) + κ(a†
+ + a−) + κ(a+ + a†

−)

= (1 − α2)D(b†
+b+ + b†

−b−) − 1

2
(A −

√
A2 − B2)([a+, a†

+] + [a−, a†
−]) − 2|κ|2

A + B ,

where D = 1
2

(
A +

√
A2 − B2

)
and

b+ = 1√
1 − α2

(
a+ + αa†

− + c̄0
)
, b− = 1√

1 − α2

(
a− + αa†

+ + c0
)
, (B1)

with

α = B−1(A −
√
A2 − B2

)
, c0 = 2κ̄

A + B +
√
A2 − B2

. (B2)

Remark B.2. Note that the normalization of b± is chosen such that

[b+, b†
+] = [a+, a†

+] − α2[a−, a†
−]

1 − α2 , (B3)

and we recover the canonical commutation relations [b+, b†
+] = 1 when a+ and a−

satisfies them as well.

Proof. This follows directly from algebraic computations. ��

Appendix C: Calculation of the Bogoliubov Integral

For functions α, β, and parameter ε ≥ 0, we define

Iε(α, β) := 1

2(2π)2

∫

R2

(√
(1 − ε)2α2(k) + 2(1 − ε)ρα(k)β(k) − (1 − ε)α(k) − ρβ(k)

+ ρ2
ĝ2

k − ĝ2
01{|k|≤�−1

δ }
k2

)
dk. (C1)

We recall that ĝ0 = 8πδ, where δ satisfies 1
2 Y ≤ δ ≤ 2Y . We are mainly interested into

two special cases, namely I0(k2, ĝ) and IεN (τ, Ŵ1). In this section we estimate these
integrals.

Lemma C.1. We can replace τk by k2 up to the following error,

|IεN (τ, Ŵ1) − IεN (k2, Ŵ1)| ≤ Cρ2δ2(d + εT | log Y | + (sK�)
−1).
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Proof. We recall the definition (8.8) of τk ,

τk = (1 − εT )
(
|k| − 1

2s�

)2

+
+ εT

(
|k| − 1

2ds�

)2

+
,

from which we deduce the bounds

|τk − k2| ≤
{

1
2s� |k| + 1

2(s�)2 , if |k| > 1
2ds� ,

εT |k|2 + 3
2s� |k|, if 1

2s� < |k| < 1
2ds� .

(C2)

We write the integral as

IεN (τ, Ŵ1) = 1

2(2π)2

∫

R2
Fk(τk, Ŵ1(k))dk, (C3)

with

Fk(τ, w) =
√

(1 − εN )2τ 2 + 2(1 − εN )ρwτ

− (1 − εN )τ − ρw + ρ2
ĝ2(k) − ĝ2(0)1{|k|≤�−1

δ }
2k2 .

We first consider separately the small k’s. Indeed, τk = 0 for |k| ≤ 1
2s� and thus

|Fk(τk , Ŵ1(k)) − Fk(k
2, Ŵ1(k))| =

∣∣∣
√

(1 − εN )2k4 + 2(1 − εN )ρŴ1(k)k2 − (1 − ε)k2
∣∣∣

≤ C
√

ρδ|k|,

(recall that (sK�)
−1  1) and

1

2(2π)2

∫

|k|≤(2s�)−1
|Fk(τk, Ŵ1(k)) − Fk(k

2, Ŵ1(k))|dk ≤ Cρ2δ2(sK�)
−3. (C4)

The part with larger k we bound using the derivatives of F and deduce

|IεN (τ, Ŵ1) − IεN (k2, Ŵ1)| (C5)

≤ 1

2(2π)2

∫

{|k|>(2s�)−1}
sup

τ∈[τk ,k2]
|∂τ Fk(τ, Ŵ1(k))| · |τk − k2|dk + Cρ2δ2(sK�)

−3.

The derivative of F is given by

∂τ F(τ, w) = (1 − εN )2τ + (1 − εN )ρw√
(1 − εN )2τ 2 + 2(1 − εN )ρwτ

− (1 − εN ) (C6)

and can be estimated for τ ∈ [τk, k2] as
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|∂τ Fk(τ, Ŵ1(k))| ≤

⎧⎪⎪⎨
⎪⎪⎩

C

√
ρδ

|k| − (2s�)−1 , if (2s�)−1 < |k| <
√

ρδ,

C
ρ2δ2

k4 , if |k| >
√

ρδ.

(C7)

Indeed, for |k| <
√

ρδ, we just need to bound individualy each term in (C6), whereas
for |k| >

√
ρδ, we have τk > CρŴ1(k) and we use a Taylor expansion of the square

root to get

|∂τ Fk(τ, Ŵ1(k))| ≤ C
ρ2Ŵ1(k)2

(1 − εN )τ 2 ≤ C
ρ2δ2

k4 .

Now we split the integral in (C5) into 3 parts I1, I2, I3, corresponding to the in-
tegration on the domains {(2s�)−1 < k <

√
ρδ}, {√ρδ < k < (2ds�)−1} and

{k > (2ds�)−1}, respectively, and we use (C7), (C2) to bound it and find:

I1 ≤ Cρ2δ2
(
εT +

1

sK�

)
,

I2 ≤ Cρ2δ2
(
εT | log Y | +

1

sK�

)
,

I3 ≤ Cρ2δ2d.

��
Lemma C.2. We can replace Ŵ1(k) by ĝk up to the following error

|IεN (k2, Ŵ1) − IεN (k2, ĝ)| ≤ Cρ2δ2 K −1
� + Cρ2δεN .

Proof. Recall that IεN (k2, Ŵ1) is given by (C3). We first use (6.26) and (3.34) to replace
the last part,

ρ2
∫

R2

ĝ2
k − ĝ2

01{|k|≤�−1
δ }

2k2 dk = ρ2
∫

R2

Ŵ1(k)2 − Ŵ1(0)21{|k|≤�−1
δ }

2(1 − εN )k2 dk

+ O(ρ2δεN + ρ2δ2 K −2
� ),

so that

IεN (k2, Ŵ1) = J (Ŵ1) + O(ρ2δεN + ρ2δ2 K −2
� ) and IεN (k2, ĝ) = J (ĝ), (C8)

with

J (w) = 1

2(2π)2

∫

R2
Gk(wk, w0)dk, (C9)

and
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Gk(w,w0) =
√

(1 − εN )2k4 + 2(1 − εN )ρwk2

− (1 − εN )k2 − ρw + ρ2
w2 − w2

01{|k|≤�−1
δ }

2(1 − εN )k2 .

Note that Gk is independent of w0 for |k| > �−1
δ . Then we split J (w) into two parts,

J (w) = 1

2(2π)2

∫

{|k|<�−1
δ }

Gk(wk, w0)dk +
1

2(2π)2

∫

{|k|>�−1
δ }

Gk(wk)dk

=: J<(w) + J>(w). (C10)

For k > �−1
δ we use

|J>(Ŵ1) − J>(ĝ)| ≤ 1

2(2π)2

∫

{|k|>�−1
δ }

sup
w∈[̂gk ,Ŵ1(k)]

|∂wGk(w)| · |Ŵ1(k) − ĝk |dk,

(C11)

with

∂wG = ρ√
1 + 2ρw

(1−εN )k2

− ρ +
ρ2w

(1 − εN )k2 . (C12)

We use a Taylor expansion of the square root to get

|J>(Ŵ1) − J>(ĝ)| ≤ Cρ3
∫

|k|>�−1
δ

ĝ2
k

k4 |Ŵ1(k) − ĝk |dk.

Since |Ŵ1(k)− ĝk | ≤ Cδ2 K −1
� (by (6.24)) and

∫
ĝ2

k k−2dk < Cδ (see (3.34)) we deduce

|J>(Ŵ1) − J>(ĝ)| ≤ Cρ2δ2 K −1
� . (C13)

For k < �−1
δ we start by focusing on the first part of Gk ,

Fk(w) =
√

(1 − εN )2k4 + 2(1 − εN )ρwk2 − (1 − εN )k2 − ρw. (C14)

Since |∂w Fk | ≤ Cρ, we have

∣∣∣
∫

{|k|<�−1
δ }

Fk(Ŵ1(k)) − Fk(ĝk)dk
∣∣∣ ≤ Cρ

∫

{|k|<�−1
δ }

|Ŵ1(k) − ĝk |dk ≤ Cρ2δ3 K −1
� .

(C15)



59 Page 84 of 104 S. Fournais, T. Girardot, L. Junge, L. Morin, M. Olivieri

Now

|J<(Ŵ1) − J<(ĝ)| ≤ C
∣∣∣
∫

{|k|<�−1
δ }

Fk(Ŵ1(k)) − Fk(ĝk)dk
∣∣∣

+ C
∣∣∣
∫

{|k|<�−1
δ }

ρ2 Ŵ1(k)2 − Ŵ1(0)2

2(1 − εT )k2 dk
∣∣∣

+ C
∣∣∣
∫

{|k|<�−1
δ }

ρ2 ĝ2
k − ĝ2

0

2(1 − εT )k2 dk
∣∣∣

≤ Cρ2δ3 K −1
� + Cρ2 R2δ2�−2

δ ≤ Cρ2δ2 K −1
� ,

where we used (3.35). Combining this with (C8) and (C13) the lemma is proved. ��
Proposition C.3. There exists a universal constant C > 0 such that, for any ε ∈ [0, 1),

∣∣∣Iε(k2, ĝk) − 4πρ2δ
(

1 − δ

Y
+ δ log δ +

(1

2
+ 2� + log(π)

)
δ
)∣∣∣

≤ Cρ2δ3(| log(δ)|R2ρ + 1
)

+ Cρ2δε,

where Iε is defined in (C1). In particular when δ = δ0 we deduce
∣∣∣Iε(k2, ĝk) − 4πρ2δ2

0

(1

2
+ 2� + log(π)

)∣∣∣ ≤ Cρ2δ3(| log(δ)|R2ρ + 1
)

+ Cρ2δε.

Proof. At first we want to replace ĝk by ĝ0 in the integral I :

|Iε(k2, ĝk) − Iε(k
2, ĝ0)| ≤

∫

R2
|F(k2, ĝk) − F(k2, ĝ0)|dk (C16)

≤
∫

R2
sup

g∈[̂gk ,̂g0]

∣∣∣∂g F(k2, g)

∣∣∣ |̂gk − ĝ0| dk =: I� + I�,

(C17)

where we split for values of |k| under or above (ρδ)1/2. Notice that

∂g F(k2, ĝk) = ρk2
√

k4 + 2ρ ĝkk2
− ρ +

ρ2 ĝk

k2 . (C18)

By a Taylor expansion we can prove that

I� ≤ C
∫

{|k|≤(ρδ)1/2}

(
R2(ρ ĝ0)

1/2k3 + ρ ĝ0k2 + R2(ρ ĝ0
)2

)
dk ≤ C R2(ρδ)3.

(C19)

In the other case we have, by Taylor expansion of the square root in (C18),

I� ≤ Cρ

∫

{|k|≥(ρδ)1/2}
(ρ ĝ0)

2

k4 |̂gk − ĝ0|dk

≤ C (ρ ĝ0)
3
( ∫

{(ρδ)1/2≤|k|≤(ρδ)1/2 ĝ−1/2
0 }

R2

k2 dk +
∫

{|k|≥(ρδ)1/2 ĝ−1/2
0 }

dk

k4

)

≤ C (ρδ)3 R2| log δ| + C (ρδ)2 δ.



GSE 2D Gas Page 85 of 104 59

We deduce that |Iε(k2, ĝk) − Iε(k2, ĝ0)| ≤ Cρ2δ3(1 + R2ρ log(δ)). Now remains to

compute Iε(k2, ĝ0). In this integral we use the new variable q = k(ρ ĝ0)
− 1

2 (1 − ε)
1
2 ,

Iε(k
2, ĝ0) = (ρ ĝ0)

2

2(2π)2(1 − ε)

∫

R2

(√
q4 + 2q2 − q2 − 1 +

1{|q|>(1−ε)
1
2 �−1

δ (ρ ĝ0)
− 1

2 }
2q2

)
dq.

(C20)

In term of c0 = (1 − ε)
1
2 �−1

δ (ρ ĝ0)
− 1

2 , this integral is explicitly computable and equal
to

Iε(k
2, ĝ0) = (ρ ĝ0)

2

4π(1 − ε)

(1

8
− log 2

4
+

1

2
log(c−1

0 )
)
. (C21)

With ĝ0 = 8πδ and c0 = 2e−�e− 1
2δ (1 − ε)

1
2 ĝ

− 1
2

0 (ρa2)− 1
2 (see (3.30)), we find

Iε(k
2, ĝ0) = 4πρ2δ2

(1

δ
− 1

Y
+ log δ +

1

2
+ 2� + log(π)

)
(1 + O(ε)). (C22)

��
Remark C.4. With the arbitrary parameter δ (within the range 1

2 Y ≤ δ ≤ 2Y ), one can
deduce from Proposition C.3 that our lower bound on the energy is

e2D(ρ) ≥ 4πρ2δ
(

2 − δ

Y
+ δ log δ +

(1

2
+ 2� + log(π)

)
δ
)

− Cρ2Y 2+η. (C23)

However, this lower bound is maximized by δ = Y (1 − Y | log Y | + o(Y | log Y |)), thus
leading to the optimal choice δ = δ0.

We conclude this section by a general bound on Bogoliubov integrals that is used
several times throughout the paper.

Lemma C.5. For two functions A,B : R
2 → R such that

A(k) ≥ κ[|k| − K ]2
+ + 2K1δ, |B(k)| ≤ K2δ, |B(k) − B(0)| ≤ K2 R2δ|k|2,

(C24)

for constants κ > 0, 0 < K2 ≤ K1, �
−1
δ < K , then there exists C > 0 such that

∫

R2

(
A(k) −

√
A(k)2 − B(k)2

)
dk

≤ κ−1
∫

R2

B2(k) − B2(0)1{|k|≤�−1
δ }

2|k|2 dk

+ C
K 2

2

K1
δK 2 + Cκ−1 K 2

2 δ2(1 + R2�−2
δ ) + Cκ−1 K 2

2 δ2| log(2K�δ)|

+ C min
(

K 4
2 δ4κ−3 K −4, C

K 2
2

K 2
1

κ−1
∫

R2

B(k)2 − B(0)21{|k|<�−1
δ }

|k|2 dk
)
. (C25)
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Proof. We show that the difference
∫

R2

((
A(k) −

√
A(k)2 − B(k)2

) − κ−1
B2(k) − B2(0)1{|k|≤�−1

δ }
2|k|2

)
dk, (C26)

is bounded by the desired error terms.
For |k| ≤ 2K we have that

∫

|k|≤2K

(
A(k) −

√
A(k)2 − B(k)2

)
dk ≤ C

∫

{|k|≤2K }
B2(k)

A(k)
dk

≤ C
K 2

2

K1
δ

∫

{|k|≤2K }
dk = C

K 2
2

K1
δK 2,

while for the B part, using the assumption on |B(k) − B(0)|,

κ−1
∫

{|k|≤�−1
δ }

|B2(k) − B2(0)|
2|k|2 dk ≤ Cκ−1 K 2

2 R2δ2
∫

{|k|≤�−1
δ }

dk = Cκ−1 K 2
2 R2δ2�−2

δ ,

(C27)

and

κ−1
∫

{�−1
δ ≤|k|≤2K }

d
B2

k

2|k|2 dk ≤ Cκ−1 K 2
2 δ2| log(2K�δ)|. (C28)

For |k| ≥ 2K we have, by a Taylor expansion,

A(k) −
√
A(k)2 − B(k)2 ≤ 1

2

B(k)2

A(k)
+ C

B(k)4

A(k)3 . (C29)

For the first term we observe that

B(k)2

A(k)
≤ κ−1 B(k)2

(|k| − K )2 ≤ κ−1B(k)2

|k|2
(

1 +
K

|k|
)
, (C30)

giving
∫

{|k|≥2K }

(B(k)2

A(k)
− κ−1B(k)2

2|k|2
)

dk ≤ C Kκ−1
∫

{|k|≥2K }
B(k)2

|k|3 dk ≤ Cκ−1 K 2
2 δ2,

while for the second one we can bound either∫

{|k|≥2K }
B(k)4

A(k)3 dk ≤ C K 4
2 δ4κ−3

∫

{|k|≥2K }
dk

|k|6 ≤ C K 4
2 δ4κ−3 K −4, (C31)

or as in the following,
∫

{|k|≥2K }
B(k)4

A(k)3 dk ≤ K 2
2

K 2
1

κ−1
∫

{|k|≥2K }
B(k)2

A(k)
dk ≤ C

K 2
2

K 2
1

κ−1
∫

{|k|≥2K }
B(k)2

|k|2 dk,

adding and subtracting the term C
K 2

2
K 2

1
κ−1

∫
{|k|<2K }

B(k)2−B(0)21{|k|<�
−1
δ

}
|k|2 we have

∫

{|k|≥2K }
B(k)4

A(k)3 dk ≤ C
K 2

2

K 2
1

κ−1
∫

R2

B(k)2 − B(0)21{|k|<�−1
δ }

|k|2 dk. (C32)

This finishes the proof of Lemma C.5. ��
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Appendix D: A Priori Bounds

In this section, we prove Theorem 7.6. We study a localized problem on a shorter length
scale d� such that

d�  �δ  �. (D1)

where we recall that �δ is the healing length. We are able, in this section, to prove Bose–
Einstein condensation in boxes with length scale smaller than the healing length. A key
point is that, at this scale, we can use a larger Neumann gap to reabsorb the errors. We
will show how the proof of Theorem 7.6 reduces to this localized problem.

We introduce the small box centered at u ∈ R
2 to be

Bu = � ∩
{

d�u +
[

− d�

2
,

d�

2

]2
}
. (D2)

The associated localization functions are

χBu (x) := χ
( x

�

)
χ

( x

d�
− u

)
, (D3)

where we highlight that
∫∫

|χBu |2dxdu = �2. (D4)

In order to construct the small box Hamiltonian, we introduce the localized potentials

W s(x) := W (x)

χ ∗ χ(x/d�)
, wBu (x, y) := χBu (x)W s(x − y)χBu (y), (D5)

W s
1(x) := W1(x)

χ ∗ χ(x/d�)
, w1,Bu (x, y) := χBu (x)W s

1 (x − y)χBu (y), (D6)

W s
2(x) := W2(x)

χ ∗ χ(x/d�)
, w2,Bu (x, y) := χBu (x)W s

2 (x − y)χBu (y), (D7)

where we recall that W, W1, W2 are localized versions of v, g, (1 + ω)g, respectively
(see formulas (6.19) and (3.4)). Since v has support in B(0, R), we see that W s is well-
defined as d� is required to be larger then R. Clearly W s depends on d� and thus ρμ,
but we will not reflect this in our notation.

Similarly to Lemma 6.4, W s
1 satisfies the following inequalities which can be proven

in analogous ways considering the length scale d� in place of �
∫

W s
2 ≤ 2

∫
W s

1 ≤ Cδ, (D8)

0 ≤ W s
1(x) − g(x) ≤ Cg(x)

|x |2
(d�)2 , (D9)

∣∣∣∣
1

(2π)2

∫

R2

Ŵ s
1(k)2 − Ŵ s

1(0)21{|k|≤�−1
δ }

2k2 dk − ĝω(0)

∣∣∣∣ ≤ C
R2δ

(d�)2 . (D10)

We define furthermore, as operators on L2(Bu),

PBu := 1

|Bu | |1Bu 〉〈1Bu |, Q Bu := 1Bu − PBu , (D11)
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i.e., PBu is the orthogonal projection in L2(Bu) onto the constant functions and Q Bu is
the projection to the orthogonal complement. We can therefore introduce the number
operators as well

nBu :=
N∑

j=1

1Bu , j , nBu ,0 :=
N∑

j=1

PBu , j , nBu ,+ :=
N∑

j=1

Q Bu , j , (D12)

and the small-box kinetic energy

TBu := Q Bu

(
χBu

[√−� − 1

ds�

]2

+
χBu +

εT

2
(1 + π−2)

1

(d�)2

)
Q Bu . (D13)

We are now ready to define the localized Hamiltonian HBu which acts on the sym-
metric Fock space Fs(L2(Bu)). It preserves particle number and is given as

HBu (ρμ)N :=
N∑

i=1

(1 − εN )T (i)
Bu

− ρμ

N∑
i=1

∫
w1,Bu (xi , y) dy +

1

2

∑
i �= j

wBu (xi , x j ),

(D14)

on the N -particle sector where εN was introduced in Lemma 6.2.
An adaptation to dimension 2 of [28, Theorem 3.10] allows us relate HB(ρμ) to the

original Hamiltonian in the large box, using the condition (H28). This gives the lower
bound

H�(ρμ) ≥ (1 − εN )
b

�2

N∑
j=1

Q�, j +
∫

R2
HBu (ρμ)du. (D15)

We would like to restrict the previous integral to boxes that are not too small. Therefore,
we identify the following sets of integration, for ξ ∈ [0, 1],

�ξ :=
{

u ∈ R
2
∣∣∣ |�du|∞ − �

2
(d + 1) ≤ −ξd�

}
, (D16)

underlying the property

�ξ1 ⊆ �ξ2 if ξ1 ≥ ξ2, (D17)

and we observe that integration outside �0 is zero because there is no more intersection
between the small box and �. The following Lemma guarantees that we can restrict
the integration for the potential over set �1/10 (where 1/10 is chosen arbitrarily) and
estimate the remaining part by a frame inside �1/10.

Lemma D.1. For all x ∈ � we have the estimate

−ρμ

∫∫
w1,Bu (x, y)dydu

≥ −ρμ

∫

� 1
10

∫
w1,Bu (x, y)dydu − 3ρμ

∫

� 1
10

\� 1
5

∫
w1,Bu (x, y)dydu. (D18)
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Proof. The proof follows the same lines as in [19, Lemma E.1]. We split the domain of
integration �1/10 and �0 − �1/10 and we estimate the integral over the latter. By the
definition of w1,B we have simply to estimate the quantity

∫

�0\�1/10

χ
( x

�d
− u

)
χ

( y

�d
− u

)
du. (D19)

We use that χ is a product of decreasing functions in the variables u1, u2 and observe
that

max
1
2 (d−1+1)− (�d)−1

10 ≤|u1|≤ 1
2 (d−1+1)

χ
( x

�d
− u

)
χ

( y

�d
− u

)

≤ min
1
2 (d−1+1)− 2(d�)−1

10 ≤|u1|≤ 1
2d + 1

2 − (d�)−1
10

χ
( x

�d
− u

)
χ

( y

�d
− u

)
, (D20)

so that we can estimate the integral over the frame pointwise, getting a factor of 3 due
to the presence of the corners. ��

Thanks to Lemma D.1 we can write

H�(ρμ) ≥ (1 − εN )
b

�2

N∑
j=1

Q�, j +
∫

� 1
5

HBu (ρμ)du +
∫

� 1
10

\� 1
5

HBu (4ρμ)du,

(D21)

where we dropped the positive part of HBu in �0 \� 1
10

. We are now ready to give lower
bounds for kinetic and potential energies in terms of the number of particles. From this
the lower bound for the small box Hamiltonian is going to follow in Corollary D.6 below.

In order to prove Theorem 7.6, we provide a lower bound on HBu (ρμ). For notational
simplicity we will remove the index u. Lemmas D.2 and D.3 below give first lower bounds
on the potential and kinetic energy respectively.

Lemma D.2. There exists a constant C > 0 depending only on χ such that

−ρμ

∫ N∑
j=1

w1,B(x, y)dy +
1

2

∑
i �= j

wB(xi , x j )

≥ A0 + A2 +
1

2
Qren, s

4 − Cδ
(
ρμ +

n0,B

|B|
)

n+,B,

with

A0 := n0,B(n0,B + 1)

2|B|2
∫∫

w2,B(x, y)dxdy

−
(ρμn0,B

|B| +
1

4

(
ρμ − n0,B − 1

|B|
)2

) ∫∫
w1,B(x, y)dxdy,

A2 := 1

2

∑
i �= j

Pi Pjw1,B Qi Q j + h.c.,

and Qren,s
4 is the analogue of (7.2), but for the small box B.
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Proof. The proof follows from an analogous potential splitting like in Lemma 7.1 and
Lemma 7.2 and by the same lines as [19, Lemma E.7]. ��
Lemma D.3. For the kinetic energy on the small box in the N’th sector we have

Q BχB

[√−� − 1

ds�

]2

+
χB Q B + A2

≥ −1

2
ĝω(0)

N (N + 1)

|B|2
∫

χ2
B + E2(N ) + E4(N ) − Cδ

N + 1

|B| n+,B ,

where

E2(N ) := −Cδ
( R2

(d�)2 + δ| log(dsK�)| + δ2
) N (N + 1)

|B|2
∫

χ2
B, (D22)

E4(N ) := −C
(
δ4(ds�)4

( N + 1

|B|
)3

+ δ(ds�)−2
) N

|B|
∫

χ2
B . (D23)

Proof. Let us introduce the operators

d†
p := 1

|B|1/2 a†(Q BχBe−i px )a0, (D24)

where a0 = 1
�
a(1) and a, a† are the annihilation and creation operators on Fs(L2(�)).

Further we introduce

A1 := Ŵ s
1 (0)

(2π)2

∫

R2
(d†

pdp + d†
−pd−p)d p. (D25)

Now using that on the N ’th sector we have

∫ [
|p| − 1

ds�

]2

+
d†

pdpd p = (n0 + 1)

|B|
N∑

j=1

Q B, jχB(x j )
[√−� − 1

ds�

]2

+
χB(x j )Q B, j ,

(D26)

and that n0 ≤ N , we get, adding A1 and A2 to the kinetic energy

N∑
j=1

Q B, jχB, j

[√−� − 1

ds�

]2

+
χB, j Q B, j + A1 + A2 ≥ 1

2(2π)2

∫
h pd p, (D27)

where

h p := Ap(d
†
pdp + d†

−pd−p) + Bp(d
†
pd†

−p + d−pdp), (D28)

with

Ap := (1 − εN )
|B|

N + 1

[
|p| − 1

ds�

]2

+
+ 2Ŵ s

1 (0), Bp := Ŵ s
1 (p). (D29)

The additional A1 term is estimated, thanks to (D8), by

A1 ≤ Cδ
n0 + 1

|B| n+,B, (D30)
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which contributes to the last term in the result of the lemma. By an application of
Theorem B.1 we get the bound

1

2(2π)2

∫
h pd p ≥ − 1

2(2π)2

N

|B|
∫

χ2
B

∫ (
Ap −

√
A2

p − B2
p

)
d p, (D31)

and therefore we want to bound the latter. We observe that, thanks to (D9), Ŵ s
1(0) ≥ Cδ

for a certain C < 8π . Choosing the parameters

K = (ds�)−1, κ = (1 − εN )
|B|

N + 1
, K1 = 1, K2 = C, (D32)

we can apply Lemma C.5 to obtain

− 1

2(2π)2

∫
(Ap −

√
A2

p − B2
p)d p

≥ − N + 1

|B|(1 − εN )
ĝω(0) − N + 1

|B|
R2

(d�)2 δ + Cδ(ds�)−2

− C
N + 1

|B| δ2
(

1 +
( R

�δ

)2) − C
N + 1

|B| δ2| log(2dsK�)| − Cδ4 (N + 1)3

|B|3 (ds�)4,

where we used that εN ≤ 1/2 and (D10) to approximate the leading term by ĝω(0)

getting the second term as an error. Plugging the last estimate in (D31) we get the result
with the error terms coherent with the definitions of E2(n) and E4(n). ��

We will also need the following estimates.

Lemma D.4. Let �min denote the shortest length of the box B, then there exists a constant
C > 0 such that∣∣∣∣

∫∫
w1,B(x, y)dxdy − 8πδ

∫
χ2

B

∣∣∣∣ ≤ Cδ
( R

�min

)2
∫

χ2
B, (D33)

and
∫∫

w2,B(x, y)dxdy ≥
∫∫

w1,B(x, y)dxdy + ĝω(0)

∫
χ2

B − C
Rδ2

�2
min

∫
χ2

B . (D34)

Proof. Since 8πδ = ∫
g, and thanks to (D9), we can write the inequality

∣∣∣∣
∫∫

(W s
1 (x) − g(x))χ2

B(y)dxdy

∣∣∣∣ ≤ Cδ
( R

�min

)2
∫

χ2
B, (D35)

where we used �min ≤ d�. By a Taylor expansion for the localization function and the
fact that W is spherically symmetric and (D8), we have, on the other hand,

∣∣∣∣
∫∫

w1,B(x, y)dxdy −
∫

W s
1 (x)dx

∫
χ2

B

∣∣∣∣ ≤ C R2‖∇2χB‖∞
∫

W s
1 (x)dx

∫
χB

≤ C
( R

�min

)2
δ

∫
χ2

B, (D36)

and where we used that |B|−1(
∫

χB)2 ≤ ∫
χ2

B and the bound (F6).
Then inequality (D33) follows by (D35) and (D36). The inequality (D34) follows

from a very similar argument. ��
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Combining the results of Lemma D.2 and D.3, we deduce that the Hamiltonian on
the small box has the following lower bound, which is coherent with the main order of
the energy expansion.

Theorem D.5. Assume the conditions from “Appendix H”, then for any box B we have
the following bound on the N’th sector

HB(ρμ)|N ≥
(1

4

(
ρμ − N

|B|
)2 − 1

2
ρ2

μ

) ∫∫
w1,B +

1

2
Qren,s

4 + E2(N ) + E4(N ),

(D37)

with E2 and E4 defined in (D22).

Proof. The combination of Lemmas D.2, D.3 gives

HB(ρμ) ≥
n∑

j=1

Q B, j

(εT

2
(1 + π−2)

1

(d�)2

)
Q B, j + A0 − 1

2
ĝω(0)

N (N + 1)

|B|2
∫

χ2
B

+
1

2
Qren,s

4 + E2(N ) + E4(N ) − Cδρμn+,B .

We observe that we can choose a constant C ′ > 0 such that

N∑
j=1

Q B, j

(εT

2

1

(d�)2

)
≥ C ′ρμδn+,B , (D38)

where we used (H8) and, choosing the right C ′, we can cancel the last term with n+,B for
a lower bound. The same can be said for the errors produced by replacing n0 = N − n+
by N . By Lemma D.4 we have

A0 − 1

2
ĝω(0)

N (N + 1)

|B|
∫

χ2
B

≥
(

− N 2

2|B|2 −
(
ρμ

N

|B| +
1

4

(
ρμ − N

|B|
)2)) ∫∫

w1,B − C
N 2

|B|2
Rδ2

�2
min

∫
χ2

B

≥
(1

4

(
ρμ − N

|B|
)2 − 1

2
ρ2

μ

) ∫∫
w1,B − C

N 2

|B|2
Rδ2

�2
min

∫
χ2

B,

and this gives the result since the last term can be reabsorbed in the E2 term. ��
We deduce the following corollary.

Corollary D.6. Assume B is a small box with shortest side length �min ≥ d�
10 and that

the conditions of “Appendix H” hold true. Then we have the following lower bound

HB(ρμ) ≥ −1

2
ρ2

μ

∫∫
w1,B(x, y)dxdy − Cρ2

μδ2(dsK�)
−2

∫
χ2

B − Cρμδ
1

|B|
∫

χ2
B .
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Proof. We split the particles in m subsets of n′ particles and a remaining group of n′′,
with n′′ < n′ < n. If we ignore the positive interactions between the subsets, and
denoting by eB(n, ρμ) the ground state energy of HB(ρμ) restricted to states with n
particles in the box B, then

eB(n, ρμ) ≥ meB(n′, ρμ) + eB(n′′, ρμ). (D39)

From formula (D37) in Theorem D.5 applied for n′ in place of n and, choosing
n′ = 3ρμ|B|, we see that the first term becomes, thanks to Lemma D.4

1

2
ρ2

μ

∫∫
w1,B ≥ 4πρ2

μδ
(

1 − C
( R

�min

)2) ∫
χ2

B . (D40)

From the following controls on the error terms

E2(n
′) ≤ Cρ2

μδ2(d K�)
−2

∫
χ2

B, (D41)

E4(n
′) ≤ Cρ2

μδ2(dsK�)
−2

∫
χ2

B, (D42)

Cρ2
μδ

( R

�min

)2
∫

χ2
B ≤ Cρ2

μδ
R2

(d�)2

∫
χ2

B ≤ Cρ2
μδ2(d K�)

−2
∫

χ2
B, (D43)

we see that the first term is the leading term of the energy. Since it is clearly positive,
we obtain that with the aforementioned choice of n′, we have eB(n′, ρμ) ≥ 0 and, then,
using the previous equality, we can state that

eB(n, ρμ) ≥ eB(n′′, ρμ). (D44)

The Corollary follows using again Theorem D.5 with n′′ in place of n to obtain the
lower bound and using (D41) and (D42) for n′′ to control the errors, using that s−1 � 1
to obtain one of the error terms in the statement. A further error term of order

Cρμδ
1

|B|
∫

χ2
B,

is created by the substitutions of the terms n′′ ± 1 by n′′. ��
We are finally ready to use the lower bound on the small box Hamiltonian to obtain

a bound on the number of excited particles in the large box, result stated in the Theorem
below. By an abuse notation, from now on, the operators n, n+, n0 start again to denote
the number operators in the large box.

Theorem D.7. We have the following lower bound for the large box Hamiltonian

H�(ρμ) ≥ −4πρ2
μ�2Y

(
1 − 1

2
Y | log Y |

)
+

b

2�2 n+, (D45)

and if there exists a normalized � ∈ Fs(L2(�)) with n particles in � such that (7.40)
holds:

〈H�(ρμ)〉� ≤ −4πρ2
μ�2Y (1 − C K 2

BY | log Y |), (D46)

then the bound (7.41) for the number of excitations holds:

〈n+〉� ≤ CnK 2
B K 2

� Y | log Y |. (D47)
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Proof. We study the integration over �1/10 \ �1/5 from formula (D21). By [18, (C.6)]
we have |χBu | ≤ C(�min�

−1)M and then
∫

�1/10−�1/5

∫
χBu (x)2dxdu ≤ C

(�min

�

)2M
(�d)2d−2 ≤ C

(�min

�

)2M
�2. (D48)

By the joint action of Corollary D.6 and Lemma D.4 we get

HBu (4ρμ) ≥ −Cρ2
μδ

∫
χ2

Bu
− Cρμδ

(
ρμδ(dsK�)

−2 +
1

|Bu |
) ∫

χ2
Bu

, (D49)

and therefore, using (D48) and that |B| = d2�2 we have
∫

�1/10\�1/5

HBu (4ρμ)du ≥ −Cρ2
μ�2δ(1 + δ(dsK�)

−2)
(�min

�

)2M − Cρμδd−2, (D50)

Using the definition of �min = d�/10 and the relations between the parameters (H12)
we get

(�min

�

)2M ≤ d2M ≤ δ, ρμδd−2 ≤ ρ2
μ�2δ2(K�d)−2 ≤ ρ2

μ�2δ2 K 2
B, (D51)

which makes the integral coherent with the statement of the Theorem using the expansion
of δ,

δ � Y − Y 2| log Y | + O(Y 3| log Y |2). (D52)

For the remaining integral in formula (D21) we use Corollary D.6 and Lemma D.4 to
get
∫

�1/10

HBu (ρμ)du

≥ −
∫

�1/10

[∫∫
dxdy

1

2
ρ2

μw1,Bu (x, y) + Cρμδ
(
ρμδ(dsK�)

−2 +
1

|Bu |
) ∫

χ2
Bu

]
du

≥ − 4πρ2
μ�2δ − Cρ2

μ�2δ2 K 2
B,

where we used (H3), (H12) and
∫∫∫

w1,Bu (x, y)dxdydu = 8πδ�2,

∫∫
χBu (x)2dudx = �2.

Collecting the previous estimates, together with (D21) and the fact that εN ≤ 1
2 , we

finally get (D45), using the expansion (D52) of δ.
The proof of the bound on n+ is proven noting that, joining together the a priori bound

(7.40) with the obtained lower bound we get

b

2�2 〈n+〉� ≤ C K 2
Bρμ�2Y 2| log Y |, (D53)

and conclude recalling that � = ρ
−1/2
μ Y −1/2 K�. ��
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We follow now a similar strategy to obtain a lower bound for the large box Hamiltonian
and get an a priori bound on the number of particles and a control on Qren

4 in the large
box.

Corollary D.8. If there exists a n-particles state � ∈ Fs(L2(�)) such that (7.40) holds,
then the a priori bounds on n and Qren

4 hold:
∣∣∣ρμ − n

�2

∣∣∣ ≤ C K B K�ρμY 1/2| log Y |1/2, 〈Qren
4 〉� ≤ C K 2

B K 2
� ρ2

μ�2Y 2| log Y |.
(D54)

Proof. We observe that we have the following lower bound, reproducing analogous
estimates for potential and kinetic energies from Lemmas D.2 and D.3 but adapted
to the large box � (for details, see [19, Appendix E.2]), where we estimate the n+
contributions thanks to Theorem D.7,

〈H�(ρμ)〉� ≥ 1

2
〈Qren

4 〉� − 4πρ2
μ�2δ + 2π

(
ρμ − n

�2

)2
�2δ − C K 2

B K 2
� ρ2

μ�2δ2.

(D55)

By the assumption, the expansion of δ in terms of Y and (D55) we get
( n

�2 − ρμ

)2
�2δ + 〈Qren

4 〉� ≤ C K 2
B K 2

� ρ2
μ�2Y 2| log Y |, (D56)

which implies the desired bounds. ��

Appendix E: Technical Estimates for Off-Diagonal Excitation Terms

We give here a proof of Lemma 7.9, bounding the terms d L
1 and d L

2 defined in (7.48) and
(7.49). We are going to use the following dimension independent estimates which are
proven in [19, Corollary F.6] in order to prove the technical lemma below. There exists
C > 0, such that, for any ϕ ∈ RanQ H ,

‖�(χ�ϕ)‖ ≤ Cε
−1/2
N

K̃ 2
H

�2 , ‖�N ϕ‖ ≤ Cε−1
N

K̃ 2
H

�2 . (E1)

Lemma E.1. If we assume the relations between the parameters in “Appendix H”, then
there exists C > 0 such that

‖Q H,xw(x, y)Q H,x‖ ≤ Cε
−1/2
N

K̃ 2
H

�2 ‖v‖1. (E2)

Proof. The proof is an adaptation to 2 dimensions of [19, Lemma 5.3]. Let ϕ ∈ RanQ H,x
with ‖ϕ‖2 = 1, then

‖Q H,xw(x, y)Q H,xϕ‖ ≤ I1 + I2, (E3)

where

I1 =
∫

R2
χ�(x)2|ϕ(x)|2v(x − y)dx,

I2 =
∫

R2
χ�(x) |χ�(x) − χ�(y)| |ϕ(x)|2v(x − y)dx .
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We use the technical Lemma E.2 below to get

|I1| ≤ ‖χ�ϕ‖2∞‖v‖1 ≤ C‖v‖1‖χ�ϕ‖‖�χ�ϕ‖ ≤ C
K̃ 2

H

�2 ε
−1/2
N ‖v‖1, (E4)

by (E1) and (E6) and

|I2| ≤ C
R

�
‖χ�ϕ‖∞‖ϕ‖∞‖v‖1 ≤ C

R

�
‖�(χ�ϕ)‖1/2‖�N ϕ‖1/2

L2
([

− L
2 , L

2

]2)‖v‖1

≤ Cε
−1/2
N

( R

�
ε
−1/4
N

) K̃ 2
H

�2 ‖v‖1 ≤ Cε
−1/2
N

K̃ 2
H

�2 ‖v‖1,

by a Taylor expansion for the localization function, (E5) and (E6) for ϕ and χ�ϕ, respec-
tively, (E1) and the choice of the parameters in (H11), (H3), (H14) and this concludes
the proof. ��

In the proof of Lemma E.1 we used the following result.

Lemma E.2. Let−�N denote the Neumann Laplacian on [− L
2 , L

2 ]2. There exists C > 0
such that, for all f ∈ D(−�N ) such that

∫
[− L

2 , L
2 ]2 f (x)dx = 0, we have

‖ f ‖∞ ≤ C‖ f ‖1/2
L2([− L

2 , L
2 ]2)

‖−�N f ‖1/2
L2([− L

2 , L
2 ]2)

. (E5)

Also, for all f ∈ H2(R2),

‖ f ‖∞ ≤ C‖ f ‖1/2‖� f ‖1/2. (E6)

Proof. Let us prove the last inequality, the first one being proven by an adaptation for
the box (essentially the only difference is to replace sums by integrals). We use a scaling
argument defining fλ(x) := f (λx), for x ∈ R

2. Given an f ∈ H2(R2), it is clearly
possible to choose λ such that ‖ fλ‖ = ‖� fλ‖. Now, for the given λ, we have

‖ fλ‖2∞ ≤ 1

(2π)2

( ∫

R2
| f̂λ(p)|d p

)2 ≤ C
∫

R2
(1 + |p|4) | f̂λ(p)|2d p = C‖� fλ‖2,

where we multiplied and divided by (1+|p|4)1/2 and used the Cauchy–Schwarz inequal-
ity and the choice of λ. Applied to fλ with the λ chosen above the previous inequality
becomes

‖ f ‖2∞ = ‖ fλ‖2∞ ≤ C‖� fλ‖2 = C‖ fλ‖‖� fλ‖ = C‖ f ‖‖� f ‖, (E7)

where in the last equality we used the scaling properties of the dilatation in λ w.r.t. the
L2 norm. ��
Proof of Lemma 7.9. Let � ∈ Fs(L2(�)) be satisfying the assumptions of Lemma 7.9.
Our goal is to prove the following estimate

〈(d L
1 + d L

2 )〉�̃
≤ ρμ‖v‖1

(〈n+〉�̃ + n1/2〈nL
+ 〉1/2

�̃
+ 〈(nL

+ )2〉1/2
�̃

ε
−1/4
N K̃ H + 〈nL

+ ñH
+ 〉�̃ε

−1/4
N K̃ H

+
(〈̃nH

+ nL
+ 〉1/2

�̃
〈(nL

+ )2〉1/2
�̃

+ 〈̃nH
+ nL

+ 〉�̃
)
n−1ε

−1/2
N K̃ 2

H

)
+ C〈Qren

4 〉�̃ . (E8)



GSE 2D Gas Page 97 of 104 59

We split the d L
j in several terms multiplying out the parentheses in (7.48) and (7.49).

All these terms we treat individually using Cauchy–Schwarz inequalities. Similar bounds
have been carried out in [19]. Here we just bound some representative examples to
illustrate the procedure and the role played by Lemma E.1.

Let us start using the Cauchy–Schwarz inequality for any ε > 0 to get
∣∣∣
〈
− ρμ

∑
i

Pi

∫
dy w1(xi , y) Q H,i + h.c.

〉
�

∣∣∣ ≤ n

�2 ‖w1‖1
(
εn + ε−1〈nL

+ 〉�
)
,

observing that ‖w1‖1 ≤ Cδ and choosing ε = 〈nL
+ 〉1/2

� n−1/2, we obtain the desired
quantity.

For the following term, for any ε > 0, we use the Cauchy–Schwarz inequality and
Lemma E.1,∣∣∣
〈∑

i, j

Pi Q H, jwQ H,i Q H, j

〉
�

∣∣∣ ≤ ε
n

�2 ‖w‖1〈nL
+ 〉� + ε−1‖Q H wQ H ‖

∑
i �= j

〈Q H,i Q H, j 〉�

≤ ‖w‖1

�2 (εn2 + ε−1ε
−1/2
N K̃ 2

H 〈(nL
+ )2〉�)

where we used that nL
+ ≤ n+. Choosing ε = ε

−1/4
N K̃ H 〈(nL

+ )2〉1/2
� n−1, we obtain

∣∣∣
〈∑

i, j

Pi Q H, jwQ H,i Q H, j

〉
�

∣∣∣ ≤ n
〈(nL

+ )2〉1/2
�

�2 ε
−1/4
N K̃ H ‖w‖1. (E9)

For the next term we want to apply a Cauchy–Schwarz inequality to reobtain a Qren
4

term. In order to do that we are going to complete the Q H to a Q = Q H + Q H .∣∣∣
〈∑

i �= j

Q H,i PjwQ H,i Q H, j + h.c.
〉
�

∣∣∣

≤
∣∣∣
〈∑

i �= j

Q H,i PjwQi Q j

〉
�

+ h.c.
∣∣∣

+
∣∣∣
〈∑

i �= j

Q H,i Pjw(Q H,i Q j + Q H,i Q H, j )
〉
�

+ h.c.
∣∣∣

+
∣∣∣
〈∑

i, j

Pi Q H, jwQ H,i Q H, j

〉
�

∣∣∣.

The second term and the third terms can be estimated in the same manner as above, so
let us focus on completing the first term in order to obtain the Q4.∣∣∣

〈∑
i �= j

Q H,i PjwQi Q j

〉
�

+ h.c.
∣∣∣ (E10)

≤
∣∣∣
〈∑

i �= j

Q H,i Pjw(Qi Q j + ω(Pi Pj + Pi Q j + Qi Pj ))
〉
�

+ h.c.
∣∣∣ (E11)

+
∣∣∣
〈∑

i �= j

Q H,i Pjwω(Pi Q j + Qi Pj ))
〉
�

+ h.c.
∣∣∣ (E12)

+
∣∣∣
〈∑

i �= j

Q H,i PjwωPi Pj )
〉
�

+ h.c.
∣∣∣. (E13)
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The second and the third terms are treated as above, using that 0 ≤ ω ≤ 1 on the support
of w. By a Cauchy–Schwarz inequality on the first term we get

(E11) ≤ 〈Qren
4 〉� + C

n

�2 ‖w‖1〈n+〉�. (E14)

Collecting the previous estimates including the ones not explicitly treated, we obtain
(E8).

Bounding nL
+ ≤ M̃ in (E8) where it appears for higher moments than 1, using that

ñH
+ ≤ n and that ε

−1/4
N K̃ H ≥ 1 by (H15) gives the result. This finishes the proof of

Lemma 7.9. ��

Appendix F: Properties of the Localization Function

We collect here the definition and some important properties of the localization function
that are used throughout the paper.

We define

χ(x) := CM (ζ1(x1)ζ2(x2))
M+2, (F1)

where

ζ(y) :=
{

cos(πy), |y| ≤ 1/2,

0, |y| > 1/2,
(F2)

where M ∈ N is chosen even and large enough. The normalization constant CM > 0
is chosen in order to obtain ‖χ‖2 = 1. We have 0 ≤ χ ∈ C M (R2). We also define
χ�(x) = χ(x/�).

Lemma F.1. Let χ be the localization fuction defined above and let M ∈ 2N. Then, for
all k ∈ R

2,

|χ̂(k)| ≤ Cχ

(1 + |k|2)M/2 , (F3)

where Cχ = ∫ |(1 − �)M/2χ |. If, furthermore, |k| ≥ 1
2 KK �−1,

|χ̂�(k)| = �2|χ̂(k�)| ≤ C�2 K −M
H . (F4)

An important property for the localization function χBu , u ∈ R
2, on the small boxes,

namely

χBu (x) := χ�(x)χ
( x

d�
− u

)
, (F5)

which is used in “Appendix D”, is the following bound

‖∇2χBu ‖∞ ≤ CM
1

|Bu |�2
min

∫
χBu , (F6)

which is taken from [18, Appendix C]. Here it is key the fact that we do not consider a
smooth function but we require χ to have a finite degree of regularity measured by the
parameter M .
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Appendix G: Comparing Riemann Sums and Integrals

We will show in this section that we could approximate integrals on R
2 by Riemann

sums when it was needed in (4.13) to prove the upper bound. Recall that the assumptions
of Theorem 4.1 were

R ≤ ρ−1/2Y 1/2, Lβ = ρ−1/2Y −β. (G1)

We divide R
2 into small squares �p of size 2π

L centered at p ∈ �∗
L = 2π

L Z
2. Then,

clearly

∣∣∣4π2

L2

∑
p∈�∗

L

f (p) −
∫

R2
f (k)dk

∣∣∣ ≤ C

L3

∑
p∈�∗

L

sup
�p

|∇ f |. (G2)

We consider the functions present in the two sums of (4.13). With αp and γp given in
(4.6) the first term is

f (p) = p2 + ρ0 ĝp −
√

p4 + 2ρ0 ĝp p2 + ρ0
(̂
vp − ĝp

)(
γp + αp

)

= p2 + ρ0 ĝp −
√

p4 + 2ρ0 ĝp p2 + ρ0(̂vp − ĝp)
( p2

2
√

p4 + 2ρ0 ĝp p2
− 1

2

)
,

(G3)

and the second term

d(p, r) = v̂rαp+rαp. (G4)

We then have the following estimates

Lemma G.1. Let f, d be as in (G3) and (G4). Then,
∣∣∣ 1

|�β |
∑

p∈�∗
β

f (p) −
∫

R2
f (k)

dk

4π2

∣∣∣ ≤ Cρ2Y 1/2+β v̂0, (G5)

and
∣∣∣ 1

|�β |2
∑

p,r �=0

d(p, r) −
∫

R4
d(p, r)

d pdr(
4π2

)2

∣∣∣ ≤ Cρ2Y 1/2+β v̂0. (G6)

Proof. In order to apply (G2), we start by calculating the gradient

∂p f = 2p + ρ0∂p ĝp − 2p

(
1 + ρ0 ĝp

p2 + ρ0∂p ĝp
2p

)
√

1 + 2ρ0 ĝp

p2

+ ρ0
(
∂pv̂p − ∂p ĝp

)( p2

2
√

p4 + 2ρ0 ĝp p2
− 1

2

)

+ ρ2
0

(̂
vp − ĝp

) ĝp p3 − 1
2∂p ĝp p4

(
p4 + 2ρ0 ĝp p2

) 3
2

:= Ap + Bp + C p. (G7)
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We will now systematically omit the constants and study separately the cases p ≤√
2ρ0 ĝ0 (case 1 referring to A1

p) and p �
√

2ρ0 ĝ0 (case 2 referring to A2
p). We then get

by elementary inequalities

∣∣∣A1
p

∣∣∣ ≤ (ρ ĝ0)
1/2,

∣∣∣A2
p

∣∣∣ ≤ ρ2 Rĝ0 ĝp

p2 +
(ρ ĝp)

2

p3 ,

∣∣∣B1
p

∣∣∣ ≤ ρR(̂v0 − ĝ0),

∣∣∣B2
p

∣∣∣ ≤ Rρ2(̂v0 − ĝ0)ĝp

p2 ,

∣∣∣C1
p

∣∣∣ ≤ ρ1/2(̂v0 − ĝ0)

ĝ1/2
0

,

∣∣∣C2
p

∣∣∣ ≤ (̂v0 − ĝ0)
(ρ2 ĝ0

p3 +
Rρ2 ĝp

p2

)
,

where we used |̂g0 − ĝp| ≤ |̂g3/2
0 | for p ≤ (ρ ĝ0)

1/2. This way we can use inequality
(G2) and the decay of ĝp (3.41) to get

1

L3
β

∑
p∈�∗

∣∣∂p f
∣∣ d p ≤ C

Lβ

(
(ρ ĝ0)

3/2 + ρ3/2 ĝ1/2
0 (̂v0 − ĝ0) + ρ2 ĝ0 R + Rρ2(̂v0 − ĝ0)

)

(G8)

≤ C v̂0ρ
2Y 1/2+β,

where we used (G1), and ĝ0 ≤ v̂0. We use the same method to prove (G6). We have

|αp| ≤
⎧⎨
⎩

√
ρ ĝ0
p , for p ≤ √

ρ ĝ0,

ρ|ĝp|
p2 , for p ≥ √

ρ ĝ0.
(G9)

We have to calculate

∂pαp = − ρ∂p ĝp

2
√

p4 + 2ρ ĝp p2
− ρ ĝp

(
4p3 + 4ρ ĝp p + 2ρ∂p ĝp p2

)

2(p4 + 2ρ ĝp p2)3/2 ,

yielding

|∂pαp| ≤
⎧⎨
⎩

√
ρ ĝ0 R

p + (ρ ĝ0)
−1/2 +

√
ρ ĝ0
p2 +

√
ρ ĝ0 R

p , for p ≤ √
ρ ĝ0,

ρ ĝp R
p2 + ρ ĝp

p3 + (ρ ĝp)
2

p5 + (ρ ĝp)
2 R

p4 , for p ≥ √
ρ ĝ0.

(G10)

The divergence in p → 0 implies to remove a little box around the point 0

∣∣∣16π4

L4
β

∑
p,r �=0

d(p, r) −
∫

R4
d(p, r)d pdr

∣∣∣

≤
∣∣∣16π4

L4
β

∑
p,r �=0

d(p, r) −
∫
(
R2\[− 1

L , 1
L ]2

)2 d(p, r)d pdr
∣∣∣

+
∣∣∣
∫

R2×[− 1
L , 1

L ]2
d(p, r)d pdr

∣∣∣ +
∣∣∣
∫

[− 1
L , 1

L ]2×R2
d(p, r)d pdr

∣∣∣.
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where the last two terms in the above can be bounded by ρ2Y 1/2+β v̂0. Finally a direct
computation using the decay of ĝp, the bounds (4.2), (G9), (G10), and (G2) yields

∣∣∣16π4

L4
β

∑
p,r �=0

d(p, r) −
∫
(
R2\[− 1

L , 1
L ]2

)2 d(p, r)d pdr
∣∣∣

≤ 1

L5
β

∑
p,r �=0

sup
�p×�r

∣∣∇p,r d(p, r)
∣∣

≤ C
v̂0

L5
β

∑
p �=0

|∂pαp|
∑
r �=0

|αr | + C
Rv̂0

L5
β

(∑
r

|αr |
)2

≤ C v̂0ρ
2Y 1/2+β, (G11)

where we used the estimates of Lemma 4.4. This concludes the proof. ��

Appendix H: Fixing Parameters for the Lower Bound

Here we collect all the relations and dependencies of the several parameters involved in
the lower bound for the convenience of the reader. Furthermore, we end the section by
making an explicit choice that satisfies all the relations. Recall that we have the small
parameter

Y = Yμ = | log(ρμa2)|−1.

We use the following notation throughout the article

A  B if and only if there exist C, ε > 0 s.t. A ≤ CY ε B. (H1)

In the proof of the lower bound, a number of positive parameters are needed. These are
the following

d, s, εT , εK , εN , εM  1  M, K�, K H , K̃ H , KN , K B . (H2)

These will be chosen below.
Furthermore, there are length scales �δ and R. These will be chosen to satisfy

R ≤ ρ−1/2
μ , Condition on the radius of the support , (H3)

�δ = e�

2
ρ−1/2

μ Y −1/2, healing length condition. (H4)

Some first relations between the parameters are

d  1  K�, sep. of small and large boxes, (H5)

d−2  K H  K̃ H , sep. of low and high momenta, (H6)

d  (sK�)
−1  1, condition for Bog. integral, (H7)

d2 K 4
�  εT  dsK�, spectral gap condition, (H8)

ds−1 ≤ C, localization to small boxes. (H9)
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The combination of (H6) and (H8) implies the following relations:

K�  K 2
�  sd−1  d−1  d−2  K H . (H10)

Defining

εN := K −1
N Y, εM := M

ρμ�2 , (H11)

we give the following conditions which control the magnitude of the large parameters
in terms of Y :

(dsK�)
−1  K B, condition errors in small box, (H12)

K B K� K̃ H K 1/4
N  Y −1/4, small error in large matrices, (H13)

K −1
� K 1/4

N  Y −1/2, technical estimate in large matrices, (H14)

K̃ H K −1/4
N � Y 1/4, technical estimate in large matrices, (H15)

K 2
� K 2

HM  Y −1, second localization of 3Q term, (H16)

K 2
B K 2

�  Y −1/4, number for high momenta, (H17)

K 10
� K −8

H d−4  Y −1, condition error in T1. (H18)

Here the magnitude of the small parameters:

εR  K −2
B K −2

� | log Y |−1, Condition on εR, (H19)

εK  K −2
� , error in T ′

2,com, (H20)

εK � K 4
� K −4

H (d−2ε
1/2
M + d−4εM), condition error in T1 and T2, (H21)

εM  d8 K 4
� ε−2

T , condition for error δ1. (H22)

εN ≤ ε−2
T d4 K 4

� , bound from Lemma 9.2. (H23)

We use the fundamental property of the system that the number of excitations of our
state is relatively small compared to the number of particles (expressed by the condition
εM  1) but still larger that a certain threshold. This property is expressed by the
following condition:

M � Y −7/8| log Y |1/4 K 1/2
B K 1/2

� K 1/8
N K̃ 1/2

H ‖v‖1/2
1 . (H24)

The following are conditions that impose constraints on the size of M , the degree of
regularity of the localization function χ :

d2M−2  Y, error in localization 3Q, (H25)

d2 K 4
�  εT , error in localization 3Q, (H26)

ε
3/2
N +

( K H

K̃ H

)M
+ (d2 K H )−2M ≤ εM, number for high momenta, (H27)

(s−2 + d−2)(sd)−2s M ≤ C, localization to small boxes. (H28)
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A choice of parameters, non-optimal in the size of the error produced, fitting the
previous conditions, is the following,

M = 258, M = Y − 31
32 , εT = Y

1
512 − 1

8192 ,

K� = Y − 1
2048 , K H = Y − 1

128 , K̃ H = Y − 1
64 ,

d = Y
1

512 , KN = Y − 1
512 , s = Y

1
4096 ,

K B = Y − 1
512 , εK = Y

1
512 , εM = Y

1
32 + 1

1024 . (H29)

This choice is not made with any particular view towards optimality.
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