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Abstract: We study a general class of interacting particle systems called kinetically
constrained models (KCM) in two dimensions. They are tightly linked to the monotone
cellular automata called bootstrap percolation. Among the three classes of such models
(Bollobás et al. in Combin Probab Comput 24(4):687–722, 2015), the critical ones
are the most studied. Together with the companion paper by Marêché and the author
(Hartarsky and Marêché in Combin Probab Comput 31(5):879–906, 2022), our work
determines the logarithm of the infection time up to a constant factor for all critical
KCM. This was previously known only up to logarithmic corrections (Hartarsky et al.
in Probab Theory Relat Fields 178(1):289–326, 2020, Ann Probab 49(5):2141–2174,
2021, Martinelli et al. in Commun Math Phys 369(2):761–809, 2019). We establish that
on this level of precision critical KCM have to be classified into seven categories. This
refines the two classes present in bootstrap percolation (Bollobás et al. in Proc Lond Math
Soc (3) 126(2):620–703, 2023) and the two in previous rougher results (Hartarsky et al.
in Probab Theory Relat Fields 178(1):289–326, 2020, Ann Probab 49(5):2141–2174,
2021, Martinelli et al. in Commun Math Phys 369(2):761–809, 2019). In the present
work we establish the upper bounds for the novel five categories and thus complete
the universality program for equilibrium critical KCM. Our main innovations are the
identification of the dominant relaxation mechanisms and a more sophisticated and robust
version of techniques recently developed for the study of the Fredrickson-Andersen 2-
spin facilitated model (Hartarsky et al. in Probab Theory Relat Fields 185(3):993–1037,
2023).
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1. Introduction

Kinetically constrained models (KCM) are interacting particle systems. They have chal-
lenging features including non-ergodicity, non-attractiveness, hard constraints, cooper-
ative dynamics and dramatically diverging time scales. This prevents the use of conven-
tional mathematical tools in the field.

KCM originated in physics in the 1980 s [12,13] as toy models for the liquid-glass
transition, which is still a hot and largely open topic for physicists [3]. The idea behind
them is that one can induce glassy behaviour without the intervention of static interac-
tions, disordered or not, but rather with simple kinetic constraints. The latter translate
the phenomenological observation that at high density particles in a super-cooled liquid
become trapped by their neighbours and require a scarce bit of empty space in order to
move at all. We direct the reader interested in the motivations of these models and their
position in the landscape of glass transition theories to [3,14,35].

Bootstrap percolation is the natural monotone deterministic counterpart of KCM (see
[34] for an overview). Nevertheless, the two subjects arose for different reasons and re-
mained fairly independent until the late 2000 s. That is when the very first rigorous results
for KCM came to be [9], albeit much less satisfactory than their bootstrap percolation
predecessors. The understanding of these two closely related fields did not truly unify
until the recent series of works [20–22,24,30–32] elucidating the common points, as
well as the serious additional difficulties in the non-monotone stochastic setting. It is the
goal of this series that is accomplished by the present paper.

1.1. Models. Let us introduce the class of U-KCM introduced in [9]. In d � 1 dimen-
sions an update family is a nonempty finite collection of finite nonempty subsets of
Z
d \ {0} called update rules. The U-KCM is a continuous time Markov chain with state

space � = {0, 1}Zd
. Given a configuration η ∈ �, we write ηx for the state of x ∈ Z

d

in η and say that x is infected (in η) if ηx = 0. We write ηA for the restriction of η to
A ⊂ Z

d and 0A for the completely infected configuration with A omitted when it is
clear from the context. We say that the constraint at x ∈ Z

d is satisfied if there exists
an update rule U ∈ U such that x + U = {x + y : y ∈ U } is fully infected. We denote
the corresponding indicator by

cx (η) = 1∃U∈U ,ηx+U=0. (1)

The final parameter of the model is its equilibrium density of infections q ∈ [0, 1].
We denote by μ the product measure such that μ(ηx = 0) = q for all x ∈ Z

d and by Var
the corresponding variance. Given a finite set A ⊂ Z

d and real function f : � → R,
we write μA( f ) for the average μ( f (η)|ηZd\A) of f over the variables in A. We write
VarA( f ) for the corresponding conditional variance, which is thus also a function from
�Zd\A to R, where �B = {0, 1}B for B ⊂ Z

d .
With this notation the U-KCM can be formally defined via its generator

L( f )(η) =
∑

x∈Zd

cx (η) · (μx ( f )− f ) (η) (2)
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and its Dirichlet form reads

D( f ) =
∑

x∈Zd

μ (cx · Varx ( f )) ,

where μx and Varx are shorthand for μ{x} and Var{x}. Alternatively, the process can be
defined via a graphical representation as follows (see [28] for background). Each site
x ∈ Z

d is endowed with a standard Poisson process called clock. Whenever the clock
at x rings we assess whether its constraint is satisfied by the current configuration. If
it is, we update ηx to an independent Bernoulli variable with parameter 1 − q and call
this a legal update. If the constraint is not satisfied, the update is illegal, so we discard it
without modifying the configuration. It is then clear that μ is a reversible measure for the
process (there are others, e.g. the Dirac measure on the fully non-infected configuration
1).

Our regime of interest is q → 0, corresponding to the low temperature limit relevant
for glasses. A quantitative observable, measuring the speed of the dynamics, is the
infection time of 0

τ0 = inf {t � 0 : η0(t) = 0} ,

where (η(t))t�0 denotes the U-KCM process. More specifically, we are interested in its
expectation for the stationary process Eμ[τ0], namely the process with random initial
condition distributed according to μ. This quantifies the equilibrium properties of the
system and is closely related e.g. to the more analytic quantity called relaxation time
(i.e. inverse of the spectral gap of the generator) that the reader may be familiar with.

U-bootstrap percolation is essentially the q = 1 case of U-KCM started out of
equilibrium, from a product measure with q0 → 0 density of infections. More con-
ventionally, it is defined as a synchronous cellular automaton, which updates all sites
of Z

d simultaneously at each discrete time step, by infecting sites whose constraint is
satisfied and never removing infections. As the process is monotone, it may alternatively
be viewed as a growing subset of the grid generated by its initial condition. We denote
by [A]U the set of sites eventually infected by the U-bootstrap percolation process with
initial condition A ⊂ Z

d , that is, the sites which can become infected in the U-KCM in
finite time starting from η(0) = (1x �∈A)x∈Zd . Strictly speaking, other than this notation,
bootstrap percolation does not feature in our proofs, but its intuition and techniques are
omnipresent. On the other hand, some of our intermediate results can translate directly
to recover some bootstrap percolation results of [7,8].

1.2. Universality setting. We direct the reader to the companion paper by Marêché and
the author [20], a monograph of Toninelli and the author [26] and the author’s PhD
thesis [19, Chap. 1], for comprehensive background on the universality results for two-
dimensional KCM and their history. Instead, we provide a minimalist presentation of
the notions we need. The definitions in this section were progressively accumulated
in [7,8,15,20,22,31] and may differ in phrasing from the originals, but are usually
equivalent thereto (see [20] for more details).

Henceforth, we restrict our attention to models in two dimensions. The Euclidean
norm and scalar product are denoted by ‖ · ‖ and 〈·, ·〉, and distances are w.r.t. ‖ · ‖.
Let S1 = {x ∈ R

2 : ‖x‖ = 1} be the unit circle consisting of directions, which we
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occasionally identify with R/2πZ in the standard way. We denote the open half plane
with outer normal u ∈ S1 and offset l ∈ R by

Hu(l) =
{
x ∈ R

2 : 〈x, u〉 < l
}

(3)

and omit l if it is 0. We further denote its closure by Hu(l), omitting zero offsets. We
often refer to continuous sets such as Hu , but whenever talking about infections or sites
in them, we somewhat abusively identify them with their intersections with Z

2 without
further notice.

Fix an update family U .

Definition 1.1 (Stability). A direction u ∈ S1 is unstable if there exists U ∈ U such that
U ⊂ Hu and stable otherwise.

It is not hard to see that unstable directions form a finite union of finite open intervals
in S1 [8, Theorem 1.10]. We say that a stable direction is semi-isolated (resp. isolated)
if it is the endpoint of a nontrivial (resp. trivial) interval of stable directions.

Definition 1.2 (Criticality). Let C be the set of open semicircles of S1. An update family
is

• supercritical if there exists C ∈ C such that all u ∈ C are unstable;
• subcritical if every semicircle contains infinitely many stable directions;
• critical otherwise.

The following notion measures “how stable” a stable direction is.

Definition 1.3 (Difficulty). For u ∈ S1 the difficulty α(u) of u is

• 0 if u is unstable;
• ∞ if u is stable, but not isolated;
• min{n : ∃Z ⊂ Z

2, |Z | = n, |[Hu ∪ Z ]U\Hu | = ∞} otherwise.

The difficulty of U is

α = min
C∈C

max
u∈C α(u).

We say that a direction u ∈ S1 is hard if α(u) > α.

See Fig. 1 for an example update family with α = 3 and its difficulties. It can be
shown that α(u) ∈ [1,∞) for isolated stable directions [7, Lemma 2.8]. Consequently,
a model is critical iff 0 < α < ∞ and supercritical iff α = 0, so difficulty is tailored
for critical models and refines Definition 1.2. Furthermore, for supercritical models the
notions of stable and hard direction coincide. Finally, observe that the definition implies
that for any critical or supercritical update family there exists an open semicircle with
no hard direction.

Definition 1.4 (Refined types). A critical or supercritical update family is

• rooted if there exist two non-opposite hard directions;
• unrooted if it is not rooted;
• unbalanced if there exist two opposite hard directions;
• balanced if it is not unbalanced, that is, there exists a closed semicircle containing
no hard direction.
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Fig. 1. An intricate isotropic example

We further partition balanced unrooted update families into

• semi-directed if there is exactly one hard direction;
• isotropic if there are no hard directions.

We further consider the distinction between models with finite and infinite number
of stable directions. The latter being necessarily rooted, but possibly balanced or un-
balanced, we end up with a partition of all (two-dimensional non-subcritical) families
into the seven classes studied in detail below in the critical case. We invite the interested
reader to consult [20, Fig. 1] for simple representatives of each class with rules contained
in the the lattice axes and reaching distance at most 2 from the origin. Naturally, many
more examples have been considered in the literature (also see Fig. 1).

Let us remark that models in each class may have one axial symmetry, but non-
subcritical models invariant under rotation by π are necessarily either isotropic or un-
balanced unrooted (thus with finite number of stable directions), while invariance by
rotation by π/2 implies isotropy.
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Table 1. Classification of critical U -KCM with difficulty α. For each class Eμ[τ0] =
exp

(
�(1)

(
1
qα

)β (
log 1

q

)γ (
log log 1

q

)δ
)

as q → 0. The label of the class and the exponents β, γ, δ are

indicated in that order

1.3. Results. Our result, summarised in Table 1, together with the companion paper
by Marêché and the author [20], is the following complete refined classification of
two-dimensional critical KCM (for the classification of supercritical ones, which only
features the rooted/unrooted distinction, see [29–31]).

Theorem 1 (Universality classification of two-dimensional critical KCM). Let U be a
two-dimensional critical update familywith difficultyα.Wehave the following exhaustive
alternatives as q → 0 for the expected infection time of the origin under the stationary
U-KCM.1 If U is

(a) unbalanced with infinite number of stable directions (so rooted), then

Eμ[τ0] = exp

(
�
(
(log(1/q))4)

q2α

)
;

(b) balanced with infinite number of stable directions (so rooted), then

Eμ[τ0] = exp

(
�(1)

q2α

)
;

(c) unbalanced rooted with finite number of stable directions, then

Eμ[τ0] = exp

(
�
(
(log(1/q))3)

qα

)
;

(d) unbalanced unrooted (so with finite number of stable directions), then

Eμ[τ0] = exp

(
�
(
(log(1/q))2)

qα

)
;

(e) balanced rooted with finite number of stable directions, then2

Eμ[τ0] = exp

(
�(log(1/q))

qα

)
;

1 We write f = �(g) if there exist c,C > 0 such that cg(q) < f (q) < Cg(q) for all q small enough and
use other standard asymptotic notation (see e.g. [20, Sect. 1.2]).

2 See Remark 1.6.
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(f) semi-directed (so balanced unrooted with finite number of stable directions), then

Eμ[τ0] = exp

(
�(log log(1/q))

qα

)
;

(g) isotropic (so balanced unrooted with finite number of stable directions), then

Eμ[τ0] = exp

(
�(1)

qα

)
.

This theorem is the result of a tremendous amount of effort by a panel of authors.
It would be utterly unfair to claim that it is due to the present paper and its compan-
ion [20] alone. Indeed, parts of the result (sharp upper or lower bounds for certain
classes) were established by (subsets of) Marêché, Martinelli, Morris, Toninelli and the
author [21,22,31,32]. Moreover, particularly for the lower bounds, the classification of
two-dimensional critical U-bootstrap percolation models by Bollobás, Duminil-Copin,
Morris and Smith [7] (featuring only the balanced/unbalanced distinction) is heavily
used, while upper bounds additionally use prerequisites from [23,24]. Thus, a fully
self-contained proof of Theorem 1 from common probabilistic background is currently
contained only in all the above references combined and spans hundreds of pages. Our
contribution is but the conclusive step.

More precisely, the lower bound for classes (d) and (g) was deduced from [7] in [32];
the lower bound for class (b) was established in [21], while the remaining four were
proved in [20]. Turning to upper bounds, the one for class (a) was given in [31] and
the one for class (c) is due to [22]. The remaining five upper bounds are new and those
are the subject of our work. The most novel and difficult ones concern classes (e) and
(f), the latter remaining quite mysterious prior to our work. Indeed, [22, Conjecture 6.2]
predicted the above result with the exception of this class, whose behaviour was unclear.
We should note that this conjecture itself rectified previous ones from [31,34], which
were disproved by the unexpected result of [22], and was new to physicists, as well as
mathematicians.

Remark 1.5. It should be noted that universality results including Theorem 1 apply to
KCM more general than the ones defined in Sect. 1.1. Namely, we may replace cx in
Eq. (2) by a fixed linear combination of the constraints cx associated to any finite set of
update families. For instance, we may update vertices at rate proportional to their number
of infected neighbours. This and other models along these lines have been considered
e.g. in [2,5,12]. For such mixtures of families, the universality class is determined by
the family obtained as their union. Indeed, upper bounds follow by direct comparison
of the corresponding Dirichlet forms, while lower bounds (e.g. [20]) generally rely on
deterministic bottlenecks, which remain valid.

Remark 1.6. Let us note that for reasons of extremely technical nature, we do not provide
a full proof of (the upper bound of) Theorem 1(e). More precisely, we prove it as stated
for models with rules contained in the axes of the lattice. We also prove a fully general
upper bound of

exp

(
O(log(1/q)) log log log(1/q)

qα

)
. (4)

Furthermore, with very minor modifications (see Remark 7.1), the error factor can be
reduced from log log log to log∗, where log∗ denotes the number of iterations of the
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logarithm before the result becomes negative (the inverse of the tower function). Unfor-
tunately, removing this minuscule error term requires further work, which we omit for the
sake of concision. Instead, we provide a sketch of how to achieve this in “Appendix C”.

1.4. Organisation. The paper is organised as follows. In Sect. 2 we begin by outlining all
the relevant relaxation mechanisms used by critical KCM, providing detailed intuition
for the proofs to come. This section is particularly intended for readers unfamiliar with
the subject, as well as physicists, for whom it may be sufficiently convincing on its own.
In Sect. 3 we gather various notation and simple preliminaries.

In Sect. 4 we formally state the two fundamental techniques we use to move from
one scale to the next, namely East-extensions and CBSEP-extensions, which import and
generalise ideas of [24]. They are used in various combinations throughout the rest of
the paper. The proofs of the results about those extensions, including the microscopic
dynamics treated by [18] are deferred to “Appendix A”, since they are quite technical and
do not require new ideas. The bounds arising from extensions feature certain conditional
expectations. We provide technical tools for estimating them in Sect. 4.4. We leave the
entirely new proofs of these general analogues of [24, Appendix A] to “Appendix B”.

Sections 5–9 are the core of our work and use the extensions mentioned above to
prove the upper bounds of Theorem 1 for classes (g), (d), (f), (e), (b) respectively. As
we will discuss in further detail (see Sect. 2 and Table 2b), some parts of the proofs are
common to several of these classes, making the sections interdependent. Thus, they are
intended for linear reading.

We conclude in “Appendix C” by explaining how to remove the corrective
log log log(1/q) factor discussed in Remark 1.6 to recover the result of Theorem 1(e) as
stated in full generality. Due to their technical nature, we delegate Appendices A to C
to the arXiv version of the present work.

Familiarity with the companion paper [20] or bootstrap percolation [7] is not needed.
Inversely, familiarity with [22,24] is strongly recommended for going beyond Sect. 2 and
achieving a complete view of the proof of the upper bounds of Theorem 1. Nevertheless,
we systematically state the implications of intermediate results of those works for our
setting in a self-contained fashion, without re-proving them.

2. Mechanisms

In this section we attempt a heuristic explanation of Theorem 1 from the viewpoint of
mechanisms, which is mostly related to upper bound proofs. Yet, let us say a few words
about the lower bounds. The proof of the lower bounds in the companion paper [20] has
the advantage and disadvantage of being unified for all seven classes. This is undeniably
practical and spotlights the fact that all scaling behaviours can be viewed through the
lens of the same bottleneck (few energetically costly configurations through which the
dynamics has to go to infect the origin) on a class-dependent length scale. However, the
downside is that it provides little insight on the particularities of each class, which turn
out to be quite significant. To prove upper bounds we need a clear vision of an efficient
mechanism for infecting the origin in each class. Since we work with the stationary
process, efficient means that it should avoid configurations which are too unlikely w.r.t.
μ. However, while lower bounds only identify what cannot be avoided, they do not tell
us how to avoid everything else, nor indeed how to reach the unavoidable bottleneck.

Instead of outlining the mechanism used by each class, we focus on techniques
which are somewhat generic and then apply combinations thereof to each class. In
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Table 2. Summary of the mechanisms and their costs. The microscopic mechanism common to all classes
and with negligible cost is not shown (see Sect. 2.2)

(a)The relaxation time cost associated to each choice of dynamics mechanism on each scale in
terms of the probability of a droplet ρD.

Global Mesoscopic Internal

CBSEP East CBSEP East, Stair CBSEP East Unbal.

ρ
−1+o(1)
D ρ

−O(log(1/ρD))
D eq

−o(1)
ρ
−O(log(1/q))
D eq

−o(1)
ρ
−O(log log(1/q))
D ρ

−O(1)
D

(b)The fastest mechanism available to each class of Theorem 1 on each scale. The * indicates
a leading contribution for the class (column).

(a) (b) (c) (d) (e) (f) (g)

Global East* East* CBSEP CBSEP* CBSEP CBSEP CBSEP*
Mesoscopic Stair East East* CBSEP East* CBSEP CBSEP
Internal – East Unbal. Unbal.* East East* CBSEP

figurative terms, we develop several computer hardware components (three processors,
four RAMs, etc.), give a general scheme of how to compose a generic computer out
of generic components and, finally, assemble seven concrete computer configurations,
using the appropriate components for each, sometimes changing a single component
from a machine to the other. Moreover, within each component type different instances
are strictly comparable, so, at the assembly stage, we might simply choose the best
possible component fitting with the requirements of model at hand. This enables us
to highlight the robust tools developed and refined recently, which correspond to the
components and how they are manufactured, as well as give a clean universal proof
scheme into which they are plugged.

Our different components are called themicroscopic, internal, mesoscopic and global
dynamics and correspond to progressively increasing length scales on which we are able
to relax, given a suitable infection configuration. As the notion of “suitable,” which we
call super good (SG), depends on the class and lower scale mechanisms used, we mostly
use it as a black box input extended progressively over scales in a recursive fashion.

In order to guide the reader through Sect. 2 and beyond, in Table 2, we summarise the
optimal mechanisms for each universality class on each scale and its cost. While its full
meaning will only become clear in Sect. 2.7, the reader may want to consult it regularly,
as they progress through Sect. 2.

The SG events concern certain convex polygonal geometric regions called droplets.
These events are designed so as to satisfy several conditions ensuring that the configura-
tion of infections inside the droplet is sufficient to infect the entire droplet. The SG events
defined by extensions from smaller to larger scales require the presence of a lower scale
droplet inside the large one (see Fig. 2) in addition to well-chosen more sparse infections
called helping sets in the remainder of the larger scale droplet (see Fig. 1). Helping sets
allow the smaller one to move inside the bigger one.

We say that a droplet relaxes in a certain relaxation time if the dynamics restricted to
the SG event and to this region “mixes” in this much time. Formally, this translates to a
constrained Poincaré inequality for the conditional measure, but this is unimportant for
our discussion.

One should think of droplets as extremely unlikely objects, which are able to move
within a slightly favourable environment. Indeed, at all stages of our treatment, we need
to control the inverse probability of droplets being SG and their relaxation times, keeping
them as small as feasible. Furthermore, due to their inductive definition, the favourable
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Fig. 2. One-directional extensions. The black droplet is SG. Helping sets appear on each line of the hatched
parallelograms as indicated by the hatching direction. The white strips have width �(C2)

environment required for their movement should not be too costly. Indeed, that would
result in the deterioration of the probability of larger scale droplets, as those incorporate
the lower scale environment in their internal structure. Hence, we seek a balance between
asking for many infections to make the movement efficient and asking for few in order
to keep the probability of droplets high enough.

2.1. Scales. Microscopic dynamics refers to modifying infections at the level of the
lattice along the boundary of a droplet, while respecting the KCM constraint.
Internal dynamics refers to relaxation on scales from the lattice level to the internal
scale �int = C2 log(1/q)/qα , where C is a large constant depending on U . This is the
most delicate and novel step. Up to �int we account for the main contribution to the
probability of droplets. That is, at all larger scales the probability of a droplet essentially
saturates at a certain value ρD, because finding helping sets becomes likely. Thus, on
smaller scales, it is important to only very occasionally ask for more than α infections
to appear close to each other in order to get the right probability ρD. This means that
up to the internal scale hard directions are practically impenetrable, since they require
helping sets of more that α infections.
Mesoscopic dynamics refers to relaxation on scales from �int to the mesoscopic scale
�mes = 1/qC . As our droplets grow to the mesoscopic scale and past it, it becomes pos-
sible to require larger helping sets, which we call W -helping sets. These allow droplets
to move also in hard directions of finite difficulty, while nonisolated stable directions
are still blocking.
Global dynamics refers to relaxation on scales from �mes to infinity. The extension to
infinity being fairly standard (and not hard), one should rather focus on scales up to the
global scale given by �gl = exp(1/q3α), which is notably much larger than all time
scales we are aiming for, but otherwise rather arbitrary.

Roughly speaking, on each of the last three scales, one should decide how to move
a droplet of the lower scale in a domain on the larger scale.

For simplicity, in the remainder of Sect. 2, we assume that the only four relevant
directions are the axis ones so that droplets have rectangular shape (see Sect. 3.3). We
further assume that all directions in the left semicircle have difficulties at most α, while
the down direction is hard, unless there are no hard directions (isotropic class).
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2.2. Microscopic dynamics. The microscopic dynamics (see “Appendix A.2”) is the
only place where we actually deal with the KCM directly and is the same, regardless of
the size of the droplet and the universality class. Roughly speaking, from the outside of
the droplet, we may think of it as fully infected, since it is able to relax and, therefore,
bring infections where they are needed. Thus, the outer boundary of the droplet behaves
like a 1-dimensional KCM with update family reflecting that we view the droplet as
infected. Hence, provided there are enough helping sets at the boundary to infect it, we
can apply results on 1-dimensional KCM supplied for this purpose by the author [18].

This way we establish that one additional column can relax in time exp(O(log(1/q))2),
similarly to the East model described in Sect. 2.3.2 below. Assuming we know how to
relax on the droplet itself, this allows us to relax on a droplet with one column appended.
However, applying this procedure recursively line by line is not efficient enough to be
useful for extending droplets more significantly.

2.3. One-directional extensions. We next explain two fundamental techniques beyond
the microscopic dynamics which we use to extend droplets on any scale in a single
direction (see Sect. 4).

As mentioned above, our droplets are polygonal regions with a SG event (presence
of a suitable arrangement of infections in the droplet). An extension takes as input a
droplet and produces another one. In terms of geometry, it contains the original one
and is obtained by extending it, say, horizontally, either to the left or both left and right
(see Fig. 2). The extended droplet’s SG event requires that the smaller one is SG and,
additionally, certain helping sets appear in the remaining volume. The choice of where
we position the smaller droplet (at the right end of the bigger one, or anywhere inside it)
depends on the type of extension. The additional helping sets are required in such a way
that, with their help, the smaller droplet can, in principle, completely infect the larger
one and, therefore, make it relax (resample its configuration within its SG event).

Thus, an extension is a procedure for iteratively defining SG events on larger and larger
scales. For each of our two types of extensions we need to provide corresponding iterative
bounds on the probability of the SG event and on the relaxation time of droplets on this
event. The former is a matter of careful computation. For the latter task we intuitively use
a large-scale version of an underlying one-dimensional spin model, which we describe
first.

2.3.1. CBSEP-extension In the one-dimensional spin version of CBSEP [23,24] we
work on {↑,↓}Z. At rate 1 we resample each pair of neighbouring spins, provided that
at least one of them is ↑. Their state is resampled w.r.t. the reference product measure,
which is reversible, conditioned to still have a ↑ in at least one of the two sites. In other
words, ↑ can perform coalescence, branching and symmetric simple exclusion moves,
hence the name. The relaxation time of this model on volume V is roughly min(V, 1/q)2

in one dimension and min(V, 1/q) in two and more dimensions [23,24], where q is the
equilibrium density of ↑, which we think of as being small.

For us ↑ represent SG droplets, which we would like to move within a larger volume.
However, as we would like them to be able to move possibly by an amount smaller than
the size of the droplet, we need to generalise the model a bit. We equip each site of a
finite interval of Z with a state space corresponding to the state of a column of the height
of our droplet of interest in the original lattice Z

2. Then the event “there is a SG droplet”
may occur on a group of � consecutive sites (columns). The long range generalised
CBSEP, which, abusing notation, we call CBSEP, is defined as follows. We fix some
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Fig. 3. Illustration of the perturbation of Lemma 4.11. The two thickened tubes are T and T ′. The regions
concerned by their traversability are hatched in different directions

range R > � and resample at rate 1 each group of R consecutive sites, if they contain a
SG droplet. The resampling is performed conditionally on preserving the presence of a
SG droplet in those R sites. Thus, one move of this process essentially delocalises the
droplet within the range.

It is important to note (and this was crucial in [24]) that CBSEP does not have to
create an additional droplet in order to evolve. Since SG droplets are unlikely, it suffices
to move an initially available SG droplet through our domain in order to relax. Since
infection needs to be able to propagate both left and right from the SG droplets, we
will define (see Sect. 4.3 and particularly Definition 4.7, Fig. 2b) CBSEP-extension by
extending our domain horizontally and asking for the SG droplet anywhere inside with
suitable “rightwards-pointing” helping sets on its right and “leftwards-pointing” on its
left.

While we now know that droplets evolve according to CBSEP, it remains to see how
one can reproduce one CBSEP move via the original dynamics. This is done inductively
on R by a bisection procedure, the trickiest part being the case R = � + 1. We then
dispose with a droplet plus one column—exactly the setting for microscopic dynamics.
However, we not only want to resample the state of the additional column, but also
allow the droplet to move by one lattice step. To achieve this, we have to look inside the
structure of the SG droplet and require for its infections (which have no rigid structure
and may therefore move around like the organelles of an amoeba) to be somewhat more
on the side we want to move towards (see e.g. Fig. 4 and also Definitions 5.3, 6.5, 7.7
and 7.8). Then, together with a suitable configuration on the additional column provided
by the microscopic dynamics, we easily recover our SG event shifted by one step, since
most of the structure was already provided by the version of the SG event “contracted”
towards the new column.

This amoeba-like motion (moving a droplet, by slightly rearranging its internal struc-
ture) leads to a very small relaxation time of the dynamics. Indeed, the time needed to
move the droplet is the product of three contributions: the relaxation time of the 1-
dimensional spin model; the relaxation time of the microscopic dynamics; the time
needed to see a droplet contracting as explained above (see Proposition 4.9). The first
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Fig. 4. Geometry of isotropic SG and SG events

of these is a power of the volume (number of sites); the second is exp(O(log(1/q)))2);
the third is also small, as we discuss in Sect. 2.3.2.

However, CBSEP-extensions can only be used for sufficiently symmetric update
families. That is, the droplet needs to be able to move indifferently both left and right
and its position should not be biased in one direction or the other. Specifically, if we are
working on a scale that requires the use of helping sets of size α, these have to exist both
for the left and right directions, so the model needs to be unrooted (if instead we use
larger helping sets, having a finite number of stable directions suffices). The reason is
that otherwise the position of the SG droplet is biased in one direction instead of being
approximately uniform. This would break the analogy with the original one-dimensional
spin model, which is totally symmetric. When symmetry is not available, we recourse
to the East-extension presented next, which may also be viewed as a totally asymmetric
version of the CBSEP-extension.

2.3.2. East-extension The East model [27] is the one-dimensional KCM withU = {{1}}.
That is, we are only allowed to resample the left neighbour of an infection. An efficient
recursive mechanism for its relaxation is the following [33]. Assume we start with an
infection at 0. In order to bring an infection to −2n + 1, using at most n infections at a
time (excluding 0), we first bring one to−2n−1 +1, using n−1 infections. We then place
an infection at −2n−1 and reverse the procedure to remove all infections except 0 and
−2n−1. Finally, start over with n − 1 infections, viewing −2n−1 as the new origin, thus
reaching−2n +1. It is not hard to check that this is as far as one can get with n infections
[11]. Thus, a number of infections logarithmic in the desired distance is needed. This is
to be contrasted with CBSEP, for which only one infection is ever needed, as it can be
moved indefinitely by SEP moves. The relaxation time of East on a segment of length
L is q−O(log min(L ,1/q)) [1,9,10], where q is the equilibrium density of infections. This
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corresponds to the cost of n infections when 2n ∼ min(L , 1/q) is the typical distance
to the nearest infection.

The long-range generalised version of the East model is defined similarly to that of
CBSEP. The only difference is that now R > � consecutive columns are resampled
together if there is a SG droplet on their extreme right. It is clear that this does not
allow moving the droplet, but rather forces us to recreate a new droplet at a shifted
position before we can progress. The associated East-extension of a droplet corresponds
to extending its geometry to the left (see Sect. 4.2 and particularly Definition 4.4 and
Fig. 2a). The extended SG event requires that the original SG droplet is present in the
rightmost position and “leftwards-pointing” helping sets are available in the rest of the
extended droplet.

The generalised East process goes back to [31], while the long range version is
implicitly used in [22]. However, both works used a brutal strategy consisting of creating
the new droplet from scratch. Instead, in this work we have to be much more careful,
particularly for semi-directed models. Indeed, take � large and R = � + 5. Then it is
intuitively clear that the presence of the original rightmost droplet overlaps greatly with
the occurrence of the shifted SG one we would like to craft. Hence, the idea is to take
advantage of this and only pay the conditional probability of the droplet we are creating,
given the presence of the original one.

This is not as easy as it sounds for several reasons. Firstly, we should make the SG
structure soft enough (in contrast with e.g. [22,31]) so that small shifts do not change
it much. Secondly, we need to actually have a quantitative estimate of the conditional
probability of a complicated multi-scale event, given its translated version, which nec-
essarily does not quite respect the same multi-scale geometry. To make matters worse,
we do not have at our disposal a very sharp estimate of the probability of SG events
(unlike in [24]), so directly computing the ratio of two rough estimates would yield a
very poor bound on the conditional probability. In fact, this problem is also present when
contracting a droplet in the CBSEP-extension—we need to evaluate the probability of a
contracted version of the droplet, conditionally on the original droplet being present.

We deal with these issues in Sect. 4.4 (see also “Appendix B”). We establish that, as
intuition may suggest, to create a droplet shifted by R − �, given the original one, we
roughly only need to pay the probability of a droplet on scale R− � rather than �, which
provides a substantial gain. Hence, the time necessary for an East-extension of a droplet
to relax is essentially the product of the inverse probabilities of a droplet on scales of
the form 2m up to the extension length (see Proposition 4.6).

2.4. Internal dynamics. The internal dynamics (see Sects. 5.1, 6.1, 7.1, and 8.1) is where
most of our work goes. This is not surprising, as the probability of SG events saturates
at its final value ρD at the internal scale. The value of ρD is given by exp(−O(1)/qα)

for balanced models and exp(−O(log(1/q))2/qα) for unbalanced ones, as in bootstrap
percolation [7]. However, relaxation times for some classes keep growing past the internal
scale, so the internal dynamics does not necessarily give the final answer in Theorem 1
(see Table 2b).

2.4.1. Unbalanced internal dynamics Let us begin with the simplest case of unbalanced
models. If U is unbalanced with infinite number of stable directions (class (a)), droplets
in [31] on the internal scale consist of several infected consecutive columns, so that no
relaxation is needed (the SG event is a singleton). The columns have size �int, which
justifies the value of ρD = q−O(�int) = exp(−O(log(1/q))2/qα).
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Fig. 5. The events SG(

(n)
2 ) and ST (


(n)
3 ) of Definition 6.5. 


(n)
3 is thickened. Black regions are entirely

infected. Shaded tubes are (1,W )-symmetrically traversable

Assume U is unbalanced with finite number of stable directions (classes (c) and
(d), see Sect. 6.1). Then droplets on the internal scale are fully infected square frames
of thickness O(1) and size �int. That is, the �∞ ball of radius �int minus the one of
radius �int − O(1) (see [22, Figs. 2–4] or Fig. 5 for more general geometry). This frame
is infected with probability ρD = q−O(�int). In order to relax inside the frame, one can
divide its interior into groups of O(1) consecutive columns (see [22, Fig. 8]). We can then
view them as performing a CBSEP dynamics with ↑ corresponding to a fully infected
group of columns. This is possible, because with the help of the frame each completely
infected group is able to completely infect the neighbouring ones. Here we are using that
there are finitely many stable directions to ensure both the left and right directions have
finite difficulty, so finite-sized helping sets, as provided by the frame, are sufficient to
propagate our group of columns. This was already done in [22] and the time necessary
for this relaxation is easily seen to be ρ

−O(1)
D (the cost for creating a group of infected

columns)—see Proposition 6.2.

2.4.2. CBSEP internal dynamics If U is isotropic (class (g), see Sect. 5.1), up to the
conditioning problems of Sect. 4.4 described above, we need only minor adaptations
of the strategy of [24] for the paradigmatic isotropic model called FA-2f. Droplets on
the internal scale have an internal structure as obtained by iterating Fig. 4a (see also
[24, Fig. 2]). Our droplets are extended little by little alternating between the horizontal
and vertical directions, so that their size is multiplied essentially by a constant at each
extension. Thus, roughly log(1/q) extensions are required to reach �int. As isotropic
models do not have any hard directions, we can move in all directions and thus the
symmetry required for CBSEP-extensions is granted. Hence, this mechanism leads to a
very fast relaxation of droplets in time exp(q−o(1))—see Theorem 5.2.3

3 Note that in [24, Proposition 4.7] a much larger internal relaxation time of order exp(q−1/2+o(1)) was
obtained, but the cost ρ−1

D of SG droplets was much smaller than the one in the present work, so our treatment
here is by no means as sharp for FA-2f as [24].
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Fig. 6. Geometry of the nested droplets 
(n) for k = 2 in the setting of Sect. 7.1. For n ∈ N droplets are
symmetric and homothetic to the black 
(0). Intermediate ones 
(1+1/4), 
(1+2/4) and 
(1+3/4) obtained by
East-extensions (see Fig. 2a) in directions u0, u1 and u2 respectively are drawn in progressive shades of grey

Remark 2.1. Note that for CBSEP-extensions to be used, we need a very strong sym-
metry. Namely, leftwards and rightwards pointing helping sets should be the same up to
rotation by π . Yet, for a general isotropic model we only know that there are no hard
directions, so helping sets have the same size (equal to the difficulty α of the model), but
not necessarily the same shape. We circumvent this issue by artificially symmetrising
our droplets and events. Namely, whenever we require helping sets in one direction,
we also require the helping sets for the opposite direction rotated by π (see Definitions
3.8,4.1 and 4.7). Although these are totally useless for the dynamics, they are important
to ensure that the positions of droplets are indeed uniform rather than suffering from a
drift towards an “easier” non-hard direction (see Lemma 4.10).

2.4.3. East internal dynamics The most challenging case is the balanced non-isotropic
one (classes (b), (e) and (f)). It is treated in Sects. 7.1 and 8.1, but for the purposes of
the present section only Sect. 7.1 is relevant. This is because we assume that only the
four axis directions are relevant and our droplets are rectangular. The treatment of the
general case for balanced rooted families is left to Sect. 8.1 and “Appendix C” (recall
Remark 1.6).

For the internal dynamics the downwards hard direction prevents us from using
CBSEP-extensions. To be precise, for semi-directed models (class (f)) it is possible to
perform CBSEP-extensions horizontally (and not vertically), but the gain is insignificant,
so we treat all balanced non-isotropic models identically up to the internal scale as
follows.

We still extend droplets, starting from a microscopic one, by a constant factor alter-
nating between the horizontal and vertical directions (see Fig 6a). However, in contrast
with the isotropic case (see Fig. 4a), extensions are done in an oriented fashion, so that
the original microscopic droplet remains anchored at the corner of larger ones. Thus, we
may apply East-extensions on each step and obtain that the cost is given by the product
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of conditional probabilities from Sect. 2.3.2 over all scales and shifts of the form 2n :

log2(�
int)∏

n=1

n∏

m=0

a(n)
m , (5)

where a(n)
m is the conditional probability of a SG droplet of size 2n being present at

position 2m , given that a SG droplet of size 2n is present at position 0. It is crucial
that Eq. (5) is not the straightforward bound

∏
n(ρ

(n)
D )−n , with ρ

(n)
D the probability of

a droplet of scale n, that one would get by direct analogy with the East model (recall
from Sect. 2.3.2 that the relaxation time of East on a small volume L is q−O(log L)), as
that would completely devastate all our results. Indeed, as mentioned in Sect. 2.3.2, the
term a(n)

m in Eq. (5) is approximately equal to ρ
(m)
D , rather than ρ

(n)
D . This is perhaps one

of the most important points to our treatment.
In total, a droplet of size 2n needs to be paid once per scale larger than 2n (see

Eq. (42)). A careful computation shows that only droplets larger than q−α provide the
dominant contribution and those all have probability essentially ρD = exp(−O(1)/qα)

(see Eq. (43)). Thus, the total cost would be

log(�int)∏

n=log(1/qα)

n∏

m=log(1/qα)

ρD = ρ
O(log log(1/q))2

D = exp
(
−O(log log(1/q))2/qα

)
, (6)

since there are log log(1/q) scales from q−α to �int, as they increase exponentially.
Equation (6) is unfortunately a bit too rough for the semi-directed class, overshooting

Theorem 1(f). However, the solution is simple. It suffices to introduce scales growing
double-exponentially above q−α instead of exponentially (see Eq. (37)), so that the
product over scales n in Eq. (6) becomes dominated by its last term, corresponding to
droplet size �int. This gives the optimal final cost

ρ
− log(qα�int)

D = ρ
−O(log log(1/q))

D = exp
(
O(log log(1/q))/qα

)

(see Theorem 7.3).

2.5. Mesoscopic dynamics. For the mesoscopic dynamics (see Sects. 5.1, 6.2, 7.2, and
9.1) we are given as input a SG event for droplets on scale �int = C2 log(1/q)/qα and
a bound on their relaxation time and occurrence probability ρD. We seek to output the
same on scale �mes = q−C . Taking C � W , once our droplets have size �mes, we are
able to find W -helping sets (sets of W consecutive infections, where W is large enough).

2.5.1. CBSEP mesoscopic dynamics If U is unrooted (classes (d), (f) and (g), see
Sects. 6.2 and 7.2), recall that the hard directions (if any) are vertical. Then we can per-
form a horizontal CBSEP-extension directly from�int to�mes, since�int = C2 log(1/q)/qα

makes it likely for helping sets (of size α) to appear along all segments of length �int until
we reach scale �mes = q−C . The resulting droplet is very wide, but short (see Fig. 5a).
However, this is enough for us to be able to perform a vertical CBSEP-extension (see
Fig. 5b), requiring W -helping sets, since they are now likely to be found. Again, CBSEP
dynamics being very efficient, its cost is negligible. Note that, in order to perform the
vertical extension, we are using that there are no nonisolated stable directions, so that W
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is larger than the difficulty of the up and down directions, making W -helping sets suf-
ficient to induce growth in those directions. Thus, morally, there are no hard directions
beyond scale �mes for unrooted models.

2.5.2. East mesoscopic dynamics If U is rooted (classes (a)–(c) and (e), see Sect. 9.1),
CBSEP-extensions are still inaccessible. We may instead East-extend horizontally from
�int to �mes in a single step. If the model is balanced or has a finite number of stable direc-
tions (classes (b), (c) and (e)), we may proceed similarly in the vertical direction, reaching
a droplet of size �mes in time ρ

−O(log(1/q))

D (here we use the basic bound q−O(log L) for
East dynamics recalled in Sect. 2.3.2, which is fairly tight in this case, since droplets
are small compared to the volume: log �mes ≈ log(�mes/�int)). For the unbalanced case
(class (c)) here we require W -helping sets along the long side of the droplet like in
Sect. 2.5.1. Another way of viewing this is simply as extending the procedure used for
the East internal dynamics all the way up to the mesoscopic scale �mes (see Sect. 9.1).

It should be noted that a version of this mechanism, which coincides with the above
for models with rectangular droplets, but differs in general, was introduced in [22].
Though their snail mesoscopic dynamics can be replaced by our East one, for the sake of
concision in Sect. 8.2 we directly import the results of [22] based on the snail mechanism.

2.5.3. Stairmesoscopic dynamics For unbalanced families with infinite number of stable
directions (class (a)) the following stair mesoscopic dynamics was introduced in [31].
Recall from Sect. 2.4.1 that for unbalanced models the internal droplet is simply a fully
infected frame or group of consecutive columns. While moving the droplet left via an
East motion, we pick upW -helping sets above or below the droplet. These sets allow us to
make all droplets to their left shifted up or down by one row. Hence, we manage to create
a copy of the droplet far to its left but also slightly shifted up or down (see [31, Fig. 6].
Repeating this (with many steps in our staircase) in a two-dimensional East-like motion,
we can now relax on a mesoscopic droplet with horizontal dimension much larger than
�mes but still polynomial in 1/q and vertical dimension �mes in time ρ

−O(log(1/q))

D . Here,
one should again intuitively imagine we are using the bound q−O(log L) but this time for
the relaxation time of the 2-dimensional East model.

2.6. Global dynamics. The global dynamics (see Sects. 5.2, 6.3, 7.3, 8.2 and 9.2) re-
ceives as input a SG event for a droplet on scale �mes with probability roughly ρD and
a bound on its relaxation time, as provided by the mesoscopic dynamics. Its goal is to
move such a droplet efficiently to the origin from its typical initial position at distance
roughly ρ

−1/2
D .

2.6.1. CBSEP global dynamics If U has a finite number of stable directions (classes
(c)–(g)) the mesoscopic droplet can perform a CBSEP motion in a typical environment.
Indeed, the droplet is large enough for CBSEP-extensions with W -helping sets to be
possible in all directions. Therefore, the cost of this mechanism is given by the relaxation
time of CBSEP on a box of size �gl = exp(1/q3α) with density of ↑ given by ρD.
Performing this strategy carefully and using the 2-dimensional CBSEP, this yields a
relaxation time min((�gl)2, 1/ρD) = 1/ρD (recall Sect. 2.3.1 and see Sect. 5.2).
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2.6.2. East global dynamics If U has infinite number of stable directions (classes (a)
and (b)), the strategy is identical to the CBSEP global dynamics, but employs an East
dynamics. Now the cost becomes the relaxation time of an East model with density of

infections ρD, which yields a relaxation time of ρ
−O(log min(�gl,1/ρD))

D = ρ
−O(log(1/ρD))

D
(recall Sect. 2.3.2 and see Sect. 9.2).

2.7. Assembling the components. To conclude, let us return to the summary provided
in Table 2. In Table 2a we collect the mechanisms for each scale and their cost to the
relaxation time. The results are expressed in terms of the probability of a droplet ρD,
which equals exp(−O(log(1/q))2/qα) for unbalanced models and exp(−O(1)/qα) for
balanced ones. The final bound on Eμ[τ0] for each class then corresponds to the product
of the costs of the mechanism employed at each scale. To complement this, in Table 2b we
indicate the fastest mechanism available for each class on each scale. We further indicate
which one gives the dominant contribution to the final result appearing in Theorem 1,
once the bill is footed.

Finally, let us alert the reader that, for the sake of concision, the proof below does not
systematically implement the optimal strategy for each class as indicated in Table 2b if
that does not deteriorate the final result. Similarly, when that is unimportant, we may
give weaker bounds than the ones in Table 2a. In Sect. 8.2 we tacitly import a weaker
precursor of the CBSEP global mechanism from [22] not listed above.

3. Preliminaries

3.1. Harris inequality. Let us recall a well-known correlation inequality due to Harris
[17]. It is used throughout and we state some particular formulations that are useful to
us.

For Sect. 3.1 we fix a finite 
 ⊂ Z
2. We say that an event A ⊂ �
 is decreasing if

adding infections does not destroy its occurrence.

Proposition 3.1 (Harris inequality). Let A,B ⊂ �
 be decreasing. Then

μ(A ∩ B) � μ(A)μ(B). (7)

Corollary 3.2. Let A,B, C,D ⊂ �
 be nonempty and decreasing events such that B
and D are independent, then

μ(A|B ∩D) � μ(A|B) � μ(A), (8)

μ(A ∩ C|B ∩D) � μ(A|B)μ(C|D). (9)

Proof. The first inequality in Eq. (8) is Eq. (9) for C = �
, the second follows from
Eq. (7) and μ(A|B) = μ(A ∩ B)/μ(B), while Eq. (9) is

μ(A ∩ C|B ∩D) = μ(A ∩ C ∩ B ∩D)

μ(B ∩D)
� μ(A ∩ B)μ(C ∩D)

μ(B)μ(D)
= μ(A|B)μ(C|D),

using Eq. (7) in the numerator and independence in the denominator. ��
We collectively refer to Eqs. (7)–(9) as Harris inequality.
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3.2. Directions. Throughout this work we fix a critical update familyU with difficulty α.
We call a direction u ∈ S1 rational if uR∩Z

2 �= {0}. It follows from Definition 1.1 that
isolated and semi-isolated stable directions are rational [8, Theorem 1.10]. Therefore,
by Definition 1.3 there exists an open semicircle with rational midpoint u0 such that all
directions in the semicircle have difficulty at most α. We may assume without loss of
generality that the direction u0 + π/2 is hard unless U is isotropic. It is not difficult to
show (see e.g. [8, Lemma 5.3]) that one can find a nonempty set S ′ of rational directions
such that:

• all isolated and semi-isolated stable directions are in S ′;
• u0 ∈ S ′;
• for every two consecutive directions u, v in S ′ either there exists a rule X ∈ U such

that X ⊂ Hu ∩Hv or all directions between u and v are stable.

We further consider the set Ŝ = S ′ + {0, π/2, π, 3π/2} obtained by making S ′ invariant
by rotation by π/2. It is not hard to verify that the three conditions above remain valid
when we add directions, so they are still valid for Ŝ instead of S ′. We refer to the
elements of Ŝ as quasi-stable directions or simply directions, as they are the only ones
of interest to us. We label the elements of Ŝ = (ui )i∈[4k] clockwise and consider their
indices modulo 4k (we write [n] for {0, . . . , n − 1}), so that ui+2k = −ui (the inverse
being taken in R

2 and not w.r.t. the angle) is perpendicular to ui+k . In figures we take
Ŝ = π

4 (Z/8Z) and u0 = (−1, 0). Further observe that if all U ∈ U are contained in the
axes of Z

2, then we may set Ŝ = π
2 (Z/4Z).

For i ∈ [4k] we introduce ρi = min{ρ > 0 : ∃x ∈ Z
2, 〈x, ui 〉 = ρ} and λi =

min{λ > 0 : λui ∈ Z
2}, which are both well-defined, as the directions are rational (in

fact ρiλi = 1, but we use both notations for transparency).

3.3. Droplets. We next define the geometry of the droplets we use. Recall half planes
from Eq. (3).

Definition 3.3 (Droplet). A droplet is a nonempty closed convex polygon of the form


(r) =
⋂

i∈[4k]
Hui (ri )

for some radii r ∈ R
[4k] (see the black regions in Fig. 2). For a sequence of radii r we

define the side lengths s = (si )i∈[4k] with si the length of the side of 
(r) with outer
normal ui .

We say that a droplet is symmetric if it is of the form x + 
(r) with 2x ∈ Z
2 and

ri = ri+2k for all i ∈ [2k]. If this is the case, we call x the center of the droplet.

Note that if all U ∈ U are contained in the axes of Z
2, then droplets are simply

rectangles with sides parallel to the axes.
We write (ei )i∈[4k] for the canonical basis of R

[4k] and we write 1 = ∑
i∈[4k] ei , so

that 
(r1) is a polygon with inscribed circle of radius r and sides perpendicular to Ŝ . It
is often more convenient to parametrise dimensions of droplets differently. For i ∈ [4k]
we set

vi =
i+k−1∑

j=i−k+1

〈ui , u j 〉e j . (10)
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This way 
(r + vi ) is obtained from 
(r) by extending the two sides parallel to ui by
1 in direction ui and leaving all other side lengths unchanged (see Fig. 2a). Note that if

(r) is symmetric, then so is 
(r + λivi ) for i ∈ [4k].
Definition 3.4 (Tube). Given i ∈ [4k], r and l > 0, we define the tube of length l,
direction i and radii r (see the thickened regions in Fig. 2)

T (r , l, i) = 
(r + lvi ) \
(r).

We often need to consider boundary conditions for our events on droplets and tubes.
Given two disjoint finite regions A, B ⊂ Z

2 and two configurations η ∈ �A and ω ∈ �B ,
we define η · ω ∈ �A∪B as

(η · ω)x =
{

ηx x ∈ A,

ωx x ∈ B.
(11)

3.4. Scales. Throughout the work we consider the positive integer constants

1/ε � 1/δ � C � W.

Each one is assumed to be large enough depending on U and, therefore, Ŝ and α (e.g.
W > α), and much larger than any explicit function of the next (e.g. eW < C). These
constants are not allowed to depend on q. Whenever asymptotic notation is used, its
implicit constants are not allowed to depend on the above ones, but only on U . Also
recall Footnote 1.

The following are our main scales corresponding to the mesoscopic and internal
dynamics:

�mes+ = q−C/
√

δ, �mes = q−C ,

�mes− = q−C · √δ, �int = C2 log(1/q)/qα.

3.5. Helping sets. We next introduce various constant-sized sets of infections sufficient
to induce growth. As the definitions are quite technical in general, in Fig. 1 we introduce
a deliberately complicated example, on which to illustrate them.

3.5.1. Helping sets for a line Recall (ui )i∈[4k] and (λi )i∈[4k] from Sect. 3.2 and that for
i ∈ [4k], the direction ui+k is obtained by rotating ui clockwise by π/2.

Definition 3.5 (W -helping set in direction ui ). Let i ∈ [4k]. A W -helping set in direction
ui is any set of W consecutive infected sites in Hui \ Hui , that is, a set of the form
x + [W ]λi+kui+k for some x ∈ Hui \Hui .

The relevance of W -helping sets in direction ui is that, since W is large enough,
[Z ∪Hui ]U = Hui for any direction ui such that α(ui ) < ∞ and Z a W -helping set in
direction ui (see [8, Lemma 5.2]).

We next define some smaller sets which are sufficient to induce such growth but have
the annoying feature that they are not necessarily contained in Hui and do not necessarily
induce growth in a simple sequential way like W -helping sets in direction ui . Let us note
that except in “Appendix A.2” the reader will not lose anything conceptual by thinking
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that the sets Zi , ui -helping sets and α-helping sets in direction ui defined below are
simply single infected sites in Hui \Hui and the period Q is 1.

In words, the set Zi provided by the following lemma together with Hui can infect a
semi-sublattice of the first line outside Hui and only a finite number of other sites.

Lemma 3.6. Let i ∈ [4k] be such that 0 < α(ui ) � α. Then there exists a set Zi ⊂
Z

2 \Hui and xi ∈ Z
2 \ {0} such that

〈xi , ui 〉 = 0, |Zi | = α,

∣∣∣
[
Zi ∪Hui

]
U \Hui

∣∣∣ < ∞,
[
Zi ∪Hui

]
U ⊃ xiN,

where N = {0, 1, . . . }.
Proof. Definition 1.3 supplies a set Z ⊂ Z

2\Hui such that Z = [Hui ∪ Z ]U\Hui
is infinite and |Z | = α(ui ). Among all possible such Z , choose Z to minimise l =
max{〈z, ui 〉 : z ∈ Z}. Yet, ui is stable, since α(ui ) �= 0 (recall Definition 1.3). Therefore,
Z ⊂ Hui (l) \Hui , because Z ∪Hui ⊂ Hui (l) (recall Definition 1.1 and observe that it
implies that [Hui (l)]U = Hui (l)).

Then [7, Lemma 3.3] asserts that Z ∩ Hui is either finite or contains xiN for some
xi ∈ Hui \ (Hui ∪ {0}). Assume that |Z \ Hui | < ∞, so that |Z ∩ Hui | = ∞, since
|Z | = ∞. Then we conclude by setting Zi equal to the union of Z with α − α(ui )
arbitrarily chosen elements of Z\Z , so that Zi = Z .

Assume for a contradiction that, on the contrary, |Z\Hui | = ∞. Set Z ′ = (Z −
ρi ui )\Hu (i.e. shift Z one line closer to Hui ) and observe that Z ′ ⊃ (Z \Hui − ρi ui ) is
still infinite. Therefore, by Definition 1.3 α(ui ) � |Z ′| � |Z | = α(ui ). This contradicts
our choice of Z minimising l. ��

In the example of Fig. 1 the u3 direction admits a set Z3 of cardinality 3 such that
[Z3∪Hu3 ]U only contains every second site of the line Hui \Hui , while at least 4 sites are
needed to infect the entire line. Thus, in order to efficiently infect Hu3 \Hu3 , assuming
Hu3 is infected, we may use two translates of Z3 with different parity. This technicality
is reflected in the next definition.

Definition 3.7 (ui -helping set). For all i ∈ [4k] such that 0 < α(ui ) � α fix a choice of
Zi and xi as in Lemma 3.6 in such a way that the period

Q = ‖xi‖
λi+k

is independent of i and sufficiently large so that the diameter of {0}∪ Zi is much smaller
than Q. A ui -helping set is a set of the form

⋃

j∈[Q]

(
Zi + jλi+kui+k + k j xi

)
, (12)

for some integers k j . For i ∈ [4k]with α(ui ) = 0, we define ui -helping sets to be empty.
For i ∈ [4k] with α(ui ) > α there are no ui -helping sets.

Note that by Lemma 3.6 a ui -helping set Z is sufficient to infect a half-line, but since
that contains a W -helping set in direction ui , we have [Z ∪Hui ]U ⊃ Hui .

We further incorporate the artificial symmetrisation alluded to in Remark 2.1 in the
next definition.
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Definition 3.8 (α-helping set in direction ui ). Let i ∈ [4k].
• If α(ui ) � α and α(ui+2k) � α, then a α-helping set in direction ui is a set of the
form H ∪ H ′ with H a ui -helping set and −H ′ = {−h : h ∈ H ′} a ui+2k-helping
set.
• If α(ui ) � α and α(ui+2k) > α, then a α-helping set in direction ui is a ui -helping
set.
• If α < α(ui ) � ∞, there are no α-helping sets in direction ui .

If α(ui ) < ∞, any set which is either a W -helping set in direction ui or a α-helping set
in direction ui is called helping set in direction ui . If α(ui ) = ∞, there are no helping
sets in direction ui .

In the example of Fig. 1 u0 and u2 are both of difficulty α = 3, so α-helping sets in
direction u0 correspond to (z1 + {(0, 0), (2, 0), (3, 0)})∪ (z2 + {(0, 0), (−2, 1), (0, 2)})
for some (z1, z2) ∈ ({0} × Z)2. The set z2 + {(0, 0), (−2, 1), (0, 2)} is not a u0-helping
set, but we include it in α-helping sets in direction u0. We do so, in order for α-helping
sets in direction u0 and u2 to be symmetric. Namely, they satisfy that Z is a α-helping
set in direction u0 if and only if −Z is a α-helping set in direction u2.

3.5.2. Helping sets for a segment For this section we fix a direction ui ∈ Ŝ with α(ui ) <

∞ and a discrete segment S perpendicular to ui of the form

{
x ∈ Z

2 : 〈x, ui 〉 = 0, 〈x, ui+k〉/λi+k ∈ [0, a]
}

(13)

for some integer a � W . The direction ui is kept implicit in the notation, so it may be
useful to view S as having an orientation.

Definition 3.9. For d � 0, we denote by HW
d (S) the event that there is an infected

W -helping set in direction ui in S at distance at least d from its endpoints:

HW
d (S) = {

η ∈ � : ∃x ∈ Z ∩ [d/λi+k, a − (W − 1)− d/λi+k],
η(x+[W ])λi+kui+k = 0

}
.

We write HW (S) = HW
0 (S).

For helping sets the definition is more technical, since they are not included in S. We
therefore require that they are close to S and at some distance from its endpoints.

Definition 3.10. For d � 0, we denote by Hd(S) ⊂ � the event such that η ∈ Hd(S) if
there exists Z a helping set in direction ui such that for all z ∈ Z , we have ηz = 0,

〈z, ui 〉 ∈ [0, Q], 〈z, ui+k〉 ∈ [d, aλi+k − d] . (14)

Given a domain 
 ⊃ S and a boundary condition ω ∈ �Z2\
 we define Hω
d (S) = {η ∈

�
 : ω · η ∈ Hd(S)}. We write Hω(S) = Hω
0 (S) and H(S) = H0(S).

Note that in view of Definition 3.8, if α(ui ) < ∞, then Hω(S) ⊃ HW (S) for any ω with
equality if α(ui ) > α. The next observation bounds the probability of the above events.
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Observation 3.11. (Helping set probability) For any 
 ⊃ S and ω ∈ �Z2\
 we have:
if α(ui ) < ∞, then

μ
(
Hω(S)

)
� μ

(
HW (S)

)
� 1−

(
1− qW

)�|S|/W�
� max

(
qW , 1− e−q2W |S|) ;

if α(ui ) � α, then

μ(H(S)) �
(

1− (1− qα)�(|S|))O(1)

�
(

1− e−qα |S|/O(1)
)O(1)

.

Proof. Assume α(ui ) < ∞. As already observed, by Definitions 3.8–3.10, Hω(S) ⊃
HW (S), as W -helping sets in direction ui are helping sets in direction ui . For the second
inequality follows by dividing S into disjoint groups of W consecutive sites (each of
which is a W -helping set in direction ui ). The final inequality follows since |S| � W
and (1− qW )1/W � e−qW /(2W ) � e−q2W

.
The case α(ui ) � α is treated similarly. Indeed, in order for H(S) to occur, we need

to find each of the Q = O(1) pieces of a ui -helping set in Eq. (12), each of which has
cardinality α. We direct the reader to [7, Lemma 4.2] for more details. ��

3.6. Constrained Poincaré inequalities. We next define the (constrained) Poincaré con-
stants of various regions. For 
 ⊂ Z

2, η, ω ∈ � (or possibly η defined on a set including

 and ω on a set including Z

2 \
) and x ∈ Z
2, we denote by c
,ω

x (η) = cx (η
 ·ωZ2\
)

(recall Eqs. (1) and (11)) the constraint at x in 
 with boundary condition ω. Given a
finite 
 ⊂ Z

2 and a nonempty event SG1(
) ⊂ �
, let γ (
) be the smallest constant
γ ∈ [1,∞] such that the inequality

Var

(
f |SG1(
)

)
� γ

∑

x∈


μ


(
c
,1
x Varx ( f )

)
(15)

holds for all f : � → R. Here we recall from Sect. 1.1 that μ denotes both the product
Bernoulli probability distribution with parameter q and the expectation with respect to
it. Moreover, for any function φ : � → R, μ
(φ) = μ(φ(η)|ηZ2\
) is the average on
the configuration η of law μ in 
, conditionally on its state in Z

2 \
. Thus, μ
(φ) is
a function on �Z2\
. Similarly, Varx ( f ) = μ( f 2(η)|ηZ2\{x})− μ2( f (η)|ηZ2\{x}) and

Var

(
f |SG1(
)

)
= μ

(
f 2(η)

∣∣∣ η
 ∈ SG1(
), ηZ2\

)

−μ2
(
f (η)|η
 ∈ SG1(
), ηZ2\


)
.

Remark 3.12. It is important to note that in the r.h.s. of Eq. (15) we average w.r.t. μ


and not μ
(·|SG1(
)) (the latter would correspond to the usual definition of Poincaré
constant, from which we deviate). In this respect Eq. (15) follows [22, Eq. (12)] and
differs from [24, Eq. (4.5)]. Although this nuance is not important most of the time, this
choice is crucial for the proof of Theorem 8.5 below.
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3.7. Boundary conditions, translation invariance, monotonicity. Let us make a few con-
ventions in order to lighten notation throughout the paper. As we already witnessed in
Sect. 3.5, it is often the case that much of the boundary condition is actually irrelevant
for the occurrence of the event. For instance, in Definition 3.10, Hω(S) only depends on
the restriction of ω to a finite-range neighbourhood of the segment S. Moreover, even
the state in ω of sites close to S, but in Hui is of no importance. Such occasions arise
frequently, so, by abuse, we allow ourselves to specify a boundary condition on any
region containing the sites whose state actually matters for the occurrence of the event.

We also need the following natural notion of translation invariance.

Definition 3.13 (Translation invariance). Let A ⊂ R
2. Consider a collection of events

Eω(A + x) for x ∈ Z
2 and ω ∈ �Z2\(A+x). We say that E(A) is translation invariant, if

for all η ∈ �A, ω ∈ �Z2\A and x ∈ Z
2 we have

η ∈ Eω(A) ⇔ η·−x ∈ Eω·−x (A + x).

Similarly, we say that Eω(A) is translation invariant, if the above holds for a fixed
ω ∈ �Z2\A.

We extend the events Hd(S), Hω
d (S), HW

d (S) from Definitions 3.9 and 3.10 in a
translation invariant way. Similarly, T and ST events for tubes defined in Sect. 4.1
below and SG events for droplets defined throughout the paper are translation invariant.
Therefore, we sometimes only define them for a fixed region, as we did in Sect. 3.5.2,
but systematically extended them in a translation invariant way to all translates of this
region.

We also use the occasion to point out that, just like the event Hω
d (S), all our T , ST

and SG events are decreasing in both the configuration and the boundary condition, so
that we are able to apply Sect. 3.1 as needed.

4. One-Directional Extensions

In this section we define our crucial one-directional CBSEP-extension and East-extension
techniques (recall Sect. 2.3).

4.1. Traversability. We first need the following traversabilityT and symmetric traversabil-
ity ST events for tubes (recall Definition 3.4) requiring infected helping sets (recall
Sect. 3.5.2) to appear for each of the segments composing the tube. The definition is
illustrated in Fig. 2. Recall the constant C from Sect. 3.4

Definition 4.1 (Traversability). Fix a tube T = T (r , l, i). Assume that i ∈ [4k] is such
that α(u j ) < ∞ for all j ∈ (i − k, i + k). For m � 0 and j ∈ (i − k, i + k) write
S j,m = Z

2 ∩
(r + mvi + ρ j e j ) \
(r + mvi ). Note that S j,m is a discrete line segment
perpendicular to u j of length s j −O(1) (recall from Definition 3.3 that s is the sequence
of side lengths of 
(r)). For ω ∈ �Z2\
(r+lvi )

we denote by

T ω
d (T ) =

⋂

j,m:∅�=S j,m⊂T

Hω
C2+d

(
S j,m

)

the event that T is (ω, d)-traversable. We set T ω(T ) = T ω
0 (T ).
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If moreover α(ui ) < ∞ for all i ∈ [4k], that is, U has a finite number of stable
directions, we denote by

ST ω
d (T ) = T ω

d (T ) ∩
⋂

j :α(u j )�α<α(u j+2k ))

⋂

m:∅�=S j,m⊂T

HW
C2+d

(
S j,m

)

the event that T is (ω, d)-symmetrically traversable.

Thus, if all side lengths of 
(r) are larger than C2 +d by a large enough constant, the
event T ω

d (T (r , s, i)) decomposes each of the hatched parallelograms in Fig. 2a into line
segments parallel to its side that is not parallel to ui . A helping set is required for each of
these segments in the direction perpendicular to them which has positive scalar product
with ui . The last boundedly many segments may also use the boundary condition ω, but
it is irrelevant for the remaining ones, since it is far enough from them.

For symmetric traversability, we rather require W -helping sets for opposites of hard
directions (recall from Definition 3.8 that if the direction itself is hard, helping sets are
simplyW -helping sets). In particular, if none of the directionsu j for j ∈ [4k]\{i+k, i−k}
is hard (implying that U is unrooted), we have ST ω

d (T (r , l, i)) = T ω
d (T (r , l, i)). The

reason for the name “symmetric traversability” is that if U has a finite number of stable
directions and 
(r) is a symmetric droplet (recall Sect. 3.3), then, for any l > 0, i ∈ [4k],
ω ∈ �Z2\T (r ,l,i) and η ∈ �T (r ,l,i), we have

η ∈ ST ω
d (T (r , l, i)) ⇔ η′ ∈ ST ω′

d (T (r , l, i + 2k)), (16)

denoting by ω′ ∈ �Z2\T (r ,l,i+2k) the boundary condition obtained by rotating ω by π

around the center of 
(r) and similarly for η′. To see this, recall from Sect. 3.5.2 that
Hω(S) ⊃ HW (S) with equality when α(ui ) > α and note that the same symmetry as
in Eq. (16) holds at the level of the segment S j,m and its symmetric one, S′j+2k,m =
Z

2 ∩
(r + mvi+2k + ρ j+2ke j+2k) \
(r + mvi+2k):

η ∈
{
Hω

C2+d
(S j,m) α(u j+2k) � α

HW
C2+d

(S j,m) α(u j+2k) > α
⇔ η′ ∈

{
Hω′

C2+d
(S′j+2k,m) α(u j ) � α

HW
C2+d

(S′j+2k,m) α(u j ) > α,

all four cases following directly from Definitions 3.8–3.10.
We next state a simple observation which is used frequently to modify boundary

conditions as we like at little cost.

Lemma 4.2 (Changing boundary conditions). Let
(r) be a droplet, l > 0 be a multiple
of λi and i ∈ [4k]. Assume that for any j ∈ [4k] \ {i−k, i +k} the side length s j of
(r)
satisfies s j � C3. Set T = T (r , l, i). Then there exists a decreasing eventW(T ) ⊂ �T

such that μ(W(T )) � qO(W ) for any ω ∈ �Z2\T and η ∈W(T ) we have

η ∈ T ω(T ) ⇔ η ∈ T 1(T ).

Moreover, μ(T ω(T )) = q−O(W )μ(T 1(T )) for all ω ∈ �Z2\T . The same holds with ST
instead of T .
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Proof. Recall the segments S j,m from Definition 4.1. Let W(T ) be the intersection of
HW

C2(S j,m) for the largest sufficiently large but fixed number of values of m for each

j ∈ (i − k, i + k), such that ∅ �= S j,m ⊂ T . By Observation 3.11 μ(W(T )) � qO(W ).
Moreover, the boundary condition is irrelevant for the remaining segments, so W(T ) is
indeed as desired. Finally, by Eq. (7) we have

μ
(
T 1(T )

)
� μ

(
T ω(T )

)
� μ(W(T ) ∩ T ω(T ))

μ(W(T ))

� q−O(W )μ
(
W(T ) ∩ T 1(T )

)
� q−O(W )μ

(
T 1(T )

)
.

��
Another convenient property allowing us to decompose a long tube into smaller ones

is the following.

Lemma 4.3 (Decomposing tubes). Let T = T (r , l, i) be a tube, ω ∈ �Z2\T be a
boundary condition and s ∈ [0, l] be a multiple of λi . Set T1 = T (r , s, i) and T2 =
sui + T (r , l − s, i). Then

η ∈ T ω(T (r , l, i)) ⇔ (
ηT2 ∈ T ω(T2) and ηT1 ∈ T ηT2 ·ω(T1)

)

and the same holds for ST instead of T .

Proof. This follows immediately from Definition 4.1, since for each of the segments
S j,m in Definition 4.1 either S j,m ⊂ T1 or S j,m ∩ T1 = ∅ and similarly for T2 (see
Fig. 2a). ��

4.2. East-extension. We start with the East-extension (see Fig. 2a), which is simpler to
state.

Definition 4.4 (East-extension). Fix i ∈ [4k], a droplet 
(r), a multiple l > 0 of λi and
an event SG1(
(r)) ⊂ �
(r). Assume that α(u j ) < ∞ for all j ∈ (i− k, i + k). We use
the expression “we East-extend 
(r) by l in direction ui” to state that, for all s ∈ (0, l]
multiple of λi and ω ∈ �Z2\
(r+svi )

, we define the event SGω(
(r + svi )) ⊂ �
(r+svi )
to occur for η ∈ �
(r+svi ) if

η
(r) ∈ SG1(
(r)) and ηT (r ,s,i) ∈ T ω(T (r , s, i)).

In other words, given the event SG1 for the droplet 
(r), we define the event SGω (in
particular for ω = 1, but not only) for the larger droplet 
(r + lvi ) = 
(r) � T (r , l, i).
The event obtained on the larger droplet requires for the smaller one to be 1-super
good (SG) and for the remaining tube to be ω-traversable (recall Definition 4.1). Note
that these two events are independent. Further observe that if SG1(
(r)) is translation
invariant (recall Definition 3.13), then so is SG(
(r +svi )) for any s ∈ (0, l]multiple of
λi , defined by East-extending 
(r) by l in direction ui . To get a grasp on Definition 4.4,
let us note the following fact, even though it is not used directly in the proof of Theorem
1.
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Lemma 4.5 (East-extension ergodicity). Let i ∈ [4k], 
(r) be a droplet, l be a multiple
of λi and SG1(
(r)) ⊂ �
(r) be an event. Assume that α(u j ) < ∞ for all j ∈
(i − k, i + k). Further assume that η ∈ SG1(
(r)) implies that the U-KCM with initial
condition η · 1Z2\
(r) can entirely infect 
(r). If we East-extend 
(r) by l in direction
ui , then for any ω ∈ �Z2\
(r+lvi )

and η ∈ SGω(
(r + lvi )) the U-KCM with initial
condition ω · η can entirely infect 
(r + lvi ).

Proof. The proof is rather standard, so we only sketch the reasoning. Let η ∈ SGω(
(r+
lvi )). Since η
(r) ∈ SG1(
(r)) by Definition 4.4, by hypothesis we can completely
infect 
(r), starting from ω · η. We next proceed by induction on s ∈ [0, l] to show that
we can infect 
(r + svi ). When a new site in Z

2 is added to this set, as we increase s,
we actually add to it an entire segment S j,m as in Definition 4.1 (at most one m for each
j ∈ (i−k, i +k)). Since T (r , l, i) is (ω, 0)-traversable, by Definition 3.10 and 4.1, there
is a helping set (in direction u j ) for this segment. As noted in Sect. 3.5.1, helping sets
in direction u j together with the half-plane Hu j infect the entire line Hu j \Hu j on the
boundary of the half-plane. Since the helping set in our setting is only next to a finite fully
infected droplet 
(r + svi ), infection spreads along its edge until it reaches a bounded
distance from the corners (see [7, Lemma 3.4]). However, by our choice of Ŝ (recall
Sect. 3.2), for each j ∈ [4k] there is a rule X ∈ U such that X ⊂ Hu j ∩Hu j+1 . Using this
rule, we can infect even the remaining sites to fill up the corner between directions u j and
u j+1 of the droplet 
(r+s′vi ) with s′ > s minimal such that 
(r+s′vi )\
(r+svi ) �= ∅

(see [8, Lemma 5.5 and Fig. 6]). ��
We next state a recursive bound on the Poincaré constant γ introduced in Sect. 3.6

reflecting the recursive definition of SG events in an East-extension. In rough terms, it
states that in order to relax on the larger volume, we need to be able to relax on the smaller
one and additionally pay the cost of creating logarithmically many copies of it shifted
by exponentially growing offsets, conditionally on the presence of the original droplet.
We further need to account for the cost of microscopic dynamics (see the elog2(1/q) term
below), but its contribution is unimportant. Recall �mes+ from Sect. 3.4.

Proposition 4.6 (East-extension relaxation). Let i ∈ [4k] be such that for all j ∈ (i −
k, i + k) we have α(u j ) < ∞. Let 
(r) be a droplet with r = q−O(C) and side
lengths at least C3. Let l ∈ (0, �mes+] be a multiple of λi . Define dm = λi�(3/2)m� for
m ∈ [1, M) and M = min{m : λi (3/2)m � l}. Let dM = l, 
m = 
(r + dmvi ) and
sm−1 = dm − dm−1 for m ∈ [2, M].

LetSG1(
(r)) be a nonempty translation invariant decreasing event. Assume that we
East-extend
(r) by l in direction ui . ThenSG1(
(r+lvi )) is also nonempty, translation
invariant, decreasing and satisfies

γ (
(r + lvi )) � max
(
γ (
(r)), μ−1

(
SG1(
(r))

))
eO(C2) log2(1/q)

M−1∏

m=1

am,

with

am = μ−1
(
SG1 (
m + smui

)∣∣∣SG1(
m)
)

. (17)

The proof is left to “Appendix A.3”.
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4.3. CBSEP-extension. We next turn our attention to CBSEP-extensions (see Fig. 2b).
The definition differs from Definition 4.4 (cf. Fig. 2a) in three ways. Firstly, we allow the
smaller SG droplet to be anywhere inside the larger one (the exact position is specified by
the offset below). Secondly, we ask for traversability on both sides of the smaller droplet
in the direction away from it (so that infection can spread, starting from it), rather than
just on one side. Thirdly, we require our tubes to be symmetrically traversable, instead
of traversable. This makes the position of the small SG droplet roughly uniform.

Definition 4.7 (CBSEP-extension). Assume that U has a finite number of stable direc-
tions (equivalently, α(u j ) < ∞ for all j ∈ [4k]). Fix i ∈ [4k], a droplet 
(r) and a
multiple l of λi . Let SG1(
(r)) be a translation invariant event. We use the expression
“we CBSEP-extend 
(r) by l in direction ui” to state that, for all s ∈ (0, l] multiple of
λi and ω ∈ �Z2\
(r+svi )

, we define the event SGω(
(r + svi )) ⊂ �
(r+svi ) as follows.
For offsets x ∈ [0, s] divisible by λi we define η ∈ SGω

x (
(r + svi )) if the following
all hold:

ηT (r ,s−x,i)+xui ∈ ST ω(T (r , s − x, i) + xui );
η
(r)+xui ∈ SG1(
(r) + xui );

ηT (r ,x,i+2k)+xui ∈ ST ω(T (r , x, i + 2k) + xui ).

We then set SGω(
(r + svi )) =
⋃

x SGω
x (
(r + svi )).

Note that CBSEP-extending in direction ui gives the same result as CBSEP-extending
in direction ui+2k . We further reassure the reader that, in applications Definitions 4.4 and
4.7, are not used simultaneously for the same droplet 
(r), so no ambiguity arises as to
whether SGω(
(r + lvi )) is obtained by CBSEP-extension or East-extension. However,
as it is clear from Table Table 2b, it is sometimes necessary to CBSEP-extend a droplet
itself obtained by East-extending an even smaller one. But for the time being, let us
focus on a single CBSEP-extension.

The following analogue of Lemma 4.5 holds for CBSEP-extension, which is also not
used directly in the proof of Theorem 1.

Lemma 4.8 (CBSEP-extension ergodicity). Assume that U has a finite number of stable
directions. Let i ∈ [4k], 
(r) be a droplet and l be a multiple of λi . Let SG1(
(r)) ⊂
�
(r) be translation invariant. Further assume that η ∈ SG1(
(r)) implies that the
U-KCM with initial condition η · 1Z2\
(r) can entirely infect 
(r). If we CBSEP-extend

(r) by l in direction ui , then for any ω ∈ �Z2\
(r+lvi )

and η ∈ SGω(
(r + lvi )) the
U-KCM with initial condition ω · η can entirely infect 
(r + lvi ).

Proof. By Definition 4.7, it suffices to prove that for each offset x ∈ [0, s] the conclusion
holds for η ∈ SGω

x (
(r + lvi )). By Definition 4.7, this implies that the events SG1(xui +

(r))∩ST ω(xui + T (r , s − x, i)) and SG1(xui + 
(r))∩ST ω(xui + T (r , x, i + 2k))
hold. Moreover, by Definition 4.1, ST ω′(T ) ⊂ T ω′(T ) for any tube T and boundary
condition ω′. Therefore, we may apply Lemma 4.5 to each of the droplets 
(r + xvi )
and xui + 
(r + (s− x)vi ) (in directions ui and ui+2k respectively) to obtain the desired
conclusion. ��

We next state the CBSEP analogue of Proposition 4.6, which is more involved, but
also more efficient. Roughly speaking, we show that the time needed in order to relax on
a CBSEP-extended droplet, is the product of four contributions: the Poincaré constant
of the smaller droplet; the inverse probability of the symmetric traversability events in
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Definition 4.7; the cost of microscopic dynamics; the conditional probability of suitable
contracted versions of the super good and symmetric traversability events, given the
original ones (recall Sect. 2.3.1). The last two contributions turn out to be negligible, but
the last one requires some care and make the statement somewhat technical.

Proposition 4.9 (CBSEP-extension relaxation). Assume that U has a finite number of
stable directions. Let i ∈ [4k]. Let
(r) be a droplet with r = q−O(C) and side lengths at
least C3. Let l ∈ (0, �mes+] be a multiple of λi . Let SG1(
(r)) be a nonempty translation
invariant decreasing event.

Denote 
1 = T (r , λi , i + 2k), 
2 = 
(r − λivi ) and 
3 = T (r − λivi , λi , i), so
that 
(r + λivi ) − λi ui = 
1 �
2 �
3 and 
2 ∪
3 = 
(r) = (
1 ∪
2) + λi ui .
Consider some nonempty decreasing events4 SG(
2) ⊂ �
2 , ST η2(
1) ⊂ �
1 and
ST η2(
3) ⊂ �
3 for all η2 ∈ SG(
2). Assume that

{
η : η
1 ∈ ST η
2

(
1), η
2 ∈ SG(
2), η
3 ∈ ST η
2
(
3)

}

⊂ SG1(
1 ∪
2) ∩ SG1(
2 ∪
3). (18)

Set SG(
1 ∪
2) = {η : η
2 ∈ SG(
2), η
1 ∈ ST η
2
(
1)}.

If we CBSEP-extend 
(r) by l in direction ui , then SG(
(r + lvi )) is nonempty,
translation invariant, decreasing and satisfies

γ (
(r + lvi )) � μ(SG1(
(r)))

μ(SG1(
(r + lvi )))
×max

(
μ−1

(
SG1(
(r))

)
, γ (
(r))

)

× eO(C2) log2(1/q)

μ(SG(
1 ∪
2)|SG1(
1 ∪
2)) min
η2∈SG(
2)

μ(ST η2(
3)|ST 0(
3))
.

Proposition 4.9 is proved in “Appendix A.3” based on [24]. We referring the reader
to [24, Sect. 4.3] for the principles behind Proposition 4.9 in a less technical framework,
but let us briefly discuss the contracted events.

Equation (18) should be understood as follows. In the middle droplet 
2, which
has the shape of 
(r), but contracted in direction ui by O(1), we require an event
SG(
2). This event provides simultaneously as much of the structure of SG1(
1 ∪

2) and SG1(
2 ∪ 
3) (these regions both have the shape of 
(r)), as one can hope
for, given that we are missing a tube of length O(1) of these regions. Once such a
favourable configuration η2 ∈ SG(
2) is fixed, the events ST η
2

(
1) and ST η
2
(
3)

provide exactly the missing part of SG1(
1 ∪
2) and SG1(
2 ∪
3) respectively. In
applications, these events necessarily need to be defined, taking into account the structure
of SG1(
(r)), on which we have made no assumptions at this point.

4.4. Conditional probability tools. In both Propositions 4.6 and 4.9 our bounds feature
certain conditional probabilities of SG events. We now provide two tools for bounding
them.

The next result generalises [24, Corollary A.3], which relied on explicit computations
unavailable in our setting. It shows that the offset of the core of a CBSEP-extended
droplet (see Fig. 2b and recall the notation SGω

x from Definition 4.7) is roughly uniform.
This result is the reason for the somewhat artificial Definition 3.8 of helping sets and
Definition 4.1 of ST (also see Remark 2.1).

4 We use a bar to denote “contracted” versions of events (recall Sect. 2.3.1).
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Lemma 4.10 (Uniform core position). Assume that U has a finite number of stable
directions. Fix i ∈ [4k] and a symmetric droplet 
 = 
(r + lvi ) obtained by CBSEP-
extension by l in direction ui . Assume that l � �mes+ is divisible by λi and that the side
lengths of
(r) are at least C3. Then for all s ∈ [0, l] divisible by λi andω,ω′ ∈ �Z2\


μ
(
SGω

s (
)
∣∣SGω′(
)

)
� qO(C).

The proofs of Lemmas 4.10 and 4.11 are left to “Appendix B”. The latter vastly
generalises [24, Lemma A.4] and is proved by different means. It is illustrated in Fig. 3.
In words, Lemma 4.11 states in a quantitative way that the conditional probability of a
tube of “critical” size (q−α+o(1)) being traversable, given that a slightly perturbed version
of it (shifted spatially, with different boundary condition, width of the white strips in
Fig. 2a, radii and length) is traversable, is not very low. We note that sizes other than the
critical one are not important, so cruder bounds suffice.

Lemma 4.11 (Perturbing a tube). Let i ∈ [4k] such that α(u j ) � α for all j ∈ (i−k, i +
k). Let
(r) be a droplet with side lengths s and let T = T (r , l, i) be a tube. Assume that

l ∈ [�(1), eq
−o(1) ], s = mini−k< j<i+k s j = q−α+o(1) and maxi−k< j<i+k s j = q−α+o(1).

For some � ∈ [C2, s/W 2], let r ′ and l ′ be such that 0 � s j − s′j � O(�) for all
j ∈ (i − k, i + k) and 0 � l − l ′ � O(�), where s′ are the side lengths of the droplet

(r ′). Further let x ∈ R

2 be such that ‖x‖ = O(�) and d, d ′ ∈ [0, O(�)] with
d � d ′. Denoting T ′ = T (r ′, l ′, i) + x, for any boundary conditions ω ∈ �Z2\T and
ω′ ∈ �Z2\T ′ , we have

μ
(
T ω′
d ′ (T ′)

∣∣∣ T ω
d (T )

)
� qO(W )

(
1− (1− qα)�(s)

)O(�)

×
(

1−W�/s − q1−o(1)
)O(l)

.

5. Isotropic Models

For this section we assume U to be isotropic (class (g)). In this case the reasoning closely
follows and generalises [24]. We treat internal and mesoscopic dynamics simultaneously,
since for this class there is no difference between the two.

5.1. Isotropic internal and mesoscopic dynamics. We start by defining the geometry
of our droplets and the corresponding length scales. They are all symmetric and every
2k-th droplet is twice larger. Each such dilation is decomposed into 2k steps, so that
their geometry fits the setting of our CBSEP-extensions from Sect. 4.3 (see Fig. 4a and
recall Fig. 2b).

Recall Sect. 3.3 and the constant ε from Sect. 3.4. Let r (0) be a sequence of radii
with r (0)

i = r (0)
i+2k for all i ∈ [2k], such that for all i ∈ [4k], r (0)

i = �(1/ε) and the

corresponding side length s(0)
i = �(1/ε) is a multiple of 2λi+k . For any integer m � 0,

i ∈ [2k] and n = 2 km + r with r ∈ [2k] we define

s(n)
i = s(n)

i+2k = s(0)
i 2m ×

{
2 k � i < k + r
1 otherwise

(19)
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and 
(n) = 
(r (n)) with r (n) the sequence of radii associated to s(n) satisfying r (n)
i =

r (n)
i+2k for all i ∈ [2k]. Further set Nmes+ = 2k�log(ε�mes+)/ log 2� (recall �mes+ from

Sect. 3.4).
Note that, as claimed, 
(n) are nested symmetric droplets extended in one direction

at each step satisfying 
(2km) = 2m
(0). Moreover, they are nested so that we can define
their SG events by extension (recall Definition 4.7 and Fig. 2b for CBSEP-extensions).

Definition 5.1 (Isotropic SG). Let U be isotropic. We say that 
(0) is SG (SG1(
(0))

occurs), if all sites in 
(0) are infected. We then recursively define SG1(
(n+1)) for
n ∈ [Nmes+] by CBSEP-extending 
(n) in direction un by l(n) = s(n)

n+k = �(2n/2k/ε)

(recall from Sect. 3.2 that indices of directions and sequences are considered modulo 4k
as needed and see Fig. 4a).

Recall from Sect. 3.6 that once SG1(
(n)) is defined, so is γ (
(n)). We next prove a
bound on γ (
(n)).

Theorem 5.2. Let U be isotropic (class (g)). Then for all n � Nmes+

γ
(

(Nmes+)

)
� exp(1/(logC/2(1/q)qα))

μ(SG1(
(Nmes+)))
, μ

(
SG1

(

(n)

))
� exp

( −1

qαε2

)
.

The rest of Sect. 5.1 is devoted to the proof of Theorem 5.2. The bound onμ(SG1(
(n)))

is fairly standard in bootstrap percolation and could essentially be attributed to [7], but
we prove it in Lemma 5.6, since we also need some better bounds on intermediate
scales. Bounding γ (
(Nmes+)) is more demanding and is done by iteratively applying
Proposition 4.9, as suggested by Definition 5.1.

Note that γ (
(0)) = 1, since Eq. (15) is trivial, because SG1(
(0)) is a singleton.
We seek to apply Proposition 4.9, in order to recursively upper bound γ (
(n)) for all
n � Nmes+. To that end, we need the following definition of contracted events. Since,
in the language of Proposition 4.9, the events ST η2 we define do not depend on η2, we
directly omit it from the notation.

Definition 5.3 (Contracted isotropic events). For n = 2km + r ∈ [Nmes+ + 1] with
r ∈ [2k], as in Proposition 4.9 with r = r (n), l = l(n) and i = r , let



(n)
1 = T

(
r (n), λr , n + 2k

)



(n)
2 = 


(
r (n) − λrvr

)



(n)
3 = T

(
r (n) − λrvr , λr , r

)
. (20)

If n < 2k, we define ST (

(n)
1 ), SG(


(n)
2 ) and ST (


(n)
3 ) to occur if 


(n)
1 , 


(n)
2 and



(n)
3 is fully infected respectively.

For n � 2k, we define ST (

(n)
1 ) ⊂ �



(n)
1

(resp. ST (

(n)
3 ) ⊂ �



(n)
3

) to be the event

that for every segment S ⊂ 

(n)
1 (resp. 


(n)
3 ) perpendicular to some u j with j �= r ± k

of length 2m/(Wε) the event HW (S) occurs (recall Definition 3.9). Finally, for n � 2k,
we define SG(


(n)
2 ) as the intersection of the following events (see Fig. 4b)5

5 Recall from Definition 4.1 that STW refers to symmetric traversability with parallelograms in Fig. 2: a
shrunken by W , but not necessarily requiring W -helping sets. Further recall from Sect. 4.1 that for isotropic
models T and ST events are the same.
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• SG1(
(n−2k));
• ST 1(T (r (n−2k), l(n−2k)/2− λr , r)) ∩ ST 1(T (r (n−2k), l(n−2k)/2− λr , r + 2k));
• for all i ∈ (0, 2k)

ST 1
W

(
T
(
r (n−2k+i) − λr (vr + vr+2k), l

(n−2k+i)/2, r + i
))

∩ST 1
W

(
T
(
r (n−2k+i) − λr (vr + vr+2k), l

(n−2k+i)/2, r + i + 2k
))

.

• for every i ∈ [2k], j ∈ [4k] and segment S ⊂ 

(n)
2 , perpendicular to u j of length

2m/(Wε) at distance at most W from the u j -side (parallel to S) of 
(n−2k+i), the
event HW (S) holds.

In words, SG(

(n)
2 ) is close to being the event that the central copy of 
(n−2k) in



(n)
2 is SG and several tubes are symmetrically traversable. Namely, for each i ∈ [2k],

the two tubes of equal length around 
(n−2k+i) corresponding to a CBSEP-extension by
l(n−2k+i) in direction ur , finally reaching 
(n) after 2k extensions. However, we have
modified this event in the following ways. Firstly, the first extension is shortened by
2λr , so that the final result after the 2k extensions fits inside 


(n)
2 and actually only its

ur+k and ur−k-sides are shorter than those of 

(n)
2 by λr (see Fig. 4b). Secondly, the

symmetric traversability events for tubes are required to occur with segments shortened
by W (recall Definition 4.1) on each side. Finally, we roughly require W helping sets
for the last O(W ) lines of each tube, as well as the first O(W ) outside the tube (without
going out of 


(n)
2 ).

Lemma 5.4 (CBSEP-extension relaxation condition). For all n ∈ [Nmes+] we have
SG(


(n)
2 )× ST (


(n)
3 ) ⊂ SG1(


(n)
2 ∪


(n)
3 ) and similarly for 


(n)
1 instead of 
(n)

3 .

Proof. If n < 2k, this follows directly from Definition 5.3, since SG(

(n)
2 )×ST (


(n)
3 )

is only the fully infected configuration and similarly for 

(n)
1 . We therefore assume that

n � 2k and set n = 2km + r with r ∈ [2k].
We start with the first claim. Note that 


(n)
2 ∪ 


(n)
3 = 
(n). Let η ∈ SG(


(n)
2 ) ×

ST (

(n)
3 ). We proceed by induction on i to show that η
(i) ∈ SG1(
(i)) for i ∈

[n − 2k, n].
The base is part of Definition 5.3. Assume η ∈ SG1(
(i)) for some i ∈ [n − 2k, n).

Then by Definition 4.7, it suffices to check that

η ∈ ST 1
(
T
(
r (i), l(i)/2, i

))
∩ ST 1

(
T
(
r (i), l(i)/2, i + 2k

))
, (21)

since then η ∈ SG1
l(i)/2

(
(i+1)) ⊂ SG1(
(i+1)).
Let us first consider the case i = n − 2k and assume for concreteness that m is even

(so that ui = ur ). Then

η ∈ SG
(



(n)
2

)
⊂ ST 1

(
T
(
r (i), l(i)/2 − λr , r

))
,

so by Lemma 4.3 it suffices to check that η ∈ ST 1(ui (l(i)/2 − λr ) + T (r (i), λr , i)),
in order for the first symmetric traversability event in Eq. (21) to occur. We claim that
this follows from η ∈ ST (


(n)
3 ) and the fourth condition in Definition 5.3. To see this,
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notice that for each j ∈ [4k] the u j -side length of 
(r (i)) satisfies s(i)
j = �(s(0)

j 2m) �
2m/(Wε) by Eq. (19). Further recall from Sect. 3.5 that HW (S) ⊂ Hω(S) for any
segment S of length at least C and boundary condition ω. Thus, for each of the segments
in Definition 4.1 for the tube ui (l(i)/2 − λr ) + T (r (i), λr , i) ⊂ 
(n), we have supplied
not only a helping set, but in fact several W -helping sets. For directions u j with j ∈
(r − k, r + k) \ {r}, they are in 


(n)
2 , while for j = r they are found in 


(n)
3 , if k = 1 and

m is even, and in 

(n)
2 otherwise (see Fig. 4b). Hence, the claim is established. For the

second event in Eq. (21) the reasoning is the same except that when k > 1 or m is even,
the tube T (r (i), l(i)/2, i + 2k) is entirely contained in 


(n)
2 , so only SG(


(n)
2 ) is needed.

We next turn to the case i ∈ (n − 2k, n), which is treated similarly. Indeed,

η ∈ SG
(



(n)
2

)
⊂ ST 1

W

(
T
(
r (i) − λr (vr + vr+2k), l

(i)/2, i
))

.

Comparing this tube to the desired one in Eq. (21), T (r (i), l(i)/2, i), we notice that the
lengths and positions of their sides differ by O(1) (see Fig. 3). However, recalling Defini-
tion 4.1 and Fig. 2a, decreasing the width of each parallelogram there by �(W ) � O(1)

(using the event ST 1
W rather than ST 1) is enough to compensate for this discrepancy

(the shaded zones in Fig. 3 are empty in this case). It remains to ensure that the first and
last O(1) segments in Definition 4.1 also have helping sets. But this is guaranteed by the
fourth condition in Definition 5.3 and (depending on the values of k, i and m) ST (


(n)
3 )

exactly as in the case i = n − 2k.
Finally, the statement for 


(n)
1 is also proved analogously (with the offset for i =

n − 2k modified by λr in Eq. (21)), so the proof is complete. ��
By Lemma 5.4, Eq. (18) holds, so we may apply Proposition 4.9. This gives

γ
(

(n+1)

)
� max

(
μ−1

(
SG1

(

(n)

))
, γ

(

(n)

))
eO(C2) log2(1/q)

× μ(SG1(
(n)))

μ(SG1(
(n+1)))
μ−1

(
ST

(



(n)
3

)∣∣∣ST 0
(



(n)
3

))

× μ−1
(
ST

(



(n)
1

)
∩ SG

(



(n)
2

)∣∣∣SG1
(



(n)
1 ∪


(n)
2

))
(22)

for n � 2k and γ (
(n)) � eO(C2) log2(1/q) for n < 2k. We therefore assume that n � 2k.
Recalling Definition 5.3, note that both ST (


(n)
1 ) and ST (


(n)
3 ) can be guaranteed by

the presence of O(W 2) well chosen infected W -helping sets, since only O(W ) disjoint
segments of length 2m/(Wε) perpendicular to u j for a given j ∈ (r − k, r + k) can be fit

in 

(n)
1 or 


(n)
3 (see Fig. 4b), so it suffices to have a W -helping set at each end of those.

This and the Harris inequality, Eqs. (8) and (9), give

μ
(
ST

(



(n)
3

)∣∣∣ST 0
(



(n)
3

))
� μ

(
ST

(



(n)
3

))
� qW

O(1)

, (23)

μ
(
ST

(



(n)
1

)
∩ SG

(



(n)
2

)∣∣∣SG1
(



(n)
1 ∪


(n)
2

))

� qW
O(1)

μ
(
SG

(



(n)
2

)∣∣∣SG1
(



(n)
1 ∪


(n)
2

))
. (24)

To deal with the last term we prove the following.
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Lemma 5.5 (Contraction rate). Setting m = �n/(2k)� � 1, we have

μ
(
SG

(



(n)
2

)∣∣∣SG1
(



(n)
1 ∪


(n)
2

))

�

⎧
⎪⎪⎨

⎪⎪⎩

μ
(
SG

(



(n)
2

))
2m � 1/

(
logC (1/q)qα

)
,

qO(C) μ(SG(

(n)
2 ))

μ(SG1(
(n−2k)))
2m � logC (1/q)/qα,

exp
(−2mq1−o(1)

)
otherwise.

(25)

Proof. The first case follows from the Harris inequality Eq. (8).

For the other two cases we start by noting that 

(n)
1 ∪ 


(n)
2 = 
(n) − λr ur may be

viewed as a 2k-fold CBSEP-extension of 
(n−2k). Recalling the offset in Definition 4.7,
set

SG•0 = SG1
(

(n) − λr ur

)
,

SG•i =
i⋂

j=1

SG1
l(n− j)/2

(

(n− j+1) − λr ur

)
i ∈ [1, 2k − 1],

SG•2k = SG•2k−1 ∩ SG1
l(n−2k)/2−λr

(

(n−2k+1) − λr ur

)
,

so that SG•i corresponds to fixing the position of the core, which is a translate of 
(n−i),
inside 
(n) − λr ur , but leaving its internal offsets unconstraint (see Fig. 4b). Thus,
Lemma 4.10 applied 2k times gives

μ
(
SG•2k

∣∣SG1
(



(n)
1 ∪


(n)
2

))
=

2k∏

i=1

μ(SG•i |SG•i−1) � qO(C).

Expanding the definition of SG•2k via Definition 4.7, we see that this event is the inter-
section of SG1(
(n−2k)) with some increasing events (symmetrically traversable tubes)
independent of the latter. Thus, the Harris inequality Eq. (8) gives

μ
(
SG

(



(n)
2

)∣∣∣SG1
(



(n)
1 ∪


(n)
2

))
� qO(C)μ

(
SG

(



(n)
2

)∣∣∣SG•2k
)

� qO(C)μ
(
SG

(



(n)
2

)∣∣∣SG1
(

(n−2k)

))
.

(26)

Taking into account that SG(

(n)
2 ) ⊂ SG1(
(n−2k)) by Definition 5.3, this concludes

the proof of the second case of Eq. (25).
For the third case, our starting point is again Eq. (26). This time we observe that SG•2k

can be written as the intersection of SG1(
(n−2k)) with 4k symmetric traversability
events, each of which is a perturbed version (in the sense of Lemma 4.11 and Fig. 3) of
the ones appearing in Definition 5.3 of SG(


(n)
2 ). Thus, the Harris inequality Eq. (9)
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allows us to lower bound μ(SG(

(n)
2 )|SG•2k) by

μ(W)× μ
(
ST 1

(
T
(
r (n−2k), l(n−2k)/2− λr , r

))

∣∣∣ST 1
(
T
(
r (n−2k), l(n−2k)/2 + λr , r

)
− λr ur

))

×μ
(
ST 1

(
T
(
r (n−2k), l(n−2k)/2− λr , r + 2k

))

∣∣∣ST 1
(
T
(
r (n−2k), l(n−2k)/2− λr , r + 2k

)
− λr ur

))

×
2k−1∏

i=1

1∏

ξ=0

μ
(
ST 1

W

(
T
(
r (n−2k+i) − λr

(
vr + vr+2k

)
, l(n−2k+i)/2, r + i + 2kξ

))

∣∣∣ST 1
(
T
(
r (n−2k+i), l(n−2k+i)/2, r + i + 2kξ

)
− λr ur

))
,

where W is the event appearing in the last item of Definition 5.3.
Firstly, each of the above conditional probabilities is bounded by

qO(W ) log−CO(1)

(1/q)
(

1− q1−o(1)
)O(2m/ε)

� exp
(
−2mq1−o(1)

)
,

using Lemma 4.11 with � = C2 and recalling that 2m = q−α logO(C)(1/q) and α � 1.
Secondly, μ(W) � qW

O(1)
as in Eq. (23), concluding the proof of Eq. (25). We direct

the reader to [24, Appendix A] for the details of an analogous argument in a simpler
setting. ��

Iterating Eq. (22) and plugging Eq. (23) and (24) gives that γ (
(Nmes+)) is at most

eO(C2)Nmes+ log2(1/q)q2Nmes+WO(1)

μ(SG1(
(Nmes+)))

Nmes+−1∏

n=2k

μ−1
(
SG

(



(n)
2

∣∣∣SG1
(



(n)
1 ∪


(n)
2

)))
.

Further recalling that Nmes+ = O(log(�mes+)) = O(C log(1/q)) and inserting Eq. (25),
we obtain

γ
(

(Nmes+)

)
� eq

−α+1−o(1)

μ(SG1(
(Nmes+)))

2m�1/(logC (1/q)qα)∏

n=2k

μ−1
(
SG

(



(n)
2

))

×
Nmes+−1∏

n:2m�logC (1/q)/qα

μ(SG1(
(n−2k)))

μ(SG(

(n)
2 ))

.

with m = �n/(2k)�. Hence, Theorem 5.2 follows immediately, once we prove Lemma
5.6 below.
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Lemma 5.6 (Probability of super good droplets).Forn ∈ [2k, Nmes+]andm = �n/(2k)�,
the following bounds hold:

μ
(
SG

(



(n)
2

))
� exp

( −1

logC−3(1/q)qα

)
if 2m � 1

logC (1/q)qα
, (27)

μ(SG(

(n)
2 ))

μ(SG1(
(n−2k)))
� qW

O(1)

if 2m � logC (1/q)

qα
, (28)

μ
(
SG1

(

(n)

))
� exp

( −1

qαε2

)
. (29)

Proof. Let us first bound μ(SG1(
(n))) for n � Nmes+ by induction, starting with the
trivial bound

μ
(
SG1

(

(2k)

))
� q |
(2k)| � qO(1/ε).

From Definition 4.7, translation invariance and Eq. (16), for n ∈ [2k, Nmes+ − 1] we
have

μ
(
SG1

(

(n+1)

))
� μ

(
SG1

0

(

(n+1)

))

= μ
(
SG1

(

(n)

))
μ
(
ST 1

(
T
(
r (n), l(n), n

)))

� qO(1/ε)
n∏

i=2k

μ
(
ST 1

(
T
(
r (i), l(i), i

)))
, (30)

so we need to bound the last term. Applying Definition 4.1, Lemma 4.2 and the Harris
inequality Eq. (7) and then Observation 3.11, we get

μ
(
ST 1

(
T
(
r (n), l(n), n

)))
� qO(W )

∏

j,m′
HC2

(
S j,m′

)

� qO(W )
(

1− e−qα2m/O(ε)
)O(2m/ε)

� qO(W )

{(
qα2m−1

)C2m/ε
2m � 1/qα

exp (−2m exp (−qα2m)) 2m > 1/qα,
(31)

where the product runs over the segments S j,m′ appearing in Definition 4.1 for the
event ST 1(T (r (n), l(n), n)) = T 1(T (r (n), l(n), n)) (the last equality holds, since U is
isotropic). Plugging Eq. (31) into Eq. (30) and iterating, we get

μ
(
SG1

(

(n)

))
�

{
exp

(−1/
(
logC−2(1/q)qα

))
2m � 1/

(
logC (1/q)qα

)

exp
(−1/

(
qαε2

))
2m > 1/

(
logC (1/q)qα

) (32)

since Nmes+ � O(C) log(1/q). This proves Eq. (29).
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Recalling Definition 5.3, as in the proof of Lemma 5.5, we have that for any n ∈
[2k, Nmes+]

μ
(
SG

(



(n)
2

))
= μ(W)μ

(
SG1

(

(n−2k)

))

×
1∏

ξ=0

μ
(
ST 1

(
T
(
r (n−2k), l(n−2k)/2− λr , r + 2kξ

)))

×
1∏

ξ=0

2k−1∏

i=1

μ
(
ST 1

W

(
T
(
r (n−2k+i) − λr

(
vr + vr+2k

)
, l(n−2k)/2, r + 2kξ

)))
,

where W is the event from the last item of Definition 5.3 and r = n − 2km. As in the
proof of Lemma 5.5, we have μ(W) � qW

O(1)
, while the factors in the products can be

bounded exactly as in Eq. (31), entailing Eqs. (27) and (28), since we already have Eq.
(32). ��

5.2. CBSEP global dynamics. For the global dynamics we need to recall the global
CBSEP mechanism introduced in [24]. It is useful not only for class (g), but also other
unrooted models—classes (d) and (f).

Let 
mes− and 
mes+ be droplets with side lengths �(�mes−) and �(�mes+) respec-
tively (recall Sect. 3.4). Consider a tiling of R

2 with square boxes Qi, j = [0, �mes) ×
[0, �mes) + �mes(i, j) for (i, j) ∈ Z

2.

Definition 5.7 (Good and super good boxes). We say that the box Qi, j is good if for
every segment S ⊂ Qi, j , perpendicular to some u ∈ Ŝ of length at least ε�mes−, HW (S)

occurs (recall Definition 3.9). We denote the corresponding event by Gi, j . We further
say that G(
mes+) occurs if for every segment S ⊂ 
mes+, perpendicular to some u ∈ Ŝ
of length at least 3ε�mes−, the event HW (S) occurs.

Let SG1(
mes−) ⊂ �
mes+ be a nonempty translation invariant event. We say that
Qi, j is super good if it is good and SG1(x + 
mes−) occurs for some x ∈ Z

2 such that
x + 
mes− ⊂ Qi, j . We denote the corresponding event by SGi, j .

In words, good boxes Qi, j and droplets 
mes+ contain W -helping sets in sufficient
supply for a SG translate of 
mes− to be able to move inside the box or droplet containing
it. Our choice of �mes− makes being good so likely that we are able to assume that all
boxes and droplets are good at all times. Finally, a box is SG, if it also contains a SG
translate of 
mes− that we wish to move around. Thus, when looking at SG boxes,
we essentially see a two-dimensional CBSEP dynamics, which leads to the following
bound.

Proposition 5.8 (Global CBSEP relaxation). LetU be unrooted (classes (d), (f) and (g)).
Let T = exp(log4(1/q)/qα). Assume that SG1(
mes+) and SG1(
mes−) are nonempty
translation invariant decreasing events such that the following conditions hold:

(1) (1− μ(SG1(
mes−)))T T 4 = o(1);
(2) for all x ∈ Z

2 such that x + 
mes− ⊂ 
mes+ we have

SG1(x + 
mes−) ∩ G(
mes+) ⊂ SG1(
mes+).
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Then

Eμ[τ0] � γ
(

mes+) log(1/μ(SG1(
mes−)))

qO(C)
.

We omit the proof, which is identical to [24, Sect. 5], given Definition 5.7,6 and turn
to the proof of Theorem 1 for the isotropic class (g).

Proof of Theorem 1(g). Let U be isotropic. Recall the droplets 
(n) from Sect. 5.1. Set

mes+ = 
(Nmes+), Nmes− = 2k�log(ε�mes−)/ log 2� and 
mes− = 
(Nmes−). Thus, the
side lengths of 
mes− and 
mes+ are indeed �(�mes−) and �(�mes+) respectively by Eq.
(19). By Theorem 5.2, condition (1) of Proposition 5.8 is satisfied:

(1− μ(SG1(
mes−)))T T 4 � (1− e−1/(qαε2))T T 4 � T 4e−elog4(1/q)/qα−1/(qαε2)

� e4 log4(1/q)/qα−elog4(1/q)/(2qα) = o(1).

We next seek to verify condition (2). Proceeding by induction onn ∈ [Nmes−, Nmes+],
it suffices to show that for any n ∈ [Nmes−, Nmes+) and x, y ∈ Z

2 such that x + 
(n) ⊂
y + 
(n+1) ⊂ 
mes+, we have

G(
mes+) ∩ SG1(x + 
(n)) ⊂ SG1(y + 
(n+1)). (33)

Recalling Definitions 4.7 and 5.1, we see that it suffices to show that for any tube T of the
form z+T (r (n), l, j) for some l > 0, j ∈ [4k] and z ∈ Z

2 satisfying T ⊂ y+
(n+1) also
verifies G(
mes+) ⊂ ST 1(T ). Further recalling Definition 4.1, we see that it suffices to
show that onG(
mes+), each segment of length min j∈[4k] s(n)

j −C2−O(1) perpendicular
to u j for some j ∈ [4k] contains an infected W -helping set (recall from Sect. 3.5.2 that
HW

d (S) ⊂ Hω
d (S)). Hence, Eq. (33) follows from Definition 5.7, since

min
j∈[4k] s

(n)
j − C2 − O(1) = �(�mes−) � 3ε�mes−.

Thus, we may apply Proposition 5.8. Further plugging the bounds from Theorem 5.2,
we recover

Eμ[τ0] � exp(1/(logC/2(1/q)qα))

μ(SG1(
(Nmes+)))

1

qαε2qO(C)

� exp(1/(logC/3(1/q)qα))

μ(SG1(
(Nmes+)))
� exp

(
1 + o(1)

ε2qα

)
,

concluding the proof. ��

6. Unbalanced Unrooted Models

In this section we assumeU is unbalanced unrooted (class (d)). We deal with the internal,
mesoscopic and global dynamics separately. The internal dynamics is very simple and
already known since [22]. The mesoscopic and global ones are similar to the ones of
Sect. 5 with some adaptations needed for the mesoscopic one.

6 Due to the difference between Eq. (15) and [24, Eq. (4.5)], the factor μ
i, j (SG(
i, j )) in [24, last display

of Sect. 5] cancels out with π(S1)−1 in [24, Eq. (5.11)] up to a qO(C) factor, rather than compensating the
conditioning in [24, last display of Sect. 5], which is absent in our setting.
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6.1. Unbalanced internal dynamics. For unbalanced unrootedU (class (d)) the SG event
on to the internal scale consists simply in having an infected ring of thickness W (see
Fig. 5). Recall �int from Sect. 3.4.

Definition 6.1 (Unbalanced unrooted internal SG). Assume U is unbalanced unrooted.
Let 
(0) = 
(r (0)) be a droplet with side lengths s(0)

j = 2λ j��int/(2λ j )� for j ∈ [4k].
We say that 
(0), is super good (SG1(
(0)) occurs) if all sites in 
(0) \
(r (0) − W1)

are infected.

The following result was proved in [22, Lemma 4.10] and provides the main contri-
bution to the scaling for this class (see Table 2b).

Proposition 6.2. For unbalanced unrooted U (class (d)) we have

max
(
γ
(

(0)

)
, μ−1

(
SG1

(

(0)

)))
� q−O(W�int) � exp

(
C3 log2(1/q)/qα

)
.

6.2. CBSEP mesoscopic dynamics. Since U is unbalanced unrooted, we may assume
w.l.o.g. that α(u j ) � α for all j ∈ [4k] \ {k,−k}. We only use 4k scales for the
mesoscopic dynamics. Recall Sects. 3.3 and 3.4. For i ∈ [0, 2k] let 
(i) = 
(r (i)) be
the symmetric droplet centered at 0 with r (i) such that its associated side lengths are

s(i)
j = s(i)

j+2k =
{

2λ j��int/(2λ j )� i − k � j < k
2λ j��mes−/(2λ j )� −k � j < i − k.

For i ∈ (2k, 4k], we define 
(i) similarly by

s(i)
j = s(i)

j+2k =
{

2λ j��mes−/(2λ j )� i − 3k � j < k
2λ j��mes+/(2λ j )� −k � j < i − 3k.

(34)

These droplets are exactly as in Fig. 4a, except that the extensions are much longer. More
precisely, we have 
(i+1) = 
(r (i) + l(i)(vi + vi+2k)/2) with l(i) = s(i+1)

i+k − s(i)
i+k , so that

l(i) = (1 − qC−α+o(1))�mes− if i ∈ [2k] and l(i) = (1 − O(δ))�mes+ if i ∈ [2k, 4k). In
particular, the droplets 
(n) for n ∈ [4k + 1] are nested in such a way that allows us to
define their SG events by extension, as in Definition 5.1 (also recall Definition 6.1 for
SG1(
(0)) and Definition 4.7 and Fig. 2b for CBSEP-extensions).

Definition 6.3 (Unbalanced unrooted mesoscopic SG). Let U be unbalanced unrooted.
For n ∈ [4k] we define SG1(
(n+1)) by CBSEP-extending 
(n) by l(n) in direction un .

With this definition we aim to prove the following (recall γ (
(4k)) from Sect. 3.6).

Theorem 6.4. Let U be unbalanced unrooted (class (d)). Then

max
(
γ
(

(4k)

)
, μ−1

(
SG1

(

(2k)

)))
� exp

(
log2(1/q)

δqα

)
.
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The remainder of Sect. 6.2 is dedicated to the proof of Theorem 6.4. Naturally, The-
orem 6.4 results from 4k applications of Proposition 4.9 and using Proposition 6.2 as
initial input. The second step is somewhat special (see Fig. 5a), since there we need to
take into account the exact structure ofSG1(
(0)) from Definition 6.1 in the definition of
the contracted events appearing in Proposition 4.9. For the remaining steps the reasoning
is identical to the proof of Theorem 5.2, but computations are simpler, since there are
only boundedly many scales. Following the proof of Theorem 5.2, we start by defining
our contracted events (cf. Definition 5.3).

Definition 6.5 (Contracted unbalanced unrooted events). For n = 2 km + r ∈ [4k + 1]
and r ∈ [2k], define 


(n)
1 ,


(n)
2 ,


(n)
3 by Eq. (20).

Let ST (

(0)
1 ) (resp. ST (


(0)
3 )) be the events that 


(0)
1 (resp. 


(0)
3 ) is fully infected

and SG(

(0)
2 ) be the event that 


(0)
2 \
(r (0) − 2W1) is fully infected.

Let SG(

(1)
2 ) occur if the following all hold (see Fig. 5a):5

• ST 1
W (T (r (0) − λ1v1, l

(0)/2, 0)) occurs,

• (
(r (0) + W1) \
(r (0) − 2W1)) ∩

(1)
2 is fully infected,

• ST 1
W (T (r (0) − λ1v1, l

(0)/2, 2k)) occurs,

• for all j �= ±k and segment S ⊂ 

(1)
2 , perpendicular to u j at distance at most W

from the u j -side of 

(1)
2 and of length �int/W , the event HW (S) occurs.

Further let ST (

(1)
1 ) occur if the following both hold (see Fig. 5a):

• 
(r (0) + W1) ∩

(1)
1 is fully infected,

• for all j �= ±k and segment S ⊂ 

(1)
1 perpendicular to u j of length �int/W the

event HW (S) occurs.

We define ST (

(1)
3 ) analogously.

Let i ∈ [2, 4k). We say that ST (

(i)
1 ) occurs (see Fig. 5b) if for all j ∈ [4k] and

m ∈ {i−1, i} every segment S ⊂ 

(i)
1 perpendicular to u j of length s(m)

j /W at distance

at most W from the u j -side (parallel to S) of 
(m), the event HW (S) occurs. We define

ST (

(i)
3 ) similarly. Let SG(


(i)
2 ) occur if the following all hold (see Fig. 5b):

• SG1(
(i−2)) occurs;
• for each m ∈ {0, 2k} the following occurs

ST 1
W

(
T
(
r (i−2), l(i−2)/2 −√

W , i − 2 + m
))

∩ST 1
W

(
T
(
r (i−1) −√

W
(
vi + vi+2k

)
, l(i−1)/2−√

W , i − 1 + m
))
;

• for all j ∈ [4k], m ∈ {i − 2, i − 1, i} and segment S ⊂ 

(i)
2 , perpendicular to u j

of length s(m)
j /W at distance at most W from the u j -side of 
(m), the event HW (S)

holds.

Before moving on, let us make a few comments on how Definition 6.5 of SG(

(n)
1 )

and ST (

(n)
3 ) is devised. Recall that our goal is to satisfy Eq. (18), that is, SG(


(n)
2 )×

ST (

(n)
3 ) ⊂ SG1(
(n)), so as to apply Proposition 4.9. For that reason, for the various
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values of n, we have required the (more than) parts of the event SG1(
(n)) which can be
witnessed in each of 


(n)
2 and 


(n)
3 . Since SG1(
(0)) corresponds to an infected ring of

width roughly W and radius being fully infected (see Definition 6.1), we have required
for n ∈ {0, 1} a ring of the same radius, but three times thicker to be infected. Similarly to
Definition 5.3, we have slightly reduced the length of traversable tubes present in (recall
Definition 6.3), but thinned the corresponding parallelograms in Fig. 2b. We have further
asked for W -helping sets around all boundaries so as to compensate for the shortening
of the tubes. The construction takes advantage of the fact that for n � 2 the droplet

(n−2) is far from the boundaries of 
(n) (see Fig. 5b), so the event SG1(
(n−2)) can
be directly incorporated into SG(


(n)
2 ), rather than being decomposed into one part in



(n)
2 and one in 


(n)
3 .

Lemma 6.6 (CBSEP-extension relaxation condition).Forall n ∈ [4k]wehaveSG(

(n)
2 )

× ST (

(n)
3 ) ⊂ SG1(


(n)
2 ∪


(n)
3 ) and similarly for 


(n)
1 instead of 
(n)

3 .

Proof. The proof for n � 2 is essentially identical to the one of Lemma 5.4 and n = 0
is immediate from Definitions 6.1 and 6.5. We therefore focus on the case n = 1 and on



(1)
3 , since


(1)
1 is treated analogously. AssumeSG(


(1)
2 ) andST (


(1)
3 )occur. Recalling

Definition 4.7, it suffices to prove that SG1
l(0)/2

(
(1)) occurs.

Firstly, note that

ST 1
(
T
(
r (0), l(0)/2, 2k

))
⊃ ST 1

W

(
T
(
r (0) − λ1v1, l

(0)/2, 2k
))

,

recalling from Eq. (10) that 〈v1, e j 〉 = 0 for all j ∈ {k + 1, . . . , 3k − 1} and 〈v1, e j 〉 �
O(1) � W for j ∈ {k, 3k}. Similarly, for any η ∈ �
(1) we have

η ∈ ST 1
W

(
T
(
r (0) − λ1v1, l

(0)/2, 0
))

⇒ η ∈ ST η

(1)\T ·1Z2\
(1) (T ),

where T = (r (0), l(0)/2−λ1/〈u1, u0〉, 0). Furthermore, the fourth condition in the defi-
nition ofSG(


(1)
2 ) and the second condition in the definition ofST (


(1)
3 ) (see Definition

6.5) imply the occurrence of ST 1(u0(l(0)/2 − λ1/〈u1, u0〉) + T (r (0), λ1/〈u1, u0〉, 0)).
Using Lemma 4.3 to combine these two facts, we obtain thatST 1(r (0), l(0)/2, 0) occurs.

Thus, it remains to show that SG1(
(0)) occurs. But, in view of Definition 6.1, this
is the case by the second condition in the definition of SG(


(1)
2 ) and the first condition

of ST (

(1)
3 ) (see Definition 6.5). ��

By Lemma 6.6, Eq. (18) holds, so we may apply Proposition 4.9. Together with the
Harris inequality Eq. (8), this gives

γ
(

(4k)

)
� γ (
(0)) exp(O(C2) log2(1/q))

∏
i∈[4k] μ(SG1(
(i+1)))μ(ST (


(i)
1 ))μ(SG(


(i)
2 ))μ(ST (


(i)
3 ))

.

(35)

In view of Proposition 6.2, it suffices to prove that each of the terms in the denominator
above is at least exp(−CO(1) log2(1/q)/qα).
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Inspecting Definitions 6.3 and 6.5, we see that each SG, SG and ST event in Eq.
(35) requires at most C�int fixed infections, WO(1) W -helping sets and O(1) (1,W )-
symmetrically traversable tubes. We claim that the probability of each tube being (1,W )-
symmetrically traversable is qO(W ). Assuming this, the Harris inequality Eq. (7) and the
above give that, for all i ∈ [4k + 1],

μ
(
SG1

(

(i)

))
� qC�int

qW
O(1)

qO(W ) = exp
(
−CO(1) log2(1/q)/qα

)

and similarly for the other events.
To prove the claim, let us consider for concreteness and notational convenience the

event

E = ST 1
W

(
T
(
r (1), l(1), 1

))
,

all tubes being treated identically. As in Eq. (31), applying Definition 4.1, Lemma 4.2,
and Observation 3.11, we get

μ(E) � qO(W )
(

1− e−qα�int/O(1)
)O(l(1)) (

1− e−qW �mes−/O(W )
)O(l(1))

. (36)

Here we noted that in directions i ∈ (−k + 2, k − 1) symmetric traversability only
requires helping sets (since the only hard directions are assumed to be uk and u−k) and
the corresponding side lengths of 
(1) are �int + O(1), while for i = k it requires W -
helping sets, but the uk-side of 
(1) has length �mes− + O(1). Recalling Sect. 3.4 and the
fact that l(1) = �(�mes−), Eq. (36) becomes μ(E) � qO(W ), as claimed. This concludes
the proof of Theorem 6.4.

6.3. CBSEP global dynamics. With Theorem 6.4 established, we are ready to conclude
the proof of Theorem 1(d) as in Sect. 5.2.

Proof of Theorem 1(d). Let U be unbalanced unrooted. Recall the droplets 
(n) from
Sect. 6.2. Set 
mes+ = 
(4k) and 
mes− = 
(2k). Condition (1) of Proposition 5.8 is
satisfied by Theorem 6.4, while condition (2) is verified as in Sect. 5.2.

Thus, Proposition 5.8 applies and, together with Theorem 6.4, it yields

Eμ[τ0] � exp

(
log2(1/q)

εqα

)
,

concluding the proof. ��

7. Semi-directed Models

In this section we aim to treat semi-directed update families U (class (f)). The internal
dynamics (Sect. 7.1) based on East extensions is the most delicate. The mesoscopic and
global dynamics (Sects. 7.2 and 7.3) use the CBSEP mechanism along the same lines as
in Sects. 5 and 6.
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7.1. East internal dynamics. In view of Remark 1.6, in Sect. 7.1 we work not only
with semi-directed models (class (f)), but slightly more generally, in order to also treat
balanced rooted models with finite number of stable directions (class (e)), whose update
rules are contained in the axes of the lattice (in which case k = 1—recall Sect. 3.2). In
either case we have that α(u j ) � α for all j ∈ [4k] \ {3k − 1, 3k} and this is the only
assumption on U we use.

Recalling Sect. 3.4, set

N cr = min{n : Wn � q−α} = �α log(1/q)/ log W�,
N int = min

{
n :

⌈
W exp(n−N cr)/qα

⌉
� �intε

}
,

= N cr + log log log(1/q) + O(log log W ),

�(n) =
{
Wn n � N cr,⌈
W exp(n−N cr)/qα

⌉
N cr < n � N int.

(37)

Remark 7.1. Note that despite the extremely fast divergence of�(n)qα , forn ∈ (N cr, N int]
it holds that W � �(n+1)/�(n) < (�(n)qα)2 < log4(1/q). The sharp divergence ensures
that some error terms below sum to the largest one. This prevents additional factors of the
order of N int− N cr in the final answer, particularly for the semi-directed class (f) (recall
Sect. 2.4.3). This technique was introduced in [[25],Eq. (16)], while the geometrically
increasing scale choice relevant for small n originates from [16]. It should be noted that
this divergence can be further amplified up to a tower of exponentials of height linear
in n − N cr. In that case the log log log(1/q) error term in Theorem 8.5 and (4) below
becomes log∗(1/q), but is, alas, still divergent.

Recall Sect. 3.3. Let r (0) = (r (0)
j ) j∈[4k] be a symmetric sequence of radii such that

r = �(1/ε), the vertices of 
(r (0)) are in 2Z
2 and the corresponding side lengths

s(0) are also �(1/ε). For n ∈ N and j ∈ [4k], we define s(n)
j = s(0)

j �(n). We denote


(n) = 
(r (n)), where r (n) is the sequence of radii corresponding to s(n) such that
r (n)

3k = r (0)
3k and r (n)

3k−1 = r (0)
3k−1 (see Fig. 6).

For j ∈ [2k], we write l(n+ j/(2k)) = s(n+1)
j+k −s(n)

j+k = �(�(n+1)/ε) and set r (n+( j+1)/(2k))

= r (n+ j/(2k)) +l(n+ j/(2k))v j , which is consistent with the definition of r (n+1) above. Thus,

denoting 
(n+ j/(2k)) = 
(r (n+ j/(2k))) for n ∈ N and j ∈ (0, 2k) (see Fig. 6), we may
define SG events of these droplets by extension (recall Definition 4.4 and Fig. 2a for
East-extensions).

Definition 7.2 (Semi-directed internal SG). Let U be semi-directed or balanced rooted
with finite number of stable directions and k = 1. We say that 
(0) is SG (SG1(
(0))

occurs), if all sites in 
(0) are infected. We then recursively define SG1(
(n+( j+1)/(2k))),
for n ∈ [N int] and j ∈ [2k], by East-extending 
(n+ j/(2k)) in direction u j by l(n+ j/(2k))

(see Fig. 6).

As usual, we seek to bound the probability of SG1(
(N int)) and associated γ (
(N int))

(recall Sect. 3.6).



13 Page 46 of 68 I. Hartarsky

Theorem 7.3. Let U be semi-directed (class (f)) or balanced rooted with finite number
of stable directions (class (e)) and k = 1. Then

γ
(

(N int)

)
� exp

(
log log(1/q)

ε6qα

)
, μ

(
SG1

(

(N int)

))
� exp

( −1

ε2qα

)
.

The rest of Sect. 7.1 is dedicated to the proof of Theorem 7.3. The probability bound
is fairly easy, as in Eq. (29), while the relaxation time is bounded by iteratively using
Proposition 4.6 and then carefully estimating the product appearing there with the help
of Lemma 4.11.

Note that γ (
(0)) = 1, since Eq. (15) is trivial, as SG1(
(0)) is a singleton. For
n ∈ 1/(2k)N, j ∈ [2k] and m � 1, such that n < N int and n − j/(2k) ∈ N set

a(n)
m = μ−1

(
SG1

(

(n) +

(⌊
(3/2)m+1

⌋
− ⌊

(3/2)m
⌋)

λ j u j

)∣∣∣SG1
(

(n)

))
. (38)

We further let

M (n) = min
{
m : λ j (3/2)m+1 � l(n)

}
= log l(n)/ log(3/2) + O(1). (39)

For the sake of simplifying expressions we abusively assume that l(n) = λ j�(3/2)M
(n)+1�.

Without this assumption, one would need to treat the term corresponding to m = M (n)

below separately, but identically.
We next seek to apply Proposition 4.6 with r = r (n) and l = l(n). Let us first analyse

the term am in Eq. (17). By Definition 4.4 and the Harris inequality Eq. (9), we have

am � a(n)
m

μ(T 1(T + (�(3/2)m+1� − �(3/2)m�)λ j u j )|T 1(T ))
= a(n)

m

b(n)
m

, (40)

using Lemma 4.3 in the equality and setting

T = T
(
r (n), λ j�(3/2)m�, j

)

b(n)
m = μ

(
T 1

(
T
(
r (n),

(⌊
(3/2)m+1

⌋
− ⌊

(3/2)m
⌋)

λ j , j
)))

Moreover, by Lemmas 4.2 and 4.3 we have

M(n)∏

m=1

b(n)
m = q−O(WM(n))μ

(
T 1

(
T
(
r (n), l(n), j

)))

= q−O(WM(n)) μ(SG1(
(n+1/(2k))))

μ(SG1(
(n)))
, (41)

where the second equality uses Definitions 4.4 and 7.2.
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Applying Proposition 4.6 successively and using Eqs. (39) and (40), we get

γ
(

(N int)

)
� max

n�N int
μ−1

(
SG1

(

(n)

)) N int−1/(2k)∏

n=0

eO(C2) log2(1/q)
M(n)∏

m=1

a(n)
m

b(n)
m

� μ(SG1(
(0)))eO(C2)N int log2(1/q)

μ2(SG1(
(N int)))

N int−1/(2k)∏

n=0

q−O(WM(n))
M(n)∏

m=1

a(n)
m

� exp(logO(1)(1/q))

μ2(SG1(
(N int)))

N int−1/(2k)∏

n=0

M(n)∏

m=1

a(n)
m , (42)

where in the second inequality we used Eq. (41) and the fact that μ(SG1(
(n))) is
non-increasing in n (recall Definitions 4.4 and 7.2); in the third inequality we used
N int � log(1/q) by Eq. (37) and M (n) � O(log(1/q)) by Eq. (37) and (39). Note that
in Eq. (42) and below products on n run over 1/(2k)N.

To evaluate the r.h.s. of Eq. (42) we need the following lemma.

Lemma 7.4. Let n ∈ 1/(2k)N be such that n � N int and m � 1. Then

a(n)
m � μ−1

(
SG1

(

(n)

))
� min

(
(δqαWn)−Wn/ε2

, e1/(ε2qα)
)

. (43)

Moreover, if

�(�n�) � 1/
(
qα logW (1/q)

)
, M (n) � m + W, (3/2)m � 1/qα, (44)

setting

nm = min
{
n′ ∈ N : �(n′) � 1/

(
qα logW (1/q)

)
, M (n′) � m + W

}
� n, (45)

the following improvements hold

a(n)
m � exp

(
(3/2)m

ε4

(
(N cr − nm)2 + 1n�N cr log2/3 log(1/q)

))

×
⎧
⎨

⎩
exp

(
1/

(
qα logW−O(1)(1/q)

))
m � log(1/(qα logW (1/q)))

log(3/2)

exp
(
1/

(
qα logW−O(1) log(1/q)

))
m >

log(1/(qα logW (1/q)))
log(3/2)

.
(46)

Let us finish the proof of Theorem 7.3 before proving Lemma 7.4. The second in-
equality in Theorem 7.3 is contained in Eq. (43), so we focus on γ (
(N int)) based on
Eq. (42). Set

Mα =
⌈

log(1/qα)/ log(3/2)
⌉

. (47)
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Using the trivial bound a(n)
m � exp(1/(ε2qα)) from Eq. (43) and then Eqs. (37) and (39),

we get

N int−1/(2k)∏

n=N cr−�1/ε�

M(n)∏

m=Mα

a(n)
m � exp

⎛

⎝ 2

ε3qα

N int−1/(2k)∑

n=N cr

(
M (n) − Mα + 1

)
⎞

⎠

� exp

⎛

⎝
∑N int−1/(2k)

n=N cr O(1 + log(�(�n+1/(2k)�)qα/ε))

ε3qα

⎞

⎠

� exp

(∑N int

n=N cr en+1−N cr

ε4qα

)

� exp

(
log log(1/q)

ε5qα

)
, (48)

which is the main contribution. Note that by Eqs. (37) and (39), n < N cr − 1/ε implies
M (n) < Mα , so Eq. (48) exhausts the terms in Eq. (42) with m � Mα .

Next set

NW =
⌈
− log

(
qα logW (1/q)

)
/ log W

⌉
. (49)

Using the first bound on a(n)
m from Eqs. (43) and (39), we obtain

NW∏

n=0

M(n)∏

m=1

a(n)
m �

NW∏

n=0

(δqαWn)−O(log(1/q)Wn/ε2)

� exp

⎛

⎝− logO(1)(1/q)

NW∑

n=0

Wn

⎞

⎠

� exp
(

1/
(
qα logW−O(1)(1/q)

))
. (50)

We next turn to the range NW � n < nm with m < Mα . Recalling Eqs. (37),
(39) and (45), we get that NW � n < nm implies M (n) < m + W and therefore
l(n) � O((3/2)m+W ), so Wn � (3/2)m . Plugging this into the first bound on a(n)

m from
Eq. (43), we get

Mα−1∏

m=1

nm−1/(2k)∏

n=NW

a(n)
m � exp

(
−

Mα∑

m=1

(3/2)m log(δqα(3/2)m)

ε3

)
� e1/(qαε4). (51)

It remains to treat the range nm � n < N int with m < Mα . Note that by Eqs. (37),
(45) and (49) NW � nm for any m and set

MW =
⌊

log
(

1/
(
qα logW (1/q)

))
/ log(3/2)

⌋
. (52)
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Then Eq. (46) gives

Mα−1∑

m=1

N int−1/(2k)∑

n=nm
log a(n)

m � 2k

ε4

Mα−1∑

m=1

(3/2)m(N cr − nm)2(N int − N cr + N cr − nm)

+
2k

ε4 (N int − N cr) log2/3 log(1/q)

Mα−1∑

m=1

(3/2)m

+
2kMαN int

qα logW−O(1)(1/q)
+

2k(Mα − MW )(N int − NW )

qα logW−O(1) log(1/q)

� 8k

ε4 log log log(1/q)

Mα−1∑

m=1

(3/2)m(N cr − nm)3

+
log2/3 log(1/q) log log log(1/q)

ε5qα

+
1

qα logW−O(1)(1/q)
+

1

qα logW−O(1) log(1/q)
, (53)

where we used that N int−N cr � 2 log log log(1/q) by Eq. (37), Mα � logO(1)(1/q) by
Eq. (47), N int � logO(1)(1/q) by (37), Mα − MW � logO(1) log(1/q) by Eqs. (47) and
(52) and N int−NW � logO(1) log(1/q) by Eqs. (37) and (49). In order to bound the last
sum in Eq. (53), we note that by Eqs. (37), (45), (47), and (52), for any m ∈ [MW , Mα)

we have N cr − nm � (Mα − m)/ε. Plugging this back into Eq. (53), we get

Mα−1∑

m=1

N int−1/(2k)∑

n=nm
log a(n)

m � log log log(1/q)

εO(1)

(
M4

α(3/2)MW + (3/2)Mα

)

+
log3/4 log(1/q)

2qα

� log3/4 log(1/q)

qα
.

Plugging the last result and Eqs. (48), (50) and (51) in Eq. (42), we conclude the proof
of Theorem 7.3, since μ(SG1(
(N int))) � e−1/(ε2qα) by Eq. (43).

Proof of Lemma 7.4. Let us fix m and n as in the statement for Eq. (43). The bound
a(n)
m � μ−1(SG1(
(n))) follows from the Harris inequality Eq. (8). To upper bound the

latter term we note that by Definitions 4.4 and 7.2,

μ
(
SG1

(

(n)

))
= μ

(
SG1

(

(0)

)) n−1/(2k)∏

p=0

μ
(
T 1

(
T
(
r (p), l(p), j (p)

)))
, (54)

setting j (p) ∈ [2k] such that p − j (p)/(2k) ∈ N and letting products on p run over
1/(2k)N. Clearly,

μ
(
SG1

(

(0)

))
= q |
(0)| = q�(1/ε2). (55)
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Let us fix p ∈ 1/(2k)N, p < N int. Then, using Lemma 4.2, Definition 4.1, Obser-
vation 3.11, and the Harris inequality Eq. (7), we get

μ
(
T 1

(
T
(
r (p), l(p), j (p)

)))

� qO(W )
(

1− e−qα�(�p�)/O(ε)
)O(l(p))

� qO(W )

{
(δqαW p)W

p/(δε) p � N cr,

exp
(−1/

(
qα exp

(
W exp(�p�−N cr)/δ

)))
p > N cr.

(56)

In the last inequality we took into account 1/ε � 1/δ � W � 1, �(N cr) = WO(1)/qα

and the explicit expressions Eq. (37). From Eqs. (54)–(56) it is not hard to check Eq.
(43) (recalling Sect. 3.4).

We next turn to proving Eq. (46), so we fix n � N int and m � 1 satisfying Eq. (44).
Denote sm = (�(3/2)m+1� − �(3/2)m�)λ j u j for j = j (n), so that Eq. (38) spells

a(n)
m = μ−1

(
SG1

(

(n) + sm

)∣∣∣SG1
(

(n)

))
.

By the Harris inequality, Eqs. (8) and (9), Definitions 4.4 and 7.2 we have

a(n)
m � μ−1

(
SG1

(

(nm)

))

×
n−1/(2k)∏

p=nm
μ−1

(
T 1

(
T
(
r (p), l(p), j (p)

)
+ sm

)∣∣∣ T 1
(
T
(
r (p), l(p), j (p)

)))
.

(57)

Our goal is then to bound the last factor, using Lemma 4.11, which quantifies the fact
that “small perturbations sm do not modify traversability much.”

Let us fix p ∈ [nm, n) ∩ (1/2k)N and denote

T = T 1
(
T
(
r (p), l(p), j (p)

))
T ′ = T 1

(
T
(
r (p), l(p), j (p)

)
+ sm

)
.

In order to apply Lemma 4.11 with � = max(C2, ‖sm‖), we check that W 3(3/2)m �
�(�p�)/ε (so that the sides of 
(p) are large enough). If �(�p�) � 1/qα , this follows from
the assumption (3/2)m � 1/qα of Lemma 7.4. Otherwise, by Eqs. (39) and (45)

W 3(3/2)m � (3/2)M
(nm )−W/2 � l(nm)/e�(W ) = �

(
�(nm+1)

)
/
(
εe�(W )

)

� �(nm )/ε � �(�p�)/ε,

where in the last but one inequality we used that �(nm+1) � WO(1)�(nm), sincenm � p and
�(p) � 1/qα (recall Eq. (37)). The remaining hypotheses of Lemma 4.11 are immediate
to verify.

For ‖sm‖ = �((3/2)m) � C2, Lemma 4.11 gives

μ
(
T ′∣∣ T

)
� qO(C2)

(
1− q1−o(1)

)O(l(p))
� exp

(
−q−α+1/2

)
,
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as l(p) � �(N int)/ε � q−α−o(1). If, on the contrary, ‖sm‖ � C2, Lemma 4.11 gives

μ(T ′|T ) � qO(W ) ×
(

1− (1− qα)�
(�p�)/O(ε)

)O((3/2)m)

×
(

1− O(Wε)(3/2)m/�(�p�) − q1−o(1)
)O(�(�p�+1)/ε)

� qO(W ) ×
{

(δqαW p)O((3/2)m ) p � N cr

exp
(−(3/2)m exp

(−W exp(�p�−N cr)/δ
))

p > N cr

×
{

exp
(−q−α+1/2−o(1)

)
(3/2)m � q−α+1/2−o(1)

exp
(
−W 2(3/2)m �(�p�+1)

�(�p�)
)

(3/2)m > q−α+1/2−o(1),
(58)

in view of Eq. (37). Further notice that if (3/2)m � q−α+1/2−o(1) or p > N cr, the third
term dominates, while otherwise the second one does. Moreover, if p � N cr +���with

� = log
log log log(1/q)

3 log W
, (59)

then the Harris inequality Eq. (8), translation invariance and Eq. (56) directly give the
bound

μ(T ′|T ) � μ(T ′) = μ(T ) � exp
(
−1/

(
qα logW log(1/q)

))
. (60)

Finally, we can plug Eqs. (43), (58) and (60) in Eq. (57) to obtain the following
bounds. If (3/2)m � q−α+1/2−o(1), then

a(n)
m � exp

(
1/

(
qα logW (1/q)

))
,

because the contribution from Eq. (58) is negligible, since n � N int � log(1/q),
while by Eqs. (37) and (45), Wnm = �(nm ) � W/(qα logW (1/q)). If, on the contrary,
(3/2)m > q−α+1/2−o(1), then

a(n)
m �

{
exp

(
1/

(
qα logW−O(1)(1/q)

))
(3/2)m � 1/

(
qα logW (1/q)

)

(δqαWnm )−(3/2)m/ε3
(3/2)m > 1/

(
qα logW (1/q)

)

×
min(n,N cr)∏

p=nm
(δqαW p)−O((3/2)m)

×
{

1 n � N cr

exp
(
(3/2)mW 2 exp(�)/δ

)
n > N cr

×
{

exp
(
1/

(
qα logW−O(1)(1/q)

))
(3/2)m � 1/

(
qα logW (1/q)

)

exp
(
1/

(
qα logW−O(1) log(1/q)

))
(3/2)m > 1/

(
qα logW (1/q)

)
,

the terms corresponding toμ−1(SG1(
(nm))) and to values of p in the intervals [nm, N cr],
(N cr, N cr + ���) and [N cr + ���, N int) respectively. Indeed, in the last term for small
m we used Eq. (58), while for large m, we directly applied Eq. (60). Observing that the
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product of the second case for the first term, the second term and the third term can be
bounded by

exp

(
(3/2)m

ε4

(
(N cr − nm)2 + 1n�N cr log2/3 log(1/q)

))
,

we obtain the desired Eq. (46). ��

7.2. CBSEP mesoscopic dynamics. In this section we assume that U is semi-directed
(class (f)) and w.l.o.g. α(ui ) � α for all i ∈ [4k] \ {3k}. The approach to the mesoscopic
dynamics is very similar to the one of Sect. 6.2, employing a bounded number of CBSEP-
extensions to go from the internal to the mesoscopic scale. Once again, the geometry of
our droplets is as in Fig. 4a, but extensions are much longer so that we go from scale �int

to �mes− in 2k extensions and then to �mes+ in another 2k extensions.
Recall from Sect. 7.1 that we defined 
(N int), a symmetric droplet with side lengths

s(N int) equal to �(�(N int)/ε), as well as SG1(
(N int)) in Definition 7.2. Further recall
Sect. 3.4. Following Sect. 6.2, for i ∈ [1, 2k] we define

s(i+N int)
j = s(i+N int)

j+2k =
{
s(N int)
j i − k � j < k,

2λ j��mes−/(2λ j )� −k � j < i − k,

while for i ∈ (2k, 4k], we set

s(i+N int)
j = s(i+N int)

j+2k =
{

2λ j��mes−/(2λ j )� i − 3k � j < k
2λ j��mes+/(2λ j )� −k � j < i − 3k.

(61)

We then define 
(N int+i) = 
(r (N int+i)) with r (N int+i) the sequence of radii associated to
s(N int+i) satisfying



(
r (Ni+i)

)
= 


(
r (N int+i−1) + l(N

int+i−1)
(
vi−1 + vi+2k−1

)
/2
)

,

l(N
int+i−1) = s(N int+i)

i+k−1 − s(N int+i−1)
i+k−1 =

{
(1− o(1))�mes− i ∈ [1, 2k],
(1− O(δ))�mes+ i ∈ (2k, 4k].

We then define the corresponding SG events by CBSEP-extension as in Definition 6.3.

Definition 7.5 (Semi-directed mesoscopic SG). Let U be semi-directed. For i ∈ [4k] we
define SG1(
(N int+i+1)) by CBSEP-extending 
(N int+i) by l(N

int+i) in direction ui .

We then turn to bounding γ (
(N int+4k)) (recall Sect. 3.6).

Theorem 7.6. Let U be semi-directed (class (f)). Then

γ
(

(N int+4k)

)
� exp

(
log log(1/q)

εO(1)qα

)
,

μ
(
SG1

(

(N int+2k)

))
� exp

( −1

εO(1)qα

)
.
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Fig. 7. The events ST (

(i)
1 ), SG(


(i)
2 ) and ST (


(i)
3 ). The microscopic black regions are entirely infected.

Shaded tubes are (1,W )-traversable. W -helping sets are required close to all boundaries

The rest of Sect. 7.2 is dedicated to the proof of Theorem 7.6. The proof proceeds
exactly like Theorem 6.4, except that the first two steps are much more delicate. Namely,
they require taking into account the internal structure of SG1(
(N int)) on all scales down
to 0. This structure is, alas, rather complex (recall Fig. 6) and also not symmetric w.r.t.
the reflection interchanging u0 and u2k . This is not unexpected and is, to some extent,
the crux of semi-directed models.

As before, we define 

(i)
1 ,


(i)
2 ,


(i)
3 by Eq. (20) for i ∈ [N int, N int + 4k). The next

definitions are illustrated in Fig. 7 and are the analogue of Definition 6.5, but taking into
account Definition 7.2. Correspondingly, the intuition behind them is the same, the only
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difference being that we need to modify traversability events at all scales, because 
(i)

touches the boundary of 
(N int) for all i � N int (compare Figs. 4a and 6).

Definition 7.7 (Contracted semi-directed events on scale N int). Let us defineST (

(N int)
3 )

to be the event that for all j ∈ [−k + 1, k − 1] and, for every segment S ⊂ 

(N int)
3 , per-

pendicular to u j of length s(N int)
j /W , the event HW (S) occurs.

LetST (

(N int)
1 ) be the event that for all j ∈ [k+1, 3k−2] every segment S ⊂ 


(N int)
1 ,

perpendicular to u j of length s(N int)
j /W , the event HW (S) occurs and all sites in 


(N int)
1

at distance at most
√
W/ε from the origin are infected.

For n ∈ [0, N int] such that 2kn ∈ N let 
′(n) = 
(r (n) − λ0(v0 + v2k)). Define
SG′(
′(n)) recursively exactly likeSG1(
(n)) in Definition 7.2 with all droplets replaced
by their contracted versions 
′ and all traversability events required in East-extensions
(see Definition 4.4) replaced by the corresponding (1,W )-traversability events5 (T 1

W ,
see Definition 4.1). Let W ′ be the event that for every n ∈ [0, N int], j ∈ [4k] and

segment S ⊂ 

(N int)
2 , perpendicular to u j of length s(n)

j /W at distance at most W from

the u j -side of 
(n), the event HW (S) holds. Let I ′ be the event that all sites in 

(N int)
2

at distance at most
√
W/ε from the origin are infected. Finally, set

SG
(



(N int)
2

)
= SG′

(

′(N int)

)
∩W ′ ∩ I ′.

Definition 7.8 (Contracted semi-directed events on scale N int + 1). We define ST
(


(N int+1)
1 ) to be the event that for all j ∈ [k+2, 3k−1] and every segment S ⊂ 


(N int+1)
1 ,

perpendicular to u j of length s(N int)
j /W , the eventHW (S) occurs and all sites in 


(N int+1)
1

at distance at most
√
W/ε from the origin are infected.

Let ST (

(N int+1)
3 ) be the event that for all j ∈ [4k], m ∈ {N int, N int + 1} and every

segment S ⊂ 

(N int+1)
3 , perpendicular to u j of length s(m)

j /W at distance at most W

from the u j -side of 
(m), the event HW (S) occurs.
For n ∈ [0, N int] such that 2kn ∈ N let


′′(n) = 

(
r ′′(n)

)
= 


(
r (n) − λ1

(
v1 + v2k+1

))

and define SG′′(
′′(n)) like SG′(
′(n)) in Definition 7.7. Further let

SG′′
(

′′(N int+1)

)
= SG′′

(

′′(N int)

)
∩

⋂

j∈{0,2k}
ST 1

W

(
T
(
r ′′(N int), l(N

int)/2, j
))

.

Let W ′′ (resp. I ′′) be defined like W ′ (resp. I ′) in Definition 7.7 with 
′ replaced by

′′ and N int replaced by N int + 1. Finally, we set

SG
(



(N int+1)
2

)
= SG′′

(

′′(N int+1)

)
∩W ′′ ∩ I ′′.
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Notice that Definition 6.5 for i ∈ [2, 4k) does not inspect the internal structure of

SG1(
(0)) (see Fig. 5b). Thus, we may use the exact same definition for ST (

(N int+i)
1 ),

SG(

(N int+i)
2 ) and ST (


(N int+i)
3 ) with i ∈ [2, 4k).

We may now turn to the analogue of Lemma 6.6.

Lemma 7.9. For all n ∈ [N int, N int +4k)we haveSG(

(n)
2 )×ST (


(n)
3 ) ⊂ SG1(


(n)
2 ∪



(n)
3 ) and similarly for 


(n)
1 instead of 
(n)

3 .

Proof. For n � N int + 2 the proof is the same as in Lemmas 5.4 and 6.6.

Assume that SG(

(N int)
2 ) and ST (


(N int)
3 ) occur. We seek to prove by induction

that for all n � N int the event SG1(
(n)) occurs. For n = 0 this is true, since I ′
and the corresponding part of ST (


(N int)
3 ) in Definition 7.7 give that 
(0) is fully

infected. By Definition 4.4 and 7.2, it remains to show that for all n < N int the event
T = T 1(T (r (n), l(n), j)) occurs, where j ∈ [4k] is such that n − j/(2k) ∈ N. But
by Definition 7.7 the corresponding event T ′ = T 1

W (T (r ′(n), l(n), j) occurs, where

′(n) = 
(r ′(n)). It therefore remains to observe that W ′, the W -helping sets in the

definition ofST (

(N int)
3 ) and T ′ imply T . Indeed, W -helping sets ensure the occurrence

of H1
C2(S) for the first and last �(W ) segments S in Definition 4.1 for T , while the

remaining ones are provided by T ′, since r ′(n) and r (n) only differ by O(1) � W . We
omit the details, which are very similar to those in the proof of Lemma 6.6 (see Fig. 7a).

The remaining three cases (
(N int)
1 instead of 


(N int)
3 and/or N int + 1 instead of N int)

are treated analogously (see Fig. 7). ��
By Lemma 7.9, Eq. (18) holds, so we may apply Proposition 4.9. Together with the

Harris inequality, Eqs. (7) and (8), this gives

γ
(

(N int+4k)

)

� γ (
(N int)) exp(O(C2) log2(1/q))

N int+4k−1∏

i=N int

μ(SG1(
(i+1)))μ(ST (

(i)
1 ))μ(SG(


(i)
2 ))μ(ST (


(i)
3 ))

. (62)

In view of Theorem 7.3, it remains to bound each of the terms in the denominator by
exp(−1/(εO(1)qα)) in order to conclude the proof of Theorem 7.6.

Notice that a total of ε−O(1) fixed infections and WO(1)N int = qo(1) W -helping
sets are required in all the events in Eq. (62). This amounts to a negligible factor. The
probability ofSG′(
′(N int)) andSG′′(
′′(N int)) can be bounded exactly likeSG1(
(N int))

in Lemma 7.4. This yields a contribution of exp(1/(εO(1)qα)). Finally, the remaining
bounded number ofST 1

W events are treated as in Theorem 6.4 to give a negligible q−O(W )

factor. Hence, the proof of Theorem 7.6 is complete.

7.3. Global CBSEP dynamics. The global dynamics is also based on the CBSEP mech-
anism and proceeds as in Sects. 5.2 and 6.3
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Fig. 8. Geometry of the droplets used for balanced rooted models in Sect. 8.1 in the case k = 2. The nested
black, grey and white polygons are the droplets 
(0), 
(1) and 
(2) respectively

Proof of 1(f). Let U be semi-directed. Recall the droplets 
(N int+i) for i ∈ [4k + 1] from
Sect. 7.2. Set 
mes+ = 
(N int+4k) and 
mes− = 
(N int+2k). Condition (1) of Proposition
5.8 is satisfied by Theorem 7.6, while condition (2) is verified as in Sect. 5.2.

Thus, Proposition 5.8 applies and, together with Theorem 7.6 it yields

Eμ[τ0] � exp

(
log log(1/q)

εO(1)qα

)
,

concluding the proof. ��

8. Balanced Rooted Models with Finite Number of Stable Directions

In this section we deal with balanced rooted models with finite number of stable directions
(class (e)). The internal dynamics (Sect. 8.1) uses a two-dimensional version of East-
extensions. As usual, it requires the most work, but applies directly also to balanced
models with infinite number of stable directions (class (b)). The mesoscopic and global
dynamics are imported from [22] in Sect. 8.2.

8.1. East internal dynamics. In this section we simultaneously treat balanced rooted
models (classes (b) and (e)). We may therefore assume that α(u j ) � α for all j ∈
[−k + 1, k] and this is the only assumption on U we use.

Let us start by motivating the coming two-dimensional East-extension we need.
By the above assumption on the difficulties, we are allowed to use East-extensions in
directions u0 and u1. Indeed, recalling Definition 4.4, we see that for these directions the
traversability events (recall Definition 4.1) only require helping sets and not W -helping
sets. In principle, one could alternate East-extensions in these two directions similarly to
what we did e.g. in Sect. 7.1 for directions u0, . . . , u2k−1. However, this would not work,
because extensions in directions u0 and u1 only increase the length of the sides parallel
to u0 and u1, while all others remain unchanged (see Fig. 2a). Thus, the traversability
events would be too unlikely, since they would require helping sets also for the other
sides, e.g. the one with outer normal u2−k , which are too small. This would make the
probability of the SG event too large. Notice that this issue does not arise when k = 1,
as we saw in Sect. 7.1.

For k > 1, however, we therefore need to make the u j -sides of our successive droplets
grow for all j ∈ [−k + 1, k]. A natural way to achieve this is as depicted in Fig. 8.
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Fig. 9. Geometry of the droplets (Dκ )κ∈[K ] used in the two-dimensional East-extension in Definition 8.3.
Also recall Fig. 8

The drawback is that we can no longer achieve this directly with one-directional East-
extensions as in Definition 4.4 and Fig. 2a, so we need some more definitions. However,
morally, one such two-dimensional extension can be achieved by two East-extensions in
the sense that, East-extending in direction u0 and then u1 yields a droplet which contains
the desired droplet as in Fig. 8. Unfortunately, our approach heavily relies on not looking
at the configuration outside the droplet itself. For that reason we instead need to find for
each point in the droplet appropriate lengths of the East-extensions in directions u0 and
u1, so as to cover the point without going outside the target droplet (see Fig. 9).

Following Sect. 7.1 we define N cr, N int, �(n) by Eq. (37). In this section there are no
fractional scales, so n is an integer. Further let 
(0) be as in Sect. 7.1 with radii r (0) and
side lengths s(0). For n ∈ [N int] set

s(n)
j =

{
s(0)
j �(n) −k < j � k

s(0)
j k + 1 < j < 3k

and s(n)
−k and s(n)

k+1 as required for s(n) to be the side lengths of a droplet. Let r (n) be the

corresponding radii such that r (n)
−k = r (0)

−k and r (n)
k+1 = r (0)

k+1. Finally, set 
(n) = 
(r (n))

as usual (see Fig. 8).
Fix n ∈ [N int]. Observe that we can cover 
(n+1) with droplets (Dκ)κ∈[K ] so that the

following conditions all hold (see Fig. 9).

• For all κ ∈ [K ], Dκ ⊂ 
(n+1);
• ⋃K−1

κ=2 Dκ = 
(n+1);
• K = O(�(n+1)/�(n));
• any segment of length �(n)/(Cε) perpendicular to u j for some j ∈ [4k] intersects

at most O(1) of the Dκ ;
• droplets are assigned a generation g ∈ {0, 1, 2}, so that only D0 = 
(n) is of

generation g = 0, only D1 = 
(r (n) + l1v1) is of generation g = 1, where

l1 = r (n+1)
k − r (n)

k

〈u1, uk〉 ,
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so that D1 spans the uk+1-side of 
(n+1);
• if κ � 2, then Dκ is of generation g = 2, and is of the form

Dκ = yκu1 + 

(
r (n) + lκv0

)

for certain lκ � 0 and yκ ∈ [0, l1] multiple of λ1.

To construct the Dκ of generation 2, it essentially suffices to increment yκ by �(�(n)/ε)

and define lκ to be the largest possible, so that Dκ ⊂ 
(n+1). Finally, we add to our
collection of droplets the ones with yκ corresponding to a corner of 
(n+1) and again
take lκ maximal (see Fig. 9). Note that one is able to get K = O(�(n+1)/�(n)) thanks to
the fact that s(n)

−k and s(n)
k+1 are �(�(n)/ε). We direct the interested reader to [4, Appendix

E] for the explicit details of a similar construction in arbitrary dimension.

Definition 8.1 (n-traversability). Fix n ∈ [N int] and let R ⊂ 
(n+1) be a region of the
form

⋃

I∈I

⎛

⎝
⋂

κ∈I
Dκ \

⋃

κ∈[K ]\I
Dκ

⎞

⎠ (63)

for some family I of subsets of [K ]. We say that R is n-traversable (Tn(R) occurs7)
if for all j ∈ (−k, k) and every segment S ⊂ R perpendicular to u j of length at least
δ�(n)/ε the following two conditions hold.

• If S is at distance at least W from the boundary of all Dκ , then the event H(S)

occurs.
• If S is at distance at most W from a side of a Dκ parallel to S for some κ ∈ [K ], but
S does not intersect any non-parallel side of any Dκ ′ , then the event HW (S) occurs.

Roughly speaking, R must be one of the polygonal pieces into which the boundaries
of all Dκ cut 
(n+1). It is n-traversable, if segments of the size slightly smaller than 
(n)

contain helping sets for the directions in (−k, k). However, we only require this slightly
away from the boundaries of Dκ and instead add W -helping sets close to boundaries, so
that we can still cross them but keep the following independence.

Remark 8.2. Note that n-traversability events are product over the disjoint regions into
which all the boundaries of (Dκ)κ∈[K ] partition 
(n+1).

Definition 8.3 (Two-dimensional East-extension). For n ∈ [N int] we say that we East-
extend 
(n) to 
(n+1) if SG1(D1) is defined by East-extending 
(n) by l1 in direction
u1 and SG1(
(n+1)) = SG1(D1) ∩ Tn(
(n+1)\D1).

Indeed, Definition 8.1 gives Tn(
(n+1) \ D1), since Eq. (63) is satisfied:


(n+1) \ D1 =
⋃

κ∈[K ]
Dκ \ D1 =

⋃

I⊂[K ]\{0,1}

⎛

⎝
⋂

κ∈I
Dκ \

⋃

κ �∈I
Dκ

⎞

⎠ .

Armed with this notion, we are ready to define our SG events up to the internal scale for
our models of interest.

7 The n-traversability Tn should not be confused with (ω, d)-traversability T ω
d from Definition 4.1, which

only features with d = 0 and ω = 1 in the present section.
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Definition 8.4 (Balanced rooted internal SG). Let U be balanced rooted. We say that

(0) is SG (SG1(
(0) occurs), if all sites in 
(0) are infected. We then recursively define
SG1(
(n+1)) for n ∈ [N int] by East-extending 
(n) to 
(n+1) (see Definition 8.3).

We are now ready to state our bound on the probability ofSG1(
(N int)) and γ (
(N int))

(recall Sect. 3.6).

Theorem 8.5. Let U be balanced rooted (classes (b) and (e)). Then

γ
(

(N int)

)
� exp

(
log(1/q) log log log(1/q)

ε3qα

)
,

μ
(
SG1

(

(N int)

))
� exp

( −1

ε2qα

)
.

The rest of Sect. 8.1 is dedicated to the proof of Theorem 8.5. As usual, the proba-
bility bound is not hard (see Lemma 8.7 below), while the relaxation time is bounded
recursively. However, we need to obtain such a recursive relation, using Proposition 4.6
twice (see Lemma 8.6 below). Yet, thanks to the additional log(1/q) factor as compared
to Theorem 7.3 (and the log log log(1/q) one, see Remark 1.6), the computations need
not be as precise and, in particular, do not rely on Lemma 4.11.

Note that γ (
(0)) = 1, since Eq. (15) is trivial, as SG1(
(0)) is a singleton. For
m � 1 and n ∈ [N int] denote

a(n)
m = max

j∈{0,1}μ
−1

(
SG1

(

(n) +

(
�(3/2)m+1� − �(3/2)m�

)
λ j u j

)∣∣∣SG1
(

(n)

))
.

(64)

For the sake of simplifying expressions we abusively assume that for all κ ∈ [K ] the
length lκ is of the form λ0�(3/2)m� with integer m. Without this assumption, one would
need to treat the term corresponding to m = M − 1 in Proposition 4.6 separately, but
identically. We next deduce Theorem 8.5 from the following two lemmas.

Lemma 8.6. For n < N int we have

γ
(

(n+1)

)
� γ (
(n))eO(C2) log2(1/q)

(μ(SG1(
(n+1)))μ(Tn(
(n+1))))O(1)

M(n)∏

m=1

a(n)
m ,

where M (n) = �1/ε� + �log �(n+1)/ log(3/2)�.
Lemma 8.7. For any n � N int and m � 1 we have

a(n)
m � μ−1

(
SG1

(

(n)

))
� μ−1

(
SG1

(

(n)

))
μ−1

(
Tn−1

(

(n)

))

� min
((

δqαWn)−Wn/ε2
, e1/(ε2qα)

)
. (65)
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From Lemmas 8.6 and 8.7 and the explicit expressions Eq. (37), we get

γ
(

(N int)

)
� elogO(1)(1/q)

N int−1∏

n=0

(
μ
(
SG1

(

(n+1)

))
μ
(
Tn

(

(n+1)

)))−O(1)
M(n)∏

m=1

a(n)
m

� elogO(1)(1/q)
N int−1∏

n=0

(
μ
(
SG1

(

(n+1)

))
μ
(
Tn

(

(n+1)

)))−O(log(1/q))

� exp

(
log(1/q) log log log(1/q)

ε3qα

)
.

Since the second inequality in Theorem 8.5 is contained in Lemma 8.7, this concludes
the proof of the theorem modulo Lemmas 8.6 and 8.7.

Proof of Lemma 8.6. Let us start by recalling a general fact about product measures.
Consider two disjoint regions A, B ⊂ Z

2 and a product measure ν on �A × �B . The
law of total variance and convexity give

VarνA∪B ( f ) = νB
(
VarνA ( f )

)
+ VarνB (νA( f )) � ν(VarνA( f ) + VarνB ( f )). (66)

Fix n ∈ [N int]. Applying Eq. (66) several times (in view of Remark 8.2 and Definition
8.3), we obtain

Var
(n+1)

(
f |SG1

(

(n+1)

))

� μ
(n+1)

(
VarD1

(
f |SG1(D1)

)
+

K−1∑

κ=2

VarRκ ( f |Tn (Rκ))

∣∣∣∣∣SG
1
(

(n+1)

))

�
K−1∑

κ=1

μ
(n+1)

(
VarDκ∪D1

(
f |SG1(D1), Tn(Dκ \ D1)

)∣∣∣SG1
(

(n+1)

))
, (67)

where Rκ = Dκ \ ⋃κ−1
κ ′=1 Dκ ′ . Since the terms above are treated identically (except

κ = 1, which is actually simpler), without loss of generality we focus on κ = 2.
Recall from Definition 8.3 that SG1(D1) was defined by East-extending D0 in di-

rection u1. Further East-extend D0 by l2 (recall that D2 = y2u1 + 
(r (n) + l2v0)) in
direction u0, so that SG1(D2) is also defined. Let V = D1 ∪ D2 (that is a  shaped
region in Fig. 9) and

SG1(V ) = SG1(D1) ∩ Tn(D2 \ D1). (68)

Using a two-block dynamics (see e.g. Lemma A.1), we have

VarV ( f |SG1(V ))

� μV (VarD1( f |SG1(D1)) + 1E VarV \D1( f |Tn(V \ D1))|SG1(V ))

�(μ(E |SG1(V )))
, (69)

where

E = SG1
(

(n) + y2u1

)
∩ Tn (D1 ∩ D2) ⊂ �D1 . (70)
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Recalling Definitions 4.1, 8.1 and 8.3, Eq. (70) and the fact that each segment of length
�(n)/(εC) � δ�(n)/ε intersects at most O(1) droplets, we see that

E ∩ Tn(V \ D1) ⊂ SG1
(

(n) + y2u1

)
∩ T 1

(
D2 \

(

(n) + y2u1

))

= SG1(D2). (71)

By Eq. (71) and convexity of the variance, we obtain

μV

(
1E VarV \D1( f |Tn(V \ D1))

∣∣SG1(V )
)

� μ(E)

μ(SG1(V ))
μV

(
VarD2 ( f |E ∩ Tn (V \ D1))

)

� μ(E)μ(SG1(D2))μV (VarD2( f |SG1(D2)))

μ(SG1(V ))μ(E ∩ Tn(V \ D1))

� μV (VarD2( f |SG1(D2)))

μ2(Tn(
(n+1)))
. (72)

Indeed, in the last line we recalled the definitions of SG1(D2), SG1(V ) and E (see
Definition 4.4 and Eqs. (68) and (70)), while in the second one we took into account that
for any events A ⊂ B with μ(A) > 0 it holds that

Var( f |A) = min
c∈R

μ
(
( f − c)2

∣∣∣A
)

� μ(( f − μ( f |B))21A)

μ(A)
� μ(B)

μ(A)
Var( f |B)

(73)

and Eq. (71).
We plug Eq. (72) in Eq. (69) and note that by the Harris inequality, Eqs. (7), (8),

μ(E |SG1(V )) � μ(E) � μ(SG1(
(n)))μ(Tn(
(n+1))). This yields

VarV
(
f |SG1(V )

)
� O(1)μV (VarD1( f |SG1(D1)) + VarD2( f |SG1(D2)))

μ(SG1(
(n)))μ(SG1(V ))μ3(Tn(
(n+1)))

� O(1)μV (VarD1( f |SG1(D1)) + VarD2( f |SG1(D2)))

μ2(SG1(
(n+1)))μ3(Tn(
(n+1)))
(74)

where the second inequality uses Eq. (68) and Definition 8.3.
As in Eqs. (40) and (41), Proposition 4.6 gives

γ (D2) � max
(
γ
(

(n)

)
, μ−1

(
SG1

(

(n)

)))
eO(C2) log2(1/q)q−O(WM)

×μ(SG1(
(n)))

μ(SG1(D2))

M∏

m=1

a(n)
m (75)

with M = min{m : λ0(3/2)m+1 � l2} � M (n). Plugging Eqs. (15) and (75) (and their
analogues for D1) into Eq. (74), we obtain

γ (V ) � γ (
(n))eO(C2) log2(1/q)
∏M(n)

m=1 a
(n)
m

μ3(SG1(
(n+1)))μ3(Tn(
(n+1))) minκ μ(SG1(Dκ))

�
γ
(

(n)

)
eO(C2) log2(1/q)

∏M(n)

m=1 a
(n)
m

μ4
(
SG1

(

(n+1)

))
μ4(Tn(
(n+1)))

,
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where the last inequality uses Eq. (71) and that SG1(D1) ⊃ SG1(
(n+1)) by Def-
inition 8.3. Plugging this into Eq. (67), concludes the proof of Lemma 8.6, since
K = O(�(n+1)/�(n)) � O(log4(1/q)), as noted in Remark 7.1. ��
Proof of Lemma 8.7. The first inequality in Eq. (65) follows from the Harris inequality
Eq. (8), while the second one is trivial. Therefore, we turn to the last one and fix n ∈
[N int]. Note that by Definitions 4.4, 8.1 and 8.3

μ
(
SG1

(

(n+1)

))
� μ

(
SG1

(

(n)

))
μ
(
Tn

(

(n+1)

))
μ
(
T 1 (D1 \ D0)

)
. (76)

We therefore proceed by induction starting with

μ
(
SG1

(

(0)

))
= q |
(0)| = q�(1/ε2). (77)

We observe that from Definition 8.1, in order to ensure the occurrence of Tn(
(n+1)),
it suffices to have O(WK�(n+1))/(�(n)δ) well-placed W -helping sets and O((�(n+1))2)/

(�(n)δε) helping sets for segments of length δ�(n)/(3ε). Indeed, we may split lines
perpendicular to each u j for j ∈ (−k, k) into successive disjoint segments of length
δ�(n)/(3ε) with a possible smaller leftover. It is then sufficient to place W -helping sets or
helping sets depending on whether the segment under consideration is close to a parallel
boundary of one of the Dκ or not. Note that here we crucially use the assumption that
each segment of length �(n)/(Cε) � δ�(n)/ε intersects only O(1) droplets.

Recall that 1/ε � 1/δ � W � 1, �(N cr) = WO(1)qα , K = O(�(n+1)/�(n)) �
logO(1)(1/q), the explicit expressions Eq. (37) and Observation 3.11. Then the Harris
inequality Eq. (7), yields

μ
(
Tn

(

(n+1)

))

� qO(W 2K�(n+1))/(�(n)δ)
(

1− e−qαδ�(n)/O(ε)
)O((�(n+1))2/(�(n)δε))

� e− logO(1)(1/q) ×
{

(δqαWn)W
n/(δ2ε) n � N cr

exp
(−1/

(
qα exp

(
W exp(n−N cr)

)))
n > N cr.

(78)

Essentially the same computation leads to the same bound for μ(T 1(D1 \ D0)) (see Eq.
(56)). The only difference is that only O(1) W -helping sets and O(�(n+1)/ε) helping
sets are needed. Further recalling Eqs. (76) and (77), it is not hard to check Eq. (65). ��

8.2. FA-1f global dynamics. We next import the global FA-1f dynamics together with
much of the mesoscopic multi-directional East one simultaneously from [22].

Proposition 8.8. LetU haveafinite numberof stable directions, T = exp(log4(1/q)/qα)

and r int be such that the associated side lengths satisfy C � sint
j � O(�int) for all

j ∈ [4k]. Assume that for all l ∈ [0, �mes] multiple of λ0 the event SG1(
(r int + lv0))

is nonempty, decreasing, translation invariant and satisfies
(

1− μ
(
SG1

(


(
r int + lv0

))))T
T W = o(1).

Then,

Eμ[τ0] � maxl∈[0,�mes] γ (
(r int + lv0))

(q1/δ minl∈[0,�mes] μ(SG1(
(r int + lv0))))
log(1/q)/δ

.
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The proof is as in [22], up to the following minor modifications. Firstly, one needs
to replace the base of the snail by 
mes = 
(r int + λ0��mes/λ0�v0), which has a similar
shape by hypothesis. Secondly, the event that the base is super good on [22] should be
replaced by SG1(
mes). Finally, [22, Proposition 4.9] is substituted by the definition
Eq. (15) of γ (
mes). As Proposition 8.8 is essentially the entire content of [22] (see
particularly Proposition 4.12 and Remark 4.8 there), we refer the reader to that work for
the details.

Proof of Theorem 1(e). LetU be balanced rooted with finite number of stable directions.
Recall 
(N int) = 
(r (N int)) with r (N int) =: r int from Sect. 7.1 if k = 1 and from Sect. 8.1
if k � 2. Fix l ∈ [0, �mes] multiple of λ0 and East-extend 
(N int) by l in direction u0. It
is not hard to check from Definition 4.4 and Observation 3.11 that

μ(SG1(
(r int + lv0)))

μ(SG1(
(r int)))
= μ

(
T 1

(
T
(
r int, l, 0

)))
= qO(W )

(see Eq. (36)). Then, by Proposition 4.6, Theorems 7.3 and 8.5 and the Harris inequality
Eq. (7), we obtain

μ
(
SG1

(


(
r int + lv0

)))
� exp

( −2

ε2qα

)

γ
(


(
r int + lv0

))
�

⎧
⎨

⎩
exp

(
log(1/q)

ε3qα

)
k = 1,

exp
(

2 log(1/q) log log log(1/q)

ε3qα

)
k � 2.

Plugging this in Proposition 8.8, we obtain

Eμ[τ0] �

⎧
⎨

⎩
exp

(
2 log(1/q)

ε3qα

)
k = 1,

exp
(

3 log(1/q) log log log(1/q)

ε3qα

)
k � 2,

(79)

which concludes the proof of Theorem 1(e) in the case k = 1 and of Eq. (4) for k � 2.
The full result of Theorem 1(e) for k � 2 is proved identically, replacing Theorem 8.5
by the stronger Theorem C.1. ��

9. Balanced Models with Infinite Number of Stable Directions

We finally turn to balanced models with infinite number of stable directions (class (b)).
The internal dynamics was already handled in Sect. 8.1. The mesoscopic one (Sect. 9.1)
is essentially the same as the the internal one, using two-dimensional East-extensions.
The global dynamics (Sect. 9.2) also uses an East mechanism analogous to the FA-1f
one from [22] used in Sect. 8.2.

9.1. East mesoscopic dynamics. Given that the bound we are aiming for in Theorem
1(b) is much larger than those in previous sections, there is a lot of margin and our
reasoning is far from tight for the sake of simplicity.

Recall N int and �(n) for n � N int from Eq. (37), the droplets 
(n) from Sect. 8.1, their
SG events from Definition 8.4. For n > N int, we set �(n) = Wn−N int

�(N int) and define
s(n), r (n), 
(n) as in Sect. 8.1. Recall Sect. 3.4. Further let Nmes = inf{n : �(n)/ε �



13 Page 64 of 68 I. Hartarsky

�mes = q−C } = �(C log(1/q)/ log W ) and assume for simplicity that �(Nmes) = q−Cε.
We are only be interested in n � Nmes and extend Definitions 8.1, 8.3 and 8.4 to such
n without change. With these conventions, our goal is the following.

Theorem 9.1. Let U be a balanced model with infinitely many stable directions (class
(b)). Then

γ
(

(Nmes)

)
� exp

(
log2(1/q)

ε3qα

)
, μ

(
SG1

(

(Nmes)

))
� exp

( −2

ε2qα

)
.

The rest of Sect. 9.1 is dedicated to the proof of Theorem 9.1. The proof is essentially
identical to the one of Theorem 8.5, so we only indicate the necessary changes. To
start with, Lemma 8.6 applies without change for n ∈ [N int, Nmes). Also, the Harris
inequality Eq. (8) still implies that a(n)

m � μ−1(SG1(
(n))) � μ−1(SG1(
(Nmes))).
Therefore,

γ
(

(Nm )

)
� γ (
(N int))elogO(1)(1/q)

(μ(SG1(
(Nmes))) minn∈[Nmes] μ(Tn(
n+1)))O(NmesM(Nmes−1))
.

Recalling the bound on γ (
(N int)) established in Theorem 8.5, together with the fact
that Nmes � C log(1/q) and M (Nmes−1) � O(C log(1/q)), it suffices to prove that

μ
(
SG1

(

(Nmes)

))
min

n∈[Nmes]μ
(
Tn

(

n+1

))
� exp

(
−2/

(
ε2qα

))
, (80)

in order to conclude the proof of Theorem 9.1.
Once again, the proof of Eq. (80) proceeds similarly to the one of Eq. (65) in Lemma

8.7. Indeed, the same computation as Eq. (78) in the present setting gives that for n ∈
[N int, Nmes) we have

μ
(
Tn

(

(n+1)

))
� qO(W 3/δ) exp

(
−e−qαδ�(n)/O(ε)O

(
W 2�(n)/(δε)

))
(81)

and similarly for μ(T 1(D1 \ D0)) (as in the proof of Lemma 8.7, also see Eq. (56)).
From Eq. (76) it follows that

μ
(
SG1

(

(Nmes)

))
� μ

(
SG1

(

(N int)

))

×
Nmes−1∏

n=N int

μ
(
T 1(D1 \ D0)

)
μ
(
Tn

(

(n+1) \
(n)

))
.

Plugging Eqs. (65), (81) in the r.h.s., this yields Eq. (80) as desired.

9.2. East global dynamics. For the global dynamics we use a simpler version of the
procedure of [22, Sect. 5] with East dynamics instead of FA-1f.

Proof of Theorem 1(b). Let U be balanced with infinite number of stable directions and
recall Sect. 9.1. Set T = exp(1/q3α), smes = s(Nmes), rmes = r (Nmes) and 
mes =

(Nmes). In particular, smes

j = �(�mes) for j ∈ [−k, k + 1] and smes
j = �(1/ε) for

j ∈ [k + 2, 3k − 1]. We East-extend 
mes by 2l = 2(λ0 + rmes
0 + rmes

2k ) in direction
u0 to obtain 
 = 
(rmes + 2lv0). Proposition 4.6,Theorem 9.1 and Definition 4.4, the



Refined Universality for Critical KCM... Page 65 of 68 13

Fig. 10. Illustration of the East global dynamics (Sect. 9.2). The shaded droplet 
mes inscribed in the box Q
is extended by 2l to the thickened one 


Harris inequality Eq. (8) and the simple fact that μ(T 1(T (rmes, 2l, 0))) = qO(W ) (by
Observation 3.11 and Lemma 4.2 as usual) give

γ (
) � exp

(
log2(1/q)

εO(1)qα

)
, μ

(
SG1(
)

)
� exp

( −3

ε2qα

)
. (82)

A similar argument to the rest of the proof was already discussed thoroughly in [22,
Sect. 5] and then in [24, Sect. 5], so we only provide a sketch. The adapted approach of
[22, Sect. 5] proceeds as follows.

(1) Denoting t∗ = exp(−1/(εWq2α)), by the main result of [31] it suffices to show that
TPμ(τ0 > t∗) = o(1), in order to deduce Eμ[τ0] � t∗ + o(1).

(2) By finite speed of propagation we may work with the U-KCM on a large discrete
torus of size T � t∗.

(3) We partition the torus into strips and the strips into translates of the box Q = Hu0(λ0+
rmes

0 ) ∩ Huk (ρk + rmes
k ) ∩ Hu−k (r

mes−k ) ∩ Hu2k (r
mes
2k ) as shown in Fig. 10. We say Q

is good (G(Q) occurs) if for each segment S ⊂ Q perpendicular to some u ∈ Ŝ
of length ε�mes the event HW (S) occurs. Further define SG(Q) to occur if the only
(integer) translate of 
mes contained in Q is SG. We say that the environment is good
(E occurs) if all boxes are good and in each strip at least one box is super good.
The sizes are chosen so that it is sufficiently likely for this event to always occur up
to time t∗. Indeed, we have (1 − μ(SG1(
mes)))T T W = o(1) by Theorem 9.1 and
(1− μQ(G))TW = o(1) by Observation 3.11.

(4) By a standard variational technique it then suffices to prove a Poincaré inequality,
bounding the variance of a function conditionally on E by the Dirichlet form on the
torus. Moreover, since μ and E are product w.r.t. the partition of Fig. 10, it suffices
to prove this inequality on a single strip.

(5) Finally, we prove such a bound, using an auxiliary East dynamics for the boxes and
the definition of γ to reproduce the resampling of the state of a box by moves of the
original U-KCM.

Let us explain the last step above in more detail, as it is the only one that genuinely
differs from [22].

Let Qi = Q+ ilu0 and T =⋃
i∈[T ] Qi be our strip of interest (indices are considered

modulo T , since the strip is on the torus). As explained above, our goal is to prove that
for all f : �T → R it holds that

VarT( f |E) � exp
(

1/
(
εO(1)q2α

))∑

x∈T

μT

(
cT,1
x Varx ( f )

)
, (83)
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where cT,1
x takes into account the periodic geometry of T.

By [31, Proposition 3.4] on the generalised East chain we have

VarT( f |E) � exp
(

1/
(
ε5q2α

)) ∑

i∈[T ]
μT

(
1SG(Qi−1) VarQi ( f |G (Qi ))

∣∣ E
)
, (84)

since Theorem 9.1 and the Harris inequality Eq. (8) give μ(SG(Q)|G(Q)) � exp(−2/

(ε2qα)).8

Next observe that 
i ⊃ Qi , where 
i = 
+(i−1)lu0 (see Fig. 10). LetG(
i\Qi ) ⊂
G(Qi+1) ∩ G(Qi−1) be the event that HW (S) holds for all segments S ⊂ 
i \ Qi of
length 2ε�mes perpendicular to some u ∈ Ŝ. Hence, by convexity of the variance and
the fact that μ(E) = 1− o(1) we have

μT

(
1SG(Qi−1) VarQi ( f |G(Qi ))

∣∣ E
)

� (1 + o(1))μT

(
Var
i ( f |SG(Qi−1) ∩ G(Qi ) ∩ G(
i \ Qi ))

)
,

� (1 + o(1))μT

(
Var
i

(
f |SG1(
i )

))
.

Here we used Eq. (73) andSG(Qi−1)∩G(Qi )∩G(
i\Qi ) ⊂ SG1(
i ) (recall Definition
4.4) for the second inequality. Finally, recalling Eqs. (15), (82) and (84), we obtain Eq.
(83) as desired. ��

As already noted, all lower bounds in Theorem 1 are known from [20] and the upper
ones for classes (a) and (c) were proved in [22] and [31] respectively. Thus, the proof of
Theorem 1 is complete.
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