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Abstract: We consider second order (maximally) conformally superintegrable systems
and explain how the definition of such a system on a (pseudo-)Riemannian manifold gives
rise to a conformally invariant interpretation of superintegrability. Conformal equiva-
lence in this context is a natural extension of the classical (linear) Stäckel transform,
originating from the Maupertuis-Jacobi principle. We extend our recently developed
algebraic geometric approach for the classification of second order superintegrable sys-
tems in arbitrarily high dimension to conformally superintegrable systems, which are
presented via conformal scale choices of second order superintegrable systems defined
within a conformal geometry. For superintegrable systems on constant curvature spaces,
we find that the conformal scales of Stäckel equivalent systems arise from eigenfunc-
tions of the Laplacian and that their equivalence is characterised by a conformal density
of weight two. Our approach yields an algebraic equation that governs the classification
under conformal equivalence for a prolific class of second order conformally superinte-
grable systems. This class contains all non-degenerate examples known to date, and is
given by a simple algebraic constraint of degree two on a general harmonic cubic form.
In this way the yet unsolved classification problem is put into the reach of algebraic
geometry and geometric invariant theory. In particular, no obstruction exists in dimen-
sion three, and thus the known classification of conformally superintegrable systems is
reobtained in the guise of an unrestricted univariate sextic. In higher dimensions, the
obstruction is new and has never been revealed by traditional approaches.
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1. Introduction

Transformation groups play an important role in the natural sciences: the Poincaré group,
for instance, and its subgroups, are pivotal in special relativity, for Maxwell’s field
equations, in particle physics, and many other fields. Felix Klein’s Erlangen program
has put the concept of transformations at the core of geometry, later generalised by
Cartan [Kle00,SC00]. Inspired by this idea, the current paper reconsiders second order
superintegrable Hamiltonian systems. These have been extensively studied as structures
in (pseudo-)Riemannian geometry, but not yet as structures in conformal geometry.

Maximally superintegrable systems, traditionally, are Hamiltonian systems on a
(pseudo-) Riemannian geometry that admit a maximal amount of (hidden) symmetry.
Here second order maximally (conformally) superintegrable systems are exclusively
considered. They are often seminal models in science. Historically, the theory of su-
perintegrability arose from classical (and quantum) mechanics: While, in general, it
is impossible, even for relatively simple models, to solve Hamilton’s or Schrödinger’s
equation in exact, closed terms, for superintegrable systems the solution can be found
by quadrature, i.e. using algebraic operations and the integration of known functions.
Prominent examples of second order superintegrable systems are the Kepler-Coulomb
and the Harmonic oscillator models. They have fundamental significance for the un-
derstanding of celestial mechanics, atomic orbitals, material science and many other
disciplines.

1.1. What Geometry underpins superintegrability?. Traditionally, second order super-
integrable systems are defined on a (pseudo-)Riemannian manifold (M, g). The suitable
symmetry group for these systems is the semi-direct product S = Diff(M) � Aff(R)

of diffeomorphisms (coordinate transformations on M) and the affine group Aff(R) =
R

∗
�R, where R

∗ = R\ {0}, see Sect. 2. However, these are not the only possible trans-
formations of superintegrable systems. Indeed, conformal geometry manifests itself in
the theory of superintegrable systems through (classical) Stäckel equivalence or cou-
pling constant metamorphosis; details and a comparison with the more recent concept
of non-linear multi-parameter Stäckel transform are discussed in Sect. 2.1. Historically,
the Stäckel transform can be traced back to the 18th centrury in the form of the Mau-
pertuis principle [Tsi01,BKF95,Lag88,Jac84,dM50]. Classical Stäckel transformations
are linked to very special conformal transformations, namely those that originate from
superintegrable potentials.

Arbitrary conformal transformations, however, do not preserve superintegrability.
Instead they lead to conformally superintegrable systems. Although these systems are
well studied, their underlying conformal geometry is understood only superficially to
date. One purpose of the present paper is to remedy this, and to derive a suitable concept
of conformal equivalence on conformally superintegrable systems from (a modification
of) Stäckel equivalence.

Given the significance of second order (conformally) superintegrable systems, it is
natural to seek a classification. In [KSV23], the authors present an algebraic geometric
framework for a classification of second order superintegrable systems in arbitrarily high
dimension, and for arbitrary metrics. This framework put earlier attempts by various au-
thors (see below) onto a firm base, yet it is not closed under conformal transformations of
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superintegrable systems. The current paper develops an algebraic geometric framework
for conformally superintegrable systems that is closed under conformal transformations.
In particular we obtain: Non-degenerate second order (conformally) superintegrable sys-
tems are characterised by a (conformally invariant) structure tensor, more specifically
a trace-free and totally symmetric tensor field Si jk . This leads to a natural definition
of superintegrability on conformal manifolds, whose symmetry group we identify as
S = Conf(M) � R

∗. In this way we naturally incorporate conformal geometry into the
theory of superintegrable systems. Somewhat surprisingly, this appears to never have
been attempted before, although it sheds considerable light on the geometry underpinning
superintegrability and opens the subject for subsequent studies using Cartan geometry,
tractor calculus, algebraic geometry, representation theory and geometric invariant the-
ory. In particular, superintegrable systems on (pseudo-) Riemannian geometries can be
viewed as specific conformal scale choices of a conformally invariant superintegrable
system.

1.2. State of the art. A vast literature exists both on second order conformally superinte-
grable systems and on Stäckel transformations. To date, second order conformally super-
integrable systems are classified completely only in dimension 2 [KKM05c,KKM05a].
For conformally flat spaces in dimension 3, at least so-called non-degenerate systems
are classified [Cap14,KKM06]. The conformal classes of non-degenerate systems are
classified in dimensions 2 and 3 [Kre07,Cap14]. Existing classification results largely
ignore the geometric structure of the classification space. However, an algebraic geomet-
ric classification exists for superintegrable systems in the Euclidean plane [KS18], and
the algebraic varieties of superintegrable systems in dimensions 2 and 3 are addressed in
[KKM07a,KKM07b]. While the classification of the conformal classes in dimension 2
is a mere list [Kre07], in dimension 3 a classification in terms of representations of the
rotation group exists [Cap14,CK14,CKP15]. These latter references are one major in-
spiration for our work as they highlight the power of the geometric approach, revealing
for example a natural algebraic hierarchy of systems related to an inclusion tree of certain
algebraic ideals. Unfortunately, there is little hope of applying the methods from those
references in higher dimensions, neither conceptually nor practically, as the equations
become ever more extensive with increasing dimension. The current paper develops
a new approach, extending and generalising the framework from [KS18,KSV23]. We
formulate the governing equations for second order conformally superintegrable sys-
tems in dimension n � 3 in a concise form, making the problem manageable in higher
dimensions.

Stäckel transformations can be traced back to Maupertuis-Jacobi transformations
[Jac84], which take a Hamiltonian with potential to a potential-free one. The classical
Stäckel transform is well understood as an equivalence relation on second order (con-
formally) superintegrable systems. It was first introduced, for integrable Hamiltonian
systems with potential, in [HGDR84] under the name coupling constant metamorphosis.
The name Stäckel transformations has been introduced in [BKM86] for transformations
of integrable systems admitting separation of variables. In general, coupling constant
metamorphosis and (classical) Stäckel transform are not identical, but they coincide for
second order (conformal) integrals of the motion [Pos10]. Higher order integrals are
discussed in [KMP09], showing that coupling constant metamorphosis in general does
not even preserve the polynomiality in momenta of an integral. The classical Stäckel
transform involves one parameter on which the Hamiltonian depends linearly. A multi-
parameter generalisation of Stäckel transform was developed in [SB08,BM12,BM17],
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allowing for several parameters on which the Hamiltonian may depend non-linearly.
Here we only encounter Hamiltonians with linear parameter dependence, and there-
fore we do not need to exhaust the full scope of generalised multi-parameter Stäckel
transformations. As we are interested in a geometric approach, we shall not require a
specific parametrisation of the space of compatible potentials, but instead work with an
(n + 2)-dimensional linear space of potentials on an n-dimensional manifold, usually
not specifying a particular basis.

For completeness we mention that conformal transformations are not the only possi-
ble transformations of superintegrable systems. For instance, Bôcher transformations of
certain conformally superintegrable systems are studied in [KMS16,CKP15] and there
is some indication that they can be understood as boundaries of orbit closures on the alge-
braic variety classifying the superintegrable systems [KS18]. Yet another transformation
of superintegrable systems is possible if the underlying metrics share the same geodesics
up to reparametrisation. Such metrics are called projectively (or geodesically) equiva-
lent. For some examples of superintegrable systems defined on projectively equivalent
geometries, see [Val16,KKMW03,Vol20].

To summarise, higher dimensions are out of the scope of traditional methods, which
rely on the correspondence with properly superintegrable systems and on the extensive
use of computer algebra. A particular challenge is the fast growth of the number of partial
differential equations with increasing dimension. In the current paper, we overcome this
problem and outline how to approach the classification of second order conformally
superintegrable systems in arbitrarily high dimension. For the most prolific class of
systems we find, somewhat surprisingly, that the underlying structure equations reduce
to only a single, algebraic equation of degree 2.

1.3. Classifying second order superintegrability in arbitrarily high dimension. In ref-
erence [KSV23] the authors have developed an algebraic geometric framework for the
classification of superintegrable systems. This framework generalises previous work
in dimension two [KS18] to arbitrarily high dimensions. Older works in the field are
[KKM07a] and [KKM07b] for dimensions two and three, respectively. While [KSV23]
for the first time provides a framework to classify, in an algebraic geometric way, super-
integrable systems in arbitrarily high dimensions, this framework in its original form is
not (yet) closed under conformal transformations. The present paper extends the exist-
ing algebraic geometric framework to conformally superintegrable systems on (pseudo-)
Riemannian metrics. This new framework is closed under conformal transformations.

Second order conformally superintegrable systems will be thoroughly introduced in
Sects. 3.1 and 3.2. These systems are traditionally defined using a Hamiltonian

H = gi j (q)pi p j + V (q) (1.1)

where gi j denotes the underlying metric and where q and p are the canonical position and
momenta variables on the manifold. A second order conformally superintegrable system
is a Hamiltonian system with a sufficiently high number of functions F : T ∗M → R,
F = K i j (q)pi p j + W (q), satisfying

{H, F} = ωq(p) H (1.2)

for some 1-formω = ωi dxi . The scalar function V is called a potential of H . Functions F
satisfying (1.2) are called (conformal) integrals. The integrals F form a linear space F .
Likewise, the potentials V compatible with F form a linear space V . Following the
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common convention, we take these spaces to be maximal, see Definitions 2.2 and 3.5
below.

1.4. First main result: conformal superintegrability in higher dimensions. The method
carried out in [KSV23] facilitates the classification of second order properly superin-
tegrable systems, in particular of so-called abundant systems. Abundantness is going
to be introduced thoroughly later, and so here we limit ourselves to saying that these
systems comprise all known non-degenerate second order conformally superintegrable
systems. In the present paper, we extend the framework to conformally superintegrable
systems. We find that it is closed under conformal transformations and leads to a well-
defined concept of superintegrability on conformal geometries arising from conformal
equivalence classes of conformally superintegrable systems. For the abundant case in
dimensions n � 3, we show in Sects. 5 and 6 that such systems are in natural correspon-
dence with harmonic cubic forms �i jk pip jpk on R

n that satisfy the simple algebraic
equation (

gab�i ja�klb − gab�ika� jlb

)
◦ = 0 (1.3)

where gab is an inner product on R
n with the same signature as the metrics on the

underlying manifold. The subscript “◦” stands for projection onto the trace-free part.
We show that initial data in the form of a cubic form �i jk pip jpk satisfying (1.3)

can be extended, locally, to a conformal structure tensor Si jk of an abundant second
order superintegrable system. We make this precise by introducing the concept of c-
superintegrable systems, i.e. conformal equivalence classes whose underlying geometry
is a conformal manifold. In Sect. 6.4 we derive conformally invariant structural equations
for abundant c-superintegrable systems. The equations governing abundant properly
superintegrable systems [KSV23] naturally follow from the equations we present here.
Condition (1.3) is conformally invariant, and therefore a suitable foundation for an
algebraic geometric classification of second order systems on the level of conformal
geometries. Condition (1.3) is also surprisingly simple, and in dimensions n � 4 it
encodes new obstructions to conformal superintegrability. These obstructions do not
exist in lower dimensions and have not been revealed by classical approaches.

We also show: Abundant conformally superintegrable systems can only exist on con-
formally flat geometries. Such systems naturally correspond to solutions of Eq. (1.3). The
task of classifying equivalence classes of n-dimensional conformally superintegrable
systems is therefore equivalent to classifying harmonic cubics in n variables that sat-
isfy (1.3). Note that while a general classification of harmonic cubics under the rotation
group is out of sight, a classification under the additional condition (1.3) may well be
simple enough to admit a managable solution.

In dimension n = 3, particularly, (1.3) is trivially satisfied. Thus abundant superin-
tegrable systems in dimension 3 naturally correspond to harmonic ternary cubic forms,
or, equivalently, to univariate sextic polynomials

p(x) = a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0.

The details are discussed in Sect. 7. It is known that any conformally superintegrable
system is Stäckel equivalent to a properly superintegrable systems [Cap14]. In dimen-
sion 3, every conformally superintegrable system is even Stäckel equivalent to a properly
superintegrable system on a constant curvature space [KKM06, Theorem 4].
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1.5. Second main result: superintegrable systems on constant curvature geometries.
In our framework, second order conformally superintegrable systems are conformal
scale choices of c-superintegrable systems. Thus the conformal structure tensor Si jk
determines a conformally superintegrable system up to the choice of a conformal scale
expressed via a function σ that transforms as a weight-1 tensor density. For the prolific
class of abundant second order conformally superintegrable systems we find that the
conformal scale satisfies a Helmholtz like equation,

(
R − 4

n − 1

n − 2
�

)
σ

1− n
2 = S σ

1− n
2 , (1.4)

where S = Sabc Sabc is a conformal density obtained from the structure tensor Si jk
mentioned earlier, and where R is the scalar curvature. The operator on the left hand
side of (1.4) is the conformal Laplace operator.

If we restrict to properly superintegrable systems, the conformal structure tensor Si jk
determines a superintegrable system up to provision of a suitable conformal scale. In the
present paper, we prove the following: For abundant properly superintegrable systems
on manifolds of constant sectional curvature, the conformal scale σ is (a power of) an
eigenfunction of the Laplacian for an eigenvalue determined by the curvature R,

�σ n+2 = −2
n + 1

n − 1
R σ n+2 , (1.5)

which holds in addition to (1.4), see Theorem 6.11. Note that the operator in (1.5) is not
conformally invariant as Eq. (1.5) does not describe a property of the conformal class,
but of an individual superintegrable system. In particular we find that on the n-sphere
the conformal scale function satisfies a Laplace equation with quantum number n + 1.
We show for any dimension (see Propositions 6.14 and 6.15): The generic system on the
n-sphere is never conformally equivalent to a superintegrable system on flat space, and
a non-degenerate properly superintegrable system on the n-sphere is never conformally
equivalent to the harmonic oscillator.

2. Preliminaries

Before generalising to conformally superintegrable systems, it is instructive to briefly
review properly superintegrable systems. We recall that, for clarity, the adjective “proper”
is used to refer to superintegrable systems, whenever a distinction from conformally
superintegrable systems is required. While self-contained, this review only highlights
the aspects needed for a later comparison to conformally superintegrable systems. For
a more in-depth review of proper superintegrability we refer the interested reader to the
literature cited in the introduction and in particular to [KKM18].

Let (M, g) be a (pseudo-) Riemannian manifold. A Hamiltonian system on M is
a dynamical system characterised by a function H : T ∗M → R, (p, q) �→ H(p, q),
referred to as Hamiltonian. We denote the position and momentum coordinates on the
phase space T ∗M by q = (q1, . . . , qn) and p = (p1, . . . , pn), respectively. The evolu-
tion of the system is determined by Hamilton’s equations

ṗ = −∂ H

∂q
q̇ = +

∂ H

∂p
. (2.1)
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An integral, aka first integral or constant of the motion, for the Hamiltonian H is a
function F(p, q) on phase space that commutes with H with respect to the canonical
Poisson bracket. It is therefore constant along solutions of (2.1),

Ḟ = {F, H} = ∂ F

∂q
∂ H

∂p
− ∂ F

∂p
∂ H

∂q
= 0. (2.2)

In this equation, the partial derivatives may be replaced by covariant derivatives, i.e. using
the Levi-Civita metric ∇g , without changing the Poisson bracket. Note that for the ease
of presentation we use Darboux coordinates (q, p) in the following, but that our results
do not require the choice of specific coordinates on M .

An integral restricts the trajectory of the system to a hypersurface in phase space. A
(properly) superintegrable system is a Hamiltonian system that possesses the maximal
number of 2n − 1 functionally independent constants of motion F (0), . . . , F (2n−2). Its
trajectories in phase space are the (unparametrised) curves given as the intersections of
the hypersurfaces F (α)(p, q) = c(α), where the constants c(α) are determined from the
initial conditions. For convenience it is customary to choose F (0) = H without loss
of generality. In particular, we assume the base manifold is endowed with a (pseudo-)
Riemannian metric g and a natural Hamiltonian (1.1),

H = G(q, p) + V (q),

where G(q, p) = gq(p, p) denotes the kinetic part and V (q) is a smooth scalar function
called potential. Note that, as we consider Hamiltonians on the manifold M , the appro-
priate transformation group is given by diffeomorphisms of M , which induce, via their
pullback, fibre-preserving symplectomorphisms on T ∗M .

Definition 2.1. A second order superintegrable system is a Hamiltonian together with
a linear space F of integrals of the form

F = K (q, p) + W (q) := K i j (q)pi p j + W (q) , (2.3)

satisfying (2.2). Moreover, F must contain 2n − 1 integrals that are functionally inde-
pendent.

Note that dim(F) � 2n−1. In case of the equality, it is common practice to only specify
2n − 1 linearly independent generators F (α). We also recall that, for (2.3), Eq. (2.2) is
a polynomial condition in the momenta with homogeneous components of cubic and
linear degree, respectively:

{K , G} = 0 (2.4a)

{K , V } + {W, G} = 0 (2.4b)

Condition (2.4a) is equivalent to the requirement that the (symmetric) components Ki j

in K (q, p) = Ki j pi p j are the components of a Killing tensor field, i.e.

Ki j,k + K jk,i + Kki, j = 0 . (2.5)

Here, the comma denotes a covariant derivative. Condition (2.4b) can be rewritten in the
form

W, j = K j
k V,k or even dW = K dV,
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where by abuse of notation K denotes the endomorphism obtained from Ki j via the
metric g. The integrability condition for W is known as the Bertrand–Darboux condition
[Ber57,Dar01],

d(K dV ) = 0 . (2.6)

The Bertrand–Darboux Equation (2.6) is the compatibility condition for the potential V
and the space of Killing tensors Ki j . Let us denote the linear space of kinetic parts of
the integrals F ∈ F , viewed as endomorphisms, by

K = {K : K (p, p) + W ∈ F for some W }.
Definition 2.2. For a second order superintegrable system with potential V , we introduce
the spaces

Vmax = {V : d(K dV ) = 0 holds for every K ∈ K}
Kmax = {K : d(K dV ) = 0 holds for every V ∈ Vmax}

Remark 2.3. A second order superintegrable system is said to be irreducible if the
endomorphisms Ki

j = g ja Kia obtained from its associated Killing tensors K ∈ K
form an irreducible set. In reference [KSV23], it is shown that for such irreducible sys-
tems we can solve (2.6) for all second derivatives of the potential except its Laplacian.
Thus the Wilczynski equation is obtained,

V,i j = Ti j
k V,k +

1

n
gi j�V , (2.7)

where Ti j
k is a tensor symmetric and trace-free in the first two indices, depending on

the components of the Killing tensors K (α) and their derivatives.
The properties of the partial differential Eq. (2.7) are discussed thoroughly in [KSV23],

and similar equations appear in [KKM05b]. The most important fact is that in (2.7) the
tensor Ti j

k is determined by K independently from the potential. More precisely, at
a point x0 ∈ M , Ti j

k is determined by the values of the Killing tensors Ki j and their
derivatives in x0.

In the classification theory of second order superintegrable systems, non-degenerate
systems have received particular attention, e.g. [KKM18,KSV23,Cap14]. These are the
systems satisfying (2.7) for which the dimension of Vmax is maximal, i.e.

dim(Vmax) = n + 2.

The integrability conditions of (2.7) are then generically satisfied [KKM07b,KSV23].
Resubstituting (2.7) into (2.6) and considering the coefficients of ∇V and �V , one
furthermore finds that for non-degenerate systems (see Sect. 2.3 for the notation of pro-
jectors via Young tableaux)

Ki j,k = 1

3
j i
k

T a
ji Kak . (2.8)

Now consider non-degenerate systems for which Kmax has the maximal possible dimen-
sion, namely

dim(Kmax) = n(n + 1)

2
.
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Such systems are called abundant [KSV23], implying that the integrability conditions
of (2.8) are generically satisfied. Among second order superintegrable systems, abundant
systems arguably are the most important ones: All non-degenerate examples known to
date are abundant, and in dimensions two and three it is proven that non-degenerate sys-
tems are necessarily abundant [KKM05b]. In dimension two, all systems are restrictions
of abundant ones [KKMP09].

2.1. Stäckel equivalence. The classical Stäckel transform is often introduced using a
Hamiltonian with a coupling constant. Beginning along these lines, we then adopt an
alternative, equivalent formulation better suited for our purposes. Consider a family of
second order superintegrable systems on a (pseudo-) Riemannian manifold (M, g) given
by the family of Hamiltonians

Hβ = H0 +
N∑

k=1

βkUk,

where H0 = g(p, p) is the free Hamiltonian, and where Uk (1 ≤ k ≤ N ) are functions
Uk : M → R with coupling parameters βk . For a concise exposition, we use only
one parameter and incorporate the remaining potentials into a background Hamiltonian.
Classical Stäckel equivalence is based on the following fact, see for example [KMP09,
Pos10,KKM05b,HGDR84,BKM86].

Lemma 2.4. Let H = H0 + V + β U be a family of second order superintegrable
Hamiltonians with integrals F(β), for V, U ∈ Vmax. Then the Hamiltonian H̃ = H+η

U
admits the integral of motion F̃(η) = F(H̃), parametrised by η.

The Hamiltonian H̃ is called the Stäckel transform of H with conformal factor U . While
either sign is permitted, it is often preferrable to work with U > 0 in order to preserve
the signature of the underlying metric (this is always possible locally by redefining β).
Lemma 2.4 exploits the fact that any constant η can be added to H without changing the
integrals. We could analogously write the Stäckel transform of H = H0 + V + βU + η

with integrals F (α) as [BKM86,Pos10]

H̃ = U−1 H , (2.9a)

F̃ (α) = F (α) +
1 − W (α)

U
H . (2.9b)

This transformation preserves the kinetic part up to a term proportional to g(p, p) with
a coefficient that depends on the position only. For conciseness, we have restricted
ourselves to one coupling parameter, but an analogous reasoning is valid whenever H
depends linearly on the parameters (the multi-parameter generalisation of Stäckel trans-
form in [SB08,BM12,BM17] exceeds this limitation, but is not needed here). Instead
of working with a parametrised Hamiltonian, a parameter-free viewpoint is best suited
for our purposes:

Definition 2.5. Two second order properly superintegrable systems are said to be Stäckel
equivalent if their Hamiltonians and integrals satisfy (2.9).

For Stäckel equivalent Hamiltonians H = H0 + V and H̃ = H̃0 + Ṽ , the underlying
metrics are conformally equivalent, i.e. g̃i j = 
2 gi j , if U = 
2 > 0. In case of negative
sign, U < 0, the metric’s signature is merely inverted. For the corresponding integrals
F = K i j pi p j + W and F̃ = K̃ i j pi p j + W̃ , (2.9) implies
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K̃ = K +
1 − W

U
g

W̃ = W +
1 − W

U
V .

2.2. Symmetry group. Consider a non-degenerate second order properly superintegrable
system with potential V . The symmetry group of such a system is the semi-direct product
S = Diff(M)� Aff(R) of the diffeomorphisms of the manifold M and the affine group
Aff(R) 	 R

∗
�R. An element � = (φ, (a, b)) ∈ S transforms a Hamiltonian according

to
�(gi j pi p j + V ) = φ∗(g)i j pi p j + aφ∗(V ) + b , (2.10)

where φ∗ is the pullback with φ. Indeed, the underlying geometry and the space of
compatible Killing tensors does not change under S. Moreover, the structure tensor Ti jk

in (2.7) remains unchanged under S. The structure tensor remains unchanged even1

underS′ = S×R
∗, where�′ = (φ, (a, b), c) ∈ S′ transforms a Hamiltonian according

to
�′(gi j pi p j + V ) = cφ∗(g)i j pi p j + aφ∗(V ) + b . (2.11)

Note that two equivalent Hamiltonians remain equivalent after a Stäckel transformation.

2.3. Young projectors. In order to keep the notation concise, tensor symmetries are
described by Young projectors in the following. In doing so, we adhere to the convention
used for properly superintegrable systems in [KSV23], which we briefly review in the
current section. A comprehensive introduction to representations of symmetric and linear
groups is out of scope of the present paper, but can be found in [Ful97,FH00] for instance.

Let n > 0 be an integer. A partition of n into a sum of ordered, positive integers can
be represented by a Young frame, i.e. by non-increasing rows of square boxes, which by
convention are left-aligned. For instance, to denote the partition 5 = 3 + 1 + 1 we may
draw the Young frame

.

Irreducible representations of the permutation group Sn and the induced Weyl repre-
sentations of GL(n) can also be labelled by Young frames. A Young frame filled with
tensor index names is called a Young tableau; it explicitly defines a projector onto an
irreducible representation. Two simple examples are complete symmetrisation,

i1 i2 ··· ik ,

and complete antisymmetrization,

i1

i2
...

ik

.

1 Note that the action might not be proper.
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For example, a 2-tensor τi j can be decomposed into its symmetric and antisymmetric
parts,

τi j = 1

2
(τi j + τ j i ) +

1

2
(τi j − τ j i ) = 1

2
i j τi j +

1

2
i
j

τi j .

The symmetric part can be decomposed further, according to irreducible representations
of SO(n), into a trace-free and a trace component. The projection onto the completely
trace-free part of a tensor is denoted by a sub- or superscript “◦”. For example,

τi j = 1

2
i j ◦ τi j +

1

n
gi j τ a

a +
1

2
i
j

τi j .

A general Young tableau denotes the composition of its row symmetrisers and column
antisymmetrisers. By convention the antisymmetrisers are applied first. For instance,

j i
k

Ti jk = j i
j
k

Ti jk = (Ti jk − Tik j ) + (Tjik − Tjki ).

The adjoint of a Young tableau is given by applying the symmetrisers first,

j i
k

∗
Ti jk = j

k
j i Ti jk = (Ti jk + Tjik) − (Tik j + Tki j ).

For a 3-tensor Ti jk we have the decomposition

Ti jk = 1

6
i j k Ti jk +

1

3
i j
k

Ti jk +
1

3
i k
j

Ti jk +
1

6

i
j
k

Ti jk .

One particular 4-index Young tableaux that we make intensive use of is the projector

i j
k l

∗
Ti jkl = i

k
j
l

i j k l Ti jkl ,

which projects onto algebraic curvature tensors. The well known Ricci decomposition
can then be written as

Ri jkl = Wi jkl +
1

4(n − 1)

i k
j l

∗
R̊ik g jl +

1

8n(n − 1)

i k
j l

∗
gik g jl .

where

Wi jkl = 1

12
i k
j l

∗

◦
Ri jkl

is the Weyl curvature, R̊i j the trace-free part of the Ricci tensor and R the scalar curvature.
For later reference, we also introduce the Schouten tensor,

(n − 2)Pi j = Ri j − 1
2(n−1)

Rgi j = R̊i j + n−2
2n(n−1)

Rgi j . (2.12)
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3. Conformal Structure Tensors

In the present chapter superintegrable systems on (pseudo-) Riemannian manifolds are
generalised to conformally superintegrable systems. Before we begin, we need to intro-
duce the conformal counterpart of Killing tensors.

Definition 3.1. A (second order) conformal Killing tensor is a symmetric tensor field
Ci j on a (pseudo-) Riemannian manifold satisfying the conformal Killing equation

i j k Ci j,k = i j k gi jωk , (3.1)

where ω is a 1-form.

The 1-form ω can be expressed in terms of the conformal Killing tensor. Indeed, con-
tracting (3.1) in (i, j), we find

ωk = 1

n + 2

(
2Ca

k,a + Ca
a,k

)
. (3.2)

Remark 3.2.

(i) Any Killing tensor is also a conformal Killing tensor, with ω = 0. In particular, the
metric g is trivially a conformal Killing tensor.

(ii) If Ki j is a conformal Killing tensor, any trace modification Ci j = Ki j +λgi j is also a
conformal Killing tensor. If Ki j is a proper Killing tensor, Ci j is a conformal Killing
tensor with ω = dλ.

We mention that while for a proper Killing tensor Ki j , the function K (p, p) is pre-
served along geodesics, for a conformal Killing tensor Ci j the function C(p, p) is pre-
served along null geodesics.

3.1. Conformally superintegrable systems. On (pseudo-) Riemannian manifolds, the
concept of superintegrable systems is generalised as follows.

Definition 3.3. (i) By a conformally (maximally) superintegrable system, we mean a
Hamiltonian system admitting 2n − 1 functionally independent conformal integrals
of the motion F (α),

{F (α), H} = ω(α) H , α = 0, 1, . . . , 2n − 2, (3.3)

with a function ω(p, q) polynomial in momenta. The Hamiltonian can be assumed
to be among the conformal integrals. Thus by convention we set

F (0) = H, ω(0) = 0.

(ii) A conformal integral of the motion is second order if it is of the form

F (α) = C (α) + V (α), (3.4)

where

C (α)(p, q) =
n∑

i=1

C (α)
i j (q)pi p j

is quadratic in momenta and V (α) = V (α)(q) a function depending only on posi-
tions. In this case, the function ω has to be linear in the momenta p. A conformally
superintegrable system is second order if its conformal integrals F (α) are second
order.
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(iii) We call V a conformal superintegrable potential if the Hamiltonian (3.5) gives rise
to a conformally superintegrable system.

A function F(q(t), p(t)) that satisfies (3.3) is constant on the null locus of the Hamil-
tonian, since

Ḟ = {F, H} = ω H.

By adding a constant c to the Hamiltonian, we achieve that F is constant on shells where
the new Hamiltonian is constant and equal to c. Since we are concerned exclusively with
second order maximally superintegrable systems, we omit the terms “second order” and
“maximally” without further mentioning.

Assumption 3.4. From now on, unless otherwise stated, we assume that the quadratic
parts correspond to trace-free conformal Killing tensors, except for the Hamiltonian
H = F (0). This is no restriction, as the trace-free part of any such conformal Killing
tensor is itself a conformal Killing tensor.

In view of Assumption 3.4 we distinguish the Hamiltonian by notation from the other
(conformal) integrals,

H = G + V, (3.5)

where

G(p, q) =
n∑

i=1

gi j (q)pi p j

is given by the (pseudo-) Riemannian metric gi j (q) on the underlying manifold.

For (3.4), condition (3.3) splits into two homogeneous parts with respect to momenta.
These parts are cubic respectively linear in p:

{C (α), G} = 2ω(α) G (3.6a)

{C (α), V } + {V (α), G} = 2ω(α) V (3.6b)

Condition (3.6a) for C(p, q) = Ci j (q)pi p j is equivalent to Ci j being a conformal
Killing tensor. The components of ω(p, q) = ωi (q)pi are given by a 1-form, also
denoted by ω in the following. Compare (3.6) to the analogous equations (2.4) for
proper superintegrability.
The metric g allows us to identify symmetric forms and endomorphisms by abuse of
notation. Interpreting a conformal Killing tensor in this way as an endomorphism on
1-forms, Eq. (3.6b) can be written in the form

dV (α) = C (α)dV + ω(α) V . (3.7)

Its integrability condition is the Bertrand–Darboux condition

d(C (α)dV ) + V dω(α) + dV ∧ ω(α) = 0 (3.8a)

which in components reads (we suppress the superscript α)

i
j

(
Cm

i V, jm + Cm
i, j V,m + ωi V, j + ωi, j V

)
= 0 . (3.8b)
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This is the counterpart to condition (2.6) from proper superintegrability.
By virtue of the Bertrand–Darboux equation (3.8), the potentials V (α) for α �= 0

are eliminated from our equations. As we are going to see in the following, for non-
degenerate systems the remaining potential V = V (0) can be eliminated as well, leaving
equations on the conformal Killing tensors C (α) alone. In analogy to proper superinte-
grability we denote by F the linear space spanned by second order conformal integrals
F (α) = C (α)(p, p) + V (α) satisfying (3.3).

Definition 3.5. Let H = g(p, p) + V with F = 〈F (α)〉. Analogously to Definition 2.2
we introduce

C = {C : C(p, p) + W ∈ F for some W }
and then

Vmax = {V : (3.8) holds for every C ∈ C}
Cmax = {C : (3.8) holds for every V ∈ Vmax} .

From now on we (tacitly) work with these maximal spaces, facilitating a clean and con-
cise exposition of the results, and following the most common convention in the relevant
literature. Restricting to a subspace of F with a basis of functionally independent inte-
grals, we could instead work with a concrete Hamiltonian H : T ∗M → R. Translating
the results is straightforward, but omitted, as it does not add to a deeper understanding
of the geometry underpinning superintegrability.

Assumption 3.6. Unless otherwise stated, a conformally superintegrable Hamiltonian
will be considered together with all its conformal integrals F = Ci j pi p j + W where
C ∈ Cmax and where W satisfies Eq. (3.7), i.e.

dW = CdV + ω V .

This assumption is no restriction, and ensures a tidy exposition as we do not need to
specify the subspace C ⊂ Cmax each time.

3.2. Conformal equivalence. In analogy to Sect. 2.2 we obtain a symmetry group of
conformally superintegrable systems on (pseudo-) Riemannian manifolds. For the time
being, we insist that the metric is preserved (up to coordinate transformations). In contrast
to properly superintegrable systems, the affine group does not map potentials to potentials
for conformally superintegrable systems, since (1.2) contains the potential V without
derivatives. The symmetry group of a conformally superintegrable system on a fixed
(pseudo-) Riemannian manifold therefore is S = Diff(M)�R

∗ where � = (φ, a) ∈ S
acts as

�(gi j pi p j + V ) = φ∗(g)i j pi p j + aφ∗(V ).

This is the counterpart of the symmetry group (2.10) for properly superintegrable sys-
tems. Analogously to (2.11) in Sect. 2.2, the symmetry group of the structure tensor Si jk
of a conformally superintegrable system is S′ = S × R

∗.
We now introduce a concept of conformal equivalence for conformally superinte-

grable systems on (pseudo-) Riemannian geometries motivated by [Kre07,KKM05a,
KKM06,BKM86]. While inspiration is drawn from the classical Stäckel transform,
compare Lemma 2.4, we stress that no specific parametrisation is needed.
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Definition 3.7. Consider two second order conformally superintegrable systems with
Hamiltonians H = g(p, p) + V respectively H̃ = g̃(p, p) + Ṽ and conformal integrals
F (α) respectively F̃ (α) as in Definition 3.3.

We say that the two systems are conformally equivalent if the associated Hamiltonians
H and H̃ satisfy H̃ = 
−2 H for some function 
, and if the trace-free parts of the
associated conformal Killing tensors, viewed as (2, 0)-tensors with upper indices, span
the same linear space.

Later we reconsider this equivalence aiming at superintegrability as a concept on con-
formal geometries. We achieve this by Definition 3.9, for which the symmetry group of
the structure tensor coincides with that of the superintegrable system. However, we first
discuss Definition 3.7. Compare this to Definition 2.5. Classical Stäckel equivalence is
a special case of conformal equivalence, insofar as in (2.9b) the conformal factor 
 is
given by a potential U ∈ Vmax. Regarding the classical Stäckel transformation of the
integrals, Eq. (2.9b), we remark the following: In [Cap14, Theorem 4.1.8] it is proven
that if H = g(p, p)+ V is a Hamiltonian with conformal integral F = C(p, p)+ W , and
U ∈ Vmax, then there is a trace correction λ such that H̃ = H

U admits the proper integral

F̃ = C(p, p) + λ g(p, p) − V W
U . This fact provides us with a way to transform a sec-

ond order conformally superintegrable system into a properly superintegrable system,
possibly on a different (pseudo-) Riemannian manifold.

In dimensions 2 and 3 it is proven that any second order non-degenerate super-
integrable system on a conformally flat manifold is Stäckel equivalent to a properly
superintegrable system on a manifold of constant curvature; see [KKM05a, Theorem 3]
and [KKM06, Theorem 4] respectively. Stäckel classes of 2-dimensional second order
systems are studied in [Kre07] using properties of their associated quadratic algebras.
As mentioned earlier, we impose trace-freeness on conformal Killing tensors, except
for the metric, which thereby becomes a distinguished conformal Killing tensor. Trace-
freeness is motivated, among other reasons, by the conformal transformation rules for
conformal Killing tensors. Let us assume that H, H̃ are two conformally equivalent
Hamiltonians. Let F(q) = Cq(p, p) + W (q) be a conformal integral for H , i.e.

{H(p, p), C(p, p) + W } = ω(p)H(p, p).

Then we compute, with ϒ = ln 
,

{
H̃ , F

}
=

{
H(p, p)


2 , C(p, p) + W

}
= (

ω(p) − 2C(p, dϒ)
)

H̃ =: ω̃(p) H̃ . (3.9)

We obtain the following statement, where the spaces F , F̃ are maximal due to Assump-
tion 3.6.

Proposition 3.8. Let g and g̃ = 
2 g be a pair of conformally equivalent metrics,

 > 0.

(i) If Ci j is a trace-free conformal Killing tensor for g then C̃i j = 
4Ci j is a trace-free
conformal Killing tensor for g̃.

(ii) If (g, V,F) and (g̃, Ṽ , F̃) are conformally equivalent second order conformally
superintegrable systems, where for F = C(p, p) + W ∈ F with F non-proportional
to H, the coefficients Ci j are the components of a trace-free conformal Killing tensor.
Then F̃ = F .



92 Page 16 of 53 J. Kress, K. Schöbel, A. Vollmer

Note that C̃i j is trace-free with respect to g̃, but also g, since g and g̃ are conformally
equivalent.

Proof. For part (i), we have the equation i j k (Ci j,k − gi jωk) = 0 for the confor-
mal Killing tensor C . A straightforward computation then shows that

i j k
(

C̃i j,k − g̃i j ω̃k

)
= 0

where
C̃i j := 
4Ci j , ω̃i := 
2 (ωi − 2Ciaϒ,a) ,

and ϒ = ln 
.
Part (ii) then follows immediately from (3.9) in the light of Assumption 3.6. ��
Proposition 3.8 yields the transformation rules under conformal equivalence: The

Hamiltonian is conformally modified, but the space of integrals is preserved. We can
encode this in an efficient manner using weighted tensor densities. A conformal density
δ of weight w is a section in E[w] := S2T ∗M ⊗ (�nT M)−w/n such that φ∗(δ) = 
wδ

if φ ∈ Conf(M) is a conformal transformation, i.e. φ∗(g) = 
2g. Given the data
(g, V,F), we observe that g ∈ E(0,2)[2] and V ∈ E[−2] are weighted densities. We
are thus able to define conformally invariant densities of weight 0, g ∈ E(0,2)[0] and
v ∈ E[0] = C∞(M), given in local components by

gi j = gi j

| det(g)| 1
n

,

compare [CG14], and

v = | det(g)| 1
n V,

respectively. One straightforwardly verifies that φ∗(g) = g and φ∗(v) = v. This leads
us to the following definition:

Definition 3.9. Let (M, g) be a conformal manifold. A second order c-superintegrable
system on M is given by a conformally invariant function v and a maximal linear space
F of invariant scalar functions F : T ∗M → R on M such that

(i) If F ∈ F , then F = C(q)i j pi p j +W (q) where Ci j are the components of a trace-free
conformal Killing tensor.

(ii) There is a density 
 ∈ E[1] of weight 1 such that V = 
2v satisfies the Bertrand–
Darboux condition (3.8) for all F ∈ F .

Note that the definition is conformally invariant, and for any 
 ∈ E[1] we have that
(
−2g,
2v,F) is a conformally superintegrable system.

Remark 3.10. Let us consider the symmetry group of c-superintegrable systems. It is
given by S = Conf(M) � R

∗, where R
∗ acts as

(g, v,F) �→ (g, av,F)

It contains, in particular, all diffeomorphisms, and the transformations having a constant
conformal factor. We remark that two different conformal factors do not necessarily
result in different geometries. For instance, if g is a Euclidean metric in dimension two,
then any conformally equivalent metric 
2g is also Euclidean if it satisfies

(
∂


∂x

)2

+

(
∂


∂y

)2

= 

∂2


∂x2 + 

∂2


∂y2 .
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3.3. Structure tensors of a conformally superintegrable system. We consider the
Bertrand-Darboux equation (3.8). It is a compatibility condition for the potential and the
space of conformal Killing tensors associated to a second order superintegrable systems.

Our aim is to solve the overdetermined system of linear equations (3.8) for the highest
derivatives of the potential V . Following the analogous discussion in [KSV23], we use
a generalisation of Cramer’s rule.

Definition 3.11. On an inner product space, the Gram Coefficients Gk(A) of a linear
map A are the coefficients of the polynomial

det(1 + t AA∗) =
∞∑

k=0

Gk(A)tk,

where A∗ is the adjoint of A.

Up to sign and order, the Gk(A) are the coefficients of the characteristic polynomial of
AA∗. Consider a linear map A of rank r on an inner product space. The system of linear
equations Ax = b has a solution x if and only if the augmented matrix (A|b) satisfies
Gr+1(A|b) = 0. The minimal norm solution x = A†b is obtained via the Moore-Penrose
inverse [DTGVL05]

A† = 1

Gr (A)

r∑
k=1

Gr−k(A)(−A∗ A)k−1 A∗ . (3.10)

Concretely, consider the linear system, obtained from (3.8) written in local coordinates,

AX = b1(dV ) + b0V, (3.11)

where X is a vector that contains the unknown components of the trace-free Hessian
∇̊2

i j V of V and where the coefficient matrix A contains the components of the conformal
Killing tensors. On the right hand side, b1 and b0 are the matrix and (column) vector
containing the coefficients of components of dV and of V respectively.

The rank r for (3.11) does not need to be constant, but if the conformal Killing
tensors are analytic, then so are the components of the matrix A. Consequently the
Gram coefficients Gk(A) are also analytic and then the rank of A is constant on an
open and dense subset. Thus we can express the trace-free Hessian of V , using the
Moore-Penrose inverse, as

X = A†b1(dV ) + A†b0V . (3.12)

Definition 3.12. A conformally superintegrable system on a (pseudo-) Riemannian man-
ifold M has rank r , if the coefficient matrix A in (3.11) has rank r on an open and dense
subset of M .

The rank of a conformally superintegrable system is at most

rmax = n(n + 1)

2
− 1 = (n − 1)(n + 2)

2
. (3.13)

We characterise systems of maximal rank in terms of their trace-free conformal Killing
tensors, tacitly identifying (trace-free) bilinear forms and (trace-free) endomorphisms
on the tangent space. Due to Proposition 3.8, any conformally superintegrable system
that is conformally equivalent to a maximal rank conformally superintegrable system is
itself of maximal rank.
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Definition 3.13.

(i) A set of endomorphisms is irreducible if they do not have a non-trivial invariant
subspace in common.

(ii) A set of endomorphism fields on a (pseudo-) Riemannian manifold M is called
irreducible, if they are pointwise irreducible on an open and dense subset of M .

(iii) We call a conformally superintegrable system irreducible, if its conformal Killing
tensors form an irreducible set.

(iv) We call a c-superintegrable system irreducible, if its conformal Killing tensors form
an irreducible set.

The next lemma follows analogously to the corresponding statement in the case of
properly superintegrable systems [KSV23].

Lemma 3.14. A conformally superintegrable system has maximal rank if and only if it
is irreducible.

Irreducibility thus ensures that we can solve (3.11) for X . In particular we find the
minimal-norm solution (3.12), to which we may add any element from the kernel of
A. For second order conformally superintegrable systems, the Bertrand–Darboux equa-
tion (3.8) can therefore be solved assuming irreducibility. We have the requirement that
the trace of the Hessian of V is the Laplacian of V and thus the potential V of an
irreducible conformally superintegrable system satisfies

V,i j = Ti j
m V,m + 1

n gi j�V + τi j V (3.14)

with a (not necessarily unique) (2, 1)-tensor Ti jk and a (2, 0)-tensor τi j . We refer to (3.14)
as Wilczynski equation because our methods are inspired by Wilczynski’s series of papers
on the projective differential geometry of surfaces [Wil07,Wil09]. Equations similar to
(3.14) appear in [KKM05b] in local coordinates and for dimension three. The tensors T
and τ necessarily satisfy the following symmetries

i
j

(
Ti j

m V,m + τi j V
) = 0 (3.15a)

gi j (
Ti j

m V,m + τi j V
) = 0 . (3.15b)

We call Ti jk the primary structure tensor and τi j the secondary structure tensor of
the conformally superintegrable system. Note that these tensors are not invariant under
conformal transformations.

The analog of (3.14) in proper superintegrability is Eq. (2.7), which formally coin-
cides with (3.14) for τi j = 0. However, note that (2.7) was obtained from (2.6), where
K is a proper Killing tensor. Instead, the Wilczynski Eq. (3.14) is obtained from the
Bertrand–Darboux Eq. (3.8), where trace-free conformal Killing tensors appear. In spite
of this difference, the following lemma shows that vanishing τ indeed follows from
proper superintegrability. We are going to see below in Corollary 5.3 that, for non-
degenerate second order conformally superintegrable systems, the converse holds as
well.

Lemma 3.15. Consider a second order superintegrable system with potential V and
associated proper Killing tensors K (α). Let C (α) = K̊ (α) and assume they satisfy the
Wilczynski Eq. (3.14) with V . Then τi j = 0.
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Proof. We choose a specific α and suppress the corresponding superscript for concise-
ness. By hypothesis, there is a function λ such that

Ki j = Ci j +
1

n
λgi j (3.16)

satisfies (2.6).
The proper Killing tensor Ki j satisfies the Killing equation i j k Ki j,k = 0. Sub-

stituting (3.16) into the Killing equation, and then using the conformal Killing equation
i j k (Ci j,k −gi jωk) = 0, we find λ,k = −nωk . We conclude that ω is exact, dω = 0.

It follows that τi j = 0, as (3.8) does not have a term involving V without derivative. ��

3.4. Non-degenerate and abundant systems. From now on we tacitly assume an analytic
manifold and an analytic (pseudo-) Riemannian metric. In the previous section, it was
shown that for irreducible second order superintegrable systems, the Bertrand–Darboux
Eq. (3.8) can be solved for the second derivatives of V up to the Laplacian �V . The
Wilczynski equation (3.14) then allows one to express all higher covariant derivatives
of V linearly in V , ∇V and �V . Hence all higher derivatives of V at some point are
determined by the value of (V,∇V,�V ) at this point, i.e. by n + 2 constants. This
motivates the following definition.

Definition 3.16. A conformally superintegrable system is called non-degenerate if it
satisfies the Wilczynski condition (3.14), and if (3.14) admits an (n + 2)-dimensional
space of solutions V .2

Due to (3.15), the structure tensors satisfy the following symmetry conditions for a
non-degenerate potential:

Tji
m = Ti j

m gi j Ti j
m = 0

τi j = τ j i gi jτi j = 0 .

Lemma 3.17. For a non-degenerate conformally superintegrable system the structure
tensors Ti jk and τi j are unique.

Proof. Assume that the Wilczynski condition (3.14) were satisfied for two different
pairs of structure tensors, say Ti jk, τi j and T̃i jk, τ̃i j respectively. Then, subtracting the
corresponding copies of (3.14),

0 = (Ti j
k − T̃i j

k) V,k + (τi j − τ̃i j ) V .

By the hypothesis of non-degeneracy, the coefficients of V,k and V have to vanish
independently, i.e. Ti j

k = T̃i j
k and τi j = τ̃i j . ��

Example 3.18. The isotropic harmonic oscillator is an irreducible system in the sense of
Definition 3.13 and has the potentials

V (x) = ω2

2
(x − x0)

2 + V0

2 Note that for an analytic metric, the (trace-free) conformal Killing tensors are analytic, and thus the
structure tensors and the potentials are also analytic.
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with the n +2 free parameters ω2, x0 and V0. V (x) solves the Wilczynski equation (3.14).
The isotropic harmonic oscillator on flat n-dimensional space has vanishing structure
tensor T . It is properly superintegrable and therefore also the structure tensor τi j van-
ishes. Any conformally superintegrable system conformally equivalent to the isotropic
harmonic oscillator is characterised by T̊i jk = 0, and we obtain (3.14) in the form

V,i j = n ti V, j + n t j V,i − 2 gi j tm V,m

(n − 1)(n + 2)
+

1

n
gi j�V + τi j V . (3.17)

We define abundantness in analogy to properly superintegrable systems.

Definition 3.19. We call a non-degenerate second order conformal superintegrable sys-
tem in dimension n abundant, if the subspace

C̊ = {C̊ : C ∈ Cmax : tr(C) = 0}
has dimension

dim(C̊) = n(n + 1)

2
− 1 = (n − 1)(n + 2)

2
= rmax.

Note that non-degeneracy and abundantness are conformally invariant, i.e. well-defined
for c-superintegrable systems, by virtue of Proposition 3.8.

Definition 3.20.

(i) We call a c-superintegrable system non-degenerate if one (and hence all) members
of the corresponding equivalence class are non-degenerate in the sense of Defini-
tion 3.16.

(ii) We call a c-superintegrable system abundant, if one (and hence all) members of the
corresponding equivalence class are abundant in the sense of Definition 3.19.

It is manifest that for an abundant conformally superintegrable system, a properly super-
integrable system conformally equivalent to it is also abundant in the sense of [KSV23].
In Sect. 5 we find that abundantness is tantamount with the generic integrability of the
prolongation equations for the trace-free conformal Killing tensors arising from a second
order conformally superintegrable system. Abundantness is trivial in dimension n = 2.
For dimension n = 3, it follows from [KKM05b] that every non-degenerate second
order c-superintegrable system on a conformally flat manifold is abundant (the so-called
(5 ⇒ 6)-Lemma).

From now on we restrict to non-degenerate systems that satisfy the Wilczynski
Eq. (3.14). Our aim in the present section is to formulate and study the integrability
conditions imposed onto the structure tensors by the non-degeneracy and (3.14).

Remark 3.21. For the sake of expositional simplicity, we require an abundant system to
have n(n+1)

2 − 1 linearly independent trace-free conformal Killing tensors. Functional
independence of 2n − 1 of the arising conformal integrals is not yet required in the
definition, but in Lemma 6.7 we prove that systems which do admit 2n − 1 functionally
independent conformal integrals lie dense among abundant systems.

We devote the remainder of this paragraph to an alternative characterisation of abun-
dantness.
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Definition 3.22. We say that a collection of linearly independent Killing tensors K (α)
i j

is conformally linearly independent if

∑
α

cα K (α) = f g , (3.18)

with constants cα and a function f , implies f = 0 and cα = 0 for all α.

The following lemma ensures that a conformally superintegrable system is abundant
if the conformal Killing tensors C (α) for α ∈ {1, 2, . . . ,

n(n+1)
2 } in Definition 3.3 are

conformally linearly independent.

Lemma 3.23. Let (K (1), . . . , K (m)) be a collection of Killing tensors and denote the
corresponding trace-free conformal Killing tensors by C(α) = K (α)− 1

n tr(K (α)) g. Then
the tupel (g, C (1), . . . , C (m)) is linearly independent if any only if (K (1), . . . , K (m)) is
conformally linearly independent.

Proof. Assume first that (g, C (1), . . . , C (m)) is linearly dependent. This means there is
a combination

∑
cαC (α) = c0 g

with constants (c0, c1, . . . , cm) �= 0. This means

∑
cα K (α) = f g

for a function f obtained from c0 and the trace terms. This proves one implication.
For the other implication, we assume that (K (1), . . . , K (m)) are conformally linearly

dependent. Therefore we have

m∑
α=1

c(α)C
(α) =

(
f +

1

n

∑
c(α)tr(K (α))

)
g.

In this equation the left hand side and the right hand side have to vanish independently,
as they are trace-free respectively pure trace. We conclude

∑
cαC (α) = 0, f = −1

n

∑
cαtr(K (α))

Because of the hypothesis of conformal linear dependence, we have (c1, . . . , cm) �= 0.
This implies that (g, C (1), . . . , C (m)) are linearly dependent. ��

Moreover: if the integrals F (α) = C (α) i j pi p j + W (α) ∈ F are functionally in-
dependent, then their kinetic parts are associated to conformally linearly independent
conformal Killing tensors. This follows from Theorem 1 of [KKM05b].
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3.5. Structure tensors and c-superintegrability. We are now going to determine how the
structure tensors behave under conformal changes of the superintegrable system.

Lemma 3.24. Let H = g(p, p)+V and H̃ = 
−2 H be a pair of conformally equivalent
Hamiltonians, 
 > 0. Assume H gives rise to an irreducible conformally superinte-
grable system such that the Wilczynski Eq. (3.14) is satisfied. Then H̃ satisfies (3.14) as
well. (We decorate the corresponding objects with a tilde). In particular, the structure
tensors Ti jk and τi j are transformed, respectively, to (ϒ = ln 
)

T̃i j
k = Ti j

k − 3 i j ◦ϒ,i g j
k (3.19a)

τ̃i j = τi j + 2 Ti j
kϒ,k − i j ◦

(
ϒ,i j + 2ϒ,iϒ, j

)
. (3.19b)

Proof. By a straightforward computation, using the Wilczynski Eq. (3.14) and the prod-
uct rule, we arrive at

∇̂2
i j V̂ = 1

n
ĝi j �̂V̂ +

(
Ti j

k − 3
(
ϒi gk

j + ϒ j gk
i

)
− 6

n gi j ϒ,k
)

V̂k

+

(
τi j + 2 Ti j

k ϒ,k − 2
∇2

i j 




+ 2

n gi j
�




− 2 ϒ,iϒ, j + 2
n gi j ϒ,aϒ,a

)
V̂ .

The result then simplifies further using 
−1∇2
i j
 = ϒ,iϒ, j + 1

2 i j ϒ,i j . ��
According to the Wilczynski Eq. (3.14), the structure tensor Ti jk of a conformally super-
integrable system determines the conformally superintegrable potential up to the action
of S = Diff(M) � R

∗. The following corollary is straightforwardly obtained, but will
be fundamental.

Corollary 3.25. Let the hypothesis and notation be as in Lemma 3.24.

(i) Under conformal transformations, the trace ti = Tia
a = Tai

a undergoes a transla-
tion by ϒ,i ,

t̃i = ti − 3

n
(n − 1)(n + 2)ϒ,i . (3.20)

(ii) Under conformal transformations, the trace T a
ai remains unchanged,

T̃ a
ai = T a

ai .

(iii) Under conformal transformations, the trace-free part of the primary structure tensor
remains unchanged,

˚̃Ti j
k = T̊i j

k . (3.21)

Remark 3.26. Although T̊i j
k is conformally invariant, it is often advantageous to work

with the tensor T̊i jk instead, which in the context below turns out to be a totally symmetric
tensor field. While T̊i jk is not actually invariant, it is still equivariant of conformal weight
2. According to its weight, under conformal transformations it is multiplied with a power
of 
,

˚̃Ti jk = 
2gka
˚̃Ti j

a = 
2T̊i jk .
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As shown in [KSV23], T̊i j
k is closely related to the Weyl curvature. Under mild as-

sumptions we are going to find that T̊i j
k carries enough information to reconstruct the

conformal equivalence class of a (conformally) superintegrable system. With properly
superintegrable systems in mind, it might at first seem that the conformal case requires
additional information, in the form of an additional structure tensor τi j . We find, how-
ever, that for abundant systems τi j is determined by Ti jk and the Ricci curvature. We
summarise the discussion in this section with the following proposition.

Proposition 3.27. On a (pseudo-) Riemannian manifold M, every non-degenerate ir-
reducible conformally superintegrable system admits tensor fields T and τ with the
following properties:

(i) T is well-defined and smooth on the open and dense subset N = {Grmax(A) �=
0} ⊆ M. It is of valence 3, symmetric and trace-free in its first two indices:

Tjik = Ti jk gi j Ti jk = 0 (3.22)

Moreover, τ is well-defined and smooth on N. It is of valence 2, symmetric and
trace-free:

τ j i = τi j gi jτi j = 0 (3.23)

(ii) The conformally superintegrable potential satisfies the Wilczynski Eq. (3.14).
(iii) T and τ are uniquely determined by the metric and by the trace-free conformal

Killing tensors C (α) in the conformally superintegrable system, and depend only
on the subspace C spanned by these C (α), i.e. it is invariant under basis changes
on C.

(iv) The trace-free part T̊i j
k of the (2, 1)-tensor field Ti j

k is invariant under conformal
changes of the conformally superintegrable system.

The components Ti jk of T are given explicitly in terms of the Killing tensors by the
rank-r Moore-Penrose inverse, where r = rmax is the maximal rank (3.13).

Proof. The first three assertions follow analogous to the case of properly superintegrable
systems, see [KSV23], such that the tensors T and τ are given by A†b1 and A†b0,
respectively, using Eq. (3.11). To see (iv), take the trace-free part of (3.19a). ��

Let us reconsider the aforesaid in the light of Definition 3.9.

Corollary 3.28. (i) Every non-degenerate irreducible c-superintegrable system on a
conformal manifold (M, g) admits a well-defined totally symmetric and trace-free
tensor field S = T̊ that is invariant under conformal transformations.

(ii) If this tensor coincides for two non-degenerate irreducible c-superintegrable systems
on the same conformal manifold, then these systems are conformally equivalent if
also

τi j − 2 P̊i j +
2

3
Si jk t̄ k +

1

3
i j ◦ t̄i t̄ j

coincides for both systems.
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The corollary is easily obtained using (3.19) and recalling, see e.g. [CG14,Kul69,Kul70],

R̊i j → R̊i j − (n − 2)
(
ϒ,i j − ϒ,iϒ, j

)
◦ (3.24a)

R → 
−2
(

R + 2(n − 1)
(
�ϒ − n−2

2 ϒ,aϒ,a
) )

. (3.24b)

The Schouten tensor transforms according to

Pi j → Pi j − ϒ,i j + ϒ,iϒ, j − 1

2
gi j ϒ,cϒ

,c . (3.25)

4. Conformally Superintegrable Potentials

Written in local coordinates, the Wilczynski Eq. (3.14) is a second order partial dif-
ferential equation (PDE) for the potential V . In Proposition 3.27 we have seen that
for irreducible second order superintegrable systems, the coefficients in this PDE are
determined by the space of trace-free conformal Killing tensors and the metric.

4.1. Prolongation of a superintegrable potential. The Wilczynski Eq. (3.14) expresses
the trace-free part of the Hessian of the potential V linearly in the differential ∇V ,
the Laplacian �V , and the potential V itself. The coefficients in this expression are
determined by the structure tensors T and τ . In the following Proposition, the Wilczynski
Eq. (3.14) is extended by a second equation which expresses the derivatives of �V
linearly in �V , ∇V and V . Again, the coefficients are determined by the structure
tensors. The system (4.1) below is an extended system of PDEs for (3.14). Such an
extended system is called a prolongation of the initial PDE, and it allows one to make
use of the powerful theory of parallel linear connections. In particular, by virtue of (4.1)
all higher derivatives of V , ∇V and �V are expressed in terms of these.

Proposition 4.1. Equation (3.14) has the prolongation

V,i j = Ti j
m V,m + 1

n gi j�V + τi j V (4.1a)
n−1

n (�V ),k = qk
m V,m + 1

n tk�V + γk V, (4.1b)

with

q j
m := Qaj

am (4.2a)

t j := Taj
a (4.2b)

γk := �ak
a (4.2c)

where

Qi jk
m := Ti j

m,k +Ti j
l Tlk

m − Ri jk
m + τi j g

m
k . (4.3)

�i jk := τi j,k + Ti j
aτak (4.4)
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Proof. Equation (4.1a) is nothing but the Wilczynski Eq. (3.14). Substituting it into its
covariant derivative, we obtain

V,i jk = (
Ti j

m,k +Ti j
l Tlk

m + τi j g
m
k

)
V,m + 1

n

(
Ti jk�V + gi j (�V ),k

)
+

(
τi j,k + Ti j

mτmk
)

V .

Antisymmetrising in j and k and applying the Ricci identity gives

Rm
i jk V,m = j

k

[(
Ti j

m,k +Ti j
l Tlk

m + τi j g
m
k

)
V,m + 1

n

(
Ti jk�V + gi j (�V ),k

)
+ �i jk V

]
.

Solving for the term involving (�V ),k on the right hand side, we get

1

n
j
k

gi j (�V ),k = − j
k

(
Qi jk

m V,m + 1
n Ti jk�V + �i jk V

)
.

The contraction of this equation in i and j now yields (4.1b), since Ti jk and Qi jk
m are

trace-free in i and j by definition. ��

4.2. Integrability conditions for a non-degenerate potential. From the perspective of
the Eq. (4.1), non-degeneracy implies that the corresponding integrability conditions
be satisfied generically, independently of the potential. With this condition we finally
eliminate the potential V (and therefore all V (α)) from the system, leaving a system
of equations depending only on the structure tensors Ti jk and τi j , as well as on the
underlying metric g and its curvature.

Proposition 4.2. The Wilczynski Eq. (3.14) locally has a non-degenerate solution V if
and only if the following integrability conditions hold:

j
k

(
Ti jk + 1

n−1 gi j tk
)

= 0 (4.5a)

j
k

(
Qi jkl + 1

n−1 gi j qkl

)
= 0 (4.5b)

j
k

(
�i jk + 1

n−1 gi jγk

)
= 0 (4.5c)

k
l

(
qki,l + Tmli qk

m + 1
n−1 tkqli + γk gli

) = 0 (4.5d)

i
j

(
γi, j + qi

mτmj + 1
n−1 tiγ j

)
= 0. (4.5e)
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Proof. The system (4.1) allows one to write all higher derivatives of V , ∇V and �V as
linear combinations of V , ∇V and �V . Necessary and sufficient integrability conditions
are then given by the Ricci identities

j
k

V,i jk = Rm
i jk V,m

k
l

(�V ),kl = 0 ,

where we substitute (3.14) in the left hand side of the equations. We obtain

j
k

(
Qi jk

m + 1
n−1 gi j qk

m)
V,m +

1

n

j
k

(
Ti jk + 1

n−1 gi j tk
)
�V +

j
k

(
�i jk + 1

n+1 gi j γk

)
V = 0

and, respectively,

k
l

(
qk

a
,l + Tml

aqk
m + 1

n−1 tkql
a + γk gl

a)
V,a +

1

n
k
l

(
tk,l + qkl

)
�V

+ n
k
l

(
γk,l + qk

mτml + 1
n−1 tkγl

)
V = 0.

For a non-degenerate superintegrable potential the coefficients of �V , ∇V and V must
vanish separately. In addition to the stated integrability conditions, this yields the con-
dition

k
l

(
tk,l + qkl

) = 0. (4.6)

The latter is redundant, since it can be obtained from equation (4.5b) by a contraction
over i and l. ��

Note that the Eq. (4.5) are not invariant under conformal trnasformations, as they
emerge from coefficients of V , ∇V and �V , respectively. Still, after a conformal trans-
formation as in Proposition 3.8, the form of (4.5) is the same, but the metric, the curvature
and the structure tensors are replaced. We can solve Eq. (4.5a) right away, because it is
linear and does not involve derivatives.

Proposition 4.3. The first integrability condition for a superintegrable potential,
Eq. (4.5a), has the solution

Ti jk = Si jk + i j

(
t̄i g jk − 1

n
gi j t̄k

)
, (4.7)

where S is an arbitrary totally symmetric and trace-free tensor. The 1-form t̄i is given
by

t̄i = n

(n − 1)(n + 2)
ti = n

(n − 1)(n + 2)
Tia

a . (4.8)

Note that Si jk and t̄i are uniquely determined by T .

Proof. Decompose Ti jk , which by definition is trace-free and symmetric in (i, j), ac-
cording to

⊗ ∼= ⊕ ∼= ◦ ⊕ ⊕ ◦ ⊕ .



Algebraic Conditions for Conformal Superintegrability Page 27 of 53 92

Due to (4.5a), the penultimate component of this decomposition vanishes, and therefore
we obtain

Ti jk = Si jk +
1

6
i j k gi j sk +

1

4
i j

j
k

gi jξk,

where sk and ξk are components of some 1-forms. Substituting (4.5a), and taking the
trace in ( j, k),

ti = Tia
a = n + 2

3
si − n − 1

4
ξi .

Taking the trace in (i, j) instead,

0 = T a
ai = n + 2

3
si +

n − 1

2
ξi .

Solving for si and ξi , we find

si = 2ti
n + 2

, ξi = − 4ti
3(n − 1)

.

Resubstituting into the initial formula for Ti jk , we arrive at (4.7). ��
Corollary 4.4. (i) The tensor qi j is symmetric, i.e. q ji = qi j .
(ii) The 1-form t̄i is the derivative of a function t̄ , i.e. t̄i = t̄,i .

Note that consequently also ti = t,i . Without loss of generality we impose t̄ = n
(n−1)(n+2)

t
on the arbitrary integration constant.

Proof. The first statement follows from substituting (4.7) into the definition (4.2a) of
qi j . The second then follows from (4.6). ��
Proposition 4.5. The third integrability condition for a superintegrable potential,
Eq. (4.5c), has the solution

�i jk = �i jk + i j (γ̄i g jk − 1

n
gi j γ̄k), (4.9)

where � is an arbitrary totally symmetric and trace free tensor and

γ̄i = n

(n + 2)(n − 1)
γi .

Note that � and γ are uniquely determined by �.

The proof is the same as that of Proposition 4.3.
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4.3. The conformal scale function. As we have just seen, the trace ti of the primary
structure tensor is the differential of a function t . We thus obtain the following trans-
formation rule under conformal changes of the Hamiltonian, which is an immediate
consequence of (3.20).

Lemma 4.6. Under a conformal change of the superintegrable system, say H �→ 
−2 H,

 > 0, the function t transforms as (ϒ = ln 
)

t̄ �→ t̄ − 3ϒ up to an irrelevant constant , (4.10)

Note that the function t̄ is determined by the structure tensor T only up to an irrelevant
constant. The symmetry group of c-superintegrable systems is S = Conf(M) � R

∗,
c.f. Remark 3.10. The second factor of S does not affect t̄ . Indeed, we see that if
t̄new − t̄old = c ∈ R, then 
 = e− c

3 and

Hnew = e
2c
3 Hold.

Lemma 4.6 above therefore confirms that t̄ behaves like a scale function.

Definition 4.7. The conformal scale function is the density of weight 1 defined by

σ = e− 1
3 t̄ .

��
Lemma 4.6 allows us to change t̄ arbitrarily, resulting in a natural gauge freedom of

a conformally superintegrable system. There are three natural scale choices, in partic-
ular, that are relevant here, each of which has specific features we can exploit to gain
information or to simplify certain computations. Table 1 summarises some properties of
these scale choices and the notation we use.

4.3.1. Standard scale This scale choice realises t̄,i = 0.

Definition 4.8. A conformally superintegrable system with t̄i = 0 is said to be in stan-
dard scale.

We shall use a specific notation for the metric and the secondary structure tensor when
we work in standard scale. Given an arbitrary scale choice, we can apply a conformal

transformation with conformal rescaling 
 = e
1
3 t̄ . Let ϒ = ln 
. The transformed

metric of the system in standard scale, then is

g̃i j = e
2
3 t̄ gi j =: gi j , (4.11a)

and the new structure tensors become T̃i j
k = Si j

k and

τ̃i j = τi j +
2

3
Si j

k t̄,k − i j ◦

(
1

3
t̄,i j − 4

9
t̄,i t̄, j

)
=: ℵi j . (4.11b)

For later reference, we mention the Schouten curvature Pi j of gi j , which is given by

Pi j = Pi j − ϒ,i j + ϒ,iϒ, j − 1

2
gi j ϒ,cϒ

,c , (4.11c)
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while the Weyl curvature remains unchanged under conformal transformations. Equa-
tions (4.11b) and (4.11c) are obtained, respectively, from (3.19b) and (3.25).
Note that the standard scale is not unique, as we may add any constant to t̄ . For simplicity
we usually choose t̄ = 0. As discussed after Lemma 4.6, however, this only means that
the Hamiltonian is multiplied by a constant, and moreover the structure tensor is not
changed in the process. From the viewpoint of conformally superintegrable systems
however, if we multiply the metric by a constant, this typically changes the underlying
metric (unless the transformation is already in Diff(M)). Yet, the space C̊ of conformal
Killing tensors of a conformally superintegrable system remains unaffected by such a
change.

The standard scale has two major advantages: on the one hand, it yields very compact
equations, facilitating some otherwise tedious computations. On the other hand, the
standard scale exposes the invariant data of the problem, which is going to be particularly
helpful when we discuss conformal equivalence classes.

Example 4.9. The systems VII [5], O and A in Table 3 are in standard scale.

4.3.2. Flat scale This scale choice only exists for conformally flat metrics.

Definition 4.10. A conformally superintegrable system with flat curvature is said to be
in flat scale.

We find, using (4.11a), that there is a function ρ : C∞(M) → R such that

gi j = e
2
3 ρ hi j . (4.12)

where h has vanishing curvature. A major advantage of flat scales is that covariant deriva-
tives coincide with partial ones, facilitating concrete computations in local coordinates.
Moreover, the existence of a flat scale permits us to express the Ricci curvature in terms
of the scalar function ρ using (3.24).

Flat scales are not unique. For example, we can add any constant to ρ. According to
[Kul70], any conformal change transforming a flat metric into a flat metric is given via
ρ → ρ − η where η is a function satisfying

[Q(Y, Z) + g(Y, Z)r ] X − [Q(X, Z) + g(X, Z)r ] Y + g(Y, Z)Q(X) − g(X, Z)Q(Y ) = 0

where

Q(X, Y ) = (∇2η)(X, Y ) − X (η)Y (η)

with g(Q(X), Y ) = Q(X, Y ) and r = g(dη, dη).

Example 4.11. All systems in Table 3 are in flat scale. In particular, note that the systems
III [23] and V [32] are conformally equivalent.

4.3.3. Proper scale A third natural choice is the proper scale, in which the system is
properly superintegrable (up to a trace correction of the trace-free conformal Killing
tensors). As mentioned earlier, any conformally superintegrable system is conformally
equivalent to a properly superintegrable system [Cap14, Theorem 4.1.8]. According to
Lemma 3.15 it satisfies τi j = 0.

Definition 4.12. A conformally superintegrable system with τi j = 0 is said to be in
proper scale.
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Table 1. Notation and conventions for the three natural scale choices

Objects Standard Scale Flat scale Proper scale

Function t̄ 0 ρ t̄
Schouten tensor Pi j Pi j 0 Pi j
Secondary structure tensor τi j ℵi j τi j 0
Metric gi j gi j hi j gi j

Again, the proper scale choice is not unique. Its advantage is that all the known results
about properly superintegrable systems can be invoked. Yet it is less useful for gaining
insight into the underlying conformal geometry. Nevertheless, from the viewpoint of
conformal geometry, proper scale choices have some interesting properties which we
explore in Sect. 6.5 for constant curvature spaces.

Example 4.13. All systems in Table 3 are in proper scale. For an example that is in proper
scale, but neither in flat nor standard scale, consider the metric g = (zz̄ + 4)−1dzdz̄ on
the 2-sphere. It admits the superintegrable potential

V = a0

(
zz̄ + 4

z + z̄

)2

+ a1

(
zz̄ + 4

z − z̄

)2

+ a2

(
zz̄ + 4

zz̄ − 4

)2

+ a3

with parameters ai ∈ R, and satisfies

t̄ = 3

2
ln

i (zz̄ + 4)3

(zz̄ − 4)(z + z̄)(z − z̄)

Example 4.14. (Generic system on the 3-sphere) Consider the 3-sphere with metric

g = dφ2 + sin2(φ)
(

dθ2 + sin2(θ) dψ2
)

.

The potential

V = a1

cos2(φ)
+

a2

sin2(φ) cos2(θ)
+

a3

sin2(φ) sin2(θ) cos2(ψ)
+

a4

sin2(φ) sin2(θ) sin2(ψ)
+ a0

is non-degenerate and defines the so-called generic system on the 3-sphere; in [KKM06]
it is labelled VIII. It is in proper scale, but neither in flat nor in standard scale.

Note that the Harmonic Oscillator, see Example (3.18), is simultaneously in standard,
flat and proper scale. In Sect. 6 we find that this is an immediate consequence of Ti jk = 0.

5. Conformal Killing Tensors in Conformally Superintegrable Systems

5.1. Prolongation equations for trace-free conformal Killing tensors. In Sect. 4.1 we
have discussed a prolongation system for the potential V . Similarly, we can write down
a prolongation for an arbitrary trace-free conformal Killing tensor Ci j . In general, this
system can be rather complicated [Wei77], given also the explicit but complicated expres-
sions well known for proper second order Killing tensors in [Wol98,GL19]. However,
as is shown in [KSV23], the prolongation system for proper second order Killing tensors
in non-degenerate superintegrable systems simplifies considerably. In fact, the prolon-
gation system in this case closes after the first covariant derivative. We observe the same
phenomenon with trace-free conformal Killing tensors, and trace-freeness is paramount.
Indeed, for conformal Killing tensors with non-vanishing trace, the prolongation system
would not be finite.
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Theorem 5.1. A trace-free conformal Killing tensor Ci j in a non-degenerate confor-
mally superintegrable system satisfies

Ci j,k = 1

3

(
j i
k

T m
ji g

n
k − 2

n
gi j (t

m gn
k − Tk

mn)

)
Cmn , (5.1)

with the primary structure tensor Ti j
k given by the Wilczynski Eq. (3.14).

The Bertrand–Darboux condition (3.8) in this situation is equivalent to (5.1) and

j
k

(
ω j,k + Cm

jτkm
) = 0 . (5.2)

Note that from (5.1) we obtain ωi using Formula (3.2). We also remark that (5.1) does not
contain the secondary structure tensor τi j . Indeed, we shall see that, under the hypothesis
of the theorem, the tensor τi j is obtained from Ti jk and the Ricci curvature.

Remark 5.2. Equation (5.1) should be compared to the prolongation Eq. (2.8) for a
Killing tensor in a properly superintegrable system. However, here Ki j,k is not trace-
free. Therefore, we need to subtract the trace, obtaining

K a
a,k = 2

3

(
tm gn

k − Tk
mn) Kmn . (5.3)

Next, verify that

(
j i
k

T m
ji g

n
k − 2

n
gi j (t

m gn
k − Tk

mn)

)
gmn = 0,

which, combined with (2.8) and (5.3), yields

Ci j,k = 1

3

(
j i
k

T m
ji g

n
k − 2

n
gi j (t

m gn
k − Tk

mn)

)
Cmn

where Ci j = Ki j − 1
n gi j K a

a . Summarising, we have thus confirmed that the trace-free
part Ci j of a properly superintegrable Killing tensor Ki j satisfies (5.1).

Proof of Theorem 5.1. We decompose Ci j,k as

Ci j,k = 1

3
j i
k

Ci j,k +
1

6
i j k Ci j,k (5.4)

The totally symmetric component is given by the conformal Killing equation,

i j k Ci j,k = i j k ωk gi j

The hook symmetric component is obtained as follows: Substituting the Wilczynski
Eq. (3.14) into the Bertrand–Darboux Eq. (3.8) gives

j
k

[(
Cm

j,k − Tjl
mCl

k + ω j g
m
k

)
V,m +

(
Cm

jτkm + ω j,k
)
V

]
= 0. (5.5)
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From non-degeneracy it follows that the coefficients of V,m and V vanish independently.
The coefficient of V yields (5.2). From the coefficients of V,m we obtain

j
k

Ci j,k = j
k

(
T l

ji Clk + gi jωk
)
.

Altogether, using (5.4),

Ci j,k = 1

3
j i
k

(
T l

ji Clk + ωk gi j
)

+
1

6
i j k ωk gi j

The trace-freeness of Ci j now implies

ωk = − 1

3n
gi j j i

k
T m

ji Cmk = 2

3n
(Tk

ab − tagb
k) Cab , (5.6)

which completes the proof. ��
Equation (5.2) allows us to prove the converse of Lemma 3.15 for non-degenerate sys-
tems. Note that there is a natural mapping from the space K of Killing tensors into the
space C̊ of trace-free conformal Killing tensors,

K → C̊, Ki j �→ Ci j = Ki j − 1

n
K a

agi j .

This map is not surjective as not every conformal Killing tensor arises from a proper
Killing tensor. Its range consists of trace-free conformal Killing tensors whoseω from (3.2)
is exact, ω = dλ, and thus

{
C ∈ C̊ : 2Ca

k,a + Ca
a,k = λ,k for some scalar λ

}
→ K, C �→ C − 1

n
λg,

is surjective. It is not injective as we may add a constant multiple of the metric to any
Killing tensor. From (5.2) we infer that ω is exact for trace-free conformal Killing tensors
that commute with τ .

Corollary 5.3. If τi j = 0 for a non-degenerate second order conformally superinte-
grable system, then the system is properly superintegrable.

Note that in the proof we do not take functional independence into account yet, but we
will account for it in Lemma 6.7. This lemma ensures the existence of sufficiently many
functionally independent conformal integals for almost any potential of a non-degenerate
system, which suffices here as we consider the space Vmax.

Proof. Let Ci j be a trace-free conformal Killing tensor of the conformally superinte-
grable system. We need to find a function λ such that Ki j = Ci j + 1

n gi jλ is a proper
Killing tensor, i.e. it satisfies the Bertrand–Darboux condition (2.6).

We proceed in two steps. First we show that dω = 0. Then we prove that this leads
to a properly superintegrable system.

For the first step, take the coefficient of V in (5.5). For a non-degenerate system (5.2)
yields

2 dωi j = i
j

ωi, j = i
j

Ca
jτia = i

j
K a

jτia
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and therefore ω is exact if τi j = 0, i.e. ω = dλ. Let Ki j = Ci j + 1
n gi jλ with this specific

function λ. We conclude, using the trace-freeness of Ci j ,

(d(K dV ))i j = 1

2
i
j

(
Kia, j V ,a + Ki

a V,aj
) = 0 , (5.7)

due to the conformal Bertrand–Darboux condition (3.8). So Ki j satisfies the proper
Bertrand–Darboux Eq. (2.6). This proves the claim. ��
To allow for a concise notation, we introduce the shorthand

Pi jk
mn := 1

6
m n

(
j i
k

T m
ji gn

k − 2

n
gi j (t

m gn
k − T m

k
n
)

)
. (5.8)

Consequently, we have (5.1) in the form

Ki j,k = Pi jk
ab Kab.

Given Ti jk , we can compute Pi jk
mn . The following lemma shows that Pi jk

mn contains
all the information about τi j , i.e. for abundant systems the secondary structure tensor is
redundant.

Lemma 5.4. In an abundant conformally superintegrable system, the tensor τi j is given
by

τi j = 2

n

(
�i j

a
,a − �a

ja,i + �i
ab Pab

c
cj − �cab Pabi jc

)
(5.9)

where

�k
ab = 1

3n
a b (Tk

ab − tagb
k ).

Moreover,
i
j

m n
(
�imn, j + �i

ab Pabjmn

)
◦ = 0 . (5.10)

Note that τi j in (5.9) is symmetric and trace-free due to (5.10). Because of Eq. (5.9) the
superintegrable potential is completely determined by the primary structure tensor Ti j

k ,
and this observation can be interpreted as follows: Any conformally superintegrable sys-
tem corresponds to a properly superintegrable system [Cap14], for which the Wilczynski
Eq. (3.14) holds with τi j = 0. Applying a conformal transformation, due to (3.19b) the
tensor τi j can only contain information from the properly superintegrable system (and
the conformal factor). Indeed, this is the information appearing on the right hand side
of Eq. (5.9).

Proof of Lemma 5.4. Equation (5.2) yields the antisymmetric part of ωi, j ,

i
j

ωi, j = i
j

Cm
jτim . (5.11)

On the other hand we obtain from (5.6), after one differentiation,

ωi, j =
(
�i

mn
, j + �i

ab Pabj
mn

)
Cmn
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Resubstituting into (5.11),

i
j

(
�i

mn
, j + �i

ab Pabj
mn − τi

m gn
j

)
Cmn = 0.

Next, using the fact that there are n(n+1)
2 − 1 = rmax linearly independent, trace-free

and symmetric Ci j , we conclude that the symmetrisation of the coefficients of Cmn must
vanish independently,

i
j

m n
(
�imn , j + �i

ab Pabjmn − τim gnj

)
= 0 . (5.12)

Contracting in (n, j) yields (5.9). Contracting (5.12) in (n, m) shows that (5.9) is the only
independent trace of (5.12). The trace-free part of (5.12) is (5.10), and this completes
the proof. ��

Lemma 5.4 ensures that Pi jk
mn contains enough information to recompute the struc-

ture tensors Ti jk and τi j .

Corollary 5.5. In an abundant system, the structure tensors can be recomputed from
Pi jk

mn defined in (5.8). We have

tk = −3

n
Pabi

ab

Si jk = 3

n

(
Pi jak

a +
n − 1

n
gi j Pabk

ab + i j
n − 2

n
gik Pabj

ab
)

,

which yield Ti jk , and (5.9), which yields τi j .

Proof. This follows from Pabi
ab = − n

3 ti , and

Pi jak
a = n

3
Si jk +

n − 1

3
gi j tk + i j

n − 2

3
gik t j .

Together with Lemma 5.4 the claim follows. ��

5.2. Integrability conditions in an abundant system. A trace-free conformal Killing
tensor in an abundant conformally superintegrable system satisfies the prolongation
system (5.1). Due to the condition of abundantness, its integrability condition only
depends on g, T and ∇T . We have already seen that non-degeneracy is the condition for
the generic integrability of V . Along a similar line, abundantness is then the condition
for the generic integrability of Ki j .

Proposition 5.6. For the trace-free conformal Killing tensor fields in an abundant (con-
formally) superintegrable system, the integrability condition of (5.1) reads

k
l

(
Pi jk

mn
,l + Pi jk

pq Ppql
mn

)
= 1

2
i j m n Rm

ikl g
n

j . (5.13)

Note that the integrability conditions (5.13) are not conformally invariant. This is entirely
analogous to (4.5), which are not invariant either. However, our further analysis is going
to show that we can distill invariant conditions out of (5.13) and, as we shall see, these
already imply (4.5).
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Proof. Writing
Ci j,k = Pi jk

mnCmn , (5.14)

and taking the covariant derivative, yields

Ci j,kl = Pi jk
mn

,lCmn + Pi jk
mnCmn,l .

After antisymmetrisation over (k, l) we can eliminate all derivatives of C by using the
Ricci identity

k
l

Ci j,kl = i j Rm
iklCmj

on the left hand side, and substituting (5.14) for Cmn,l on the right hand side. We obtain

i j Rm
ikl g

n
j Cmn = k

l

(
Pi jk

mn
,l + Pi jk

pq Ppql
mn

)
Cmn . (5.15)

An abundant conformally superintegrable system has n(n+1)
2 − 1 = rmax linearly in-

dependent trace-free conformal Killing tensors C . Since this is exactly the number of
independent components of the trace-free symmetric tensor Cmn , we can replace Cmn
by a symmetrisation in m and n as the expression in parentheses in (5.15) is already
trace-free in m and n. ��
Lemma 5.7. For an abundant system, the curvature tensor Rl

i jk satisfies

Rl
i jk = 2

n + 2
j
k

(
Piaj

la
,k + Piaj

pq Ppqk
la

)
. (5.16)

Proof. Contracting (5.13) in n and j immediately yields the result. ��
Lemma 5.7 allows us to express the curvature in terms of the superintegrable structure
tensor. Alternatively we can also view it as a curvature obstruction to the structure
tensor. In any case, it enables us to (almost) eliminate the curvature from the integrability
conditions.

Lemma 5.8. An abundant conformally superintegrable system satisfies the curvature
independent equation

k
l

(
Pi jk

mn
,l + Pi jk

pq Ppql
mn

)
= i j m n

k
l

(
Piak

ma
,l + Piak

pq Ppql
ma) gn

j

n + 1
.

(5.17)

The proof is straightforward. By a tedious computation, the following corollary is con-
firmed.

Corollary 5.9. For an abundant system, (5.9), (5.16) and (5.17) imply (4.5).

Therefore, for abundant systems, the integrability conditions for the potential V , its trace-
free conformal Killing tensors Ci j and their respective scalar parts W are equivalent
to (5.9), (5.10), (5.16) and (5.17).
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5.3. Non-linear prolongation equations for the structure tensor. We have found the
prolongation (4.1) for the potential and the prolongation (5.1) for the trace-free conformal
Killing tensors in a conformally superintegrable system. Now we show that these imply
a third, non-linear prolongation for the structure tensor Ti jk , which expresses covariant
derivatives of Ti jk polynomially in terms of Ti jk and the Ricci tensor Ri j .

Proposition 5.10. For an abundant conformally superintegrable potential in dimension
n � 3, the primary structure tensor Ti jk , decomposed according to (4.7) as

Ti jk = Si jk + i j

(
t̄i g jk − 1

n
gi j t̄k

)
,

satisfies the following non-linear prolongation:

∇i t̄ j =
(

3
(n−2)

Ri j + 1
3(n−2)

Si
ab S jab + 1

3 t̄i t̄ j

)
◦ +

1

n
gi j∇a t̄a (5.18a)

∇a t̄a = 3
2(n−1)

R + 3n+2
6(n−1)(n+2)

Sabc Sabc − (n−2)
6 t̄ a t̄a (5.18b)

∇l Si jk = 1
18 i j k ◦

(
Sil

a S jka + 3 Si jl t̄k + Si jk t̄l +
(

4
n−2 S j

ab Skab − 3 S jka t̄a
)

gil

)

(5.18c)

Remarkably, the system (5.18) is the same as the one found for properly superintegrable
systems in [KSV23], with the curvature term in (5.18a) replaced using (5.9). Here we
leave the curvature term, in order to not re-introduce τi j into (5.18).

Proof of Proposition 5.10. The equations (5.18a) and (5.18b) are obtained from (5.16)
by contraction. Now, using (5.17), define

Ei jk
mn

l = (n + 1)
k
l

(
Pi jk

mn
,l + Pi jk

pq Ppql
mn

)

− i j m n
k
l

(
Piak

ma
,l + Piak

pq Ppql
ma)

gn
j ,

which is pure trace.
Its trace components are given by E (1)

kmnl = Ea
akmnl , E (2)

i jkl = Ea
ja

mn
l , and E (3)

i jnl =
Ei ja

a
nl , satisfying the relation 2(n − 2)

(
E (2)

i jkl − E (3)
k jil

)
= (n2 − 2n − 2) E (1)

lk j i . This

yields the trace-free part of (5.18c). The trace part is obtained from E (1)
i ja

a
. ��

Notably, the system (5.18) is already conformally invariant, see Sect. 6.4 for details.
Indeed, in (5.18a) and (5.18b) the terms involving t̄ absorb the transformation behaviour
of Ri j under (3.24).

5.4. The integrability conditions for abundant systems. In addition to the integrabil-
ity conditions for Killing tensors in abundant systems, we have two more equations,
namely (5.9) and (5.10). Note that only (5.9) involves the secondary structure tensor τi j ,
as it allows us to express τi j in terms of the structure tensor Ti jk .

Lemma 5.11. (i) The non-linear prolongation (5.18) implies Eq. (5.10).
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(ii) For abundant systems in dimension n � 3, the equations of the non-linear prolon-
gation (5.18), together with

Wi jkl = i k
j l

∗

◦
Sik

a S jla = 0 , (5.19)

are equivalent to the integrability condition (5.13).
(iii) With (5.18), Eq. (5.9) becomes

3 (n − 2)

(
P̊i j − 1

2
τi j

)
=

(
(n − 2)(Si ja t̄a + t̄i t̄ j ) − Si

ab S jab

)
◦ . (5.20)

Proof. For the first part simply resubstitute (5.18) into (5.10). The proof of part (ii),
namely of Equation (5.19), is analogous to that of Theorem 5.9 in [KSV23]. Finally, for
part (iii), resubstitute (5.18) into Eq. (5.9). We obtain (5.20). ��
As an immediate consequence of (5.18) and (5.19), we obtain the following obstruction
on the geometry underlying an abundant system.

Corollary 5.12. Abundant conformally superintegrable systems can only exist on con-
formally flat manifolds.

Proof. It follows immediately from (5.19) that an abundant conformally superintegrable
system can only exist on a Weyl flat manifold. Therefore, for dimension n � 4, they can
exist only on conformally flat manifolds. In dimension 2, any metric is conformally flat.
We are therefore left with the case n = 3. Using standard scale, i.e. t̄ = 0, Eq. (5.18c)
yields that

Si
ab S jab − 3

20
Sabc Sabc gi j

is a Codazzi tensor. The claim then follows from the Weyl-Schouten Theorem. ��

6. Equivalence Classes of Abundant Superintegrable Systems

So far, we have considered conformally superintegrable systems whose underlying ge-
ometry is a (pseudo-) Riemannian manifold. We now turn towards conformal equiva-
lence classes, i.e. towards c-superintegrable systems on conformal manifolds. For such
systems, Si jk is the conformally invariant structure tensor. According to (5.20), the
secondary structure tensor τi j is determined by Ti jk and the Ricci curvature. Table 2
contrasts the setting of properly and conformally superintegrable systems as opposed to
c-superintegrable systems.

6.1. Obstructions to the integrability of the non-linear prolongation. Consider the non-
linear prolongation (5.18) of PDEs for t̄ and Si jk . We now investigate the integrability
conditions for this system. The prolongation Eq. (5.18) are non-linear in the components
of Si jk and t̄i . Therefore the Ricci conditions,

l
m

∇m∇l Si jk = i j k Rialm Sa
jk (6.1a)
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Table 2. Synopsis of the main objects in proper, conformal and c-superintegrability

Comparison of abundant second order systems: proper versus conformal versus
c-superintegrability
Type Proper superintegrability Conformal

superintegrability
c-superintegrability

Geometry metric gi j Pseudo-Riem. metric gi j Pseudo-Riem. metric gi j Conformal

Constants of motion (Proper) integrals Conformal integrals

Primary structure
tensor

Ti jk = Si jk + i j ◦ t̄i g jk Si jk = T̊i jk

Secondary structure
tensor

τi j = 0 Given by (5.20) None (not conformally
invariant)

j k ∇k∇ j t̄i = Riajk t̄a , (6.1b)

are necessary, but need not be sufficient for the integrability of (5.18). Sufficiency is
guaranteed if not only the Ricci condition, but also all of its differential consequences
are satisfied in a given point x0 [Gol67]. We find that the integrability conditions, of
which a priori there can be infinitely many, reduce to a single algebraic equation of the
form (1.3).

Theorem 6.1. (i) If Eq. (5.19) holds, then the integrability conditions (6.1) of (5.18) are
satisfied.

(ii) Let M be a conformally flat, pseudo-Riemannian manifold of dimension n � 3 and
let x0 ∈ M be a point on this manifold. Then any solution �i jk = Si jk(x0) of (1.3)
together with the arbitrary initial values t̄(x0) and ∇ t̄(x0) can be extended, in a neigh-
borhood of x0, to solutions Si jk(x) and t̄(x) of the non-linear prolongation (5.18).

Proof. (i) Since the integrability condition cannot depend on t̄ , we may w.l.o.g. perform a
conformal transformation such that the transformed system is in standard scale, t̄ = 0.
As a result, (5.18a) and (5.18b) determine the Ricci curvature tensor in this scale. We
shall comment on this after finishing the proof. First, let us investigate the integrability
condition for (5.18c), which by virtue of the aforementioned transformation has
turned into

∇l Si jk = 1
18 i j k ◦

(
Sil

a S jka + 4
n−2 S j

ab Skab gil

)
. (6.2)

Using (5.18a), (5.18b) and Weyl-flatness (5.19), we replace the Riemann curvature
in (6.1a) by a quadratic expression in S. Due to (5.19) in combination with the non-
linear prolongation (5.18) and (5.20), Eq. (6.1a) is equivalent to the conformally
invariant condition

j
k

(
Sabc Si ja Skbc

)
◦ = 0,

which is confirmed to be an algebraic consequence of (5.19) by way of contract-
ing (5.19) with S. We have therefore established (5.19) as the only first order inte-
grability condition of (5.18c). By an analogous computation we then confirm that all
Ricci identities of (5.18) are satisfied if (5.19) holds. As explained earlier, however,
the first order integrability conditions (6.1) need not be sufficient for the integrability
of (5.18). We now proceed to show their sufficiency.
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(ii) In order to find sufficient, pointwise integrability criteria, higher order integrability
conditions have to be taken into account. Concretely, all differential consequences
of (5.19) need to be satisfied in a fixed point x0 in order to allow us to extend Si jk and
t̄ such that the extensions satisfy (5.18) in a neighborhood of x0. Taking a covariant
derivative of (5.19) and replacing derivatives of Si jk by (6.2), we find an algebraic
condition on Si jk . Using (5.19) again, it is verified that this second order condition
is an algebraic consequence of the first order one, i.e. (5.19). ��

If instead of a pseudo-Riemannian manifold we consider a conformal manifold, we
obtain the following statement.

Corollary 6.2. Let (M, g) be a flat conformal manifold of dimension n � 3. A solution
of (1.3) can be extended to Si j

k(x) in a neighborhood of a point x0 ∈ M, such that
for g = 
−2g (where 
 > 0 is a scalar function) the totally symmetric and trace-free
tensor field Si jk(x) satisfies (6.2).

Proof. Note that (1.3) is an invariant condition. The statement follows from statement (ii)
in the theorem, making use of the fact that there exists a flat conformal scale choice,
which removes the curvature from the non-linear prolongation system (5.18). If (1.3)
holds in x0 ∈ M for this case, the system is integrable in a neighborhood of x0. Note
that the specific scale choice is technical and irrelevant for the statement. ��
Corollary 6.3. In dimension n = 3, (5.18) can be integrated for any Si jk(x0).

Proof. Note that (5.19) has Weyl symmetry and thus vanishes trivially in dimension
n = 3. ��

6.2. The conformal factors between standard scale, proper scale and flat scale. In the
standard scale t̄ = 0, Equations (5.18a) and (5.18b) become algebraic conditions on the
curvature tensor. In contrast, if a flat scale exists, exactly the curvature terms disappear.
In an arbitrary scale choice we have the following formula for the curvature, in terms of
the conformally invariant tensor Si jk and the conformal scale function σ .

Proposition 6.4. The Ricci tensor satisfies

Ri j = −1

9

(
Si

ab S jab +
n

3(n + 2)
gi j Sabc Sabc

)
+ (n − 2)

( ∇̊2
i j σ

σ
− 4(n − 1)

n(n − 2)2
�σ

n−2
2

σ
n−2

2

gi j

)

(6.3)

where σ = exp(− 1
3 t̄ ) is the conformal scaling from Definition 4.7.

Proof. Solve (5.18a) and (5.18b) for the Ricci tensor. ��
On the right hand side of (6.3), the first term is invariant (up to a conformal factor), while
the second term vanishes in standard scale. In a flat scale, Ri jkl = 0, and the left hand
side vanishes. The function t̄ = ρ arising from the primary structure tensor measures
‘how far’ the flat scale is from the standard scale. According to (4.12), the conformal
scale factor between the two scales is

θ := e− 1
3 ρ (6.4)

(note that we transform from the scale defined by hi j back to the standard scale with
metric gi j ). From (6.3) we see that the flat conformal scales θ are determined by Si jk .
The following lemma makes this explicit.



92 Page 40 of 53 J. Kress, K. Schöbel, A. Vollmer

Lemma 6.5. For any conformal class of abundant superintegrable systems there are
functions θ > 0 satisfying

∇̊2
i jθ = −

(
Si

ab S jab
)
◦

9(n − 2)
θ (6.5a)

�θ1− n
2 = (n − 2)(3n + 2)

36(n − 1)(n + 2)
Sabc Sabc θ1− n

2 . (6.5b)

where ∇̊2 is the flat, trace-free Hessian and � the flat Laplace operator, and where Si jk
is the conformal structure tensor in the flat scale.

Proof. Let the function t̄ = ρ be the trace of the structure tensor after a conformal
transformation to a flat scale. Then a conformal transformation with ϒ = −∇ρ

ρ
takes us

back to the standard scale. Rewriting (5.18a) and (5.18b) in terms of θ , and decomposition
of the result into its trace-free and trace parts, confirms the claim. ��
Solutions θ are not unique. Indeed, a positive constant scalar multiple of θ is again a
solution, and, in general, more solutions can exist. For instance, in Table 3 the systems
III and V are both in flat scale, and they are conformally equivalent, see [Cap14]. Two
different solutions θ represent two different flat conformally superintegrable systems
within the same conformal class. They share the same T̊i j

k = Si j
k but the traces of

Ti jk will be different unless the t̄ differ only by an additive constant. In order to under-
stand the space of solutions θ better, let us study (6.5a) further, ignoring the additional
constraint (6.5b) for a moment. We find:

Lemma 6.6. Equation (6.5a) has the linear prolongation

∇2
i jθ = − (Si

ab S jab)◦
9(n − 2)

θ +
1

n
gi j �θ (6.6a)

(�θ),k = n

9(n − 2)
Sabc Skab θ,c +

3n + 2

27(n − 1)(n − 2)
Sk

ab Sa
cd Sbcd θ (6.6b)

where ∇2 is the flat Hessian and � the flat Laplace operator, and where Si jk is the
conformal structure tensor in the flat scale. The integrability conditions for (6.6) are
equivalent to (5.19).

Proof. Equations (6.6) are obtained in formal analogy to (4.1), where formally T ≡ 0.
Its integrability conditions are satisfied due to (5.19), as (6.6a) is a special case of (5.18a).

��
Equations (6.6) are a linear prolongation system for θ whose coefficients are determined
by Si jk . Its solutions θ lie in an (at most) (n + 2)-dimensional linear space, determined
by the values of �θ,∇θ and θ in a fixed point. The additional constraint (6.5b) defines
a quadric in this space.

6.3. Classifying the conformal classes of conformally superintegrable systems. In the
previous section we have found algebraic integrability conditions whose form is the
same for any conformally superintegrable system within a class (in the next section
we reformulate them as equivariant conditions). As initial data we need to specify
�i jk = Si jk(x0). For a conformally flat geometry we may choose a flat metric, which
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facilitates determining a solution for Si jk . In order to reconstruct an abundant confor-
mally superintegrable system from the initial data �i jk = Si jk(x0), we recall that an
abundant superintegrable system requires a conformally flat metric g = φ2 h where h
is the flat metric. Then we can use the following procedure.
(i) Let �i jk = Si jk(x0) be the initial data given in a point x0. Assume that �i jk solves

the algebraic condition (1.3). The �i jk do not depend on φ, and if �i jk are solutions
then so are k�i jk for k �= 0.

(ii) We extend the initial data �i jk to a solution in a neighborhood of x0 such that the
non-linear prolongation (5.18) holds. This is possible by virtue of Corollary 6.2.
For a concrete computation we should choose some conformal scale, and the flat
scale is a reasonable choice. We then need to specify the initial data ∇ρ(x0) and
ρ(x0) in addition to �i jk .

(iii) This yields Ti jk up to a conformal transformation. Integrating the Wilczynski
Eq. (3.14) for V in the specific scale given by t̄ = ρ, and computing v = e

2ρ
3 V , we

find the conformally invariant potential as an (n + 2)-parameter family of densities
of weight −2. This is the space Vmax. The space Cmax of conformal Killing tensors
is similarly obtained by integration of (5.1).

Since all integrability conditions are satisfied generically, we find at least 1
2 n(n+1) many

linearly independent conformal integrals. We address their functional independence
below in Lemma 6.7.

The procedure just outlined allows one to reconstruct an abundant c-superintegrable
system from the given initial data and the knowledge of the underlying conformal met-
ric up to the choice of the potential from Vmax. We recall Assumption 3.6, but remark
that with Lemma 6.7 below, we are able to restrict the space Cmax in order to obtain
2n − 1 functionally independent conformal integrals. Let us reinterpret the aforesaid
in the light of classifying c-superintegrable systems. In [KSV23, Theorem 6.4] it is
shown that the classification space for irreducible non-degenerate superintegrable sys-
tems on a (pseudo-) Riemannian manifold M with analytic metric is a quasi-projective
subvariety U ⊂ G2n−1(K(M)) in the Grassmannian of (2n − 1)-dimensional sub-
spaces in the space K(M) of Killing tensors on M . Since any c-superintegrable system
admits at least one system in proper scale, it follows that the classification space of ir-
reducible non-degenerate c-superintegrable systems with analytic metric is the quotient
Ũ = U/Conf(M). For non-degenerate irreducible conformally superintegrable systems
on analytic metrics, the classification space is a fibre bundle over Ũ .

The following lemma was proven for properly superintegrable systems in reference
[KSV23]. We adapt it for conformal systems.

Lemma 6.7. Let C (α) be 2n − 2 linearly independent, trace-free conformal Killing ten-
sors satisfying the integrability conditions (5.15) for (5.1), and (4.5) for (4.1). Then, in
the linear space Vmax of solutions V to Eq. (4.1), those V that give rise to functionally
dependent integrals are confined to an affine subspace of V with non-empty complement.

Proof. Suppose the integrals (3.4) were functionally dependent. Then there is a function
ϕ : R

2n−2 → R, non-zero in an open subset of its domain, such that

ϕ(F (1), . . . , F (2n−2)) = 0 (6.7)

This implies the infinitesimal condition

2n−2∑
α=1

λ(α)d F (α) = 0, (6.8)
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where

λ(α) = ∂ϕ

∂ F (α)
(F (α)) , d F (α) = ∂ F (α)

∂xk
dxk +

∂ F (α)

∂pk
dpk .

By a direct computation we find

∂ F (α)

∂xk
= C (α)

i j,k pi p j + V (α)
,k ,

∂ F (α)

∂pk
= 2C (α)

jk p j .

Separating the components of (6.8) and substituting (3.7), we conclude
∑
α

λ(α)

(
C (α)

i j,k pi p j + C (α)
jk V , j + ω

(α)
k V

)
= 0 (6.9a)

∑
α

λ(α)C
(α)
jk p j = 0. (6.9b)

Invoking (5.1), we obtain

C (α)
i j,k pi p j = 2

3

(
T a

i j C
(α)
ka − T a

k j C
(α)
ia

)
pi p j − 2

3n

(
Tk

abC (α)
ab − taC (α)

ak

)
pc pc .

Multiplying with λ(α) and summing over α, we find, using (6.9b) and the decomposi-
tion (4.7),

∑
α

λ(α)C
(α)
i j,k pi p j = 2

3

∑
α

λ(α)

(
Sa

i j C
(α)
ka − 1

n
tagi j C

(α)
ka − 1

n
Sk

abC (α)
ab gi j

)
pi p j .

Substituting this back into (6.9a), invoking (3.2), and using again the decomposition (4.7),
we conclude

Cabη
kab = 0 , (6.10)

where we use the abbreviations

Cab :=
∑
α

λ(α)C
(α)
ab

and

ηkab = gka
(

Sb
i j pi p j − 1

n
tb pc pc +

3

2
V ,b − 1

n

(n + 1)(n − 2)

(n − 1)(n + 2)
tb V

)

+
1

n
Skab (V − pc pc).

Note that C(x0) �= 0. Indeed, otherwise the C (α)
ab (x0) would be linearly dependent,

∑
α

k(α)C
(α)
ab (x0) = 0, k(α) = λ(α)(x0).

Because of (5.1) the derivatives of C (α)
ab are linearly dependent at x0, with the same

constants k(α). Iterated application of (5.1) to higher derivatives shows that the same
is true for all higher derivatives. It readily follows that

∑
α k(α)C (α) = 0 everywhere,

which contradicts the linear independence of the conformal Killing tensors C (α).
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Now, for x0 ∈ M , consider the mapping � : T ⊗3
x0

M → Tx0 M , given by contracting
with Cab,

�(ηkab) = Cabη
kab.

By virtue of Eq. (6.10), we conclude that for any potential V ∈ Vmax

ηkab(x0) ∈ ker �.

Using the linearity of the kernel, we conclude further that
[

3

2
gkbV ,a +

1

n

(
Skab − (n + 1)(n − 2)

(n − 1)(n + 2)
gkbta

)
V

]

x0

∈ ker �.

Choosing V (x0) = 0, we obtain that

Ck
a V,a(x0) = 0

for any choice of V,a(x0), contradicting that C(x0) �= 0. ��
Theorem 6.8. Abundant conformally superintegrable Hamiltonians with their (n + 2)-
parameter family of potentials, and identified under conformal transformations, are
classified by (1.3).

Proof. An abundant conformally superintegrable Hamiltonian with its (n+2)-dimensional
space Vmax of all compatible potentials, can be recovered from Si jk up to a conformal
transformation of superintegrable systems and every abundant system satisfies (1.3).

��

6.4. Invariant formulation of the non-linear prolongation equations. In this section we
express the non-linear prolongation equations (5.18) in a conformally invariant way.

Proposition 6.9. (i) Equation (5.18a) is equivalent to

H̊i jσ = − 1

9(n − 2)

(
Si

ab S jab

)
◦ σ , (6.11)

where σ = e− 1
3 t̄ and where H̊ is the conformally invariant trace-free Hessian, defined

by

H̊i j =
(
∇2

i j − Pi j

)
◦ .

(ii) Equation (5.18b) is equivalent to

Lσ 1− n
2 = −2

9

3n + 2

n + 2
Sabc Sabc σ 1− n

2 , (6.12)

where L denotes the conformal Laplacian,

L = −4
n − 1

n − 2
� + R.
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(iii) Equation (5.18c) is equivalent to

∇ t̄
l Si jk = 1

3
i j k ◦

(
Sil

a S jka − 4

n − 2
gkl Si

ab S jab ,

)
(6.13)

where ∇ t̄ is the conformally equivariant Weyl connection [Wey18] defined by

∇ t̄
i α j = ∇iα j − w + 1

3
t̄iα j − 1

3
t̄ jαi +

1

3
t̄ aαagi j , (6.14)

for α j of conformal weight w = − 2
3 , i.e. α j �→ 
wα j under conformal transforma-

tions.

Proof. Parts (i) and (ii) are straightforward. For part (iii), apply (6.14) to Si jk ,

∇ t̄
l Si jk = ∇l Si jk − 1

18
i j k ◦

(
3 Si jl t̄k + Si jk t̄l − 3 gkl Si ja t̄a

)
.

A direct computation indeed confirms that ∇ t̄ is invariant under conformal changes up
to multiplication by a factor: The replacement rules are g → 
2 g and t̄ → t̄ − 3 ln |
|,
as well as, respectively, Si jk → 
2Si jk or αi → 
wαi with w = − 2

3 . ��
Two remarks are in place with regard to the above proposition. First, note that the
conformal weights required for the trace-free conformal Hessian and the conformal
Laplacian are different, leading to different powers of the conformal scale function.
The second remark concerns the conformal invariance of the operators. Note that, under
conformal transformations with rescale function 
, we have

σ 1− n
2 → 


1− n
2 σ 1− n

2 ,

and the conformal invariance of L means

L ◦ 
1− n
2 = 
−1− n

2 ◦ L,

which is consistent as Sabc Sabc → 
−2Sabc Sabc. Note that in the standard scale, i.e. for
t̄ = 0 resp. σ = 1, Eq. (6.12) is an expression for the scalar curvature in terms of Si jk ,
and (6.11) for the Schouten tensor.

Remark 6.10. To determine whether the non-linear system (5.18) is integrable, it is suf-
ficient to know the invariants in (6.11), (6.12) and (6.13) as well as those in (6.6), which
are constructed algebraically from S.

These invariants are

Ai jkl = i j k
l ◦

(Sil
a S jka) + i j k l ◦(Sil

a S jka) ,

Bk = Sk
ab Sa

cd Sbcd ,

�i j = i j Si
ab S jab .

The last of these invariants has the following geometric interpretation. Due to (5.18a),

P̊i j = 1

9(n − 2)
�̊i j ,
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where Pi j denotes the Schouten curvature for the standard scale. Its trace satisfies

Pa
a = 3n + 2

18(n − 1)(n + 2)
�a

a .

The invariant Bk also has a geometric meaning. It is easy to show that

Pa
a,k = − (3n + 2) Bk

27(n − 2)(n − 1)
, (6.15)

and therefore Bk = 0 characterises the case when the standard scale system has constant
scalar curvature. Note that Bk and �a

a are not (differentially) independent.

6.5. Properly superintegrable systems on constant curvature manifolds. In the reference
[KSV23] abundant properly superintegrable systems are studied. These systems satisfy
τi j = 0 due to Lemma 3.15 and thus (5.20) becomes

[
(n − 2)(Si ja t̄a + t̄i t̄ j ) − Si

ab S jab

]
◦ = 3 R̊i j . (6.16)

For a metric of constant sectional curvature, the right hand side of (6.16) vanishes.
Moreover, [KSV23] shows that, for constant curvature, (6.16) and (5.18) imply that

Sabc Sabc − (n − 1)(n + 2) t̄ a t̄a = 9R . (6.17)

Theorem 6.11. Let g be of constant sectional curvature. If τi j = 0 and (6.17) hold, then

�σ n+2 = −2
n + 1

n − 1
R σ n+2 (6.18)

where σ = e− 1
3 t̄ as in Definition 4.7.

Proof. If (6.17) holds, then Sabc Sabc can be eliminated from Eq. (5.18b), yielding

�t̄ = 6(n + 1)

(n − 1)(n + 2)
R +

n + 2

3
t̄ ,a t̄,a .

In terms of σ = e− 1
3 t̄ , this rewrites as (6.18). ��

For constant curvature spaces, Eq. (5.18b) thus becomes a Laplace eigenvalue problem,
and a power of the scale function σ is an eigenfunction of �. For a flat manifold, (6.18)
merely implies that σ n+2 is harmonic. On the round sphere S

n ⊂ R
n+1, we have spherical

harmonics with the quantum number μ = n + 1 satisfying

μ (μ + n − 1) := 2
n + 1

n − 1
Rr2 = 2 n(n + 1) , (6.19)

where the second equality follows from R = n(n−1)

r2 with r > 0 denoting the radius of
the sphere.

A close connection between the Helmholtz-Laplace equations and conformal super-
integrability has been found in [KMS16,KKMP11]. Such links also appear in the present
paper, although in different context: Earlier we have seen that on conformally flat spaces
we find a scalar function θ1− n

2 satisfying the generalised Helmholtz Eq. (6.5b). Now we
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have found (6.12), which is a conformally invariant generalised Helmholtz equation. In
particular, in the case of proper superintegrability, the (n + 2)-nd power of the conformal
scale function satisfies the generalised Helmholtz Eq. (6.18). It is a proper Helmholtz
equation in the case of constant scalar curvature.
We use Eq. (6.18) to study conformally equivalent properly superintegrable systems
further.

Proposition 6.12. Assume we are provided with an abundant second order properly
superintegrable system on the sphere with the round metric g, which is conformally
equivalent to a properly superintegrable system on flat space with the flat metric h =

−2g. Then the conformal factor σ on the sphere has to satisfy



(
�
 − g(d ln(σ n+2), d
)

)
+ g(d
, d
) = 0 . (6.20)

Note that 
 is the conformal factor mediating between the standard and the spherical
scale, while σ mediates between the spherical and the flat scale.

Proof. Due to (6.18), a properly superintegrable system on flat space must satisfy the
condition �flat(


−(n+2)σ n+2) = 0. A direct computation using (6.18) then shows

�flat(

−(n+2)σ n+2) = (3n + 2) σ n+2
−(n+6)

[

�
 + 
,a
,a − 

,a (ln σ n+2),a

]
,

taking into account that

R = −2
n − 1


2

(

�
 − n

2

,a
,a

)
.

due to (3.24). ��
The following example generalises a result shown in [KKM06], which addresses the

specific case of dimension 3, see also [Cap14]. The proof presented here is a relatively
simple exercise, while with traditional methods the claim, if at all, cannot be obtained
for arbitrary dimension in a straightforward fashion.

Example 6.13. (Generic system on the n-sphere) Consider the generic system on the n-
sphere, with n � 3, introduced for dimension 3 in Example 4.14. In arbitrary dimension
we have the metric

g =
n∑

m=1

(
m∏

k=2

sin2(φk−1)

)
dφ2

m

with angular coordinates φ1, . . . , φn . The superintegrable potential defining the generic
system is

V = a0 +
n∑

m=1

(
am

cos2(φm)
∏m

k=2 sin2(φk−1)

)
+

an+1∏n
k=1 sin2(φk)

For this system, σ n+2 satisfies the Laplace eigen-equation with quantum number n + 1,

�σ n+2 = −2n(n + 1)σ n+2.
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Solutions of this equation span a vector space of dimension (n +2)2 whose basis is given
by hyperspherical harmonics.

Concretely, for the generic system, we have

σ n+2 =
n∏

k=1

cos(φk) sinn−k+1(φk),

which does not satisfy (6.20).

We have thus proven the following.

Proposition 6.14. The generic system on the n-sphere is not conformally equivalent to
a properly superintegrable system on flat space.

We remark that the generic system on the n-sphere can be transformed into a proper su-
perintegrable systems on flat space using Bôcher transformations or orbit degenerations
[Cap14]. Opposed to conformal transformations, however, these are not equivalence
relations on conformally superintegrable systems.

Proposition 6.15. A non-degenerate properly superintegrable system on the n-sphere
cannot be conformally equivalent to the harmonic oscillator.

Proof. The harmonic oscillator has a vanishing structure tensor, Ti jk = 0. Therefore any
system conformally equivalent to the harmonic oscillator must satisfy Si jk = 0. Being
proper, due to (6.11), (6.12) and (6.18), the system on the sphere satisfies

∇̊2
i jσ = 0, �σ 1− n

2 = 0, �σ n+2 = −2
n + 1

n − 1
Rσ n+2 �= 0,

where ∇̊2 and � are the trace-free Hessian and the Laplace-Beltrami operator on the
sphere of constant scalar curvature R �= 0. This system does not admit a solution. ��
Definition 6.16. We say that a c-superintegrable system is basic if it contains a member
system that is an abundant properly superintegrable system on a manifold of constant
curvature.

In reference [KSV23], it is proven that the structure tensor of an abundant second order
properly superintegrable system on a constant curvature manifold of dimension n � 3
satisfies

Ti jk = 1

6
i j k ◦ B,i jk + i j ◦

1

n + 2
gik

(
(�B), j +

2(n + 1)

n(n − 1)
RB, j

)
. (6.21)

where B is a scalar function, called its structure function. Obviously, the structure func-
tion is not unique, but according to [KSV23] it is determined up to addition of a solution
δB of

i j k ◦δB,i jk = 0 , (6.22a)

d

(
�δB +

2(n + 1)

n(n − 1)
R δB

)
= 0 . (6.22b)

The next proposition allows one to extend structure functions to all basic c-superintegrable
systems.
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Proposition 6.17. Consider two manifolds of constant curvature and with properly su-
perintegrable systems that are conformally equivalent. Denote their metrics by g and
g̃ = 
2 g. Assume the superintegrable systems with underlying metric g has the struc-
ture function B. Then the structure function B̃ for the system of g̃ can be chosen such
that

B̃ = 
2 B . (6.23)

Proof. On a manifold with Hamiltonian H = gi j pi p j + V , we infer from [KSV23] the
following formula for Bi jk in an abundant constant-curvature system,

Bi jk = Ti jk +
n + 2

n
gi j t̄,k +

1

2(n − 2)
i j k gi j C,k

where

C = n − 2

n + 2
�B +

2(n + 1)

n(n − 1)
RB − (n − 2)t̄ (6.24)

and

Bi jk = 1

6
i j k

(
B,i j +

4R

n(n − 1)
gi j B

)

,k

up to an irrelevant constant. By virtue of (3.19), we know the transformation rules

Si jk �→ S̃i jk = 
2Si jk and t̄,i �→ t̄,i − 3
−1
,i ,

and therefore that of Bi jk ,

B̃i jk = 
2 (
Bi jk + trace terms

)
. (6.25)

Secondly, we also know by construction that Si jk = i j k ◦ B,i jk , where on the
right hand side we recall that comma denotes the covariant derivative. An analogous
equation holds for S̃i jk with a function B̃. Now, let us denote by ∇ and ∇̃ the Levi-Civita
connections of g and g̃, respectively. Then, for the third derivatives,

i j k ◦∇̃3
i jk B̃ = 
2 i j k ◦∇3

i jk B (6.26)

because of the invariance of Si jk . A straightforward computation verifies that B̃ = 
2 B

satisfies (6.26). We have therefore confirmed that ¯̃t = t̄ − 3 ln |
| and B̃ = 
2 B yield
the correct structure tensors S̃i jk and ¯̃t,i for the conformally transformed manifold with
Hamiltonian H̃ = 
−2 H . The claim follows since structure functions are unique up to
solutions of (6.22). ��
In [KSV23] the structure function B is defined for abundant properly superintegrable
systems on constant curvature spaces only. We can now define it for any basic c-
superintegrable system.

Corollary 6.18. Abundant second order properly superintegrable systems on constant
curvature spaces in dimension n � 3 are Stäckel equivalent if and only if their conformal
densities b ∈ E[−2],

b = B det(g)
1
n ,

coincide up to a gauge transformation given by a solution of (6.22).
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7. Application to Dimension Three

In the present section, we apply our framework to the 3-dimensional case. Non-degenerate
second order conformally superintegrable systems in dimension 3 are classified in
[KKM06,Cap14]. Also, it is known that all these systems are abundant [KKM05b].
In [KKM06] it has been established that any non-degenerate second order conformally
superintegrable system is Stäckel equivalent to a non-degenerate second order abun-
dant and proper system on a constant curvature geometry. We shall therefore restrict
to the study of abundant systems for constant curvature metrics. All non-degenerate 3-
dimensional systems are equivalent to these. Recall that in dimension 3, the non-linear
condition (5.19) is void. Consequently, no further restriction exists on the tensor Si jk .
Hence any trace-free symmetric initial conditions �i jk = Si jk(x0) in a point x0 ∈ M can
be integrated for a structure tensor Si jk of an abundant second order conformally super-
integrable system, c.f. Corollary 6.3. Therefore the set of conformal equivalence classes
of such systems is parametrised by the seven dimensional space of trace-free symmet-
ric 3-tensors �i jk or, equivalently, harmonic ternary cubics �(p) = �i jk pi p j pk . This
parametrisation is equivariant with respect to the stabiliser subgroup of the point x0 in
the conformal group, which is isomorphic to SO(3).

We comment that this agrees with the references [KKMP11,CK14,Cap14].
In [KKMP11] a 10-parameter classification space is mentioned, corresponding to a
10-dimensional representation of SO(3) in [Cap14,CK14]. This 10-dimensional rep-
resentation decomposes into two irreducible components of dimension 7 and 3, corre-
sponding to Si jk and t̄,i in our framework. Note that the 3-dimensional component is
restricted in the references, which corresponds to imposing proper superintegrability
here. The 7-dimensional component is realised as the space of binary sextics and it is
shown that no restrictions exist on this component. The relation to our framework is
given by a known correspondence between harmonic ternary cubics and binary sextics
as follows.

The adjoint action of SL(2, C) on its Lie algebra sl(2, C) ∼= C
3 preserves the Killing

form. This defines a group morphism SL(2, C) → SO(3, C) with kernel {±1} and hence
an isomorphism SL(2, C)/Z2 → SO(3, C). The standard action of SL(2, C) on C

2 in-
duces an SL(2, C)-action on S2

C
2 which descends to an SO(3, C)-action, because the

elements ±1 act trivially. The latter induces an SO(3, C)-action on S3 S2
C

2 which de-
scends to S6

C
2 under total symmetrisation S3S2

C
2 → S6

C
2. Together with the isomor-

phism S2
C

2 ∼= C
3, we obtain a morphism S3

C
3 → S6

C
2 of SO(3, C)-representations,

giving an SO(3, C)-equivariant morphism from the 10-dimensional space of ternary
cubics to the 7-dimensional space of binary sextics. Its restriction to the 7-dimensional
space of harmonic ternary cubics is non-trivial and hence an isomorphism by Schur’s
lemma. Explicitly, it is given by defining a sextic s from the cubic �(p) via

s(z, w) = �(z2 − w2, 2zw, z2 + w2). (7.1)

Note that the stabiliser subgroup contains only rotations. The action of translations is
not linear and more involved.

Table 3 lists the established normal forms for 3-dimensional non-degenerate systems
on flat space, see [KKM06,Cap14]. The functions B and t̄ are obtained as established in
[KSV23], and due to Proposition 6.17 and Eq. (4.10), we may compute the corresponding
functions for any 3-dimensional non-degenerate system conformally equivalent to one
of the systems in Table 3. If in Table 3, we take the quotient under conformal equivalence
for each example, then the systems III and V are identified (use e.g. Corollary 6.18) and
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we obtain a list of nine abundant c-superintegrable systems. Due to [Cap14] these are
all abundant c-superintegrable systems in dimension 3, up to one exception. Indeed,
from [KKM05b,KKM06,Cap14] it follows that there is one equivalence class of non-
degenerate 3-dimensional superintegrable system that does not admit a representative
properly superintegrable system on flat 3-space. This system is the generic system on
the 3-sphere from Example 4.14, see also Proposition 6.14. Its conformally equivariant
structure tensor Si jk is generated by the structure function (up to gauge freedom)

B = −3

2

∑
k

s2
k ln(sk) .
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