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Abstract: In this paper, we investigate the behaviour of statistical physics models on
a book with pages that are isomorphic to half-planes. We show that even for models
undergoing a continuous phase transition onZ2, the phase transition becomes discontin-
uous as soon as the number of pages is sufficiently large. In particular, we prove that the
Ising model on a three pages book has a discontinuous phase transition (if one allows
oneself to consider large coupling constants along the line on which pages are glued).
Our work confirms predictions in theoretical physics which relied on renormalization
group, conformal field theory and numerics (Cardy in J Phys A Math Gen 24(22):L131,
1991; Iglói et al. in J Phys A Math Gen 24(17):L1031, 1991; Stéphan et al. in Phys Rev
B 82(12):125455, 2010) some of which were motivated by the analysis of the Renyi
entropy of certain quantum spin systems.

1. Introduction

Consider the N -pages book BN obtained by gluing N copies of an upper-half plane
H := Z×N along the bottom line Z×{0}, which is identified with Z, see Figs. 1 and 3.
(Throughout this paper, N = {0, 1, 2, . . .}.) We call these copies the pages H1, . . . ,HN

of the book and identify H
1 with H.

Our goal is to explore the behaviour of classical statistical physics systems on a N -
pages book. Of prime interest to us will be the family of Potts models as well as their
corresponding graphical representations named Fortuin-Kasteleyn percolations.

1.1. Potts model on the book. The Potts models are archetypical examples of statistical
physics systems undergoing a phase transition in two dimensions. Fix an integer q ≥ 2.
For G = (V, E) a finite graph of an infinite graphG = (V,E) (we sometimes write x ∼
y if xy ∈ E), attribute a spin variable σx belonging to a certain set� := {1, 2, . . . , q} to
each vertex x ∈ V . When q = 2, one speaks of the Ising model and use {−,+} instead
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Fig. 1. Critical site percolation on the book B4 (or rather its triangular lattice version here). The precise way
of gluing the pages together does not impact our results

of {1, 2} for �. A spin configuration σ = (σx : x ∈ V ) ∈ �V is given by the collection
of all the spins. Introduce the Hamiltonian of σ for free boundary conditions defined by

H f
G (σ ) := −

∑

xy∈E
[σx = σy] (1)

corresponding to a ferromagnetic nearest-neighbor interaction. For τ ∈ �, we also
define the Hamiltonian for monochromatic τ boundary conditions:

H τ
G(σ ) := H f

G (σ ) −
∑

x∈V,y∈V\V :x∼y

[σx = τ ]. (2)

The above Hamiltonian corresponds to a ferromagnetic nearest-neighbor interaction.
The Gibbs measure on G at inverse temperature β ≥ 0 with # (where # is either free or
monochromatic free) boundary conditions is defined by the formula

μ#
G,β [ f ] :=

∑

σ∈�V

f (σ ) exp[−βH#
G(σ )]

∑

σ∈�V

exp[−βH#
G(σ )]

(3)

for every f : �V → R.
WhenG = Z

2 orBN , onemay define theGibbsmeasure onG at inverse-temperature
β ≥ 0 with # boundary conditions by taking the limit as G ↗ G of the previous
measures. In infinite volume, the model undergoes a phase transition on Z

2 and BN at
some common βc = βc(q) = 1

2 log(1 +
√
q) [6] in the following sense. If

mG(β, q) := μτ
G,β [σ0 = τ ] − 1

q (4)

is the spontaneous magnetization of the model, then mG(β, q) is equal to 0 if β < βc
and is strictly positive if β > βc.
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When G = Z
2(= B2), whether the phase transition is continuous (i.e. mG(βc, q) =

0) or discontinuous (i.e. mG(βc, q) > 0) has been the object of much interest in the
past fifty years. It was proved in [29,35] that the phase transition of the Ising model is
continuous onZ2.More generally, it was predicted by Baxter [5] that the phase transition
of the Potts model onZ2 is continuous for q ∈ {2, 3, 4} and discontinuous for q > 4. See
[12,19] for a proof of this statement (see also [30] for a short proof in the case q > 4).

In this paper, we investigate the question on BN and prove the following result.

Theorem 1. There exists N0 < ∞, such that for every q ∈ {2, 3, 4}, the q-Potts model
undergoes a first-order phase transition on BN0 . Equivalently, for every N ≥ N0 and
every q ∈ {2, 3, 4},

mBN (βc, q) > 0.

As we shall explain below, it is natural in several respects to allow ourselves to
strengthen the coupling constants along the edges of the gluing line Z.

For J ≥ 0 and G ⊂ G, we then introduce the modified measure μG,β,J where H τ
G

is replaced by the Hamiltonian

H τ
G,J (σ ) = H τ

G(σ ) − (J − 1)
∑

x∼y∈V∩Z
[σx = σy]

(corresponding to changing coupling constants along the line Z from 1 to J ) and the
associated quantities μτ

G,β,J , μ
τ
G,β,J and mG(β, J, q).

To motivate the introduction of the parameter J , let us briefly mention the slightly
related problem of long-range Potts model on Z. The previous procedure is the analog
of strengthening the coupling-constants between adjacent vertices in this context: As
an example, in [2], coupling-constants are defined as Jx,y = Jx,y(J ) := J 1x∼y +

1
|x−y|2 1|x−y|≥2 and the following critical point is introduced ([2,27], see also our recent
work [13]),

β∗(q) := inf{β s.t. ∃J < ∞ for which there is long-range order for {Jx,y(J ))}x,y}.
In our present context, motivated by the predictions from [8,25,33,34] (see Subsec-

tion 1.3 below), and by analogy with β∗(q), we define below a notion of “optimal”
number of pages N∗(q) needed to create a first-order phase transition. The advantage
of the notions β∗(q) and N∗(q) comes from the fact that they are universal: they do not
depend on the particular way of gluing pages together (as far as the glue is finite-range,
say) or even the underlying lattice (it could be triangular or hexagonal for instance). For
any q ∈ [1, 4], define

N∗(q) := min{N ∈ N, ∃J < ∞ so that mBN (βc, J, q) > 0} . (5)

We obtain the following result on the behavior of the optimal number of pages N∗(q)

depending on q.

Theorem 2. We have the following:

(i) N∗(2) = 3
(ii) N∗(3) = 2
(iii) 1 ≤ N∗(q) ≤ 2 for all q ≥ 4.
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We will discuss each of these items below, after Theorem 7 which is the analogous
statement for FK percolation with cluster-weight q ∈ [1,∞).

Remark 1. As we will explain further below, the case q = 2 turns out to be especially
interesting. Physicists which considered this question have predicted that the first-order
transition in fact arises as soon as the number of pages is “2 + ε”. See Remark 2 and
Subsection 1.3.

Interestingly, in the case q = 2, the effect of this first-order phase transition is tomake
the Ising model on each of the N -pages independent of each other in the scaling limit.
The statement below (written for N = 3, but it would also be valid for large enough N
and J = 1) makes this factorization property more precise. Below, for a set A ⊂ V ,
write σA := ∏

x∈A σx .

Theorem 3. Fix q = 2. Let J < ∞ be large enough so that mB3(βc, J, 2) > 0. For any
three sets A ⊂ H

1, B ⊂ H
2, and C ⊂ H

3, containing a total of m vertices that are all
at a distance at least L of Z, we have the following factorization property of m-point
correlations across Z:

μ
f
B3,βc,J

[σAσBσC ] = 1m∈2Z μ+
H,βc

[σA]μ+
H,βc

[σB]μ+
H,βc

[σC ](1 + Om((log L)−c)) .

If + boundary conditions are prescribed instead, the condition on the parity of m can be
dropped and we get

μ+
B3,βc,J [σAσBσC ] = μ+

H,βc
[σA]μ+

H,βc
[σB]μ+

H,βc
[σC ](1 + Om((log L)−c)) .

Let usmention that the error term (log L)−c can be improved by lookingmore closely
at our proof, but this is irrelevant for the conclusion of the paper.

1.2. Fortuin-Kasteleyn percolation on the book. We now define the Fortuin-Kasteleyn
percolation [20,21] (we also refer to [23] for a manuscript and [10] for recent results).
Let G = (V, E) be a subgraph of an infinite graph G, let ξ be a partition of the vertices
∂G := {x ∈ V : ∃y ∈ G\V : xy ∈ E}. A percolation configuration is an element
ω = (ωe : e ∈ E) ∈ {0, 1}E . If ωe = 1 we say that the edge is open, otherwise it is
closed. We often see ω as a subgraph of G with vertex-set V and edge-set given by the
set of open edges in ω.

The FK percolation measure on G with edge-weights (p, λ) and cluster-weight q is
defined by the formula

P
ξ
G,p,λ,q [ω] = qk(ω)

Z

∏

xy∈E
pωe
e (1 − pe)

1−ωe ,

where k(ω) counts the number of clusters in the configuration ω, pe = p if at least one
endpoint is not inZ andλ if both are, andωξ is the graph obtained fromω bywiring all the
vertices in ∂G belonging to the same element of the partition ξ . Let ξ = 1 (resp. ξ = 0)
be the wired (resp. free) boundary conditions corresponding to the partitions equal to
{∂G} (resp. only singletons).

Below, we will use the notation A ←→ B (in C) if there exists a path of open edges
between a vertex in A and a vertex in B (using vertices in C only). We also write x
instead of {x} when the set is a singleton, and x ←→ ∞ to denote the fact that there
exists an infinite path starting from x .
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We construct the FK percolation P
1
G,p,λ,q and P

0
G,p,λ,q on G with wired or free

boundary conditions by taking the limit asG ↗ G of themeasuresP1
G,p,λ,q andP

0
G,p,λ,q .

We also define, for an infinite graph G containing the origin,

θG(p, λ, q) := P
1
G,p,λ,q [0 ←→ ∞].

It follows from [6] that there exists pc = pc(q) = √
q/(1 +

√
q) such that for ev-

ery integer N and λ ∈ (0, 1), θBN (p, λ, q) is equal to 0 if p < pc and is strictly
positive if p > pc. Again, the question of whether the phase transition is continuous
(i.e. θBN (pc, λ, q) = 0) or discontinuous (i.e. θBN (pc, λ, q) > 0) was answered in the
special case of G = Z

2(= B2): when 1 ≤ q ≤ 4, it is continuous [19] and when q > 4,
it is discontinuous [12]. Here, we investigate this question on BN with N ≥ 3. Our first
result is as follows.

Theorem 4. For any 1 ≤ q ≤ 4, there exists N0 < ∞ such that FK percolation
undergoes a first-order phase transition on BN0 . I.e. for any N ≥ N0,

θBN (pc(q), q) = P
1
BN ,pc(q),q [0 ←→ ∞] > 0.

By choosing N0 sufficiently large, the result also holds for arbitrary small λ ∈ [0, 1)
and for free boundary conditions, i.e. for any N ≥ N0,

P
0
BN ,pc(q),λ,q [0 ←→ ∞] > 0.

Note that Theorem 1 follows easily from Theorem 4.

Proof of Theorem 1. Through the Edwards-Sokal coupling between the Potts model and
FK percolation (see e.g. Section 1.4. in [23]), we have that

mBN (βc, J, q) = q−1
q θBN (pc, 1 − e−2β J , q),

hence Theorem 1 is a direct consequence of Theorem 4. ��
As in the case of Potts models, we define for any q ≥ 1,

N∗(q) := min{N ∈ N, ∃λ < 1 so that θBN (pc(q), λ, q) > 0} .

The following result gives a precise picture of the optimal number of pages N∗(q)

depending on q ≥ 1. (See Fig. 2 for a plot of q �→ N∗(q)). This extends Theorem 2
which was stated for Potts models (q ∈ N+).

Theorem 5. We have that

(a 3 ≤ N∗(1) ≤ 4,
(b) there exists N0 such that 3 ≤ N∗(q) ≤ N0 for every 1 ≤ q < 2,
(c) 2 ≤ N∗(2) ≤ 3 (with a strong indication that N∗(2) = 3, the inequality N∗(2) �= 2

being postponed to a later work [14]).
(d) N∗(q) = 2 for all 2 < q < 4,
(e) 1 ≤ N∗(q) ≤ 2 for all q ≥ 4.

We now comment on the different items in the above result.
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q

N ∗(q)

1 2 3 4

Fig. 2. The lines and dots in dark blue show the precise values proved for N∗(q). The light blue shows the
possible range of values for N∗(q) while the red color indicates where we expect N∗(q) to be

(a) The fact that N∗(1) ≤ 4 will follow readily from our proof of Theorem 4 using the
known value of the one-arm critical exponent in H for critical q = 1 percolation
([26,32]). We expect that this is optimal, i.e. that N∗(q = 1) = 4. The bound
N∗(1) ≥ 3 will be shown using a second moment argument in Sect. 4.

(b) We provide a direct proof in Subsection 2.3 that sup1≤q≤4 N
∗(q) < ∞. The fact

that N∗(q) ≥ 3 when 1 < q < 2 will also be proved in Sect. 4 using a second
moment argument based on estimates on the one-arm critical exponents from [17].
We expect that N∗(q) = 3 in this whole regime.

(c) The case q = 2 is, arguably, themost interesting of all. As opposed to the q = 1 case,
this result will not be a straightforward consequence of (the proof of) Theorem 4.
Its proof will be organized as follows:

(1) The proof that N∗(2) ≤ 3 will be the focus of Sect. 5. The argument will be
based on the random currents representation of the Ising model ([1,11]). Random
currents will indeed enable us to show that in the graphB3, far from themiddle line
Z, the spin system behaves (nearly) as if all edges along Z were wired together.
This will be a key step of the proof as the precise values of arm-exponents in H

depend on what are the boundary conditions induced along ∂H.
(2) The second part of the proof is to show that N = 2 pages are not sufficient to

create an infinite cluster even if the edge-weights λ are arbitrary large on Z. Here,
the second moment argument used for the case 1 ≤ q < 2 is not sufficient and
a detailed analysis of the effect of a 1d defect-line for 2d critical Ising model is
needed. This will be the subject of the later work [14].

(d) The proof that N∗(q) = 2 for any 2 < q < 4 will consist in showing that a de-
fect line Z with high coupling constants λ is sufficient in B2 = Z

2 to create on
its own an infinite cluster. The proof is given in Sect. 4. It will rely on the multi-
scale/renormalization argument built for Theorem 4 but will be simpler due to the
planarity of B2.

(e) Finally, when q > 4, it follows from the first-order phase transition ([12,30]) that
N∗(q) ≤ 2 for all q > 4 (no strengthening λ along Z is needed in that case) and
we expect that N∗(q) = 1 in this regime. When q = 4, the argument of item e) still
works to ensure N∗(4) ≤ 2 but strong RSW is missing to check that N∗(4) ≥ 2.
We still expect though that N∗(4) = 2.
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σ = + + + + + +− − −

+ + + + + +− − −

+ + + + + +− − −

+ + + + + +− − −

Fig. 3. If pσ is the probability to find the configuration σ on the middle line on the left, then the probability

to find the same σ at the bottom of the page in the middle is proportional to p1/2σ while the probability to find
σ at the bottom of the Book-graph on the right is proportional to p3σ

Remark 2. When q = 1 (resp. q = 2), it is not difficult to extend the analysis carried in
this paper to a Book with “N = 3 + ε" pages (resp “N = 2 + ε" pages) in the following
sense: consider the finite book with 3 pages (resp. 2 pages) of normal size [0, n]× [0, n]
and a fourth (resp third) page of size [0, n]× [0, nε]. These pages are glued along [0, n].
We claim that by a slight adaptation of the multiscale proof in this paper, we can show
that if the coupling constant λ is chosen high enough along [0, n], then with probability
1− o(1) as n → ∞, there is a macroscopic cluster in the “N = 3 + ε" book (resp long-
range order in the “N = 2 + ε" book) with intensity larger than 3

4 along the gluing line
[0, n]. This is consistent with predictions from [33,34] (though with a different notion
of “N = 2 + ε" pages). Note that the cases q = 1 and q = 2 are a bit more subtle as in
these two cases, the relevant 1-arm half-plane exponent is of the form 1/m.

In the whole paper, we focus on 1 ≤ q ≤ 4 and p = pc. We drop them from the
notation. In particular we write Pξ

G,λ instead of Pξ
G,pc,λ,q . It will happen that we write

P
ξ
G,pc

, but we warn the reader that this means that the λ parameter is equal to pc (as
the parameter p is always set to pc).

1.3. Motivations from replicas and quantum spin systems. Our results are motivated
by several works in theoretical physics. To our knowledge, the first works which have
considered the present gluing problem are the works [8,25] by Cardy and Iglói-Turban-
Berche. These two works rely on a renormalization group analysis in order to study the
limiting case N → ∞. Based on this RG analysis, both [8,25] suggest that if one glues
an Ising model at βc on N > 2 pages along a line, then the spins may spontaneously
order near that line. The gluing of several pages of Ising arises naturally in their works
in forms of replicas for a model with disorder, namely a 2d Ising model with quenched
magnetic disorder along its boundary ∂H.

More recently, in the works [33,34] by Stéphan-Misguich-Pasquier and Stéphan, the
authors combine conformal field theory arguments with numerical computations in order
to give strong further support to these predictions. See also the simulations in [22].

The goal behind [33,34] is in some sense also driven by the replica-trick but for a
different underlying motivation than in [8,25]. In these papers, the authors are interested
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in the Shannon entropy of the groundstate |ψ〉 of the quantum Ising chain (or quan-
tum Ising chain in transverse field), which is given on ZL := Z/LZ by the following
Hamiltonian

H Ising Chain = −
∑

i∈Z/LZ

σ x
i σ x

i+1 + h σ z
i .

(Here h stands for the transverse magnetic field and σ x as well as σ z are Pauli matrices).
For this Ising chain, the most natural basis, denoted {|σ 〉}σ∈{−1,1}L , of (C2)⊗Z/LZ is
given by the eigenstates of σ x

i which correspond to the actual spins in the classical
two-dimensional model. In this basis, and for the critical parameter h := hc = 1 in the
quantum Hamiltonian HIsing Chain, the ground state can be written as

|ψ〉 =
∑

σ∈{±1}L
p1/2σ |σ 〉,

where pσ denotes the probability for a classical Ising model1 in the infinite 2d cylinder
ZL ×Z to generate at βc the configuration σ at the middle slice of the cylinder ZL ×{0}.
The Shannon Entropy of the Quantum Ising chain in the basis is then defined as

S = −
∑

σ

pσ log pσ .

The connection with Book-Ising goes as follows: one can express the entropy S as a
limit as n → 1 of the so-called Renyi’s entropies Sn :

S = lim
n→1

Sn = lim
n→1

1

1 − n
log

( ∑

σ

pnσ
)
.

Now, in the spirit of the celebrated Parisi replica’s trick, the idea in [33,34] is to analyze
S via the analysis of the Renyi entropies {Sn}n∈N∗ . The link with Book-Ising is that the
measure onσ ∈ {−1, 1}L which assigns aweight on each configurationσ proportional to
pnσ can be realized as a Book-Ising on N = 2n pages (where pages here are semi-infinite
cylinders ZL × N). See Fig. 3 (with squares instead of semi-infinite cylinders).

Organization of the paper. In Sect. 2, we present the preliminaries of the paper and
the important disconnection exponents. At the core of this section is the statement of
Proposition 7. Section3 contains the proof of Proposition 7. Sections4 and 5 contain the
proofs of Theorem 5 for q �= 2 and q = 2 respectively.

1 For this correspondance to hold, the classical Ising model should not be on aZ2-grid but rather on aZ×R

lattice. We will not enter into these considerations here, but simply mention that our study does extend to this
more general framework using a similar renormalization framework and the statement of [16] guaranteeing
that the behaviour on Z

2 is similar as the one on Z × R.
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∂Λk

∂ΛK

∂Λk

∂ΛK

Fig. 4. The event F(k, K ) is realized on the left while F(k, K )c is realized on the right (the dashed lines
correspond to dual open paths). When F(k, K )c will hold, it will disconnect the left side of the book from its
right

2. Preliminaries and Disconnection Exponent on the Book

2.1. Disconnection exponent. In the rest of the paper, depending on the context,K will
be the box of size K in Z2. We will extensively rely through this paper on the following
event. For any 1 ≤ k ≤ K , let F(k, K ) be the event that there exists a page H

u in
which ∂k is disconnected from ∂K in H

u by a path in ω. Let us mention that the
complementary event F(k, K )c can also be interpreted using the dual representation of
the Fortuin-Kasteleyn percolation on the page, where ω∗ is defined as follows. For each
pageHu , let (Hu)∗ be the dual graph ofHu , and setω∗

e∗ = 1−ωe, where e∗ is the unique
dual edge that crossed e in its center. Then, we speak of a dual-open path of dual-edges

for a path in (Hu)∗ which is open in ω∗ (we write A
∗←→ B for the existence of a dual

connection between the sets A and B). Then, F(k, K )c corresponds to the event that in
each page, there exists a dual-open path from ∂k to ∂K , see Fig. 4.

Below,wewill speakof a critical exponentα∗ for a family of probabilities (P[A(k, K )] :
k ≤ K ) as follows

α∗ := sup{α > 0 : ∃ρ0 s.t. ∀K ≥ 1, ρ ≥ ρ0,P[A(K , ρK )] ≤ ρ−α}.
Morally speaking, this critical exponent is ruling the speed of algebraic decay –

in (k/K ) – of the probabilities P[A(k, K )]. In what follows, we expect the families of
probabilities (but this is currently unknown for most of the families under consideration)
exhibit a behaviour of the form

P[A(k, K )] = (k/K )α
∗+o(1),

where o(1) is a quantity that tends to 0 as k/K tends to 0. See the recent work [9] for
interesting results in this direction.

Definition 6. The disconnection exponent α(q, N ) is defined as the critical exponent of
the family P0

BK ,pc,pc,q
[F(k, K )c].

This disconnection exponent will be of central importance in this work as its value
will exactly detectwhen (as N increases) the phase-transition becomes first-order instead
of second-order. Indeed the main ingredient for the proof of our main results.

Proposition 7. For every 1 ≤ q ≤ 4, if N ≥ 1 is such that α(q, N ) > 1, then there
exists λ ∈ (0, 1) such that

θBN (pc, λ, q) > 0.

In other words, α(q, N ) > 1 implies N∗(q) ≤ N.
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2.2. Arm-exponents in H. The following three one-arm exponents in the upper-half
plane will help us obtain estimates on the disconnection exponent α(N , q) uniformly
in 1 ≤ q ≤ 4. As they are not known to exist, we define them like the disconnection
exponent (in the notation below we ignore the parameter λ as it is set to pc):

• α+
f ree(q): the critical exponent for the family

a+free(k, K , q) := P
0
H,pc,q [∂k

∗←→ ∂K ].
• α+

C
(q): the critical exponent for the family

a+
C
(k, K , q) := P

0
Z2,pc,q

[∂k
∗←→ ∂K in H].

• α+
wired(q): the critical exponent for the family

a+wired(k, K , q) := P
1
H,pc,q [∂k

∗←→ ∂K ].
Note that with these definitions, the following special cases are known:

(i) α+
f ree(1) = α+

C
(1) = α+

wired(1) = 1
3 as proved in [26,32] respectively for triangular

and Z
2 lattices.

(ii) α+
wired(2) = 1

2 (see e.g. [15]).

For future reference (we will use these estimates later on), we write a+# (K ) instead of
a+# (0, K ).

Remark 3. Since the free (resp. wired) boundary conditions are helping (resp. disadvan-
taging) a dual connection, we have that α+

f ree(q) ≤ α+
C
(q) ≤ α+

wired(q).

2.3. Proof of Theorem 4 given Proposition 7. We first prove the following uniform
control on N∗(q).

Proposition 8. There exists N0 such that for every 1 ≤ q ≤ 4, N∗(q) ≤ N0.

Proof. Assuming Proposition 7 holds, it is enough to find an integer N0 large enough
so that α(q, N0) > 1 for every 1 ≤ q ≤ 4.

The most trivial bound on α(q, N ) is obtained as follows. For F(k, K ) not to occur,
it must be that in each page, ∂k is connected to ∂K in the dual configuration ω∗; see
Fig. 4. Using the comparison between boundary conditions, one may split the book into

disconnected pages and use that this event has a probability smaller thanC(k/K )
α+
f ree(q)

in each page. This reasoning gives

α(q, N ) ≥ Nα+
f ree(q).

It is known from [26,32] that α0(1) = 1
3 , so we already obtain at this stage a proof of

the upper-bound in item a) of Theorem 5, i.e

N∗(1) ≤ 4.

For the remaining 1 < q < 4, we use Theorem 7 of [19] (strong Russo-Seymour-
Welsh result) that implies α+

f ree(q) > 0. Therefore, there exists N = N (q) such that
α(q, N ) > 1. The problem with this bound is that it deteriorates when q tends to 4, for
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which α+
f ree(4) is expected to be equal to 0. This reasoning would force us to choose a

number of pages N (q) tending to ∞ as q ↗ 4.
A slightly better bound is obtained by observing that by successively conditioning in

each page, for all but the last page, the probability of having a dual path connecting ∂k
to ∂K in a page is smaller than a+

C
(k, K ) since there exist at least two undiscovered

pages. Therefore by comparison between boundary conditions, the occurrence of the
connection is smaller than the one under the full plane measure, which explains why
we introduced above the exponent α+

C
(q) (Note that during the successive explorations

along pages, the status of the primal edges along the gluing line Z are never revealed
since they are not relevant for the event F(k, K )c to hold). This domination is valid as
long as there are at least two remaining pages so we get

α(q, N ) ≥ (N − 1)α+
C
(q).

This exponent is known to be larger than some constant c > 0 uniformly on 1 ≤ q ≤ 4.
See for example Lemma 1 in [19]. The fact that c can be chosen uniformly in 1 ≤ q ≤ 4
follows from the proof of Theorem 3 in [19] (because the RSW constants appearing in
propertyP5 of Theorem 3 in that paper can be chosen uniformly in q). As a consequence,
we deduce that N∗(q) ≤ N0 uniformly in 1 ≤ q ≤ 4 which thus proves the content of
Proposition 8. We shall rely on a similar argument later in the proof of Lemma 12. ��
Remark 4. As we will obtain N∗(q) ≤ 2 by other means when q > 2 (in Sect. 4), we
may have focused here only on the case 1 < q < 2 which is slightly simpler since the
bound α(q, N ) ≥ Nα+

f ree(q) would already be sufficient. Yet we decided to include
the proof below which works uniformly in 1 ≤ q ≤ 4 because it highlights well the
different boundary conditions at work near the joint line Z and because the exponent α+

C

will also play a key role later (in the proof of the anchoring Lemma 12).

Remark 5. In fact, we expect that as soon as percolation occurs in BN , then

α(q, N ) = Nα+
wired(q).

This comes from the intuition that the infinite cluster at pc in BN is staying close to
the axis, and that this cluster acts as a wiring of vertices. We will turn this intuition into
a proof thanks to the random currents representation in the special case of q = 2 in
Sect. 5. As α+

wired(q) should be equal to 1 − 2
π
arccos(

√
q/2) (this would be a fairly

direct consequence of [31, Conjecture 2.6] applied to a domain with a flat boundary),
this is consistent with our results (and predictions) on N∗(q) in Theorem 5.

Proof of Theorem 4 given Proposition 8. To prove Theorem 4, it remains to treat the
general case where the edge-density on Z is an arbitrary value of the parameter λ ≥ 0.
(The same argument also applies to the case where edges along Z have the same weight
p as the other edges). Consider N such that α(q, N ) > 1 and N ′ such that the process
given by the pairs of neighboring edges x and x ′ in Z that are connected to each other
in BN ′ is stochastically dominating an i.i.d. edge percolation of parameter λ∗ on Z (the
existence of this integer N ′ is easy using finite energy). Here, the parameter λ∗ is chosen
high enough so that Proposition 7 holds. The point here is thus to use N ′ extra pages
to "upgrade" the intensity λ to a much better effective λ∗. Then, one can easily check
that the restriction to BN of FK percolation with parameter λ on BN+N ′ is dominating
FK percolation on BN with parameters pc and λ∗. Not that we also use here the fact
that a FK percolation (p, q) on any graph is stochastically dominated by the i.i.d one
(p, q = 1) when q ≥ 1. This concludes the proof. ��
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3. Proof of Proposition 7

3.1. Preliminaries. Let S ⊂ BN . We call a cluster in S a connected component C ⊂ S
of the graph with vertex-set S and open edges with both endpoints in S. We will use the
notion of K -block Bi

K to be the translate by the vector (i K , 0) of the union, in each page,
of the squares [−K , K ) × [0, K ]. For simplicity we write BK instead of B0

K . Given a
block Bi

K , we write C(Bi
K ) for the cluster in Bi

K which has the largest intersection with
Z (when there is more than one, pick one according to a deterministic rule).

We will need the following two definitions.

Definition 9 (θ -bad block). A K -block Bi
K is θ -good if |C(Bi

K ) ∩ Z| ≥ 2θK . When a
block is not θ -good, we call it θ -bad. Introduce

pλ(K , θ) := P
0
BK ,λ[BK θ − bad ].

Definition 10 (bridged block). A K -block Bi
K is bridged in BCK if there exist −C ≤

i− ≤ i − 2 and i + 2 ≤ i+ ≤ C such that

• Bi−
K and Bi+

K are 3
4 -good.

• C(Bi−
K ) and C(Bi+

K ) are connected together in BCK \ Bi
K .

Introduce

qλ(K ,C, i) := P
0
BCK ,λ[Bi

K not bridged in BCK ].

3.2. Bound on qλ(K ,C, i). The core of the proof of our theorem will be the following
proposition.

Proposition 11. For every 1 ≤ q ≤ 4 and α < α(q, N ), there exists D0(α) =
D0(α, q, N ) > 0 such that

qλ(K ,C, i) ≤ D0(α)

(C − |i |)α + 2Cpλ(K , θ) (6)

for every λ ≥ pc, N ≥ 1, θ > 3
4 , and K ,C ≥ 2.

The proof of Proposition 11 is divided into two independent lemmata, referred to as
the anchoring lemma and the bridging lemma.

For M, K ≥ 2, introduce the set A(M, K ) to be the union of the half-annulus
H ∩ 2MK \ MK and the blocks B j

K with j ∈ (M, 2M). For a set γ , introduce the
boundary condition γ to be the wired boundary condition on γ , and free elsewhere (see
Fig. 5).

Lemma 12 (Anchoring Lemma). There exists canchor > 0 such that for every λ ≥ pc,
every integers K , M, every θ > 3

4 , and every path γ from ∂MK to ∂2MK staying
above (0, K ) + Z,

P
γ

A(M,K ),λ[∃ j ∈ (M, 2M) : B j
K θ

− good &C(B j
K ) ↔ γ in H] ≥ canchor(1 − pλ(K , θ))2.
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Fig. 5. A picture of A(M, K ) and the path γ , as well as the event under consideration in the next lemma. The
boundary condition γ corresponds to wired on the path γ and free on the dashed area

Proof. Consider the increasing coupling between random-cluster models (see e.g. [23,
Section 2.3] for details) P between two configurations ω′ ≤ ω with

ω ∼ P
γ

A(M,K ),λ and ω′ ∼ P
γ

A′(M,K ),pc
,

where A′(M, K ) is the restriction of A(M, K ) to the first two pages (it is a subset of the
plane), defined as follows (see for example [18, Section 2]). The coupled configuration
(ω′, ω) is written as an increasing function F of i.i.d. uniform variables in Ue ∈ [0, 1]
which are indexed by the edges of A(M, K ). To define

F : [0, 1]E(A(M,K )) → {0, 1}E(A′(M,K )) × {0, 1}E(A(M,K )),

we proceed inductively: the variables (Ue : e ∈ A′(M, K )) are used one at a time to
sample ω′

e ≤ ωe given the values of the former edges that have been fixed. Once all
edges e ∈ A′(M, K ) have been fixed, the remaining variables (Ue : e /∈ A′(M, K )) are
used to sample the remaining edges for ω.

Define now N to be the number of pairs ( j, x) with j ∈ [ 5M4 , 7M
4 ] and x ∈ Z such

that

• B j
K is θ -good in ω;

• x ∈ C(B j
K )(ω);

• x is connected to γ in ω′ ∩ H.

The fact that F is increasing implies FKG property for (ω′, ω), which itself gives

E[N] =
7M/4∑

j=5M/4

∑

x∈Z
P[B j

K θ − good in ω, x ∈ C(B j
K )(ω), x ←→ γ in ω′ ∩ H]

≥
7M/4∑

j=5M/4

∑

x∈Z
P[B j

K θ − good in ω, x ∈ C(B j
K )(ω)]P[x ←→ γ in ω′ ∩ H].
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On the one hand, standard crossing estimates and mixing properties of the critical FK
percolation with 1 ≤ q ≤ 4 give that there exists c0 > 0 such that

P[x ←→ γ in ω′ ∩ H] = P
γ

D′ [x ←→ γ in H] ≥ c0 a
+
C
(MK ).

On the other hand, the definition of θ -good K -blocks immediately gives that

∑

x∈Z
P[B j

K θ − good in ω, x ∈ C(B j
K )(ω)] = E

B j
K
[|C(B j

K )(ω)|
B j
K θ− good

]

≥ 2θK (1 − pλ(K , θ)).

Altogether, we deduce the following lower bound on the first moment of N:

E[N] ≥ c0θMKa+
C
(MK )(1 − pλ(K , θ)).

Wenow turn to a bound on the secondmoment. By dropping the first condition, replacing
the second by x ∈ B j

K , and observing that each x belongs to at most 2 blocks, we obtain
that

E[N2] ≤ 4
∑

x,y

P
mix
D′ [x, y ←→ γ in H].

A standard application of crossing probabilities and quasi-multiplicativity, see e.g. [17],
shows that

E[N2] ≤ C0MK
MK∑

k=1

a+
C
(MK )2

a+
C
(k, MK )

≤ C1(MK )2 a+
C
(MK )2.

Cauchy-Schwarz inequality implies that the probability that N > 0 is bounded from
below by c1θ2(1− pλ(K , θ))2. Since N > 0 implies the event under consideration, the
claim is proved. ��
Remark 6. At first sight, a natural way to try proving the Anchoring Lemma would be
to run a direct second moment argument on the number, sayM, of points on the middle
line Z which are connected to γ in the first page H(= H

1) instead of considering the
more complicated N. This works well in the q = 1 case, but as soon as q > 1 this
strategy seems difficult to implement. Indeed, the first moment E

[
M

]
would involve in

this case the one-arm event in a pageH but for the FKmeasure in the full book graphBN .
So far so good, but difficulties arise when controlling E

[
M2

]
as a quasi-multiplicativity

statement for this arm event would be needed. One way to achieve this would be to prove
a version of themixing lemma (as in [15] in the plane) for the FK measure on the book
BN . This does not seem straightforward as different pages may interact via the joint line
Z. This is the reason why we introduce in the proof above a suitable coupling argument
in order to transfer the problem to a setting where one can apply a more standard second
moment method.

We now turn to the Bridging lemma. For integers K , D, ρ > 0 and a small real
number η > 0, set Rk := K (2ρ)k and let F(K , DK , ρ, η) be the event that there are at
least η log D integers k ≥ 0 such that Rk+1 ≤ DK and F(Rk,

1
2 Rk+1) occurs.
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Lemma 13 (Bridging Lemma). For every α < α(q, N ), there exist η = η(α) > 0 and
an integer ρ = ρ(α) > 0 such that for every λ ≥ pc and K , D ≥ 2 large enough,

P
0
BDK ,λ[F(K , DK , ρ, η)] ≥ 1 − 1

Dα
.

Proof. Bymonotonicity, it suffices to show the result for λ = pc. Fix α(q, N ) > β > α.
By definition of α(q, N ), there exists ρ = ρ(β) such that for every K large enough and
k ≥ 0,

P
0
BRk+1 ,pc [F(Rk,

1
2 Rk+1)

c] ≤ ρ−β. (7)

By conditioning on the configuration outside BRk+1 , the spatial Markov property and
the comparison between boundary conditions combined with the previous displayed
equation implies that the probability that F(Rk,

1
2 Rk+1) occurs is larger than 1−ρ−β . In

particular, the number of integers k with Rk+1 ≤ DK such that F(Rk,
1
2 Rk+1) occurs is

dominating a binomial randomvariableBinom(n, p)with parameters n = �log2ρ(D)�−
1 and p = 1− ρ−β . We deduce that for η = η(β, ρ) > 0 small enough, the probability
that there are fewer than η log D such k is smaller than 1/Dα . ��

We are now ready to dive into the proof of Proposition 11.

Proof of Proposition 11. Fix θ > 3
4 and observe that if pλ(K , θ) ≥ 1

2 there is nothing
to do2. We therefore now assume the opposite. Since the box of size DK around (Ki, 0)
is included in BCK and being bridged is an increasing event, the comparison between
boundary conditions implies that it suffices to treat the case i = 0 in the block BDK
with D := C − |i |.

Fix α < α(q) and consider η = η(α) and ρ = ρ(α) given by the Bridging Lemma.
Also, write F := F(K , DK , ρ, η). Thanks to the Bridging Lemma,

P
0
BDK ,λ[F] ≥ 1 − 1

Dα

and it suffices to show that there exists a universal constant c > 0 such that

P
0
BDK ,λ[B0

K bridged |F] ≥ 1 − exp[−c log(D)2].
We now introduce a few quantities (see Fig. 6). For k < �log2ρ(D)�, let �(k) be the

inner-most path in ω disconnecting ∂Rk and ∂2−1Rk+1
in (0, K ) +H (note that it is a

subset of (0, K )+H). Define�(k) to be the set of x in ((0, K )+H)∩(2−1Rk+1
\Rk ) that

are surrounded by�(k), with the convention that the set is ((0, K )+H)∩(2−1Rk+1
\Rk )

when �(k) does not exist. Similarly, define �u(k) and �u(k) as the corresponding
quantities in Hu . Finally, consider the set

� :=
⋃

(k,u)

�u(k).

as well as the set I = I(ω) of pairs (k, u) for which �u(k) exists, and the set J = J(ω)

of triplets (k, u, i) with (k, u) ∈ I and 1 ≤ i < �log2 Rk�.
2 At this stage one may wonder why we put 2Cpλ(K , θ) in the right-hand side of (6) instead of simply

2pλ(K , θ). The reason comes from the conjecture that (7) can be obtained essentially in terms of the probability
of a dual connection with wired boundary conditions onZ, and that in order to do that, one maywant to assume
that pλ(K , θ) < 1/C . We refer to Sects. 4 and 5 for details of such an application.
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Fig. 6. A picture of the path �u(k) as well as B j±
K and some event E+(k, u, 3) and E−(k, u, 1). The set �

is depicted in yellow. Note that these sets do not intersect any of the B j
K (in other words, they remain at a

distance K of Z)

Now, condition on the states of the edges in� and let ξ be the boundary conditions that
they induce on BN \�. Note that it can be done without revealing any edge outside of �

and that I(ω) is measurable in terms of the states of these edges. For each (k, u) ∈ I(ω),
say that �u(k) ends in B j−

K and B j+
K on the left and right respectively. For (k, u, i) ∈ J,

let E+(k, u, i) be the event that there exists j with 2i−1 < j − j+ < 2i such that B j
K

is θ -good and C(B j
K ) is connected to �u(k) in H

u . Similarly, define E−(k, u, i) on the
left. The comparison between boundary conditions and the anchoring lemma imply that

P
ξ

BN \�,λ
[BK bridged |F]

≥ P
ξ

BN \�,λ
[∃(k, u, i) ∈ J such that both E±(k, u, i) occur |F]
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≥ 1 − E
ξ

BN \�,λ

[ ∏

(k,u,i)∈J

(
1 − [

canchor(1 − pλ(K , θ))2
]2)∣∣∣F

]

≥ 1 − (1 − c)η
′(log D)2 ,

where in the last line we used the fact that on F , |J(ω)| ≥ η′(log D)2, and that the
assumptions that θ > 3

4 and pλ(K , θ) ≤ 1
2 guarantee the existence of c > 0. (N.B.

recall that the intensity θ controls the size of the intersection with Z rather than the
cardinality of the whole cluster). ��

3.3. Proof of Proposition 7. The proof of Proposition 7 relies on the idea that clusters
at scale K and local density θ will merge and with high probability create new clusters
at scale CK of local density θ ′ = θ − O(1/C) slightly smaller than θ (this slight loss
of density allows us to lose a few clusters at scale K in the process). More precisely, we
prove the following renormalization inequality.

Lemma 14. Let N > 1 such that α(q, N ) > 1 and θ > 3
4 . There exist C0 ≥ 1 large

enough (depending on θ and N) such that the following holds. For every λ > 0 and for
every integers C ≥ C0 and K ≥ 2,

pλ(CK , θ − C0/C) ≤ 1
100 pλ(K , θ) + 6C2 pλ(K , θ)2. (8)

Proof. Fix 1 < α < α(q, N ). Let C0 > 0 be a large constant to be chosen later and set
θ ′ := θ −C0/C . For |i | ≤ C , let Ei be the event that Bi

K is θ -bad and all the blocks B j
K

are θ -good for j ∈ [−C,C] \ {i − 1, i, i + 1}, and set

Fi = Ei ∩ {BCK is θ ′ − bad}. (9)

Observe that if all K -blocks B j
K , −C ≤ j ≤ C , are θ -good, then the assumption

that θ > 3/4 imposes that all the clusters C(B j
K ) are connected together in BCK , which

implies the existence of a cluster in BCK with cardinality larger than 2θCK . In particular,
if BCK is θ ′-bad, then either there exist two disjoint θ -bad K -blocks, or there exists i
such that Ei occurs. The union bound implies

pλ(CK , θ ′) ≤
C∑

i=−C

P
0
BCK ,λ[Fi ]

+P [there are at least two dis joint θ − bad K − blocks ]. (10)

By the spatial Markov property and the comparison between boundary conditions, we
have

P
0
BCK ,λ [there are at least two dis joint θ − bad K − blocks ]
≤

(
2C − 1

2

)
pλ(K , θ)2. (11)

It remains to bound the first term in (10), which is the object of the end of the proof.
If all K -blocks B j

K with | j | ≤ C −C0 are θ -good, the same argument as above implies
that BCK is θ ′-good, therefore Fi = ∅ whenever |i | ≥ C − C0. Now, let |i | ≤ C − C0.
Note that if Ei occurs and Bi

K is bridged in BCK , then BCK is also θ ′-good. Furthermore,
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when Bi
K is not bridged (this event does not depend on edges in Bi

K ), for Ei to occur then
Bi
K must be θ -bad. As a consequence, the spatial Markov property and the comparison

between boundary conditions implies that

P[Fi ] ≤ P[Ei |Bi
K not bridged ]P[Bi

K not bridged ]
≤ pλ(K , θ)qλ(K ,C, i)

≤ D0(α) pλ(K , θ)

(C − |i |)α + 2Cpλ(K , θ)2, (12)

where in the last line we invoked Proposition 11 for α. Select C0 so large that

∑

|i |≤C−C0

D0(α)

(C − |i |)α ≤ 1
100 .

(Notice that this is the key step where we use the fact that α > 1.) Plugging (12) and
(11) in (10) concludes the proof. ��
Proof of Proposition 7. Let N satisfying α(q, N ) > 1. Choose θ1 < 1 and C1 ≥ C0
(where C0 is provided by Lemma 14) such that the sequences

{
Cn+1 = (n + 1)3C1,

θn+1 := θn − C0
Cn+1

,
for n ≥ 1

satisfy θn > 3
4 for every n ≥ 1. Now, set λ∗ ≥ pc so large that

pλ∗(C1, θ1) ≤ Pλ∗ [∃{x, x + 1} ⊂ BC1 ∩ Z closed ] ≤ 2C1
1 − λ∗

q − (q − 1)λ∗ ≤ 1

1200C2
1

.

and consider the sequence of scales defined3 by
{
K1 = C1,

Kn+1 = Cn+1Kn n ≥ 1.
(13)

Applying Lemma 14 to (N , θn,Cn, Kn), we see that the sequence un := pλ∗(Kn, θn)

satisfies

∀n ≥ 1, un+1 ≤ 1
100un + 6C2

n+1u
2
n .

By induction, we obtain that un ≤ 1
1200C

−2
n+1 for every n ≥ 1, and therefore,

P
0
BKn ,λ∗ [BKn3/4 − good ] ≥ 1 − un ≥ 1 − 1

1200C
−2
n+1 ≥ 1

2 .

First using the estimate above and then translation invariance,we get that for every n ≥ 1,

3
4Kn ≤ E

0
BKn ,λ∗ [|C(BKn ) ∩ Z|1BKn 3/4−good ]

≤ 2KnPλ∗ [0 is in a cluster of size at least 3
2Kn]. (14)

3 Note that it gives Kn = (n!)3Cn
1 for all n ≥ 1.
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(N.B. again, by size, we mean here intersection with Z rather than the cardinality of the
whole cluster.)

Dividing both sides by 2Kn , we obtain

Pλ∗ [0 is in a cluster of size at least 3
2Kn] ≥ 3

8 ,

which by measurability implies that the probability that 0 is connected to infinity is
larger than or equal to 3

8 . ��

4. Proof of Theorem 5 for q =/ 2

In this section, we prove the following two claims of Theorem 5: first we show that
N∗(q) ≥ 3, when q ∈ [1, 2) and second, we prove that N∗(q) = 2 for all 2 < q < 4
and that N∗(4) ≤ 2. The more subtle case of q = 2 will be analyzed in the next section
with the help of random currents.

We start with the following proposition corresponding to the first claim.

Proposition 15. For every 1 ≤ q < 2, there exists c = c(q) > 0 such that for every
n ≥ 1 and λ ∈ (0, 1),

P
1
B2,λ

[n horizontally crossed ] ≤ 1 − (1 − λ)c.

In particular, P1
B2,λ

[0 ←→ ∞] = 0.

The proof is based on a second-moment argument.

Proof. Define the numberN of edges e ⊂ [−n/2, n/2] such that the endpoints of e∗ are
respectively dual connected to the top ofn in the upper half-plane, and to the bottom of
n in the lower half-plane. Under P1

B2,1
(for which Z is completely wired), both pages

behave independently and we immediately get that

E
1
B2,1[N] ≥ c0na

+
wired(n)2.

In the other direction, the second moment gives, using classical quasi-multiplicativity
estimates

E
1
B2,1[N2] ≤ C0n

n∑

k=1

a+wired(n)4

a+wired(k, n)2
≤ C1n

2a+wired(n)4,

where in the last inequality we use Proposition 6.12 from [17] stating the existence of
c1 = c1(q) > 0 such that for every k ≤ n,

a+wired(k, n) ≥ c1(
k
n )1/2−c1 . (15)

We emphasize that the equation above is where we use the hypothesis 1 ≤ q < 2.
Overall, we get by comparison between boundary conditions and Cauchy-Schwarz that

P
1
B2,λ

[N > 0] ≥ P
1
B2,1[N > 0] ≥ c2.

Now, on {N > 0} (which does not prescribe anything on edges in Z), n is not crossed
horizontally if any of the edges of Z such that the endpoints of e∗ are dual-connected to



1328 H. Duminil-Copin, C. Garban, V. Tassion

top and bottom is in fact closed. Since there is at least one such edge, we get that there
exists c = c(q) > 0 such that

P
1
B2,λ

[n horizontally crossed ] ≤ 1 − c(1 − λ).

This concludes the proof of the first part of the proposition. For the second part,
P
1
B2,λ

[0 ←→ ∞] = 0 since otherwise ergodicity would imply the existence of an in-
finite connected component almost surely, and therefore Ppc,λ,q [n ←→ ∂Rn], where
Rn := [−3n, 3n] × [0, 2n], would tend to 1. By the square-root trick and the fact that
the probability that n is connected to the top of Rn is uniformly bounded away from
1 by standard crossing estimates, we deduce that n would be connected to the right of
Rn with probability tending to 1. In particular, the translate of 2n by (2n, 0) would be
crossed horizontally with probability tending to 1, which would contradict the previous
displayed equation for even n. ��

We now turn to the other claim, which we split in two.

Proposition 16. For any 2 < q ≤ 4, we have N∗(q) ≤ 2.

Proof. Wewish to prove that for λ > 0 large enough, P1
B2,λ

[0 ↔ ∞] > 0. In order to do
that, we only need to prove the equivalent of Proposition 11, i.e. that for some constant
α > 1, there exists D0(α) > 0 such that

qλ(K ,C, i) ≤ D0(α)

(C − |i |)α + 2Cpλ(K , θ) (16)

for every λ ≥ pc, N ≥ 1, θ > 3
4 , and K ,C ≥ 2.

To do that, observe that for Bi
K not to be bridged in BCK ,

• Either theremust be a θ -bad box B j
K , an event which occurs with probability smaller

than 2Cpλ(K , θ),
• Or all the boxes are θ -good, in which case ifC is the cluster gathering all theC(B j

K ),
we have that Bi

K is dual connected to ∂BCK above and below C.

Yet, when working on B2 = Z
2, one notices that C contains a crossing from left to

right in [−CK ,CK ] × [−K , K ]. In particular, conditioned on the bottom-most such
crossing � and everything below it, the spatial Markov property together with the com-
parison between boundary conditions of the model imply that the probability that there
exists a dual path from Bi

K to ∂BCK above � is bounded by the probability that there
exists a dual-connected path in [−CK ,CK ] × [−K ,CK ] from Bi

K to ∂BCK , with free
boundary conditions on ∂BCK and wired on the bottom. In particular, it is bounded by
C0a+wired(K , (C−|i |)K ) using classical mixing properties coming from [19]. Now, [17,
Proposition 6.12] states that for every q < 2 ≤ 4 (it was not done for q = 4 but the
same proof extends), there exists c1 = c1(q) > 0 such that for every k ≤ n,

a+wired(k, n) ≤ 1
c1

( kn )1/2+c1 . (17)

Altogether, we deduce that for some constant D1 > 0,

P
1
B2,λ,q [Bi

K
∗↔ ∂BCK above C|B j

K all good , Bi
K

∗↔ ∂BCK below C]
≤ D1

(C − |i |)1/2+c1 .
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Similarly, one proves that

P
1
B2,λ,q [Bi

K
∗↔ ∂BCK below C|B j

K all good ] ≤ D1

(C − |i |)1/2+c1 .

Combining this two displayed inequalities with the two bullets above gives (16) for
α := 1 + 2c1, a fact which concludes the proof. ��
Proposition 17. For any 2 < q < 4, we have N∗(q) ≥ 2.

Proof. The lower bound N∗(q) ≥ 2 is a straightforward consequence of the strong
RSW Theorem from [19], that implies that on H, the probability that there exists a dual
path from [−2n,−n] to [n, 2n] surrounding n in 2n is bounded from below by a
constant c0 > 0. This contradicts the fact that this probability should tend to 0 for 0 to
be connected to infinity. ��

5. Book-Ising with Three Pages and Random Currents

The purpose of this section is to show that a first-order phase transition already arises
with only 3 pages for Book-Ising (q = 2). This corresponds to N∗(q = 2) ≤ 3 and our
proof is consistent with the prediction from [33,34]. The main technique will involve
random currents. To highlight the main ideas, before handling the graph B3, we will
start in the subsection below with an interesting question on its own where a positive
(i.i.d) density of sites along the middle line Z ⊂ B3 are oriented in the + direction. We
will only give a short sketch of proof for the toy-model and will leave the detailed proof
to the true Book-Ising (as such the former may be viewed as an outline of proof of the
second in a simpler setting).

5.1. A positive density of + is indistinguishable from a + boundary condition. In this
subsection, wewill give a sketch of proof of the following result: the decoupling property
from Theorem 3 holds in the simpler setting of the half-plane where a positive density
of sites on Z are wired together. This will serve as a useful toy model for Theorem 3.
The reader comfortable with the random current terminology may skip this section if
needed. The statement above is a 2D version of a result by Bodineau [7].

Let us set some notations: ρ ∈ [0, 1] will denote the bias of our Bernoulli quenched
disorder along the line Z × {0}. Let η ∼ Bernoulli(ρ)⊗Z be i.i.d. Bernoulli random
variables attached to each site i on the middle line Z = Z×{0}. Given η,Hη will denote
the (random) graph where all points i ∈ Z for which ηi = 1 are wired together. Finally,
μ+
Hη,βc

denotes the Ising measures on H
η with + boundary conditions.

Theorem 18. For any 0 < ρ < 1 and any m, L ∈ N, there exist c,C ∈ (0,∞) so that
for any set A made of m vertices at a distance at least L of Z, then with probability at
least 1 − L−C in the quenched disorder η, we have

μ+
Hη,βc

[σA] = μ+
H,βc

[σA](1 − Om(L−c)) .

Remark 7. Note that by Griffiths inequalities, we deduce that if we consider the graph
Bη
3 constructed like H

η but from B3 instead of H, we immediately get that for every
three sets A ⊂ H

1, B ⊂ H
2 and C ⊂ H

3 made of vertices all at a distance at least L
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from Z, we have that with probability at least 1 − L−C in the quenched disorder η, we
have that

μ+
B

η
3,βc

[σAσBσC ] = μ+
H,βc

[σA]μ+
H,βc

[σB]μ+
H,βc

[σC ](1 − Om(L−c)) .

The proof of the theorem requires the introduction of another representation, called
the random-current representation. We refer to [1,11] for details on this representation
and briefly define it here. A current n on G = (V, E) is a function from E to N :=
{0, 1, 2, . . . }. A source of n = (nxy : xy ∈ E) is a vertex x for which

∑
y∼x nxy is odd.

The set of sources of n is denoted by ∂n. Also set

wβ(n) :=
∏

xy∈E

βnxy

nxy ! .

Currents are useful as they lead to the following expression for spin-spin correlations:

μ
f
G,β [σxσy] =

∑

∂n={x,y}
wβ(n)

∑

∂n=∅
wβ(n)

. (18)

For more general spin-observable σA, A ⊂ V , one has the expression

μ
f
G,β [σA] =

∑

∂n=A

wβ(n)

∑

∂n=∅
wβ(n)

.

Also, a classical use of the switching lemma enables one to compare the spin-spin
correlations on two graphs H ⊂ G as follows:

μ
f
H,β [σxσy] = μ

f
G,β [σxσy]P{x,y}

G,β ⊗ P∅
H,β [∃ path of n1 + n2 > 0 in H from x to y],

(19)

where PA
G,β attributes a weight proportional to wβ(n) if ∂n = A and 0 otherwise, and

the sign ⊗ means that we take the product measure (see for example [3, Lemma 2.2]).
For a general spin-observable σA, with A ⊂ H , the identity becomes

μ
f
H,β [σA] = μ

f
G,β [σA]PA

G,β ⊗ P∅
H,β [ ̂n1 + n2|H ∈ FA],

where n̂ ∈ FA is the event that any cluster of n > 0 intersecting A must intersect A at
an even number of points.

We shall also need these expressions in the case of a graph G with + boundary
conditions. This means that some points (called the boundary of G) are connected to an
extra vertex called the ghost vertex. (See [11] for a detailed exposition). In such a case,
the last expression for example reads as follows:

μ+
H,β [σA] = μ+

G,β [σA]PA
G+,β ⊗ P∅

H+,β [ ̂n1 + n2|H ∈ FA],
where currents n1,n2 under PA

G+,β
and P

∅
H+,β

are now allowed to go through the ghost
vertex and their boundary ∂n1, ∂n2 is only considered on all vertices but the ghost (also
FA is now the event that all the clusters which intersect A are either connected to the
ghost or intersect A at an even number of points).
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Fig. 7. The example of the graphHη,+ with the additional connections to the ghost (in green).We also depicted
the current n1 in red, as well as a bridge of n2 (in blue) guaranteeing a connection in Hη to the ghost

Sketch of proof of Theorem 18. We will show that there exists c ∈ (0,∞) such that for
every A made of m vertices at a distance at least L from Z,

E
[
μ+
Hη,βc

[σA]] ≥ μ+
H,βc

[σA](1 − Om(L−c)).

For any large M , let Hη,+ be the finite random graph obtained from H
η by connecting

all the vertices i ∈ ∂H ∩ M which are such that ηi = 1 to the ghost. We have

Hη,+ ⊂ G+ := H ∩ M with all points in ∂H connected to the ghost .

Applying the above formula, it remains to bound from below (for any large M) the
following average with respect to η:

E
[
PA
G+,β ⊗ P∅

Hη,+,β [ ̂n1 + n2|Hη,+ ∈ FA]] .

We proceed as follows:

(1) Sample n1 according to PA
G+,β

. If n1 restricted to G \ H is already in FA, then
whatever η and n2 are, we must have ̂n1 + n2|Hη,+ ∈ FA.

(2) Suppose then that this is not the case. Then, there is at least one cluster of n1
intersecting A and reaching ∂H (and there are of course at most m = |A| such
clusters). By union bound, let us focus on the case of only one point, say x , and let
us assume that n1 connects x with ∂H. Among all points in Z which are connected
to x via n1, choose u = (k, 0) to be, say, the furthest on the left and to lighten the
notation assume it is equal to the origin. Notice that u is measurable with respect
to n1 and that neither η nor n2 have been sampled yet.
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(3) Let then sample η so that the subgraph Hη,+ ⊂ G+ is now well defined.
(4) In order to match with the setup of Lemma 21 below, set r := L1/2, s := L1/4 and

R := L ≤ dist(x,Z). As k has been localized before sampling η, we can claim that
with probability at least 1−exp(−cs), η will be sufficiently dense in each s-interval
included in [k − R, k − r ] ∪ [k + r, k + R]. (We will be more explicit in the proof
of Lemma 21).

(5) Assuming η is sufficiently dense around u, the rest of the proof consists in showing
that with probability at least 1 − r−c, the current n2 will create a bridge from
{i ∈ [k − R, k − r ], ηi = 1} to {i ∈ [k + r, k + R], ηi = 1} which, by planarity, will
necessarily intersect n1. As such x will be connected to the ghost via ̂n1 + n2|Hη,+

as desired.
(6) Finally, the proof that the above bridging property holds with probability 1 − r−c

relies on a coupling between sourceless random-current and FK percolation with
parameter q = 2. This coupling will be described before the proof of Lemma 21;
see Fig. 7.

��
We also discuss a slightly more difficult theorem, but which is closer to the one in the

next section. Let P1
Hη be the FK percolation measure where all the sites {i ∈ Z, ηi = 1}

are wired together.

Theorem 19. For any 0 < ρ < 1 and any 1 ≤ r ≤ R, there exist c,C ∈ (0,∞) so that
with probability at least 1 − R exp(−c r−1/2) in the quenched disorder η, we have

P
1
Hη

[
r

∗←→ ∂R
] ≤ C

[
( r
R )1/2 + r−c] . (20)

Steck of proof of Theorem 18. Define the subsets of Z:

I− := {i ∈ [−R,−r ] : ηi = 1} ⊂ [−R,−r ] =: J−,

I+ := {i ∈ [r, R] : ηi = 1} ⊂ [r, R] =: J+.
Let Gη be the finite graph R \ r in which all vertices in I− are connected (wired)

to a ghost vertex g− and all vertices in I+ are connected (wired) to a different ghost
vertex g+ and where the rest of of the boundary is free. Let also Ḡ be the graph where
all vertices in J− are connected to g− while all vertices in J+ are connected to g+ and
where the rest of the boundary is free. The monotony properties of FK percolation and
the Edwards-Sokal coupling give that

1 − P
1
Hη

[
r

∗←→ ∂R
] ≥ 1 − PGη

[
r

∗←→ ∂R
] = μGη,βc [σg+σg−].

Notice that we have Gη ⊂ Ḡ. Similarly as in the above proof, we may now use the
switching lemma via the above identity (19) to obtain

μGη,βc [σg+σg−]
= μḠ,βc

[σg+σg−]P{g+,g−}
Ḡ,βc

⊗ P∅
Gη,βc

[∃ path of n1 + n2 > 0 in Gη from g+ tog−] .

From now on, the proof can be concluded in two steps.

(1) It can be extracted for instance from [15] that μḠ,βc
[σg+σg−] ≥ 1 − C( r

R )1/2 .
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(2) The second step is very similar to the argument outlined above: under P{σ+,σ−}
Ḡ,βc

, n1
will connect at least a point u− ∈ J− to a point u+ ∈ J+. The goal is thus to show that
n2 will create with high probability 1−Cr−c a bridgewhich will connect I− and I+

to n2. To prove this, we argue as above: we set an intermediate scale s := r1/2 and
we claim that with probability at least 1−R exp(−c r1/2), the sets I− = I−(η) (resp
I+) will be sufficiently dense at scale s to create many bridges thanks a coupling
between sourceless random-current and FK percolation with parameter q = 2 (see
the proof of Lemma (21) for a detailed proof).

At this stage, there is a subtle but important difference compared to the argument in
the previous sketch of proof. It could be that the points u− and u+ could be close to
∂r or ∂R . In such case, one cannot really use the argument described above. Yet, it
can be proved in this case that the probability that n1 itself is connected to a vertex of
Z close (say at a distance at most r3/4) to ∂r or ∂R is bounded by Cr−c (see the
next section for details).

��

5.2. Proof of Theorem 2(i). The core of the proof will be the following result.

Proposition 20. There exist c0,C0 ∈ (0,∞) such that for every r and R such that r
divides R, every λ ≥ pc, every K ≥ 2, and every θ > 3

4 ,

P
0
BK R

[F(Kr, K R)c] ≤ C0

[( r
R

)N/2 + r−c0 + R exp(−c1
√
r)

]
+ 2R pλ(K , θ).

We start by explaining how to adapt the proof of Theorem 4 using Proposition 20 to
obtain Theorem 2(i).

Proof of Theorem 2(i). Fix K and C and assume for a moment that K is chosen so
that pλ(K , θ) ≤ 1/(2C). When applied to Rk := K (2ρ)k , we see that the previous
proposition implies that

P
0
BRk+1

[F(Rk,
1
2 Rk+1)

c]

≤ C0

[( 2Rk

Rk+1

)N/2 +
( K

Rk

)c0 +
Rk+1

K
exp

( − c1
( Rk

K

)1/2)] +
Rk+1

2KC

≤ C1

[
ρ−N/2 +

( K

Rk

)c0] +
Rk+1

2KC
.

From this, one can easily adapt the proof to reach the conclusion of the bridging lemma
with α(2, N ) = N/2 (note that except for the first and last values of k, the right-hand
side is bounded by 2C1ρ

−N/2). After this, Proposition 11 follows in the same way. Also,
note that the assumption that pλ(K , θ) ≤ 1/C is harmless as otherwise the statement of
Proposition 11 is obvious. Once Proposition 11 has been obtained, the rest of the proof
of the theorem is the same as for Theorem 4. ��

We conclude our paper by the proof of Proposition 20.

Proof of Proposition 20. Set s := √
r . We may assume pλ(K , θ) < 1

2R as otherwise
the statement is obvious. Let E be the event that all the K -blocks Bi

K are θ -good for
|i | < R. By definition of pλ(K , θ),

P
0
BK R

[E] ≥ 1 − 2Rpλ(K , θ). (21)
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Fig. 8. A picture of the path �u
j as well as C

+, V+ andW+ = V+ ∩ (BRK \ BrK ) respectively in red, yellow
and green

Below, we recommend to take a look at Fig. 8. Introduce B
j
K to be the set of vertices at

a �∞ distance at most K from B j
K . Define Bu± to be the sets of indexes j ∈ [−R, R]

divisible by 6, positive or negative depending on whether ± is + or −, for which B j
K

is surrounded in B
j
K ∩ H

u by a circuit in ω connecting C(B j+2
K ) to C(B j−2

K ). Call the
inner-most such circuit �u

j = �u
j (ω). Let

E ′ :=
⋂

|i |s≤R
u=1,...,N
a∈{±}

{|Bua ∩ [is, (i + 1)s]| ≥ c0s
}
.

Adapting the anchoring lemma and using that pλ(K , θ) ≤ 1
2 , we deduce that for some

c1, c2 > 0 small enough,

P
0
B

j
K

[ j ∈ Bua,∀u = 1, . . . , N ] ≥ c1(1 − pλ(K , θ))2N ≥ c2.

Using the comparison between boundary conditions, we may compare to independent
random variables to get that |Bua ∩ [is, (i +1)s]| dominates a binomial random variable
with parameters s and c2, so that for some constant c0 > 0 small enough and independent
of everything else,

P
0
BRK

[E ′] ≥ 1 − 2
R√
r
exp[−c0s]. (22)

We deduce from (21) and (22) that it suffices to show that

P
0
BK R

[F(Kr, K R)c|E ∩ E ′] ≤ C3

[( r
R

)N/2 + r−c3
]
. (23)
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We now focus on deriving this inequality.
On E ∩ E ′, call C+ the union of the C(B j

K ) for 6 ≤ j ≤ R, which since θ > 3
4 is

made of one single cluster. From now on, let V+ = V+(ω) be the (random) subset of
BRK obtained as

• The union of all the B j
K for 6 ≤ j ≤ R;

• The vertices ofHu surrounded by the �u
j (ω) for every 6 ≤ j ≤ R divisible by 6 for

which the path �u
j (ω) exists for every u;

• The union of the B
j
K for the remaining 6 ≤ j ≤ R which are divisible by 6.

Similarly, one defines C− and V− with −R ≤ j ≤ −6 instead of 6 ≤ j ≤ R. Also, set
E(ω) be the set of edges with both endpoints in V+ ∪ V−.

Condition on ω|E(ω) = ξ for some configuration ξ ∈ {0, 1}E(ω) belonging to E ∩ E ′
(by this we mean that any configuration coinciding with ξ on E(ω) is in E ∩ E ′). Let
�u be the graph induced by the edges in (BRK ∩ H

u)\(BK ∪ V+ ∪ V−) and ξu be the
boundary condition on �u obtained from the configuration equal to ξ on E(ω), and 0
on the remaining part of BRK \ �u .

The comparison between boundary conditions implies that for every ξ ∈ E ∩ E ′,

P
0
BK R

[F(Kr, K R)c|ω|E(ω) = ξ ] ≤
N∏

u=1

(1 − P
ξu

�u [C− ←→ C+]).

It therefore suffices to prove that each term on the right is smaller thanC4(r/R)1/2. From
now on, we call a pair (�,ψ), with � a subset of H and ψ a boundary condition on �

possible if there exists ξ ∈ E ∩ E ′ and u such that � = �u and ψ = ξu . In this case
we write V± for the corresponding set (they can be read off from � and ψ in a unique
fashion).

LetW± be the intersection ofV± withRK \r K . Consider the boundary condition
ξ ∪ 1 obtained from ξ by wiring all the vertices in W+ together, and all those in W−
together. For every possible (�, ξ), going to the complement implies that

P
ξ∪1
� [W+ ←→ W−] ≥ 1 − a+wired(r K , RK ) ≥ 1 − C(r/R)1/2.

The following lemma will therefore conclude the proof. ��
Lemma 21. There exist c,C ∈ (0,∞) independent of everything such that for every
possible (�, ξ),

P
ξ
�[C− ←→ C+] ≥ P

ξ∪1
� [W+ ←→ W−](1 − Cr−c).

As in the case of Theorems 18 and 19 for which we sketched the proofs earlier, the
derivation of this lemma will rely on the random-current representation. A first key
property will be the identity (19) which follows from the switching lemma.

We will use also a second property of our model, which is a coupling between
sourceless random-current and FK percolation with parameter q = 2. More precisely,
consider the coupling φ obtained by considering n ∼ PA

G,β and ω obtained from n by
setting

ωe = sup{[n > 0], ηe},
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where (ηe : e ∈ E) is an independent family of Bernoulli random variables of parameter
1− e−β . Then, one has that under φ, ω ∼ P

0
G,p,2[·|FA] with p := 1− e−2β . While the

recipe to get ω from n is obvious, let us mention that in the other direction, for A = ∅,
one may recover the edges on which n is odd by taking a uniform even subgraph of ω

(see [4,24,28]).
We are now in a position to prove the lemma.

Proof. Consider the graphs G obtained from � by identifying all the vertices in C±
into two vertices g±, and G obtained from G by identifying vertices inW±\C± to g±.
Note that G can be seen as a subgraph of G where the latter is obtained from the former
by adding edges with infinite coupling constants (or equivalently infinitely many edges
with standard coupling constant) between the vertices of W±\C± and g±).

We have that

P
ξ
�[C+ ←→ C−] = μG,βc [σg+σg−],

P
1
�[W+ ←→ W−] = μG,βc

[σg+σg−],
so that (19) gives that

μG,βc [σg+σg−]
μG,βc

[σg+σg−] = P{g+,g−}
G

⊗ P∅
G[∃ path of n1 + n2 > 0 in G from g− to g+]

and it therefore suffices to bound the probability on the right-hand side.
First, observe that the coupling between random-current and FK percolation implies

that

P{g+,g−}
G

[∃ j ∈ [r, r + r3/4] : B j
K connected to distance r K in 1[n > 0] \ g+]

≤ P
0
G,pc,2

[∃ j ∈ [r, r + r3/4] : B j
K connected to distance r K in G \ g+|g− ↔ g+]

≤ a+
C
(r3/4K , r K )

P
0
G,pc,2

[g− ↔ g+] ≤ Cr−c.

Similarly for R − r3/4 ≤ j ≤ R, −R ≤ j ≤ −R + r3/4, and −r − r3/4 ≤ j ≤ −r . We
therefore may restrict to realizations of n1 that necessarily contain a path γ of n1(e) > 0

from g+ to g−, going say from B
i
K to B

j
K , with

−R + r3/4 ≤ i ≤ −r − r3/4 and r + r3/4 ≤ j ≤ R − r3/4.

As a consequence, it suffices to prove that in n2, with large probability there exists a

path of n2(e) > 0 from vertices in C+ respectively on the left and right of B
j
K (call the

two parts L and R). The same estimate will also holds for −R ≤ i ≤ −r .
In order to do that, wewrite n instead of n2 and use the increasing coupling φ between

n and the random-cluster model ω described before the proof. It is sufficient to prove
that

P
ξ
� [there exists c0 log r disjoint clusters going from L toR] ≥ 1 − 1/rc0 . (24)

Indeed, on this event, one may divide clusters in pairs, and observe that each pair of
clusters contains a loop (with one path in one cluster and the other in the other one) of
n > 0 connecting L toRwith probability at least 1/2 thanks to the fact that the odd part
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of n is obtained fromω by taking an even subgraph ofω uniformly at random. Therefore,
the probability that there exists no path at all will be smaller than 1/rc0 + 2−(c0/2) log r .

To prove (24), first shift the whole configuration by (−K j, 0) in order to recenter
everything around 0. On the one hand, crossing estimates imply that for k such that
s = √

r ≤ 2k ≤ r3/4,

P
1
�[2k K ←→ ∂2k+1K ] ≤ 1 − c (25)

for some constant c independent of everything. On the other hand, if �k denotes the
intersection of � with the annulus 2k+1K \ 2k K , we want to prove that

P
0
�k

[L ←→ R] ≥ c. (26)

This will conclude the proof by observing that (25) and (26) together with the spatial
Markov property and the comparison between boundary conditions easily imply (24) by
following a proof quite similar to the bridging lemma.

To prove (26), we use a second-moment method very similar to the proof of the
anchoring lemma. Let N be the number of pairs − 5

32
k ≤ a ≤ − 4

32
k and 4

32
k ≤ b ≤

5
32

k+1 with �a connected to �b (recall the definition of these paths from the previous
section, and remember that the whole configuration has been shifted by (K j, 0)). Note
that by definition of a possible pair (�, ξ) (since ξ belonged to E ′), there are of order
c0(2k)2 pairs of (a, b). Also, an easy comparison between boundary conditions and use
of crossing estimates implies that

P
0
�k

[M] ≥ c0(2
k)2 min

a,b
P
0
�k

[�a ←→ �b] ≥ c1(2
k)2a+wired(K , 2k K )2.

In the other direction, the comparison between boundary conditions and a standard use
of the quasi-mulitiplicativity property gives that

P
0
�k

[M2] ≤
∑

a,a′,b,b′
P
0
H
[�a ←→ �b, �a′ ←→ �b′ ] ≤ C0(2

k)4a+wired(K , 2k K )4.

��

5.3. Proof of Theorem 3. The proof of the decoupling between the pages of B3 stated
in Theorem 3 follows easily by combining the proof of Proposition 20 together with the
(sketch) of proof of the decoupling property from Theorem 18. Let us shortly explain
why we have an error term 1 − Om((log L)−c) in Theorem 3 versus 1 − Om(L−c) in
Theorem 18. To prove Theorem 3, we rely on the multiscale framework used throughout
the paper. In particular, if all points {x1, . . . , xm} in A ⊂ B3 are at a distance at least L
from Z, consider n such that

Kn ≤ L < Kn+1.

Recall (footnote below (13)) that Kn = (n!)3Cn
1 . This implies in particular that n ≥

(log L)1/2, when L is large enough. Let us now proceed as in the proof of Theorem 18
and let u be the furthest point on the left of the joint line Z of an n1 cluster emanating
from, say the first point x1 ∈ A (other possible points being connected to Z via n1 are
handled similarly by union bound). We now consider the blocks BKi

n−1
at scales n − 1
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around the point u ∈ Z. From our inductive proof, we know that each of these (n − 1)-
block is good with probability at least 1 − un−1 ≥ 1 − 1

1000C2
n−1

. (See the estimates on

un below (13)). This implies that with probability at least 1 − 1
100Cn

, all (n − 1)-blocks

Bi
Kn−1

around the point u and up to distance Kn = CnKn−1 ≤ L are good. We can now
use this overlapping chain of good blocks as in the proof of Lemma 21 to produce a
bridging with the random current n1 with probability at least 1 − O((Cn)

−c) which is
the same as 1 − O((log L)−c̃) and thus concludes our proof. ��
Remark 8. Note that by going further into smaller scales Kn−� � Kn ≤ L < Kn+1 and
by replacing the power-law control {un}n≥1 below (13) by an exponentially decaying
control in n, one may obtain if needed better correction terms in Theorem 3.
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