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Abstract: We consider a notion of divergence between quantum channels in relativistic
continuum quantum field theory (QFT) that is derived from the Belavkin–Staszewski
relative entropy and the concept of bimodules for general von Neumann algebras. Key
concepts of the divergence that we shall prove based on a new variational formulation
of that relative entropy are the subadditivity under composition and additivity under
the tensor product between channels. Based on these properties, we propose to use
the channel divergence relative to the trivial (identity-) channel as a novel measure of
complexity. Using the properties of our channel divergence, we prove in the prerequisite
generality necessary for the algebras in QFT that the corresponding complexity has
several reasonable properties: (i) the complexity of a composite channel is not larger
than the sum of its parts, (ii) it is additive for channels localized in spacelike separated
regions, (iii) it is convex, (iv) for an N -ary measurement channel it is log N , (v) for a
conditional expectation associated with an inclusion of QFTs with finite Jones index it
is given by log(Jones Index).

1. Introduction

A problem of both theoretical and practical interest in quantum information theory is
to assess the “complexity” of a quantum state- or operation. A natural approach is to
take as a measure of complexity the minimum number of operations from an underlying
set considered as “basic” [1–3]. Typical results in this context include bounds on the
growth of complexity under time evolution, see e.g. [4,5]. There are also proposals in
the context of the AdS-CFT correspondence, linking the growth of complexity of a state
in the boundary quantum field theory (QFT) to various geometric quantities in the bulk,
see e.g. [6–8].

One may ask how to define a notion of complexity directly in a relativistic continuum
QFTwithout reference to holographic ideas. In QFT, one faces the immediate problem to
identify a suitable set of basic operations relative to which the complexity of a composite
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operation is to be assessed. If onewants tomaintain a close analogy to ideas such as [4,5],
it appears that one would have to specify a preferred set of local quantum field operators,
possibly within some lattice regularization of the theory. For instance for Gaussian field
theories, concrete proposals include e.g. [9,10], whereas e.g. [11–13] emphasize the
role of symmetry operations – especially in theories with very large symmetry algebras.
For sufficiently generic QFTs it seems to us that both the operator basis and/or lattice
regularization would be highly non-unique.

One approach to this issue is to take a broader view of the problem, departing from
the notion of basic operation and focussing attention instead on a suitable notion of
“distance”, D(S‖T ), between two channels S, T . Complexity would then be defined as
c(T ) = D(id‖T ), the distance to the trivial (identity) channel. Of course, one would like
specific properties from D to connect to the idea of complexity. Natural requirements
would be:

• Subadditivity: c(T1 ◦ T2) ≤ c(T1) + c(T2) expressing that the complexity of a
composite channel is not bigger than the sum of its parts. In particluar, for a 1-
parameter (Markov-) semi-group Tt , t ≥ 0 of channels, we automatically get at most
linear growth in time, c(TNt0) ≤ C0N .
• Locality: c(T1 ◦ T2) = c(T1) + c(T2) if T1 and T2 are localized in spacelike related
parts of the system. This expresses that the complexity c respects Einstein causal-
ity/locality.
• Convexity: Thinking about performing operations Ti randomly with some proba-
bilities pi it is natural to ask that c(

∑
pi Ti ) ≤ ∑

pi c(Ti ).

Oneway to obtain a notion of channel divergence, hence c, is to startwith a corresponding
divergence D(ϕ‖ψ) in the ordinary sense (see e.g. [14]) between quantum states1 ϕ,ψ ,
by considering how much the actions of T and S on a state can deviate as quantified by
this divergence. With this idea in mind, a naive guess might be to consider supψ D(ψ ◦
S‖ψ ◦ T ), where the maximization is over all normalized states of the system and
ψ ◦ T is the action of the channel on the state ψ , viewed in this paper as an expectation
functional on observables, see footnote 1. However, as is well-known, this notion is
actually inadequate for quantum systems because one can obtain refined information
about the action of channels by coupling the systems in question to an ancillary system
and considering states that have a suitably engineered entanglement between the original
system and the ancillary system. So one should define instead2

D(S‖T ) = sup
ψ,A

D(ψ ◦ (S ⊗ idA)‖ψ ◦ (T ⊗ idA)) (1)

where the maximization is now over all states of the original observable algebra M
tensored with the ancillary algebra A. This is the definition that we shall also adopt, up
to some technical caveats related to the fact that we will be dealing with von Neumann
algebras of a sufficiently general type as appropriate for QFT: in such a setting, it is
most natural to model the ancillary system by another von Neumann algebra, A, and
it does not seem natural to restrict the nature of that system, e.g. by imposing that A
should have a particular type such as In . Then we must also have an enlarged Hilbert
space on which both the original von Neumann algebras as well as the ancillary algebra

1 In this paper we follow the conventions in operator algebras that a state ψ is a positive functional on the
observable algebra. For matrix algebras, ψ(m) = Tr(mρψ), where ρψ is the corresponding density matrix,
see Sect. 2.1 for our conventions.

2 The role of ancillary systems for complexity has also been discussed in a different context e.g. by [15].
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A acts, i.e. we must consider bi-modules of von Neumann algebras, see e.g. [16,17] and
references therein.

Of course the main question is what D we should start from. One possibility might
be a geometric approach along the lines of [2,3]. In [18], on the other hand, the authors
propose to use a particular quantum version [19] of the classical “Wasserstein-distance”,
see e.g. [20], and derive several convincing properties of the corresponding notion of
complexity, including the ones listed above.ThequantumWasserstein distance as defined
by [19] is for finite dimensional systems with Hilbert space of the form (Cd)⊗N . While
it may be possible to generalize it to von Neumann algebras of type III appearing in QFT
[21], we proceed differently here and work with the so-called Belavkin–Staszewski (BS)
divergence [22] DBS . That divergence has been considered3 recently in the context of
channel discrimination by [24] and is

DBS(ϕ‖ψ) = Tr(ρϕ log[ρ1/2
ϕ ρ−1

ψ ρ1/2
ϕ ]) (2)

formatrix algebras.Here,ρψ is the densitymatrix representing the expectation functional
ψ , i.e. ψ(m) = Tr(mρψ) for all m ∈ M. A generalization to arbitrary von Neumann
algebras is possible [25,26]. Our reason for considering DBS is that [27] (see also [28])
have shown in the finite dimensional setting that it gives rise to a channel divergence with
a subadditivity property under composition and an additivity property under the tensor
product of channels.4 This would not be the case for other well-known divergences
such as, say, the more commonly used Araki-Umegaki relative entropy [29]. The classic
works [30,31], while somewhat similar in spirit to ours, use that relative entropy to
define an entropy-like quantity for the inclusion channel ι : N →M between two von
Neumann algebras possessing a corresponding conditional expectation E : M → N .
Though this quantity has many useful properties, it does not therefore seem to have the
above-mentioned (sub-)additivity properties (at least not in total generality, see Remark
4.5 of [31]).

In this work, we analyze the channel divergence based on the BS divergence in the
context of general von Neumann algebras, and prove that the corresponding notion of
complexity c has the above properties in QFT. While we have to leave for future investi-
gations the question how our c is related to conventional notions related to computational
cost à la [2,3], or even to holographic proposals such as [6–8], we prove a number of
further properties of our complexity c:

1. If T (a) = uau∗ is the channel corresponding to a non-trivial local unitary, then
c(T ) = ∞.

2. If T (a) = ρ(a) is the channel corresponding to a non-trivial representation of the
QFT (“charge superselection sector”), then c(ρ) = ∞.

3. If M(a) = ∑N
i=1 ei aei is the channel corresponding to a local N -ary von Neumann

measurement, then c(M) = log N .
4. Let Eρ be the (minimal) conditional expectation fromA(O) to ρ(A(O)) where ρ is

a charge superselection sector (charged representation), then

c(Eρ) = log(Jones Index) = log d2
ρ, (3)

where we mean the Jones index [32] of the inclusion ρ(A(O)) ⊂ A(O), and where
dρ is the statistical (or “quantum-”) dimension of the sector.5

3 Divergences of this type have also been considered in the context of QFT in [23].
4 In fact, these authors study the corresponding Renyi-type “geometric divergences”, of which the BS-

divergence arises as a limit.
5 The last equality is a direct consequence of the index-statistics theorem [33].



930 S. Hollands, A. Ranallo

Items (1), (2) are basically negative results, but perhaps not totally unreasonable if we
remember that any local operation in a continuum QFT (i.e. an operation in a finite
spacetime region) must still involve an infinite number of degrees of freedom. The
channels in items (3), (4) are conditional expectations. This suggest that these are to be
regarded as the basic operations in QFT.

Particular measurements in (3) implementing the idea of “setting individual q-bits”
can be constructed trivially as follows. Imagine the QFT has a “basic” real scalar field φ

and consider a cube of side-length δ in a time slice. Let f be a non-negative testfunction
supported in the cube, let S = ∫

φ(0, x) f (x)dn−1x, where n is the dimension of space-
time, and let p± be the projectors corresponding to a positive/negative measurement of
S. Shifting the cube periodically in the n − 1 spatial directions we can obtain a finite
lattice � with corresponding projections px,σ , σ = ±, x ∈ � associated with each
point x of the (dual) lattice. Then we can define projections e({σ }) = ∏

x∈� px,σ (x),
each corresponding to measuring a particular lattice configuration {σ }, e.g.

+ − − + −
− − + + +
− + − − −
− + + − +
− + + − +

The complexity of the corresponding measurement channel is clearly

c(M) = vol(�)

δn−1 log 2 (4)

As an example of item (4), consider the QFT of a real N -component free complex
Klein-Gordon quantum field φI (x), I = 1, . . . , N . We consider as observables the
SU (N ) singlet operators (gauge invariant observables) under the SU (N )-symmetry.
Consider a state 
 in the Hilbert space which is in some non-trivial representation R of
SU (N ). Then 
 cannot be generated from the vacuum � by the action of any charge
neutral operator a, so the representation of charge neutral operators built on 
 is not
unitarily equivalent to the vacuum representation. In fact, by DHR theory [34,35], there
exists an endomorphism ρ of the local algebra generated by SU (N ) singlet operators
such that

〈�, ρ(a)�〉 = 〈
, a
〉 for all SU (N ) singlet operators a, (5)

and ρ implements the charged sector with representation R. The statistical dimension dρ

of this ρ equals the dimension dR of the representation R in this case, e.g. dρ = N 2− 1
if R is the adjoint representation. Details of this construction are given in Example 4.10
below. For low dimensional QFTs, dρ does not have to be integer.

In fact, the Jones index in (4) (= d2
ρ) is restricted to the set {4 cos2(π/n) : n =

3, 4, 5, . . . } ∪ [4,∞] by Jones’ theorem [32], the smallest non-trivial value of which
is 2, realized e.g. by the sector ρ of the (4, 3) minimal (Ising) model with quantum
dimension dρ =

√
2. We conjecture that for any localized channel T 6

Either c(T ) ≥ log 2 or T = id (conjecture), (6)

which is reminiscent of the Landauer bound [17,36].
This paper is organized as follows. In Sect. 2, we first recall the theory of f -

divergences and operator means for states on von Neumann algebras and introduce

6 This would imply in particular that for any 1-parameter Markov semi-group Tt of channels c(Tt ) is
necessarily discontinuous at t = 0.
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our main technical tool, a variational characterization of DBS (Proposition 2.17). In
Sect. 3 we introduce DBS for channels of von Neumann algebras of general type, and
prove some basic properties. In Sect. 4, we apply these results to QFT.

2. Preliminaries

2.1. Von Neumann algebra terminology and basic objects. See e.g. [37] as a general
reference.

• Von Neumann algebra: A von Neumann algebra M is a closed ∗−subalgebra of
the algebra of bounded operators B(H ) on a Hilbert space H in the weak oper-
ator topology. The weak topology is defined by the matrix elements, i.e. the open
neighborhoods are N (ξi , ηi , ε, a) = {b : |〈ξi , (b−a)ηi 〉| < ε, i = 1, . . . , n}, where
a ∈ B(H ), ξi , ηi ∈ H , ε > 0. All Hilbert spaces appearing in this paper are as-
sumed to be separable. The squared norm ‖m‖2 of an operator m ∈M is defined to
be the supremum of the spectrum σ(mm∗) of the positive operator mm∗. The subset
of all such operators is denoted by M+ (positive part).
• Any finite-dimensional von Neumann algebra is isomorphic to ⊕N

i=1Mni (C) for
some ni , where Mn(C) is the algebra of complex n × n matrices.
• (Bi-)Commutant: An equivalent characterization of von Neumann algebra isM′′ =
M,whereM′ := {x ∈ B(H ) | xm = mx ∀m ∈M} is the commutant of a∗−algebra
M in B(H ), andM′′ = (M′)′ is the bicommutant. A vonNeumann algebra is called
a factor if M ∩M′ = C1. One denotes by A ∨ B = (A ∪ B)′′ the von Neumann
algebra generated by ∗−algebras of bounded operators A,B.
• States: A state is a linear, positive, normal, normalized functional ψ : M → C,
where positive meansψ(mm∗) ≥ 0 for all m ∈M and normalized meansψ(1) = 1.
A linear functional ψ is called normal if it is ultra-weakly continuous, and a positive
linear functional ψ is called faithful if ψ(mm∗) = 0 �⇒ m = 0. The set of normal
states is also denoted by M∗,+. The existence of a normal faithful positive linear
functional is guaranteed since we are assuming that H is separable. On a matrix
algebra every state is of the form

ψ(m) = Tr(mρψ) (7)

for a unique density matrix ρψ .
• Channels: Generalizing the notion of state, a channel T : M → N is a normal,
positive, unital (meaning T (1) = 1) linear map which is also completely positive,
meaning that T ⊗ id : M � B(K ) → N � B(K ) is positive, where � means
the algebraic tensor product and where K is any Hilbert space. If ψ is a state on
N , then ψ ◦ T (m) := ψ(T (m)) is a state on M, and ψ �→ ψ ◦ T corresponds to
the dual action of channels on states (Schrödinger picture). In much of the quantum
information theory literature, the Schrödinger picture is considered, but of course this
is just a matter of convention. For finite dimensional von Neumann algebrasN ,M,
the action of T in the Schrödinger picture may also be thought of as an action T + on
density matrices (7),

Tr(T +(ρψ)m) = Tr(ρψ T (m)) ≡ ψ ◦ T (m) m ∈M. (8)

Then T + is completely positive and trace preserving (corresponding to T (1) = 1).
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• Standard form: A vector� ∈H is called cyclic ifM� is dense inH in the strong
topology, and it is called separating if m� = 0 �⇒ m = 0. Such a representation
on H of M and vector can always be obtained by the GNS-representation of a
faithful normal state ω. A cyclic and separating vector is also called standard and
a representation of M on a Hilbert space with standard vector is called a standard
representation. Associated with � is an anti-linear involution J on H such that
J� = � and JMJ =M′ called the modular conjugation. The closure of the set of
vectors of the form a Ja J�, a ∈ M is called “natural cone” and is also denoted as
L2(M,�)+ ⊂H .
• Conditional expectations: If N ⊂ M is a von Neumann subalgebra, then a con-
ditional expectation E : M → N is a channel such that E(n1mn2) = n1E(m)n2
for all m ∈ M, ni ∈ N . The index λE ∈ [1,∞] of a conditional expectation is the
infimum over all positive real numbers λ such that the E(mm∗) ≥ λ−1mm∗ for all
m ∈M.
• Jones-index: Assume that N ,M are factors such that there exists a conditional
expectation E : M → N . If λE < ∞, there exists a unique E0 called “minimal
conditional expectation” [38] such that λE0 is minimal, and in such a case λE0 =:[M : N ] is called the Jones-Kosaki index [32,39] of the inclusion. Otherwise we set
[M : N ] = ∞.
• L p-space: One can construct so-called “non-commutative L p spaces” (p ∈ [1,∞])
interpolating between the space of normal functionals on M and M itself. They
are defined relative to some standard vector � and denoted as L p(M,�), see [40,
41]. One has L2(M,�) = H . Beyond this, we will only need L∞(M,�) which
is a linear subspace of H . We will mainly use the following characterization of
this space [40]: As a vector space L∞(M,�) = M�. The Banach space norm is
‖ξ‖L∞(M,�) = ‖m‖ where m ∈M is the unique element such that ξ = m�.
• Opposite algebra: The opposite algebra Mop of a von Neumann algebra M is
identical as a vector space with ∗-operation, but has the reversed product mop

1 mop
2 =

(m2m1)
op.

2.2. Maximal f -divergence for bounded operators. See [25,42–44] as general refer-
ences. Central to the concept of operator mean and the divergences studied in this paper
are the notions of operator monotone- and operator convex functions.

Definition 2.1. Let I ⊂ R be an interval. f : I → R is said to be

• operatormonotone if f (A) ≤ f (B)whenever A, B ∈ B(H ) are self adjoint opera-
tors on aHilbert space such that A ≤ B and that their spectra satisfy σ(A), σ (B) ⊂ I ;
• operator convex if f (λA+(1−λ)B) ≤ λ f (A)+(1−λ) f (B), ∀λ ∈ (0, 1)whenever
A, B ∈ B(H ), with σ(A), σ (B) ⊂ I .

Remark 2.2. Let t0 ∈ (0,∞] and f : [0, t0) → R. Then ( f is operator convex and
f (0) ≤ 0) if and only if ( f (t)

t is operator monotone on (0, t0)). Furthermore, if f :
[0, t0) → R is operator monotone, then it is also operator concave. While the converse
is not true, it is the case that ( f operator concave and f (t) ≥ 0 for all t ∈ [0,∞))
implies ( f is operator monotone on [0,∞)).

Example 2.3. On [0,∞), the function tα is operator monotone if and only α ∈ [0, 1].
tα is operator convex if and only if α ∈ [−1, 0] ∪ [1, 2]. The function log(t) is operator
monotone on (0,∞).
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The followingwell-known representation (9) allowsone to reducemanyconstructions
involving operatormonotone functions to certainweighted averages of a special operator
monotone function. Consider a continuous operator monotone function f on [0,∞), let
a = f (0), b = f ′(∞) := limt→∞ f (t)

t . There exists a unique finite positive Radon
measure μ on [0,∞), such that

f (t) = a + bt +
∫

(0,∞)

(1 + s)t

t + s
dμ(s). (9)

Definition 2.4 (Kubo–Ando means, [45]). Consider a binary operation σ on B(H )+
(non-negative self-adjoint bounded operators), i.e. σ : B(H )+ × B(H )+ → B(H )+.
We write σ(A× B) =: Aσ B ∈ B(H )+. σ is called a Kubo–Ando connection if, for all
A, B, C, D ∈ B(H )+, the following hold

1. Joint monotonicity, i.e. A ≤ C, B ≤ D, then Aσ B ≤ Cσ D;
2. Transformer inequality, i.e. C(Aσ B)C ≤ (C AC)σ (C BC);
3. Upper semicontinuity, i.e. whenever An ↓ A, Bn ↓ B strongly, then Anσ Bn ↓ Aσ B,

strongly.

Moreover σ is called a (Kubo–Ando operator) mean if the above hold and

4. Normalization, i.e.
IH σ IH = IH .

The Kubo–Ando theorem establishes a one-to-one correspondence between operator
connections andnon-negative operatormonotone functions on [0,∞), see [45,Theorems
3.3, 3.4]. The isomorphism is provided by σ �→ f , where f (t)IH := IH σ(t IH ). Its
inverse f �→ σ is defined by taking the integral expression (9) of a non-negative operator
monotone function f on [0,∞), f (t) = a + bt +

∫
(0,∞)

(1+s)t
t+s dμ(s), and then defining

the corresponding σ as

Aσ B := a A + bB +
∫

(0,∞)

1 + t

t
[(t A) : B] dμ(t) (10)

Here, A : B is the parallel sum operator connection which is defined as the bounded
quadratic form (see e.g. [43, Lemma 3.1.5])

〈ξ, (A : B)ξ 〉 := inf{〈ζ, Aζ 〉 + 〈ξ − ζ, B(ξ − ζ )〉 ζ ∈H }. (11)

If A and B are positive operators with bounded inverses, then

A : B = (A−1 + B−1)−1. (12)

Example 2.5 (Left and right trivial means). The left trivial mean σ1 is induced by the
function f (x) ≡ 1 and gives Aσ1B = A. The right trivial mean σx is induced by
f (x) = x and gives Aσx B = B.

Example 2.6 (α–geometric means). The α–geometric means are defined in terms of the
operator monotone function

fα(t) := tα = sin απ

π

∫ ∞

0

t

s + t

ds

s1−α
, t ≥ 0, α ∈ (0, 1). (13)
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The corresponding measure μα and constants aα, bα as in (9) are therefore

dμ fα =
sin απ

π

tαdt

t (t + 1)
, aα = bα = 0. (14)

Particular examples are the left- and right trivial means (for α = 0, 1) and the geometric
mean for which α = 1/2.

Example 2.7 (Logarithm). The logarithm f (t) = log t is operator monotone on (0,∞)

and formally has a = −∞, b = 0 and dμlog = t−1(1 + t)−1dt . We will typically
consider the approximation fn(t) := log(t + 1

n ), n ∈ N which is operator monotone on
[0,∞) with an = − log n, bn = 0.

Consider two bounded positive operators such that B ≤ λA for some λ < ∞.
Then f (A−1/2B A−1/2) ≤ f (λ)I is a bounded operator and the Kubo-Ando mean
σ corresponding to the operator monotone function f can also be expressed as [45,
Theorem 3.3]

Aσ B = A1/2 f (A−1/2B A−1/2)A1/2, (15)

as one may see using the integral representations (9), (10) as well as the expression for
parallel sum (12). The following divergences first appeared in [46] and were developed
further in [47,48].

Definition 2.8. Consider a non-negative operator monotone function f : [0,∞) →
[0,∞) characterized by (9) and positive trace class operators A, B such that B ≤ λA
for some λ > 0. Then the “maximal quantum f –divergence” of A with respect to B is
defined by

D f (A‖B) := − log TrH (Aσ B), (16)

where σ is the operator connection corresponding to f .

Remark 2.9. For general positive trace class operators A, B such that B ≤ λA possibly
does not hold for any λ < ∞, one defines

D f (A‖B) := lim
ε↓0 D f (A + εC‖B + εC) ∈ (−∞,+∞]. (17)

Here C is any bounded positive operator such that λ−1(A + B) ≤ C ≤ λ(A + B) for
some λ < ∞. By the monotonicity property of operator connections, the limit exists
because the sequence is monotone decreasing. The limit is independent of the particular
choice of C as a special case of Lemma 2.12 below.

2.3. Maximal f -divergence for von Neumann algebras. Operator connections andmax-
imal f -divergences can be generalized from bounded operators to more general settings
such as to suitable classes of unbounded positive quadratic forms [49–51]. In this work,
we will mainly be interested in the notion of operator connection and maximal f -
divergence between two positive normal functionals ϕ,ψ on a von Neumann algebra
M. This setting is investigated in great detail in [25,26] to which we refer as general
references. Based on the results [25, AppendixD] one can for instance obtain quite easily
a variational characterization of the maximal f -divergence which will be the basis of
most developments in this work.

The starting point in the von Neumann algebra setting is the Connes cocycle together
with the following well-known result [52], see e.g. [40] for the definitions of the modular
operators �ψ and Connes cocycles [Dψ : Dϕ]t .
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Lemma 2.10. Let ψ, ϕ be normal, positive functionals on M, assume that ψ ≤ λϕ for
λ > 0. Then the Connes cocycle derivative [Dψ : Dϕ]t admits an extension to a weakly
continuous (M-valued) function [Dψ : Dϕ]z for z in the strip −1/2 ≤ �z ≤ 0 which
is analytic in the interior. The generator [Dψ : Dϕ]−i/2 ∈ M has norm less than

√
λ,

and �
1/2
ψ = [Dψ : Dϕ]−i/2�

1/2
ϕ .

Using this and the next lemma, one can define [26]:

Definition 2.11. Consider an operator monotone function f : [0,∞) → [0,∞), and
normal, positive functionals ϕ,ψ be onM such that there exists λ > 0 such that λ−1ϕ ≤
ψ ≤ λϕ. Then we have the positive invertible operator T ψ

ϕ := ([Dψ : Dϕ]−i/2)
∗[Dψ :

Dϕ]−i/2 ∈M. Define the maximal quantum f –divergence of ϕ with respect to ψ by

D f (ϕ‖ψ) := − log(ϕ( f (T ψ
ϕ ))). (18)

Lemma 2.12. (See [26]) Let ϕ,ψ be normal, positive functionals on M. For every
φ ∼ ϕ + ψ , i.e. there exists λ > 0 such that λ−1(ϕ + ψ) ≤ φ ≤ λ(ϕ + ψ), the limit

lim
ε↓0 D f (ϕ + εφ‖ψ + εφ) ∈ (−∞,+∞]

exists, and it is independent on the choice of φ above.

It therefore makes sense to make the following definition [26].

Definition 2.13. Let ϕ,ψ let normal, positive functionals onM, and let f : [0,∞) →
[0,∞) be an operator monotone function. The maximal quantum f -divergence of ϕ

with respect to ψ is defined as

D f (ϕ‖ψ) := lim
ε↓0 D f (ϕ + εφ‖ψ + εφ) (19)

where φ is any positive normal functional on M satisfying φ ∼ ϕ + ψ . Note that we
may chose φ = ϕ + ψ .

Remark 2.14. IfM = B(H ) is a type I von Neumann factor (or more generally, direct
sum of factors), positive normal functionals on M are in one to one correspondence
with positive trace class operators onH . Under this identification, the above definition
of maximal f -divergence reduces to Definition 2.8 and Remark 2.9.

Remark 2.15. The attentive reader will notice that compared to [26], we require f in
Definition 2.11 to be operator monotone rather than operator convex, the order of the
states is reversed and we have a logarithm. The presence of the logarithm is just for con-
venience to make the entropy additive under tensor products. If we ignore the logarithm
then our definition reduces to −Ŝ− f (ψ‖ϕ) of [26] for non-negative operator monotone
functions noting that − f is operator convex. Of course, the definition of [26] works for
the larger class of all operator convex functions.
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2.4. Properties of maximal f –divergence. Many properties of D f and DBS , and of the
corresponding connections σ between states,7 in the setting of von Neumann algebras
are known, see e.g. [25, Theorem 4.4, Proposition 4.5]. In the present work, a variational
formula for D f and the BS divergence DBS will take center stage and from this, many
of these properties could be seen directly in retrospect. First, one defines an analogue
of the parallel sum (12) for two normal positive functionals ϕ,ψ on the von Neumann
algebra M by (z ∈M)

(ϕ : ψ)(zz∗) := inf{ϕ(xx∗) + ψ(yy∗) | x + y = z, x, y ∈M}. (20)

Then ϕ : ψ is a positive normal functional on M+ which is extended to all of M by
writing a general element as a difference of elements from M+. Using the notion of
parallel sum, one can next define a notion of operator mean ϕσψ associated with an
operator monotone function f : [0,∞) → [0,∞) with representation (9) between two
positive normal functionals onM by an analogue of the formula (10):

(ϕσψ)(m) := aϕ(m) + bϕ(m) +
∫

(0,∞)

1 + t

t
[(tϕ) : ψ](m) dμ(t), (21)

where a, b, dμ with a, b < ∞ correspond to the operator monotone function f :
[0,∞) → [0,∞) as in (9). By combining [25, Theorem D.7, D.8, D.10], it follows that

D f (ϕ‖ψ) = − log

(

aϕ(1) + bψ(1) +
∫

(0,∞)

1 + t

t
[(tϕ) : ψ](1) dμ(t)

)

. (22)

From this relation and (20) one can obtain the variational formula with ease, see also
[44, Remark 9.5] for a closely related formula in the case of M = B(H ):

Proposition 2.16. Let f : [0,∞) → [0,∞) be an operator monotone function with
representation (9) where a, b < ∞. Let ψ, ϕ be normal, positive functionals on M.
Then we have

D f (ϕ‖ψ)

= − log

(

aϕ(1) + bψ(1) + inf
(0,∞)

x−→M

∫

(0,∞)

(1 + t)

[

ϕ(xt x
∗
t ) +

1

t
ψ(yt y∗t )

]

dμ(t)

)

,

(23)

where the infimum is taken over all step functions x : (0,∞) → M with finite range
such that xt = 1 for sufficiently small t , such that xt = 0 for sufficiently large t, and
where yt := 1− xt .

Proof. Note that since 0 ≤ [(tϕ) : ψ](1) ≤ min(ψ(1), tϕ(1)) we can choose a δ > 0,
and a K < ∞ such that

• | ∫
(0,δ)(1 + t)ϕ(1)dμ− ∫

(0,δ)
1+t

t [(tϕ) : ψ](1)dμ| ≤ ε

• | ∫
(K ,∞)

1+t
t ψ(1)dμ− ∫

(K ,∞)
1+t

t [(tϕ) : ψ](1)dμ| ≤ ε

7 In this paper, we shall often use the somewhat imprecise terminology “Kubo-Ando mean” for this, even
though a Kubo-Ando mean usually refers to the case when f : [0,∞) → [0,∞) is an operator monotone
function with f (1) = 1.
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Then we define yt = 0, t < δ, and yt = 1, t > K . Next we build a step function
x : [δ, K ] → M with finite range such that

∫
[δ,K ](1 + t)

[
ϕ(xt x∗t ) + 1

t ψ(yt y∗t )
]

dμ

approximates
∫
[δ,K ]

1+t
t [(tϕ) : ψ](1)dμ to within tolerance ε. This can be done by

using the inner regularity of the Radon measureμ; for details on this standard procedure
see [53]. ��

The above proposition does not cover the operator monotone function f (t) = log(t)
(formally a = −∞ in the representation (9)). Since this case underlies the Belavkin–
Staszewski (BS) divergence and is particularly interesting for us, we treat it explicitly.
Consider first a pair of positive normal functionals on M such that ϕ ∼ ψ . Define the
BS divergence as

DBS(ϕ‖ψ) := −ϕ(log(T ψ
ϕ )) (24)

For a general pair of positive normal functionals such that ϕ ∼ ψ does not hold, we
define DBS(ϕ‖ψ) analogously to Definition 2.13. The BS divergence can be seen as
the limit α → 1 of the maximal geometric α-divergence corresponding to fα(t) = tα ,
α ∈ (0, 1).

Proposition 2.17. We have

DBS(ϕ‖ψ) = sup sup

{

ϕ(1) log n −
∫ ∞

1/n

[

ϕ(xt x
∗
t ) +

1

t
ψ(yt y∗t )

]
dt

t

}

, (25)

where the first sup is taken over n ∈ N, while the second is over finite range step functions
x on ( 1n ,∞) as in Proposition 2.16.

Proof. First we assume ϕ ∼ ψ and consider the approximating sequence fn(t) :=
log(t + 1

n ), t ≥ 0 of operator monotone functions, which have the integral representation

fn(t) = − log n +
∫∞
1/n

t
t+s

ds
s . Define Fn(ϕ‖ψ) := −ϕ( fn(T ψ

ϕ )). The spectral theorem

implies that the operator in Lemma 2.10 has a spectral representation T ψ
ϕ = ∫ λ

0 λ′d Eλ′
where λ < ∞. Thus as fn(t) ↑ log(t) for all t > 0, by the monotone convergence
theorem we have that Fn(ϕ‖ψ) ↑ DBS(ϕ‖ψ). On the other hand, the same argument of
Proposition 2.16 applies to Fn (compare the definition of Fn with Definition 2.11), i.e.

Fn(ϕ‖ψ) = sup

{

ϕ(1) log n −
∫ ∞

1/n

[

ϕ(xt x
∗
t ) +

1

t
ψ(yt y∗t )

]
dt

t

}

. (26)

Here the sup is, as usual, over finite range step-functions. Thus, the claim follows.
Next, letϕ,ψ be an arbitrary pair of normal and positive functionals onM. Following

Definition 2.13, we notice that as DBS(ϕ + εφ‖ψ + εφ) ≥ Fn(ϕ + εφ‖ψ + εφ) for all
n ∈ N,

DBS(ϕ‖ψ) = lim
ε↓0 DBS(ϕ + εφ‖ψ + εφ) ≥ lim

ε↓0 Fn(ϕ + εφ‖ψ + εφ) = Fn(ϕ‖ψ).

(27)

Using the variational formula (26) for Fn(ϕ+εφ‖ψ +εφ), since wemay take φ = ϕ+ψ ,

Fn(ϕ + εφ‖ψ + εφ) ≤ Fn(ϕ‖ψ) + ε(Fn(ϕ‖ϕ) + Fn(ψ‖ψ)). (28)
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Therefore

DBS(ϕ + εφ‖ψ + εφ) = sup
n

Fn(ϕ + εφ‖ψ + εφ)

≤ sup
n

Fn(ϕ‖ψ) + ε sup
n

(Fn(ϕ‖ϕ) + Fn(ψ‖ψ)) . (29)

As supn(Fn(ϕ‖ϕ) + Fn(ψ‖ψ)) is bounded, we have

lim
ε↓0 DBS(ϕ + εφ‖ψ + εφ) = lim

ε↓0 supn
Fn(ϕ + εφ‖ψ + εφ) ≤ sup

n
Fn(ϕ‖ψ). (30)

The proof is completed by combining the inequalities (27), (30). ��
We now list some of the main properties of D f and DBS , see [25, Theorem 4.4,

Proposition 4.5].

1. (Data processing inequality) Let T : N → M be a positive, normal, unital linear
map between von Neumann algebras M and N satisfying the Schwarz property
T (nn∗) ≥ T (n)T (n)∗ for all n ∈ N .8 Then D f (ϕ ◦ T ‖ψ ◦ T ) ≤ D f (ϕ‖ψ).

2. (Lower semi-continuity) Let ϕn, ψn be sequences of normal positive functionals con-
verging pointwise to normal positive functionals ϕ,ψ as n →∞. Then D f (ϕ‖ψ) ≤
lim infn D f (ϕn‖ψn).

3. (Martingale property) Consider a von Neumann algebra M and an increasing se-
quence of von Neumann subalgebras {Mn} such that M = (⋃

n Mn
)′′. Then

D f (ϕæMn‖ψæMn ) ↗ D f (ϕ‖ψ). (31)

4. (Joint convexity and subadditivity) The functional M∗,+ ×M∗,+
D f−−→ (−∞,+∞]

is jointly convex and subadditive.

The analogous properties hold for DBS .

Remark 2.18. Item 2 is not provided in [25, Theorem 4.4, Proposition 4.5]; indeed it is
presented as a conjecture for general von Neumann algebras [25, Problem 4.13]. The
variational expressions given in Propositions 2.17 and 2.16 provide an immediate proof
of this for D f and DBS , see for example [54] for the analogous argument for the (Araki)
relative entropy.

3. Bimodules and f -Divergences for Channels

3.1. Definitions.

Definition 3.1 (Bimodules). Given von Neumann algebrasN ,M, aN −M bimodule

is a triple (H , �H , rH )whereH is a Hilbert space, andN �H−−→ B(H )
rH←−−M are a

normal representation, and a normal anti-representation, respectively, such that �H (N )

and rH (M) commute.

When it is clear from the context, wewill denote a bimodule by the underlyingHilbert
space H . For more details on bimodules see e.g. [16,17].

8 By Kadison’s theorem, this property follows if T is a 2-positive or even completely positive normal linear
map.
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Remark 3.2. We will use the natural notation nξm := �H (n)rH (m)ξ, n ∈ N , m ∈
M, ξ ∈ H , when the bimodule Hilbert space is the identity bimodule L2(M,�),
which is the bimodule arising from a standard representation and standard vector � of
M, so it is unique up to unitary equivalence. As a vector space, L2(M,�) is realized
up to unitary equivalence as the GNS Hilbert space H of some chosen faithful normal
state ω with associated cyclic and separating GNS vector �. The right- and left action
defining the M−M bimodule structure of L2(M,�) are defined as

�H (m)ξ = mξ, rH (m)ξ = Jm∗ Jξ, (32)

where J = J� is the modular conjugation associated with� that sendsM anti-unitarily
toM′.

The following proposition [17, Proposition 2.6] will be referenced below:

Proposition 3.3. Let T : N →M be a channel and let ϕ be a normal state of M with
vector representative ξ ∈ L2(M)+ in the natural cone. There exists a N −M bimodule
HT and a vector η ∈HT such that

〈ξ, T (n)Jm∗ Jξ 〉 = 〈η, �HT (n)rHT (m)η〉, (33)

and η is cyclic for �HT (N )∨ rHT (M). Moreover, such a bimodule and unit vector are
unique up to unitary transformations.

In the following, f : [0,∞) → [0,∞) is an operator monotone function (such that
a, b < ∞ in its representation (9)).

Definition 3.4. Consider a pair of channels S, T : N → M, and a von Neumann
algebra A. We extend the channels to S ⊗ idA, T ⊗ idA : N �Aop →M�Aop. Let
π be any binormal representation of M � Aop. Then for every vector ξ ∈ Hπ in the
M−A bimodule given by π , we can consider the states ϕS,π,ξ = ϕξ ◦π ◦(S⊗ idA) and
ϕT,π,ξ = ϕξ ◦π ◦(T⊗idA). Consider D f (ϕS,π,ξ‖ϕT,π,ξ ) as defined by Proposition 2.17,
now involving the supremum over finite range step functions x with values inN �Aop.
Then we define

D f (S‖T ) := sup
(A,π,ξ)

D f (ϕS,π,ξ‖ϕT,π,ξ ), (34)

where the supremum is over the triples (A, π, ξ) consisting of a von Neumann algebra
A, bimodule π as above and normalized ξ ∈H . We make the analogous definition for
the BS divergence.

Remark 3.5. When M is finite-dimensional, our definition for DBS agrees with that of
[27]. This follows from Proposition 2.17 and the part of Proposition 3.7 referring to
finite dimensional type I algebras. In fact [27] also consider the channel divergence for
the function f (t) = tα, α ∈ (1, 2]. That case is not considered in the present work since
this function is not operator monotone but operator convex, and it is not obvious to what
extent the variational formula in Proposition 2.16 still applies in this case.

Remark 3.6. Consider a normal homomorphism θ : A → M. Then a new bimodule
Hθ can be constructed by twisting the identity bimodule L2(M) on the right by using
θ . More explicitly, Hθ = L2(M) as Hilbert space, the left action of M is the one
coming from the structure of L2(M) as a left M−module, while the right action of A
is defined rθ (a)η := ηθ(a), η ∈ L2(M), a ∈ A. In this case, the bimodule is denoted
by L2

θ (M,�).9

9 Analogously, one may define θ L2(M).
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Even though we will stick with the above definition in what follows, one may ask
to what extent it is necessary to consider all bimodules in the definition of the channel
divergence (34).

Proposition 3.7. If M is properly infinite (direct sum of factors of types I∞, II∞ or III)
or a direct sum of type In factors then we have

D f (S‖T ) = sup
ξ∈L2(M)+

D f (ϕS,π,ξ‖ϕT,π,ξ ). (35)

If M is infinite dimensional and finite (direct sum of factors of type II1) then

D f (S‖T ) = sup
ξ∈(L2(M)⊗L2(�2(N)))+

D f (ϕS,π,ξ‖ϕT,π,ξ ).

where by L2(�2 (N)) we mean the Hilbert-Schmidt operators on the separable Hilbert
space �2(N) and by L2(M)⊗ L2(�2 (N)) we mean the associated M−M⊗ B(�2(N))-
bimodule. The same holds for the BS divergence.

Proof. By definition D f (S‖T ) ≥ sup
ξ∈L2(M)+

D f (ϕS,π,ξ‖ϕT,π,ξ ). To prove the reverse

inequality, we can assume for the sake of simplicity that N ,M,A are all factors; the
general case may be treated by performing the usual decomposition into a direct sum of
factors.

Case (1)M is of type I∞, II∞, III. Then the sup in Definition 3.4 can always be real-
ized for a properly infiniteA because we can take the tensor productA⊗ B(H ) and the
corresponding bimodule if necessary. Consider aM−A bimoduleH . In this case, [17,
Corollary 2.7] implies that there exists a normal homomorphism θ : A→M, such that
Hπ is isomorphic to L2

θ (M). In other words, there exists a unitary U : H → L2(M)

intertwining the right representation ofH with the right representation of L2
θ (M). For

a vector ξ ∈ H , denote η := Uξ . Then D f (ϕS,π,ξ‖ϕT,π ξ ) = D f (ϕS,πθ ,η‖ϕT,πθ ,η),
where πθ is the bimodule representation relative to L2

θ (M). Now, using the variational
formula in Proposition 2.16

D f (ϕS,πθ ,η‖ϕT,πθ ,η)

= sup
(0,∞)

x−→N�A
− log

(

aϕη((S ⊗ θ)(1)) + bϕη((T ⊗ θ)(1))

+
∫

(0,∞)

(1 + t){ϕη((S ⊗ θ)(xt x
∗
t )) +

1

t
ϕη((T ⊗ θ)(y∗t y∗t ))}dμ

)

≤ sup
(0,∞)

v−→N�M
− log

(

aϕη((S ⊗ idM)(1)) + bϕη((T ⊗ idM)(1))

+
∫

(0,∞)

(1 + t){ϕη((S ⊗ idM)(vtv
∗
t )) +

1

t
ϕη((T ⊗ idM)(wtw

∗
t ))}dμ

)

,

(36)

where the inequality follows because the second sup is over a larger set which is easily
seen by setting vt := (idN⊗θ)(xt ) andwt = 1−vt . The right side is D f (ϕS,π,η‖ϕT,π,η),
again by our variational formula. Taking the supremum over unit vectors η in the natural
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cone then demonstrates the reverse inequality D f (S‖T ) ≤ sup
ξ∈L2(M)+

D f (ϕS,π,ξ‖ϕT,π,ξ )

and we are done.
Case (2)M is of type In , i.e.M = Mn(C). Let (ξ, π,A) be a nearly optimal triple in

Definition 3.4 with corresponding bimoduleH , up to tolerance ε. By replacing rH (A)

if necessary with the potentially larger von Neumann algebra �H (M)′ (which is type
I), we can assume that rH (A) = B(K ), as well as H = C

n ⊗K . Now let P be the
orthogonal projection onH with range �H (M)ξ . Then P ∈ �H (M)′ so P = rH (p)

for some orthogonal projection p ∈ A, and by the Schmidt-decomposition theorem, p
has rank ≤ n. Going through the definitions, we then have for n ∈ N , a ∈ A:

ϕS,π,ξ (n ⊗ a) = 〈ξ, S(n)ξa〉 = 〈ξ, S(n)ξpap〉
= ϕS,π,ξ ((1n ⊗ p)(n ⊗ a)(1n ⊗ p)) (37)

Let x be a step function valued in M�A such that the infimum in Proposition 2.16 is
achieved up to tolerance ε. Observe that

ϕS,π,ξ (xt x
∗
t ) = ϕS,π,ξ ((1n ⊗ p)xt x

∗
t (1n ⊗ p))

≥ ϕS,π,ξ ((1n ⊗ p)xt (1n ⊗ p)x∗t (1n ⊗ p)), (38)

and we get a similar relation for S → T and xt → yt = 1 − xt . Therefore, setting
x̂t = (1n ⊗ p)xt (1n ⊗ p), ŷt = (1n ⊗ p)yt (1n ⊗ p), we have that

D f (S‖T )− 2ε ≤ − log

(

a + b +
∫

(0,∞)

(1 + t){ϕS,π,ξ (xt x
∗
t ) +

1

t
ϕT,π,ξ (yt y∗t )}dμ

)

≤ − log

(

a + b +
∫

(0,∞)

(1 + t){ϕS,π,ξ (x̂t x̂
∗
t ) +

1

t
ϕT,π,ξ (ŷt ŷ∗t )}dμ

)

(39)

Now observe that 1n ⊗ p is the unit in M � pAp and that x̂t + ŷt = 1n ⊗ p, so x̂t ∈
M� pAp is an admissible step function in the variational principle of Proposition 2.16.
Furthermore pAp is naturally isomorphic to a subalgebra of Mn(C

n) = M (since the
rank of p is ≤ n), and that PH (which contains ξ = Pξ ) is isometric to a subspace of
C

n ⊗ C
n (since P = rH (p)). Therefore, the right side of (39) is less than or equal to

D f (ϕS,π̂ ,ξ̂
‖ϕT,π̂ ,ξ̂

), where π̂ is the representation associated with the standardM−M-

bimodule Cn ⊗C
n , and where ξ̂ is the unit vector in that bimodule corresponding to ξ .

Thus, if M = Mn(Cn) it is sufficient in the variational Definition 3.4 to consider only
M−M bimodules.

Case (3)M is of type II1. Consider aM−A-bimoduleH . ThenH ⊗ L2(�2(N))

is naturally aM⊗ B(�2(N))−A⊗ B(�2(N))-bimodule. Both algebrasM⊗ B(�2(N))

and A ⊗ B(�2(N)) are properly infinite. Thus, by the same reasoning as above in (1),
we know that the maximizing bimodule can be taken to be a standard bimodule for
M⊗ B(�2(N)). Restricting this standard bimodule to aM−M⊗ B(�2(N))-bimodule
gives a bimodule whose associated f -divergence as in Definition 3.4 is not smaller than
that of the original M−A-bimodule.

For theBSdivergence,we consider the variational principle given by Proposition 2.17
instead of Proposition 2.16. ��
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3.2. Basic properties of channel divergence. We will now prove some basic properties
of the channel divergences. In the next lemmas, D f is the divergence associated with a
non-negative operator monotone function f : [0,∞) → [0,∞) with the representation
(9) such that a, b < ∞ and DBS is the BS divergence (basically corresponding to
f (t) = log t). In our proof of the next theorem, we cannot use directly the proofs [25,
Theorem 4.4, Proposition 4.5] for D f (ϕ‖ψ) because our definition of D f (T ‖S) is based
fundamentally on a variational principle for testfunctions valued inM�Aop, which is
not a von Neumann algebra. Fortunately, it is well-known [53] (see also [54, Chapter
5]) that variational principles can provide alternative proofs.

Theorem 3.8 1. (Lower semi-continuity). Let Tn, Sn be channels such that Tn(m) →
T (m), Sn(m) → S(m)weakly for any m ∈M. Then D f (S‖T ) ≤ lim infn D f (Sn‖Tn),
and similarly DBS(S‖T ) ≤ lim infn DBS(Sn‖Tn).

2. (Data processing inequality) Let S1, S2 : N → M, T : R → N be channels
between von Neumann algebras. Then D f (S1‖S2) ≥ D f (S1 ◦ T ‖S2 ◦ T ). Similarly,
DBS(S1‖S2) ≥ DBS(S1 ◦ T ‖S2 ◦ T ).

3. (Joint convexity) Let pi , q j be probability distributions over a finite set and Ti , S j :
N →M channels. Then

D f (
∑

i

pi Si‖
∑

j

q j Tj ) ≤
∑

i, j

pi q j D f (Si‖Tj ), (40)

and similarly for DBS.
4. (Dilation)Given channels S, T : N →M, then D f (S‖T ) = D f (S⊗idB(�2(N))‖T⊗

idB(�2(N))). The same holds for DBS(S‖T ).

Proof. (1) Consider anM−A bimodule π and unit vector ξ ∈Hπ that achieves the
supremum in the variational definition (34) up to a tolerance ε. Then

D f (S‖T )− 2ε = D f (ϕS,π,ξ‖ϕT,π,ξ )− ε

≤ lim inf
n

D f (ϕSn ,π,ξ‖ϕTn ,π,ξ )

≤ lim inf
n

D f (Sn‖Tn).

(41)

The first inequality is proven as follows. Consider an admissible step function
x : (0,∞) → M � A in Proposition 2.16 such that D f is achieved up to the
tolerance ε, we see

D f (ϕS,π,ξ‖ϕT,π,ξ )− ε

= − log

(

a + b +
∫

(0,∞)

(1 + t){ϕS,π,ξ (xt x
∗
t ) +

1

t
ϕT,π,ξ (yt y∗t )}dμ(t)

)

= − log

(

a + b + lim
n

∫

(0,∞)

(1 + t){ϕSn ,π,ξ (xt x
∗
t ) +

1

t
ϕTn ,π,ξ (yt y∗t )}dμ(t)

)

≤ lim inf
n

D f (ϕSn ,π,ξ‖ϕTn ,π,ξ ), (42)

using again the variational principle in the last line. The statement for the BS diver-
gence likewise follows from the correspondingvariational formula, seeLemma2.17.

(2) Let (ξ, π,A) be a nearly optimal triple as in definition (34) for D f (S1 ◦ T ‖S2 ◦ T )

up to tolerance ε. Consider a step function xt ∈ N ⊗Aop as in Proposition 2.16 that
is nearly optimal in the variational characterization of D f (ϕS1◦T,π,ξ‖ϕS2◦T,π,ξ ) up
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to a tolerance ε > 0. Then clearly (T ⊗ id)(xt ) ∈ M�Aop is an admissible step
function in the variational characterization of D f (ϕS1,π,ξ‖ϕS2,π,ξ ), and so we have,
using Kadison’s theorem (T ⊗ id)(n∗n) ≥ (T ⊗ id)(n)∗(T ⊗ id)(n) and the unital
property T (1) = 1,

D f (S1 ◦ T ‖S2 ◦ T )− 2ε ≤ D f (ϕS1◦T,π,ξ‖ϕS2◦T,π,ξ )− ε

≤ − log

(

a + b +
∫

(0,∞)

(1 + t){ϕS1,π,ξ ◦ T (xt x∗t ) +
1

t
ϕS2,π,ξ ◦ T (yt y∗t )}dμ(t)

)

≤ − log

(

a + b +
∫

(0,∞)

(1 + t){ϕS1,π,ξ (T (xt )T (x∗t )) +
1

t
ϕS2,π,ξ (T (yt )T (y∗t ))}dμ(t)

)

≤ − log

(

a + b + inf
(0,∞)

x−→M

∫

(0,∞)

(1 + t){ϕS1,π,ξ (xt x∗t ) +
1

t
ϕS2,π,ξ (yt y∗t )}dμ(t)

)

= D f (ϕS1,π,ξ‖ϕS2,π,ξ ) ≤ D f (S1‖S2), (43)

and therefore the statement follows because ε was arbitrary. The proof for the BS
divergence is similar and now based on Proposition 2.17.

(3) The variational principles expressed in definition (34) and Proposition 2.16 display
D f (S‖T ) as a double supremum of affine functionals of S, T . Joint convexity
follows. The details are similar to (2).

(4) Let H̃ be a M ⊗ B(�2(N)) − A bimodule. Since a left representation is a right
representation of the opposite algebra, this is also aM−B(�2(N))op⊗A bimodule,
hence included in the maximization in Definition 3.4 of D f (S‖T ). Thus, we have
D f (S‖T ) ≥ D f (S ⊗ idB(�2(N))‖T ⊗ idB(�2(N))). On the other hand, let (π,A, ξ)

be a nearly optimal triple in the Definition 3.4 of D f (S‖T ), up to tolerance ε,
where π corresponds to some M − A bimodule H . Then H̃ = �2(N) ⊗ H
is a M ⊗ B(�2(N)) − A bimodule. Let η be any unit vector in �2(N) and set
ξ̃ = ξ ⊗ η as well as S̃ = S ⊗ idB(�2(N)). If xt is a step function achieving
the supremum the variational formula (Proposition 2.16) of D f (ϕπ,S,ξ‖ϕπ,S,ξ ) up
to tolerance ε, it follows that x̃t := xt ⊗ 1�2(C) is a valid step function in the
variational definition of D f (ϕπ̃,S̃,ξ̃

‖ϕ
π̃,S̃,ξ̃

) achieving the same value. So we have
D f (S‖T )− 2ε ≤ D f (S⊗ idB(�2(N))‖T ⊗ idB(�2(N))), and (4) is proven for D f . In
the case of DBS we use instead Proposition 2.17.

��
Our basic proof strategy to prove certain more profound properties of the channel

divergence below will be to reduce the statements to those for finite dimensional matrix
algebras obtained recently in [27], and to do this we will need to restrict attention from
now on to hyperfinite von Neumann algebras. [A von Neumann algebraN on a Hilbert
spaceH is said to be hyperfinite if there exists a sequence (“filtration”) {Nn}n∈N ⊂ N of
finite dimensional subalgebras, increasing, i.e.Nn ⊂ Nn+1, such thatN = (⋃

n Nn
)′′.]

Examples of hyperfinite factors are all type I factors, i.e. B(H ), Mn(C), but there
also exist hyperfinite factors of types II and III. Let N ,M be hyperfinite factors, let
S, T : N →M be channels, and letNn,Mn be filtrations ofN , andM, respectively.
Following [55] one can construct for each n a “generalized conditional expectation”
En : M → Mn as follows. Let ωn = ωæMn be the restriction of the faithful normal
state ω on M, with GNS representation πn , GNS Hilbert space Hn and GNS vector
�n . Let Jn be the modular conjugation associated with �n and define a partial isometry
Vn :Hn →H by Vnπn(x)�n := x� where x ∈Mn . One can check that V ∗

n M′Vn ⊂
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πn(Mn)′. It is therefore consistent to define En(m) to be the unique element xn ∈Mn
such that

πn(xn) = Jn V ∗
n Jm J Vn Jn, (44)

where J is the modular conjugation associated with � and M. By construction, each
En is a channel.

Lemma 3.9 (see [56]). En(m) → m strongly as n →∞ for all m ∈M.

We get:

Proposition 3.10 (Martingale property). We have D f (S‖T ) = supn D f (SæNn‖T æNn ).
Similarly, DBS(S‖T ) = supn DBS(SæNn‖T æNn )

Proof. Consider first the case D f . Let (ξ, π,A) be a nearly optimal triple as in the
definition (34) of D f (S‖T ). We let pn be the abstract units in Mn which from an
increasing net of projections in M. By the von Neumann density theorem, pn → 1
strongly. By monotonicity, i.e. by the data processing inequality applied to the inclusion
channel Mn ⊂M, we have lim supn D f (SæMn‖T æMn ) ≤ D f (S‖T ).

Let B := ⋃
n Mn which is a ∗-subalgebra of M whose weak closure is B′′ =

M. By the von Neumann density theorem, B is strongly dense on M. Let xt be an
admissible step function as in Proposition 2.16 valued inM�Aop which approximates
D f (ϕS,π,ξ‖ϕT,π,ξ ) up to an arbitrary chosen tolerance ε. Because xt has finite range and
because B is strongly dense in M, we can construct a sequence the step functions xn,t
in Mn � A such that xn,t is constant on each interval where xt is constant, such that
xn,t = pn for any t which is so small that xt = 1, and such that moreover xn,t → xt
strongly on each such interval as n → ∞. Then ϕS,π,ξ (xn,t x

∗
n,t ) → ϕS,π,ξ (xt x

∗
t ) and,

letting yn,t = pn − xn,t ∈Mn , ϕT,π,ξ (yn,t y∗n,t ) → ϕT,π,ξ (yt y∗t ) as n →∞, uniformly
in t . We insert the step functions xn,t , yn,t and the unit pn instead of xt , yt and 1 into the
right side of the variational formula Proposition 2.16.

The convergence properties of the step functions xn,t , yn,t and the unit pn mean that
the right side converges to D f (ϕS,π,ξ‖ϕT,π,ξ ) − ε as n → ∞, thus
lim infn D f (SæMn‖T æMn ) ≥ D f (ϕS,π,ξ‖ϕT,π,ξ )− ε ≥ D f (S‖T )− 2ε. We can take
ε smaller and smaller, proving that lim infn D f (SæMn‖T æMn ) ≥ D f (S‖T ), which
demonstrates the proposition.

For the BS divergence, we proceed in a similar way now using variational principle
Proposition 2.17. ��

Combining the previous lemma and the martingale property we get:

Lemma 3.11. We have D f (S‖T ) = limm supn D f (Em ◦ SæNn‖Em ◦ T æNn ), and sim-
ilarly for the BS divergence.

Proof. Consider the channels Em ◦ S, Em ◦ T : N →Mm and anMm −A bimodule
Hm , representation πm , and vector ξm ∈Hm as in the definition of D f (Em ◦T ‖Em ◦ S)

such that the supremum (34) is achieved. By Lemma 3.7, we may assume the bimodule
in question to be the standard Mm −Mm bimodule L2(Mm). From the channel Em :
M→Mm and the functional 〈ξm, .ξm〉, we then get an inducedM−Mm bimodule in
view of Proposition 3.3. It immediately follows that D f (S‖T ) ≥ D f (Em ◦ S‖Em ◦ T )

because in the variational definition (34) of D f (S‖T ), we take the supremum over
the larger set of all bimodules whereas D f (Em ◦ S‖Em ◦ T ) corresponds precisely
to the induced bimodule M − Mm just described. Thus, we see that D f (S‖T ) ≥
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lim supm D f (Em ◦ S‖Em ◦ T ), whereas D f (S‖T ) ≤ lim infm D f (Em ◦ S‖Em ◦ T )

follows in view of the lower semi-continuity of the channel divergence because Em is
pointwise strongly – hence weakly – convergent by Lemma 3.9. Therefore, we see that,
simply D f (S‖T ) = limm D f (Em ◦ S‖Em ◦ T ). The statement now follows from the
martingale property. The proof for the BS divergence is similar and based instead on
Proposition 2.17. ��

The following property, observed and proven first in [27] for matrix algebras, is
crucial for this work.

Proposition 3.12 (Internal subadditivity). Let S2, T2 : N → R, S1, T1 : R → M be
channels between hyperfinite von Neumann algebras. Then we have

DBS(S2 ◦ S1‖T2 ◦ T1) ≤
∑

i=1,2

DBS(Si‖Ti ). (45)

Proof. Let Em : R → Rm, Fk : M → Mk be sequences of generalized conditional
expectations as described above.

DBS(S1 ◦ S2‖T1 ◦ T2)

≤ lim inf
m

DBS(S1 ◦ Em ◦ S2‖T1 ◦ Em ◦ T2)

≤ lim inf
m

lim inf
k

DBS(Fk ◦ S1 ◦ Em ◦ S2‖Fk ◦ T1 ◦ Em ◦ T2)

= lim inf
m

lim inf
k

sup
n

DBS(Fk ◦ S1 ◦ Em ◦ S2æNn‖Fk ◦ T1 ◦ Em ◦ T2æNn)

≤ lim inf
m

lim inf
k

sup
n

(
DBS(Fk ◦ S1æRn‖Fk ◦ T1æRn)

+ DBS(Em ◦ S2æNn‖Em ◦ T2æNn)
)

= DBS(S1‖T1) + DBS(S2‖T2)

(46)

In the first two lines we used lower semi-continuity, in the third line we used the mar-
tingale property, in the fourth line we used the result by [27] in the context of finite-
dimensional von Neumann algebras, and in the last step we used the martingale property
and Lemma 3.11. ��
Remark 3.13. A noteworthy special case of the proposition arises when M = C, i.e.
S1, T1 are states. In this case the subadditivity corresponds to the “chain rule” of [27].

Consider channels Si , Ti : Ni → Mi between hyperfinite von Neumann algebras
represented on Hilbert spaces Hi , where i = 1, 2. We can form the weak closure of
N1�N2 inB(H1⊗H2) and denote this (hyperfinite) vonNeumann algebra byN1⊗̄N2,
and we proceed similarly forMi . Then it follows that S1⊗ S2 : N1�N2 →M1⊗M2
can be extended to a channel S1 ⊗ S2 from N1⊗̄N2 → M1⊗̄M2, and similarly for
T1 ⊗ T2. Then we have:

Proposition 3.14 (External additivity). Let Si , Ti : Ni →Mi be channels between the
hyperfinite von Neumann algebras Ni ,Mi , i = 1, 2. Then DBS(S1 ⊗ S2‖T1 ⊗ T2) =∑

i=1,2
DBS(Si‖Ti ).

Proof. Similar to the proof of internal subadditivity using again Lemma 3.11 and that
DBS is additive under the tensor product in the finite dimensional case by results of [27].

��
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3.3. Channel divergences for Kraus channels. Let M be a von Neumann algebra in
standard form acting on the Hilbert space H with cyclic and separating vector �. We
consider a class of channels T, S : M → M of so-called “Kraus type” investigated
in the context of general von Neumann algebras by [57]. By definition, these are of the
form

S(m) =
N∑

i=1

a∗i mai ,

N∑

i=1

a∗i ai = 1,

T (m) =
M∑

i=1

b∗i mbi ,

M∑

i=1

b∗i bi = 1,

(47)

with m, ai , b j ∈ M and N , M ∈ N. Our aim is to give a formula for DBS(S‖T ) for
the channel divergence of two Kraus channels in terms of their “Choi operators” also
introduced in this context by [57]. To this end, we define the Choi operators CS, CT ∈
B(H ) for such channels as, respectively

CS =
N∑

i=1

ai |�〉〈�|a∗i , CT =
M∑

i=1

bi |�〉〈�|b∗i . (48)

ByconstructionCS ∈ B(H ) is a non-negative operator offinite rank such thatTrH CS =∑N
i=1 ‖ai�‖2 = 1, and similarly for CT .
Let C ⊂ B(H ) be the ∗-subalgebra of all operators of the form∑N

i=1 ci |�〉〈�|di for
some N ∈ N, c j , d j ∈M. By [57, Theorem 4], the spectral projections of the operators
CS, CT are in C and consequently this algebra is closed under the spectral calculus.
Now suppose σ is the Kubo-Ando connection associated with a non-negative operator
monotone function f : [0,∞) → [0,∞) with a, b < ∞ in (9). It follows from (15)
that the expressions under the limit in

CSσCT = lim
ε→0

(
CS + ε(CS + CT )

)
σ
(

CT + ε(CS + CT )
)

(49)

are non-negative elements from C. Since the arguments of the mean σ are decreasing
and strongly convergent as ε → 0, the limit not only exists by the properties of the
Kubo-Ando connections, but is also in CSσCT ∈ C, see the proof of [57, Theorem 4].
Hence CSσCT is in particular a non-negative finite rank operator in B(H ).

For the operator monotone function f (t) = log t on (0,∞), similar arguments show
that the operators [CS +ε(CS +CT )]σ [CT +ε(CS +CT )] are still in C for ε > 0. The limit
ε → 0 of this decreasing sequence exists but possibly only in the sense of an unbounded
quadratic form. In fact, as long as ε > 0, one can see e.g. from (15), ‖CS‖, ‖CT ‖ ≤ 1
together with V ∗ f (A)V ≤ f (V ∗AV ) for contractions V , positive A ∈ B(H )+ and
operator monotone functions f : (0,∞) → R (see e.g. [58]), that

[CS + ε(CS + CT )]σ [CT + ε(CS + CT )]
≤ max{1, (1 + ε)‖CS‖ + ε‖CT ‖} log[CT + ε(CS + CT )]
≤ (1 + 2ε) log(1 + 2ε)

ε→0−−→ 0.

(50)

Thus, for f (t) = log t , the corresponding Kubo-Ando mean CSσCT defines a negative
possibly unbounded quadratic form given by a finite rank operator in C on its domain. As-
sume thatCSσCT is bounded, hence inC. Then the positive finite rank operator−CSσCT
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may be written as a linear combination of its eigenprojections as
∑K

j=1 c j |�〉〈�|c∗j for
some c j ∈M, K ∈ N0, which gives, for m′ ∈M′

〈�S,T , m′∗m′�S,T 〉 =
K∑

j=1

〈�, m′∗c j c
∗
j m

′�〉 ≤
⎛

⎝
K∑

j=1

‖c j‖2
⎞

⎠ 〈�, m′∗m′�〉. (51)

Definition 3.15. Letσ be theKubo-Andomean for f (t) = log t and assume thatCSσCT
is bounded (hence in C). Then we define �S,T ∈ L2(M,�)+ as the unique representer
of the positive normal functional on M′ associated with the non-negative finite rank
operator −CSσCT for the operator mean associated with f (t) = log t ,

〈�S,T , m′�S,T 〉 = −TrH
[
m′(CSσCT )

]
, m′ ∈M′. (52)

Remark 3.16. By the Connes–Radon–Nikodym theorem and (51), theremust bem ∈M
such that �S,T = m� ∈ M�. We therefore have �S,T ∈ L∞(M,�) ∼= M� by the
well-known characterization of this space.

Proposition 3.17. For two Kraus channels S, T on the finite dimensional or properly
infinite hyperfinite von Neumann algebra M standardly represented on L2(M,�) we
have

DBS(S‖T ) =
∥
∥
∥�S,T

∥
∥
∥
2

L∞(M,�)
(53)

with the convention that the right side is +∞ if CSσCT is unbounded.

Proof. First assume that CSσCT is bounded, so �S,T ∈ L∞(M,�) ∼= M� by the
preceding remark. By Proposition 3.7 we can restrict attention to the standard bimodule
H = L2(M,�) in the variational definition (34) of channel divergence. Furthermore,
sinceM′� is strongly dense inH as � is standard, it is sufficient to restrict to vectors
ξ ∈ H of the form ξ = x ′�, x ′ ∈ M′ in the variational definition. We get using the
definitions and the notations m′ = Jmop∗ J ∈M′, x ′ = J xop∗ J and X := π(1⊗ xop),

ϕS,π,ξ (m ⊗ mop) = 〈ξ, π(S(m)⊗ mop)ξ 〉

=
N∑

i=1

〈ξ, �H (a∗i mai )rH (mop)ξ 〉

=
N∑

i=1

〈x ′�, a∗i mai m
′x ′�〉

=
N∑

i=1

〈x ′ai�, mm′x ′ai�〉

= TrH
[

XCS X∗π(m ⊗ mop)
]

(54)
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We also have a similar formula replacing S by T and a j by b j . The variational principle
for the maximal BS-divergence (Proposition 2.17) thereby gives us

DBS(ϕS,π,ξ‖ϕT,π,ξ )

= sup sup

(

log n −
∫ ∞

1/n
{ϕS,π,ξ (vtv

∗
t ) + t−1ϕT,π,ξ (wtw

∗
t )}dt

t

)

= sup sup

(

log n −
∫ ∞

1/n
{TrH (V ∗

t XCS X∗Vt ) + t−1TrH (W ∗
t XCT X∗Wt )}

dt

t

)
(55)

by (54), where the first supremum is over n ∈ N, the second supremum is over the
finite range step functions (1/n,∞)

v−→ M �Mop such vt = 0 for sufficiently large
t , and where we use the abbreviations Vt = π(vt ), wt = 1 − vt , Wt = π(vt ). Since
the strong closure of π(M �Mop) is strongly dense in B(H ), the step functions Vt
can be used to approximate in the strong topology any given finite range step function
(0,∞) → B(H ) which is zero for sufficiently large t and 1 for sufficiently small t . Let
P be any orthogonal projection onto a finite dimensional subspace ofH containing the
(finite dimensional) ranges of XCS X∗ and XCT X∗. Then it follows that we may further
replace Vt by PVt P and Wt by PWt P and the variational formula [44, Remark 9.2] (or
our Proposition 2.17) therefore tells us that

DBS(ϕS,π,ξ‖ϕT,π,ξ ) = −TrH
[
(XCS X∗)σ (XCT X∗)P

]

= −TrH
[
(XCS X∗)σ (XCT X∗)

]

= −TrH
[

X (CSσCT )X∗]

= −TrH
[
π(1⊗ xop)(CSσCT )π(1⊗ xop)∗

]

= −TrH
[
x ′∗x ′(CSσCT )

]

=
∥
∥
∥x ′�S,T

∥
∥
∥
2
,

(56)

where we used that P was arbitrary so long as its range ranges of XCS X∗ and XCT X∗
to go the third line, and where we used the transformer equality (see e.g. [25, Lemma
D.3]) to go to the fourth line. The last step is admissible if we assume that x ′, hence
X , is invertible, which we assume momentarily is the case. Since we know that �S,T ∈
L∞(M,�), there is m ∈M such that �S,T = m�, therefore

DBS(ϕS,π,ξ‖ϕT,π,ξ ) =
∥
∥
∥x ′m�

∥
∥
∥
2 =

∥
∥
∥mξ

∥
∥
∥
2
. (57)

If we could show that x ′� with x ′ ∈ M′ ranging over the invertible elements is dense
in H , then this formula would hold on for all ξ ∈ H . This follows, in fact, from the
hyperfinite property because invertible elements are norm dense in a finite-dimensional
von Neumann algebra, andM is the strong closure of hyperfinite algebras. Thus, we get
a strongly convergent sequence xn → x with xn invertible for any x ∈ M. Applying
this to x := J x ′ J and choosing x ′n = J xn J gives the statement. Taking the supremum
over our strongly dense set of vectors ξ with unit norm now gives the statement of the
proposition because ‖m‖ = ‖�S,T ‖L∞(M,�).
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Let us now assume that CSσCT is not bounded. The completely positive maps Tε :=
T + ε(S + T ), Sε := S + ε(S + T ) do not suffer from this problem for ε > 0 and are
(non-normalized) increasing (as ε → 0) sequences of Kraus channels. By monotonicity
of the operator mean σ , CSεσCTε is an increasing sequence of self-adjoint operators in C
whose range remains in a fixed finite dimensional subspace ofH. Hence it is convergent
to the unbounded operator CSσCT in norm from which we can see that there must be
x ′ ∈M such that−TrH [x ′∗x ′(CSεσCTε )] diverges to +∞, hence so does DBS(Sε‖Tε)

by (56). However, since Tε, Sε are decreasing sequences of channels, by monotonicity
DBS(S‖T ) ≥ DBS(Sε‖Tε) →∞. ��

3.4. Examples. As a simple special case of Kraus channels we consider S, T in (47) of
the form

N∑

i=1

ai a
∗
i = 1, a∗i a j = δi, j1,

M∑

i=1

bi b
∗
i = 1, b∗i b j = δi, j1. (58)

In other words, {a j } respectively {b j } each generate algebras isomorphic to the Cuntz
algebras on N respectively M isometries.

Corollary 3.18. LetM be a finite dimensional or properly infinite von Neumann algebra
and let S, T be Kraus channels such that (58) holds for some N , M ∈ N. Then either
N = M and T = S, or we have DBS(S‖T ) = ∞, or N < M and DBS(S‖T ) = 0.

Remark 3.19. In particular, note that if T (m) = umu∗ with u ∈M unitary and S = id,
we have DBS(id‖T ) = DBS(T ‖id) = ∞ unless u = λ1.

Proof. It follows from the Cuntz algebra relations that the corresponding Choi operators
are CT = Q and CS = P are orthogonal projections of rank N respectively M on H .
Denote by P∧Q the orthogonal projection onto the intersection of the ranges of P and Q.
Consider the operatormonotone functions fn(t) := log(t+ 1

n ), t ≥ 0,which have integral
representations fn(t) = − log n +

∫∞
1/n

s
t+s

dt
t , and let σn be the corresponding operator

means. By the proof of [45, Theorem 3.7], we have (t P) : Q = t (t + 1)−1(P ∧ Q). By
the integral representation (10) for this mean, we therefore get

Pσn Q = P log 1
n +

∫ ∞

1/n
[(t P) : Q]dt

t2

= P log 1
n + (P ∧ Q)

∫ ∞

1/n

dt

t (t + 1)

= [(P ∧ Q)− P] log n − (P ∧ Q)

[

log n − (log t − log(1 + t))∞1/n

]

= [(P ∧ Q)− P] log n + (P ∧ Q) log(1 + 1
n )

(59)

As n → ∞, the operator means Pσn Q are decreasing (hence convergent) to the po-
tentially unbounded quadratic form Pσ Q = [(P ∧ Q) − P]∞, where σ corresponds
to the operator monotone function f (t) = log t . Therefore, if Pσ Q is to be bounded,
we must have (P ∧ Q) − P = 0, so P must be a subprojection of Q, or otherwise
DBS(S‖T ) = ∞ by Proposition 3.17. If P = Q, then N = M , and there must be
Ri j ∈ C such that ai� = ∑N

j=1 Ri j b j�, and since � is separating, we must have
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ai = ∑N
j=1 Ri j b j . The Cuntz algebra relations then show that (Ri j ) is a unitary matrix

and then clearly S = T . If P < Q, then clearly N < M and it follows that Pσn Q is
decreasing (hence convergent) to 0 and DBS(S‖T ) = 0. ��

Another very simple but conceptually relevant example is:

Proposition 3.20. Let M be a finite dimensional or properly infinite, hyperfinite von
Neumann algebra and let e j ∈ M be N mutually orthogonal projections such that∑

i ei = 1, 0 < ei < 1. We consider the Kraus channel

M(m) = e1me1 + · · · + eN meN (60)

corresponding to an N-ary measurement. Then

DBS(id‖M) = log N (61)

Proof. The Choi operator associated with M is CM = ∑
ei |�〉〈�|ei and that for

the identity channel id is Cid = |�〉〈�|. We begin by working out the parallel sum
〈ξ, [(tCid) : CM ]ξ 〉 using the variational definition (11). A minimizer ζ0 in that defini-
tion has to satisfy

t〈�, ζ0〉�−
∑

i

〈ei�, ξ − ζ0〉ei� = 0. (62)

The vectors ei� are non-zero and linearly independent because � is separating and
because the ei ’s are orthogonal and non-trivial. We therefore see that

t〈�, ζ0〉 = 〈ei�, ξ − ζ0〉 (63)

for all i = 1, . . . , N and any solution ζ0 is a minimizer for the variational problem (11).
To find a solution we consider the ansatz ζ0 = ∑

i ai‖ei�‖−2ei�, leading to a linear
system for the unknown complex coefficients ai . A solution is

ai = 〈ei�, ξ 〉 − t

1 + Nt
〈�, ξ 〉. (64)

Substituting the corresponding ζ0 into the variational definition (11) yields

〈ξ, [(tCid) : CM ]ξ 〉 = t

N t + 1
|〈ξ,�〉|2, (65)

noting that the dependence upon ei has cancelled. In other words [(tCid) : CM ] =
t

N t+1 |�〉〈�|. Next we use the integral representation (10) for the Kubo-Ando means
σn associated with the functions fn(t) = log( 1n + t). The corresponding measures dμn

are read off from the integral representations fn(t) = − log n +
∫∞
1/n

s
t+s

dt
t . This gives

for the Kubo-Ando mean CidσCM associated with f (t) = log t as required for the BS
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divergence,

−CidσCM = lim
n
−CidσnCM

= lim
n

(

(log n)Cid −
∫

(1/n,∞)

[(tCid) : CM ]dt

t2

)

= lim
n

lim
K

(

(log n)|�〉〈�| −
∫

(1/n,K )

(
t

N t + 1
|�〉〈�|

)
dt

t2

)

= lim
n

lim
K

(

log n −
∫

(1/n,K )

dt

t (Nt + 1)

)

|�〉〈�|

= lim
n

lim
K

(

log n − log(t)

∣
∣
∣
∣

K

1/n
+ log(Nt + 1)

∣
∣
∣
∣

K

1/n

)

|�〉〈�|

= (log N )|�〉〈�|.

(66)

Next we use the definition (52) for S = id, T = M , giving

�id,M = (log N )1/2�. (67)

By Proposition 3.17, we therefore have DBS(id‖M) = log N as we wanted to show. ��
Our final example concerns finite index inclusions of von Neumann factors.

Proposition 3.21. Let N ⊂ M be a finite index inclusion of von Neumann factors
with associated minimal conditional expectation E : M → N . Then DBS(id‖E) =
log[M : N ].
Proof. a) We let d2 = [M : N ] and we first show DBS(id‖E) ≥ log d2 using the
variational definition (34) for the channel divergence in the case of the BS divergence.
We let e be the Jones projection for the inclusion, i.e.M is generated byN and e. Then
E(e) = d−21. Let π be the representation of M � Mop coming from the standard
bimodule L2(M) with underlying Hilbert spaceH . Recall that for ξ ∈H we have by
definition ϕξ,E,π (m ⊗ mop) = 〈ξ, E(m)J (mop)∗ Jξ 〉 for the quantity appearing in (34)
for the channel E : M → N . We use this bimodule in the variational characterization
of Proposition 2.17 involving a supremum over n ∈ N and admissible step functions
(1/n,∞)

x−→ M � Mop (as well as yt := 1 − xt ). We obtain a lower bound by
constructing a specific step function xn for each n ∈ N and show that the limit n →∞
of the variational expression in Proposition 2.17 tends to a quantity that is at least log d2.

For this, we choose a standard vector � ∈ H for M and let ξ := e�/‖e�‖. We
also let

xt :=
{
1− t

t+d−2 e ⊗ 1 1/n ≤ t ≤ n,

0 t > n
(68)

and we let yt = 1− xt . Since eξ = ξ and E(e) = d−21, we get

ϕξ,E,π (y∗t yt ) =
t2d−2

(t + d−2)2
, ϕξ,id,π (x∗t xt ) =

d−4

(t + d−2)2
(69)
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in the range t ≤ n. This gives us
∫ ∞

1/n
{ϕξ,id,π (x∗t xt ) +

1

t
ϕξ,E,π (y∗t yt )}

dt

t

=
∫ n

1/n

(
d−4

(t + d−2)2
+

d−2t

(t + d−2)2

)
dt

t
+
1

n

≤ 1

n
+ d−2

∫ ∞

1/n

dt

t (t + d−2)

= log n + log(n−1 + d−2) +
1

n
.

(70)

Then it follows from the variational characterization of the BS divergence (Proposi-
tion 2.17) that

DBS(ϕξ,id,π‖ϕξ,E,π )

≥ sup
n

(

log n −
∫ ∞

1/n
{ϕξ,id,π (x∗t xt ) +

1

t
ϕξ,E,π (y∗t yt )}

dt

t

)

≥ lim
n

(

log n −
∫ ∞

1/n
{ϕξ,id,π (x∗t xt ) +

1

t
ϕξ,E,π (y∗t yt )}

dt

t

)

≥ lim
n

(

log n − (log n + log(n−1 + d−2) +
1

n
)

)

= log d2.

(71)

By the variational characterization of the channel divergence as a supremum of
DBS(ϕξ,id,π‖ϕξ,E,π ) over triples (A, π, ξ) we therefore have DBS(id‖E) ≥ log d2.

b) The conditional expectation satisfies the Pimsner-Popa bound E ≥ d−2id [38,59].
Let ε > 0. Then we can choose a triple (π,A, ξ) (consisting of a von Neumann algebra
A, binormal representation π on H of M�Aop, and unit vector ξ in H ) an n ∈ N,
and an admissible step function (1/n,∞)

x−→M�Aop such that the supremum in the
variational definition (34) is saturated up to tolerance ε:

DBS(id‖E)− ε

≤ log n −
∫ ∞

1/n
{ϕξ,id,π (x∗t xt ) +

1

t
ϕξ,E,π (y∗t yt ))}

dt

t

≤ log n −
∫ ∞

1/n
{ϕξ,id,π (x∗t xt ) +

1

td2 ϕξ,id,π (y∗t yt )}
dt

t

= log d2 + log(nd−2)−
∫ ∞

1/(nd−2)

{ϕξ,id,π (x∗t xt ) +
1

t
ϕξ,id,π (y∗t yt )}

dt

t

(72)

The right side is≤ log d2 + DBS(id‖id) = log d2 using the variational definition again.
Since ε > 0 can be as small as we like we have shown DBS(id‖E) ≤ log d2. We have
already shown DBS(id‖E) ≥ log d2 in a) so the proof is complete. ��

4. Applications to QFT

4.1. Algebraic QFT. We recall the axioms in the algebraic approach to QFT, see [60]
as a general reference. In the preceding sections we have described properties of the
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channel divergence DBS in the general context of von Neumann algebras. In the context
of local QFT, one has additional structure due to spacetime localization, and it turns out
that this structure plays very nicely with the notion of channel divergence. We restrict
to the setting of Minkowski spacetime (Rn, η) for n ≥ 2.

A causal diamond O is the causal completion of an open, simply connected subset U
with compact closure of a Cauchy surface, where the causal structure is induced by the
Minkowski metric. A QFT in the algebraic setting (‘AQFT’) is an assignment of simply
connected causal diamonds to von Neumann factors O �→ A(O) represented on the
same Hilbert space H , subject to the following conditions:

(a1) (Isotony) A(O1) ⊂ A(O2) if O1 ⊂ O2. We write A = ⋃
O A(O) with comple-

tion in the operator norm.
(a2) (Causality) [A(O1),A(O2)] = {0} if O1 is space-like related to O2.
(a3) (Relativistic covariance) For each g ∈ P̃ covering10 a Poincaré transformation

(�, a) ∈ P = SO+(n − 1, 1) ˙ R
n , there is an automorphism αg on A such that

αgA(O) = A(�O + a) for all causal diamonds O and such that αgαg′ = αgg′
and α(1,0) = id is the identity.

(a4) (Vacuum)There is a strongly continuous positive energy representation g �→ U (g)

onH implementing αg(a) = U (g)aU (g)∗ for all a ∈ A. There is a vector� (the
vacuum) which is cyclic for A and such that U (g)� = � for all g ∈ P̃. Positive
energy means that if x ∈ R

n ⊂ P is a translation by x , we can write

U (x) = exp(−iη(P, x)), (73)

and the vector generator P = (P0, P1, . . . , Pn−1) has spectral values p in the
forward lightcone p ∈ V̄ + = {p ∈ R

n | η(p, p) ≥ 0, p0 > 0}.
(a5) (Additivity) Let Oi be a family of causal diamonds such that O = ∪i Oi . Then

(∪iA(Oi ))
′′ = A(O).

For technical purposes, we also impose a “nuclearity condition.” The main purpose
of that condition is to ensure a certain regularity on the theory, and several closely related
versions of such a condition have been proposed. In so far as we can see, many of these
would more or less all be equally good for our purposes. For definiteness, we impose
[61]:

(a6) (BW-nuclearity) Let A be a ball of radius r in Cauchy surface, and let Or be the
corresponding causal diamond. Consider the map

�β,r : A(Or ) →H a �→ e−βH a� (74)

where β > 0 and where H = P0 is the Hamiltonian, i.e. the time-component of P
in item (a4). It is required that there exist positive constants s > 0 and c = c(r) > 0
such that for r > 0, β > 0 we have ‖�β,r‖1 ≤ e(c/β)s

. Here we use the nuclear
1-norm discussed further e.g. in [62].

We now comment on twowell-known important consequences of these results for our
analysis, see [60] for further details and references. First, by theReeh–Schlieder theorem,
� is cyclic and separating for each A(O), so the vacuum automatically provides a
standard form for each local vonNeumann algebra. Secondly, eachA(O) is a hyperfinite
factor of type III1 [63]which is a unique object up to vonNeumann isomorphism by [64].

10 The covering group is needed to describe non-integer spin.
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As a consequence, we can apply all of our results on the channel divergences DBS to
the local algebras A(O).

It is important to stress that a priori, A(O) is defined only for causal diamonds
associated with simply connected subsets of a Cauchy surface. If K is any open, causally
complete subset of Rn , we could define either

A(K ) = (∨O⊂KA(O))′′, or B(K ) = (∨O ′⊂K ′A(O ′))′. (75)

In either case, a prime on a region O or K means the causal complement. For topologi-
cally trivial causal diamonds O with compact closure it is a result thatA(O ′) = A(O ′)
(Haag duality), so by (a5), A(O) = B(O) for topologically trivial causal diamonds.
Either A or B gives a net in the above sense with the possible exception of condition
(a5) in the case of B. B(K ) is in general strictly bigger for topologically non-trivial
regions K than A(K ).

DHR-Representations: See [34,35,60,65]. The Hilbert space H may be considered
as the defining (vacuum) representation of the net, but it is physically relevant to also
consider other representations. We shall consider representation π of A on a Hilbert
space Hπ which are ultraweakly continuous when restricted to any A(O) and which
satisfy:

• (DHR-selection criterion) [34,35] π |A(O)′∩A is unitarily equivalent to the vacuum
representation for some O .
• (BF-selection criterion) [65] The automorphisms αg in (a3) are unitarily imple-
mented in π , i.e. there exists a strongly continuous positive energy representation
Uπ (g) such that π(αg(a)) = Uπ (g)π(a)Uπ (g)∗ such that the generator Pπ of trans-
lations Uπ (x) = exp(−iη(Pπ , x)) onHπ has an isolated mass shell in its spectrum,
i.e. spec(Pπ ) ⊂ {p : η(p, p) = M2, p0 > 0} ∪ {p : η(p, p) ≥ m2, p0 > 0} for
some m2 > M2 > 0.

If we let V be a unitary implementing the unitary equivalence in the first item, then
ρ(a) := V ∗π(a)V is an endomorphism of A such that

ρ|A(O)′∩A = id. (76)

One says that ρ is a localized endomorphism (in O) for this reason. Furthermore, ρ is
transportable in the following sense. Let O1 := O , ρ1 := ρ and let O2 be another causal
diamond. Then there exists a unitary u21 ∈ A(O1)∨A(O2) such that Adu21 ◦ρ1 =: ρ2
is an endomorphism satisfying the DHR- and BF- selection criteria that is localized in
O2. We will refer to the endomorphisms arising from the selection criteria above as a
localized, transportable endomorphism.

Let ρ be a transportable irreducible endomorphism localized in some O . As is known,
the selection criteria imply a considerable amount of further algebraic structure associ-
ated with ρ. First, we have a so-called conjugate transportable endomorphism ρ̄ together
with solutions r, r̄ ∈ A(O) and dρ ≥ 1 to the intertwining

ρρ̄(a)r̄ = r̄a, ρ̄ρ(a)r = ra (a ∈ A) (77)

and conjugacy relations

r∗r = dρ1, r̄∗r̄ = dρ1, r∗ρ̄(r̄) = 1 = r̄∗ρ(r). (78)

A left inverse of ρ is given by
ρ(a) := d−1
ρ r∗ρ̄(a)r . The Jones projection for the exten-

sionA(O) ofρ(A(O)) is given by eρ = d−1
ρ r̄ r̄∗ and theminimal conditional expectation
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is Eρ : A(O) → ρ(A(O)) is given by Eρ = ρ◦
ρ . dρ is referred to as the “statistical di-
mension” of ρ. By the index-statistics theorem [33], dρ = [A(O) : ρ(A(O))]1/2 < ∞.
Similar constructions apply to reducible endomorphisms/representations.

For a variant of this theory for conformal field theories in n = 2 spacetime dimensions
see [33,66].

4.2. Complexity of channels in AQFT. Let T be a completely positive map of the quasi-
local algebra A,11 such that, for some sufficiently large causal diamond O , it restricts
to a channel of A(O). By [17, Theorem 2.10], we may write

T (a) = v∗θ(a)v, a ∈ A(O) (79)

where v is an isometry ofA(O) and θ is an endomorphism ofA(O). This motivates the
following definition.

Definition 4.1. A channel T : A→ A is called localized and transportable if it is of the
form (79) for some localized (in some causal diamond O) transportable endomorphism
θ and some isometry v ∈ A(O).

Remark 4.2. (1) Note that by definition, T |A(O)′∩A = id, i.e. T is the identity in the
causal complement of O .

(2) It is easy to see that the set of localized and transportable channels is stable under
composition, i.e. the composition is again of the form (79). It is also closed under
convex combinations: Let Ti be localized, transportable channels of the form (79)
with vi , θi , and pi a probability distribution on a finite set. Since A(O) is type III
[21], there are isometries ai inA(O) satisfying the Cuntz algebra relations (58). Then
set v = ∑√

pi aivi and θ(m) = ∑
aiθi (m)a∗i , m ∈ A(O). It follows that θ is a

localized, transportable endomorphism ofA, that v is an isometry ofA(O), and that∑
pi Ti is of the form (79).

(3) One may generalize the definition to channels between two nets A,B.
Let x ∈ R

n , let O + x be the translate of O and let αx (a) = U (x)∗aU (x) be the
translate of an element a ∈ A(O) toA(O + x) as in (a3). We consider Tx = αx ◦T ◦α−x
as a channel of A(O + x). Then

Tx (a) = αx (v)∗U (x)θ(α−x (a))U (x)∗αx (v). (80)

Since θ is by assumption an endomorphism satisfying the DHR- and BF selection cri-
teria, translations are implemented in the sector θ by a strongly continuous group of
unitaries Uθ (x), x ∈ R

n so we have θ(α−x (a)) = Uθ (x)∗θ(a)Uθ (x). Furthermore
u(x) = U (x)Uθ (x)∗ is an element of A(O)∨A(O + x) transporting θ to an endomor-
phism θx = Adu(x) ◦θ localized in in O + x , and we have, with vx = αx (v) ∈ A(O + x),

Tx (a) = v∗xθx (a)vx , a ∈ A(O + x), (81)

i.e. it has the same form as (79) but with θx , vx now localized in O + x .
We now make a proposal for the complexity of a channel in algebraic quantum field

theory.

11 Note that A is a C∗- and not a von Neumann algebra, but the notion of completely positive map is still
defined.
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Definition 4.3. The complexity of a localizable and transportable channel T is defined
as

c(T ) = DBS(id|A(O)‖T |A(O)), (82)

where O is any sufficiently large causal diamond such that T |A(O)′∩A = id.

To be precise, we should demonstrate:

Lemma 4.4. The definition of c(T ) does not depend on the sufficiently large causal
diamond O chosen in (82).

Proof. Let O1, O2 be causal diamonds such that T |A(Oi )
′∩A = id and let O be the

causal completion of O1∪O2. LetA(O1)
c := A(O1)

′ ∩A(O), letMc
n be a net of finite

dimensional type I algebras exhaustingA(O1)
c, and letMn be anet of finite-dimensional

type I algebras exhausting A(O1), which exist as a consequence of requirement (a6),
see [21]. Then (∪nMc

n ∨Mn)′′ = A(O) and by the martingale property for DBS we
have

DBS(id|A(O)‖T |A(O)) = lim
n

DBS(id|Mc
n∨Mn

‖T |Mc
n∨Mn

)

= lim
n

DBS(id|Mn
⊗ id|Mc

n
‖T |Mn

⊗ id|Mc
n
)

= lim
n

DBS(id|Mn
‖T |Mn

)

= DBS(id|A(O1)‖T |A(O1)).

(83)

In the second equality, we used thatMn ∨Mc
n
∼=Mn ⊗Mc

n as von Neumann algebras
becauseMn andMc are finite-dimensional and that T acts trivially onMc

n by locality.
In the third step we used external additivity of DBS . In the last step we used again the
martingale property. The same could be shown for O1 → O2. Thus the definition of
c(T ) is independent of whether we take O1 or O2 in (82). ��
Theorem 4.5. The complexity c has the following properties (T, Ti localized, trans-
portable channels):

1. (Identity) c(id) = 0.
2. (Internal subadditivity) c(T1 ◦ T2) ≤ c(T1) + c(T2).
3. (Convexity) Let {pi } be a probability distribution on a finite set. Then c(

∑
pi Ti ) ≤∑

pi c(Ti ).
4. (Locality) Let T1 and T2 be channels localized in spacelike related causal diamonds

with strictly positive distance. Then c(T1 ◦ T2) = c(T1) + c(T2).
5. (N-ary local measurement) Let M(a) = ∑

i ei aei be the channel describing an
N-ary local measurement associated with the N mutually orthogonal non-trivial
projections ei ∈ A(O),

∑
ei = 1. Then M is localized and transportable and

c(M) = log N.
6. (Net extensions) Let B be a net extending A [67] with corresponding conditional

expectation E. Then

c(E) = log[B(O) : A(O)]. (84)

7. (Localized transportable endomorphisms I) Let ρ be a transportable localized trans-
portable endomorphism with conditional expectation Eρ and statistical dimension
dρ . Then Eρ is a localized transportable channel and

c(Eρ) = log d2
ρ. (85)
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8. (Translations) If Tx is the translate of T by x ∈ R
n as in (81), then c(Tx ) = c(T ).

9. (Localized transportale endomorphisms II) If ρ %= id is a localized transportable
endomorphism of A(O), then c(ρ) = ∞.

10. (Local unitaries) Let u ∈ A(O) be a unitary and U (a) = u∗au be the corresponding
channel on A(O). Then if U %= id, we have c(U ) = ∞.

Proof. (1)-(3), (6), (10) are taken from Sect. 3.
(4) Let Ti be localized in Oi , where O1 and O2 are spacelike related with strictly

positive distance. By locality T1 ◦T2(a1a2) = T1(a1)T2(a2), ai ∈ A(Oi ). Then the BW-
nucelarity assumption (a6) implies the split property for the algebrasA(O1) andA(O2),
see [21] or [60, Chapter V.5.2] as a general reference. So there is a unitary W : H →
H ⊗H such that W ∗(a1 ⊗ a2)W = a1a2 and consequently T1 ◦ T2|A(O1)∨A(O2) =
AdW ◦(T1⊗T2)◦ AdW ∗ , where T1⊗T2 is the tensor product channel onA(O1)⊗A(O2)

and AdW X = W ∗X W . In particular, the map T1 ◦ T2 is normal on A(O1) ∨ A(O2).
Then, by applying internal subadditivity twice

DBS(id‖T1 ◦ T2) ≥ DBS(AdW‖AdW ◦ (T1 ⊗ T2)) ≥ DBS(id‖T1 ⊗ T2) (86)

Since W is unitary, we have the reverse inequality by the same argument backwards, so
c(T1 ◦ T2) = c(T1 ⊗ T2) = c(T1) + c(T2), by external additivity.

(5) This follows from Sect. 3; we only need to show that H is localized and trans-
portable. Since A(O) is properly infinite, there are isometries ai , i = 1, . . . , N in
A(O) satisfying the Cuntz algebra relations (58). Then we set v∗ = ∑

i ei a∗i and
θ(m) := ∑

j a j ma∗j , m ∈ A(O). It follows that v∗v = 1, that θ is a localized, trans-
portable endomorphism, and that M(m) = v∗θ(m)v, as desired.

(7) The formulas Eρ(a) = d−1
ρ ρ(r)∗ρρ̄(a)ρ(r) and r∗r = dρ1 show that Eρ is

localized and transportable (with θ = ρρ̄, v = d−1/2
ρ ρ(r)). The formula follows from

Proposition 3.21 because dρ = [A(O) : ρA(O)]1/2 by the index-statistics theorem
[33].

(8) We only need to show c(Tx ) = c(T ). By applying internal subadditivity twice
we see DBS(id‖αx ◦ T ◦ α−x ) ≥ DBS(α−x‖T ◦ α−x ) ≥ DBS(id‖T ). We can also get
the reverse inequality by running this argument backwards, thereby proving the claim.

(9) We view Eρ,
ρ, ρ as maps on someA(O) such that ρ is localized within O . By
using subadditivity and the formula 
ρ ◦ ρ = id twice:

DBS(id‖ρ) ≥ DBS(
ρ‖
ρ ◦ ρ) = DBS(
ρ‖id) ≥ DBS(
ρ ◦ ρ‖ρ) = DBS(id‖ρ).

(87)

So we must have equality in each step.
a) We first assume dρ > 1. To get a lower bound (actually +∞) on DBS(
ρ‖id), we

proceed as in the proof of part a) of Proposition 3.21, noting that the Jones projection is
eρ = d−1

ρ r̄ r̄∗, and 
ρ(a) = d−1
ρ r∗ρ̄(a)r , with r, r̄ , ρ̄ as in the conjugacy relations (78).

Then, as is well-known, 
ρ(eρ) = d−2
ρ 1, again by the conjugacy relations. As our trial

function, we now choose

xt :=
{

t−1

t−1+d−2
ρ

eρ ⊗ 1 1/n ≤ t ≤ n,

0 t > n
(88)
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andwe let yt = 1−xt . The rest is similar as in as in the proof of part a) of Proposition 3.21:
We see that with this trial function

ϕξ,
,π (xt x
∗
t ) +

1

t
ϕξ,id,π (yt y∗t ) =

{
1

d2
ρ+t

, for 1/n ≤ t ≤ n,

1
t2

t > n
(89)

and thereby:

DBS(id‖ρ) = DBS(
ρ‖id)

= sup
n

sup
x,ξ

(

log n −
∫ ∞

1/n
{ϕξ,
,π (xt x

∗
t ) +

1

t
ϕξ,id,π (yt y∗t )}dt

t

)

≥ sup
n

(

log n −
∫ n

1/n

1

d2
ρ + t

dt

t
−

∫ ∞

n

dt

t2

)

= sup
n

1

d2
ρ

(

(d2
ρ − 1) log n − log d2

ρ + log(1 +
d2
ρ

n
)− log(1 +

1

d2
ρn

)− d2
ρ

n

)

= ∞

(90)

since dρ > 1.
b) If dρ = 1, then ρ(A(O)) = A(O) and ρ is an automorphism. Viewed as an

automorphism ofA, we have ρ(b) = b for any b ∈ A(K ) so long as the causal diamond
K is contained in O ′. Define the stateψ = ω◦ρ−1 onA(O), whereω is the vacuum state,
and let
 be the representer ofψ in the natural cone of�. Then Ua� := ρ(a)
 defines
a unitary U and if b ∈ A(K ) then clearly bUa� = bρ(a)
 = ρ(ba)
 = Uba�. It
follows that U ∈ (∪K⊂O ′A(K ))′ = A(O ′)′ = A(O) by Haag duality. Thus ρ is inner
when restricted to A(O) and hence c(ρ) = ∞ unless ρ = id by item (10). ��
Remark 4.6. The specific local structure of QFT enters in an indirect way in Theorem 4.5
because it entails that the local algebrasA(O) are hyperfinite, satisfy the split property,
are properly infinite (in fact type III1), and have a cyclic and separating vector – the
vacuum by the Reeh–Schlieder theorem. This is used in various combinations in the
proofs of these properties. Nevertheless the given specific forms of the axioms are
probably not totally essential; in particular it seems unlikely that the specific properties of
Minkowski spacetime are crucial. What is missing in Theorem 4.5 is a property linking
the complexity of a channel to notions of energy transfer/cost.

Example 4.7. The simplest setting for an inclusion of nets as in (6) in Theorem 4.5 is
when A = BG is the fixed point net under some finite “internal gauge” group G, say
ZN for definiteness. ZN is acting by unitaries U (g), g ∈ ZN on a common Hilbert
space H for both nets and each U (g) commutes with the unitaries implementing the
spacetime symmetries. The conditional expectation is just the group average E(b) =
N−1 ∑

g U (g)bU (g)∗. Let χk be a character on ZN . Then Pk = ∑
g χk(g)U (g) is a

projection and Hk = PkH is an invariant subspace for each A(O) which can be seen
as an irreducible representation πk of H .

Example 4.8. A more complicated class of examples for (6) in Theorem 4.5 arises in
n = 2 conformal CFTs. Start with a conformal net Vc on circle S1, e.g. the Virasoro
net for some central charge c < 1. The conformal net A is obtained as Vc ⊗ Vop

c
identifying causal diamonds on R

2 with Cartesian products of intervals. Then one can
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obtain an extension for A from the set of highest weight representations Vc (which
give transportable irreducible endomorphisms μ, ν, . . . on the Virasoro net on the real
line) by starting from the representation

∑
μ,ν Zμ,νμ⊗ νop of Vc ⊗ Vop

c , with Zμ,ν the
multiplicities in the torus partition functions. If B is the corresponding net extendingA,
the index is given by [B : A] = ∑

μ d2
μ. For details, see [68].

Example 4.9. A situation similar to to the previous example arises in local gauge theories
of Yang-Mills type in n = 4 dimensions based on a compact local gauge group G: Take
K to be the causal completion of a solid torus in a Cauchy-surface. Then we have
A(K ),B(K ) as in (75). As argued in [69], we should have [B(K ) : A(K )] = dimZ(G)

where Z(G) is the center of the gauge group (e.g. ZN in the case of G = SU (N )). Thus
we relate a property of the gauge group to the complexity of the conditional expectation
E : B(K ) → A(K ). An intuitive reasoning for what E does in terms of ‘t Hooft and
Wilson loops is given in [69].

Example 4.10. An example for localized endomorphisms ρ as in (7) in Theorem 4.5
in a free field theory is the following [70, Section 4.7]. Consider a real N -component
free complex Klein-Gordon quantum field φI (x), I = 1, . . . , N in n = 4 dimensions.
We get a net A of all observables that are invariant under the obvious action of the
SU (N )-symmetry.Consider a tensorT I1...Ik , I j = 1, . . . , N whose symmetry properties
under index permutations are characterized by some Young-tableau λ = (λ1, . . . , λs)

where λ1 ≥ · · · ≥ λs and where λi is the number of boxes in the i-th row. Next, take
testfunctions f I with support in a causal diamond O . Define


 = C
N∑

I1,...,Ik=1

T I1...Ik φI1( f1) . . . φIk ( fk)� (91)

where φI ( f ) = ∫
φI (x) f (x)d4x are the smeared KG quantum fields and� the vacuum

vector and C is a factor such that ‖
‖ = 1. Let dim(λ) be the dimension of the space of
tensors with Young-tableau symmetry λ. By DHR theory [34,35], there exist a localized
(within O), transportable endomorphism ρ of the net such that

〈�, ρ(a)�〉 = 〈
, a
〉 for a ∈ A (92)

and the statistical dimension dρ of this ρ equals the Young-tableau dimension dim(λ). It
is given by a standard formula in terms of the shape of the Young tableau, see e.g. [71],
so we obtain from (7) in Theorem 4.5 in this example,

c(Eρ) = log dim(λ)2 = 2 log

∏
i (λi + N − i)

∏
i< j (λi − λ j − i + j)

(N − 1)! (93)

In the following example diagram λ : with k = 13 and N = 10, the right side

is 2 log 135.

5. Conclusions

In this work we have proposed a notion of complexity of a channel based on a specific
information theoretic notion of distance to the identity channel. It would clearly be
interesting to understand better the uniqueness of our definitionwithin the axiom scheme
that we proposed. It would also be interesting to understand better the relation of our
proposal, if any, to holographic approaches.
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