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Abstract: In this paper, we establish local well-posedness for the Zakharov system on
T¢,d > 3 in alow regularity setting. Our result improves the work of Kishimoto (J Anal
Math 119:213-253, 2013). Moreover, the result is sharp up to e-loss of regularity when
d = 3 and d > 5 as long as one utilizes the iteration argument. We introduce ideas from
recent developments of the Fourier restriction theory. The key element in the proof of our
well-posedness result is a new trilinear discrete Fourier restriction estimate involving
paraboloid and cone. We prove this trilinear estimate by improving Bourgain—Demeter’s
range of exponent for the linear decoupling inequality for paraboloid (Bourgain and
Demeter in Ann Math 182:351-389) under the constraint that the input space-time
function f satisfies suppf C{E 1) eR¥H 1 — % <|El<1+1, |T— 1€ < #}
for large N > 1.

1. Introduction

1.1. Introduction and main result. We consider the Cauchy problem for the Zakharov
system:

i0;u+ Au = nu,
32n — An = A(lul?), (1.1
(u(0), n(0), 3;n(0)) = (uo, no, n1),

where the unknown functions u# and n are complex- and real-valued functions, respec-
tively. We consider (1.1) with periodic boundary condition, namely, u : R x T :— C
and n : R x T? :— R where T¢ = (R/27Z)¢. We take initial data from L>-based
Sobolev spaces:

(uo, no, m1) € H'(T%) x HY(T) x H =N (TY) = H»(T)

with s, £ € R.
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The Zakharov system was derived by Zakharov [69] to describe the propagation of
Langmuir waves in a plasma. The Zakharov system possesses two conservation laws,
namely, the conservation of mass ||u(¢)|/;2 = |luol/;2 and energy:

1
EGu,m)(0) = Va2 + 5 (In®lz. + 11V 9 0)I72) + /;r n(t, x)|u(t, x)|*dx.

Here, if the initial velocity has zero mean, i.e. 7] (0) = 0, then the energy is well-defined.
See the introduction in [48] for more details.

The Cauchy problem for the Zakharov system on R x R? has been studied exten-
sively. In [56], Ozawa—Tsutsumi obtained the local well-posedness of (1.1) in H 2(RY) x
H'(R?) x L2(R?) ford < 3. After the seminal works by Bourgain [12], and Klainerman—
Machedon [49], Bourgain—Colliander [16] applied the Fourier restriction norm method
to the study of (1.1) and obtained global well-posedness in H ! (R x L2 (RY) x H~(RY)
for d = 2, 3. Thereafter, Ginibre—Tsutsumi—Velo [36] extended the range of (s, £) for
which the Zakharov system is locally well-posed as follows:

d=1, —%SS—€§1,2s26+%20,
d=23, £<s<0+1,£>0,25—(L+1) >0,
d>4, (<s<C+1,¢>9%-225—(+1)>4-2

They also introduced the notion of scaling criticality for (1.1) using which the scaling

critical values are given by (s, £) = (‘12;3, %). In the 2-dimensional case, on the line

L=s— %, Bejenaru—Herr—Holmer-Tataru [2] pushed down the threshold of necessary
regularity by % by proving that (1.1) is locally well-posed in L?(R?) x H -3 (R?) x

H _%(Rz). They employed the nonlinear version of the Loomis—Whitney inequality
which has a connection with multilinear restriction estimates, see e.g. [4,10,11]. For
d = 3, Bejenaru—Herr [3] proved local well-posedness in H* (R3) x H¢(R3) x H!~1(R3)
with £ > —%, L <s <{L+1,2s > L+ % In the energy critical dimension d = 4,
Bejenaru—Guo-Herr—Nakanishi [ 1] established the small data global well-posedness and
scattering in the energy space H' (R*) x L2(R*) x H~(R*). Recently, under a radially
symmetric assumption on data, global well-posedness and scattering in 4D energy space
below the ground state was shown by Guo—Nakanishi [40]. Without the radial symmetry
assumption, global well-posedness in 4D energy space below the ground state has been
established in [24]. However, scattering below ground state in the non-radial energy
space remains a challenging open problem. In the recent paper [25], the sharp range of
(s, £) for well-posedness is determined for spatial dimensions d > 4. For d < 3, we
also refer to the recent results [27] and [60] for the almost optimal range of regularity
for the local well-posedness of (1.1).

On the other hand, there are not so many works on the periodic Zakharov system
(I.1). For y > 0,let T, = (R/2myN). For d = 1, it is known that the necessary
regularity for the well-posedness depends on the period of the torus. Bourgain [13] and

Takaoka [63] proved that (1.1) is locally well-posed in Lz(TV) x H™2 (T,)x H -3 (T,)

if y ¢ Nand H% (T,) x L2(’]I‘y) x H™1 (T, ) if y € N. Notice that their results, in some
sense, are sharp. This is due to the fact that the problematic nonlinear interaction arises
only in the case y € N. For d = 1, we also note that global well-posedness of (1.1) in
the energy space is known [13].

The most recent result on the local well-posedness of (1.1) on the multidimensional
torus is due to Kishimoto [47]. He proved the following:
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Theorem 1.1 (Theorem 1.1 in [47]). Let

0<s—0<1,2s>0+%>d—1, (d=3),
0<s—0<1,2s>0+9%>1, d=2).

Then (1.1) is locally well-posed in H***(T¢).

In particular, for the case d = 2, local well-posedness in the energy space H'!(T?) x

L? (T?)x H~'(T?) was obtained. This readily implies the global well-posedness under
the conditions 7271(0) = 0 and |ugll;2 <« 1. Moreover, the result remains true if the
classical torus T is replaced by T)”f = (R2npZ) x --- x (R/2nyZ) for y =
(1, ..., va) with y; > Oforeach j =1,...,d. In [48], Kishimoto—Maeda succeeded
in removing the condition7(0) = 0 and found that the smallness condition |[ug ;2 < 1
can be replaced with [lugll;2 < ||Q|;2. By Q, we denote the ground state solution of the
focusing cubic nonlinear Schrodinger equation on R, that is, Q is the unique positive
radial solution of

—AQ+0—-0°=0, xeR%.

The scaling critical regularity (s, £) = (%, %) is on the line £ = s — % Our aim
is to relax the regularity threshold in Theorem 1.1 for d > 3 on the line £ = s — % We
note that for £ = s — %, the condition in Theorem 1.1 becomes s > d%l when d > 3.
We now state our main result.

Theorem 1.2. Let d > 3. Define

3 @=3),
so=132 (d=4), (1.2)
43 d=5)

Let s > so. Then (1.1) is locally well-posed in 'H“_% (T9).
Remark 1. Similar to Kishimoto’s result, we can replace the classical torus T4 with ’H‘;‘f.

We observe that the regularity threshold (1.2) cannot be improved as far as we utilize
the iteration argument in the cases d = 3 and d > 5. Precisely, for d > 2 Kishimoto
proved that if s < % then, for any 7 > 0, the data-to-solution map (uq, ng, n1) +—
(u, n, d;n) of (1.1), as a map from the unit ball in H**~2 (T¢) to C([0, T]; H**~2 (T¢))
fails to be C2-differentiable at the origin, see Theorem 1.2 in [47]. This suggests that
Theorem 1.2 in the case d = 3 is optimal up to ¢ loss.

In addition, because (s, £) = (%, %) is the scaling critical regularity, the standard
argument yields the sharpness of Theorem (1.2) for the case d > 5 up to ¢ loss.

Theorem 1.3. Lets < #. Then, forany T > 0, the data-to-solution map (ug, ng, ni) —

(u, n, 9;n) of (1.1), as a map from the unit ball in H”_% (T4 to C([0, TT; H”_% (T9y)
fails to be C?-differentiable at the origin.
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In order to establish Theorem 1.2, we bring new insight from recent development in
the Fourier restriction theory which is so called decoupling theory (Wolff’s inequality)
into the study of the periodic Zakharov system. We refer to books [61,62] for a general
reference to the Fourier restriction theory and its connection to PDEs. Whilst there are
several works that directly apply the consequence itself from the decoupling theory to the
study of nonlinear PDE problems, as far as we are aware, there are only a few works that
apply modern techniques or ideas in the proof of the decoupling theory. As an example,
we refer to the work by Fan—Staffilani-Wang—Wilson [32] where they obtained global
well-posedness for the cubic defocusing nonlinear Schrodinger equation on irrational
tori using the bilinear decoupling type estimate. Similarly, our broad scope in this paper is
to tackle nonlinear PDE problems by introducing new techniques and ideas developed in
Fourier restriction theory. At the same time, the study of the periodic Zakharov system
raises a question on the decoupling theory - what if one has more than two surfaces
interacting with each other which is reminiscent of the bilinear and multilinear Fourier
restriction theory, [5,6,11,20,49,65]. See also the book [30] and references therein.

1.2. Introduction to £*-decoupling theory. In order to make the paper accessible to read-
ers from different backgrounds, we begin with a brief introduction to the £2-decoupling
theory. We refer to the survey paper [43] and the book [30] for more details. Our starting
point for the introduction of the decoupling inequality is the classical Littlewood—Paley
theory. We denote the dyadic annulus by A1 = {(§,7) € R - (&, 1)) < 1} and
Ay ={(, 1) € RA+1 . |(§,T)| ~ N}foreach N € 2N Note that {AN}y oo provides
an almost pairwise disjoint decomposition of R4*!. Similarly, we can decompose the
Fourier support of sufficiently nice function f : R4+ — C dyadically as f ~ )" fay
where we define

Fre 1) = /R TN ) e ) dede

for K ¢ R in general, x g is a smooth cut-off function on K, and f denotes the space-
time Fourier transform. Then the Littlewood—Paley theory exploits an L>-orthogonality
of { fay} yeao and ensures that!

I( DfAN oy S 1 lesny S DfAN ey (13)

forall 1 < p < oo. At this stage, one may wonder what if the dyadic annuli {Ay}x
are replaced by other decomposition. Such a question has been addressed by Carleson
[26], Cérdoba [28], and Rubio de Francia [59]. For instance, Rubio de Francia [59,
Theorem B] proved that the inequality on the left-hand side of (1.3) remains true for
decomposition into congruent cubes. More precisely, the following inequality

I( Z|fQ] ||LP(R{1+1> 11 Lo sy (1.4)

holds true as long as 2 < p < oo. Here, {Q}; is a family of translated congruent cubes
with arbitrary fixed side-length. On the other hand, the reverse inequality of (1.4) failed

1 We will frequently use the notation A < B to mean A < CB for some constant C > 0. When we
emphasize the dependence of a parameter « in the inequality, we write A <, B which means A < Cy B for
some constant C, depending on a.
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dramatically except for the case p = 2. Regardless of such failure in general, Fefferman
[33] found out that the curvature of the Fourier support plays a role in reversing (1.4). To
be more precise, we introduce some notation which we will use throughout this paper.
Denote a truncated paraboloid by

P o= {5, 161°) e R™ 1 15| < 1),
and its N ~2-neighborhood by

1
Ny @) = { v e R 161 < 1. v - 16 < 5 ]
ford > 1 and N > 1. We will decompose P4 or N N-2 (P?) into small caps. For each

N > 1, let Cy-1 be a family of disjoint % X - X % X # caps of the form

1 1
—, —1+co, T — € <

02{(€’t):§€[_2N’2N —W}’ (1.5)

where c¢g runs over %Zd N [—1, 1]¢. With this notation, Fefferman’s inequality [33]
states that if f : R¥+! — C satisfies supp f C Ny—2(P9), then

1 0oy S 1C Y2 10P)? o g, (1.6)

0ECN71

aslongas2 < p <4andd = 1. Ford > 2, (1.6) is conjectured to be true as long as
2<p< @. One can easily check (1.6) for p = 2 by Plancherel’s theorem, hence
the difficulty is to prove (1.6) for large p. This problem is open for all 4 > 2 and we
refer to [44,52,53,61] for the recent progress in this problem and relation to the Fourier
restriction theory. The £>-decoupling inequality we are concerned with in this paper is
of the form?
1
1 oty Se N°( D2 1 follgpggany)? (1.7)
OECN_l

for any small ¢ > 0 and any f such that supp f C Ny-2 (P4). Thanks to Minkowski’s
inequality, (1.7) is clearly weaker than (1.6) if p > 2 and hence one expects a wider
range of p for which (1.7) is true. Inequalities of this type were initiated by Wolff in his
work on the local smoothing conjecture for the wave equation [68] where he introduced
£P-decoupling inequality for the cone. So, inequalities of this type are also called Wolff’s
inequality. Wolft’s work was further investigated by [15,34,35,50,51,58] and the almost
sharp result was established by Bourgain—Demeter [17].

Theorem 1.4 (Theorem 1.11in [17]). Letd > 1, N > land2 < p < @. Then (1.7)
holds for any ¢ > 0 if supp f C Ny (P4). Moreover, the range of p is sharp in the
sense that ¢ in (1.7) cannot be arbitrarily small if p > @

2 Precisely speaking (1.7) means that for any & > 0 there exists some finite constant C¢ such that

Il pparty < CeN( D 1foll} pgart))?
QECN,I

holds for all N > 1 and f such that supp f C Ny-2 ®4).
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Among several consequences of Theorem 1.4 to broad fields of mathematics, we
only mention the discrete restriction for paraboloid or the Strichartz estimate on torus
which was initiated by Bourgain [12], see also works by Burq—Gérard-Tzvetkov [21],
Guo—-Oh—Wang [41] and Vega [67]. We refer the reader to the survey paper [57] for
other consequences to analytic number theory and a comprehensive introduction to the
theory, see also [38,43,54].

Theorem 1.5 (Theorem 2.4 in [17]). Letd > 1, N > 1 and 2 < p < 2“2 Then
e Al cany Se NENBllz2(ra) (1.8)

holds for all ¢ > 0 ifsuppds C {k € Z : |k| < N}. Moreover, the range of p is sharp
in the sense that € in (1.8) cannot be arbitrary small if p > @.

If one writes a; = qAﬁ(k), then (1.8) can be read as

” Z akei(x~k+t|k|2)

keZ4:|k|<N

<. N¢|lak| 2
L2 (i) llax Il

which is reminiscent of the discrete variant of Stein—Tomas Fourier restriction estimates.

1.3. Trilinear discrete Fourier restriction estimate and improvement of the £-decoupling
inequality under the shell constraint. In the study of the periodic Zakharov system,
it is important to exploit the resonance phenomenon between Schrodinger and wave
equations. Through the X* analysis, this can be capitalized by the following trilinear
estimate:

3
| / B etV gy didx| S N [T ldloe,  (19)
[—7.7]xT j=1

for supp ¢A i C{lEI~N }NZ4 and some « > 0. For instance, Kishimoto [47, Proposition

3.6] obtained his result Theorem 1.1 by proving? (1.9) with @ = ‘% ford > 3. Itis
worth remarking that one needs to establish trilinear estimates of more general form
where linear solutions are replaced by functions whose Fourier supports are contained
in some neighborhoods of hypersurfaces in order to apply it to the study of (1.1), see
also Lemma 2.2 below. Nevertheless, we introduced the estimate in this special form
as it might have its own interest from the viewpoint of the Fourier restriction theory.
In [47], Kishimoto expected that the exponent o = % might not be sharp and it
would be improved by involving some number theoretical argument. Hence, it is natural
to see what can be said about (1.9) by appealing to the decoupling theory, especially
Theorem 1.5. Let us demonstrate the case d = 3. We can apply Holder’s inequality,
(1.8) with p = %) and the linear estimate for wave solutions (see (2.14) below)

+it|V 1
le= Vs s S NS 163l 20w
LIOL? ([—m,7]xT3)

3 Precisely speaking, he proved more general trilinear estimates for functions whose Fourier supports are
in some neighborhoods of hypersurfaces. See forthcoming Proposition 4.1.
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to see (1.9) with ¢ = % + ¢ as

’ / eiZA(ﬁ]ei’A(ﬁzeii"vlcbg dtdx|
[—7,w]xT3

+it|V
e Vgl s

<lle"®ill w0 "Bl w0
L3, (T341) L3 (1) L2 (=mm)xT?)
A it A +it|V
SIE Aol 0 Bl w e Vg
L% (T3 L3 (T3 L{PLE (|—m,w]xT?)
| 3
SN 91203
j=1

which consequently, improves Kishimoto’s result by virtue of Theorem 1.5%. On the

other hand, a simple example ¢;(§) = 57" where

SI*Z(N70’O)5 E;:(—N—170’0)’ E;Z(_ZN_I,O,O),

shows that @ > 0 is necessary for (1.9). The aim of the paper is to fill this blank by
exploiting an interaction between Schrédinger and wave equation, or paraboloid and
cone in the Fourier restriction language. Our first observation is that this interaction
reduces the estimate (1.9) to the case when supp q§ j» j = 1,2, are contained in some
shell. Namely we will see that it suffices to consider ¢1, ¢, such that supp é i C {k e
74 cj—1 =< |k| <cj+1}forsomec; ~ N, see the proof of Proposition 4.1 for details
of this reduction. We mention that Kishimoto [47] also employed similar reduction to the
Fourier support on some shell. By virtue of this reduction, we are lead to the Strichartz
estimate under the additional constraint of

suppp C{keZ e —1 < |k| <cu+1) (1.10)

for some c, ~ N, and expect some improvement of Theorem 1.5. Similarly, one can also
ask some improvement of the decoupling inequality Theorem 1.4 under the constraint

supp f C (Sf)eRd“'d—l<|§|<d il |f—|§|2|<L (1.11)
pp k) . * N — — * Na — N2 .
for some d, ~ 1. In fact, this turns out to be true and we give an almost sharp result.

Theorem 1.6. Let d > 2, N > 1 and 2 < p < 2D Then (1.7) holds for all & > 0
and all f satisfying (1.11). Moreover, the range of p is sharp in the sense that ¢ in (1.7)
cannot be arbitrarily small under the constraint (1.11) if p > %.

Recall that Bourgain—Demeter’s range in Theorem 1.4 was 2 < p < @. Hence

our contribution in Theorem 1.6 is to establish (1.7) on the range @ <p< %

under the assumption (1.11) and the sharpness of the range. It is nowadays standard
to derive the Strichartz estimate from the decoupling inequality, see [15]. We state our
Strichartz estimate on the shell in a slightly general form with the aid of application to

(1.1).

4 : . i (it A < nE 2 _gl 1
An immediate consequence of (1.8) is ||e ¢”L?Lf(’ﬂ'1+d) <N ”¢”L§(’J1‘d) where 7= d(5 p) and

2 < p < q. If this estimate can be extended to the case 2 < g < p on the same lines as in the Euclidean case,
we may show (1.9) with an optimal « up to ¢ loss. However, as far as we are aware, the above estimate with

2 < q < p satisfying % = d(% — %) remains an open problem. We refer the reader to “Appendix 6.2”.
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Theorem 1.7. Let d > 2, Ny, N> € 2No satisfy No < Nyand2 < p < %. Then

e 2l p cpasty Se N30l 12 1) (1.12)
holds for all ¢ > 0 and all ¢ € L*(T¢) satisfying

suppd C {k € Z¢ 1 ¢, — 1 < |k| < ¢y + 1} N By, (1.13)

for some ¢, ~ N1 and By, C R?, a ball of radius N with arbitrary centre.

From this shell Strichartz estimate, we can give an improvement for the trilinear
discrete restriction estimate (1.9).

Corollary 1.8. Let d > 3 and s be in (1.2). Then (1.9) holds for o > sg — %

Remark 2. (1) Whilst Corollary 1.8 provides almost sharp estimate for (1.9) whend = 3,
the problem of identifying the sharp « for (1.9) is still open for d > 4. For instance
if one could prove (1.9) with « = 0 (or @« = ¢) when d = 4, then one might obtain
the local well-posedness of (1.1) with optimal regularity s = 0 (or s = ¢) as long as
one utilizes the iteration argument.

(2) After we completed this paper, it was pointed out by Changkeun Oh that the £7-
decoupling inequality with an appropriate geometric constraint on supp f , was also
considered in Guo—Zorin—Kranich [39, Theorem 2.5] whose proof was motivated
from the argument by Oh [55]. Hence, up to a difference between £”-decoupling and
¢2-decoupling, the initiation of the study of the decoupling inequality with an addi-
tional constraint on supp f is attributed to Guo—Zorin—Kranich. We will give further
detailed comparison about this point after the proof of Theorem 1.6 in Subsection 3.4.
It is interesting to point out that the work by Guo—Zorin—Kranich was motivated by
the study of the decoupling inequality for the quadratic surface whose co-dimension
is higher than one whilst Theorem 1.6 naturally emerges from a requirement of the
study of the periodic Zakharov system. To us, it is not obvious if there is any link
between these two subjects.

We end this section by giving a comparison to other works. The trilinear form in
(1.9) comes from the bilinear estimate for ¢’ pe®!IVly with X*? analysis via duality
argument. In this regard, it would be of interest to seek a bilinear discrete restriction
estimate of the form

itA , +it|V
e e ™YWl 0 (o apmay S NOMPUSI 2000y W]l 2 ey

for appropriate p, o, B where supqub C {lk| ~ N} and suppx@ C {lk| ~ M}. In the
continuous case, such a problem is addressed by Candy [23]. See also [22].

The rest of the paper is organized as follows: in Sect.2, we introduce the X*’-
type spaces and their properties. In Sect.3, we prove the ¢2-decoupling inequality for
functions under shell constraint (Theorem 1.6) which readily yields the shell Strichartz
estimate (Theorem 1.7). In Sect.4, by employing the Strichartz estimate obtained in
Sect.3, we handle the nonlinear interactions of Schrédinger and wave equations and
establish Theorem 1.2. Section5 is devoted to the proof of Theorem 1.3. Lastly in the
“Appendix”, as a consequence of Theorem 1.7 for d = 3 and p = 4, we introduce a
bound of integer solutions of a Diophantine system under the shell constraint.
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2. Preliminaries

In this section, we introduce the function spaces and collect some fundamental estimates.
Let us first rewrite the original Zakharov system as a first-order system, which is

a standard reduction in the study of the Zakharov system. See [2,36,47]. Let w =

n+i(V)~19,n and wg = ng +i(V)~"'ny. Then, we may rewrite the system (1.1) as

i+ Au= S (w+wu, -
iw — (Vyw = —(V)"TA(ul?) — (V)71 (242), 2.1)
(0), w(0)) = (ug, wo) € H*(T?) x HY(TY).

It is easily seen that the local well-posedness of (2.1) in H*(T¢) x H*(T%) implies that

of (1.1) in H*¢(T¢). Thus, we consider (2.1) instead of (1.1) hereafter.

Definition 2.1. Let  : R — R be a smooth function satisfying = 1 on [—1, 1] and
suppn C (—2,2). Let N € 2MN0 with Ny = N U {0}. Define

m=mn, nn@)= n(%) - n(%) (N =>2).

{Pn}yeono denotes the collection of standard Littlewood—Paley operators defined by
Py = F (kD Fy. Let i(z, k) = F u(t, k), L € 2N and

Ofu=F L+ kD), 07 u=F ! (n(x £ (k)i).

We write st’L = PNQL and PNL = PNQ‘L)Vi.

We define the function spaces X% < b and X :’Vi as follows:

5.b :
X" ={u e ST« ullysr = QS LPNIP Lul7, ) < oo},
N.L i
1
Xizvli ={ueS®Rx T9) ||M||Xéb = ZLZbNZY”P u” ) < oo},

Let T > 0 and X be either X ‘;’b or X ;Vi We define the time restricted space X (T') as
follows:

X(T) = {u € C(10, T); H*(T") : |lullx(r) < 00},
lullxry =inf{|U]lx : UeX, ut)=U)Vt € (0,T))}.

Notice that, in the case b > %, the Sobolev embedding in time implies [[u|lpops <
llwll ys.6- Thus, if b > %, Xg’b(T) is a Banach space. The same holds for X“;{,Z(T).
N

We introduce the well-known property of X*-?-type spaces. For the sake of complete-
ness, we include the proof.
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Lemma 2.2 (Transference principle). Let U (1) € {e!'®, eT'(V)). We use the notations

b _ Xy i U@y = e, oV — 05 if U() =é'A
U Xy it @) = eF Y, L7 oM if u) =™,

Let N € 2% and ¢ € L2(T?). Assume that there exist q,r € [2,00], and o € R such
that the following linear estimate holds.

W@ PNl 1p S NIPNG L2 22)
Then, for L € 220, we have
1
107 Pyull gy, S LENIQY Pyull,z . (2.3)

where L] denotes L] (R).

Proof. First, we consider the case ¢ < 00. Let us choose ¥ € S(R) so that supp F; ¢ C
(—2,2) and

< (D W —mP) 7, > v —my <2 (2.4)

mez mez

for any r € R. We define v, (-) = ¥ (- — m). Since ¥ € S(R) and U (¢) is unitary in
L2(T9), it is easy to see that the estimate (2.2) provides

W OU@ PNl e S NYIPNI L2
Using the translation invariance of the Lebesgue measure on R, we have
W@ —mUt —m)Py@ll o, S NP2 (2.5)

for all m € Z. Our goal is to prove

1
1 OF Prull gy S L2N®¥m QF Pyull 2 (2.6)
where the implicit constant does not depend on m € Z. Let us see that this inequality

q
implies (2.3). By applying the first inequality in (2.4), the Minkowski inequality for £,
in view of ¢ > 2, and the second inequality in (2.4), we obtain that

1

4q q
1y Pyullyap, S { / [( Dol m>l2")'1'IIQ€PNu<t>“Li} dt}

meZz

f D 1 m @Y Pyull?, dz)

mez

1

(
(Z v 0 Pyullly,, )’
(X

meZ

R =

)1 OF Prul?, )

meZ

1
S L2NNQY Pyully2
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We consider (2.6). It is straightforward to check that

Fro(e7 207 u)(x, k) = nr ()i — k%, k),
Foe (@0 0) (2, k) = ()T F k), k).

Therefore, it follows from supp F;¢ C (—2,2) and L € 2No that
Fix(U (=Y QF Pyu) (T, k) = L4 (0 Fy (U (=) QF Pyu)(r. k) (2.7)
Here 1; denotes the characteristic function of the set {|7| < L}. From (2.7), we obtain
ut) = [ TUOFEV )@,

and from (2.5) that

19208 Pl = | [ 0 @U O (FU 90 Pru)ar

LiL,

dt
LiLy

< [ o= mu = mu om0l )|

< N f 1P U (=¥ QF Pyull 2dt

N [ Lan @ U0 0F Py e
1
S L2N®|1Ym QF Pl -

This completes the proof for the case g < oo.
We assume g = oo. Forany T € R, it follows that

W@ = TYU @) PN@ll o, = v OUOUT) Pyl e, S NYIIPNIl L2

Hence, when g = oo, we have ||U (1) PN@llpxpr < Na||PN¢||L§o In the same way as
above, we can verify the claim. O

Remark 3. Let U (t) € {e/'®, eF!(V)}. Define

k|>  if U@) =é'?,

Dy (k) = LK) UG = TN,

For 79 € R, notice that ]:,’leLj(e"”Ou) = n.(t — 19 + ®y(k))u. Hence, Lemma 2.2
implies that if (2.2) holds then for any 7y € R it follows that

1
lun.Lwollpap, S LN un Ll -
where uy 1 4, satisfies
~ d .
supp Un.L,r C {(t,k) e RXxZ : |t —10— Py k)| S L, |k|] ~ N}

Combining Theorem 1.5 and Lemma 2.2, we have the following corollary.
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Corollary 2.3. Let N, L € 2Y0. Assume that q, p € [2, o] satisfy

2(d +2) 1 dy1 1
sgsoco, —=2(5--).
d g 2\2 p
Then, we have
s < 7ianeps
1Py pullopr Se LENCN Py pully2 (2.8)

forall e > 0.

Proof. 1t follows from Lemma 2.2 and Theorem 1.5 that

1
1Py Lull 2wy S L2NIPY pullz - (2.9)
L, “ ’

tx

~

obtain (2.8). |

1
By interpolating (2.9) and the trivial estimate || P5 , ul| e S Lz||P§ ul 12, we

Next we recall the Strichartz estimate for a solution of the wave equation on R4*!,
For the details, we refer to [37,46].

Theorem 2.4. Let d > 2 and assume that q, p € [2, 0o] satisfy

1 d—l(l 1
q 2

5 - —), (¢, p.d) # (2,00, 3). (2.10)
p

Then, we have

<
IW@O S DN L8 r wxray S ||f||Hg,%,5(Rd) + IIgIIH%,%,é,I(Rd)

where

sin(¢|V])

W()(f, 8) :=cos(t|V|) f + v

It is well-known that the solution to the linear wave equation possesses the finite
speed of propagation property. We refer to [31,64,66] for the details. By exploiting
such a property, one can derive the Strichartz estimates for the linear wave equation
under the periodic setting from those in the Euclidean space. See e.g. [66]. Combining
Theorem 2.4 and Lemma 2.2, we prove the following:

Corollary 2.5. Let d > 2, L, N € 20 and assume that q, p € [2, oo] satisfy (2.10).
Then, we have

1
lwellpopr S LENZ P4 w2 (2.12)

for we € L*(R x T9) such that
supp Wi C {(t,k) e R x Z% : |t — w9 £ (k)| S L, |k| ~ N},

where 19 € R.
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Proof. We give a proof for the sake of completeness although this property is folklore.
Lemma 2.2 and Remark 3 imply that it suffices to show

. d_d_1
e Y Pyl Lo p i 1wy S N2 P9 IPNG I L2 pa)- 2.13)

We omit the proof of the trivial case N = 1 and assume N > 2 hereafter. To see (2.13),
it is enough to prove

HitlVip <NTTITO|P 2.14
lle Nd’”L?L,’Z([—l,l]x’]l‘d) SN2 opoa N(/J’“Lz(?l"d)v (2.14)
where the propagator (V) in (2.13) is replaced with eIVl Indeed, the Sobolev

embedding and Plancherel’s theorem yield

Li(V) itV
[[(eF1 V) — et 513V¢HLgL§q_1J]xT%

i +i
Ie** ) — eV Pyl oo p2 (1, 17574
1

sup (Z IS ei”'k')mmﬁ)z

te[—1,1] kezd

d_d
2 p

SN

d_
N2

1\&.

d_d__
SNy ||PN¢||L2 (Td)-
Here we used the fact |ei” k) il < N~ for all (1,k) € R x Z% such that
t €[—1,1]and |k| ~ '

We turn to the proof of (2.14). Because N > 2 and ¢TIVl = cos(t|V]) i sin(¢|V]),
it suffices to show

||W(f)(PNf PNg)”Lqu([ ll]de)
| 2.15)

7 Il PN fllp2 ey + NET ||PNg||L2(Td)

Letyr € S(RY) satisfy ¢ = lon[—10m, 10719 and supp ¥ C [—20r, 2077]%. We define
(F.Gn) € SRY) x S(RY) as (Fy, Gn) = (W Py f. ¥ Pyg). Then, |||l 2a) ~
| PN [l 2(ray and |G NIl 2way ~ PN gl 12 (T4)- In addition, because of the finite speed
of propagation for a solution of the linear wave equation, for any r € [—1, 1], it holds
that W(t)(Py f (x), Png(x)) = W(t)(Fy(x), Gy (x)) if x € [—, 7], Consequently,
by using (2.11), we obtain

IW(@)(Pn f(x), PNg(x))”L;lLf([_l,]]X’]rd)

= W) (Fn(x), GN(X))”LqLP([_l x[—7,7]%)
s ||FN|| $-5-4 ey +IGNI 1y

d_d_1

1T g g3 o S NE 7T IPN flcoy, (2.16)
dd_1y

IGNI g a 1, SNZTPTa [ Pyglp2). (2.17)
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1 d_d_1

d_d_1 - d_d_1
M?2 pr 4 ||PMFN||L2(Rd) 5 N2 »r aq ”PNf”Lz(Td)' (218)
Me2MNo
Since [|Fnllp2@ay ~ 1PN fllL2(ray, we only need to treat the cases M <« N and
M > N.Fork € Z4, let a(k) be the k-th Fourier coefficient of ¢. We may write

FoFn@E) =Y ¥ — oy (k) F k).
kezd

We note that |$($ — k)| < (€ — k)=’ forany J > 0. Then, it is observed that

1

M&N
%_i_l -~ Iy
= > M Y el F w0,
M<&N kezd
d_d_1 iy
< Z M2 » 4N J||T)M||L2(Rd) Z|77N(|k|)||f(k)|
M<&N kezd
d_d_1 g1
< Z M rp 4N J+2d||PNf||L2(’]I"’)
MKN

S PN fllL2eray-

This completes the proof of (2.18) in the case M < N.The case M > N can be handled
in a similar way.
Lastly, we prove (2.17). Notice that % — % — é — 1 < 0. It suffices to show

1
SN2 Pa | PngllL2crdy-

The latter term can be handled in the same way as for (2.18). For the former term, the
Sobolev embedding gives

PG d_d_1 < ||PG a(mdy,

I1PIGNI . a_a_1_ I(Rd)wll 1GN || Lo (rd)
Where% 5& :%"'(%d"'é < 1.° In the same way as above, for any J > 0, it holds
that

PG 2Ry S N7J||PNg||L2(’]I‘d)' (2.19)
In addition, it is easy to see that
I1PIGNI 1 ray S I PNEI LRy S 1PN EI 2T (2.20)

5 Strictly speaking, this embedding does not hold if (d, g, p) = (2, 00, 2). In this case, however, the claim
(2.12) follows from the L? conservation and Lemma 2.2.
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It follows from (2.19) and (2.20) that

ddll

IPIGNIpamay SN2 7 0 [IPngllp2cra)-
This completes the proof of (2.17). O

We can also derive fattened version of Theorem 1.7 by employing Lemma 2.2 (see
also Remark 3), we have the following corollary.

Corollary 2.6. Let d > 2, L € 20, Ny, Ny € 20 sarisfy Ny < Ny, and p = 24*0.
Then we have

1
loellp, Se L2 N5 lull 2 221)

forany e > 0 and u € L*>(R x T%) such that
suppi C {(t.k) e Rx Z4 : |t — 19— k|| S L, cx —1 < |k| < cx + 1, k € By,),

where 190 € R, ¢, ~ N| and By, C R4 is a ball of radius N> with arbitrary centre.

3. Decoupling Theory on the Shell: Proofs of Theorem 1.6 and Theorem 1.7

3.1. Decoupling inequality for the Fourier extension operator. At this stage, it is worth
to introduce the Fourier extension operator defined by

Epag(x,1) = /Rd HEHER o (£ e, (x,1) € RY*

for suppg C {§ € R? : || < 2}. In the forthcoming proof, we will use both Eps and
Epa-1. As one might expect, there exists an analogue of the decoupling inequality for
Epa. To state it, we introduce the notion of caps in this language. Let Cy—1 be a family
of disjoint congruent cubes in R¢ of the form

1 144
o=k T,
2N 2N
where ¢y runs over %Zd N [—1, 1], This is slightly abusing notation compared to

(1.5) but we remark that if we write ®(&) = (&, |§|2), then N _z—neighborhood of
@ () corresponds to the % X -0 X % X # cap introduced in (1.5). We also need
to introduce a nice weight function which is nowadays a common technique in order
to justify the localisation argument. For a convex body K C R%*!, we use a weight
function wg : R¥*! — R, that satisfies the following properties: (i) 1x < wx and wg
decays rapidly® away from K (ii) if convex bodies K1, ..., K, ... are almost disjoint

and |2, K; = RI*! then

o0
> wg, S 1 (3.1)
i=1

6 We often choose K as a ball in R9*! with large radius R and arbitrary centre ¢ in which case this condition
means wg(t,x) S (1+[|(x — c)/RI)*M for sufficiently large M.
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Also remark that wg (R4*1) := fRdH wg ~ |K|. We refer to [18,32] for the details on
such weight function. In below the weight function wg satisfying the two properties
might change from line to line or from left hand side of inequality to right hand side and
we will not track the precise form of wy. Then the (local) £2-decoupling inequality for
Epa states that

1
1Epagllircs, ) Se N°( Y ||E]Pdg9||%p(wBN2))2, (3.2)
QECNfl

where gg := xpg, By2 is a ball in R4*! radius N% and arbitrary centre, and

1
1 Vern = ([ 10w, ) dxdi) .

In fact, (3.2) directly follows from (1.7) for the same p since f = Epag - wp,, has a
Fourier support on Ay -2 (IP’d), see the inequality (7) in [17] for more details. Hence, as a
corollary from Theorem 1.4, we have (3.2) forall2 < p < @. Contrary as is stated
in [17, Remark 5.2] one can also recover (1.7) from (3.2), see also [18, Theorem 5.1]
for the proof of it. Therefore, it suffices to show the following to prove Theorem 1.6.
Theorem 3.1. Letd > 2, N > 1, p = zfldjll) and take arbitrary dy € [1, 2]. Then (3.2)
holds for all ¢ > 0 and all g : RY — C satisfying

1 1
suppgc[SGRd:d*—Ngasd”ﬁ}. (3.3)

Below, we prove Theorem 3.1. Our proof is based on the induction on scale argument
which is now common technique in the Fourier restriction theory. More precisely, we
will reduce the matter to the lower dimensional decoupling inequality by exploiting the
assumption (3.3) together with appropriate induction scheme. In fact our strategy of
the proof consists of basically three steps. First, after the decomposition of the physical
space into small scale, we give a simple observation exploiting the assumption (3.3) and
then approximate each small pieces of shell by flat plates. This enables us to appeal to
the one dimension less Bourgain—Demeter’s decoupling estimate at each small scale.
We then put together each estimate in a tight way by using the induction hypothesis. To
conclude the proof, we do this procedure inductively. We note that the idea of appealing
to the lower dimensional estimate can be found in Bourgain—Guth’s argument [20] for
instance. We also mention the proof of the decoupling inequality for the cone [17],
and for the moment curve [19]. In addition, such induction scheme, namely, applying
something known at each small scale and then appealing to the induction hypothesis to
make it global, can be found in for instance Guth’s simple proof of the non-endpoint
multilinear Kakeya inequality [42]. Also an idea of approximating nonlinear object by
linear one via induction on scale argument can be found in the context of nonlinear
Brascamp-Lieb inequalities, see [7-9].

Let us provide detailed argument. Fix large N > 1 and foreach 1 < K < N, let
D(K) be the best constant for the inequality

1
|Epoglirse < DE( D 1Egolioa, )’
QGCK_|
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for all g satisfying (3.3) and all Bg> whose radius K2 and arbitrary centre. From here
and below in this section we always assume p = %. Our goal (3.2) can be read as
D(N) <, N¢. The key of the proof is the following.

Proposition 3.2. For any ¢ > 0, there exists C, > 0 such that
1
D(K) < C.K*D(K?2) (3.4)

holds for all K € [1, N].

Once we could prove this, we may conclude D(N) <, N°¢ as follows.

Proof of Proposition 3.2 = Theorem 3.1. Let m € N be a large number which we will
1

choose later. By applying (3.4) with K = N, N %, N2, ...,N 7 inductively, we obtain

that

L

D(N) < C:N*D(N?) < C2NSU+DD(NZ) < ... < C"N*D(N7™)

where we also used Y 7~ 27(0=D <2 at the last inequality. We now choose m to be an
unique integer which satisfies log, log N < m < log, log N + 1. In particular, we have

N r < e, Napier’s number, and hence
D(N) < C"N*D(e).

On the other hand, we clearly have £C,-1 < 104 and hence

d 1
|Epigllirs < D IEpagsllrpa < 102( ) 1Epagellings,,))?
Qece_l 9606_1

which means D(e) < 1. In the case of C; < 1, this completes the proof. Suppose
C. > 1. If we notice that

logc log N

9

m—1<log,log N =
= 1082708 logCSZ

then it follows that

1

C" = C.C" ! < Ce(log N)Pece? < C.CLN®

which concludes D(N) <, N%. O

Fix arbitrary N > 1 and ¢ > 0 and let us prove (3.4) in the following.
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3.2. Proof of Proposition 3.2: Apply the induction hypothesis. We begin with an appli-
cation of the decoupling inequality at scale ~/K. To this end we decompose B k2 into
almost disjoint balls (B;é))i with radius K: Bg> C |, B;é). Then it follows from the

definition of D(K %) that

2 p
IEpagll7 s, 2>NZ|| Epigll}, o, < DEHY (Y | Epegliran o)’
K

i vECKfl/z

Since p > 2 Minkowski’s inequality and (3.1) show that

1 1
| Epagllre SPED( D NEpglLr, ;)" (3.5)

UECK_l/z

Our new observation is the following simple fact regardm? supp gv Namely the assump-

1
tion (3.3) yields that supp g is contained in some % x TEX f -plate as long as

K < N.Note that this plate is more or less contained in the shell {d, — ﬁ < |&]| < d.+
and the thin direction is arbitrary.
1

. P . . . 1 1
With this in mind, we fix any v € Cg-1/2 whichis now regarded as % x TEX X TR

plate and then decouple || Epa gy || (ra+1y further. More precisely we next aim to show

+)

1
IEpagullLras ) < CeK°( ) | Epagoll Loy )" (3.6)
0eCy—1:0Cv

Remark that weights wp, , on left and right hand side could be different.
By the rotation with respect to the x-variable, we may assume that

= [d*—%,d”%] x [—%,ﬁ]d_l. 3.7)

In order to avoid heavy subscrips, we write & = g,. Moreover, since wp , decays rapidly
away from B2 (3.6) can be reduced to show (see Proposition 9.15 in [30])

1
| Epahllirse = CoK* (D0 NEpholinu, ;) (3.8)
QECK,1

for all By and all & such that

1 1 ]d—l
VK VK
Once we could prove (3.8), then we conclude (3.4) by combining this with (3.5). We

will establish this by combining the dimension deduction argument in [32] and the
justification of the locally constant heuristics in [18].

supph C [d* — %,d*+%] X [—
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3.3. Heuristic argument for (3.8). Let us first provide an idea of the proof of (3.8) as its
proof involves several technical calculations. Our model case emerges for the specific &
whichis locally constant at scale K ~! in &;-variable in the sense that h(£1, &) ~ h(n1, €)
holds for all &1, 1 satisfying |&; — 11| < K~!and all £ € R!. To make argument
simpler we also assume Bg> ~ [—K2, Kz]dJrl and d, = 0, in particular

. [ 1 1 ] [ 1 1 ]dfl
su -, = x| -—=,—= .
pp K K \/}? \/}E

For such /& we can easily reduce the dimension by 1 as

1

Epah(x1, %, 1) ~ (/K1 FdCEMED g VEp R(R, 1), (x1, T 1) € R (3.9)

%
where 1(£) := h(0, £). We then decompose
Byx ~ [—K* K21 = (LK, G+ DK] x [-K2, K219) = Py,
J1 Ji
where j| runs over finite subset of integers. Once we could prove

1
| Epahllire) Se K5( D2 WEpthaliny, ) (3.10)
GGCK,1

for all j; uniformly, then one can sum up to conclude (3.8). Let us demonstrate the proof
of (3.10) for j; = 0. Notice that (¢, x) € Py implies |x1| < K and |t] < K? and hence
(3.9) indicates that

|Epah(x,0)] ~ K™ |Epa-1h(X, 1)]

on Py. Hence
_ = —1+1 -
| EpahllLr(py) ~ K 1||E[p>d—1h(x,t)||Lf,t(P0) ~K 1 Epa-ihllr (g2 k2y0)-

Now recall that p = % and this is the endpoint of Bourgain—Demeter’s decoupling

inequality on R~!. Therefore we obtain

— — 1
1Epaihll e q—k2 2y Se KD I Epeihgl )?

L Lg,,(w[,,{z,,(z]d)
GECK_l

where 6 and Cg -1 represent d — 1 dimensional caps. We then recall (3.9) to see that

| Epa-1hg (%, 0)| ~ K|Epahy_1 13,5(x. )|

for all (x, t) € Py. This shows that

—1+1 T
Kk ”E]PdflhgnLg,t(w[—szxzjd) ~ N EpaholiLron,)

with 6 := [~ %, &1 x 8 € Cx—1 which concludes (3.10) for j; = 0.
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In the above argument, the critical heuristic is the locally constant property of 7 and we
need to justify it to make the proof rigorous. Such situation often appears in the Fourier
restriction theory, see the proof of an inequality (29) in [18], also Bourgain—Guth’s
argument [20] and Guth’s survey paper [43]. In fact we will employ the argument of
Theorem 5.1 in [18] to justify the above heuristic in the next subsection. We also mention
an inequality in [32, (7.34)] which is the decoupling inequality for some thin plate. This
reminds our goal (3.8) but we need to be careful since the width of our plate is K~
whilst the physical scale is K 2. As far as we understand the uncertainly principle would
be applicable if the width of the plate is K~ when the physical scale is K 2. Therefore
one requires some non-trivial argument to justify the above heuristics.

3.4. Proof of Proposition 3.2: Rigorous argument for (3.8). We begin with claiming
that we may argue as if d, = 0 by a nice change of variable which is standard in this
context. We write x = (x1,X) € R x R land &€ = (§,€) e R x R?~1. By changing
variable with respect to &1, we have that

Epah(x, 1) = /@141 porg L ]d,lhd*el](xl +2d,t, 7%, 1),

-k IXl- 72 7
where
h (&) i= h( +ds, §).
Hence,
dy -
IIEPdhnip(BKz):/B |EPd[1[7%’%]X[7ﬁ’ﬁ]d_lh “(x1 +2dyt, %, 1)|" dxd.

K2

By a further change of variables y; = x1 + 2d.t, y = X, s = t whose Jacobian is 1, we
see that

p dy p
||EIP)dh||Lp(BK2)SCA;VJEW[I[_;(’;(]X[_J%V%Flh “(y, )| dyds.
K

Here 7975 is an image of B2 under the change of variable. This might not be a proper
ball in general but one can cover it by O (1) many balls with same size. Hence we regard

73;; as another ball with radius K2. We next decompose the physical space into thin
plates

B2 C | JPjy. Py =LK, (i + DK) x m(Bg2),
J1

where 7 (Bg2) denotes the projection of Bx2 C R¥*! onto R?, and jj runs over finite
subset of integers. Note that Pj, is a thin plate in xj-direction with width K. Then we
have that

1
|1 EpahliLr ) < C(D | Epall —fbIx L lK]d—lhd*EI]”icg(le))p' 3.11)
Ji
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From now we fix arbitrary j; and intend to show

[ Epoltiy it o ot g
2 1
<ComK( ) ||EW[l[_%%]Xghd*e‘]HL%(M))2, (3.12)
5661(_1

where

yi— K p\—M _

M > 1is some fixed large number, and C -1 denotes a d — 1 dimensional %—caps. The
weight function u j, satisfies

Zﬂjl (y.5) S w— (v, 8) (3.13)
J1

by choosing M > 1 large enough.

Suppose that we could prove (3.12) for a while and let us see how it yields (3.8). In
fact, it follows from (3.11), Minkowski inequality, (3.13), and undoing the change of
variable that

I EpahllLrB,.)

1
2 P
§C5KE{Z( > ”EW[I[—,‘(,,'(]xehd*el]||L§,s(le,)> }

<=

Ji "feCpi
L1ay1
) »
SCgKg{ 2 (Z“Ew[l[é’éle)hd*”]||€5x(“n>) }
feCyy N1 |
1
<CK( Y HEﬂ»d[l[f%%Jxéhd"el]”iﬁi.v(wr))z
0eC -1 N
1
=GR (D0 Bl gyl )’
0eC N

which yields the goal (3.8) since [dy — &, dx + &1 x 0 € Cx1.

Therefore the proof is boiled down to show (3.12). As we have explained heuristically
we will achieve this by invoking the lower degree decoupling inequality.

In order to justify the locally constant property of the Fourier transform, we invoke
the argument using Taylor expansion; this argument can be found in the proof of an
inequality (9.5) in [18] for instance. To this end, we first shift the center of P, to the

origin. From now we denote the centre of 7{(/535) by K2(j, jus1) € R? and write
J = (j1,J, ja+1). We insert

| = ¢ iUIKEHKE+jar1 K251 i (1 KE1+KJ-E4jan K E)
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to see that

EIP’d[l[ ]X[_i lk]d—lhd*el](yas)

-/
g

where /" dye 9E) = e NKEHE E+jan K2EP) pdien (g

[y

We do the Taylor expansion to the exponential part

= ><\—
=

ei((yl—/1K>sl+<s—jd+11<2>|sl|2)

N~

(V=JK?)-E+(s— jas1 K2)E?) ; duer
el 2 KOEE) i) ) gy,

d—1

55

>x|—

(m IR K P) g, [N = FK2 s — jan K dér.

-

S O1=i KOs+ 6= e KD )

_iL10i<y1—jlm)m(mz'(s—jd+11<2))1(1<_a)m(1<2|sl|2)z
=l K K2 10 10 7

Since (y, s) € Pj, implies0 < y; — 1K < Kand0 < —jd+1K2 < K2,W€ have that

dyey
|EIP>d[1[_% %] [_\/% ﬁ]d 1h ](y,s)|
00 1
10m10') (% Ksl K2|él|2 de1~ g2 o 2
= Z m!l! ‘/ 10 )EW [hélil](y_JK , 8 — ja+1K7) d§
m,[=0
o 01
Z ’E]Pd RG] = 5K s = jan K]
m,[=0

for all (y, s) € Pj,, where

der = (% K& \m K2E P 1 dey
h5 o &) ~=/_}( (W) ( 10 ) he i €) dé.

From this, |[j1 K, (ji+1)K]| = K and P}, = [j1K, (j1+1)K]x 7 (Bg2), we obtain
that

“EW“[—%,%M—% J2l4- U ||L§,S(P,-l>
> 10m100 1
= 120 i K7 | Epa-i[h ;L;:ll](y_JK s = Jan K )”LP J((B2))
m,l=

>, 10"10
~ Z K””EW ‘[hiifz]”L;S([o,Kz]d)'
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At this stage we may appeal to the (3.2) in R? to see that

|| E]pd[I[7L L]X[*\/%y\/%]d_lhd*el]||Lg.s(le)

KK

L1 e 10710 deer 112 !
< CK°K7 Yy PR > |Epa[1 ehml]|y%(wmﬂ]d)) (3.14)
m,1=0 0eC 1
since p = % is the endpoint of Bourgain—Demeter’s decoupling inequality on

R@=D+_ With our goal (3.12) in mind, we next reproduce Eps from Epa—1. This step is
also the consequence from the locally constant property and one can find the following
justifying argument in the proof of (9.5) in [18] again. Let us focus on each pieces by
fixing m, [, 6.

We now take arbitrary y; € I, (K) := [j1 K, (j1 + 1) K] and insert a simple identity
1 = e—i&+slE) pinértsl&i®) o see that

Epi-1[1 sz](y’s)
K m K? i(7-E+s|E| *€l (E £
/1/ K& Iéll )l GE Iélz)hgl’jl(g)dsldé
K

1
K KEI K2|51| L—iyigr+sln?) i+ 1) it K& pdser
/ f ) h(] Jd+ 1)($)d§

where hd*il &) = 'K (5 é+jd+1\$\2)hd*e] )

1
/K/ (K&rym K |‘§1| KGRy icn—inomssia P gl pdier () g

| (s ja+1)
i 1 101(y1 —le))mf(IOis)l/
/vl/l K K?
m'I'=0
1
K K&\ mam K |$l| 1+l ,() E+s|€?) 1 drel
/_K/( 10 ) ( 10 ) h(de 1)(5) dé.

Since y; € I, (K) is arbitrary, we obtain that for all s € [0, K2,

| Epani [1gh{ ! 17, 9)]
OO

10101 | [
< inf T ’/K /M(gl)el(y E+s|g|? )hd*el (g:)déj ,

yi€lj (K) > 1/ G Ja+
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where M(&)) := ( )m+m/($g”z)l+l/. This shows that

||E]Pd_] [1 h] m, l] ||L7 (u)[0 I(Z]d)
< - d el —
~ ”EIP’d l[lghjml](y’S)”Lﬁs(w[o‘Kz]d@wljl(K))
00 /
107104
=71 Z T
Kr m' =
x / M(El)el(yéﬂ\é\ )h‘é*el )
[~ %1x8 sl LY s (wyg g2, ®WI; (5)
1 i 1010/
_l nin
K7 wieo m'll
y / .  M(g)e e
(% x1x0 Lf,s(w[(),KZ]d@w[O,K))
where hfii*el(%-) — ei(Kj1§1+K2(j,jd+1)-(§,\5\2))hd*81(5). (3.15)
We next intend to get rid of the Fourier multiplier
K& mam  K2[6117 11 wrem 20
Lo @) () [h—Ll]W](K&)

from the above expression uniformly in m, m’, 1, I'. To this end, we first notice that

d m *m+m’+2(l+l’) , ,
‘(E W)(E])‘ < |m+m/+2(l+l/)|M10_(m+m +l+1")
1
< 2M|m m +l+l/|M10—(m+m/+l+l’)

<Cu
forall & € [—1,1]and any M > 1.7

Hence we may extend the multiplier smoothly, namely there exists m,, /1 €
C*®([—2, 2]) such that

*m+m’+2(l+l/)

Mo 11 = oy o0 [—1,1]
and that
d \m
“(d_él) Wy, m’ 1,1/ L (R) = CM (316)
Note that (3.16) yields that
1 2. d \m
Vm / ’ = el)’lé] _— m ’ ’ d
Wm0 (1) o /_2 (dé1) mom' 11 (E1) d&1 3.17)

<Cu+yh™

7 We here used that sup, (g, o0y 7 10" < 3Cy.
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Using this, we go back to (3.15) and obtain that

H/ L MEne

= ”[Evmm,m”[’[/(?)] *,Vl E]Pd [1[7 1 ’ 1 7]1‘-1*61]

LY s (Wi x21d OW(0,K))

M, p (K& s R et (6) g

L1
—x xlX yp-,x(w[o.Kz]d ®wio,K))

Lg,s(w[OYKZ]d ®w[0.K))
In view of (3.17), we know that

Hivmm m’ll’(;)‘
K K

<C
LI®) — M

from which together with Holder’s inequality we obtain that
|[Evmm,m’,l,l’(?)] *y, Epa[1,_ 11 ]xéhd*el](y’ 9|
= | [ Bl 100 = 259 [ W ()@ |
= /|Eﬂﬁd[1[f%,%1x§h§i*e'](yl —2,5.5)|dP@)Cy
1,1, .
where dP(z) := C—yE Mo 11 (5] () dz
1 a1
< Cur( [ Bty ot =250 ap@)? ([ ap@)?
1 : ’
< (I Mo G o [Bsal1_ g praati117) )

Hence we see that

H/ g MED Dh &) dg

x %]

{f,.v (Wi, x23d ®W(0,K))

1
l . d* P
= G H‘Evmm,m’,l,l’(?)’ *yp “:Epd [1 h el]‘

?’Y

)lrvy (w[O’KZ]d ®w[O,K))

(3.18)

If we write ¢ (y1) := | Epa[1,_ 111x3 d*el]}p (v, s) for simplicity, then

”|_ mmmll/( y|¢’

LY(wo, k1)

Vi \—M
scM/¢(y1)du[_K,K](y1>, ik Oom = (14 2 ) ™ ay
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since we have from (3.17) that

1 —
/|Evmm,m/,[,l’(z Ky1)|W[0,K1(Z)dZ
Y1 -M Y1 nN—M
< CM/(I + ‘? — z’) wio,17(z) dz ~ CM(I + ’E ) .

Therefore returning to (3.18), this shows that

(v 2y d,
H/ L MEDE DR 6) dg
[—%. g 1x6 L?,;(wm,,(z]d@w[o,m)

1
P

_ dye17|P
=Cu H | Epa [1[—%,%]x9hj 1l
Li-,s(#m,/(2]dx[_1<,1q)

V1 — _
where g g21d -k k1, ) == (1 + |?|) MU)[O’K2]d(y, s)

= Cut | Epa [1[—%»%“5}1?*61 Il Ly.s (o 2y x— k)

Overall we could manage to get rid of the Fourier multiplier uniformly m, m’, 1,1, ji.
We combine this estimate and (3.15) to see that

|| Epa-1 [lgh;’;:,‘,ll] “ LY (wyo x21d)

i
=Cum Kl “E[P’d [1[— : h ]||L§’,s(#[0_;<21dxl_1<,1<1)

7,%]X§ J
P

1 .
= CMEH Epa [1[7 | %nghd*”

1) Wep o,

Inserting this to (3.14), we conclude that

]d—l hd*él ] H Lg,s(le )

1L 10m10! 5 1
< C.K*K? Z 1 ( Z ||EPd—'[1§h3{ﬁ}l]||L§S(w[0‘,(2],,))2

2 1
Ll D)’

which is our goal (3.12) and this completes the proof.

We end this section by giving a slight generalisation of Theorem 3.1 which is indeed
necessary for the application to our PDE problem. At the same time, this point explains a
difference between Theorem 1.6 and the work by Guo—Zorin-Kranich [39]. As we briefly
mentioned in the introduction, Guo—Zorin-Kranich also considered the decoupling in-
equality with some geometrical constraint on supp f or equivalently supp g. More pre-
cisely, they observed in Theorem 2.5 in [39] that, in the framework of £7-decoupling in-
equality rather than £2-decoupling inequality, if one could prove the decoupling inequal-
ity for some exponent p, for all hyperplanes in R?, and all g : {£ e R? : |§| <2} — C
whose support is contained in N ~!-neighborhood of the hyperplane, then one can
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upgrade it to the decoupling inequality for g whose support is contained in N~!-
neighborhood of C? compact hypersurface. One can regard our reduction of Theorem 3.1
to (3.8) as the £2-decoupling version of this fact. The proof of Theorem 2.5 in [39] is
based on the induction on the scale of the curvature of the hypersurface supporting supp g
and Guo—Zorin-Kranich appealed to the parabolic rescaling at each inductive step. On
the other hand, our argument in Subsection 3.2 is based on the simple observation on the
geometry of supp g, just after (3.5) and hence it is a parabolic rescaling free argument.

For the purpose of the application to our PDE problem, this difference is important.
To be more precise, it is worth to clarify where the loss K¢ in (3.8) comes from. In fact,
in our argument, it comes from the loss in Bourgain—Demeter’s £2-decoupling inequality
in R~ only. Namely, if D;_1(K) denotes the best constant for the inequality

1
|Epi-igllir@e < Pa1(K)( D IEr-185l70wy )
§€6K_|

for all reasonable g : (—10, 10)4-! — C and all By C RY-! x R, then our proof
shows that (3.8) can be stated as

=

| Eahllr sy < CDa1(K)( 3 I Epahalioq, )’
GECKq

(3.19)

The £7-decoupling version of this inequality can be found in Theorem 2.2 in Guo—Zorin-
Kranich [39] but they lose an extra factor of log K. Hence, up to a difference between
¢? and ¢P-decoupling, this inequality improves Theorem 2.2 in Guo—Zorin-Kranich
[39] for the specific case.® By virtue of this improvement, we can slightly generalise
Theorem 3.1.

Corollary 33. Letd > 2, Ny = Ny > 1, p = 2D and take arbitrary d, € [1,2].
Then for arbitrary small ¢,

2 1
||EPdg”LP(BN2) < CeN;( Z | Epago HLP(wB 2))2 (3.20)
1 GECNl_l N

holds for all g satisfying

1 1
suppg C {§ € R 1dy — — < |&] <dy+—) N Byyyw, (3.21)
Ny Ny

where By, N, C RY is a ball of radius No/ N1 < 1 with arbitrary centre.

Proof. Note that if Nj in (3.20) is replaced by N7, then the inequality is no more than

Theorem 3.1. In this sense, the point here is to give an improvement N5 in the case

Ny < Ni. When N1 > Ny > Nll/z, (3.20) follows from Theorem 3.1 and hence it

suffices to consider the case Ny < Nll /2 The argument in this case is almost parallel to
the one we gave in the above but simpler. In fact we will use (3.19) at one scale K = N
and we do not need to induct. First, because of the rotation invariance, we may assume

8 To be fair, we note that the argument in Guo—Zorin-Kranich [39] handles much wider class of geometric
constraint and log K factor is not so relevant for their purpose.
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1 1
plate centred at dye; where K, := (Nl/Nz)z. Since N2 /N; < Nl_l/2, the function g
is already supported on a cap with radius N '/2 This means that we have (3.5) at the

scale K = Np without the loss of D(K %). Hence, by virtue of (3.19) which does not
contain the loss” of log K, the problem is now reduced to show that

that the centre of By, ,n, is atd,e;. In this case, we have supp g C NLI X XX

1
_ _ \
|Epathllrs,z < CeN5 (3 | Epathgllioa, ,»)°
566 -1 !
Ny

for all supported on [—N, /Ny, Na/ Ny 19=1. After the scaling, this is equivalent to

~ e ~ 1
|1 Epa-ihlLrs) < CeN5 (Y 1 Epa-1hgllTog))

9€C
Ny !

where /i = E(Nz/Nl-) and S is a slab with dimension N{Np X --- x N{Np X N22

d—1
obtained by the scaling of Ble. Since supph C [—1, 117!, this can be proved by

chopping S into balls with radius N22 and applying Bourgain—-Demeter’s ¢>-decoupling
inequality with N3 -loss to each term. O

3.5. Shell Strichartz estimate: Proof of Theorem 1.7. 1Tt is now standard to derive the
Strichartz estimate on torus from decoupling inequality, see [15] for instance. We hence
give here a sketch of the proof of the implication of Theorem 1.7 from Theorem 1.6. In
fact we make use of the local decoupling inequality Theorem 3.1.

Proof of Theorem 1.7. 1t suffices to consider the case of ¢, = Ny and p = 22’“11), the

argument for other c, is parallel. Hence, supp¢3 CSn.N, =tk e 74 N —1< k| <
N1 +1} N By, . Let us denote the Fourier coefficient of ¢ by {ax};cz« so that

¢(x) = Z ake

kGSNl,Nz
Correspondingly we define g : [-2,2]¢ — C by
— _ d
g@) = ) @by ®). &el-2.21,

kESNl.NZ
where 8¢, denotes the Dirac deltal® at &y on R4, If one writes ¢y = NL.’ then 6 =
d
[— 2N1 2N1] +cg € CNl—l. Hence we may regard g as

gE) =Y ancde, (&)

GGCer

9 If one uses Theorem 2.2 in [39] instead of (3.19), then the extra loss of log N1 will appear.

10 To be precise, we need to involve an approximation argument for Dirac delta by smooth function, see
[15] for details.
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and hence

. 2
E]pdg(x, t) = Z aNlcgel(x~Ce+t|69| )
BGCqu

i(NLI-k+NL12\k\2)

Hence we have that

LA 2 d
N? _ NP AP itA
! =N/N/|e 4’”LP([0,1]x[o,N.]d) (3.22)

i by
HEP‘]gHLI’(Qle) = He ¢(E)HLP(QN]2)
where Q N2 = [0, le]d“. Regarding the right-hand side, as observed in [15], one
indeed has that
itA

d
||e <Z"||Lp([o,1]x[o,1vl]al) ~ NY ”e”A(p”LP(TdH)

because of the periodicity of e/“¢ with respect to x variable. Hence (3.22) shows that

2 24
” EIP’dg”LP(QNz) ~ Nlp Nlp ”e[md’”m(ﬂ‘dﬂ)' (3.23)
1

On the other hand, g satisfies (3.21) because of the assumption on the Fourier support
of ¢ and hence we may apply our local decoupling inequality Corollary 3.3 to this input
to see that

1

2 1
||E]Pdg“L1’(QN2) SJE NZE( Z ||E1p>dg0 ||LP(wQ 2))2
1 QGCer M

whilst we have from the definition of g that

o 2
Epago(x,1) = ay,cpe'™ co+tlcol”)

Therefore we obtain that

1

1 2
||EP"g”L17(QN2) Se Nzg( Z (|aN109|wQN12(Rd+l)p)2>
i

QECNI’I
2(d+1) |
~NING T () lane?)?
OECNfl

1

and hence conclude the proof by combining this with (3.23). O
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3.6. Sharpness of Theorem 1.6. Let us prove the sharpness of the range p < % in

Theorem 1.6. Namely we prove that if one has

1 Npp@asy < CC D0 Mfoll} o) (3.24)
QECNfl

for all N > 1 and all f satisfying the shell constraint (1.11), then p < zc(ldjll) is

necessary. To this end we let

Sy i=1{E 1) e R e — g% < }

I<|gl <1+

100N2’ 10N?2

which is an N ~2-neighborhood of translated d — 1 dimensional sphere S?~!, and let

f = 1g,, which is a characteristic function on Sy. Then it is straightforward to check
the condition (1.11) for such f. To give a lower bound of the left hand side of (3.24) we

compute f

827[[(){~E+IT) d?;'d?:’

_1E12] <L <|E|<l+—1
L e e B P

_ |/ e27rix-§(/ p2mit(t=1) dt) dé‘.
gil<lg|<l+—Ls Tr— g <

10N2 100N2

|f(x, 0] = |

One can explicitly compute the integral as

/ AT g = e sin 2mt )e2mi e =D
Tlr—lERI< 15

L 100N2
and hence
: 2t
.0 = 1 2|Sm (21£?N2) / eZni(foélz—l)ds’
100N Toon?  JElsElslths
2
L1 () 1
= 100N2 27t NZX{lxlfﬁ}
100N2
> CN 2N 2y

1 N2
{Ixl=.l1l=55}

This reveals a lower bound
442
I fllLry) = CN™ 2.

Ontheotherhandfg =lpnsy and 0’ := O NSy isan N~ ! x - x NI xN"2x N2
— —

d—1
slab for each 6 € Cy-1. Hence we see from Hausdorff—Young’s inequality that

_ 11
I foll Logasty S (N47'N2N?)?
from which we derive the bound for the right hand side of (3.24)

1 1 1
(Y ol gan)? ~ N-EINTD (310 € Cyr - 00 Sy £ ))2.
OECNfl



Decoupling Inequality for Paraboloid Under Shell Type Restriction 913

Since Sy is N ~2-neighborhood of d — 1 dimensional sphere, we know {0 € C N-1 ot
6 NSy # B} ~ N1 Putting altogether with the assumption (3.24) we conclude
p< 2(d+1)

In addltlon, when p = 251[1111) , e-derivative loss N¢ on the right-hand side of (1.7)
cannot be removed. Namely, there exists f satisfying (1.11) such that

1

(D ol gan)’

6eCy—1

d—1
11 2 2, (log N)2@+n
L —

To see this, from the observation in Subsection 3.5, it suffices to find {ax }xcs, such that

. 2 d—1
1Y are @O g 2 (log N)XED [lag | 2. (3.25)
keS L,’)‘f_l Gl
N

Here Sy ={keZ%: N—1< k| <N +1}. We set

1 ifke{(N,ki,....k4q—1) €29 : 1 <k; <d2N2(j=1,....,d - 1)},
0 otherwise.

Then, (3.25) is written as the lower bound of the exponential sum

” Z T Z ei(z'ﬂlklzt) ” 2(d+1) 2 (log N)%Nd%l

_ 1 _ 11 L, (1)
1<ki<d 2N2 1<ky_1<d 2N2

This can be shown via a number theoretic approach. See Theorem 13.6 in [30].

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We will show that the first order system (2.1) is

locally well-posed in H*® (T9) x HS_% (T9) if s > s0.
We write

t
jS[F](t)z—i/ ARy jwi[G](t)zi/ TV Gy,
0 0

and rewrite the system (2.1) in integral form:

itA

1
u(t) =e ' “up+ 5]5[(11) +w)ul(t), 4.1)

w(t) = e Vg + jW+[( >(uu) %(w + w)](t) 4.2)

The following bilinear estimates play a crucial role.

Proposition 4.1. Let so be as defined in (1.2) and s > so. Then there exist b > % and
& > 0 such that

IIMwllxgyh—H& + IIMWIIX-;J;—M < ||ullx§bllw|| L 4.3)
Xy,

Il 110 S < lull b (4.4)
X

Wy Xs
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Proof. By duality and dyadic decomposition of the space-time Fourier supports of the
functions, to prove (4.3) and (4.4), it suffices to prove that if s > s¢, there exists small
8 > 0 such that

’/ u1§2w3idtdx‘
. 4.5)

min(Ny, N2) 2y
———— ) Ny ||L11||L2 ||vz||L2 lws 2

1
< (L, L,L 7—3(
S (L1L2L3) max(N;. Na)

where u; = P L V2= PN LU W3k = PN LW and Npin, = min(Nyp, No, N3).
A similar reductlon can be found in [2]. Next, we do a case-by-case analysis.
(1) N3 < N; ~ N»: In this case, our goal is the following estimate:

— 1_s s—1
[ wmwssdras| £ @ittt il oalz Nunsly - 46

First, we notice that from Plancherel’s theorem and the Cauchy—Schwarz inequality, we
have

‘/ulﬁzw&idtdx) ~ ’/(171 * w3,i)?2dfdk‘

= ) / / it — 1k — K)is (', K)dT'dkTo (1, k)drdk

1
mmNg lurllzz Mvallzz wsellzz - 4.7)

Here Lyin = min(L1, Lo, L3). The estimate (4.7) immediately gives (4.6) if Lyax 1=
max(Ly, Ly, L3) 2 Ng‘. Hence, we may assume Lpy,x < Ng‘, which means that it is
sufficient to show (4.6) with § = 0. Using the definition of sy, it suffices to prove that
for any ¢ > 0, we have the following estimate:

_ 1
‘/u102w3,idtdx S (L1LaL3)2 CN3) [lull 2 Mvallp2 Nlwsll2 0 (4.8)

where
Nf o d=3),
C(N3) = N34+8 d =4,
N3%_2+8 d=5).

By almost orthogonality and Fubini’s theorem, it suffices to prove that, for arbitrary
¢i € R (@i =1,2,3), it holds that

| / U1, D203 £ esdtdx | S COND e 2 026l w3 esllpz . (49)

where
suppily.e, C{(t, k) eRxZ4 : |t — k> —ci| <1, k€ By, (&)}, (4.10)
Supp 2., C (1, k) eRx Z 1 |t — k> =2l <1, ke By, (&)}, (4.11)
SUpp W3, +.¢; C {(7,k) € R x 74 . ltTFk) —c3] < 1, (k) < Na}. 4.12)
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Here, for j = 1, 2, BN3(§/.) denotes the ball of radius N3 and centre &; € R4 satisfying
|&;j1 ~ N;. We consider (4.9). By Plancherel’s theorem, we have

Vul,c.vz,czw&i,czdfdx‘ ~ V("Zl,cl * ﬁa,t,cs)ﬁz,czdfdk‘

= |[[ Tt = T k=T s ()
d7'dk'Ts o, (1, k)drdk‘.
The support conditions on #], Uy, w3 + imply that, in the above, we may assume
r—t —k=KP el <1, Jt— kP —cl <1 |TFEK) -l <1
This implies
3zl —t = k=K —c1 = (x = [k — ) + T F W) — 3]

> Ik —K? = k> +T £ (k)

)

where ¢ = ¢ — ¢2 + ¢3. Hence, from the spatial support condition of w3 + ¢, in (4.12),
we have ||k — k'|> — |k|> + | < N3 < Nj. This implies that if there exists M; > 0
such that |k|> = M + O(N)), we may find M> > 0 such that |k — k’|> = M, + O(N}).
The support conditions imply My ~ M, ~ N 12 and then, by the almost orthogonality,
in addition to the above support conditions (4.10) and (4.11), we may assume that there
exist d; ~ dp ~ Nj such that

suppily.e, C {(t.k) e Rx Z4 : dj — 1 < |k| <dy +1},
supp 2., C (1, k) ER X Z : dy —1 < |k| < dp +1}.

Therefore, by using Corollary 2.6, we obtain

£ £
lerel awen S N3 llure g2 5 el 2 S Nylveele - (413)
1,x 1,x

In the case d = 3, these estimates immediately yield (4.9) as follows:

[ e adidy| < il ol ol
S N5 llure iz Mv2ellpz lws+ellz2 -

In the case d = 4, it follows from (2.12) with p = g = % that

1 1 1
¢ S lwsaelplwssal? <Ny lwssels -
tx L3 1% *

tx

lws el
L
This estimate and (4.13) provide that

’/ul,qiz,czwai,thdx < luy,e IILITOIIUz,czlngllw&i,qllL%
1x

tx t,x

lie
<N el Tzl s sl -
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Lastly, we consider the case d > 5. Let

11 2 1 4
(q_w’p_w)z(d+1’§_d2—1)'

Notice that qu = d%l(% — ﬁ). Then, (2.12) yields

2
d—1
||w3,:|:,03||L?WL)1C’w S N3 ||w3,i,03||Lt2X- (4.14)

Consequently, by using Bernstein inequality, (4.13) and (4.14), we get

Vm,cliz,qwai,thdx < llute ”LZdel” ”UZ,L‘z”LQ(djll) w3, +c5 | apt
1

WX t,x 1,x

d 2d
27 d-1
S N3 lluellp2 llvaell 2 Ny w3, +,c3 1l Lgw p po

< %—2+a
SNy Munellz vl Twsxell:
which completes the proof of (4.9).

(2) min(N1, N2) < N3: By symmetry, we assume that N < Nj, namely, No <
N1 ~ N3. The estimate (4.5) is written as

[t sdiay] S (LLaL) N Nz Nealg Tz - 415)
By Plancherel’s theorem, we have
| / T sdidx| ~ | / (it  53,)Bad ek
- V / Tt — vk — k)i 4(t', K)dT'dkTa (x, k)dzdk(.

This implies that we may assume

3L > [T =T+ k= KP =+ k) + 7 £ (k)|
> ||k — K[> = k| = (K).

Thus, because N < Ni ~ N3, we have Lpax 2 le. Let us first consider the case
L3 = Lpax 2 N12. It follows from Bernstein inequality and (2.8) with (¢, p) = (4, %)
that

v <
T E P A T A
X

LAL
< LN Bl o NT vl s lwsl
~ 3 1L4Lm 2 2 e ez,

t=x t=x

1 1468+ n 2
S (LiLL)F NI N gl ala sl

This completes the proof of (4.15) in the case L3 = Lp,x. We consider the remaining
cases. Since the case Ly = Lyax 2 N 12 can be treated in a similar way, we only consider
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the case L] = Lax = N 12 First, we consider the case d = 3. By Holder’s inequality,
Sobolev embedding, (2.12) and (2.8), we get

‘/ u1vw3 +dtdx

< v
S lluy ”L[Z.x I 2||L§L5 ||w3¢||L5L§

t Ly t=x
3 Ve
S luill2 N, ||U2||LL30L3 N3 llws,xll 2
1,x

1 2 e
< (LaL3)2Ny N, lnlizz Mv2ll2 Nwsxllp2,
I —3465 S+
1s
S (LiLoL3)> "Ny 2 Ny fluallpz llvallzz lws <z .

which completes the proof of (4.15) when d = 3. Next, we show (4.15) for the case
d > 4. By almost orthogonality and Fubini’s theorem, it is enough to prove that, for
arbitrary ¢; € R (i = 2, 3), it holds that

_ L —
| / U1, w3 4 exdtdx| SLE N N3l 2 a2 ws <2, (4.16)

where

suppMa.c, C {(1. k) e Rx Z4 : |t — [k|* = ca] < 1, [k ~ N2}, (4.17)
SUPP i3 +.cy C {(T. k) e Rx Z7 ¢ [t (k) —c3| < 1, k € By,(53)}  (4.18)

for some &3 € R? which satisfies |&3] ~ N3. To obtain (4.16), we will prove

d

T e
||v2’62w3’:t’c3||l’t2x S N1 N2

lv2ell2 lws ez, (419)
where v and w3 + ., satisfy (4.17) and (4.18), respectively. It is straightforward to see
that (4.19) yields (4.16). Indeed, if (4.19) holds, since L| 2> le, we have

‘/ u152,cz w3,i,C3dtdx < |luy ”[%X ||U2,cz W3 + c3 ”L%,x

=38 A —1+68
NNl vz, ws,zeliz2,

A

L

35 —9=2+68
N,

A

L

i STl STE

77 g-1t¢
N, ||”1”1%)(||U2,cz||L,2_x||w3,i,C3||L$,X’

which verifies (4.16) since d > 4. We turn to the proof of (4.19). Let us assume Ny > 1
since the case Ny < 1 is easily handled by the Cauchy—Schwarz inequality. If (t, k) €
SUpp W3 + ¢, then (4.18) gives

lTF(&3) — c3] < 2Ns. (4.20)

This means that the temporal frequency of w3 4 ¢, is confined to an interval of length
4N;. Hence, the standard almost orthogonality argument can be applied. We give a rough
sketch of it.
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Let a non-negative valued function ¥, € S(R) satisfy

supp ¥y, C [—2N2,2N,], Z YN, (t —m) =1 forallt € R.
meN»Z

Here N2Z := {N»£ : £ € Z}. Form € N»Z and v € L*(R x T%), define the operator
Frx(PNymv)(t, k) = ¥y, (t — m)V(t, k). Then, clearly ZmeNzZ PNymv = v. We
observe

2

L,%) '

||U2,c2w3,i,63 ”L%X 5 ( Z HPNz,m1 (( Z PNz,m2v2,cz)w3,i,C3)‘
mieNLZ my€eNLZ

We deduce from (4.20) that for each m| € N»Z there exists the set My, ,,, C N2Z such

that

PNy.m, (( Z PNz,'nzvlCz)wli,Cz) = Pny.m; (( Z PNZ»m2”2,Cz)w3,i,C3)ﬂ

""ZEMNZ,ml mo€NLZ

My~ (] X Prmve

m1ENLYZ mZGMNz,mI

09—

2 Nz
)~ s,

As aresult, in addition to (4.17), we may assume that there exists 7/ € R such that
SUpp V2., C {(1. k) € R x Z4 ¢ [t — k> —cal <1, [k| ~ Na, |1 — 7] < Na},
Let (7, k) € supp v2.c,. Then, [t — |k|*> — cz| < l and |t — 7’| < N; give
IkI* — 7’ +c2l <2N,.

This and |k| ~ N, mean that there exists ¢, ~ N such that ||k| —c.| < 1. Consequently,
we may utilize Corollary 2.6 to estimate vy ., as

lv2,c 1l 2 S Nillvaeoll 2 - 4.21)

t,x

Let

1o o 2
(q_a’E):(dH’ 2 (d—l)(d+1))'

Then, q% = d%l(% — %) holds. It follows from (4.21) and Corollary 2.5 that

lv2.cw3. x50l 22 = V2.erll 2o W3, x50l L3
29 L a— B

1,x

d d
27d-1
S N3 lIv2ellz Ny T lws s esllpos s
R
< NFTN; lv2.collz2 Iwsdesllzz s

which completes the proof of (4.19). O
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Now we turn to the proof of Theorem 1.2. Since the proof is quite standard, we give
only a rough sketch of it. We refer to [36,47] for more details.
We define

Do(u, w) = e Pug + %Js[(w +w)ul(1),

Dy, w) = e Dy + JW+[%(uﬁ) + ﬁ(w +w)](t).

Our task is to show that if s > s¢, there exist b > % and 0 < T < 1 such that

M(u,v) = (Ps(u, w), Pw(u, w)) (4.22)

1
is a contraction mapping in the ball of suitable radius in X ‘;’b (T) x X “;‘,zz’b(T) centred
at the origin.
We first introduce the well-known linear estimates. For the proof, we refer to [36],
Lemma 4.1 in [47].

Lemmad4.2. Lets,b e Rand 0 < T < 1. Then,
||e”AMO||X§,b(T) S luoll s ey

itV
||€ it >U)O”Xs,h (T) S ”wO”HS(Td)'
Wi

Next, we state the estimates for handling the Duhamel terms. We omit the proof. For
the details, see e.g. Lemma 2.1 in [36] and Lemma 4.1 in [47].
Lemmad4.3. Lets € R, b > % 0<T <1,86>0andy € C(R) satisfy =1 on
[—1, 1] and supp ¥ C (=2, 2). Define ¥ (t) = 1//(%). Then,
W TSl ggo S TPNF llgsom1es,

17 Tw, [Glllys6 S TG gsib-1ss.
Wi Wi

By combining Proposition 4.1 and Lemma 4.3, we obtain the following:

Lemmad4.4. Let s > soand 0 < T < 1. Then there exists b > % and § > 0 such that

1510+ Dyl oy S T Well oy 0y (4.23)

Wy

xS Ty (4.24)

HJM[%(@]

_1
Proof. 1t follows from the definitions of X‘;’b(T) and X“;Vf’b(T) that for (u, w) €
) _1
X‘;’h(T) x X 2 (T) there exists (U, W) € X X;Vf’b such that

@), w@®) =WU@),wW) if0<t<T,
1N g5 = 2lullxso gy W b S 2||w|| : (4.25)

Ty’ W+ W+ (T)
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We choose b > % and § > 0 so that (4.3) and (4.4) hold. Then,

IUWlggotos + 1UWggomros S WMo IV g (4.26)
NUTN iy prs S MU (4.27)
Xy, s

Lemma 2.2 in [36] tells that (4.26) and (4.27) imply
— A —
TolW + W)U) € CR; H (), i[5 U | € CRs (D).
Therefore, (4.25) tells that if 0 < ¢ < T, it holds that

Fsllw +Tul(0) = TSV + WIUN0), - I [0 | ) = T [0 W o,
and in particular
A s—1,
Tsl(w +wyul € X3°(T), JW+[ﬁ(uﬁ)] e X3y, 2"(T).
Consequently, by using Lemma 4.3, we see that
1T5Lw + D)l oy < W7 TSLOW + WUl g5
STNUW +UW| o105
N

5
STNUN s W (1)
S X 2
Wi

< T%u w
ST ||X§b(7)|| Il —Lb

Xy, 27 (1)
This completes the proof of (4.23). (4.24) can be proved similarly. O
Now, by applying Lemmas 4.2 and 4.4 with a suitable exponents T, §, we verify that

_1
(4.22) is a contraction mapping in some ball of suitable radius in X fg’b (T)x X ‘:,Vf ’b(T)
centred at the origin.!! We omit the details.

5. Proof of Theorem 1.3
In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. We follow the argument introduced by Bourgain [14]. See Sec-
tion 6 in [14]. We also refer to [45,47].

We only need to prove that for arbitrarily large C > 1 and any 7" > 0, there exist f,
g € C°°(T%) such that

t
‘f TR (A f)(cos(t' V) g))di!
0

sup
0<t<T

>C s
> Clfllg gl

He (T4 (5.1)
ey’

11" Notice that the term JW+[ﬁ(w +w)] is easily handled.
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Let N > 1 and
fy = N—s—% Z eik~x’ g = N—(S—%)_% Z cos(k - x).
KI~N N

Then, it holds that || fa || s (Tay ~ ”gN“HS_%(’]I‘d) ~ 1. We observe that

F[e 8 (@ prieostt' IV D) )

1 e 2 i 112
NN_zs_d+2g i(t—t")|k| Z el |[k—K'| COS(l/|k/|).

|k’ |~N
lk—k'|~N

Ifo<t <t< for any |k| ~ |k’| ~ N, we have

IOON2

. 7 2 P 12
R[e  IORE KT cos (1 1k'))] >

N =

Consequently, if 0 < ¢ < we obtain

TR
H/ 02 (8 ) eos(t' V) |

Z t2N2s Fy

HS (T4)

[ = (1 ) (cos(t’ |V|)g))]‘

lk|~N
2
> AN Z ( Z 1) o 2 N2
kI~N - (K |~N
lk—K'|~N

For arbitrarily C > 1 and T > 0, by choosing N so that N=*T s Cand 100Nz <7
we observe that

! ; !’ YA ., \

su H/ e TTA (A )(cos(?'|V])g) H > el
osrzr o (s )] P

which implies (5.1). ]
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6. Appendix

6.1. A bonus on the number of integer solutions to certain Diophantine system. It is
nowadays standard that once one can prove decoupling type inequality for some sub-
manifold and even integer p, then one can derive a bound of integer solutions of a
Diophantine system corresponding to the submanifold, see [19,30,38] and references
therein. For example the celebrated resolution of Vinogradov’s meanvalue theorem (con-
jecture) by Bourgain—Demeter—Guth [19] took this route in which case the submanifold
was the moment curve in R”. Let us consider a Diophantine system

X1 +y1 =21 +wy,
X2+ y2 = 22+ wy,
X3+ Yy3 =23+ ws,

2 2
xl +.X2

6.1)

2 2 2 2 _ 2 2 2 2 2 2
tX3+y;+y;, vy =27+ 3wy +w; +wy

for variables (x1, x2, X3, Y1, Y2, ¥3, 21, 22, 23, W1, w2, w3) and denote the number of
integer solutions in [1, N]'2 of (6.1) for fixed large N by fiy. By taking the trivial
solutions (x1, x2, x3) = (21, 22, z3) and (y1, y2, y3) = (w1, w2, w3) one can see that
in = N 6. Then the standard argument reveals that

itA 4
=cC|e
ﬁN ” f”L?‘x(T*%H)

for f (k) = 1 np3 (k). On the other hand, Bourgain-Demeter’s Ez-decoupling ensures
bounds for [|e/'2 f]| LP (T3 with2 < p < %). It is worth to mention that there is no

even integer except p = 2 intherange2 < p < % and hence the standard argument is
not applicable to give a bound of iy by N%*¢. On the hand Theorem 1.7 is applicable for
p = 4 under the shell type constraint. Namely, letting x = (x1, x2, x3), ¥y = (V1, Y2, ¥3),
z=(21,22,23), w = (wy, wz, w3), we have the following:

Corollary 6.1. Let N > 1. Then the number of integer solutions to (6.1) satisfying
N — 10 < |x|, |yl, Iz], |lw| < N is bounded by C N**¢ for arbitrary small & > 0.

Here notice that the number of the trivial solutions x = z and y = w under the
constraint N — 10 < |x|, |y, |z|, lw| < N is comparable to N*.


http://creativecommons.org/licenses/by/4.0/
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6.2. A remark on the mixed-norm Strichartz estimates. As is mentioned in the Intro-
duction, Theorem 1.2 is sharp up to ¢ loss whend = 3 and d > 5. In the d = 4 case,
however, there might be a room to relax the regularity condition (1.2). We here discuss
a possible route to this problem by assuming the validity of the mixed norm Strichartz
estimates on the torus. Namely we suppose the endpoint estimate

7 < NE , 6.2
€500, gy ) S NIl (6.2)

holds for all ¢ > 0 and supp¢A> C {k € Z% : |k| < N}, and then see how it implies
the sharp well-posedness result up to ¢ loss. For simplicity, let us assume d = 4 and
consider only the trilinear estimate (1.9). A simple use of (6.2) with d = 4 implies

‘ / P prelt At Vg didx
[—7, ] x T4

itA itA +it|V
< lle"Aill2palle ™ dall 2 s 1™ Vs oo 2

3
SN T 105l 2 o).
j=1

for supp b i C{lIEl ~ N} NZ?. By employing this almost sharp estimate and the argument

in this paper, we may show the local well-posedness of (1.1) with d = 4 in H“’% if

s > %, which is an optimal result up to ¢ loss. Hence, the mixed-norm Strichartz estimate

(6.2) or in general

e Al o 2 pasty S NN L2 (pays 6.3)
for % =d( % — %) with d > 3, is valuable problem from PDE point of view. Notice that,
by an interpolation of (1.8) and the trivial estimate |||l ;2 pasty = D2 (ma)s

we have (6.3) for % = d(% - %) and ¢ > p, and hence the case of ¢ < pisa
main problem. As far as we know, there is no sharp result for (6.3) when ¢ < p. In
this direction, we mention the work due to Burqg—Gérard—Tzvetkov [21] where they
established the mixed norm Strichartz estimates with a certain loss of regularity. After
we uploaded this paper on arXiv, Dasu—Jung—Li—Madrid [29] announced that the mixed-
norm ¢2-decoupling inequality which implies (6.3) is prohibited to go beyond Bourgain—
Demeter’s (pure-norm) decoupling inequality on the Strichartz line % =d (% - F)' In

particular, one cannot expect the mixed-norm ¢2-decoupling inequality which implies
(6.2). As is mentioned in [29], their counterexamples are not the one for the mixed norm
Strichartz inequality (6.3) and so the problem is still open.
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