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Abstract: For the two dimensional Euler equations, a classical result byYudovich states
that solutions are unique in the class of bounded vorticity; it is a celebrated open problem
whether this uniqueness result can be extended in other integrability spaces. We prove in
this note that such uniqueness theorem fails in the class of vector fields u with uniformly
bounded kinetic energy and vorticity in the Lorentz space L1,∞.

1. Introduction

Let us consider the 2-dimensional Euler equations{
∂t u + div (u ⊗ u) + ∇ p = 0
div u = 0

(1)

where u : [0, 1] × T
2 → R

2 is the velocity of a fluid and p : [0, 1] × T
2 → R the

pressure. This system can be equivalently rewritten as the two dimensional Euler system
in vorticity formulation, which is a transport equation for the vorticity ω = curl(u), i.e.{

∂tω + u · ∇ω = 0
u = ∇⊥�−1ω.

in T2 × [0, 1]. (2)

In the latter formulation, it is clear that L p norms of the vorticity are formally conserved
for any p ∈ [1,∞]. For p > 1, this was used in [11] to prove the existence of distribu-
tional solutions starting from an initial datum with vorticity in L p. A similar existence
result is much more involved for p = 1, and it was obtained by Delort [10] (see also
[11,12,22]), improving the existence theory up to measure initial vorticities in H−1 (this
latter condition guarantees finiteness of the energy) whose positive (or negative) part is
absolutely continuous. As regards uniqueness, the classical result of Yudovich [15,16]
(see also the proof in [17]) states that, given an initial datum ω0 ∈ L∞, there exists a
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unique bounded solution to (2) starting from ω0. However, the classical problem raised
by Yudovich about the sharpness of his result is still open. Let u0 be an initial datum
in L2 with curl u0 in some function space X . Is the solution of the Euler equations in
vorticity formulation unique in the class L∞(X)?

The main result of this paper provides a negative answer when X is the Lorentz space
L1,∞.

Theorem 1.1. There exists a nontrivial solution u ∈ C0([0, 1]; L2(T2)) to (1) satisfying

(i) ω = curl u ∈ C0([0, 1]; L1,∞(T2));
(ii) u(0, ·) = 0.

Moreover, u ∈ C0([0, 1]; W s,p(T2)) for any s ∈ (0, 1) and p ∈ (1, 2
1+s ).

Remark 1.2. The conclusion (i) in Theorem 1.1 has to be interpreted as follows. There
exist a function curl u ∈ C0([0, 1]; L1,∞(T2)) and a sequence un ∈ C∞([0, 1] × T

2)

solving the Euler equations with an error term Rn in the right hand side (see (3)) such
that

‖Rn‖C0(L1) + ‖un − u‖C0(L2) + ‖ curl un − curl u‖C0(L1,∞) → 0,

as n → 0.

Recently, there have been formidable attempts to disprove this conjecture for X = L p,
none ofwhich has by now fully solved it. Vishik [23,24], see also [1], proposed a complex
line of approach to this problem, which however has the price of showing nonuniqueness
only with an additional degree of freedom, namely a forcing term in the right-hand side
of the equation (2) in the integrability space L1(L p). The nonuniqueness suggested by
this work is of symmetry breaking type and, in contrast with the ideas of this paper,
his nonuniqueness stems from the linear part of the equation, by carefully choosing an
initial datum that sees the instability directions of a linearized operator.

A second attempt has been pursued by Bressan and Shen [2], based on numerical
experiments which share the symmetry breaking type of nonuniqueness of Vishik. Their
work is a first step in the direction of a computer assisted proof.

Our approach is instead of different nature and stems from the convex integration
technique. The latter was introduced by De Lellis and Székelyhidi [9] in the context
of nonlinear PDEs, inspired by the work of Nash on isometric embeddings [20], which
found striking applications in recent years to different PDEs (see for instance [5–7,
14,18,19] and the references quoted therein). As such, our proof would probably be
less constructive with respect to the strategies of [2,23,24], where an initial datum for
which nonuniqueness is expected is described fairly explicitly as well as the mechanism
for the creation of two different singularities. Conversely, the latter approaches see the
drawbacks described above and are by no means “generic” in the initial data, whereas
it is known (see for instance [8,21]) that convex integration methods yield not only the
lack of uniqueness/smoothness for certain specific initial data, but also that solutions are
typical (in the Baire category sense).

1.1. Strategy of proof. The guiding thread of this construction is an iterative procedure,
where one starts from a solution (uq , pq , Rq) of the Euler equations with an error term
in the right-hand side, namely{

∂t uq + div (uq ⊗ uq) + ∇ pq = div Rq

div uq = 0,
(3)
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and iteratively corrects this error by adding a fastly oscillating perturbation to the ap-
proximate solution. The nonlinear interaction of this perturbation with itself generates
a resonance which allows for the cancellation of the previous error; the other terms are
mainly seen as new error terms, with smaller size with respect to the previous error.
More precisely, we define the new solution (uq+1, pq+1, Rq+1) by setting

uq+1(x) = uq(x) + aq(x)wλq+1(x), wλq+1(x) := wq+1(λq+1x), λq+1 ∈ Z,

whereλq+1 	 λq is a higher frequencywith respect to the typical frequencies in uq ,wq+1
is called building block of the construction and enjoys suitable integrability properties,
aq is a slowly varying coefficient.

The cancellation of error happens because the low frequency term in a2
qwλq+1 ⊗wλq+1

satisfies

a2
q

∫
wλq+1 ⊗ wλq+1 ∼ Rq .

This forces us to require that ∫
T2

|wq+1|2 ∼ 1

a2
q ∼ |Rq |.

(4)

On the contrary, we wish to control the quantity ‖Duq‖L1,∞ and to this end we need

‖D(uq+1 − uq)‖L1,∞ ∼ ‖aq‖L∞‖λq+1wλq+1‖L1,∞ ,

arbitrarily small. Thiswill be achieved by designing a new family of intermittent building
blocks with gradients small in Lorentz spaces, see Sect. 1.3 below.

1.2. Limitations of current convex integration schemes. We now justify why, with the
currentmethod, getting a vorticity in L p , p ≥ 1, cannot be expected. The new error Rq+1,
generated after correcting the old error Rq with the low frequency term in a2

qwλq+1 ⊗
wλq+1 , contains the high frequencies of a2

qwλq+1 ⊗ wλq+1 , hence its size is at least

‖Rq+1‖L1 ≥
∥∥∥∇(a2

q)div−1
(
wλq+1 ⊗ wλq+1 −

∫
wλq+1 ⊗ wλq+1

)∥∥∥
L1

≥ λ−1
q+1‖∇ Rq‖L1 ≥ λ−1

q+1λq‖Rq‖L1 .

Here we used (4), i.e. a2 ∼ |Rq | and that the intermittent term wλq+1 has unitary norm
in L2. In particular, we have that ‖Rq‖L1λq is a nondecreasing sequence in q and hence

‖Rq‖L1 � λ−1
q . (5)

In order to control ‖∇uq‖L1 we need ‖∇(uq+1 − uq)‖L1 arbitrarily small, but the
Sobolev inequality gives that

‖∇wλq+1‖L1 = λq+1‖∇wq+1‖L1 � λq+1‖wq+1‖L2 ∼ λq+1.

Hence,

‖∇(uq+1 − uq)‖L1 ∼ ‖aq‖L∞‖λq+1wλq+1‖L1 � λq+1
√‖Rq‖L1 � λ

1/2
q+1, (6)
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where we used (5) in the last step.
In particular, with the current way to cancel the error in the iteration, we cannot expect

∇u ∈ L1.
Note that the inequality (6), where we end up with a term of size ∼ √

λq+1, is in
agreement with a known limitation of the convex integration scheme, see [5, Section
2.4.1]. In fact, it is shown there that the quadratic error term allows to control at most
half of the derivative of the solution u. The only way to overcome this is to exploit the
intermittency, but in our context we cannot because of the Sobolev inequality.

1.3. Building blocks with Lorentz integrability. To push the convex integration scheme
to its boundaries and obtain X = L1,∞, we need to introduce a new family of build-
ing blocks {Wi }i=1,...,4. The latter is the most important novelty of this paper, and its
construction requires a new idea. In a nutshell, we design Wi so that its atomic decom-
position, as a Lorentz function, is made up of “almost solutions” to the Euler equations.
To this aim, we bundle together a family of intermittent jets [4] with different sizes and
characteristic velocities. This structure allows sharpening the intermittency mechanism
reaching the critical L1,∞ integrability of ∇Wi .

To put forward this idea, there are several technical challenges to overcome, let us
mention a few.

The high velocity of each jet, needed to force the bundle to almost solve the Euler
equations, makes the term ∂t Wi big. The latter should be treated as an error, hence we
have to make its anti-divergence small. To do so, we exploit a special structure: we build
the profiles of our jets in such a way that ∂t Wi = div (Ai )where Ai is a small symmetric
potential.

The bundle structure and the 2-dimensional constraint make it very difficult to keep
the supports of Wi disjoint in space-time. It requires a new, delicate, combinatorial
argument.

We refer the reader to Sect. 4 for the precise construction and more explanations on
our choice of building blocks.

Remark 1.3. The proof of Theorem 1.1 is flexible enough, due to the exponential conver-
gence of the iterative sequence, to giveω ∈ L1,q for some q 	 1. A technical refinement
of the current proof, based on Remark 4.4, would give q > 4.

2. Iteration and Euler–Reynolds System

We consider the system of equations (3) in [0, 1]×T
2, where R is a traceless symmetric

tensor.
As already remarked, our solution to (1) is obtained by passing to the limit solutions

of (3) with suitable constraints on u and R. The latter are built by means of an iterative
procedure based on the following.

Proposition 2.1. There exists M > 0 such that the following holds. For any smooth
solution (u0, p0, R0) of (3), there exists another smooth solution (u1, p1, R1) of (3)
such that

(i) ‖R1‖L∞(L1) ≤ 1
3‖R0‖L∞(L1);

(ii) ‖u1 − u0‖C0(L2) + ‖ curl(u1 − u0)‖C0(L1,∞) ≤ M‖R0‖L∞(L1);
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(iii) for any s ∈ (0, 1), p ∈ (1, 2
1+s ) there exists c(p, s) > 0 s.t.

‖Ds(u1 − u0)‖C0(L p) ≤ (M‖R0‖L∞(L1))
c(p,s) ;

(iv) if R0(·, t) = 0 in [0, t0], then R1(·, t) = 0 and u1(·, t) = u0(·, t) in [0, t0/2].
Proof of Theorem 1.1, given Proposition 2.1. Fix λ > 0. We start the iteration scheme
with

u0(x, t) := χ(t) sin(x2λ)e1

where χ ∈ C∞
c ([0, 1]), χ = 0 in [0, 1/2] and χ = 1 in [3/2, 1]. Notice that −div R0 =

χ ′(t) sin(x2λ)e1 + ∇ p, hence we can choose a traceless symmetric tensor R0 such that
‖R0‖L1 ≤ Cλ−1.

Applying iterativelyProposition2.1with t0 = 1/2webuild a sequence {(un, pn, Rn) :
n ∈ N} of smooth solutions to (1) such that, for any n ≥ 0, it holds

‖Rn‖L∞(L1) ≤ C3−nλ−1, ‖un+1 − un‖C0(L2) + ‖ curl(un+1 − un)‖C0(L1,∞)

≤ C M3−n+1λ−1,

and un(·, t) = 0 for any t ∈ [0, 2−n−1]. Moreover, for any s ∈ (0, 1) and p ∈ (
1, 2

1+s

)
it holds

‖Ds(un+1 − un)‖C0(L p) ≤ C(M, λ)3−nc(p,s). (7)

It follows that Rn → 0 in L∞(L1) and un → u in C0(L2), where u satisfies the
assumptions of Theorem 1.1. Moreover u ∈ C0(W s,p) for s ∈ (0, 1) and p ∈ (1, 2

1+s )

as a consequence of (7).
We now prove that there exists curl u ∈ C0(L1,∞) with the property that ‖ curl un −

curl u‖C0(L1,∞) → 0 as n → ∞. A bit of care is needed since only the weak triangle
inequality ‖ f +g‖L1,∞ ≤ 2‖ f ‖L1,∞ +2‖g‖L1,∞ holds true. However, the latter is enough
for our purposes

‖ curl uN ‖C0(L1,∞) =
∥∥∥ curl u0 + curl

(
N−1∑
n=0

un+1 − un

) ∥∥∥
C0(L1,∞)

≤ 2‖ curl u0‖C0(L1,∞) +
N−1∑
n=0

2n+1‖ curl(un+1 − un)‖C0(L1,∞)

≤ 2‖ curl u0‖C0(L1,∞) + C Mλ−1
N−1∑
n=0

2n+13−n+1 < ∞,

hence setting curl u := curl u0 +
∑∞

n=0(curl un+1 − curl un) we get the sought
conclusion. ��

The remaining part of this note is devoted to the proof of Proposition 2.1. In Sect. 4
we introduce the building blocks of our construction, in Sect. 5 we use them to define
the perturbation u1 −u0, finally in Sect. 6, we introduce the new error term R1 and show
that it can be made arbitrarily small.
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3. Preliminary Lemmas

3.1. Lorentz spaces. For everymeasurable function f : Td → Rwe recall the definition

‖ f ‖Lr,q := r1/q
∥∥λL d({| f | ≥ λ})1/r‖

Lq
(
(0,∞), dλ

λ

),
(see e.g. [13]) and we define the Lorentz space Lr,q with r ∈ [1,∞), q ∈ [1,∞], as the
space of those functions f such that ‖ f ‖Lr,q < ∞. Note that, in spite of the notation,
‖ · ‖Lr,q is in general not a norm but for (r, q) �= (1,∞) the topological vector space
Lr,q is locally convex and there exists a norm ||| · |||r,q which is equivalent to ‖ · ‖Lr,q in
the sense that the inequality C−1||| f |||r,q ≤ ‖ f ‖Lr,q ≤ C ||| f |||r,q holds.

3.2. Improved Hölder inequality. We recall the following improved Hölder inequality,
stated as in [18, Lemma 2.6] (see also [3, Lemma 3.7]). If λ ∈ N and f, g : T2 → R are
smooth functions, then we have

‖ f (x)g(λx)‖L p ≤ ‖ f ‖L p‖g‖L p + C(p)λ−1/p‖ f ‖C1‖g‖L p for any p ∈ [1,∞].
(8)

When
∫
T2 g = 0, then∣∣∣ ∫

T2
f (x)g(λx) dx

∣∣∣ ≤ Cλ−1‖ f ‖C1‖g‖L1 . (9)

3.3. Anti-divergence operators. Let now us introduce the anti-divergence operator

R0 : C∞(T2;R2) → C∞(T2;Sym2),

R0(v) := (D�−1 + (D�−1)T − I · div�−1)
(
v −

∫
T2

v
)
.

Here Sym2 denotes the space of symmetric matrices in R
2. It is simple to check that

div (R0(v)) = v − ∫
T2 v, and that DR0 is a Calderon-Zygmund operator, in particular

it holds

‖R0(v)‖L p ≤ C‖�−1/2v‖L p for any p ∈ (1,∞) , (10)

‖R0(v)‖L p ≤ C(p)‖v‖L p for any p ∈ [1,∞] . (11)

Notice that (10) and (11) imply

‖R0(vλ)‖L p ≤ C(p)λ−1‖v‖L p for any p ∈ [1,∞], (12)

where vλ(x) := v(λx) for some λ ∈ N. The latter is immediate for p ∈ (1,∞), since

‖R0(vλ)‖L p ≤ C‖�−1/2vλ‖L p ≤ Cλ−1‖v‖L p ,

in the case p = 1 and p = ∞ we need to take advantage of the Sobolev embedding
theorem:

‖R0(vλ)‖L∞ = λ−1‖R0(v)‖L∞ ≤ Cλ−1‖∇R0(v)‖L3/2

≤ Cλ−1‖v‖L3/2 ≤ Cλ−1‖v‖L∞ = Cλ−1‖v‖L∞ .

The same argument applies toR∗
0, the adjoint ofR0, then case p = 1 follows by duality.
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Lemma 3.1. Let λ ∈ N and f ∈ C∞(T2;R), v ∈ C∞(T2;R2) with
∫
T2 v = 0, and

vλ = v(λx). If we set

R( f vλ) = f R0vλ − R0

(
∇ f · R0vλ +

∫
T2

f vλ

)
∈ C∞(T2; Sym2)

then,

divR( f vλ) = f vλ −
∫
T2

f vλ ,

‖R( f vλ)‖L p ≤ C(p)λ−1‖ f ‖C1‖v‖L p for every p ∈ [1,∞] . (13)

Proof. The verification of divR( f vλ) = f vλ − ∫
T2 f vλ is immediate. To prove (13)

we use (12) and (9):

‖ f R0vλ‖L p ≤ ‖ f ‖C0‖R0vλ‖L p ≤ Cλ−1‖ f ‖C0‖v‖L p ,∥∥∥R0

(
∇ f · R0vλ +

∫
T2

f vλ

) ∥∥∥
L p

≤ C
∥∥∥∇ f · R0vλ +

∫
T2

f vλ

∥∥∥
L p

≤ Cλ−1‖ f ‖C1‖v‖L p + Cλ−1‖ f ‖C1‖v‖L1 .

��
Remark 3.2. The operator R can be also defined on scalar functions f : T

2 → R,
v : T2 → R as

R( f vλ) = f ∇�−1vλ − ∇�−1
(

∇ f · R0vλ +
∫
T2

f vλ

)
∈ C∞(T2;R2),

and arguing as in Lemma 3.1 we can easily show that divR( f vλ) = f vλ − ∫
T2 f vλ and

‖R( f vλ)‖L p ≤ C(p)λ−1‖ f ‖C1‖v‖L p for every p ∈ [1,∞].

Lemma 3.3. For any a ∈ C∞(T2) and A ∈ C∞(T;R2×2) with
∫
T2 A = 0, it holds

‖R0R(∇a · div A)‖L1 ≤ C(‖a‖C3)‖A‖L1 . (14)

Proof. Set T (A) := R(∇a · div A). By duality, it suffices to show that

‖T ∗R∗
0(B)‖L∞ ≤ C(‖a‖C3)‖B‖L∞ ,

where T ∗ andR∗
0 denote the adjoint of T andR0, respectively. To this aimwe employ the

Sobolev embedding and the fact that DT ∗R∗
0(B) maps L p into L p for any p ∈ (1,∞):

‖T ∗R∗
0(B)‖L∞ ≤ C‖DT ∗R∗

0(B)‖L3 ≤ C(‖a‖C3)‖B‖L3 ≤ C(‖a‖C3)‖B‖L∞ .

��
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4. Building Blocks

In this section we introduce the building blocks of our construction. They will be em-
ployed in Sect. 5 to define the principal term of u1 − u0 in Proposition 2.1.

Proposition 4.1. (Building blocks) Set ξ1 := e1, ξ2 := e2, ξ3 := e1 + e2 and ξ4 :=
e1 − e2. Then, for any ε > 0 there exist W p

i , W c
i , Qi ∈ C∞((−1, 1) × T

2;R2), Ai ∈
C∞((−1, 1) × T

2;Sym2) for i = 1, . . . , 4, such that

(i) div (W p
i + W c

i ) = 0, ∂t Qi = div (W p
i ⊗ W p

i ), and ∂t (W p
i + W c

i ) = div (Ai );
(ii)

∫
T2 Ai = 0,

∫
T2 W p

i = ∫
T2 W c

i = 0, and W p
i , W c

i , Ai are λ−1-periodic functions
for some λ ∈ Z with λ ≥ ε−1;

(iii)
∫
T2 W p

i ⊗ W p
i = ξi|ξi | ⊗ ξi|ξi | ;

(iv) the following estimates hold

ε‖W p
i ‖L2 + ‖W p

i ‖L1 + ‖W c
i ‖L2 ≤ ε ,

‖D(W p
i + W c

i )‖L1,∞ + ‖Qi‖L2 + ‖DQi‖L1,∞ + ‖Ai‖L1 ≤ ε ,

‖Ds(W p
i + W c

i )‖L p + ‖Ds Qi‖L p ≤ εc(p,s) for any s ∈ (0, 1) and p ∈
(
1,

2

1 + s

)
;

(15)

(v) for i �= i ′ the union of the supports of W p
i , W c

i , Qi , is disjoint in space-time from
the union of the supports of W p

i ′ , W c
i ′ , Qi ′ .

The velocity field W p
i is the principal term, it has zeromean, high frequency λ ≥ ε−1,

is controlled in the relevant norms (cf. (iv)), and satisfies the fundamental property (iii):
the quadratic interaction W p

i ⊗ W p
i produces the lower order term ξi|ξi | ⊗ ξi|ξi | . The latter,

combined with slow coefficients ai ∈ C∞(T2), is used to cancel the error R0 out. To
achieve the crucial bound ‖DW p

i ‖L1,∞ we design the principal term as

W p
i (x, t) = W p

ξi ,K ,n0
(x, t) := 1

K 1/2

K+n0∑
k=n0+1

W k
(ξi )

(x, t), (16)

where K , n0 	 1 are big parameters and ξi is one of the four directions appearing in the
statement of Proposition 4.1. In a first stage, we build W p

i (x, t) for a fixed parameter
i , ignoring the issue that, for different parameters, such functions will not have disjoint
support; only in Sect. 4.6 we make sure to suitably time-translate them, making sub-
stantial use of their special structure, to guarantee that Proposition 4.1 (v) holds. The
vector fields W k

(ξi )
(x, t), k = n0 + 1, . . . , n0 + K , are the 2-dimensional counterpart

of the intermittent jets introduced in [4]. They have L2 norm equal to 1, and are sup-
ported on disjoint balls of radius 2−kr , for some r � 1, which move in direction ξi
with speed μ2k , where μ 	 1. The fast time translation is used to make W k

(ξ) “almost
divergence free” and “almost solutions to the Euler equations”. Inmore rigorous terms, it
means that there exist vector fields (W k

(ξ))
c, (Qk

(ξ))
c, that are smaller than W k

(ξ) satisfying

div (W k
(ξ) + (W k

(ξ))
c) = 0 and ∂t (Qk

(ξ))
c = div (W k

(ξ) ⊗ W k
(ξ)). The vector fields W c

i and

Qi are defined bundling together (W k
(ξ))

c and (Qk
(ξ))

c as we did in (16).

Another important property we need is that W p
i ⊗ W p

j = 0 when i �= j . It is ensured
by (v) in Proposition 4.1, which builds upon a delicate combinatorial lemma presented
in Sect. 4.6.
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We finally explain the role of the matrix Ai in our construction. Let us begin by
noticing that the principal term W p

i has big time derivative, being fast translating in
time. Hence, the term ∂t W

p
i cannot be treated as an error. To overcome this difficulty we

impose an extra structure on W p
i and W c

i . We construct them in order to have the identity
∂t (W p

i +W c
i ) = div (Ai ), for some symmetric matrix Ai which has small L1-norm. The

latter can be added to the new error term R1.

4.1. General notation. Given a velocity field u := (u1, u2) : R2 → R
2 we write

u⊥ := (−u2, u1), curl(u) := ∂1u2 − ∂2u1 div(u) := ∂1u1 + ∂2u2.

Let us fix r⊥ � r‖ � 1 and k ∈ N, k ≥ 1. We adopt the following convention: given
any ρ : R → R supported in (−1, 1) we write

ρk
r⊥(x) :=

(
1

2−kr⊥

)1/2

ρ

(
x − 22−kr⊥

2−kr⊥

)
,

ρk
r‖(x) :=

(
1

2−kr‖

)1/2

ρ

(
x

2−kr‖

)
.

Notice that supp(ρk
r⊥) ⊂ (3 · 2−kr⊥, 5 · 2−kr⊥), in particular

supp(ρk
r⊥) ∩ supp(ρk′

r⊥) = ∅ for k �= k′,
and ⋃

k≥1

supp(ρk
r⊥) ⊂ (0, 5r⊥2−n0).

With a slight abuse of notation we keep denoting by ρk
r⊥ , ρk

r‖ : T → R their periodized
version.

4.2. Construction of the principal block. We consider 
,ψ : R → R supported in
(−1, 1), we set φ := −
′′′ and assume

∫
ψ2 = ∫

φ2 = 1. Given r⊥ � r‖ � 1 and
k ∈ N we have

supp(φk
r⊥) ∩ supp(φk′

r⊥) = supp((
′)k
r⊥) ∩ supp((
′)k′

r⊥)

= supp((
′′)k
r⊥) ∩ supp((
′′)k′

r⊥) = ∅ for k �= k′,
and ⋃

k

supp(φk
r⊥),

⋃
k

supp(
k
r⊥) ⊂ (0, 5r⊥2−n0) . (17)

We periodize (
′)k
r⊥ , (


′′)k
r⊥ , φ

k
r⊥ , ψ

k
r‖ keeping the same notation.

Given a vector ξ ∈ Q
2, and parameters λ,μ 	 1 we set

(
′)k
(ξ)(x) := (
′)k

r⊥(λx · ξ⊥) , (
′′)k
(ξ)(x) := (
′′)k

r⊥(λx · ξ⊥) ,

φk
(ξ)(x) := φk

r⊥(λx · ξ⊥) ,

ψk
(ξ)(x, t) := ψk

r‖(λ(x · ξ + μ2k t)) ,

W k
(ξ)(x, t) := ξ

|ξ | ψk
(ξ)(x, t)φk

(ξ)(x) .
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We finally fix K , n0 ∈ N, and define the principal block

W p
ξ,K ,n0

(x, t) := 1

K 1/2

K+n0∑
k=n0+1

W k
(ξ)(x, t + tk), (18)

where tk are time translations that will be chosen later. The following fundamental
identity holds

∫
T2

W p
ξ,K ,n0

⊗ W p
ξ,K ,n0

= 1

K

K+n0∑
k=n0+1

∫
T2

W k
(ξ) ⊗ W k

(ξ)

= ξ

|ξ | ⊗ ξ

|ξ |
∫
T2

(ψk
(ξ)φ

k
(ξ))

2 = ξ

|ξ | ⊗ ξ

|ξ | . (19)

4.3. Correction of the divergence. Observe that

div W k
(ξ)(x, t) = λ

2−kr‖
(ψ̇)k

(ξ)(x, t)φk
(ξ)(x).

Setting

(W k
(ξ))

c(x, t) := r⊥
r‖

ξ⊥

|ξ | (ψ̇)k
(ξ)(x, t)(
′′)k

(ξ)(x),

and using the identity 2−kr⊥∂x1(

′′)k

r⊥ = −φk
r⊥ we get div (W(ξ) + W c

(ξ)) = 0.
To correct the divergence of Wξ,K ,n0 we introduce

W c
ξ,K ,n0(x, t) := 1

K 1/2

K+n0∑
k=n0+1

(W k
(ξ))

c(x, t + tk),

and set
Wξ,K ,n0(x, t) := W p

ξ,K ,n0
(x, t) + W c

ξ,K ,n0(x, t).

4.4. Time correction. Let us now set

Qk
(ξ)(x, t) := 1

2kμ
ξ(ψk

(ξ)(x, t + tk)φ
k
(ξ)(x))2,

and observe that

div (W k
(ξ) ⊗ W k

(ξ)) = 2(W k
(ξ) · ∇ψk

(ξ))φ
k
(ξ)

ξ

|ξ | = 1

2kμ
2

(
W k

(ξ) · ∂tψ
k
(ξ)

)
φk

(ξ)

ξ

|ξ |
= 1

2kμ
∂t

(
ψk

(ξ)φ
k
(ξ)

)2 ξ

|ξ | = ∂t Qk
(ξ).

Hence

div (W p
ξ,K ,n0

⊗W p
ξ,K ,n0

) = 1

K

K+n0∑
k=n0+1

div (W k
(ξ)⊗W k

(ξ)) = ∂t

⎛
⎝ 1

K

K+n0∑
k=n0+1

Qk
(ξ)

⎞
⎠ . (20)
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The time corrector is defined as

Qξ,K ,n0(x, t) := 1

K

K+n0∑
k=n0+1

Qk
(ξ)(x, t).

4.5. Estimates on building blocks. In this section we collect the relevant estimates on
the building blocks. Given N ≥ 0 we write DN = D�N��s/2 where �N� is the integer
part of N , s := N − �N� and D�N� is the standard derivative operator.

Lemma 4.2. For any N ∈ [0,∞), M ≥ 0 integer and p ∈ [1,∞] there exists C =
C(N , M, p, |ξ |,
,ψ) > 0 such that the following hold.

‖DN ∂ M
t ψk

(ξ)‖L p(T) ≤ C2k(N+2M+1/2−1/p)r1/p−1/2
‖

(
λ

r‖

)N (
λμ

r‖

)M

,

‖DN (
′)k
(ξ)‖L p(T) + ‖DN (
′′)k

(ξ)‖L p(T) + ‖DN φk
(ξ)‖L p(T)

≤ C2k(N+1/2−1/p)r1/p−1/2
⊥

(
λ

r⊥

)N

,

‖DN ∂ M
t W k

(ξ)‖L p(T2) +
r‖
r⊥

‖DN ∂ M
t (W k

(ξ))
c‖L p(T2)

≤ C2k(N+2M+1−2/p)(r‖r⊥)1/p−1/2
(

λ

r⊥

)N (
λμ

r‖

)M

,

2kμ‖DN ∂ M
t Qk

(ξ)‖L p(T2) ≤ C2k(N+2M+2−2/p)(r‖r⊥)1/p−1
(

λ

r⊥

)N (
λμ

r‖

)M

.

The proof of Lemma 4.2 is a simple computation, so we omit it. Let us draw some
useful consequence. Summing on k and reminding that then terms in the sum in (18)
have disjoint support, we get

‖W p
ξ,K ,n0

‖L2(T2) +
r‖
r⊥

‖W c
ξ,K ,n0‖L2(T2) ≤ C (21)

(in particular, this says that the principal part is much smaller than the corrector),

‖Qξ,K ,n0‖L2(T2) ≤ C

μ(r‖r⊥)1/2
, (22)

and∥∥∥W p
ξ,K ,n0

∥∥∥
L p(T2)

+
r‖
r⊥

‖W c
ξ,K ,n0‖L p(T2) ≤ C

(r⊥r‖)1/p−1/2

K 1/2 , for any p ∈ [1, 2).
(23)

Moreover, for s ∈ (0, 1) and p < 2
1+s it holds

∥∥∥Ds W k
(ξ)

∥∥∥
L p(T2)

+
r‖
r⊥

‖Ds(W k
(ξ))

c‖L p(T2) ≤ C2−kγ (r‖r⊥)1/p−1/2
(

λ

r⊥

)s

,

μ‖Ds Qk
(ξ)‖L p(T2) ≤ C2−kγ (r‖r⊥)1/p−1

(
λ

r⊥

)s

,
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where γ := −s − 1 + 2/p > 0. In particular∥∥∥Ds W p
ξ,K ,n0

∥∥∥
L p(T2)

+
r‖
r⊥

‖Ds W c
ξ,K ,n0‖L p(T2) ≤ C2−n0γ K −1/2(r‖r⊥)1/p−1/2

(
λ

r⊥

)s

, (24)

‖Ds Qξ,K ,n0‖L p(T2) ≤ C2−n0γ μ−1K −1(r‖r⊥)1/p−1
(

λ

r⊥

)s

. (25)

Lemma 4.3. (Lorentz estimates) There exists C = C(|ξ |,
,ψ) > 0 such that

‖DWξ,K ,n0‖L1,∞ ≤ C
λ

K 1/2

(
r‖
r⊥

)1/2

,

‖DQξ,K ,n0‖L1,∞ ≤ C
λ

μr⊥K
.

Proof. Observe that

|DW k
(ξ)| = λ2k

∣∣∣∣r−1
‖

ξ

|ξ | ⊗ ξ

|ξ | (ψ
′)k

(ξ)(x, t)φk
(ξ)(x) + r−1

⊥
ξ

|ξ | ⊗ ξ⊥

|ξ |ψ
k
(ξ)(x, t)(φ′)k

(ξ)(x)

∣∣∣∣
≤ λ2kr−1

⊥ (|(ψ ′)k
(ξ)(x, t)||φk

(ξ)(x)| + |ψk
(ξ)(x, t)||(φ′)k

(ξ)(x)|)

= λ

(
r‖
r⊥

)1/2 1

2−k(r⊥r‖)1/2
(|(ψ ′)k

(ξ)(x, t)||φk
(ξ)(x)| + |ψk

(ξ)(x, t)||(φ′)k
(ξ)(x)|)

:= λ

(
r‖
r⊥

)1/2

�k
1(x, t),

and similarly

|DQk
(ξ)| ≤ λ

μr⊥
�k

2(x, t) ,

where for i = 1, 2

|�k
i | ≤ C22k(r⊥r‖)−1, L 2(supp(�k

i )) ≤ C2−2kr⊥r‖,
supp(�k

i ) ∩ supp(�k′
i ) = ∅, for k �= k′. (26)

Let us now fix s ≥ 1 and k∗ the smallest integer satisfying k∗ ≥ n0 + 1 and C22k∗ ≥
sK 1/2r⊥r‖. It holds

L 2

⎛
⎝

⎧⎨
⎩ 1

K 1/2

K+n0∑
k=n0+1

�k
1 ≥ s

⎫⎬
⎭

⎞
⎠ =

K+n0∑
k=n0+1

L 2({�k
1 ≥ sK 1/2})

≤
K+n0∑
k=k∗

L 2({�k
1 ≥ sK 1/2}).

From (26) and the choice of k∗ we get

K+n0∑
k=k∗

L 2({�k ≥ sK 1/2}) ≤
K+n0∑
k=k∗

C2−2kr⊥r‖ ≤ C

sK 1/2

∑
k≥k∗

22k∗−2k ≤ C

sK 1/2 ,
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hence

‖DW p
ξ,K ,n0

‖L1,∞ ≤ λ

(
r‖
r⊥

)1/2 ∥∥∥ 1

K 1/2

K+n0∑
k=n0+1

�k
∥∥∥

L1,∞ ≤ C2 λ

K 1/2

(
r‖
r⊥

)1/2

,

the estimate on ‖DW c
ξ,K ,n0

‖L1,∞ can be obtained following the same strategy. An anal-
ogous argument gives

L 2

⎛
⎝

⎧⎨
⎩ 1

K

K+n0∑
k=n0+1

�k
2 ≥ s

⎫⎬
⎭

⎞
⎠ ≤ C

sK
,

yielding

‖DQξ,K ,n0‖L1,∞ ≤ C
λ

μr⊥

∥∥∥ 1

K

K+n0∑
k=n0+1

�k
∥∥∥

L1,∞ ≤ C2 λ

μr⊥K
.

��
Remark 4.4. It is not hard to prove the following extension of Lemma 4.3. For any q ≥ 1
it holds

‖DWξ,K ,n0‖L1,q ≤ C
λ

K 1/2−1/q

(
r‖
r⊥

)1/2

,

‖DQξ,K ,n0‖L1,∞ ≤ C
λ

μr⊥K 1−1/q
.

Lemma 4.5. There exists a smooth λ-periodic function Aξ,K ,n0 : T2 → Sym2 such that

∂t Wξ,K ,n0 = div (Aξ,K ,n0) , (27)

‖Aξ,K ,n0‖L1 ≤ C(|ξ |,
,ψ)μK 1/2r3/2⊥ r−1/2
‖ . (28)

Proof. Setting

A(ξ),k := −2k
(

r⊥
r‖

)
μ

((
ξ

|ξ | ⊗ ξ⊥

|ξ | +
ξ⊥

|ξ | ⊗ ξ

|ξ |
)

(ψ ′)k
(ξ)(


′′)k
(ξ)

+
r⊥
r‖

ξ⊥

|ξ | ⊗ ξ⊥

|ξ | (ψ
′′)k

(ξ)(

′)k

(ξ)

)
,

Ac
(ξ),k := 2k

(
r⊥
r‖

)2

μ

((
ξ

|ξ | ⊗ ξ⊥

|ξ | +
ξ⊥

|ξ | ⊗ ξ

|ξ |
)

(ψ ′)k
(ξ)(


′)k
(ξ)

− r⊥
r‖

ξ⊥

|ξ | ⊗ ξ⊥

|ξ | (ψ
′′)k

(ξ)(
)k
(ξ)

)
,

it holds

∂t W
k
(ξ) = 22kμλr−1

‖ ξ(ψ ′)k
(ξ)(x, t)φk

(ξ)(x)

= −2kμr−1
‖ r⊥div

((
ξ

|ξ | ⊗ ξ⊥

|ξ | +
ξ⊥

|ξ | ⊗ ξ

|ξ |
)

(ψ ′)k
(ξ)(φ

′′)k
(ξ)

+
ξ⊥

|ξ | ⊗ ξ⊥

|ξ | (ψ
′′)k

(ξ)(φ
′)k

(ξ)

)
= div (A(ξ),k),
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and similarly

∂t (W k
(ξ))

c = r⊥
r‖

22kμλr−1
‖ ξ(ψ ′)k

(ξ)(x, t)(
′′)k
(ξ)(x) = div (Ac

(ξ),k).

Hence (27) is satisfied. Defining

Aξ,K ,n0 := 1

K 1/2

K+n0∑
k=n0+1

(A(ξ),k + Ac
(ξ),k)

and arguing as in Lemma 4.2, we obtain that

‖A(ξ),k‖L1 + ‖Ac
(ξ),k‖L1 ≤ C(|ξ |,
,ψ)μK 1/2r⊥r−1

‖ (r⊥r‖)1/2,

which yields (28). ��

4.6. Combinatorial lemma. The following proposition shows that, up to a suitable (time)
translation of each element in the bundle, the building blocks associated to different
directions can be taken disjoint.

Proposition 4.6. Let ξ1 = e1, ξ2 = e2, ξ3 = e1 + e2 and ξ4 = e1 − e2. Then for
n0 = 5K the functions in the family {W k

(ξi+1)
(x, t + iμ−12−5K )}k=n0,...,n0+K ; i=0,1,2,3

have all supports mutually disjoint in space-time.

Proof. We apply Lemma 4.7 below to the families {W k
(ξ2)

(x, t +iμ−12−5K )}k=n0,...,n0+K

and {W k
(ξ2)

(x, t + jμ−12−5K )}k=n0,...,n0+K ; up to shifting the time axis, we can assume
that i = 0 and that j ∈ {1, 2, 3} and conclude the proof. ��
Lemma 4.7. Let ξ1, ξ2 ∈ {e1, e2, e1 + e2, e1 − e2} be two different vector fields. Let
us consider two families {W k

(ξ1)
(x, t)}k=n0,...,n0+K and {W k

(ξ2)
(x, t + t0)}k=n0,...,n0+K for

some t0 ∈ [μ−12−7K , μ−12−7K+2] and for n0 = 5K . Then the supports of all these
functions are disjoint in space-time, namely

W k
(ξ1)

(x, t) ⊗ W h
(ξ2)

(x, t + t0) = 0 for all k, h ∈ {1, ..., K }.
Proof. The family {W k

(ξ1)
(x, t)}k=n0,...,n0+K is supported by (17) in space in a tube along

ξ1 of size r‖2−n0 and similarly the family {W k
(ξ2)

(x, t+t0)}k=n0,...,n0+K is supported in the
tube along ξ2 of size r‖2−n0 . Since these two thin tubes intersect only in a neighborhood
of the origin, we deduce that the supports of W k

(ξ1)
(x, t) and W h

(ξ2)
(x, t), where h, k ∈

{n0, . . . , n0 + K }, can intersect for some time t > 0 only if they both belong to BR(0),
where R := r‖2−n0+1.

We claim the following: suppose that for a certain t > 0 and k ∈ {n0, . . . , n0 + K }
we have suppW k

(ξ1)
(·, t) ∩ Br‖2−n0+1 �= ∅. Then suppW h

(ξ2)
(·, t + t0) ∩ BR = ∅ for every

h ∈ {n0, . . . , n0 + K }.
The previous claim excludes the simultaneous presence at any t > 0 of the support

of W k
(ξ1)

(·, t) and the support of W h
(ξ2)

(·, t + t0) in BR(0), thereby concluding the proof
of the lemma.

We now prove the claim. Let us fix a time t such that suppW k
(ξ1)

(·, t) ∩ BR �= ∅.
Since suppW k

(ξ1)
(·, t) is moving at constant speed μ2k along the tube on the torus, there
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exists t̄ such that |t − t̄ | ≤ Rμ−12−k and suppW k
(ξ1)

(·, t̄) = suppW k
(ξ1)

(x, 0). At time t̄

we have information about the position of suppW h
(ξ2)

(·, t̄ + t0); more precisely, we have
that

suppW h
(ξ2)

(·, t̄ + t0) ⊆
⋃
n∈N

(
suppW h

(ξ2)
(·, t0) + n

ξ2

2K

)
(29)

because the ratio between the (constant) velocity of suppW k
(ξ1)

(·, t) and the velocity of

suppW k
(ξ2)

(·, t) is of the form 2 j for some j ∈ {−K , ..., K }.
In the union in the right-hand side of (29), thanks to the upper bound on t0, the choice

n = 0 identifies the ball of the (finite) union at minimal distance from the origin for every
k. By the lower bound on t0 and the fact that the minimal velocity is μ2n0 , we get that
this distance is greater than 2n0−7K . At time t the distance between suppW h

(ξ2)
(·, t + t0)

and BR(0) is therefore bigger than

2n0−7K − |t − t̄ |μ2h − R ≥ 2n0−7K − R2h−k − R ≥ 2n0−7K − R2K − R

≥ 2n0−7K − 2−n0+K+1 = 2−2K − 2−4K+1 > 0.

This concludes the proof of the claim. ��

4.7. Proof of Proposition 4.1. Let n0 = 5K and
{W k

(ξi+1)
(x, t+iμ−12−5K )}k=n0,...,n0+K ; i=0,1,2,3 be as inProposition4.6. Since suppW k

ξi+1
=

supp(W k
ξi+1

)c = suppQk
ξi+1

, by translating in time (W k
ξi+1

)c and Qk
ξi+1

with tk,i :=
iμ−12−5K we deduce that W p

i+1 := W p
ξi+1,K ,n0

, W c
i+1 := W c

ξi+1,K ,n0
, Qi+1 := Qξi+1,K ,n0

and Ai+1 := Aξ,K ,n0 satisfy (v) in Lemma 4.1. We refer the reader to Lemma 4.5 for the
construction of Aξ,K ,n0 . Properties (i) and (ii) in Lemma 4.1 are now immediate from
(19), (20) and Lemma 4.5. We are left with the proof of (iii) and (iv) in Lemma 4.1. To
do so we have to choose appropriately the parameters λ,μ, K , r⊥ and r‖. Let δ < 1/2
to be chosen later in terms of ε > 0, we set

λ =
(

r⊥
r‖

)−1/2

δ4 K =
(

r⊥
r‖

)−2

δ4 μ = (r⊥r‖)−1/2δ−1,

leaving r⊥ � r‖ � 1 free. From Lemma 4.3, Lemma 4.5, (21), (22) and (23) we deduce

‖D(W c
i + W p

i )‖L1,∞ ≤ C
λ

K 1/2

(
r‖
r⊥

)1/2

= Cδ2 ,

‖DQi‖L1,∞ ≤ C
λ

μKr⊥
= Cδ

r⊥
r‖

≤ Cδ ,

‖Ai‖L1 ≤ CμK 1/2(r−1
‖ r⊥)(r‖r⊥)1/2 = Cδ,

‖Qi‖L2(T2) ≤ C

μ(r‖r⊥)1/2
= Cδ ,

‖W p
i ‖L2 +

r‖
r⊥

‖W c
i ‖L2 ≤ 1 .

Moreover, from (24) and (25) we deduce

‖Ds W p
ξ,K ,n0

‖L p +
r‖
r⊥

‖Ds W c
ξ,K ,n0‖L p + ‖Ds Qξ,K ,n0‖L p ≤ C exp

{
−C(p, s)δ4

(
r⊥
r‖

)−2
}

,
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for any s ∈ (0, 1) and p ∈ (
1, 2

1+s

)
. The conclusions (iii) and (iv) in Lemma 4.1 follow

by choosing first δ small enough so that Cδ ≤ ε, and after r⊥ � r‖ � 1 so that r⊥
r‖ ≤ ε,

λ = δ4r1/2‖ r−1/2
⊥ ≥ ε−1 and C exp

{
−C(p, s)δ4

(
r⊥
r‖

)−2
}

≤ εc(p,s).

5. Definition of the Perturbations

Let us begin by observing that there exist �i ∈ C∞(Sym2,R), i = 1, . . . , 4 such that

R =
4∑

i=1

�i (R)2ei ⊗ ei , for any R ∈ Sym2 such that |R − I | < 1/8,

where e1 := (1, 0), e2 := (0, 1), e3 := (1/
√
2, 1/

√
2) and e4 := (1/

√
2,−1/

√
2).

We can define, for instance,

�1(R)2 := R1,1 − R1,2 − 1

2
, �2(R)2 := R2,2 − R1,2 − 1

2
,

�3(R)2 := 2R1,2 +
1

2
, �4(R)2 := 1

2
.

It is immediate to show the identity R = ∑4
i=1 �i (R)2ei ⊗ ei . Moreover, using that

|R − I | < 1/8, we deduce

�1(R)2 = 1

2
+ (R1,1 − 1) − R1,2 ≥ 1

2
− |R1,1 − 1| − |R1,2| ≥ 1

4
,

�2(R)2 = 1

2
+ (R2,2 − 1) − R1,2 ≥ 1

2
− |R2,2 − 1| − |R1,2| ≥ 1

4
,

�3(R)2 ≥ 1

2
− 2|R1,2| ≥ 1/4 ,

which implies that �i are smooth functions.
We define

ai (x, t) := (10χ(t)(|R0(x, t)|+‖R0‖L1))1/2 �i

(
I − 10−1

|R0(x, t)| + ‖R0‖L∞(L1)

R(x, t)
)
,

where χ ∈ C∞(R) satisfies 0 ≤ χ ≤ 1, χ = 0 on [0, t0/2], and χ = 1 on [t0,∞). Our
choice leads to

4∑
i=1

ai (x, t)2
ξi

|ξi | ⊗ ξi

|ξi | = −R0(x, t) + χ(t)10(|R0(x, t)| + ‖R0‖L∞(L1))I,

where ξ1 = (1, 0), ξ2 = (0, 2), ξ3 = (1, 1) and ξ4 = (1,−1). The latter implies that

−div (R0) = div
( 4∑

i=1

ai (x, t)2
ξi

|ξi | ⊗ ξi

|ξi |
)
+ ∇ P, (30)

for some smooth pressure function P .
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We observe that the coefficient ai is a “slow function”, namely its derivatives are
estimated only in terms of the smoothness of R0

‖∂ M
t ∇N ai‖L∞ ≤ C(t0, ‖R0‖C N+M , N , M) ,

‖ai‖L∞(L2) ≤ 5‖R0‖1/2L∞(L1)
.

For ε > 0 to be chosen later, we consider the functions W p
i , W c

i , Qi , Ai from
Proposition 4.1. We define the new velocity field as the sum of the previous one, a
principal perturbation, a divergence corrector and a temporal corrector

u1 := u0 + u(p)
1 + u(c)

1 + u(t)
1 ,

where

u(p)
1 =

4∑
i=1

ai (W p
i +W c

i ), u(c)
1 = −

4∑
i=1

R (∇ai · (W p
i + W c

i )
)
, u(t)

1 = −P(

4∑
i=1

a2
i Qi ),

where P = ∇⊥�−1div : C∞(T2;R2) → C∞(T2;R2) is the Leray projector.
We refer the reader to Remark 3.2 for the definition of R. From now on, in order to

simplify our notation, for any function space X and any map f which depends on t and
x , we will write ‖ f ‖X meaning ‖ f ‖L∞(X).

5.1. Estimate on ‖u1 − u0‖L2 and on ‖u1 − u0‖L1 . By the triangular inequality,

‖u1 − u0‖L2 ≤ ‖u(p)
1 ‖L2 + ‖u(c)

1 ‖L2 + ‖u(t)
1 ‖L2

and we estimate the right-hand side separately as

‖u(p)
1 ‖L2 ≤

4∑
i=1

‖ai (W p
i + W c

i )‖L2

≤
4∑

i=1

(
‖ai‖L2‖W p

i + W c
i ‖L2 + C

‖ai‖C1‖W p
i + W c

i ‖L2

λ1/2

)

≤ ‖R0‖L1 + ε1/2C(t0, ‖R0‖C1),

where in the second line we used the improved Holder inequality (8) and (iii) in Propo-
sition 4.1.

From Remark 3.2 we deduce

‖u(c)
1 ‖L2 ≤ Cε

4∑
i=1

‖ai‖C2‖W p
i + W c

i ‖L2 ≤ εC(t0, ‖R0‖C2).

Finally we employ (iv) in Proposition 4.1 to get

‖u(t)
1 ‖L2 ≤

4∑
i=1

‖ai‖L∞‖Qi‖L2 ≤ εC(t0, ‖R0‖L∞).
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Analogously

‖u1 − u0‖L1 ≤
4∑

i=1

(
‖u(p)

1 ‖L1 + ‖u(c)
1 ‖L1 + ‖u(t)

1 ‖L1

)

≤ C
4∑

i=1

(‖ai‖L∞‖W p
i + W c

i ‖L1 + ‖u(c)
1 ‖L2 + ‖u(t)

1 ‖L2)

≤ εC(t0, ‖R0‖C2). (31)

5.2. Estimate on ‖ curl(u1 − u0)‖L1,∞ and ‖Ds(u1 − u0)‖L p . By triangular inequality,

‖ curl(u1 − u0)‖L1,∞

≤ C
4∑

i=1

(‖D(ai (W p
i + W c

i ))‖L1,∞ + ‖DR(∇ai · (W p
i + W c

i )‖L1,∞ + ‖curlP(ai Qi )‖L1,∞
)
,

we estimate the right-hand side separately as

‖D(ai (W p
i + W c

i ))‖L1,∞ ≤ ‖ai‖C1‖(W p
i + W c

i )‖L1 + ‖ai‖L∞‖D(W p
i + W c

i )‖L1,∞

≤ εC(t0, ‖R0‖C1) ,

‖curlP(ai Qi )‖L1,∞ = ‖curl(ai Qi )‖L1,∞ ≤ C‖ai‖C1‖Qi‖L1 + ‖ai‖L∞‖DQi‖L1,∞

≤ εC(t0, ‖R0‖C1) ,

where we employed (iv) in Proposition 4.1. Using that DR is a Calderon-Zygmund
operator we deduce

‖DR(∇ai · (W p
i + W c

i ))‖L1,∞ ≤ C‖∇ai · (W p
i + W c

i )‖L1 ≤ εC(t0, ‖R0‖C1) .

Let us now fix s ∈ (0, 1) and p ∈ (1, 2
1+s ). Arguing as above employing (15) we get

‖Ds(u1 − u0)‖L p ≤ C
4∑

i=1

(‖Ds(ai (W p
i + W c

i ))‖L p + ‖DsR(∇ai · (W p
i + W c

i )‖L p

+ ‖Ds
P(ai Qi )‖L p

)
≤ εc(p,s)C(t0, ‖R0‖C1).

6. New Error

We define R1 in such a way that

∂t u1 + div (u1 ⊗ u1) + ∇ p1 = div (R1),

which, by subtracting the equation for u0, is equivalent to

div (R1) = div (u0 ⊗ (u1 − u0) + (u1 − u0) ⊗ u0 + (u1 − u0) ⊗ (u1 − u0) + R0)

+ ∂t (u1 − u0) + ∇(p1 − p0). (32)
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We are going to define

R1 := R(l)
1 + R(t)

1 + R(q)
1 ,

where the various addends are defined in the following paragraphs, and show that

‖R(l)
1 ‖L1 + ‖R(t)‖L1 + ‖R(q)‖L1 ≤ εC(t0, ‖R0‖C3).

The proof of Proposition 2.1 will follow by choosing ε small enough.

6.1. Linear error. Let us set

R(l)
1 := u0 ⊗ (u1 − u0) + (u1 − u0) ⊗ u0, (33)

thanks to (31) it holds

‖R(l)
1 ‖L1 ≤ 2‖u0‖L∞‖u1 − u0‖L1 ≤ εC(t0, ‖R0‖C2) .

6.2. Temporal error. Let us set

R(t)
1 := R(∂t ai · (W p

i + W c
i )) + ai Ai − R(∇ai · Ai )

+R0R(∂t (∇ai ) · (W p
i + W c

i )) +R0R(∇ai · div (Ai )) − R0P

(∑4
i=1 ∂t a2

i Qi

)
.

Using that

∂t u
(t)
1 = −P(

4∑
i=1

∂t a
2
i Qi ) − P(

4∑
i=1

a2
i div (W p

i ⊗ W p
i ))

= −P(

4∑
i=1

∂t a
2
i Qi ) −

4∑
i=1

a2
i div (W p

i ⊗ W p
i ) − ∇ P,

for some pressure term P , it is immediate to verify the identity

∂t (u1 − u0) = div (R(t)
1 ) −

4∑
i=1

a2
i div (W p

i ⊗ W p
i ) − ∇ P. (34)

Since R and R0 send L1 to L1 (cf. Lemma 3.1 and Remark 3.2), we have that

‖R(∂t ai · (W p
i + W c

i ))‖L1 + ‖R0R(∂t∇ai · (W p
i + W c

i ))‖L1

≤ 2‖a‖C2‖W p
i + W c

i ‖L1 ≤ εC(t0, ‖R0‖C2).

‖R0P

(
4∑

i=1

∂t a
2
i Qi

)
‖L1 ≤

4∑
i=1

‖∂t a
2
i Qi‖L2 ≤

4∑
i=1

‖∂t a
2
i ‖L∞‖Qi‖L2 ≤ εC(t0, ‖R0‖C1).

From (iv) in Proposition 4.1 we get

‖ai Ai‖L1 + ‖R(∇ai · Ai )‖L1 ≤ 2‖ai‖C1‖Ai‖L1 ≤ εC(t0, ‖R0‖C1).

By employing (14) we bound

‖R0R(∇ai · div (Ai ))‖L1 ≤ C‖ai‖C3‖Ai‖L1 ≤ εC(t0, ‖R0‖C3) .
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6.3. Quadratic error terms. Let us set

R(q)
1 = (u1−u0)⊗ (u1−u0)−

4∑
i=1

a2
i W p

i ⊗W p
i +

4∑
i=1

R
(
∇a2

i ·
(

W p
i ⊗W p

i −
∫
T2

W p
i ⊗W p

i

))
,

and show that (32) holds. In view of (33), (30) and (34) it amounts to check that

div (R(q)
1 ) = div

(
(u1 − u0) ⊗ (u1 − u0) −

4∑
i=1

a2
i

( ξi

|ξi | ⊗ ξi

|ξi |
))

−
4∑

i=1

a2
i div (W p

i ⊗ W p
i ) + ∇(p1 − p2).

The latter easily follows by noticing that, as a consequence of (ii) in Proposition 4.1,
one has

4∑
i=1

∇a2
i ·

(
W p

i ⊗ W p
i −

∫
T2

W p
i ⊗ W p

i

)
=

4∑
i=1

∇a2
i ·

(
W p

i ⊗ W p
i −

∫
T2

W p
i ⊗ W p

i

)

=
4∑

i=1

div
(

a2
i

(
W p

i ⊗ W p
i − ξi

|ξi | ⊗ ξi

|ξi |
))

−
4∑

i=1

div (a2
i W p

i ⊗ W p
i ).

Let us finally prove that ‖R(q)
1 ‖L1 ≤ εC(t0, ‖R0‖C2). We begin by observing that

(u1 − u0) ⊗ (u1 − u0) −
4∑

i=1

a2
i W p

i ⊗ W p
i

=
4∑

i=1

(a2
i W p

i ⊗ W c
i + a2

i W c
i ⊗ W p

i + a2
i W c

i ⊗ W c
i )

+ (u(c)
1 + u(t)

1 ) ⊗ (u1 − u0) + (u1 − u0) ⊗ (u(c)
1 + u(t)

1 ),

From (iv) in Proposition 4.1, the estimates in Sect. 5.1 on ‖u(c)
1 ‖L2 , ‖u(t)

1 ‖L2 , ‖u1 −
u0‖L2 and Lemma 3.1 we deduce

‖a2
i W p

i ⊗ W c
i + a2

i W c
i ⊗ W p

i + a2
i W c

i ⊗ W c
i ‖L1 ≤ ‖ai‖L∞(2‖W p

i ‖L2‖W c
i ‖L2 + ‖W c

i ‖2L2 )

≤ εC(t0, ‖R0‖L∞) ,

‖(u(c)
1 + u(t)

1 ) ⊗ (u1 − u0) + (u1 − u0) ⊗ (u(c)
1 + u(t)

1 )‖L1 ≤ 2‖u(c)
1 + u(t)

1 ‖L2‖u1 − u0‖L2

≤ εC(t0, ‖R0‖C2 ),∥∥∥R(
∇a2

i · (W p
i ⊗ W p

i −
∫
T2

W p
i ⊗ W p

i )

) ∥∥∥
L1

≤ Cε‖∇a1‖C1‖W p
i ⊗ W p

i ‖L1

≤ εC(t0, ‖R0‖C2 ) .
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