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Abstract: We prove that if μ is a finitely supported measure on SL2(R) with positive
Lyapunov exponent but not uniformly hyperbolic, then the Lyapunov exponent function
is not α-Hölder around μ for any α exceeding the Shannon entropy of μ over the
Lyapunov exponent of μ.

1. Introduction

The lawof large numbers, stating that on average an i.i.d. process is close to its theoretical
mean, often used to describe the typical statistical behavior of a random sample, is the
basis for understanding general additive processes with applications in various branches
of mathematics such as probability, combinatorics or ergodic theory.

The multiplicative version of the law of large numbers for products of random ma-
trices is the classical theorem of Furstenberg and Kesten [1], which asserts that with
probability 1 the logarithmic growth rate of products of random matrices equals its
mean growth rate. More formally, a special case of this theorem states that for an i.i.d.
sequence of random matrices L1, L2, . . . , with common law given by a compactly
supported probability measure μ on GLd(R), the following asymptotic equality holds
almost surely

lim
n→∞

1

n
log ‖Ln . . . L1‖ = lim

n→∞
1

n
E[ log ‖Ln . . . L1‖ ],

where the right-hand-side, denoted by L(μ), is the so called Lyapunov exponent of the
law μ. The investigation of how the Lyapunov exponent changes as a function of the
underlying measure μ lies at the core of the multiplicative ergodic theory, with many
fundamental contributions during the last 60 years.
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The continuity of the Lyapunov exponent L(μ) as a function of the measure μ, with
respect to the weak* topology, was established by Furstenberg and Kifer [2] under a
generic irreducibility assumption. A measure μ is called irreducible if there exists no
proper subspace of Rd which is μ-invariant, i.e., invariant under all matrices in the
support of μ. Otherwise μ is called reducible, and any proper μ-invariant subspace
S ⊂ R

d determines the Lyapunov exponent L(μ|S) corresponding to the logarithmic
growth rate of the norms ‖(Ln|S) . . . (L1|S)‖. The continuity of Furstenberg and Kifer
actually holds under the weaker quasi-irreduciblity assumption. A measure μ is called
quasi-irreducible if L(μ|S) = L(μ) for every proper μ-invariant subspace S ⊂ R

d . See
[3, Theorem 1.46].

In [4], Bocker andViana proved that formeasures supported inGL2(R) the Lyapunov
exponent μ �→ L(μ) is continuous with respect the weak* topology and the Hausdorff
distance between their supports. Avila, Eskin and Viana announced that the same result
holds for measures supported in GLd(R), any d ≥ 2. See the remark after Theorem
10.1 in [5].

It is then natural to raise the question about the precise modulus of continuity of this
map.

A lower bound for this regularity was provided by Le Page in [6]. The Lyapunov
exponent is locallyHölder continuous over an open and dense set of compactly supported
measures onGLd(R), namely the set of quasi-irreduciblemeasuresμwith a gap between
the first and second Lyapunov exponents. See also [7, Theorem 1]. Recall that a function
E �→ f (E) is said to be Hölder with exponent α, or α-Hölder, if there exists a constant
C < ∞ such that for all E, E ′,

| f (E) − f (E ′)| ≤ C |E − E ′|α.
A function which is Hölder in a neighborhood of each point of its domain is called

locallyHölder. Alternatively,we say that a function E �→ f (E) is point-wiselyα-Hölder
if for every E0 there exists a constant C < ∞ and a neighborhood of E0 where for all
E ,

| f (E) − f (E0)| ≤ C |E − E0|α.
Notice that point-wise Hölder is weaker than locally Hölder. In fact the modulus of
continuity around a point of a point-wisely Hölder function can be arbitrary bad.

In E. Tall and M. Viana [8] proved that for random GL2(R) cocycles the Lyapunov
exponents are always point-wisely log-Hölder, and even point-wisely Hölder when the
Lyapunov exponents are distinct.

In the same direction, the quasi-irreducibility hypothesis was discarded in [9], where
it was established that for finitely supportedmeasures in GL2(R)with distinct Lyapunov
exponents, the function μ �→ L(μ) is either locally Hölder or else locally weak-Hölder.
Given positive constants α, β ≤ 1, a function E �→ f (E) is said to be (α, β)-weak
Hölder if there exists a constant C < ∞ such that for all E, E ′,

| f (E) − f (E ′)| ≤ C e−α
(
log |E−E ′|−1

)β
.

Notice that (α, 1)-weak Hölder is equivalent to α-Hölder.
In the reverse direction, an example due to Halperin [10, Appendix 3A] provides

an upper bound on this regularity. The example consists of the following 1-parameter
family of measures on SL2(R), μa,b,E := 1

2 δAE + 1
2 δb,E , where

AE =
(

a − E −1
1 0

)
, BE =

(
b − E 0

1 0

)
.
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It follows from [10, Theorem A.3.1] that the function E �→ L(μa,b,E ) can not be
α-Hölder continuous for any α >

2 log 2
arccosh(1+|a−b|/2) (see also Proposition 4.1). On the

other hand, it is not difficult to see that the measures μa,b,E satisfy the assumptions of
Le Page’s theorem, which implies that the function E �→ L(μa,b,E ) is indeed Hölder
continuous, but with a very small Hölder exponent α when a − b is large.

In the same spirit, in [11], the authors provide the following example where the
Lyapunov exponent is not even weak-Hölder continuous. They consider the measure

μ := 1

2
δA +

1

2
δB, A =

(
0 −1
1 0

)
, B =

(
e 0
0 e−1

)

and prove that there exists a curve μ̃t = 1
2 δAt +

1
2 δBt through μ̃0 = μ such that

t �→ L1(μ̃t ) is not weak-Hölder around t = 0. Notice that μ is not quasi-irreducible
and L(μ) = 0 so that μ does not satisfy any of the assumptions of Le Page’s theorem.

In contrast with this low regularity, a classical theorem of Ruelle proves the analiticity
of the Lyapunov exponent for uniformly hyperbolic measures with 1-dimensional un-
stable direction, see [12, Theorem 3.1]. A compactly supported measure μ on GLd(R)

is said to be uniformly hyperbolic if the linear cocycle generated by μ is uniformly
hyperbolic (see Sect. 3.1).

From now on we focus on the class of finitely supported measures in SL2(R), where
the lack of regularity of the Lyapunov exponent can only occur outside of the class of
uniformly hyperbolic measures. In [13], Avila, Bochi and Yoccoz gave a characteriza-
tion of the uniformly hyperbolic cocycles generated by a finitely supported measure in
SL2(R) in terms of existence of an invariant multicone. With this characterization they
prove that the complement of the closure of the uniformly hyperbolic measures is the set
of elliptic measures, meaning the finitely supported measures such that the semigroup
�μ generated by the support of μ contains a elliptic element, i.e., a matrix conjugated
to a rotation.

Given a hyperbolic matrix A ∈ SL2(R) we denote by ŝ(A), respectively û(A), the
stable direction, respectively the unstable direction of A in the projective space P1. We
say that μ has a heteroclinic tangency if there are matrices A, B,C ∈ �μ such that
A and B are hyperbolic and C û(B) = ŝ(A). In this case we also say that (B, C, A)

is a tangency for μ. If moreover A = B, we say that μ has a homoclinic tangency.
Heteroclinic tangencies are referred to as heteroclinic connections in [13],1. If μ is not
uniformly hyperbolic but L(μ) > 0, i.e., if μ is non-uniformly hyperbolic, then �μ

contains hyperbolic matrices. By Theorem 4.1 of [13], in this case the semigroup �μ

contains either a heteroclinic tangency or else a non hyperbolic matrix, i.e., an elliptic or
parabolic matrix. In each of these two cases we can produce heteroclinic tangencies with
an arbitrary small perturbation. See Proposition 7.8. Hence measures with heteroclinic
tangencies are dense in the class of non-uniformly hyperbolic measures.

1.1. Results. Let H(μ) be the Shannon’s entropy (see Sect. 3.3) of the finitely supported
measure μ.

Theorem A. Let μ be a finitely supported measure on SL2(R). Assume that L(μ) > 0,
μ is irreducible and that μ has a heteroclinic tangency. Then, there exists an analytic

1 In this work Avila, Bochi and Yoccoz characterize the boundary of uniformly hyperbolic cocycles. By
[13, Remark 4.2] heteroclinic connections can never be homoclinic connections for cocycles at the boundary
of the uniformly hyperbolic ones.
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one parameter family of finitely supported measures {μE }E such that μ0 = μ and
for any α > H(μ)/L(μ), the function E �→ L(μE ) is not locally α-Hölder at any
neighborhood of E = 0.

Remark 1. Our result implies a similar conclusion as in Halperin/Simon-Taylor example
with a less sharper threshold. For simplicity we consider the parameters a = 0 with
energy E = 0. In this example H(μ0,b,0) = log 2 while

L(μ0,b,0) ≤ 1

2
log ‖B0‖ = 1

2
log

√
2 + b2 + |b|√b2 + 4

2

<
1

2
arccosh

(
1 +

|b|
2

)
.

The last two quantities are asymptotically equivalent, which implies that

H(μ0,b,0)
1
2 log ‖B0‖

∼ 2 log 2

arccosh(1 + |b|/2) as b → ∞.

Set

αμ := sup {α > 0 : L is locally α-Hölder around μ} .

Corollary A. Let μ be a finitely supported measure on SL2(R) with L(μ) > 0. Then,
either μ is uniformly hyperbolic and L is locally analytic around μ, or else

αμ ≤ H(μ)

L(μ)
.

As a consequence of the proof ofAwe have the following application inmathematical
physics (for precise definitions see Sect. 4).

Corollary B. Consider the Anderson model of the discrete Schrödinger operators asso-
ciated with a finitely supported measure μ. Let α >

H(μ)
L(μ)

and E0 be an energy in the
spectrum. Then, the integrated density of states function E �→ N (E) and the Lyapunov
exponent function E �→ L(E) are not α-Hölder continuous at any neighborhood of E0.

1.2. Relations with other dimensions. See Sect. 3.3 for a precise description of the ob-
jects treated in this subsection.

The study of formulas relating (some type of) dimension, entropy and Lyapunov
exponent has a vast history with many contributions in different settings (see for instance
[14,15] for diffeormorphisms of a compact manifold and [16] for self affine measures).

For SL2(R) supported measures μ with L(μ) > 0, Ledrappier in [17], proved that
we have a dimension type formula for any (forward) stationary measures η associated
with μ, namely

Dim η = min

{
1,

hF (η)

2L(μ)

}
. (1)
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Dim is a different notion of dimension from dim given in Sect. 3.3 (See [3, Remark
2.34]), but in the case that η is exact dimensional they coincide. The exactness of the
dimension of the stationarymeasureswas established byHochman and Solomyak in [18]
assuming additionally thatμ is irreducible. In particular, if η+ and η− denote respectively
the forward and backward stationary measures then

dim η± = min

{
1,

hF (η±)

2L(μ)

}
≤ min

{
1,

H(μ)

2L(μ)

}
.

Moreover, in [18] they provided, among other things, conditions to obtain Ledrappier-
Young type formulas relating the dimension of the stationary measure, the entropy and
the Lyapunov exponents, i.e.,

dim η± = min

{
1,

H(μ)

2L(μ)

}
,

where hF (η±) is the Furstenberg entropy of η±. In light of the above discussion we
leave the following questions.

Question 1. Assume that α > dim η+ + dim η−. Under the assumptions of Theorem A,
is it true that the Lyapunov exponent is not α-Hölder continuous in any neighborhood
of μ?

Question 2. Is H(μ)
L(μ)

a sharp bound for the regularity? In other words, is there an example

where αμ = H(μ)
L(μ)

?

Halperin’s example above does not answer this question.

Question 3. In the case that H(μ)
L(μ)

≥ 1, is it true that the Lyapunov exponent is Lipschitz
continuous function around μ?

Question 4. Is it possible to express the lower bound for the regularity in terms of some
of the previous measurements?

1.3. Sketch of the proof and organization. In Mathematical Physics the Thouless for-
mula (5) relates the Lyapunov exponent of a Schrödinger cocycle with the integrated
density of sates (IDS) of the corresponding Schrödinger operator. It follows from this
identity (5) that the Lyapunov exponent and the IDS, as functions of the energy, share
the same modulus of continuity. See Proposition 4.1. The IDS is a spectral quantity that
measures the asymptotic distribution of the eigenvalues of truncation matrices of the
Schrödinger operator as the size of the truncation tends to infinity. The strategy to break
the Hölder regularity of the IDS in Halperin’s example is to establish around a certain
energy a very large concentration of eigenvalues of the Schrödinger truncated matrices
which implies a disproportionately large leap of the IDS around that energy, see [10,
Appendix 3]. Then, as explained above, the loss of Hölder regularity passes from the
IDS to the Lyapunov exponent.

Let μ be an irreducible and finitely supported measure on SL2(R) with positive
Lyapunov exponent and A : � → SL2(R) be the associated locally constant cocycle.
In order to use the strategy described above, in Sect. 5 we embed the cocycle A into a
family of locally constant Schrödinger cocycles over a Markov shift.
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We call matching to a configuration where the horizontal direction e1 = (1, 0) is
mapped in n iterations to the vertical direction e2 = (0, 1) in a way that that e1 is greatly
expanded in the first half iterations followed by a similar contraction in the second half
iterations. The number n is referred to as the size of the matching. A matching of size n
at some energy E0 determines an almost eigenvector for an n ×n truncated Schrödinger
matrix, which then implies a true nearby eigenvalue E∗

0 ≈ E0 of the samematrix. Hence
matchings of size n for energies in some small interval I can be used to count eigenvalues
of a truncated Schrödinger operator of size n.

By Proposition 7.14, a heteroclinic tangency of the cocycle A = A(0) implies many
nearbymatchings of any chosen large size n, spreading through a small interval of length
∼ e−c n . Because these matchings are still not enough to break the Hölder regularity in
the stated form,we prove in Proposition 7.15 that a single tangencywill causemanymore
tangencies to occur at nearby energies,which are in some sense typical. Propositions 7.14
and 7.15 were designed to be used recursively in the sense that the output of the second
feeds the input of the first. They could be used recursively to characterize the fractal
structure of matchings and tangencies, a path we do not explore in this work. We do use
them in a single cycle to gather the matchings, of some appropriate size, associated to
a typical nearby heteroclinic tangency. The matchings coming from a typical tangency
are now enough to break the Hölder regularity in the stated form.

Proposition 7.11 plays a key role in the proof of Theorem A, to estimate the number
of matchings and tangencies from Propositions 7.14 and 7.15. On the other hand the
proof of Proposition 7.11 relies on a characterization of the projective random walk
distribution in Proposition 7.10 and a few Linear Algebra facts on the geometry of the
projective action in Appendix A. See propositions A.3, A.6 and Lemma A.9.

Organization. This work is organized as follows. Section2 contains the general def-
initions that will be used throughout the paper. In Sect. 3 we define and state some
properties of locally constant linear cocycles and Furstenberg measures. We discuss
general spectral properties of Schrödinger operators in Sects. 4 and 5 we show how to
embed a general locally constant cocycle into a Schrödinger family over a Markov shift.
In Sect. 6 we obtain a lower bound for the oscillation of the integrated density of states
in terms of counting matchings. Section7 contains the core technical results of the work,
namely propositions 7.11, 7.14 and 7.15. Section8 provides lower bounds for the mea-
sure of the set of matchings. In Sect. 9 we give the proof of the results. The Appendix
A contains the linear algebra tools needed in this work and Appendix B describes some
of the formulas for derivatives of projective actions.

Logical structure Figure 1 describes the logical structure of the proof of Theorem A.

2. Basic Definitions and General Concepts

In this subsection we establish some of the general notation used throughout this work.

2.1. Preliminary definitions and notations.

• We denote by GLd(R) and SLd(R) respectively the group of d × d invertible
matrices and its subgroup of matrices with determinant one. Given a d × d square
matrix H we denote its spectrum by Spec(H) and by |Spec(H)| the number of
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Fig. 1. Logical dependencies

elements in Spec(H) counted with multiplicity. Unless otherwise stated, ‖H‖ refers
to the operator norm of the matrix H .

• The projective space ofR2, consisting of all lines inR2, is denoted by P1. Its points
are denoted by v̂ ∈ P

1. After introducing a projective point v̂, by convention the
letter v will stand for any unit vector aligned with the line v̂. A natural distance in P1

is given by d(v̂, ŵ) := |v ∧ w| = sin�(v̂, ŵ).
Each A ∈ SL2(R) induces a projective automorphism Â : P1 → P

1, where
Â v̂ := Â v is the line determined by the unit vector A v/ ‖Av‖. For the sake of
notational simplicity we often write A v̂ instead of Â v̂.

• We use the standard classification for SL2(R) matrices as elliptic, parabolic or
hyperbolic meaning respectively that the absolute value of the trace is smaller than,
equal, or greater than two.

• Let X be a compact metric space. The space of all Borel probability measures on
X is denoted by P(X). This is a convex and compact set with respect to the weak*
topology. Given a sequence of measures ηn ∈ P(X), we say that ηn converges weak*
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to η in P(X), and write ηn
∗
⇀ η, if for every continuous function ϕ ∈ C0(X),

∫
ϕ dη = lim

n→∞

∫
ϕ dηn .

• Given two probability measures μ1, μ2 ∈ P(SL2(R)), the convolution between μ1
and μ2 is the measure

μ1 ∗ μ2 :=
∫

SL2(R)

g∗μ2 d μ1(g).

The n-th convolution power, μ∗n , of a measure μ ∈ SL2(R) is defined inductively
by μ∗n := μ∗(n−1) ∗ μ.

• Let 
 be a finite set and � = 
Z. Given k ∈ Z and a finite word a = (a0, a1, . . . ,
am−1) ∈ 
m the set

[k; a] := {ζ ∈ � : ζ j+k = a j , ∀ j = 0, 1, . . . ,m − 1
}

is called the cylinder of � determined by the word a and the position k. The integer
m is referred to as the length of the cylinder.

• Given a compact metric space (X, d), 0 < θ < 1 and a continuous function ϕ ∈
C0(X), the θ -Hölder constant of ϕ is defined by

vθ (ϕ) := sup
x,y∈X
x �=y

|ϕ(x) − ϕ(y)|
d(x, y)θ

.

The space of θ -Hölder continuous functions on X is

Cθ (X) :=
{
ϕ ∈ C0(X) : vθ (ϕ) < ∞

}

which endowed with the norm

‖ϕ‖θ := ‖ϕ‖∞ + vθ (ϕ)

becomes a Banach algebra.
• Given sequences of real numbers (an) and (bn) with an, bn > 0 we write
– an = O(bn) if there exists an absolute constant C > 0 and n0 ∈ N such that

an ≤ C bn for every n ≥ n0;
– an � bn or bn � an if an = O(bn);
– an ∼ bn if limn→∞ an/bn = 1.
– For γ, t > 0 we write γ � t to indicate that t is much smaller than γ .

• Given some interval J ⊂ R or J ⊆ P
1, we denote by |J | the length (size) of J .

Given a positive number t , we denote by t J the interval with the same center as J
and size t |J |.
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2.2. Linear cocycles. Let X be a compact metric space, with Borel σ -algebra B. Con-
sider a homeomorphism T : X → X which preserves a probability measure ξ defined
on B and such that the system (T, ξ) is ergodic. The triple (X, T, ξ) is referred to as the
base dynamics.

Any continuous map A : X → SL2(R) defines a linear cocycle, over the base
dynamics (X, T, ξ), FA : X × R

2 → X × R
2 given by FA(x, v) := (T x, A(x) v).

By linearity of the fiber action we can define the projectivization of FA as the map
F̂A : X × P

1 → X × P
1 given by F̂A(x, v̂) := (T x, Â(x) v̂). We also use the term

linear cocycle referring to the map A : X → SL2(R) when the base dynamics is fixed.
Note that for each n ∈ Z, the n-th iteration of the linear cocycle FA sends a point

(x, v) ∈ X × R
2 to (T n x, An(x) v), where

An(x) =
⎧
⎨

⎩

A(T n−1x) . . . A(T x) A(x) if n > 0
I if n = 0
A(T n x)−1 . . . A(T −2x)−1 A(T −1x)−1 if n < 0.

The Lyapunov exponent of the cocycle FA can be defined as the limit

L(A) = lim
n→∞

1

n
log
∥∥An(x)

∥∥ ,

which exists and is constant for ξ -a.e. x ∈ X as a consequence ofKingman’s sub-additive
ergodic theorem. Notice that the Lyapunov exponent depends on the base dynamics
despite the fact that the notation L(A) does not refer to (X, T, ξ). The underlying base
dynamics should always be clear from the context.

2.3. Transition kernel and stationary measures. Let X be a compact metric space. We
call transition kernel to any continuous map K : X → P(X). Any transition kernel K
induces a linear operator K : C0(X) → C0(X)

(Kϕ)(x) :=
∫

X
ϕd Kx ,

acting on the space C0(X) of continuous functions ϕ : X → R. This is called the
Markov operator associated to the transition kernel K . The adjoint of K , K ∗, in the
space of probability measures P(X) is given by

K ∗ξ :=
∫

Kx dξ(x).

We say that a probability measure ξ0 is stationary for K if ξ0 is a fixed point of K ∗, i.e.,
if for every ϕ ∈ C0(X),

∫

X
ϕ dξ0 =

∫

X

(∫

X
ϕ(y) d Kx (y)

)
dξ0(x).

Consider the process en : XN → X , en(ω) := ωn . Given a probability measure
ξ ∈ P(X) there exists a unique measure ξ̃ in the space XN such that:

(a) ξ̃ (e−1
0 (E)) = ξ(E), ∀ E ∈ B;

(b) ξ̃ (e−1
n (E) | en−1 = x) = Kx (E), ∀ E ∈ B, ∀ x ∈ X .
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We say that the measure ξ̃ is the Kolmogorov extension of the pair (K , ξ). The following
statements are equivalent:

(1) ξ is K -stationary,
(2) ξ̃ is invariant under the shift map T : XN → XN, T (xn)n∈N := (xn+1)n∈N,
(3) en : XN → X is a stationaryMarkov process with transition kernel K and common

law ξ .

When these conditions hold we refer to (K , ξ) as a Markov system. In this case the
Kolmogorov extension ξ̃ admits a natural extension to XZ, still denoted by ξ̃ , for which
the two sided process en : XZ → X , en(ω) := ωn , is a stationary Markov process.
Moreover ξ̃ is invariant under the two sided shift map T : XZ → XZ,

T (. . . , x−1, x0, x1, x2, . . .) := (. . . , x0, x1, x2, . . .),

where the bold term in the above expression indicates the 0-th position of the sequence.
The dynamical system (T, ξ̃ ) is then called the Markov shift over X induced by the pair
(K , ξ).

We say that a Markov system (K , ξ) is strongly mixing if

lim
n→∞

∥∥∥∥K
nϕ −
∫

ϕ dξ

∥∥∥∥∞
= 0

with uniform convergence over bounded sets of C0(X). It is important to observe that if
a Markov system (K , ξ) is strongly mixing then the Markov shift (T, ξ̃ ) is mixing. See
[19, Proposition 5.1].

3. Random Product of Matrices

In this section we describe the base dynamics associated with random i.i.d. products of
matrices generated by a probability measure on SL2(R).

In the subsequent sections μ is a probability measure on SL2(R) with finite support
given by suppμ = {A1, . . . , Aκ } ⊂ SL2(R). We write

μ =
κ∑

i=1

μi δAi ,

where the components μi := μ({Ai }) > 0.

Remark 2. The positivity requirementsμi > 0 avoids discontinuities as inKifer counter-
example. See [20] or [4, Remark 7.5].
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3.1. General locally constant cocycles.

Locally constant cocycles. Let � = {1, . . . , κ}Z be the space of sequences in the sym-
bols {1, . . . , κ}, μ̃ = (μ1, . . . , μκ)

Z be theBernoulli productmeasure on� and consider
σ : � → � the shift map. Note that the system (σ, μ̃) is ergodic. We say that the triple
(�, σ, μ̃) is the base dynamics determined by μ.

It is important to point out that the base dynamics (�, σ, μ̃) does not depend on the
κ-tuple (A1, . . . , Aκ ) ∈ (SL2(R))κ but only on the values μi = μ{Ai }.

Consider the map A : � → SL2(R) given by

A(. . . , ω−1, ω0, ω1, . . .) := Aω0 .

Notice that for each sequence ω ∈ �, A(ω) only depends on the 0-th coordinate of the
sequence ω. Such maps are known in the literature as locally constant linear cocycles.
This is an agreed abuse of the term since for the standard topology in�, locally constant
observables include a broader class of functions. Since the base dynamics is fixed,
(A1, . . . , Aκ) determines the Lyapunov exponent L(A) and for that reason some times
we write L(A) = L(A1, . . . , Aκ) to emphasize this dependence. This definition of
Lyapunov exponent ofA agrees with the one given in the introduction for the distribution
law μ, so that L(μ) = L(A) = L(A1 . . . , Aκ ).

Uniformly hyperbolic cocycles. The measure μ, or equivalently, the locally constant
cocycle A : � → SL2(R) is said to be uniformly hyperbolic if there exist C > 0 and
γ > 0 such that for every n ≥ 1 and ω ∈ �,

∥∥An(ω)
∥∥ ≥ Ceγ n . (2)

It is known [5] that this is equivalent to the existence of two A-invariant continuous
sections Fu, Fs : � → P

1 such that for every ω Fu(ω) ⊕ Fs(ω) = R
2 and there exist

C > 0 and γ > 0 such that
∥∥An(ω)|Fs (ω)

∥∥ ≤ Ce−γ n and
∥∥A−n(ω)|Fu(ω)

∥∥ ≤ Ce−γ n .

Forward and backward stationary measures Consider the transition kernels Q+ : P1 →
P(P1) and Q− : P1 → P(P1) defined, respectively, by

Q+(v̂) :=
κ∑

i=1

μi δAi v̂ and Q−(v̂) :=
κ∑

i=1

μi δA−1
i v̂

.

Definition 1. A measure η ∈ P(P1) is called forward, resp. backward, stationary for μ
if Q∗

+ η = η, resp. Q∗− η = η, i.e., if η is stationary for Q+, resp. for Q−.

Notice that a backward stationary measure for μ is a forward stationary measure for
the reverse measure μ−1 :=∑κ

i=1 μi δA−1
i
.
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3.2. Irreducible cocycles. Throughout this section, unless otherwise explicitly said, we
assume that the probability measure μ =∑μi δAi has positive Lyapunov exponent and
is quasi-irreducible.

It follows that the Markov operator Q+ : C0(P1) → C0(P1) defined by

(Q+ϕ)(v̂) :=
κ∑

i=1

μi ϕ(Ai v̂),

preserves the space of θ -Hölder continuous functions Cθ (P1), for some θ > 0, and
Q+|Cθ (P1) : Cθ (P1) → Cθ (P1) is a quasi-compact and simple operator, i.e., it has a
simple largest eigenvalue, namely 1 associated to the constant functions, and all other
elements in the spectrum have absolute value strictly less than 1.

Proposition 3.1. There exist a unique forward stationary measure η+ and a unique
backward stationary measure η− for μ.

Proof. See [21, Proposition 4.2]. ��
The operator Q+ contracts the Hölder seminorm.

Proposition 3.2. There exist positive constants 0 < θ < 1, C and c such that

vθ (Qn
+ϕ) ≤ C e−c n vθ (ϕ) ∀ n ∈ N.

for every ϕ ∈ Cθ (P1).

Proof. See [21, Propositions 4.1 and 4.2]. ��
Another consequence of the quasi-compactness is that the locally constant linear

cocycle A : � → SL2(R), associated with μ and defined on the product space
� = {1, . . . , κ}Z, satisfies uniform large deviation estimates of exponential type in
a neighborhood of A.

Proposition 3.3. There exist constants δ > 0, C > 0, τ > 0 and ε0 > 0 such that for
every ε ∈ (0, ε0), for all locally constant B : � → SL2(R) with ‖B − A‖∞ < δ, every
v̂ ∈ P

1 and n ∈ N,

μ̃

({
ω ∈ � :

∣
∣∣∣
1

n
log
∥∥Bn(ω) v

∥∥− L(B)

∣
∣∣∣ ≥ ε

})
≤ C e−τε2n,

and

μ̃

({
ω ∈ � :

∣∣∣∣
1

n
log
∥∥Bn
∥∥− L(B)

∣∣∣∣ ≥ ε

})
≤ C e−τε2n .

Proof. See Theorem 4.1 and its proof in [21]. ��
Let 0 < θ < 1 be the constant in Proposition 3.2.

Proposition 3.4. There exist constants C > 0 and c > 0 such that for any interval
I ⊂ P

1, every v̂ ∈ P
1 and n ≥ 1 we have,

η±(I/2) − C
e−cn

|I |θ ≤ μ̃
([
A±n(·) v̂ ∈ I

]) ≤ η±(2I ) + C
e−cn

|I |θ .
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Proof. Set ε = |I |/4 and consider piece-wise linear functions f ±
ε ∈ Cθ (P1) such that

vθ ( f ±
ε ) = ε−θ , 0 ≤ f −

ε ≤ χI ≤ f +ε ≤ 1, f −
ε = 1 on I/2 and f +ε = 0 out of 2I . By

Proposition 3.2 we have that
∣∣∣∣Q

n
+( f ±

ε ) −
∫

f ±
ε dη+

∣∣∣∣ ≤ Ce−cnvθ ( fε) = Ce−cnε−θ .

Therefore,

μ̃
([
An(·) v̂ ∈ I

]) = Qn
+(χI ) ≥ Qn

+( f −
ε ) ≥

∫
f −
ε dη+ − Ce−cnε−θ

≥ η+(I/2) − 4θCe−cn|I |−θ ,

and

μ̃
([
An(·) v̂ ∈ I

]) = Qn
+(χI ) ≤ Qn

+( f +ε ) ≤
∫

f +ε dη+ + Ce−cnε−θ

≤ η+(2I ) + 4θCe−cn|I |−θ .

The argument for A−n is analogous. ��

3.3. Entropy and dimensions.

Entropies. For a finitely supported measure μ ∈ P(SL2(R)) the Shannon’s entropy
defined by

H(μ) := −
∑

g∈supp(μ)

μ({g}) logμ({g}) = −
κ∑

i=1

μi logμi .

A measurement of how far the semigroup generated by the supp(μ) is from being free
is given by

hWR(μ) := lim
n→∞

1

n
H(μ∗n) = inf

n∈N
1

n
H(μ∗n),

which is usually called the random walk entropy of μ. It holds that hRW(μ) ≤ H(μ)

and the equality is equivalent to the semigroup generated by supp(μ) being free. This is
the typical case.

The Furstenberg’s entropy, also known as Boundary entropy, is defined by

hF (η) :=
∫ ∫

log
dg∗η
dη

(v) dη(v) dμ(g).

We always have that,

hF (η) ≤ hRW(μ) ≤ H(μ).

See [3, Theorem 2.31] for details.
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Dimension. Let η be a probability measure on R (or P1). For any t ∈ R, the limits

dim(η, t) = lim sup
δ→0

log η([t − δ, t + δ])
log δ

,

dim(η, t) = lim inf
δ→0

log η([t − δ, t + δ])
log δ

are called, respectively, the upper local dimension and lower local dimension of η at
the point t ∈ R. We say that η is exact dimensional if there exists a real number α ≥ 0
such that dim(η, t) = dim(η, t) = α, for η-a.e. t ∈ R. In this case, the number α is the
dimension of the probability measure η and is denoted just by dim η.

As mentioned in the introduction the stationary measures of an irreducible cocycle
with positive Lyapunov exponent are always exact dimensional.

3.3.1. Entropy deviations. Consider pn : � → R, pn(ω) := ∏n−1
j=0 pω j , the function

ϕ : � → R,ϕ(ω) := − log pω0 , and notice that

∫
ϕ d μ̃ = H(μ) and (Snϕ)(ω) :=

n−1∑

j=0

ϕ(σ jω) = − log pn(ω).

Proposition 3.5. Assuming L(μ) > 0 let h := max1≤ j≤κ − log p j > 0. For every
n ∈ N and β > 0,

μ̃

({
ω ∈ � :

∣∣
∣∣
1

n
logpn(ω) + H(μ)

∣∣
∣∣ > β

})
≤ 2 exp

(
−n

2 β2

h2

)
.

Proof. The large deviation set in the statement is

�n := {ω ∈ � : |(Snϕ)(ω) − E(Snϕ)| > n β}

and by Hoeffding’s inequality [22, Theorem 2]

μ̃(�n) ≤ 2 exp

(
−2 n2 β2

n h2

)
= 2 exp

(
−n

2 β2

h2

)
.

��

4. Schrödinger Cocycles

In this section we present some background in the theory of Schrödinger cocycles. The
advantage in dealing with this family is the intrinsic relation with the spectral theory
of (discrete) Schrödinger operators which allow us, among other things, to analyze the
behaviour of the Lyapunov exponent in terms of properties of the spectrum of these
operators.



Upper Bound on the Regularity of the LE 843

4.1. Schrödinger operators and cocycles. Consider the base dynamics (X, T, ξ), where
T : X → X is a homeomorphism on the compact metric space X and ξ is a probability
measure on X such that the system (T, ξ) is ergodic. Fix a continuous function φ : X →
R.

For each x ∈ X , the (discrete) Schrödinger operator at x is the self-adjoint bounded
linear operator Hx : l2(Z) → l2(Z) 2 defined, for u = (un)n∈Z ∈ l2(Z) by

(Hx u)n := −un+1 − un−1 + φ(T n x)un

or in short notation

Hx u := −�u + φx u,

where � is the Laplace operator and φx is the multiplication by (φ(T n x))n∈Z.
It is convenient to express the operator Hx as a matrix in the canonical basis (ei )i∈Z

of l2(Z), where (ei )n = δi,n .

Hx =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

. . .
...

...
...

...
...

. . . φ(T −1x) −1 0 . . . 0 0 . . .

. . . −1 φ(x) −1 . . . 0 0 . . .

. . . 0 −1 φ(T x) . . . 0 0 . . .
...

...
...

. . .
...

...

. . . 0 0 0 . . . φ(T n−2x) −1 . . .

. . . 0 0 0 . . . −1 φ(T n−1x) . . .
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

A matrix with this structure where all entries outside the three main diagonals vanish is
usually called tridiagonal matrix.

Assume that there exists a sequence u = (un)n∈Z, not necessarily in l2(Z), which
satisfies the eigenvalue equation for some E ∈ R, i.e.,

Hx u = E u. (3)

Using the definition of Hx , Eq. (3) gives us a second order recurrence equation which
can be written in matrix form as

(
φ(T n−1x) − E −1

1 0

) (
un−1
un−2

)
=
(

un
un−1

)
.

This implies that
(
φ(T n−1x) − E −1

1 0

)
· . . . ·
(
φ(x) −1
1 0

)(
u0

u−1

)
=
(

un
un−1

)
. (4)

Hence, if we define the family of cocycles AE : X → SL2(R)

AE (x) :=
(
φ(x) − E −1

1 0

)
,

2 l2(Z) denotes the set of square-summable sequences (un)n∈Z.
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then equation (4) can be rewritten as

An
E (x)

(
u0

u−1

)
=
(

un
un−1

)
.

In other words, any (formal) eigenvector u = (un) of the Schrödinger operator Hx
associated with an eigenvalue E is completely determined by the orbit of the cocycle
AE starting at (u0, u−1) ∈ R

2. This is one of the first indications of the close relationship
between the action of the cocycle AE and the properties of the spectrum of Hx .

The cocycles AE : X → SL2(R) are called Schrödinger cocycles with potential
φ : X → R, generated by the dynamical system (X, T, ξ).

4.2. Integrated density of states and Thouless formula. For each n ∈ N and for each
x ∈ X , Hn

x ∈ Mn(R) denotes the truncated Schrödinger operator defined by

Hn
x =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

φ(x) −1 0 . . . 0 0
−1 φ(T x) −1 . . . 0 0
0 −1 φ(T 2x) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . φ(T n−2x) −1
0 0 0 . . . −1 φ(T n−1x)

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

.

For any interval I ⊂ R denote by |Spec(Hn
x ) ∩ I | the number of eigenvalues of Hn

x
in I counted with multiplicity. With this notation, set for each x ∈ X

Nn,x (t) := 1

n

∣∣Spec(Hn
x ) ∩ (−∞, t]∣∣ .

So, by definition Nn,x (t) is a distribution function of a probability measure supported
in the spectrum of Hn

x .
It is known [23, Subsections 3.2 and 3.3] that for each t ∈ R the limit

N (t) = lim
n→∞Nn,x (t),

exists and by ergodicity of the base dynamics (X, T, ξ) is constant for ξ -a.e. x ∈ X . The
function N : R → [0,∞) is called the integrated density of states.

The following equation, known as the Thouless formula, relates the Lyapunov expo-
nent of a Schrödinger cocycle with the integrated density of states.

L(AE ) =
∫ ∞

−∞
log |E − t | dN (t), ∀ E ∈ R. (5)

See [23, Theorem 3.16]. Integrating by parts the Riemann-Stieltjes integral on the right-
hand side of equation (5), we see that this equation expresses L(AE ) as the Hilbert
transform of N (t). This fact implies, by the work of Goldstein and Schlag, see [24,
Lemma 10.3], that the Lyapunov exponent and the integrated density of states must share
all ‘sufficiently nice’ modulus of continuity. These nice moduli of continuity include the
Hölder and weak-Hölder regularities. In particular we have:

Proposition 4.1. N (E) is not β-Hölder if and only if E �→ L(AE ) is not β-Hölder.
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4.3. Temple’s lemma. TheThouless formula allows us to shift the analysis of the regular-
ity from the Lyapunov exponent to the integrated density of states, and more specifically
to the counting of eigenvalues of the truncated Schrödinger operators Hn

x . An important
tool is the next linear algebra fact, known as Temple’s lemma, which allows us to count
eigenvalues by counting instead orthonormal almost eigenvectors.

Lemma 4.2. (Temple’s lemma) Let (V, 〈·, ·〉) be a finite dimensional Hilbert space and
let H : V → V be a self-adjoint linear operator on V . Given δ > 0 and λ0 ∈ R, assume
that there exists a orthonormal set {u1, . . . , uk} ⊂ V such that

1. 〈Hui , u j 〉 = 〈Hui , Hu j 〉 = 0 if i �= j ,
2. ‖Hui − λ0ui‖ ≤ δ for every i .

Then |Spec(H) ∩ (λ0 − δ, λ0 + δ)| ≥ k.

Proof. See [10, Lemma A.3.2]. ��
We will say that u ∈ V \{0} is a δ-almost eigenvector associated with an almost eigen-
value λ0 if condition 2 above is satisfied.

5. Embedding Cocycles Into Schrödinger Families

Let μ, as in the previous section, be a probability measure on SL2(R) supported in
{A1, . . . , Aκ }.

We use the notation S(t) ∈ SL2(R) to denote the Schrödinger matrix

S(t) =
(

t −1
1 0

)

The following lemma is the ground basis of the entire section. The fact that we can
decompose any given SL2(R)matrix as a product of four Schrödinger matrices provides
a way to embed our random cocycle in a Schrödinger cocycle over a Markov shift.

Lemma 5.1. For every B ∈ SL2(R), there exists real numbers t0, t1, t2 and t3 such that
B = S(t3) S(t2) S(t1) S(t0).

Proof. Consider first the map R
3 � (t1, t2, t3) �→ S(t3) S(t2) S(t1) ∈ SL2(R). A direct

calculation shows that the range of this map is the set SL2(R) \ M where

M :=
{(

a λ

−λ−1 0

)
: λ �= 0, 1, and a ∈ R

}
.

So, the range of the map R
3 � (t1, t2, t3) �→ S(0) S(t3) S(t2) S(t1) ∈ SL2(R) is the set

SL2(R) \ S(0)M where

S(0)M =
{(

λ−1 0
a λ

)
: λ �= 0, 1 and a ∈ R

}
.

Another simple calculation shows that if

(t1, t2, t3, t4) = (1, 1 − λ−1, −λ, λ−2 − λ−1 − aλ−1)

then

S(t3) S(t3) S(t2) S(t1) =
(
λ−1 0

a λ

)
.

Hence every matrix in SL2(R) is a product of four Schrödinger matrices. ��
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5.1. Construction of the embedding. For each i = 1, . . . , κ , by Lemma 5.1, there exists
t i = (t i

0, . . . , t i
3) ∈ R

4 such that

Ai = S(t i
3) S(t i

2) S(t i
1) S(t i

0). (6)

Consider the set 
 = {1, . . . , κ} × {0, 1, 2, 3}. We define the following transition
kernel K : 
 → P(
), for each element (i, j) ∈ 
,

K(i, j) :=
{

δ(i, j+1) if j ∈ {0, 1, 2}
∑κ

k=1 μkδ(k,0) if j = 3,

where μk = μ(Ak), for any k ∈ {1, . . . , κ} and δ(k,l) denotes the Dirac measure sup-
ported in (k, l). Note that the measure

ν = 1

4

3∑

j=0

κ∑

i=1

μiδ(i, j).

defines a K -stationary measure on 
. Let ν̃ be the Kolmogorov extension of (K , ν) on
the product space� = 
Z. This defines the base dynamics (�, σ, ν̃), where σ : � → �

is the shift map and supp ν̃ is the set of K -admissible sequences.

5.2. Conjugating the embedded and original cocycle. Consider the real function φ :
� → R defined by

φ(ζ ) := t i0
j0
, where ζ = ((in, jn))n,

where the numbers t i0
j0
were defined in (6). We can express the family of Schrödinger

cocycles,AE : � → SL2(R), with potentialφ, generated by theMarkov shift (�, σ, ν̃),
by

AE (ζ ) = S(φ(ζ ) − E),

for every E ∈ R and ζ ∈ �. It is important to notice that iterating the cocycle A0 four
times we recover the locally constant cocycle A : � → SL2(R). More precisely, for
each element ζ = ((in, jn))n ∈ �, with j0 = 0, consider the sequence ω = (i4n)n ∈ �.
By (6) we have that

A4
0(ζ ) = A0(σ

3(ζ ))A0(σ
2(ζ ))A0(σ (ζ ))A0(ζ )

= S(t i3
3 ) S(t i3

2 ) S(t i3
1 ) S(t i0

0 )

= Ai0 = A(ω).

In this case, we say that A0 : � → SL2(R) is the embedding of the cocycle A : � →
SL2(R) into the Schrödinger family {AE : � → SL2(R)}E∈R over (�, σ, ν̃).

For each j ∈ {0, 1, 2, 3}, set � j := {(in, jn)n ∈ �; j0 = j}. Note that

� =
3⋃

j=0

� j ,
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is a partition of the set� and for each j ∈ {0, 1, 2, 3}, σ(� j ) = � j+1mod 4. In particular,
for every j = 0, 1, 2, 3,� j is σ 4-invariant. Denote byπ : � → � the natural projection
mapping � � (in, jn)n �→ (i4n)n ∈ �.

Using the notation abovewe see that (�, σ, μ̃) is a factor of (�, σ, ν̃) in the following
sense.

Lemma 5.2. The map π : � → � is surjective, π∗ν̃ = μ̃ and σ ◦ π = π ◦ σ .
Moreover, for each j ∈ {0, 1, 2, 3}, π |� j conjugates (� j , σ

4, 4ν̃) (�, σ, μ̃), where 4ν̃
is the normalization of ν̃ on � j .

For the linear cocycle we have:

Lemma 5.3. For every j = 0, 1, 2, 3 the linear cocycle

� j × R
2 � (ζ, v) �→ (σ 4(ζ ),A4

0(ζ ) v) ∈ � j × R
2

is conjugated to the linear cocycle

� × R
2 � (ω, v) �→ (σ (ω),A(ω) v) ∈ � × R

2.

In particular, taking j = 0 we have that F4
A0

: �0 × R
2 → �0 × R

2 is conjugated to

FA : � × R
2 → � × R

2. The same considerations hold for the projectivized cocycles.

As consequence of the previous lemmas we have

Lemma 5.4. L(μ) = L(A) = 4 L(A0).

Using the conjugation in Lemma 5.2 we build the one parameter family of cocycles
A(E) : � → SL2(R),

A(E)(ω) := A4
E (ζ ),

where ζ = (π |�0)
−1(ω). The cocycles of this family are locally constant and determined

by the probability measures μE on SL2(R) defined by

μE =
κ∑

i=1

μiδA(E)(ī)
,

where ī is any sequence ω ∈ � such that ω0 = i , for every i = 1, . . . , κ . This fam-
ily is the smooth curve of measures through μ whose existence is claimed in Theo-
rem A. It depends analytically on E in the sense that the function E �→ ∫ ϕ dμE =∑κ

i=1 μi ϕ(A(E)(ī)) is analytic for every analytic functionϕ(A) on SL2(R). In particular
the curve E �→ μE is continuous with respect to the weak* topology.

Corollary 5.5. For every E ∈ R, L(μE ) = L(A(E)) = 4 L(AE ).
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6. Oscillations of the IDS

Consider the family of Schrödinger cocycles AE : � → SL2(R) with potential φ :
� → R over the basis dynamics (�, σ, ν̃), as in the Sect. 5. The purpose of this section
is to get a lower bound on the oscillations of the finite scale IDSNn,ζ in terms of counting
certain configurations along the orbit of ζ , referred to as δ-matchings.

Let {e1, e2} be the canonical basis of R2. Given δ > 0 and k ∈ N, we say that ζ ∈ �

has a δ-matching of size k at E , or a (δ, k, E)-matching, if

Ak
E (ζ ) ê1 = ê2 and τk(ζ, E) :=

∥∥Ak
E (ζ ) e1

∥∥

max
0≤ j≤k−1

∥∥∥A j
E (ζ ) e1

∥∥∥
< δ.

For each ζ ∈ � and k ∈ N, we consider the truncated Schrödinger operator Hk
ζ :

R
k → R

k defined in Sect. 4.2, which can be described, for u ∈ R
k , by

Hk
ζ u :=

(
(Hk

ζ u)0, . . . , (Hk
ζ u)k−1

)
,

where

(Hk
ζ u) j :=

⎧
⎨

⎩

−u1 + φ(ζ ) u0, if j = 0
−u j+1 − u j−1 + φ(σ j (ζ )) u j , if j �= 0, k − 1
−uk−2 + φ(σ k−1(ζ )) uk−1, if j = k − 1.

Let E ∈ R and (v0, v−1) ∈ R
2. Define the sequence (v j ) j∈Z by the following

equation

AE (σ j (ζ ))

(
v j

v j−1

)
=
(
v j+1
v j

)
,

which is equivalent to say that for every j ∈ Z,

−v j−1 − v j+1 + φ(σ j (ζ )) v j = E v j . (7)

Let e0, . . . , ek−1 be the canonical basis of Rk .

Lemma 6.1. Given (v j ) j∈Z solution of (7), the vector v∗ = (v0, . . . , vk−1) ∈ R
k satis-

fies

Hk
ζ v∗ − Ev∗ = v−1e0 + vkek−1.

Moreover, Ak
E (ζ ) ê1 = ê2 if and only if there exists a solution (v j ) j∈Z of (7) such that

v∗ is an eigenvector of Hk
ζ with the eigenvalue E.

Proof. The first statement follows from (7). For the second part observe thatAk
E (ζ )ê1 =

ê2 if and only if there is a solution of (7) such that v−1 = vk = 0. ��
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Consider a large integer N = m (k+2) and split the interval [0, N −1] intom disjoint
slots of length k, namely S j := [ j (k + 2), j (k + 2) + k − 1] for j = 0, 1, . . . ,m − 1.
The integers j (k + 2) − 1 and j (k + 2) + k + 1 are referred to as the boundary points of
the slot S j . Notice that ∪m−1

j=0 S j has m k elements which exclude the boundary points of

the slots. We say that ζ ∈ � has a (δ, k, E)-matching in the slot S j if σ j (k+2)(ζ ) has a
(δ, k, E)-matching. Next lemma says that when the sequence ζ has a (δ, k, E)-matching
in the slot S j we can construct a δ-almost eigenvector for H N

ζ which is supported in
that slot S j . Moreover, because consecutive slots share no boundary points in common,
if ζ admits several (δ, k)-matchings in different slots then the corresponding δ-almost
eigenvectors are pairwise orthogonal.

Lemma 6.2. Given ζ ∈ � and j0 ∈ N such that the sequence σ j0(k+2)(ζ ) has a
(2−1/2δ, k, E)-matching consider the vector v∗ = (v0, . . . , vk−1) ∈ R

k with com-
ponents determined by

(
v j

v j−1

)
= A j

E (σ j0(k+2)ζ )

(
v0
0

)

where v0 is fixed so that max0≤ j≤k−1 |v j | = 1. Then the vector v j0,k(ζ ) ∈ R
N , with

all coordinates zero except those in the slot S j0 which coincide with the respective
coordinates of v∗, satisfies

∥∥∥H N
ζ v j0,k(ζ ) − E v j0,k(ζ )

∥∥∥ < δ.

In other words, v j0,k(ζ ) is an δ-almost eigenvector of H N
ζ in the sense of Lemma 4.2.

Proof. For the sake of simplicity let j0 = 0 so that ζ = σ j0(k+2)(ζ ) is the sequence with
a (δ/

√
2, k, E)-matching. By definition of v j0,k(ζ ) and Lemma 6.1 we have that

(H N
ζ − E) v j0,k(ζ ) = −vk−1ek .

Therefore,
∥
∥∥H N

ζ v j0,k(ζ ) − E v j0,k(ζ )

∥
∥∥ ≤ |vk−1| ≤ |v0|

∥
∥∥Ak

E (ζ ) e1
∥
∥∥ ≤ √

2 τk(ζ, E) < δ

because vk−1 is one of the components of v0 Ak
E e1 and

v0√
2

max
0≤ j≤k−1

∥
∥∥A j

E (ζ ) e1
∥
∥∥ ≤ v0 max

0≤ j≤k−1

∣
∣∣〈A j

E (ζ ) e1, e1〉
∣
∣∣ = max

0≤ j≤k−1
|v j | = 1.

��
From the point of view ofMathematical Physics, a δ-matching determines a δ-almost

eigenvector of the Schrödinger operator.
Dynamically, these configurations correspond to stable-unstable matchings in the

following sense: let k = k1 + k2 be some partition of k such that both factors in the
decompositionAk

E (ζ ) = Ak2
E (σ k1(ζ ))Ak1

E (ζ ) are very hyperbolic with nearly horizontal

unstable direction and almost vertical stable one. If k1, k2 are large then Ak1
E (ζ )ê1 is a

good approximation of the Oseledets unstable direction Eu(σ k1ζ ) at the point σ k1(ζ ),
whileA−k2

E (ζ )ê2 is a good approximation of the stable direction Es(σ k1(ζ )) at the same
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point. The conditionAk(ζ ) ê1 = ê2 is equivalent to thematchingAk1
E (ζ )ê1 = A−k2

E (ζ )ê2
between these two approximate stable and unstable directions at the middle point. This
nearly stable-unstable matching also explains why τk(ζ, E) should be very small.

The oscillation of the non-decreasing function N and its finite scale analogue NN ,ζ

on some interval I = [α, β] are denoted by

�IN := N (β) − N (α), resp. �INN ,ζ := NN ,ζ (β) − NN ,ζ (α).

Denote by �(δ, k, I ) the subset of � formed by (δ, k, E)-matching sequences ζ ∈ �

with E ∈ I .

Lemma 6.3. For any interval I ⊂ R and ζ ∈ �,

�IδNN ,ζ ≥ 1

N

m−1∑

j=0

χ�(δ,k,I )(σ
j (k+2)ζ )

where Iδ := I + [−δ, δ] is the δ-neighborhood of I .

Proof. Let m ∈ N and set

Zm,k(ζ ) :=
{
0 ≤ j ≤ m − 1 : σ j (k+2)ζ ∈ �(δ, k, I )

}
.

The set of vectors {v j,k(ζ ) ∈ R
N : j ∈ Zk,m(ζ )} is orthonormal and by Lemma 6.2

these are δ-almost eigenvectors. By Lemma 4.2 there is the same amount of eigenvalues
of H N

ζ in Iδ (counted with multiplicity). Whence,

m−1∑

j=0

χ�(δ,k,I )(σ
j (k+2)ζ ) = ∣∣Zk,m(ζ )

∣
∣ ≤ |Spec(H N

ζ ) ∩ Iδ| = N �IδNN ,ζ .

��
Applying Birkhoff’s ergodic theorem sending m → ∞ in the previous lemma we have
the following corollary.

Corollary 6.4. For any interval I ⊆ R,

�IδN ≥ 1

k + 2
ν̃ (�(δ, k, I )) .

7. Variation with Respect to the Energy

This is the main technical section of the work.
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7.1. Trace property. The main purpose of this subsection is to prove that if R0 =
A4n0
0 (ζ0) is elliptic then as wemove the parameter E the rotation angle of RE varies with

non-zero speed around E = 0. This will be a consequence of the following proposition,
which is a general fact about Schrödinger matrices. Recall that

S(t) =
(

t −1
1 0

)

denotes a Schrödinger type matrix. For a vector x = (x1, . . . , xn) ∈ R
n , write

Sn(x − E) := S(xn − E) . . . S(x1 − E).

Lemma 7.1. If E ∈ C \ R then the matrix Sn(x − E) is hyperbolic.

Proof. See [25, Lemma2.4]. For the sake of completenesswe provide a proof of this fact.
By induction the entries in the main diagonal of Sn(x) are polynomials in the variables
x1, . . . , xn of degrees n and n − 2, respectively, whose monomials have degrees with
same parity as n, while the entries on the second diagonal are polynomials of degrees
n − 1, whose monomials have degrees with same parity as n − 1. It follows that for all
x ∈ R

n ,

tr(Sn(−x)) = (−1)n tr(Sn(x)).

In particular tr(Sn(x − E)) = ± tr(Sn(E − x)) and we only need to consider the case
ImE < 0. In this case the open set U := {z ∈ C : Imz > 0} determines an open cone in
P(C2) ≡ C ∪ {∞}. The projective action of the matrices Sn(x − E) with x ∈ R

n and
E ∈ U sends U inside of U . In fact, if n = 1 and z ∈ U\{0} (possibly z = ∞) then
−z−1 ∈ U and since ImE < 0,

Im(S(x1 − E) · z) = Im

(
x1 − E − 1

z

)
≥ −Im(E) > 0,

for every x1 ∈ R. Otherwise if z = 0, then S(x1 − E) · z = ∞ and the statement
follows iterating once again. The existence of this invariant cone implies that Sn(x − E)

is hyperbolic. Similarly, if ImE > 0 we consider the open set U− := {z ∈ C : Imz < 0}
and prove that, under the projective action, Sn(x − E) sends U− inside of U−. ��
Proposition 7.2. For any n ∈ N, if | tr(Sn(x))| < 2, then

d

d E
tr
(
Sn(x − E)

)
∣
∣∣∣
E=0

�= 0.

Proof. Define the analytic function ψ : C → C given by

ψ(E) := tr
(
Sn(x − E)

)
.

Observe that ψ is real in the sense that ψ(E) ∈ R for every E ∈ R. By assumption
|ψ(0)| < 2 and so there exists a radius r0 > 0 such that for every E in the disk centered
in 0 and radius r0, Dr0(0), we have that |ψ(E)| < 2.

Assume by contradiction that ψ ′(0) = 0. By analiticity of ψ , we can write

ψ(E) = ψ(0) + Ek�(E),
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in a neighborhood of 0, where k ≥ 2 and �(0) �= 0. In particular, there exists E∗ ∈
Dr0(0)\R such thatψ(E∗) ∈ R. As a consequence, we conclude that if λ and 1/λ are the
eigenvalues of Sn(x − E∗), then λ+λ−1 ∈ R. But, that can only happen if either |λ| = 1
or else |λ| �= 1 and λ itself is real. The former can not happen since by Lemma 7.1 the
matrix Sn(x − E∗) is hyperbolic.

The latter implies that

∣∣tr
(
Sn(x − E∗)

)∣∣ =
∣∣∣∣λ +

1

λ

∣∣∣∣ > 2.

This contradicts the fact that |ψ(E∗)| < 2 and proves the result. ��
Lemma 7.3. If Am

0 (ζ0) is an elliptic element for some ζ0 ∈ �, then

d

d E
tr(Am

E (ζ0))

∣
∣∣∣
E=0

�= 0.

Proof. Direct consequence of Proposition 7.2. ��
Proposition 7.4. Given a Schrödinger cocycle AE : X → SL2(R) with continuous
potential φ : X → R and generated by the dynamical system (X, T, ξ), for all n ∈ N,
ρ ∈ (−2, 2) and x ∈ X, the polynomial fρ : R → R, fρ(E) := tr(An

E (x)) − ρ, has n
distinct real roots.

Proof. This polynomial can not have a real root E0 with multiplicity ≥ 2 because this
would imply that fρ(E0) = f ′

ρ(E0) = 0, contradicting the conclusionofProposition7.3.
To see that it can not have complex non-real roots, assume that there exists E0 ∈ C \ R
such that fρ(E0) = 0. By Lemma 7.1, the matrix Sn(x − E0) is hyperbolic. Denoting
by λ and λ−1 the eigenvalues of Sn(x − E0) we have

ρ = tr(Sn(x − E0)) = λ + λ−1

which implies that |λ| = 1. Therefore the matrix Sn(x − E0) can not be hyperbolic. This
contradiction proves that fρ(E) can not have complex non-real roots. ��
Corollary 7.5. In the previous context, f : R → R, f (E) := tr(An

E (x)), is a Morse
function, with f (E) ≥ 2 at local maxima, and f (E) ≤ −2 at local minima.

Proof. Since f has n different real roots, f ′ has n−1 different real roots and for any pair
a < b of roots of f , there exists a unique c ∈ (a, b) root of f ′. Moreover, by Proposition
7.4, if f ′′(c) < 0, then f (c) ≥ 2 and similarly, f ′′(c) > 0 implies f (c) ≤ −2. ��

7.2. Density of tangencies. In this subsection we prove that cocycles with heteroclinic
tangencies are dense outside the class of uniformly hyperbolic cocycles.

Let A4�0
0 (ζ0) be an elliptic matrix and δ0 > 0 be such that RE = A4�0

E (ζ0) is elliptic
for every |E | ≤ δ0.

Lemma 7.6. There exist c > 0 such that for every m ≥ 1, every E ∈ [−δ0, δ0] and
every v̂ ∈ P

1 we have
∣
∣∣∣

d

d E
Rm

E v̂

∣
∣∣∣ ≥ m c.
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Fig. 2. Creation of tangencies

Proof. Take E0 ∈ [−δ0, δ0] and an inner product in R
2 for which RE0 is a rotation.

Then by Proposition B.1 and Lemma B.3

1

m

∣∣∣∣∣
d

d E
Rm

E v̂

∣∣∣∣
E=E0

∣∣∣∣∣
= 1

m

m∑

j=1

RE0 v j−1 ∧ ṘE0 v j−1

is bounded away from 0. Notice that by compactness of [−δ0, δ0], all norms associated
with inner products that turn the matrices RE into rotations are uniformly equivalent. ��
Proposition 7.7. Given ζ ∈ �, E ∈ [−δ0, δ0] and � ∈ N, if A�

E0
(ζ ) is parabolic then

there exist E arbitrary close to E0 such that A�
E (ζ ) is irrational elliptic.

Proof. Consider the function f : R → R, f (E) := tr(A�
E (ζ )). Assume A�

E0
(ζ )

parabolic, i.e., f (E0) = ±2. When f ′(E0) �= 0, all matrices A�
E (ζ ) are elliptic in

a 1-sided neighborhood of E0. On the other hand, if f ′(E0) = 0 by Corollary 7.5 all
matrices A�

E (ζ ) are elliptic in a 2-sided neighborhood of E0. ��

Proposition 7.8. Assume L(μE0) > 0 and A4l
E0

is not uniformly hyperbolic, then there
exist E arbitrary close to E0 at which μE admits heteroclinic tangencies.

Proof. By [13, Thereom 4.1], either μE0 has an heteroclinic tangency, or else the
semigroup generated by suppμE0 contains a parabolic or an elliptic matrix. Since
L(μE0) > 0, supp(μE0) admits hyperbolic matrices AE0 and BE0 . By Proposition 7.7
we can assume that CE0 := A4�

E0
(ζ ) is an irrational elliptic rotation, which implies

that the distance d(Cm
E0

u(BE0), s(AE0)) gets arbitrary small for some large m. On the
other hand, the curves E �→ u(BE ), s(AE ) are smooth, see Proposition B.4, while by
Lemma 7.6 the projective curve E �→ Cm

E u(BE ) has large speed whenm is large. Hence
the equation Cm

E u(BE ) = s(AE ) has infinitely many solutions with E arbitrary close to
E0. See Figure 2. ��
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7.3. Projective random walk distribution. In this subsectionwe establish some estimates
on the distribution of the projective random walk, needed to prove Proposition 7.11.

Proposition 7.9. Assume that L(μ) > 0 and μ is irreducible. There exist C > 0 and
t ∈ (0, 1) such that

sup
ŷ∈P1

∫

P1

1

d(x̂, ŷ)t
d η(x̂) ≤ C.

In particular, η is t-Hölder, i.e., for every x̂ ∈ P
1 and r > 0

η
(
B(x̂, r)

) ≤ Crt .

Proof. Since μ is an irreducible measure on SL2(R) and L(μ) > 0 we have that μ is
strongly irreducible (see [26, Theorem 6.1]). Thus the proof follows from [27] or [28,
Theorem 13.1]. ��

The first item of the next proposition corresponds to (13.8) of Proposition 13.3 in
[28].

Proposition 7.10. Assume that L(μE0) > 0 and μE0 irreducible. Given β > 0, there
exist constants C, c1 c2 > 0 and k0 ∈ N such that for every �, n ∈ N, n ≥ k0 � and
directions v̂, ŵ ∈ P

1, the sets

(1)
{
ω ∈ � : ∃ E, |E − E0| ≤ e−c1n, An

(E)(ω) v̂ ∈ B(ŵ, e−β�)
}

;

(2)
{
ω ∈ � : ∃ E, |E − E0| ≤ e−c1n, A−n

(E)(ω) ŵ ∈ B(v̂, e−β�)
}

;

(3)
{
(ω, ω̃) ∈ �2 : ∃ E, |E − E0| ≤ e−c1n, d(An

(E)(ω) v̂, A−n
(E)(ω̃) ŵ) ≤ e−β�

}
.

have probability ≤ Ce−c2�.

Proof. By Lemma B.2, there exist constants C∗, c∗
1, c∗

2 > 0 such that

d
(
An

(E0)
(ω) v̂+, An

(E)(ω) v̂+
)

≤ C∗e−c∗
1n, (8)

for every E with |E − E0| ≤ e−c∗
2n . By Proposition 3.4 and Proposition 7.9, we have

that

μ̃
([

∃ E, |E − E0| ≤ e−c1n,An
(E)(·) v̂ ∈ B(ŵ, e−β�)

])

� η+
(

B(ŵ, e−β�)
)
+ C

e−cn

e−c1θ�

� e−tβ� + C
e−cn

e−βθ�
,

where n ≥ k0 � with k0 > β(t + θ)/c and c2 := tβ. The argument to estimate the
probability in 2) is entirely analogous, making use of η− instead of η+.

We now study the probability of the set in 3). We extend the Markov operators Q±
to the product space P1 ×P

1 defining a new operatorQ : Cθ (P1 ×P
1) → Cθ (P1 ×P

1)

by

(Qϕ)(x̂, ŷ) :=
κ∑

i, j=1

μi μ j ϕ(Ai,E0 x̂, A−1
j,E0

ŷ).
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This operator is also a quasi-compact operator and there exists constants c,C > 0 such
that for every observable ϕ ∈ Cθ (P1 × P

1) we have

vθ (Qnϕ) � e−cnvθ (ϕ).

For each r > 0, let �r := {(x̂, ŷ) ∈ P
1 × P

1 : d(x̂, ŷ) ≤ r} and ρr : [0,+∞[→ [0, 1]
be a piece-wise linear function supported in [0, 3r ] such that ρr (t) = 1 for t ∈ [0, 2r ].
Define the θ -Hölder observable ψr (x̂, ŷ) := ρr (d(x̂, ŷ)), with vθ (ψr ) = (2r)−θ and
χ�r ≤ ψr . Writing r = 2e−c1n + e−β�, we can use Markov’s inequality and Proposition
7.9 to conclude that

μ̃ × μ̃
([

∃ E, |E − E0| ≤ e−c1n, d
(
An

(E)(·) v̂+,A−n
(E)(·̃) v̂−) ≤ e−β�

])

≤ μ̃ × μ̃
({

(ω, ω̃) ∈ �2 : d
(
An

(E0)
(ω) v̂+, A−n

(E0)
(ω̃) v̂−) ≤ 2e−c1n + e−β�

})

= Qn(χ�r )(v̂
+, v̂−) ≤ Qn(ψr )(v̂

+, v̂−)

≤
∣∣
∣∣Q

n(ψr ) −
∫

P1×P1
ψr d (η+E0

× η−
E0

)

∣∣
∣∣ +
∫

P1×P1
ψr d (η+E0

× η−
E0

)

� e−cnvθ (ψr ) + (η+E0
× η−

E0
) (�3r )

� e−cn

e−βθ�
+ 3t (2e−c1n + e−β�)t

∫

P1×P1

1

d(x̂, ŷ)t
d (η+E0

× η−
E0

)(x̂, ŷ)

� e−cn

e−βθ�
+ 3t (2e−c1n + e−β�)t sup

ŷ∈P1

∫

P1×P1

1

d
(
x̂, ŷ
)t d η+E0

(x̂)

� e−cn

e−βθ�
+ (2e−c1n + e−β�)t � e−c2�.

In the two last inequalities we have used Proposition 7.9 and that we can increase k0
so that k0 >

β(t+θ)
c and decrease c2 so that c2 ≤ βθ t . This completes the proof of the

Proposition. ��

7.4. Variation of the ‘hyperbolic’ elements. In this subsection we establish one of the
core proposition for the proof of the Theorem A, providing plenty of good hyperbolic
words. We will be using the notation introduced in the Sect. 5.2.

From now on we also use the following notation: given A ∈ SL2(R) with ‖A‖ > 1,
denote by v̂1(A), v̂2(A), v̂∗

1(A) and v̂∗
2(A) the unique projective points such that taking

unit vectors vi ∈ v̂i (A) and v∗
j ∈ v̂ j (A), with i, j = 1, 2, {v1, v2} and {v∗

1 , v
∗
2} are

singular basis of A characterized by the relations A v1 = ‖A‖ v∗
1 and A v2 = ‖A‖−1 v∗

2 .
Take δ1 = δ1(E0) > 0 as in the Proposition 3.3, in the sense that the large deviations

hold uniformly for all cocycles A(E) with |E − E0| ≤ δ1 and also so that

λ := min|E−E0|≤δ1 L(μ(E)) > 0.

Proposition 7.11. Assume L(μE0) > 0 and μE0 irreducible. Given β > 0 there exist
constants τ > 0 and N0 ∈ N such that for every n ≥ N0 and every v̂, ŵ ∈ P

1, the set
Gn(v̂, ŵ, β, τ, E0) of all ω ∈ � satisfying for all |E − E0| ≤ e−τ n1/4 :

(1)
∥∥∥An

(E)(ω) v

∥∥∥ � e(λ−β)n and
∥∥∥A−n

(E)(σ
nω)w

∥∥∥ � e(λ−β)n;
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(2) An
(E)(ω) is hyperbolic and λ(An

(E)(ω)) � e(λ−β)n;

(3) d(v̂∗
1(A

n
(E)(ω)), v̂2(An

(E)(ω))) � e−βn1/8 .

has measure μ̃
(
Gn(v̂, ŵ, β, τ, E0)

)
> 1 − β.

Proof. Split n into blocks of size n0 " n1/4. For the sake of simplicity we assume that
n = m n0 with n0 = n1/4 and E0 = 0. Consider the set Bn0 of ω ∈ � such that there
exists 0 ≤ j ≤ m − 1 with

∥∥∥An0
(0)(σ

j n0ω)

∥∥∥ < e(λ− β
10 ) n0 ∨

∥∥∥An0
(0)(σ

j n0ω)

∥∥∥ > e(λ+ β
10 ) n0 .

Write B∗
n0 := Bn0 ∪ B2n0 , where B2n0 is similarly defined. By large deviations, Propo-

sition 3.3, there exists a constant τ1 > 0 such that for all large enough n, μ̃(B∗
n0) ≤

2 n3/4 e−τ1 n1/4 . By finite scale continuity, there exists τ > 0 such that for all |E | ≤
e−τ n1/4 = e−τn0 and ω /∈ B∗

n0 ,

e(λ− β
5 ) n0 ≤

∥∥∥An0
(E)(σ

jn0ω)

∥∥∥ ≤ e(λ+ β
5 ) n0 ∀0 ≤ j < m

and

e2 (λ− β
5 ) n0 ≤

∥∥∥A2n0
(E)(σ

jn0ω)

∥∥∥ ≤ e2 (λ+ β
5 ) n0 ∀0 ≤ j < m − 1.

Consider (v̂, ŵ) ∈ P
1 × P

1. We will apply Lemma A.9 with the data

• A j = An0
(E)(σ

jn0ω), j = 0, . . . m − 1;
• v̂ = v̂ and ŵ = ŵ;
• t := βn1/2

0 , γ := 4
5βn0 and λ̃ := (λ − β

5 )n0.

Notice that ifω /∈ B∗
n0 the assumptions (a)-(c) of Lemma A.9 are automatically satisfied.

Consider C, c1, c2 > 0 and k0 given by Proposition 7.10 applied with n = n0

and � = n1/2
0 . Denote by Cn0(v̂, ŵ) the set of sequences ω ∈ � such that for every

|E | ≤ e−τn0 (τ > c1).

(a) min
{

d
(
An0

(E)(σ
(m−1)n0ω) v̂, ŵ

)
, d
(
v̂,A−n0

(E) (σ
n0mω) ŵ

)}
≥ e−βn1/20 ;

(b) min
{

d
(
An0

(E)(ω) v̂, ŵ
)
, d
(
v̂, A−n0

(E) (σ
n0ω) ŵ

)}
≥ e−βn1/20 ;

(c) d
(
An0

(E)(σ
(m−1)n0ω) v̂, A−n0

(E) (σ
n0ω) ŵ

)
≥ e−βn1/20 .

If n0/� = n1/2
0 ≥ k0, then by Proposition 7.10 the set C∗

n0 := Cn0(v̂, ŵ)\B∗
n0 satisfies

μ̃
(
� \ C∗

n0

) ≤ Ce−c2n1/20 = Ce−c2n1/8 .

If ω ∈ C∗
n0 the above conditions (a–c) ensure that the hypothesis (d–f) of Lemma A.9

holds. Therefore items 1, 2, and 3 are direct consequence of Lemma A.9. This concludes
the proof of the proposition. ��
Proposition 7.12. If the cocycle A(E0) is not irreducible with L(A(E0)) > 0 then there
exists δ > 0 such that for all 0 < |E − E0| ≤ δ, the cocycle A(E) is irreducible.
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Proof. The cocycle A(E0) has either one or two invariant lines, i.e., invariant under
all matrices in the support of μE . Since A(E0) is not uniformly hyperbolic there ex-
ist hyperbolic periodic points ω1 and ω2, with periods n1 and n2, respectively, such
that û(An1

(E0)
(ω1)) = ŝ(An2

(E0)
(ω2)) or/and ŝ(An1

(E0)
(ω1)) = û(An2

(E0)
(ω2)), for otherwise

a simple argument implies that the reducible cocycle is uniformly hyperbolic, see in-
equality (2). By Proposition B.4 the directions û(Ani

(E)(ωi )) and ŝ(Ani
(E)(ωi )) move in

opposite directions with the parameter E . Hence in any case, for E �= E0 close enough to
E0, together the two matrices Ani

(E)(ωi ), i = 1, 2, have four distinct invariant directions.
This implies that the cocycle A(E) is irreducible. ��

7.5. Variation of the heteroclinic tangencies. In this subsection we establish the core
Propositions 7.14 and 7.15 for the proof of Theorem A which allows us drive matchings
and typical tangencies from an existing tangency.

Consider a family of cocycles A(E) : � → SL2(R) as introduced in Sect. 5.2.
This family has a heteroclinic tangency at E if and only if there exist periodic orbits
ω0, ω1 ∈ � with periods �0, �1 ≥ 1 such that A�0

(E)(ω0) and A�1
(E)(ω1) are hyperbolic

matrices, and there exists a heteroclinic orbit ω ∈ W u
loc(ω0) ∩ σ−k W s

loc(ω1) such that

Ak
(E)(ω) û(A�0

(E)(ω0)) = ŝ(A�1
(E)(ω1)).

In this case we say that (BE , CE , AE ) is a tangency for A(E) where AE = A�1
(E)(ω),

BE = A�0
(E)(ω0) and CE = Ak

(E)(ω) are respectively the target, the source and the
transition matrix of this heteroclinic tangency. See Figure 3. The size of the tangency is
by definition the size of the full word BE CE AE determined by the tangency.

Before entering in the main technical results of this section we state a version of
Lemma B.3 suitable for our purposes. We identify the derivative of projective curves
such as E �→ An

(E)(ω) v̂ with its scalar value.

Lemma 7.13. There exists c∗ > 0 such that for all n ≥ 2, ω ∈ �, E ∈ R and v̂ ∈ P
1,

we have
d

d E
A−n

(E)(ω) v̂ < −c∗ < 0 < c∗ <
d

d E
An

(E)(ω) v̂.

Proof. Recall that for each ω ∈ �, An
(E)(ω) = An

E (ζ ) for some ζ ∈ � and that the
cocycle AE : � → SL2(R) is a Schrodinger cocycle. Therefore, this lemma is a direct
consequence of Lemma B.3. ��
Definition 2. Given γ, t, ρ > 0, we say that a tangency (BE0 , CE0 , AE0) for a cocycle
A(E0) is (γ, ρ, t)-controlled if the following conditions are satisfied:

1. min{λ(AE0), λ(BE0)} ≥ eγ ;
2.
∥∥CE0

∥∥ ≤ eρ ;
3. min{d(v̂∗

1(BE0), v̂2(BE0)), d(v̂∗
1(BE0), v̂2(BE0))} ≥ e−t .

Proposition 7.14. There exists c∗ > 0 such that for every β > 0 and R > 0 we
can find γ0 with the following property: for every γ ≥ γ0, if (BE0 , CE0 , AE0) is a
(γ, γ 1/2, γ 1/7)-controlled tangency for AE0 , then defining

I := [E0 − 2c−1∗ (1 + β) R e−2γ (1−β), E0 + 2c−1∗ (1 + β) R e−2γ (1−β)],
for every pair of smooth curves v̂+, v̂− : I → P

1 satisfying
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Fig. 3. Unfolding the heteroclinic tangency. Vertical lines represent P1

A1. d(v̂+(E0), ŝ(B0)) > R−1 and d(v̂−(E0), û(A0)) > R−1;
A2. d

d E v̂+(E) ≥ 0 and d
d E v̂−(E) ≤ 0, for every E ∈ I ;

the equation

AE CE BE v̂+(E) = v̂−(E),

has at least one solution E∗ ∈ I .

Proof. We assume for the sake of simplicity E0 = 0. First observe that using triangular
inequality, condition A1, Proposition A.3 and the given control of the tangency, there
exists K0 > such that

d(v̂+(0), v̂2(B0)) ≥ d(v̂+(0), ŝ(B0)) − d(ŝ(B0), v̂2(B0))

≥ R−1 − K0

d(v̂∗
1(B0), v̂2(B0)) ‖B0‖2

≥ R−1
(
1 − K0R e

−2γ (1− 1
2γ 6/7

)
)

and

d(v̂−(0), v̂∗
1(A0)) ≥ d(v̂−(0), ŝ(B0)) − d(ŝ(B0), v̂2(B0))

≥ R−1 − K0

d(v̂∗
1(A0), v̂2(B0)) ‖A0‖2

≥ R−1
(
1 − K0R e

−2γ (1− 1
2γ 6/7

)
)

.

Now using the previous inequalities jointly with item (b) of Lemma A.2 and the control
of the transition matrix,

d(C0 B0 v̂
+(0), C0 û(B0)) ≤ ‖C0‖2 d(B0 v̂

+(0), û(B0))

≤ ‖C0‖2 1

d(v̂+(0), v̂2(B0)) ‖B0‖2

≤ R

(
1 − K0R e

−2γ (1− 1
2γ 6/7

)
)−1

e−2γ (1−γ−1/2)



Upper Bound on the Regularity of the LE 859

and

d(A−1
0 v̂−(0), ŝ(A0)) ≤ 1

d(v̂−(0), v̂∗
1(A0)) ‖A0‖2

≤ R

(
1 − K0R e

−2γ (1− 1
2γ 6/7

)
)−1

e−2γ .

Taking

γ0 := max

{
β−2, (2β)−7/6,

1

2(1 − β)
log

(
K0R(1 + β)

β

)}
,

we conclude that for every γ ≥ γ0

d(C0 B0 v̂
+(0), A−1

0 v̂−(0)) ≤ 2(1 + β)Re−2γ (1−β). (9)

Choose appropriate projective coordinates in such way to preserve the natural orien-
tation. Consider the functions f+, f− : I → P

1 given by

f+(E) = CE BE v̂+(E) and f−(E) = A−1
E v̂−(E).

By condition A2 and Lemma 7.13 we have that there exists c∗ > 0 such that f ′−(E) <

−c∗ < 0 < c∗ < f ′
+(E) for every E ∈ I .Moreover, by inequality (9),d( f+(0), f−(0)) ≤

2(1 + β)Re−2γ (1−β). Therefore, there exists |E∗| ≤ 2(1 + β)c−1∗ Re−2γ (1−β) such that
f+(E∗) = f−(E∗), i.e.,

AE∗ CE∗ BE∗ v̂+(E∗) = v̂−(E∗).

��
We finish this section showing that if the cocycle AE0 has a tangency we can perturb

the parameter to produce plenty of new tangencies which are typical with respect to the
Lyapunov exponent and the Shannon entropy in a finite scale. Recall the notation of
Sect. 3.3.

Proposition 7.15. Assume the cocycle A(E0) has a heteroclinic tangency and is irre-
ducible. Given β > 0, there exist constants C∗

1 ,C∗
2 , c∗

1, c∗
2 > 0, a sequence (lk)k ⊂ N,

lk → ∞, and k0 ∈ N such that for every k ≥ k0 we can find a set Xk(β) ⊂ �

with μ̃(Xk(β)) ≥ C∗
1e−c∗

1l1/3k with the following property: for every ω ∈ X (β) there

exists Ek = Ek(ω) with |Ek − E0| ≤ C∗
2e−c∗

2l1/3k such that A(Ek) has a tangency
(PEk , TEk , SEk ), of size lk , satisfying

1. (PEk , TEk , SEk ) is (γk, γ
1/2
k , γ

1/7
k )-controlled with γk = lk

2 (λ − 3β);

2. plk (ω) :=
lk−1∏

j=0

pω j ≥ e−(H(μ)+β) lk .
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Proof. To lighten notations assume E0 = 0. Fix β > 0 and let (B0,C0, A0) be a
tangency for A(E0). Take integers pk, qk ≥ 1 such that

∣
∣∣∣

pk

qk
− log λ(B0)

log λ(A0)

∣
∣∣∣ <

1

q2
k

,

or equivalently

λ(B0)
qk λ(A0)

− 1
qk < λ(A0)

pk < λ(B0)
qk λ(A0)

1
qk , (10)

and write λk := λ(A0)
pk ∼ λ(B0)

qk . Consider for each k ≥ 1 the new tangency
(Bqk

0 , C0, Apk
0 )of sizemk , also forA(E0).Weclaim that this tangency is (γ, γ 1/2, γ 1/7)-

controlled with γ := (1− β) log λk and k sufficiently large. Indeed, by inequality (10),

min{λ(Apk
0 ), λ(Bqk

0 )} ≥ eγ ,

for every k sufficiently large. Furthermore, the upper bound for ‖C0‖ and the lower
bound for the distances d(v̂∗

1(Apk
0 ), v̂2(Apk

0 )) and d(v̂∗
1(Bqk

0 ), v̂2(Bqk
0 )) can be taken

independently of k and so the conditions of Definition 2 are automatic satisfied for every
k large.

For each R > 0, consider the projective intervals J s := B(ŝ(B0), R−1) and J u :=
B(û(A0), R−1) as well as

Ik := [E0 − 2c−1∗ (1 + β)Rλ
−2(1−2β)
k , E0 + 2c−1∗ (1 + β)Rλ

−2(1−2β)
k ].

Denote by τk the finite word of size mk determined by the tangency, i.e., for every
ω ∈ [0; τk], Amk

(0)(ω) = Apk
0 C0 Bqk

0 .
Since A0 is strongly irreducible, the forward and backward stationary measures η+

and η− are non-atomic. Hence, we can choose R sufficiently large so that

η+0 (6J s) ≤ 1/4 and η−
0 (6J u) ≤ 1/4. (11)

Given v̂, ŵ ∈ P
1, consider the set Gn := Gn(v̂, ŵ, β, τ, 0) given by Proposition

7.11. For each n ≥ 1, define

Gu
n :=
{
ω ∈ Gn : û(An

(0)(ω)) /∈ 2J s
}

and

Gs
n :=
{
ω ∈ Gn : ŝ(An

(0)(ω)) /∈ 2J u
}
.

Notice that by item 3. of Proposition 7.11
{
ω ∈ Gn : An

(0)(ω) v̂ /∈ 3J s
}

⊂ Gu
n and

{
ω ∈ Gn : A−n

(0) (ω) ŵ /∈ 3J u
}

⊂ Gs
n .

Thus, by inequality (11), Propositions 3.4 and 7.11 we have that

μ̃(Gu
n ) ≥ μ̃(Gn) − μ̃([An

(0)(·) v̂ ∈ 3J s]) ≥ 1 − β − 2η+0 (6J s) ≥ 1

2
− β, (12)

and similarly,

μ̃(Gs
n) ≥ μ̃(Gn) − μ̃([A−n

(0) (·) ŵ ∈ 3J u]) ≥ 1 − β − 2η−
0 (6J u) ≥ 1

2
− β. (13)
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We define the set Tk of tangencies by

Tk := Gu
m3

k
∩ [m3

k; τk] ∩ σ−dk
(
Gs

m3
k

)
,

where dk := m3
k + mk . Take ω ∈ Tk and define the functions v̂+, v̂− : Ik → P

1

v̂+(E) := û(A
m3

k
(E)(ω)) and v̂−(E) := ŝ(A

m3
k

(E)(σ
dkω)).

Notice that by definition of Tk ,

v̂+(0) /∈ 2J s ⊃ B(ŝ(B0), R−1) and v̂−(0) /∈ 2J u ⊃ B(û(A0), R−1).

Moreover, by the Lemma B.4,

d

d E
v̂+(E) ≥ 0 and

d

d E
v̂−(E) ≤ 0.

Thus, we can apply Proposition 7.14, to guarantee that there exists Ek = Ek(ω) ∈ Ik ,
satisfying

Apk
Ek

CEk Bqk
Ek

û(A
m3

k
(Ek)

(ω)) = ŝ(A
m3

k
(Ek )

(σ dkω)).

Set lk := 2m3
k + mk and consider the set

Fk(β) :=
{
ω ∈ � : plk (ω) ≥ e−(H(μ)+β) lk

}
.

By Proposition 3.5 with n = lk and ε = β,

μ̃(Fk(β)) ≥ 1 − 2e
− 4

h2
lk β2

, (14)

where h is a positive constant depending only on μ.
For each ω ∈ Tk ∩ Fk(β), define

Pk := A
m3

k
(Ek )

(ω), Tk := Apk
Ek

CEk Bqk
Ek

and Sk := A
m3

k
(Ek )

(σ dkω).

and observe that by Proposition 7.11, Pk and Sk are hyperbolic and if γk := (λ− 3β)
lk
2 ,

then (Pk, Tk, Sk) is a (γk, γ
1/2
k , γ 1/7)-controlled tangency for the cocycleA(Ek ) of size

lk . Moreover,

λ(Pk) � e(λ−β)m3
k > e(λ−2β)

lk
2 and λ(Sk) � e(λ−β)m3

k > e(λ−3β)
lk
2 .

which proves item 1. Item 2 holds because ω ∈ Fk(β).
To finish the proposition notice that by inequalities (12), (13) and (14)

μ̃(Tk ∩ Fk(β)) ≥ μ̃(Tk) − μ̃(�\Fk(β))

≥ (1/2 − β)2 μ̃([0; τk]) − 2e
− 4

h2
lkβ2 ≥ (1/2 − β)2 e−c mk

for some constant c > 0. Taking Xk(β) := Tk ∩ Fk(β) completes the proof. ��



862 J. Bezerra, P. Duarte

8. Counting Matchings

The purpose of this section is to give a lower bound for the ν̃-measure of the set of
sequences for which we have a (δ, k, I )-matching for some small interval of energies I .
Throughout this subsection we assume that the cocycle A0 has a heteroclinic tangency
and is irreducible. We keep the notation used in the Proposition 7.15.

Recall that for a suitable δ1 > 0 we use the notation

λ = min|E |≤δ1 L(μE ) > 0.

8.1. Subset of matchings. Take β > 0 and let N′ be the set of sizes l ∈ N of the
heteroclinic tangencies of AEl , (PEl , TEl , SEl ), given by Proposition 7.15, applied with

E0 = 0, where El = El(ω) for some ω ∈ � and |El | ≤ C∗
2 e−c∗

2 l1/3 is such that
Al

(El )
(ω) = SEl TEl PEl . Denote by τl ∈ � the finite word of length l associated with

the block SEl TEl PEl , for a given size l ∈ N
′. By item 3 of Proposition 7.15

μ̃([0; τl ]) = pl(ω) ≥ e−(H(μ)+β) l . (15)

To apply Proposition 7.14 with the tangency (PEl , TEl , SEl )we consider the balls J s
l

and J u
l in P1 centered respectively in ŝ(PEl ) and û(SEl ) with radius R−1 > 0. Consider

the interval

Il := [El − C e−l (λ−β), El + C e−l (λ−β)]
provided by this proposition with C := 2c−1∗ (1 + β)R. Choosing γ := l

2 (λ − β) by the
said proposition the heteroclinic tangency (PEl , TEl , SEl ) is (γ, γ 1/2, γ 1/7)-controlled
so that the initial assumptions of Proposition 7.14 are automatically satisfied.

Fix τ > 0 given by Proposition 7.11 and set Gl3 := Gl3(ê1, ê2, β, τ, 0). Define the
sets

�u
l :=
{
ω ∈ Gl3 : Al3

El
(ω) ê1 /∈ 2J s

l

}

and

�s
l :=
{
ω ∈ Gl3 : A−l3

El
(ω) ê2 /∈ 2J u

l

}
.

Notice that taking R sufficiently large and applying Proposition 7.10 we have

μ̃(�u
l ) ≥ 1/2 − β and μ̃(�s

l ) ≥ 1/2 − β. (16)

Now, we finally define our subset of matchings as

Ml := �u
l ∩ σ−l3([0; τl ]) ∩ σ−(2l3+l)(�s

l ).

Lemma 8.1. For every l ∈ N
′ and ω ∈ Ml there exists E∗

l ∈ Il such that

1. A2l3+l
(E∗

l )
(ω) ê1 = ê2;

2. e(λ−β) l3 ≤
∥∥∥Al3

(E∗
l )
(ω) e1

∥∥∥ ≤
∥∥∥Al3

(E∗
l )
(ω)

∥∥∥ ≤ e(λ+β) l3 ;

3. e(λ−β) l3 ≤
∥∥∥A−l3

(E∗
l )
(σ 2l3+lω) e2

∥∥∥ ≤
∥∥∥A−l3

(E∗
l )
(σ 2l3+lω)

∥∥∥ ≤ e(λ+β) l3 ;
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4.
∥∥∥A2l3+l

(E∗
l )

(ω) e1
∥∥∥ ≤ e3β l3 .

Moreover, μ̃ (Ml) ≥ (1/2 − β)2 e−l (H(μ)+β).

Proof. Fix ω ∈ Ml . By Proposition 7.14 we conclude that the equation

A2l3+l
E (ω) ê1 = ê2, (17)

has at least a solution E∗
l ∈ Il . In fact, as explained above the heteroclinic tangency

(PEl , TEl , SEl ) is (γ, γ 1/2, γ 1/7)-controlled so that the initial assumptions of Proposi-

tion 7.14 are automatically satisfied. Next consider the curves v̂+(E) := Al3
E (ω) ê1 and

v̂−(E) := A−l3
E (σ 2 l3+lω) ê2. Assumption A1 holds because ω ∈ �u

l and σ 2 l3+lω ∈ �s
l .

Assumption A2 holds by Lemma 7.13.
The lower bounds in items 2 and 3 follow from item 1 of Proposition 7.11 and the

fact that ω ∈ Gl3(ê1, ê2, β, τ, 0). From items 1 and 3 of the said proposition together
with conclusion 2) of Proposition A.3 we get the upper bounds in items 2 and 3.

Taking unit vectors w1 ∈ Al3
(E∗

l )
(ω) ê1 and w2 ∈ Al

(E∗
l )
(σ l3ω) ŵ1, by 2 above,

∥∥
∥A2l3+l

(E∗
l )

(ω) e1
∥∥
∥ =
∥∥
∥Al3

(E∗
l )
(σ l3+lω)w2

∥∥
∥
∥∥
∥Al

(E∗
l )
(σ l3ω)w1

∥∥
∥
∥∥
∥Al3

(E∗
l )
(ω) e1

∥∥
∥

≤ e−(λ−β) l3 eC l e(λ+β)l3 ≤ e2 β l3+C l ≤ e3βl3 ,

which proves item 4.
To finish, using the inequalities in (15) and (16) we have

μ̃(Ml) = μ̃(�u
l ) μ̃(�s

l ) μ̃([0; τl ]) ≥ (1/2 − β)2 e−l (H(μ)+β).

This completes the proof of the lemma. ��
Now we can give a lower bound for the set of matchings. Recall the notation of

Sect. 6.

Corollary 8.2. For all large l ∈ N
′, if nl := 4(2l3 + l) then

ν̃
(
�(e−l3(λ−4β), nl , Il)

)
≥ 1

4
(1/2 − β)2 e−l (H(μ)+β).

Proof. Let π0 := π |�0 : �0 → � be the conjugation given by Lemma 5.2. We claim

that π−1
0 (Ml) ⊂ �(e−l3(λ−β), nl , Il). Indeed, by Lemma 8.1 if π0(ζ ) ∈ Ml , there

exist E∗
l ∈ Il such that

Anl
E∗

l
(ζ ) ê1 = A2l3+l

(E∗
l )

(π0(ζ )) ê1 = ê2

Moreover,

τnl (ζ, E∗
l ) ≤
∥∥Anl

E∗(ζ ) e1
∥∥

∥∥∥A4 l3
E∗ (ζ ) e1

∥∥∥
=
∥∥∥A2l3+l

E∗
l

(π0(ζ )) e1
∥∥∥

∥∥∥Al3
E∗

l
(π0(ζ )) e1

∥∥∥
≤ e3β l3−(λ−β) l3 .

This proves that any ζ is a (e−l3 (λ−4β), nl , E∗
l )-matching for some E∗ ∈ Il .
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To finish, since 4ν̃ is normalization of ν̃ to �0,

ν̃
(
�(e−l3(λ−β), nl , Il)

)
≥ ν̃(π−1

0 (Ml)) = 1

4
μ̃(Ml)

≥ 1

4
(1/2 − β)2 e−l (H(μ)+β).

This completes the proof of the corollary. ��

9. Proof of the Results

We keep the notations of the previous section.

9.1. Proof of theorem A. We keep the notation of the previous section. Take α >
H(μ)
L(μ)

and choose δ > 0 such that λ := min|E |≤δ L(μE ) satisfies λα − H(μ) > 0. Then take
0 < β < λ small enough so that λα − H(μ) > 2 β + α β, which implies that

−H(μ) − β + α (λ − β) > β. (18)

By Proposition 4.1, to prove Theorem A it is enough to prove that the integrated
density of states N is not α-Hölder continuous. By Corollaries 6.4 and 8.2, writing
δl := e−l3(λ−4β),

�Il+[−δl , δl ]N ≥ 1

nl
ν̃ (�(δl , nl , Il)) ≥ 1

4nl
(1/2 − β)2 e−ll (H(μ)+β).

Thus by inequality (18),

�Il+[−δl , δl ]N
|Il + [−δl , δl ]|α � el(−H(μ)−β+α(λ−β)) � eβ l .

Taking l ∈ N
′, l → ∞ we conclude that N can not be α-Hölder continuous. ��

9.2. Proof of corollary A. By [13, Theorem 4.1], if μ is not uniformly hyperbolic,
then the semigroup generated by suppμ must contain a parabolic or elliptic matrix. In
either case, by Proposition 7.8 and Proposition 7.12, we can approximateμ by measures
with finite support admitting tangencies which are irreducible. The result follows by
continuity of the quotient E �→ H(μ)

L(μE )
. ��

9.3. Proof of corollary B. By Johnson’s theorem [29], if E0 is an energy in the almost
sure spectrum of the Schrödinger operator, then the associated Schrödinger cocycle AE0

is not uniformly hyperbolic. Therefore, we can again apply Propositions 7.8 and 7.12 to
find energies close to E0 such that the cocycle AE0 is irreducible and has heteroclinic
tangencies The result follows by continuity of the quotient E �→ H(μ)

L(μE )
. ��
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Appendix A: Some Linear Algebra Facts

In this appendix we state and prove a few results about the geometry of the projective
action of a matrix A ∈ SL2(R) in the Euclidean space R

2. Some of these results are
well know. Others like Propositions A.3, A.6 and Lemma A.9 play a key role in logical
architecture of our main results. For the reader’s convenience we also state here a version
of the Avalanche Principle for SL2(R) matrices.

If v = {v1, v2} is a basis of R2 then the dual basis of v is the unique basis v =
{v1 , v2 } of R2 such that 〈vi

 , v j 〉 = δi j , for i, j = 1, 2.

As usual let J :=
[
0 −1
1 0

]
denote the 90o rotation matrix.

Lemma A.1. For a basis v = {v1, v2} of R
2, its dual basis is given by v ={

− J v2
v1∧v2

, J v1
v1∧v2

}
. In particular, the trace of A ∈ SL2(R) is given by

tr(A) = 1

v1 ∧ v2
(Av1 ∧ v2 + v1 ∧ Av2) .

Proof. For the first part it is enough to check the following relations, where we make
extensive use the relation 〈x, y〉 = x ∧ J y.

〈
− Jv2

v1 ∧ v2
, v1

〉
= −〈Jv2, v1〉

v1 ∧ v2
= − Jv2 ∧ Jv1

v1 ∧ v2
= −v2 ∧ v1

v1 ∧ v2
= 1

〈
− Jv2

v1 ∧ v2
, v2

〉
= −〈Jv2, v2〉

v1 ∧ v2
= 0

〈
Jv1

v1 ∧ v2
, v1

〉
= −〈Jv1, v1〉

v1 ∧ v2
= 0

〈
Jv1

v1 ∧ v2
, v2

〉
= 〈Jv1, v2〉

v1 ∧ v2
= Jv1 ∧ Jv2

v1 ∧ v2
= v1 ∧ v2

v1 ∧ v2
= 1

Denoting the dual basis of v = {v1, v2} by v = {v1 , v2 }, we have
tr(A) = 〈v1 , Av1〉 + 〈v2 , Av2〉

http://creativecommons.org/licenses/by/4.0/
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=
〈
− Jv2

v1 ∧ v2
, Av1

〉
+

〈
Jv1

v1 ∧ v2
, Av2

〉

= −〈Jv2, Av1〉
v1 ∧ v2

+
〈Jv1, Av2〉
v1 ∧ v2

= − Jv2 ∧ J Av1

v1 ∧ v2
+

Jv1 ∧ J Av2

v1 ∧ v2

= −v2 ∧ Av1

v1 ∧ v2
+

v1 ∧ Av2

v1 ∧ v2
= Av1 ∧ v2

v1 ∧ v2
+

v1 ∧ Av2

v1 ∧ v2
.

��
From Lemma A.2 until Proposition A.6, we consider the projective distance,

d(x̂, ŷ) := |x ∧ y|
‖x‖ ‖y‖ = | sin�(x, y)|

take a matrix A ∈ SL2(R) and let {v1, v2} and {v∗
1 , v

∗
2} be singular orthonormal basis

of A characterized by the relations A v1 = ‖A‖ v∗
1 , A v2 = ‖A‖−1 v∗

2 , v2 = Jv1 and
v∗
2 = Jv∗

1 .

Lemma A.2. For any x̂ ∈ P
1, if x ∈ x̂ is a unit vector,

(a) ‖Ax‖ ≥ ‖A‖ d(x̂, v̂2),

(b) d(Ax̂, v̂∗
1) ≤ 1

d(x̂, v̂2) ‖A‖2 .

Proof. Writing x = 〈x, v1〉 v1 + 〈x, v2〉 v2,
‖Ax‖ =

∥∥∥〈x, v1〉 ‖A‖ v∗
1 + 〈x, v2〉 ‖A‖−1 v∗

2

∥∥∥

≥ |〈x, v1〉| ‖A‖ ∥∥v∗
1

∥∥ = |x ∧ v2| ‖A‖ = d(x̂, v̂2) ‖A‖ .

Hence

d(Ax̂, v̂∗
1) = |(Ax) ∧ v∗

1 |
‖Ax‖ ≤ |〈x, v2〉| ‖A‖−1 |v∗

2 ∧ v∗
1 |

d(x̂, v̂2) ‖A‖ ≤ 1

d(x̂, v̂2) ‖A‖2 .

��
We denote by λ(A) the absolute value of the unstable eigenvalue of A.

Proposition A.3. If a := |v∗
1 ∧ v2| then

(1) | tr(A)| ≥ a ‖A‖.

(2) If a ‖A‖ > 2 then A is hyperbolic and λ(A) ≥ 1
2

(
a ‖A‖ +

√
a2 ‖A‖2 − 4

)
"

a ‖A‖ as ‖A‖ → ∞.
(3) There exists a function k(A) := 1 + O( 1

a2‖A‖2 ) such that

d(ŝ(A), v̂2) ≤ k(A)

a ‖A‖2 and d(û(A), v̂∗
1) ≤ k(A)

a ‖A‖2 .

Moreover, for any x̂ ∈ P
1,

d(û(A), A x̂) ≤ k(A)

‖A‖2
(
1

a
+

1

|x ∧ v2|
)

.
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Proof. Item (1): Consider the basis v = {v∗
1 , v2}. By Lemma A.1,

| tr(A)| = 1

|v∗
1 ∧ v2|

∣∣Av∗
1 ∧ v2 + v∗

1 ∧ Av2
∣∣

= 1

|v∗
1 ∧ v2|

∣∣∣
(〈v∗

1 , v1〉 Av1 + 〈v∗
1 , v2〉 ∧ Av2

)
) ∧ v2 + ‖A‖−1 (v∗

1 ∧ v∗
2)

∣∣∣

= 1

|v∗
1 ∧ v2|

∣∣∣〈v∗
1 , v1〉(v∗

1 ∧ v2) ‖A‖ +
{〈v∗

1 , v2〉(v∗
2 ∧ v2) + (v∗

2 ∧ v∗
1)
} ‖A‖−1

∣∣∣

= 1

|v∗
1 ∧ v2|

[
(v∗

1 ∧ v2)
2 ‖A‖ +

(
1 − 〈v∗

1 , v2〉2
)

‖A‖−1
]

≥ |v∗
1 ∧ v2| ‖A‖ + |v∗

1 ∧ v2|−1
(
1 − 〈v∗

1 , v2〉2
)

‖A‖−1 ≥ a ‖A‖ .

Item (2): If a ‖A‖ > 2 then | tr(A)| ≥ a ‖A‖ > 2 and A is hyperbolic. Therefore

a ‖A‖ ≤ | tr(A)| = λ + λ−1 with λ = λ(A).

Solving in λ we get

λ ≥ 1

2

(
a ‖A‖ +

√
a2 ‖A‖2 − 4

)
.

Item (3): Because v∗
1 = 〈v∗

1 , v1〉v1 + 〈v∗
1 , v2〉v2,

Av∗
1 = 〈v∗

1 , v1〉 ‖A‖ v∗
1 + 〈v∗

1 , v2〉 ‖A‖−1 v∗
2

and whence

d(v̂∗
1 , A v̂∗

1) = |〈v∗
1 , v2〉| ‖A‖−1 |v∗

1 ∧ v∗
2 |√

a2 ‖A‖2 + (1 − a2) ‖A‖−2
≤ 1

a ‖A‖2 .

Since near û(A) the projective map Â is a Lipschitz contraction with Lipschitz constant
of order λ(A)−2,

d(û(A), v̂∗
1) ≤

1
a‖A‖2

1 − O(λ(A)−2)
= 1

a ‖A‖2
(
1 + O

(
1

a2 ‖A‖2
))

.

The bound on d(ŝ(A), ŵ) follows from the previous inequality applied to A−1. By
Lemma A.2(b),

d(Ax̂, v̂∗
1) ≤ 1

d(x̂, v̂2) ‖A‖2 .

Hence by the triangle inequality

d(û(A), A x̂) ≤ d(û(A), v̂∗
1) + d(v̂∗

1 , A x̂) ≤ k(A)

‖A‖2
(
1

a
+

1

|x ∧ v2|
)

.

��
Lemma A.4. If ‖w‖ = 1 and d(ŵ, v̂1) <

√
1 − ‖A‖−2, then ‖Aw‖ ≥ 1.
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Proof. By Lemma A.2(a),

‖Aw‖ ≥ ‖A‖ d(ŵ, v̂2) = ‖A‖
√
1 − d(ŵ, v̂1)2 ≥ ‖A‖ ‖A‖−1 = 1.

��
Lemma A.5. If d(A v̂, v̂∗

1) ≤ ‖A‖−1, d(A v̂, ŵ) ≥ a > 0 and a ‖A‖ > 2 then
d(A−1 ŵ, v̂2) < ‖A‖−1.

Proof. Note that d(ŵ, v̂∗
1) ≥ d(Av̂, ŵ) − d(Av̂, v̂∗

1). By assumption this implies that

d(ŵ, v̂∗
1) ≥ a−‖A‖−1 ≥ ‖A‖−1, or equivalently d(ŵ, v̂∗

2) ≤
√
1 − ‖A‖−2. Applying

Lemma A.4 to A−1 we conclude that
∥∥A−1w

∥∥ ≥ 1. Therefore, writing

v = xv v1 + yv v2, with x2v + y2v = 1,

w = xw v∗
1 + yw v∗

2 , with x2w + y2w = 1,

A v = xv ‖A‖ v∗
1 + yv ‖A‖−1 v∗

2

A−1 w = xw ‖A‖−1 v1 + yw ‖A‖ v2,

we have that

d(A−1 ŵ, v̂2) = |A−1 w ∧ v2|∥
∥A−1 w

∥
∥ = |xw| ‖A‖−1

∥
∥A−1w

∥
∥ ≤ ‖A‖−1 .

��
Proposition A.6. If d(A v̂, ŵ) ≥ a, d(A−1 ŵ, v̂) ≥ a and a ‖A‖ > 2 then

max
{

d(A v̂, v̂∗
1), d(A−1 ŵ, v̂2)

}
≤ 2

a ‖A‖2 + ‖A‖
√

a2 ‖A‖2 − 4
" 1

a ‖A‖2 .

Proof. Without loss of generality me may assume that

a ≤ d(Av̂, ŵ) ≤ d(A−1ŵ, v̂),

for otherwise wewould replace the roles of v̂ and ŵ, respectively of A and A−1. To prove
the inequalities above we derive a system of recursive inequalities, which by iteration
lead to fixed point bound. For this scheme to work we need the following preliminary
inequalities:

d(Av̂, v̂∗
1) ≤ ‖A‖−1 and d(A−1ŵ, v̂2) ≤ ‖A‖−1 . (A1)

Choose v to have norm 1 and normalize w so that A−1w has norm 1. There exist
coordinates (xv, yv) and (xw, yw) in the unit circle such that

v = xvv
∗
1 + yvv

∗
2 ,

A−1w = xwv1 + ywv2,

Av = xv ‖A‖ v∗
1 + yv ‖A‖−1 v∗

2 ,

w = xw ‖A‖ v∗
1 + yw ‖A‖−1 v∗

2 .
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We have

d(Av̂, v̂∗
1) = |Av ∧ v∗

1 |
‖Av‖ = |yv| ‖A‖−1

√
x2v ‖A‖2 + y2v ‖A‖−2

and similarly

|xv yw − xw yv|√
x2v ‖A‖2 + y2v ‖A‖−2

= d(Av̂, ŵ) ≤ d(A−1ŵ, v̂) = |xv yw − xw yv|.

This implies that x2v ‖A‖2 + y2v ‖A‖−2 ≥ 1 and whence

d(Av̂, v̂∗
1) ≤ |yv| ‖A‖−1 ≤ ‖A‖−1 .

This proves the first inequality in (A1). The second follows from Lemma A.5.
We establish next the mentioned recursive inequalities. Since

a ≤ d(A−1ŵ, v̂) ≤ d(A−1ŵ, v̂2) + d(v̂, v̂2)

we have

d(v̂, v̂2) ≥ a − d(A−1ŵ, v̂2) ≥ a − ‖A‖−1 ≥ ‖A‖−1 > 0

and by Lemma A.2 (b),

‖A‖ d(Av̂, v̂∗
1) ≤ 1

d(v̂, v̂2) ‖A‖ ≤ 1

a ‖A‖ − d(A−1ŵ, v̂2) ‖A‖ . (A2)

Similarly,

a ≤ d(ŵ, Av̂) ≤ d(ŵ, v̂∗
1) + d(v̂∗

1 , Av̂)

implies that,

d(ŵ, v̂∗
1) ≥ a − d(v̂∗

1 , Av̂) ≥ a − ‖A‖−1 ≥ ‖A‖−1 > 0.

Hence, as before,

‖A‖ d(A−1ŵ, v̂2) ≤ 1

d(ŵ, v̂∗
1) ‖A‖ ≤ 1

a ‖A‖ − d(v̂∗
1 , Av̂) ‖A‖ . (A3)

To solve the recursive inequalities (A2) and (A3), consider the 1-parameter family

of partial maps Fb : R
2 → R

2, Fb(x, y) :=
(

1
b−y ,

1
b−x

)
. For b > 2, each com-

ponent of Fb is a well-defined contraction of the interval [0, 1]. Hence Fb leaves the
square [0, 1]2 invariant and is a strict contraction with unique fixed point (x∗, y∗) :=(

2
b+

√
b2−4

, 2
b+

√
b2−4

)
. Moreover, the maps Fb preserve the usual partial order of R2,

defined by

(x, y) ≥ (x ′, y′) if x ≥ x ′ and y ≥ y′.

Setting b := a ‖A‖ and (x0, y0) := (‖A‖ d(Av̂, v̂∗
1), ‖A‖ d(A−1ŵ, v̂2)

)
, (A2) and (A3)

are equivalent to (x0, y0) ≤ Fb(x0, y0), while (A1) ensures that (x0, y0) ∈ [0, 1]2.
Hence we obtain, inductively, that (x0, y0) ≤ Fn

b (x0, y0) for all n ≥ 1, and taking the
limit as n → ∞, (x0, y0) ≤ (x∗, y∗). This concludes the proof. ��
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Remark 3. By the previous lemma, if a∗ ‖A‖ > 2 then A is hyperbolic and

λ(A) ≥ a∗ ‖A‖ +
√

a∗2 ‖A‖2 − 4

2
.

Given A ∈ SL2(R) with ‖A‖ > 1, denote by v̂1(A), v̂2(A), v̂∗
1(A) and v̂∗

2(A) the
unique projective points such that taking unit vectors vi ∈ v̂i (A) and v∗

j ∈ v̂ j (A), with
i, j = 1, 2, {v1, v2} and {v∗

1 , v
∗
2} are singular basis of A characterized by the relations

A v1 = ‖A‖ v∗
1 and A v2 = ‖A‖−1 v∗

2 .

Lemma A.7. Given A, A′ ∈ SL2(R) with ‖A‖ ,
∥
∥A′∥∥ > 1,

∥
∥A′ A
∥
∥

‖A′‖ ‖A‖

√√√√√1 − ‖A‖−4 + ‖A′‖−4

( ‖A′ A‖
‖A′‖ ‖A‖

)2 ≤ d(v̂∗
1(A), v̂2(A′)) ≤

∥
∥A′ A
∥
∥

‖A′‖ ‖A‖ .

Proof. See [19, Propositions 2.23 and 2.24]. ��
Proposition A.8 (Avalanche Principle). There exist positive constants ci , i = 0, 1, 2
such that given 0 < κ < c0ε2 and A0, . . . , An ∈ SL2(R), if

1. min j
∥∥A j
∥∥2 ≥ κ−1;

2. min j
‖A j A j−1‖‖A j−1‖A j‖‖ ≥ ε.

Then, for An := An−1 · · · A0,

max
{
d
(
v̂∗
1

(
An) , v̂∗

1 (An−1)
)
, d
(
v̂2
(

An) , v̂2 (A0)
)} ≤ c1κε

−1.

and

e−c2κε−1n ≤ ‖An−1 · · · A1 A0‖ ‖A1‖ · · · ‖An−2‖
‖A1 A0‖ · · · ‖An−1 An−2‖ ≤ ec2κε−1n .

Proof. See [19, Proposition 2.42] or [21, Theorem 2.1]. ��
Lemma A.9. Given v̂, ŵ ∈ P

1 and A1, . . . , An ∈ SL2(R) assume that:

(a) λ � γ � t;
(b) min j

∥∥A j
∥∥ ≥ eλ;

(c) min j
‖A j A j−1‖‖A j−1‖A j‖‖ ≥ e−γ ;

(d) min
{

d(A1 v̂, ŵ), d(A−1
1 ŵ, v̂)

}
≥ e−t ;

(e) min
{
d(An v̂, ŵ), d(A−1

n ŵ, v̂)
} ≥ e−t .

(f) d(An v̂, A−1
1 ŵ) ≥ e−t ;

Then for all j = 1, . . . , n − 1,

(1) d(v̂∗
1(An) v̂2(An)) � e−t ;

(2) An is hyperbolic and λ(An) � e(λ−2γ )n;
(3) ‖An v‖ � e(λ−2γ )n and

∥∥(An)−1 ŵ
∥∥ � e(λ−2γ )n;
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Proof. Using the conditions (d), (e) and Proposition A.6 we have

d(An v̂, v̂∗
1(An)) � e−2λ+t and d(A−1

1 ŵ, v̂2(A1)) � e−2λ+t .

By the AP (Proposition A.8) with κ := e−2 λ and ε := e−γ ,

d(v̂∗
1(An), v̂∗

1(An)) ≤ e−2λ+γ and d(v̂2(An), v̂2(A1)) ≤ e−2λ+γ .

Applying triangular inequality with condition (f),

d(v̂∗
1(An) v̂2(An)) � e−t − 2e−2λ+γ − 2e−2λ+t � e−t , (A4)

which give us Item 1. The AP also implies that

∥∥An
∥∥ � exp

(
−e−2 (λ−γ )

) ‖A2 A1‖ · · · ‖An An−1‖
‖A2‖ · · · ‖An−1‖

� e−n γ ‖A1‖ · · · ‖An‖ ≥ e(λ−γ ) n . (A5)

Item 2 follows from inequality (A4) and Proposition A.3 with λ(An) � e−t ‖An‖ �
e(λ−2γ )n .

Using the bounds above for d(A−1
1 ŵ, v̂2(A1)), d(v̂2(An), v̂2(A1)) and condition

(d) we have

d(v̂, v̂2(An)) � e−t − e−2λ+t − e−2λ+γ � e−t . (A6)

Hence, by Lemma A.2,
∥∥An v
∥∥ � e(λ−γ )n−t . Using similar arguments we conclude

that,
∥∥∥(An)−1 w

∥∥∥ � e(λ−2γ )n which proves item 3. ��

Appendix B: Derivative of Projective Actions

We state and prove some general formulas for the derivatives of the action that will be
used throughout this section. Given a non-zero vector w ∈ R

2, let z(w) be the unique
unit vector which makes {w/ ‖w‖ , z(w)} an orthonormal basis.

Given A ∈ SL2(R), the derivative of its projective action Â : P1 → P
1 is

D Â(ŵ)v = (Aw ∧ Av)

‖Aw‖2 z(Aw). (B7)

If w ∈ ŵ is a unit vector and v ∈ TŵP
1 is a unit and positive tangent vector then

A w ∧ A v = w ∧ v = 1 and the norm of the derivative D Â(ŵ) is equal to ‖A w‖−2.
For a C1 one parameter family {At }t∈I of SL2(R) matrices, where I ⊆ R is an

interval containing 0,

d

dt
At v̂

∣∣∣
∣
t=0

= (A0v ∧ Ȧ0v)

‖A0v‖2 z(A0v). (B8)

More generally, given a one parameter family of cocycles At : X → SL2(R), defined
in some interval I ⊆ R,
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Proposition B.1. If v j (t) := A j
t (x) v/‖A j

t (x) v‖ for j = 0, 1, . . . , n, then

d

dt

An
t (x) v∥

∥An
t (x) v

∥
∥ =

n−1∑

j=0

z(An
t v)

∥∥∥A j
t (T n− j x) vn− j

∥∥∥
2

(
vn− j ∧ ( Ȧt A−1

t )(T n− j−1x) vn− j

)

Proof. Since

d

dt
An

t (x) =
n∑

j=1

An− j
t (T j x) Ȧt (T

j−1x) A j−1
t (x)

we have

d

dt

An
t (x) v∥∥An
t (x) v

∥∥ =
n∑

j=1

An
t (x) v ∧ An− j

t (T j x) Ȧt (T j−1x) A j−1
t (x) v

∥∥An
t (x) v

∥∥2
z(An

t v)

=
n∑

j=1

A j
t (x) v ∧ Ȧt (T j−1x) A j−1

t (x) v
∥∥An

t (x) v
∥∥2

z(An
t v)

=
n∑

j=1

∥∥
∥A j−1

t (x) v
∥∥
∥
2

At (T j−1x) v j−1 ∧ Ȧt (T j−1x) v j−1
∥
∥An

t (x) v
∥
∥2

z(An
t v)

=
n∑

j=1

∥∥∥A j
t (x) v

∥∥∥
2

∥∥An
t (x) v

∥∥2
At (T j−1x) v j−1 ∧ Ȧt (T j−1x) v j−1

∥∥At (T j−1x) v j−1
∥∥2

z(An
t v)

=
n∑

j=1

1
∥∥∥An− j

t (T j x) v j

∥∥∥
2

(
v j ∧ ( Ȧt A−1

t )(T j−1x) v j

)
z(An

t v)

=
n−1∑

j=0

1
∥∥∥A j

t (T n− j x) vn− j

∥∥∥
2

(
vn− j ∧ ( Ȧt A−1

t )(T n− j−1x)vn− j

)
z(An

t v)

��
Lemma B.2. Given a compact interval I ⊂ R, there exist C, c > 0 such that for every
x ∈ X, v̂ ∈ P

1 and n ∈ N

∣∣∣∣
d

dt
An

t (x) v̂

∣∣∣∣ ≤ Cecn .

Proof. Let M0 = supt∈I

∥∥∥ Ȧt A−1
t

∥∥∥∞ and M1 = supt∈I ‖At‖∞. Then, for every ŵ ∈ P
1,

∥∥A j (x) ŵ
∥∥ ≥ M− j

1 . Therefore, by Proposition B.1,

∣∣∣∣
d

dt
An

t (x) v̂

∣∣∣∣ ≤ M0

n−1∑

j=0

M j
1 ≤ M0 ≤ M0

M1 − 1
Mn

1 = Cecn,

where C = M0
M1−1 and c = log M1. ��
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For Schrödinger cocycles more can be said.

Lemma B.3. Given a Schrödinger cocycle AE : X → SL2(R) with continuous poten-
tial φ : X → R and generated by the dynamical system (X, T, ξ), there exists a constant
c∗ > 0 such that for all n ≥ 2, all x ∈ X, all E ∈ R and all v̂ ∈ P

1,
∣∣∣∣

d

d E
An

E (x) v̂

∣∣∣∣ =
An

E (x) v ∧ d
d E An

E (x) v
∥∥An

E (x) v
∥∥2

≥ c∗,

and
∣
∣∣∣

d

d E
A−n

E (x) v̂

∣
∣∣∣ = − A−n

E (x) v ∧ d
d E A−n

E (x) v
∥∥A−n

E (x) v
∥∥2

≥ c∗.

Proof. For n = 1 a simple calculation gives

AE (x) v ∧ ȦE (x) v

‖AE (x) v‖2 = v21

‖AE (x) v‖2
while using Proposition B.1 with n = 2

A2
E (x) v ∧ d

d E A2
E (x) v

∥∥A2
E (x) v

∥∥2
= v21∥∥A2

E (x) v
∥∥2

+
((φ(x) − E) v1 − v2)

2

‖AE (T x) v‖2

is positive and bounded away from 0 because the denominators are bounded and the
numerators add up to a positive definite quadratic form v21 + ((φ(x) − E) v1 − v2)

2, for
any x ∈ X and E ∈ R. The general case follows also from Proposition B.1 neglecting
all terms but the last two.

Finally, since A−n
E (x) = An

E (T −n x)−1, if w = A−n
E (x) v then

A−n
E (x) v ∧ d

d E
A−n

E (x) v = A−n
E (x) v ∧ A−n

E (x)

(
− d

d E
An

E (T −n x)

)
A−n

E (x) v

= − v ∧
(

d

d E
An

E (T −n x)

)
A−n

E (x) v

= − An
E (T −n x) w ∧ d

d E
An

E (T −n x) w < 0.

Therefore the projective curve E �→ A−n
E (x) v̂ winds in the opposite direction, and a

similar argument gives that
∣
∣ d

d E A−n
E (x) v̂

∣
∣ is bounded away from 0. ��

The space P
1 has a natural orientation. We say that a curve v̂ : I → P

1 winds
positively, resp. negatively, when it is positively, resp. negatively, oriented.

Proposition B.4. If ME is hyperbolic with λ(ME ) ≥ λ0 > 1 for all E in some compact
interval I , then there exists a positive constant K < ∞ such that the projective curves
E �→ û(ME ) and E �→ ŝ(ME ) wind around P

1 in opposite directions with non-zero
speed bounded from above by K . The unstable curve E �→ û(ME ) winds positively,
while the stable curve E �→ ŝ(ME ) winds negatively. Moreover

d

d E
û(ME ) = λ(E) (u(E) ∧ ṀE u(E))

λ(E)2 − 1
z(û(ME ))
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and

d

d E
ŝ(ME ) = − λ(E) (s(E) ∧ Ṁ−1

E s(E))

λ(E)2 − 1
z(ŝ(ME )).

Proof. Breaking the interval I into finitely many sub-intervals, if necessary, we can take
ê1 ∈ P

1 such that ê1 �= ŝ(ME ), for all E ∈ I . Hence û(ME ) = limk→∞ Mk
E ê1, with

uniform convergence of the functions and their derivatives over the compact interval I .

As k → ∞, the unit vectors vk(E) := Mk
E e1∥∥Mk
E e1
∥∥ converge geometrically and uniformly

to an eigenvector u(E) of ME in û(ME ) and, denoting by λ(E) the absolute value of
the corresponding eigenvalue, by Proposition B.1 we have

d

d E
û(ME ) = lim

k→∞

k−1∑

j=0

1
∥∥
∥M j

E vk− j

∥∥
∥
2

(
vk− j ∧ ṀE M−1

E vk− j

)
z(Mk

E ê1)

=
∞∑

j=0

1
∥∥∥M j

E u(E)

∥∥∥
2

(
u(E) ∧ ṀE M−1

E u(E)
)

z(û(ME ))

=
∞∑

j=0

1

λ(E)2 j+1 u(E) ∧ ṀE u(E) z(û(ME ))

= λ(E) (u(E) ∧ ṀE u(E))

λ(E)2 − 1
z(û(ME )).

This concludes the argument for the unstable curve û(ME ). The stable curve ŝ(ME )

winds negatively because ŝ(ME ) = limk→∞ M−k
E ê2, for any vector e2 such that ê2 �=

û(ME ), for all E ∈ I . See Lemma B.3. The bound for the derivative of this stable curve
is obtained in a similar way. ��
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