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Abstract: Magic angles in the chiral model of twisted bilayer graphene are parameters
for which the chiral version of the Bistritzer–MacDonald Hamiltonian exhibits a flat
band at energy zero. We compute the sums over powers of (complex) magic angles and
use that to show that the set of magic angles is infinite. We also provide a new proof
of the existence of the first real magic angle, showing also that the corresponding flat
band has minimal multiplicity for the simplest possible choice of potentials satisfying
all symmetries. These results indicate (though do not prove) a hidden integrability of
the chiral model.

1. Introduction and Statement of Results

When two sheets of graphene are stacked on top of each other and twisted, it has been
observed that at certain angles, coined themagic angles, the composite system becomes
superconducting. In this article, we study the chiral limit of the Bistritzer–MacDonald
Hamiltonian [1,4,5,10]

H(α) =
(

0 D(α)∗
D(α) 0

)
with D(α) =

(
Dz̄ αU (z)

αU (−z) Dz̄

)

where the parameter α is proportional to the inverse relative twisting angle. After a
simple rescaling, the potential is a smooth and periodic function satisfying

U (z + a�) = ω̄U (z), U (ωz) = ωU (z), and U (z̄) = U (z), (1.1)

where ω = e2π i/3 and a� = 4
3π iω

�. The simplest example of such a potential and our
canonical choice of U is

U0(z) =
2∑

k=0

ωke
1
2 (zω̄k−z̄ωk ). (1.2)
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Fig. 1. Plots of the first 5 non-negative eigenvalues of Hk(0.3) acting onH (see (1.4) and (1.5)), as function
of k = (k1ω

2 − k2ω)/
√
3 in in a fundamental cell of 3�∗, parametrized by (k1, k2) |k j | < 3

2 . See also [3,
Figure 4] for more information and comparison with band structure of other models

Even though the potentialU (z) is only periodic with respect to � = 4π i(ωZ⊕ω2
Z)

the first property implies that the matrix potential, and thus D(α), commutes with the
translation operator

Law(z) :=
(

ωa1+a2 0
0 1

)
w(z + a), a ∈ 1

3�, (1.3)

where w ∈ C
2 and a = 4

3π i(ωa1 + ω2a2), a j ∈ Z. We note that if �∗ is the dual
(reciprocal) lattice of �, then 3�∗ is the dual lattice of 1

3� (Fig. 1).
When moving to functions with values in C

4 = C
2 × C

2 (on which H(α) acts)
we extend the action of La to an action on each C

2 component. We then consider the
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Floquet spectrum of

Hk(α) =
(

0 D(α)∗ − k̄
D(α) − k 0

)
with k ∈ 3�∗, (1.4)

defined by (Hk(α) − E j (α, k))w j (α, k) = 0, where eigenvalues of positive energy are
labelled with j ≥ 1 in ascending order, as a self-adjoint operator on

H := {v ∈ L2(C/�) : Lav = v, a ∈ 1
3�}, (1.5)

with the domain given by H ∩ H1(C/�) such that

SpecL2(C;C4)(H(α)) =
⋃
k∈C

SpecH (Hk(α)).

This Hamiltonian is an effective one-particle model which exhibits perfectly flat
bands at magic angles. This appearance of perfectly flat bands in the chiral limit was
explained by Tarnopolsky, Kruchkov and Vishwanath [9] with the help of Jacobi theta
functions.1 An equivalent spectral theoretic characterization of magic angles was then
provided in [2]: if we define the following compact Birman–Schwinger operator

Tk = (2Dz̄ − k)−1
(

0 U (z)
U (−z) 0

)
. (1.6)

then (see [2, Theorem 2] we have the following equivalence [3, §2.3])

0 ∈
⋂
k∈C

SpecH (Hk(α)) ⇐⇒
{

α−1 ∈ SpecH (Tk0)
for some k0 ∈ C\(3�∗ − {0, i}), (1.7)

where H is defined in (1.5). In other words, the spectrum of Tk0 is independent of
k0 ∈ C\(3�∗ − {0, i}) and characterizes the values of α ∈ C at which the Hamiltonian
exhibits a flat band at zero energy. Since the parameter α is inherently connected with
the twisting angle, we shall refer to α’s at which (1.7) occurs as magic and denote their
set by A ⊂ C.

The analysis of magic angles is therefore reduced to a spectral theory problem involv-
ing a single compact non self-adjoint operator. Since even non-trivial non self-adjoint
compact operators do not necessarily have non-zero eigenvalues, the existence of a pa-
rameter α at which the Hamiltonian exhibits a flat band at zero energy is non-trivial.
In [2] the existence of such a complex parameter α ∈ C\{0} was first concluded by
showing that trH (T 4

k ) = 8π/
√
3 which implied existence of a non-zero eigenvalue2.

This result was improved by a computer-assisted proof [11] in whichWatson and Luskin
used the complex-analytic characterization of magic angles from [9] to prove existence
of the first real magic angle and obtained explicit bounds on its position.

In this article, we exhibit a general form of traces of powers of Tk . This suggests
a hidden integrability of the Hamiltonian H(α) for potentials satisfying (1.1), as all
traces exhibits special arithmetic properties.With our current techniques, we do not have
explicit control on the full set of traces which would imply a complete understanding of
all magic angles. These are already visible in the regular but evasive structure of the set
of of magic α, A ⊂ C—see Fig. 2.

1 As was pointed out to us by Alex Sobolev a similar argument appeared in the work of Dubrovin and
Novikov [6] who studied magnetic Hamiltonians on tori.

2 In [2] we considered the trace on L2(C/�;C2) which gave this answer multiplied by 9.
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Fig. 2. The set A of magic α’s for which (1.7) holds, that is, the first band is flat. The positive ele-
ments of A are the reciprocals of the “physically relevant" positive angles. Potential (1.2) is responsi-
ble for the regularity of the set which seems to indicate hidden integrability. For more general poten-
tials the distribution is more complicated—see https://math.berkeley.edu/~zworski/multi.mp4 for Uθ (z) =
(cos2 θ)U (z)+ (sin2 θ)

∑2
k=0 ωkez̄ω

k−zω̄k
which satisfies the required symmetries (1.1). The animation also

indicates changing multiplicities

Theorem 1. For � ≥ 2 and U = U0 with U0 as in (1.2)

tr(T 2�
k ) =

∑
α∈A

α−2� = π√
3
q� with q� ∈ Q. (1.8)

In addition, we are able to express the rational numbers q� ∈ Q in terms of a finite
sum involving residues of rational functions which is fully presented in Theorem 4. A
generalization of Theorem 1 which extends this result to more general potentialsU (1.1)
is presented in Theorem 5. As we show in Sect. 6, it is already possible to conclude
directly from Theorem 1 that

Theorem 2. Let U = U0 with U0 as in (1.2). There exist infinitely many magic α’s, that
is,

|A| = ∞.

This theorem will follow from the more general Theorem 6 and the observation that by
the aforementioned explicit computation trH (T 4

k ) = 8π/
√
3 for U = U0 there is at

lest one complex magic angle. We then focus on real magic angles. Since the operator
T 2
k is Hilbert–Schmidt, we can use the regularized determinant to study real magic α.

Compared with the initial approach proposed in [9], this approach has two advantages.
Unlike the series expansion in [9,11], the regularized determinant is an entire function
with explicit error bounds in terms of the Hilbert–Schmidt norm. In addition, the Taylor
coefficients of the determinant are polynomials of traces as in Theorem 1. This leads to

https://math.berkeley.edu/~zworski/multi.mp4
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Theorem 3. The chiral Hamiltonian with U = U0 and U0 as in (1.2), exhibits a flat
band of multiplicity 2 at a real magic α∗ ∈ (0.583, 0.589), which is minimal, in the
sense that the Hamiltonian does not possess a flat band for any α satisfying |α| < |α∗|,
that is,

|A ∩ (0.583, 0.589)| = 1, A ∩ DC(0, α∗) = ∅,

where the counting |• | respects multiplicities. In particular, the flat bands of multiplicity
2 are uniformly gapped from all other bands.

Remark 1. Compared with results in [11] which require floating-point arithmetic, our
proof of existence relies only on exact symbolic computations, the exact evaluation of
residues to compute traces of powers of Tk and the summation of finitely many matrix
entries to estimate the Hilbert-Schmidt norm.

2. Preliminaries

From now on, we consider a potential U ∈ C∞(C/�;C) satisfying the first two sym-
metries of (1.1). The last symmetry U (z̄) = U (z) will only be needed in Corollary 5
to ensure that all traces are real. We recall that an orthonormal basis of L2(C/�;C) is
given by setting

eν(z) := e
i
2 (ν̄z+νz)/

√
Vol(C/�), ν ∈ �∗ = 1√

3

(
Z + ωZ

)
.

We can express the potential U in this basis. A straightforward calculation gives

Proposition 2.1. Let a = 4π i
3 (ωa1+ω2a2) ∈ �/3, a j ∈ Z. Then u ∈ L2(C/�) satisfies

u(z + a) = ω̄(a1+a2)u(z), u(ωz) = ωu(z),

if and only if

u(z) =
∑
n∈Z2

cnekn (2.1)

where for n ∈ Z
2

cn = (u, ekn )L2(C/�), kn = ω2(2 + 3n1) − ω(2 − 3n2)√
3

,

satisfies

cn = ωc(−n2)(n1−n2−1) = ω2c(n2−n1+1)(−n1).

If in addition u(z̄) = u(z) then

cn = c(−n2)(−n1) = ωcn1(n1−n2−1) = ω2c(n2−n1−1)n2 .
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Our aim is to obtain trace formulae for the powers of the compact operator Tk defined
by in (1.6). Since odd powers of Tk have only off-diagonal components, it is clear that
the traces of odd powers vanish. Thus, it is sufficient to compute the traces of powers of

T 2
k =

(
(2Dz̄ − k)−1U (z)(2Dz̄ − k)−1U (−z) 0

0 (2Dz̄ − k)−1U (−z)(2Dz̄ − k)−1U (z)

)
.

(2.2)

The invariance of the trace under cyclic permutations shows that it is sufficient to compute
traces of powers of

Ak := (2Dz̄ − k)−1U (z)(2Dz̄ − k)−1U (−z) : L2(C/�;C) → L2(C/�;C), k /∈ �∗.
(2.3)

We shall study traces of powers ofAk on smaller L2 spaces, which we define below,
for (p1, p2) ∈ Z

2
3, by

L2
(p1,p2)(C/�;C) :=

{
u ∈ L2 : u(z + 2i(ωa1 + a2ω

2)) = ei(a1 p1+a2 p2)u(z);
a j ∈ 2π

3 Z

} (2.4)

whose C2-valued analogues are defined, using (1.3), as

L2
(p1,p2)(C/�;C2) :=

{
u ∈ L2 : Lau(z) = ei(a1 p1+a2 p2)u(z); a j ∈ 2π

3 Z

}
. (2.5)

We remark that the operator (2Dz̄ − k)−1 acts diagonally on the Fourier basis and
thus preserves the L2

(p1,p2)
spaces. On the other hand, multiplication byU (±z) does not

preserve the space but one has by the translational symmetry defined in (1.1)

U (±z) : L2
(p1,p2) → L2

(p1∓1,p2∓1), (p1, p2) ∈ Z
2
3.

In total, we have

L2
(p1,p2)

U (−z)−−−→ L2
(p1+1,p2+1)

(2Dz̄−k)−1

−−−−−−→ L2
(p1+1,p2+1)

U (z)−−→ L2
(p1,p2)

(2Dz̄−k)−1

−−−−−−→ L2
(p1,p2).

This shows that we can restrict the operator Ak to the subspaces L2
(p1,p2)

. From now

on, we will denote by Ak the restriction of Ak to L2
(1,1). We then define the unitary

multiplication operator

U(p1,p2) : L2
(0,0)(C/�,C2) → L2

(p1,p2)(C/�,C2),

U(p1,p2)v(z) := e
i
2 (z p̄+z̄ p)v(z), p = 1√

3
(ω̄p1 − ωp2), p j ∈ Z3,

U(p1,p2)TkU
∗
(p1,p2) = Tk−p, k /∈ �∗.

The k-independence of the spectrum of Tk implies then

SpecL2
(0,0)(C/�,C2)(T

2
k )\{0} = SpecL2

(1,1)(C/�,C2)(T
2
k )\{0}

= SpecL2
(1,1)(C/�,C)(Ak)\{0},

(2.6)
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where k ∈ D(0, r)\{0}, and the last equality is meant in the sense of sets: multiplicities
of elements in the top row are twice the multiplicities of elements in the bottom row.

We also note that Ak is defined for k ∈ D(0, r) since D−1
z̄ is defined on L2

(p,p),
p �≡ 0mod 3. Since C � k → Ak |L2

(1,1)
is an analytic family of operators with compact

resolvents and the spectrum is independent of k ∈ C\3�∗, it follows that Spec(Ak) =
Spec(A0) [7, Theorem 1.10]. From (2.6) we obtain, as sets,

SpecL2
(0,0)

(T 2
p )\{0} = SpecL2

(1,1)
(Ak)\{0}, p ∈ D(0, r)\{0}, k ∈ D(0, r), (2.7)

withmultiplicities on the left, twice themultiplicities on the right. Since k = 0 is included
in the set of possible k for Ak . Indeed, the set of possible values of k is C\((3�∗ − i) ∪
(3�∗ + i)

)
. We conclude together with [3, Theorem 2] that

dim kerH (D(α)) = dim kerL2
(1,1)

(A0 − α−2). (2.8)

We end this preliminary section by stating and proving the main three properties we will
use for our calculation.

Lemma 2.2. Consider a potential U ∈ C∞(C/�;C) satisfying the first two symmetries
of (1.1) with a finite number of non zero Fourier mode in its decomposition (2.1). Define
the operator Ak for k /∈ (3�∗ − i) ∪ (3�∗ + i), where i := −(ω2 − ω)/

√
3, to be the

restriction of Ak defined in (2.3) on the space L2
(1,1). For � ≥ 2, one has:

• The trace is constant in k

tr(A�
k) = τ� independent of k ∈ C\(3�∗ − i) ∪ (3�∗ + i). (2.9)

• The function C\(3�∗ − i) ∪ (3�∗ + i) � k �→ 〈A�
kem, em〉L2 is a finite sum of

rational fractions on the complex planeCwith degree equal to−2� and with (a finite
number of) poles contained in (3�∗ − i) ∪ (3�∗ + i).
• For any γ ∈ �∗ and for any k /∈ (3�∗ − i) ∪ (3�∗ − 2i), we have

〈A�
ke3γ+i , e3γ+i 〉L2 = 〈A�

k−3γ ei , ei 〉L2 .

Proof. The first point is a consequence of the independence of the spectrum of Tk in k
(see [3, §2.3]) as well as the relation (2.7).

For the last two points, we prove by induction that k �→ A�
ke3γ+i , where γ ∈ �∗, is

of the form

A�
ke3γ+i =

∑
ν∈F

Rν+3γ (k)eν+3γ , (2.10)

where F ⊂ (3�∗ + i) is a finite set and Rν(k) is a sum of rational fraction of degree −2�
with poles located on (3�∗ − i) ∪ (3�∗ + i). Moreover, we will prove that the one has
the relation Rν+3γ (k) = Rν(k − 3γ ).

The result is clear for � = 0. Suppose the result true for �, let’s prove it holds for �+1.
The main observation is that multiplication byU (±z) acts as a shift on the Fourier basis.
The multiplication by U (−z) sends eν to a linear combination of e� for � ∈ (3�∗ + 2i).
Then applying (D(0) − k)−1 multiplies the coefficient of e� by (� − k)−1. Multiplying
by U (z) gives back a linear combination of eν with ν ∈ (3�∗ + i). Finally, applying
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(D(0) − k)−1 multiplies the coefficient of eν by (ν − k)−1. This means that, using the
induction hypothesis (2.10),

A�+1
k e3γ+i =

∑
ν∈F

Rν+3γ (k)
∑
η∈L

∑
β∈L

aη

k − (ν + β − η + 3γ )

aβ

k − (ν + β + 3γ )
eν+β−η+3γ ,

where L ⊂ 3�∗ + i is a finite subset that depends only onU and a• are constants. Thus,
it is clear from this formula that the induction carries on to � + 1. This concludes the
proof of the Lemma. ��

3. Trace Computations

We prove the following result.

Theorem 4. Let Ak : L2
(1,1) → L2

(1,1) be a meromorphic family of Hilbert–Schmidt
operators defined for k /∈ (3�∗ − i) ∪ (3�∗ + i). We suppose that Ak satisfies the three
properties stated in Lemma 2.2. Then one has, for any � ≥ 2,

τ� = 2iπω

3
√
3

∑
n∈Z

n

[∑
m∈Z

Res
(〈A�

kei , ei 〉L2 ,
√
3(mω2 − nω) + i

)

+
∑
m∈Z

Res
(〈A�

kei , ei 〉L2 ,
√
3(mω2 − nω) + 2i

)]
,

(3.1)

where all the infinite sums are in fact finite.

Proof. We want to give a semi-explicit formula for τ� in terms of the residue of the
rational fraction (second point in Lemma 2.2)

k ∈ C\(3�∗ − i
) ∪ (3�∗ + i

) �→ 〈A�
kei , ei 〉L2 .

We first start by writing, using that A�
k is trace-class for � ≥ 2,

τ� =
∑
γ∈�

〈A�
ke3γ+i , e3γ+i 〉L2 .

We start with the relation which follows directly from (2.9),

3τ� =
∫ 3

0
tr
(
A�

tω2/
√
3

)
dt =

∫ 3

0

∑
n∈Z2

〈A�

tω2/
√
3
e3γn+i , e3γn+i 〉L2dt.

Here, we wrote γn := 1√
3
(n1ω2 − n2ω) ∈ �∗. We now use the third property stated in

Lemma 2.2 to write

3τ� =
∫ 3

0

∑
n∈Z2

〈A�

tω2/
√
3−3γn

ei , ei 〉L2dt.

The second property in Lemma 2.2 implies that

〈A�
kei , ei 〉L2 = O(k−2�). (3.2)
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Since we assume that � ≥ 2, this justifies the exchange of integration and summation
such that

3τ� =
∑
n∈Z2

∫ 3

0
〈A�

(t+3n1)ω2/
√
3−3n2ω/

√
3
ei , ei 〉L2dt.

We make the change of variable s = t + 3n1 and sum in n1 to get

3τ� =
∑
n∈Z

∫
R

〈A�

tω2/
√
3−3nω/

√
3
ei , ei 〉L2dt. (3.3)

We now consider∫
R

〈A�

tω2/
√
3−3nω/

√
3
ei , ei 〉L2 dt −

∫
R

〈A�

tω2/
√
3−3(n+1)ω/

√
3
ei , ei 〉L2dt, n ∈ Z.

This is equal to the limit of the integral over a parallelogram�n,R with sides 1√
3
[−Rω2−

3nω, Rω2 − 3nω], 1√
3
[Rω2 − 3nω, Rω2 − 3(n + 1)ω], 1√

3
[Rω2 − 3(n + 1)ω,−Rω2 −

3(n + 1)ω] and 1√
3
[−Rω2 − 3(n + 1)ω,−Rω2 − 3nω]. Here, we used (3.2) to prove

that the integral over the small parallel sides tends to 0. In particular, because there is
only a finite number of poles, we see that, for |n| large enough, one has

∫
R

〈A�

tω2/
√
3−3nω/

√
3
ei , ei 〉L2dt −

∫
R

〈A�

tω2/
√
3−3(n+1)ω/

√
3
ei , ei 〉L2dt = 0.

Using formula (3.3) as well as a partial summation, this allows us to rewrite the full
trace as a telescopic sum

3τ� =
∑
n∈Z

n

[∫
R

〈A�

tω2/
√
3−3nω/

√
3
ei , ei 〉L2 dt

−
∫
R

〈A�

tω2/
√
3−3(n+1)ω/

√
3
ei , ei 〉L2dt

]
. (3.4)

The residue theorem shows that for n ∈ Z and R large enough,

∫
�n,R

〈A�
zei , ei 〉L2dz =

∫
R

〈A�

tω2/
√
3−3nω/

√
3
ei , ei 〉L2

ω2

√
3
dt

−
∫
R

〈A�

tω2/
√
3−3(n+1)ω/

√
3
ei , ei 〉L2)

ω2

√
3
dt.

(3.5)

Applying the residue theorem and using (3.4) gives (3.1). ��
The consequences of this formula are summarized in the following theorem:

Theorem 5. Consider a potential U ∈ C∞(C/�;C) satisfying the first two symmetries
of (1.1) with finitely many non-zero Fourier modes cn ∈ Q(ω/

√
3) appearing in the

decomposition (2.1). Then for any � ≥ 2, one has τ� ∈ πQ(ω/
√
3). If U also has the

third symmetry of (1.1) then the traces are real and thus τ� ∈ πQ/
√
3. In particular,
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for all potentials satisfying all three symmetries in (1.1), including U = U0 defined in
(1.2), one has

∀� ≥ 2, tr(T 2�
k ) =

∑
α∈A(U )

α−2� = π√
3
q�, q� ∈ Q,

where A(U ) is the set of magic angles counting multiplicity for a potential U.

Proof. Under the hypothesis of the corollary, the function k �→ 〈A�
kei , ei 〉L2 is a rational

fraction with coefficients inQ(ω/
√
3). This ring is actually a field as ω/

√
3 is algebraic

on Q. Now, taking partial fraction expansion of k �→ 〈A�
kei , ei 〉L2 in Q(ω/

√
3)(X) (the

space of rational fractions with coefficients living inQ(ω/
√
3)(X)) gives coefficients in

Q(ω/
√
3). In particular, the residues of k �→ 〈A�

kei , ei 〉L2 live in the fieldQ(ω/
√
3)(X).

But the uniqueness of the partial fraction expansion now gives that these are also the
residues of k �→ 〈A�

kei , ei 〉L2 in C(X). Using the trace formula stated in Theorem 4,
this yields

∀� ≥ 2, τ� ∈ πQ(ω/
√
3).

If we add the last symmetry of (1.1), the trace is real so that

∀� ≥ 2, τ� ∈ πQ(ω/
√
3) ∩ R ⇒ τ� = π√

3
q�, q� ∈ Q.

��
This rationality condition suffices to prove that there is an infinite number of magic
angles as long as there exists at least one magic angle.

Theorem 6. Under the assumptions and with the same notation as in Theorem 5 one
has the implication

|A(U )| > 0 ⇒ |A(U )| = +∞.

In particular, the set of magic angles for our canonical potential U0 defined in (1.2) is
infinite.

Let N ≥ 0, for a tuple a = (an){n;‖n‖∞≤N }, define Ua to be the potential defined
by (2.1). Then the above implication holds for a generic (in the sense of Baire) set of
coefficients a = (an){n;‖n‖∞≤N } ∈ C

(2N+1)2 that contains (Q(ω/
√
3))(2N+1)2 .

Proof. We start by observing that sinceπ is transcendental onQ, it is also transcendental
in Q(ω/

√
3). Now, assume by contradiction, that there exist only finitely many eigen-

values λi ∈ C for i = 1, .., N of A2
k . Then we define the n-th symmetric polynomial

en(λ1, . . . , λN ) =
∑

1≤ j1< j2<···< jn≤N

λ j1 · · · λ jn .

Newton identities show that this polynomial can be expressed as

en(λ1, . . . , λN ) = (−1)n
∑

m1+2m2+···+nmn=n
m1≥0,...,mn≥0

n∏
i=1

(− tr A2i
k )mi

mi !imi
(3.6)
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where en = 0 for n > N . Theorem 1 shows that

n∏
i=1

(tr A2i
k )mi ∈ Q

(
ω√
3

)
πm1···mn .

The powerm1 · · ·mn from sequences allowed in (3.6) ismaximized by the unique choice
m = (n, 0, . . . , 0). The Newton identities for n > N then imply that the transcendental

number π is a root of a polynomial with coefficients in Q

(
ω/

√
3
)

. But then all these

coefficients vanish, this is equivalent to the fact that the spectrum is empty (because of
the determinant function, see (4.4)). For our particular choice of potential U0, the fact
that tr A2

k = 0 contradicts [2, Theorem 3] so the set of magic angles is non empty, and
thus infinite.

Now, let a = (an){n;‖n‖∞≤N } ∈ C
(2N+1)2 and assume that A(Ua) �= ∅. Then,

we can find an open neighbourhood of a, �a � a, such that for coefficients b =
(bn){n;‖n‖∞≤N } ∈ �a we have A(Ub) �= ∅. Take q = (qn){n;‖n‖∞≤N } ∈ (Q(ω/√
3))(2N+1)2 ∩ �a for which we then have |A(Uq)| = ∞. Continuity of eigenvalues

of Tk as the potential U changes shows that the Vm,a := {b ∈ �a : |A(Ub)| ≥ m}
is open and dense in �a . Hence, the set coefficients for which 0 < |Ab| < ∞
is given by

⋃
m∈N

⋃
q∈(Q+iQ)2N+1 �q\Vm,q . It is then meagre and does not contain

(Q(ω/
√
3))(2N+1)2 . ��

4. Fredholm Determinants and the First Magic Angle

In this section, we explain how to compute the first few traces from our formula and
show the existence of a simple real magic angle, i.e. prove Theorem 3. From now on,
our choice of potential is given by U = U0 defined in 1.2. Here we recall some facts
from [2,3] needed in this paper.

4.1. Fourier coordinates. For our numerics, it is convenient to use rectangular coordi-
nates z = 2i(ωy1+ωy2), see [2, §3.3] for details. In these coordinates, wemay introduce

Dk := ω2(Dy1 + k1) − ω(Dy2 + k2),

V(y) := √
3(e−i(y1+y2) + ωei(2y1−y2) + ω2ei(−y1+2y2)),

(4.1)

with periodic periodic boundary conditions (for y �→ y+2πn, n ∈ Z
2). In the following,

we shall write V±(y) := V(±y). The operator Ak , defined in (2.3), reads in the new
coordinates

D−1
k V+D−1

k V− : L2(C/2π(Z + iZ);C) → L2(C/2π(Z + iZ);C).

On the Fourier transform side we introduce the equivalent of operators (4.1)

D̂k := ω2(D + k1) − ω(D + k2), with D = diag(�)�∈Z
V̂±(y) := √

3
(
J± ⊗ J± + ωJ∓2 ⊗ J± + ω2 J± ⊗ J∓2

)
,

(4.2)
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where J is the right-shift J ((an)n) = (an+1)n—see [2, (3.17)]. The spaces L2
(p1,p2)

(C/�;C), introduced in (2.4), correspond to

�2(p1,p2) := { f ∈ �2(Z2) : ∀ n /∈ (3Z + p1) × (3Z + p2) , fn = 0}.
As in [2, §3.3], we introduce auxiliary operators J p,q := J p ⊗ Jq , p, q ∈ Z. For a
diagonal matrix � = (�i, j )i, j∈Z acting on �2(Z2), we define a new diagonal matrix

�p,q := (�i+p, j+q)i, j∈Z.

We recall the following properties [2, (3.24)]

J p,q�J p′,q ′ = �p,q J
p+p′,q+q ′ = J p+p′,q+q ′

�−p′,−q ′ . (4.3)

Denoting the inverse of D̂−1
k by

� = �k := D̂−1
k , �m,n = 1

ω2(m + k1) − ω(n + k2)
, (k1, k2) /∈ Z

2,

we see that Ak reads in the new Fourier coordinates

1

3
Âk = ��1,1 + ω��1,−2 + ω2��−2,1 + ω��1,1 J

3,0 + ω2��1,1 J
0,3

+ω��−2,1 J
−3,0 + ω2��1,−2 J

0,−3 + ��−2,1 J
−3,3 + ��1,−2 J

3,−3

with Âk the analogous restriction to �2(1,1).

4.2. Fredholmdeterminants. Westart by defining the regularizedFredholmdeterminant

det2(1 − α2 Âk) =
∏

λ∈Spec(Ak )

E1(α
2λ) with E1(z) = (1 − z)ez (4.4)

where the product respects multiplicities.We find from (2.6) that det2(1−α2 Âk) = 0 ⇔
α−1 ∈ Spec(Tk)\{0}. The symmetry of the spectrum of Âk , Spec( Âk) = Spec( Âk),

implies that α �→ det2(1− α2 Âk) is real-valued on the real axis. To show existence and
simplicity of magic angles, in the representation, we therefore use the following Lemma
which provides ab initio bounds on the Fredholm determinants and its derivatives.

Lemma 4.1. The determinant C � α �→ det2(1 − α2 Âk) in (4.4) is an entire function,
independent of k ∈ C, which for any n,m ∈ N0 satisfies∣∣∣∣∣∣∂

m
α det2(1 − α2 Âk) − ∂mα

n∑
j=0

μ j
(−α2) j

j !

∣∣∣∣∣∣ ≤
∞∑

j=n+1

∂m|α|
(√

e infk∈C ‖ Âk‖2|α|2√
j

) j

with ‖A0‖2 ≤ 2, where

μ j := det

⎛
⎜⎜⎜⎜⎝

0 j − 1 0 · · · 0
σ2 0 j − 2 · · · 0
...

...
. . .

. . .
...

σ j−1 σ j−2 · · · 0 1
σ j σ j−1 σ j−2 · · · 0

⎞
⎟⎟⎟⎟⎠ , with σ j = tr Â j

k . (4.5)
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Proof. The expression (4.4) is well-defined since Âk is a Hilbert-Schmidt operator and

the Taylor coefficientsμ j are for example stated in [8, (6.13)]. Indeed, since |E1| ≤ e
|z|2
2

for z ∈ C and
∑

λ∈Spec( Âk )
|λ|2 ≤ ‖ Âk‖22, we conclude that

| det2(1 − α2 Âk)| ≤ exp

(
|α|4‖ Âk‖22

2

)
. (4.6)

Cauchy estimates for the entire function f (z) := det2(1+z Âk) show by using the growth
bound (4.6)

|μ j | ≤ j !
|α|2 j exp

(
|α|4‖ Âk‖22

2

)

which is optimized at |α|2 =
√

j
‖ Âk‖2 , such that

|μ j | ≤ ‖ Âk‖ j
2e

j/2 j !
j j/2

.

The Taylor coefficients μ j are then given by the Plemelj-Smithies formula [8] stated in
(4.5). Since they only depend on traces σ j which are independent of k, it follows that
the regularized Fredholm determinant is an entire function independent of k. Hence, it
suffices to study the determinant for k = 0.

If we write Â0 = ( Â0(n))n∈Z2 and let Pm be the projection onto (3{−m,−m +
1, ...,m} + 1)2, then

‖ Â0‖2 ≤ ‖PM Â0‖2 + ‖(id−PM ) Â0‖2. (4.7)

The first term constitutes the Hilbert-Schmidt norm of a finite matrix which can be
explicitly computed from the matrix elements using symbolic calculations, indeed

‖PM Â0‖2 =
√
tr(PM Â0 Â∗

0PM ) ≤ 5 for M = 760.

To estimate the second term, we may use that the operator norm of V± satisfies
‖V±‖ = 3

√
3, therefore one has

‖(id−PM ) Â0‖2 ≤ 9‖(id−PM )(D−1
0 )�2

(1,1)→�2
(1,1)

‖4‖(D−1
0 )�2

(2,2)→�2
(2,2)

‖4. (4.8)

We recall that by definition

‖(D−1
0 )�2

(1,1)→�2
(1,1)

‖4 =
( ∑

m∈(3Z+1)2

|ω2m1 − ωm2|−4
)1/4

.

A simple change of variables shows that ‖(D−1
0 )�2

(1,1)→�2
(1,1)

‖4 = ‖(D−1
0 )�2

(2,2)→�2
(2,2)

‖4.
Then, a direct computation shows that in terms of

g(m) = 3((m1 + 1)2 + (m2 + 1)2 + (m1 + m2)
2)

2
− 2
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we have

‖(D−1
0 )�2

(2,2)→�2
(2,2)

‖4 = 1√
3

( ∑
m∈Z2

1

g(m)2

)1/4

.

While an explicit computation shows using exact symbolic calculations

∑
|m|∞≤6

1

g(m)2
≤ 24

7
(4.9)

Then, we may use for |m|∞ > 6 that g(m) ≥ |m|2 + 52, such that we can estimate the
remainder

∑
|m|∞≥7

1

g(m)2
≤
∫ ∞

6

2πr

(r2 + 52)2
dr = π

61

⇒ ‖(D−1
0 )�2

(2,2)→�2
(2,2)

‖4 ≤
(

8

21
+

π

549

)1/4

.

(4.10)

Inserting this estimate into (4.8), we find along the lines of (4.10)

‖(id−PM ) Â0‖2 ≤ 213

10
‖(id−PM )(D−1

0 )�2
(1,1)→�2

(1,1)
‖4

≤ 213

10

1√
3

(∫ ∞

760

2πr

(r2 + 7592)2
dr

)1/4

<
1

2
,

(4.11)

which shows that ‖ Â0‖2 < 11
2 . ��

Using the preceding error estimate with the explicit traces in Table 1, we conclude
the existence of a first real magic angle in the next Proposition. The Proposition also
completes the proof of Theorem 3. Indeed, (2.8) implies together with [3, Theorem 2]
the existence of a 0 gap between the two flat bands of the Hamiltonian and the remaining
bands.

Proposition 4.2. There exists a simple real eigenvalue 1
α2∗

to the operator Âk , indepen-

dent of k ∈ C, with α∗ ∈ (0.583, 0.589) such that ( 1
α2∗

,∞) ⊂ R\ Spec( Âk).

Proof. To see that this is the first real magic angle, we first notice that the operator norm
of Â0 is bounded by

‖ Â0‖ ≤ (3
√
3)2‖(D−1

0 )�2
(1,1)→�2

(1,1)
‖2 = 9.

This estimate shows that α ∈ R
+ with 1/(α2) ∈ Spec( Â0) satisfies α ≥ 1

3 . A finite
number of traces as explicitly computed in Table 1 are then relevant to prove the existence
of a magic angle.

For ν ∈ R
+ we find

ri ≤
(
2ν

α

)i
(

ν√
N

)N−i

1 − ν√
N

for r0 :=
∞∑

k=N

(
ν√
k

)k

and r1 :=
∞∑

k=N

2k

α

(
ν√
k

)k

.
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Table 1. First eight exact traces of Ap
k , σp = tr(Ap

k ), with floating point approximation, where σ1 :=
limn→∞

∑
|i |≤n〈Akei , ei 〉 is not absolutely summable as Ak is not of trace-class, computed using Theorem

4 in the version stated as Theorem 7 in the appendix. One sees that the ratio of σp/σp−1 ≈ 1/0.58572 =
2.91507, for p large, where 0.5857 is the first magic angle

p σp

√
3

π
1 2/3
2 4
3 96/7 ≈ 13.71
4 40
5 28680/247 ≈ 116.14
6 2206080/6517 ≈ 338.51
7 1957475168/1983163 ≈ 987.05
8 39948260880/13882141 ≈ 2877.67

Evaluating the bound for N = 17 and ν = √
e‖ Â0‖2α2, as in the error bound stated

in Lemma 4.1, with upper bound ‖ Â0‖2 = 5.5, we obtain for α = 3
5 that r0 ≤ 1

50 and
r1 ≤ 1

2 . The existence of a root follows from studying

f (α) :=
16∑
k=0

μk
(−α2)k

k! , sup
α∈(1/3,β)

f ′(α) ≤ g(β = 0.6) :=
20∑
k=2

ak(β),

where the summation starts at k = 2 since μ1 = 0, with

ak(β) =
⎧⎨
⎩2μk

(−1)k
( 1
3

)2k−1

(k−1)! , if μk(−1)k < 0

2μk
(−1)k ( 35 )2k−1

(k−1)! , if μk(−1)k ≥ 0.

One then checks (using computations involving integers only)

f (0.583) >
1

40
, f (0.589) < − 1

40
, and g(

3

5
) < − 7

10
.

We conclude that there is α∗ ∈ (0.583, 0.589) such that det2(1 − α2∗ Âk) = 0 and
∂α|α=α∗ det2(1 − α2 Âk) < 0. The non-existence of any other α ∈ ( 13 , α∗) at which the
determinant vanishes follows from the monotonicity of f. ��
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Appendix: Trace Formula in Fourier Coordinates

In this section we give an auxiliary version of Theorem 4 that we used for our computer
assisted computation of traces. Using the relation (4.3), the diagonal part ofA�

k is of the
form

((A�
k)i i )i∈Z = 3�

∑
π∈��

ωmπ

�∏
i=1

�α̃i ,β̃i
�γ̃i ,δ̃i

,

π := [
(α1, β1), (γ1, δ1), (α2, β2), ..., (γ�, δ�)

]
,

(A.1)

where

α̃i =
i−1∑
j=1

α j + γ j β̃i =
i−1∑
j=1

β j + δ j , γ̃i = αi +
i−1∑
j=1

α j + γ j ,

δ̃i = βi +
i−1∑
j=1

β j + δ j , mπ := 2
3

�∑
i=1

(γi + βi ).

(A.2)

In (A.1), the sum is over elements of the finite set

�� :=
{
π = [

(α1, β1), (γ1, δ1), (α2, β2), ..., (γ�, δ�)
]
,

�∑
j=1

α j + γ j =
�∑

j=1

β j + δ j = 0,

(αi , βi ) ∈ {(1, 1), (−2, 1), (1,−2)}, (γi , δi ) ∈ {(−1,−1), (2,−1), (−1, 2)}
}
.

(A.3)

Using (A.1), the diagonal part of A�
k , is of the form

3�
∑

π∈��

ωmπ

�∏
i=1

�′
αi ,βi

�′
γi ,δi

, π = [
(α1, β1), (γ1, δ1), (α2, β2)..., (γ�, δ�)

]
,

where �′ corresponds to the matrix where we only kept the coefficients (n,m) where
(n,m) ∈ (3Z + 1) × (3Z + 1) i.e

�′
m,n = 1

ω2(3m + 1 + k1) − ω(3n + 1 + k2)
.

Theorem 4 then reduces to

http://creativecommons.org/licenses/by/4.0/
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Theorem 7. Let � ≥ 2 and �� be as in (A.3) with coefficients α̃i , .., δ̃i ,mπ as in (A.2).
Then the traces are given by

tr
(
A�
k

)
= −2iωπ

3

∑
π∈��

∑
(ηi ,εi )∈{(α̃i ,β̃i ),(γ̃i ,δ̃i ),1�i�l}

Res( fπ ,−γ(ηi ,εi ))εi ,

where with γ(a,b) = ω2a − ωb

fπ (k) := 3�ωmπ

�∏
i=1

1

(k + γ(α̃i ,β̃i )
+ μ)(k + γ(γ̃i ,δ̃i )

+ μ)
, μ := ω2 − ω.

Proof. This is just a re-writing of formula of Theorem 4 in these rectangular coor-
dinates. Indeed, the (0, 0)-th entry of the matrix A�

k is, in these notation, equal to∑
π∈��

fπ (k). Because we work in a the Hilbert space L2(C/�,C), this entry is also

equal to 〈A�
kei , ei 〉L2 . Now, the poles of this function are exactly described by γ(α̃i ,β̃i )

+μ

and γ(γ̃i ,δ̃i )
+μ (this is a consequence of formula A.1). Note however that in these coor-

dinates, the poles get rescaled by
√
3, this is why μ = −i

√
3 replaces −i . On the level

of residues, this explains why a
√
3 does not appear in this formula. Finally, we remark

that in this decomposition, γ(α̃i ,β̃i )
+μ ∈ √

3
(
3�∗ − i

)
and γ(γ̃i ,δ̃i )

+μ ∈ √
3
(
3�∗ − 2i

)
thus corresponding to the splitting appearing in the formula of stated in Theorem 4. ��
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