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Abstract: We develop a homological generalization of Green hyperbolic operators,
called Green hyperbolic complexes, which cover many examples of derived critical
loci for gauge-theoretic quadratic action functionals in Lorentzian signature. We define
Green hyperbolic complexes through a generalization of retarded and advanced Green’s
operators, called retarded and advanced Green’s homotopies, which are shown to be
unique up to a contractible space of choices.We prove homological generalizations of the
most relevant features ofGreen hyperbolic operators, namely that (1) the retarded-minus-
advanced cochain map is a quasi-isomorphism, (2) a differential pairing (generalizing
the usual fiber-wise metric) on a Green hyperbolic complex leads to covariant and fixed-
time Poisson structures and (3) the retarded-minus-advanced cochain map is compatible
with these Poisson structures up to homotopy.
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1. Introduction and Summary

Green hyperbolic operators [Bar15], generalizing normally hyperbolic ones [BGP07],
are one of the cornerstones of mathematical field theory on (globally hyperbolic)
Lorentzian manifolds M . By definition, these are linear differential operators P :
�(E) → �(E) acting on sections of a vector bundle E → M that admit retarded
and advanced Green’s operators G± : �c(E) → �(E), i.e. linear maps satisfying
G± Pϕ = ϕ = P G±ϕ that propagate any compactly supported section ϕ ∈ �c(E) to
the causal future/past supp(G±ϕ) ⊆ J±

M (supp(ϕ)) of its support. In particular, Green
hyperbolic operators cannot vanish on non-zero compactly supported sections. This
basic observation shows that the differential operator governing the dynamics of any
gauge theory can not be Green hyperbolic as it is necessarily degenerate (it must vanish
on gauge transformations). To resolve this incompatibility, the present paper develops
the concept of Green hyperbolic complexes, a homological generalization of Green
hyperbolic operators that encompasses the typical degeneracies of gauge theories.

To start with, we consider complexes of linear differential operators (F, Q) on M ,
which consist of a Z-graded vector bundle F → M and of a collection Q of degree-
increasing linear differential operators squaring to zero. From the perspective of the
derived critical locus of a gauge-theoretic quadratic action functional, i.e. the Batalin-
Vilkovisky formalism, the degree 0 part of F accommodates the (gauge) fields, the nega-
tive degrees accommodate the (higher) gauge transformations, also known as ghosts, and
the positive degrees accommodate the anti-fields. The collection of degree-increasing
differential operators Q simultaneously encodes both the action of (higher) gauge trans-
formations and the equation of motion of the (gauge) fields.

In analogy with the definition of a Green hyperbolic operator, a Green hyperbolic
complex is by Definition 3.5 a complex of linear differential operators (F, Q) that admits
so-called retarded and advanced Green’s homotopies �±. The latter are homological
generalizations of retarded and advanced Green’s operators, which are formalized by
(−1)-cochains �± ∈ map(FJ±

M
,FJ±

M
)−1 such that δ�± = id, where map denotes a

suitable mapping complex (with differential δ) defining a dg-enrichment on the category
of cochain complex valued functors (see Sect. 2.3), FJ±

M
is the functor that assigns the

cochain complex FJ±
M (K ) of sections of (F, Q) supported in the causal future/past of any

compact subset K ⊆ M and the 0-cocycle id ∈ map(FJ±
M
,FJ±

M
)0 is the identity natural

transformation of the functor FJ±
M
. Informally, one may think of the defining condition

δ�± = id as the analog of the usual identities G± Pϕ = ϕ = P G±ϕ involving
the retarded and advanced Green’s operators G± associated with a Green hyperbolic
operator P and of the functors FJ±

M
as a formalization of the future/past propagation

of supports typical of G±. Encoding the support conditions via the functors FJ±
M
and

using the homologically well-behaved mapping complex map are the key ingredients
that distinguish our approach from previous work on formal PDE theory and elliptic
complexes, see e.g. [Tar91, Chs. 1 and 2] for a textbook reference.

Let us emphasize that Green hyperbolic complexes are a genuine generalization
of Green hyperbolic operators in the following sense. Any linear differential opera-
tor P acting on sections of a vector bundle E defines a two-term complex of linear
differential operators (F(E,P), Q(E,P)), which we take to be concentrated in degrees
0 and 1, see Example 3.3. It turns out that P is a Green hyperbolic operator if and
only if (F(E,P), Q(E,P)) is a Green hyperbolic complex. This follows from the observa-
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tion that a retarded/advanced Green’s homotopy for (F(E,P), Q(E,P)) is the same as a
retarded/advanced Green’s operator for P , see Example 3.6.

A key result in the theory of Green hyperbolic operators is the uniqueness of the
associated retarded and advanced Green’s operators. One may wonder if Green hyper-
bolic complexes behave similarly, namely the associated retarded and advanced Green’s
homotopies are unique (in the appropriate sense, see below). Proposition 3.10 provides
a positive answer to this question, which also clarifies the role of the mapping complex
map entering the definition of retarded and advancedGreen’s homotopies. Crucially,map
is a derived functor and hence compatible with weak equivalences, i.e. it sends natural
quasi-isomorphisms to quasi-isomorphisms. A non-trivial, yet direct consequence of this
feature is that the spaces of retarded and advancedGreen’s homotopiesGH± from (3.13)
are either empty or contractible. Since at least one retarded and one advanced Green’s
homotopy exist by definition of a Green hyperbolic complex, it follows that GH± is
contractible, which provides the correct homotopical formalization of uniqueness for
retarded and advanced Green’s homotopies. In contrast, note that uniqueness in the
ordinary sense is not a relevant question in this context. For instance, adding any (−1)-
coboundary δλ± from the mapping complex map(FJ±

M
,FJ±

M
) to a retarded/advanced

Green’s homotopy �± yields a new one �± + δλ±, however one would like to regard
the latter as being equivalent to the former since they represent the same cohomology
class. What would be a genuinely new retarded/advanced Green’s homotopy is one that
differs from �± by a (−1)-cocycle that represents a non-trivial cohomology class. Our
contractibility result ensures in particular that such a (−1)-cocycle does not exist.

The relevance of Green hyperbolic operators P for mathematical field theory on
globally hyperbolic Lorentzian manifolds [BFV03,FV15] relies on the following key
results [BGP07,Bar15].

(1) The so-called retarded-minus-advanced propagator G := G+ − G− descends to the
isomorphism

G : cokerc(P)
∼=−→ kersc(P) (1.1)

that characterizes the vector space kersc(P) := ker(P : �sc(E) → �sc(E)) of
solutionswith spacelike compact support sc in terms of the vector space cokerc(P) :=
coker(P : �c(E) → �c(E)) = �c(E)

/
P�c(E) of sections with compact support c

modulo equations of motion.
(2) When P is formally self-adjoint with respect to a fiber metric 〈−,−〉 on E , we

use the retarded-minus-advanced propagator G or the retarded/advanced Green’s
operator G± to construct the (covariant) Poisson structure

τM : cokerc(P)⊗2 −→ R (1.2a)

by any of the following four equivalent definitions: for all [ϕ1], [ϕ2] ∈ cokerc(P),

τM ([ϕ1] ⊗ [ϕ2]) :=
∫

M
〈ϕ1 ∧ ∗Gϕ2〉 = −

∫

M
〈ϕ2 ∧ ∗Gϕ1〉

= ±
∫

M
〈ϕ1 ∧ ∗G±ϕ2〉 ∓

∫

M
〈ϕ2 ∧ ∗G±ϕ1〉, (1.2b)

where ∗ denotes the Hodge star operator fixed by the metric and orientation of M .
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(3) When P = �∇ + B is the sum of the d’Alembert operator of a metric connection ∇
on (E, 〈−,−〉) and of a symmetric endomorphism B, one obtains the (fixed-time)
Poisson structure1 associated with a spacelike Cauchy surface � ⊆ M

σ� : kersc(P)⊗2 −→ R (1.3a)

by defining, for all ψ1, ψ2 ∈ kersc(P),

σ�(ψ1 ⊗ ψ2) := −
∫

�

〈ψ1 ∧ ∗∇ψ2 − ψ2 ∧ ∗∇ψ1〉. (1.3b)

The isomorphism G : cokerc(P)
∼=−→ kersc(P) from item (1) is compatible with the

Poisson structures in the sense that

σ� ◦ G⊗2 = τM . (1.4)

Hence, it defines an isomorphism of Poisson vector spaces

G : (
cokerc(P), τM

) ∼=−→ (
kersc(P), σ�

)
. (1.5)

It turns out that our broader concept of Green hyperbolic complexes leads to very
similar results. More explicitly, in this paper we prove the following.

(1′) To any choice of retarded and advanced Green’s homotopies �± for (F, Q) we
associate the so-called retarded-minus-advanced cochain map �h and show in
Theorem 3.14 that it provides a quasi-isomorphism

�h := �+ h − �− h : Fhc[1] ∼−→ Fhsc, (1.6)

where �± h := hocolim(�±), between the 1-shift of the cochain complex Fhc of
sections of (F, Q) with compact support and the cochain complex Fhsc of sections
with spacelike compact support. Here the subscript h denotes that the support condi-
tions are implemented via suitable homotopy colimits replacing the usual ordinary
colimits. (As we explain below, this technical complication can be removed in the
presence of a so-called Green’s witness.)

(2′) Based on the concept from Definition 3.16 of a differential pairing (−,−) on
(F, Q), which is a homological replacement of the fiber metric 〈−,−〉, and mim-
icking the multiple equivalent ways of writing the classical Poisson structure from
item (2), in Proposition 3.21 we construct three (covariant) Poisson structures

τ±
M , τM := asym(̃τM ) : Fhc[1]⊗2 −→ R (1.7a)

using either �± h or the retarded-minus-advanced cochain map �h. Explicitly, τ
±
M

is given, for all homogeneous ϕ1, ϕ2 ∈ Fhc[1], by

τ±
M (ϕ1 ⊗ ϕ2) := ±

∫

M
(ϕ1,�± hϕ2) ∓ (−1)|ϕ1||ϕ2|

∫

M
(ϕ2,�± hϕ1), (1.7b)

1 In the literature this is sometimes called the (pre)symplectic structure on the spacelike compact solution
space.
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and is manifestly graded anti-symmetric. Using also graded anti-symmetrization,
the Poisson structure τM is defined from the cochain map τ̃M : Fhc[1]⊗2 → R

given, for all homogeneous ϕ1, ϕ2 ∈ Fhc[1], by

τ̃M (ϕ1 ⊗ ϕ2) :=
∫

M
(ϕ1,�hϕ2). (1.7c)

Graded anti-symmetrization is needed to define τM because the chosen retarded
and advanced Green’s homotopies �±, which enter the definition of �h, may not
be compatible with the differential pairing (−,−). For the same reason, the three
Poisson structures τ+M , τ−

M and τM in general do not coincide on the nose, however
they are related by a homotopy λM ∈ [Fhc[1]⊗2,R]−1 according to

τ±
M = τM ± ∂λM . (1.8)

Graded anti-symmetrization and the homotopy λM are complications that can be
removed in the presence of a so-called formally self-adjoint Green’s witness, as we
explain below. Under this additional assumption, it turns out that the three Poisson
structures coincide τ+M = τ−

M = τM .
(3′) Upon the choice of a spacelike Cauchy surface� ⊆ M , the concept of a differential

pairing (−,−) leads also to the (fixed-time) Poisson structure

σ� : F⊗2
hsc −→ R (1.9a)

from Proposition 3.23, which is defined, for all homogeneous ψ1, ψ2 ∈ Fhsc, by
the formula

σ�(ψ1 ⊗ ψ2) := (−1)m−1
∫

�

(ψ1, ψ2). (1.9b)

We prove in Theorem 3.24 that the retarded-minus-advanced cochain map �h is
compatible with the Poisson structures

σ� ◦ �⊗2
h = τM + ∂λh (1.10)

up to an explicitly constructed graded anti-symmetric homotopy λh ∈ [Fhc[1]⊗2,

R]−1. This defines an equivalence

(�h, λh) : (
Fhc[1], τM

) ∼−→ (
Fhsc, σ�

)
(1.11)

in the simplicial category of Poisson complexes set up in [GH18, Sec. 3.1].

Let us emphasize that the new results from items (1′–3′) in the theory ofGreen hyperbolic
complexes recover precisely the corresponding results from items (1–3) in the theory
of Green hyperbolic operators, see e.g. Remark 4.15, when (F, Q) = (F(E,P), Q(E,P))

is the Green hyperbolic complex from Example 3.3 associated to a Green hyperbolic
operator P acting on sections of a vector bundle E .

Coming back to the connection with the Batalin-Vilkovisky formalism, the results
listed above show that the proposed concept of a Green hyperbolic complex captures the
essential information encoded by Lorentzian linear gauge theories. Auxiliary structures
that are often considered in concrete applications, such as gauge-fixings and auxiliary
fields, do not play any distinguished role and have no conceptual significance in the
proposed approach, reflecting what is expected from a physical point of view.
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Of course, auxiliary structures may be very useful in practice. For instance, we iden-
tify a convenient auxiliary structure on a complex of linear differential operators (F, Q)

by introducing the concept of a Green’s witness W . The latter consists of a collec-
tion of degree-decreasing linear differential operators such that P := Q W + W Q is a
degree-wiseGreen hyperbolic operator. The nameGreen’s witness for W is motivated by
Theorem 4.7, which states that (F, Q) is a Green hyperbolic complex as a consequence
of the presence of W and furthermore provides specific choices of retarded and advanced
Green’s homotopies�± := W G± constructed out of the retarded and advancedGreen’s
operators G± for P . This specific choice of �± coming from a Green’s witness W
removes the technical complications (associated with homotopy colimits) that arise in
our approach, demonstrating the usefulness of Green’s witnesses. More precisely, in
item (1′) one can replace �h with the simpler � := colim(�+ − �−) : Fc[1] → Fsc
involving sections with compact and respectively spacelike compact supports in the
ordinary sense, see Remarks 4.13 and 4.14. Furthermore, if the Green’s witness W is
formally self-adjoint with respect to a differential pairing (−,−) on (F, Q) in the sense
of Definition 4.16, then graded anti-symmetrization and the homotopy λM in item (2′)
become superfluous, see Proposition 4.18 and Remark 4.19. In this case also item (3′)
becomes simpler, as one sees from Theorem 4.21.

Green’s witnesses are frequently available in gauge-theoretic examples of interest.
As a matter of fact, Green hyperbolic complexes endowed with a differential pairing
and a formally self-adjoint Green’s witness encompass linear Chern–Simons theory,
see Examples 3.2, 3.17, 4.4, 4.10 and 4.22, formally self-adjoint normally hyperbolic
operators P = �∇ + B, see Examples 3.3, 3.18, 4.5, 4.11 and 4.23, and Maxwell p-
forms, see Examples 3.4, 3.19, 4.6, 4.12 and 4.24. In particular, the simplified versions
of items (1′–3′) apply to these examples.

The previous discussion may induce the reader to think that it might be worth to
regard a Green’s witness as an essential, as opposed to auxiliary, structure. We stress
that this is not the case. It is the general theory of Green hyperbolic complexes that allows
one to correctly formalize uniqueness of retarded and advanced Green’s homotopies in
terms of contractibility of suitably defined spaces. The presence of a Green’s witness
only ensures that such spaces contain specific points that are particularly well-behaved,
which is very useful in applications in the context of quantum field theory, see [BMS22].
Furthermore, in [BGS23] a gauge-theoretic model is illustrated that possesses Green’s
homotopies (actually, a variant of this concept that is relevant in that context), but does
not seem to admit a Green’s witness.

Let us now briefly outline the structure of the remainder of the paper. Section2 col-
lects the necessary preliminary material. More in detail, Sect. 2.1 reviews the basics
of the theory of Green hyperbolic operators, Sect. 2.2 recalls some useful tools from
homological algebra and Sect. 2.3 is devoted to the category of cochain complex valued
functors. In particular, we explain that the latter is a dg-category, whose cochain complex
of morphisms from V to W is given by a mapping complex map(V,W) formalizing a
concept of homotopy coherent natural transformations and (higher) homotopies between
them, we illustrate a concrete model for the homotopy colimit functor and we observe
that the latter is dg-left adjoint to the diagonal dg-functor. The core of the paper is Sect. 3.
Retarded and advanced Green’s homotopies, as well as Green hyperbolic complexes,
are introduced in Sect. 3.1. In particular, Proposition 3.9 provides a recognition prin-
ciple for Green hyperbolic complexes and Proposition 3.10 shows that the spaces of
retarded/advanced Green’s homotopies are either empty or contractible. The retarded-
minus-advanced cochain map �h is constructed in Sect. 3.2, which is devoted to the
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proof of Theorem 3.14 stating that �h is a quasi-isomorphism. Section3.3 defines the
concept of a differential pairing. This is used in Propositions 3.21 and 3.23 to construct
two types of Poisson structures τ±

M , τM (which involve �± h,�h and coincide up to a
specified homotopy) and σ� (depending on the choice of a spacelike Cauchy surface
� ⊆ M) defined on the domain and respectively on the codomain of �h. Theorem 3.24
shows that�h is compatible with τM and σ� up to a homotopy that is constructed explic-
itly. The paper is completed by Sect. 4, which is devoted to Green’s witnesses. Those
are defined in Sect. 4.1, which shows with Theorem 4.7 that a Green’s witness ensures
Green hyperbolicity and provides specific choices of retarded and advanced Green’s
homotopies. This result yields all examples of Green hyperbolic complexes presented
in this paper. Furthermore, we explain in Remarks 4.13 and 4.14 that a Green’s wit-
ness simplifies considerably the construction of the retarded-minus-advanced cochain
map and the proof that the latter is a quasi-isomorphism. Remark 4.15 emphasizes that
this quasi-isomorphism recovers the well-known exact sequence (2.3) associated with
a Green hyperbolic operator. Section4.2 concludes the paper by defining formally self-
adjoint Green’s witnesses, which lead to simplified versions of the Poisson structures τM
and σ� , see Propositions 4.18 and 4.20, and of their compatibility with the (simplified)
retarded-minus-advanced cochain map �, see Theorem 4.21.

Relation to previous approaches. The problem of constructing Poisson structures for
(gauge) field theories on Lorentzian manifolds has a rich history, see e.g. [Mar94a,
Mar94b,FR05] for important earlier contributions and the introduction of [Kha14] for a
detailed historical overview. In the context of gauge theories, the traditional aim was to
endow the algebra of gauge invariant on-shell observables of a gauge field theory with a
suitable Poisson bracket structure, generalizing Peierls’ original construction [Pei52] for
theories without gauge symmetry. Explicit proposals for such generalizations are given
in [HS13,Kha14,Sha14]. It is important to emphasize that endowing the algebra of gauge
invariant on-shell observables with a Poisson bracket is only a truncation (obtained by
passing to 0th cohomology) of the homological problem that we address and solve in our
paper. Our Poisson structures are defined at the level of cochain complexes (without ever
passing to cohomology), which is crucial to make contact with the recent developments
in homotopical algebraic (quantum) field theory [BSW19]. The use of cohomological
methods in these earlier approaches, most notably in [Kha14,Sha14,Ben16,Kha17], is
mostly of practical nature in order to facilitate the construction and prove properties (e.g.
non-degeneracy) of the Poisson bracket on gauge invariant on-shell observables.

An alternative approach that has been taken in the literature is to construct Poisson
brackets in the context of the BRST or BV formalism, see e.g. [FR12,Sha15,WZ17].
While these approaches are intrinsically homological, such as ours, the main difference
lies in the fact that all previous approaches (that we are aware of) manifestly make
use of auxiliary structures in their constructions, such as redundant fields and suitable
gauge fixings. While this is completely acceptable from a practical point of view, it
leaves open important questions, most notably: What is a quasi-isomorphism invariant
definition of the concept of retarded/advanced Green’s operators and their associated
Poisson structures? Are these in a suitable sense unique, and hence independent of any
auxiliary choices such as redundant fields and gauge fixings? Our paper answers these
questions.
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2. Preliminaries

2.1. Retarded and advanced Green’s operators. In this section we recall some basic
concepts pertaining to the theory of Green hyperbolic linear differential operators on
oriented and time-oriented globally hyperbolic Lorentzian manifolds that will be used
in the rest of this work. More details on this topic, including proofs of the statements
recalled below, can be found in [BGP07,Bar15].

Consider an oriented and time-oriented globally hyperbolic Lorentzian manifold M
of dimension m ≥ 2. Given a finite rank real or complex vector bundle E → M ,
denote the vector space of its smooth sections with support contained in a closed subset
C ⊆ M by �C (E). (Following the usual convention we omit the subscript M to denote
the vector space �(E) of all smooth sections, without any support restriction.) We will
often consider sectionswith support prescribed according to a directed systemD , that is a
(non-empty) directed subset of the directed set cl of closed subsets of M . (More explicitly,
we require that, for all D1, D2 ∈ D , there exists D ∈ D such that D1 ⊆ D ⊇ D2). We
can therefore define the vector space

�D (E) := colimD∈D �D(E) (2.1)

of smooth sections withD-support as a colimit over a directed set. We shall consider the
directed systems D = c, pc, fc, spc, sfc, sc of compact, past compact, future compact,
strictly past compact, strictly future compact and respectively spacelike compact closed
subsets of M . For example, (2.1) for D = c returns the usual vector space �c(E) of
sections with compact support.

A linear differential operator P : �(E) → �(E) is called Green hyperbolic if there
exist retarded and advanced Green’s operators G±, which are by definition linear maps
G± : �c(E) → �(E) such that, for all ϕ ∈ �c(E),

(i) G± Pϕ = ϕ,
(ii) P G±ϕ = ϕ,
(iii) supp(G±ϕ) is contained in the causal future/past J±

M (supp(ϕ)) of the support of ϕ.

In [Bar15] linear extensions G± : �pc/fc(E) → �pc/fc(E) are defined on sections
with past/future compact support in such a way that the properties (i-iii) above hold
for all ϕ ∈ �pc/fc(E). In particular, this entails that the restricted differential operators
P : �pc/fc(E) → �pc/fc(E) are linear isomorphisms and the extended retarded/advanced
Green’s operators G± : �pc/fc(E) → �pc/fc(E) are their (unique) inverses. Since the
latter restrict to the retarded/advanced Green’s operators G± : �c(E) → �(E), those
are necessarily unique too.

We shall often consider the retarded-minus-advanced propagator

G := G+ − G− : �c(E) −→ �sc(E). (2.2)

The most relevant feature of the retarded-minus-advanced propagator G is the exact
sequence

(2.3)

see e.g. [BD15,Bar15], which follows directly from the properties of the (extended)
Green’s operators G±.
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Consider a real vector bundle E → M that is endowed with a fiber metric 〈−,−〉,
i.e. a fiber-wise non-degenerate, symmetric, bilinear form. One defines the integration
pairing

〈〈ϕ, ϕ̃〉〉 :=
∫

M
〈ϕ, ϕ̃〉 volM , (2.4)

for all pairs of sections (ϕ, ϕ̃) ∈ �(E)2 with compact overlapping support, where volM
denotes the volume formon M . Given two real vector bundles endowedwith fibermetrics
(E1, 〈−,−〉1) and (E2, 〈−,−〉2) and a linear differential operator Q : �(E1) → �(E2),
one defines its formal adjoint Q∗ : �(E2) → �(E1) as the unique linear differential
operator such that, for all pairs of sections (ϕ1, ϕ2) ∈ �(E1) × �(E2) with compact
overlapping support, one has

〈〈ϕ2, Qϕ1〉〉2 = 〈〈Q∗ϕ2, ϕ1〉〉1. (2.5)

Given a real vector bundle with fiber metric (E, 〈−,−〉) and a linear differential operator
P : �(E) → �(E), one says that P is formally self-adjoint if P∗ = P . When P :
�(E) → �(E) is a formally self-adjoint Green hyperbolic linear differential operator,
it follows that the associated retarded and advanced Green’s operators G± are “formal
adjoints” of each other, namely, for all ϕ, ϕ̃ ∈ �c(E), one has

〈〈ϕ, G+ϕ̃〉〉 = 〈〈G−ϕ, ϕ̃〉〉 = 〈〈ϕ̃, G−ϕ〉〉. (2.6)

As a consequence, the retarded-minus-advanced propagator G = G+ − G− is “formally
skew-adjoint”, namely, for all ϕ, ϕ̃ ∈ �c(E), one has

〈〈ϕ, Gϕ̃〉〉 = −〈〈Gϕ, ϕ̃〉〉 = −〈〈ϕ̃, Gϕ〉〉. (2.7)

This implies that the linear map

τM := 〈〈−, G(−)〉〉 : �c(E)⊗2 −→ R (2.8)

is anti-symmetric and hence it descends to a Poisson structure τM : �c(E)∧2 → R on
�c(E). Using also (2.3), one finds that this Poisson structure descends to the cokernel
coker(P : �c(E) → �c(E)) = �c(E)

/
P �c(E), onwhich it becomes a non-degenerate

Poisson structure. As a consequence of the property (2.6) of retarded/advanced Green’s
operators, the Poisson structure (2.8) can be presented in multiple equivalent ways

τM (ϕ ⊗ ϕ̃) = 〈〈ϕ, Gϕ̃〉〉 = −〈〈ϕ̃, Gϕ〉〉 = ±〈〈ϕ, G±ϕ̃〉〉 ∓ 〈〈ϕ̃, G±ϕ〉〉, (2.9)

for all ϕ, ϕ̃ ∈ �c(E).

2.2. Cochain complexes. This section reviews some elementary aspects of the theory
of cochain complexes and sets our conventions. This topic is widely covered by the
literature, see e.g. [Wei94,Hov99].

Let K be a field of characteristic zero. (In the main part of this work K will be
either the real numbers R or the complex numbers C.) A cochain complex V =
((V n)n∈Z, (Qn)n∈Z) consists of a Z-gradedK-vector space, i.e. a collection ofK-vector
spaces V n labeled by their degree n ∈ Z, and a differential Q = (Qn)n∈Z, i.e. a col-
lection of K-linear maps Qn : V n → V n+1 that increase the degree by 1 and satisfy
Qn+1 Qn = 0 for all n ∈ Z. A cochain map f = ( f n)n∈Z : V → W consists of a
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collection of K-linear maps f n : V n → W n , n ∈ Z, that is compatible with the dif-
ferentials of V and W , i.e. Qn

W f n = f n+1 Qn
V , for all n ∈ Z. The category of cochain

complexes over K with cochain maps as morphisms is denoted by ChK.
The category ChK is endowed with a closed symmetric monoidal structure, whose

tensor product, monoidal unit, symmetric braiding and internal hom are described below.
Given two cochain complexes V, W ∈ ChK, their tensor product V ⊗W ∈ ChK consists
of the graded vector space defined degree-wise for all n ∈ Z by

(V ⊗ W )n :=
⊕

q∈Z

(
V q ⊗ W n−q)

, (2.10a)

and of the differential Q⊗ = (Qn⊗)n∈Z defined by the graded Leibniz rule

Qn⊗(v ⊗ w) := Qq
V v ⊗ w + (−1)q v ⊗ Qn−q

W w, (2.10b)

for all v ∈ V q and w ∈ W n−q . The monoidal unit K ∈ ChK is obtained regarding
the ground field as a cochain complex concentrated in degree 0 (whose differential
necessarily vanishes). The symmetric braiding is given by the cochain isomorphisms

V ⊗W
∼=→ W ⊗V , v⊗w �→ (−1)|v| |w| w⊗v determined by the Koszul sign rule, for all

homogeneous v ∈ V andw ∈ W whose degree is denoted by |v|, |w| ∈ Z. Furthermore,
given two cochain complexes V, W ∈ ChK, their internal hom [V, W ] ∈ ChK consists
of the graded vector space defined degree-wise for all n ∈ Z by

[V, W ]n :=
∏

q∈Z
HomK(V q , W n+q), (2.11a)

whereHomK denotes the vector space of linearmaps, and of the differential ∂ = (∂n)n∈Z
defined by

∂n f := QW ◦ f − (−1)n f ◦ QV , (2.11b)

for all f ∈ [V, W ]n . The category of cochain complexes ChK becomes a dg-category
when endowed with the cochain complexes of morphisms from V to W given by the
internal hom [V, W ] and the obvious identities and compositions.

Associatedwith every cochain complex V ∈ ChK is its cohomology H•(V ), a graded
vector space defined degree-wise by Hn(V ) := ker(Qn)/im(Qn−1), for all n ∈ Z.
Cohomology extends in an obvious way to a functor H• on ChK taking values in the
category of graded vector spaces. A cochain map f : V → W is a quasi-isomorphism
if passing to cohomology gives an isomorphism H•( f ) : H•(V ) → H•(W ) of graded
vector spaces. When this is the case, one says that V and W are quasi-isomorphic. Infor-
mally, quasi-isomorphic cochain complexes should be regarded as “being the same”.
One approach to the formalization of this idea is offered by model category theory
[Hov99]. Concretely, a model category is a bicomplete category that comes endowed
with a model structure, consisting of three distinguished classes of morphisms, called
weak equivalences, fibrations and cofibrations, subject to suitable axioms, see [Hov99,
Sec. 1.1]. Conceptually, the primary role is played by the weak equivalences, which
formalize a relaxed notion of “being the same” compared to isomorphisms. Fibrations
and cofibrations, instead, are crucial from a practical viewpoint as they allow to con-
struct homotopical functors, i.e. functors that preserve weak equivalences, see [Rie14,
Ch. 2]. For instance, ordinary (co)limits frequently fail to preserve weak equivalences;
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model category theory fixes this issue replacing them with the respective derived func-
tors, called homotopy (co)limits [Hir03, Ch. 19], which are homotopical functors by
construction. (Indeed, homotopy (co)limits play a key role in the present paper precisely
because they preserve weak equivalences.)

It is proven in [Hov99, Secs. 2.3 and 4.2] that the category of cochain complexesChK
carries a closed symmetric monoidal model category structure, which is determined by
defining the weak equivalences as the quasi-isomorphisms and the fibrations as the
degree-wise surjective cochain maps. (Cofibrations are detected by the so-called left-
lifting property against acyclic fibrations, i.e. morphisms that are simultaneously weak
equivalences and fibrations.) It is not difficult to check that every cochain complex V in
the model category ChK is both fibrant and cofibrant, i.e. the unique morphism V → 0
to the terminal object is a fibration and the unique morphism 0 → V from the initial
object is a cofibration. In particular, this guarantees that both the tensor product functor
⊗ : ChK × ChK → ChK and the internal hom functor [−,−] : Chop

K
× ChK → ChK

are homotopical, i.e. they preserve quasi-isomorphisms.
The internal hom [V, W ] ∈ ChK between two cochain complexes V, W ∈ ChK

admits an elegant interpretation in terms of (higher) cochain homotopies. In fact, given
two n-cocycles f, g ∈ [V, W ]n , i.e. ∂ f = 0 = ∂g, one defines a cochain homotopy λ

from f to g as an (n −1)-cochain λ ∈ [V, W ]n−1 such that ∂λ = g− f . More explicitly,
a cochain homotopy λ consists of a collection of linear maps (λq : V q → W q+n−1)q∈Z
such that Qq+n−1

W ◦ λq − (−1)n−1λq+1 ◦ Qq
V = gq − f q , for all q ∈ Z. Notice that

∂λ is an n-coboundary in [V, W ], therefore a necessary and sufficient condition for
the existence of a cochain homotopy is that the cohomology classes [ f ] = [g] ∈
Hn([V, W ]) coincide. Note further that this concept of cochain homotopies specializes
for n = 0 to the ordinary concept of cochain homotopies between two cochain maps
f, g : V → W . In fact, by definition of the internal hom complex, see (2.11), both f
and g are 0-cocycles in [V, W ].

Finally, let us set our convention for shifts of cochain complexes. Given a cochain
complex V ∈ ChK and an integer p ∈ Z, we define its p-shift V [p] ∈ ChK as the
cochain complex that consists of the graded vector space defined degree-wise for all
n ∈ Z by

V [p]n := V n+p, (2.12a)

and of the differential QV [p] = (Qn
V [p])n∈Z defined by

Qn
V [p] := (−1)p Qn+p

V , (2.12b)

for all n ∈ Z. One immediately observes that V [p][q] = V [p +q], for all p, q ∈ Z, and
V [0] = V . Recalling also the definition of the tensor product (2.10), one obtains natural
cochain isomorphisms K[p] ⊗ V ∼= V [p] for all p ∈ Z.

2.3. ChK-valued functors. Along with cochain complexes, we shall also consider func-
tors V : C → ChK on a (small) category C (often just a directed set) taking values in
ChK. Taking also the natural transformations η : V → W between such functors as
morphisms, one obtains the functor categoryChC

K
. Using the closed symmetricmonoidal

structure on ChK, we can equip the functor category ChCK with tensoring, powering and
enriched hom over ChK as follows.
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Given a cochain complex V ∈ ChK and a functor V ∈ ChC
K
, their tensoring

V ⊗ V ∈ ChC
K

(2.13)

is defined as the functor that assigns to each c ∈ C the tensor productV ⊗V(c) ∈ ChK and
to eachmorphism γ : c0 → c1 inC the cochainmap id⊗V(γ ) : V ⊗V(c0) → V ⊗V(c1)
in ChK.

Given a cochain complex V ∈ ChK and a functor V ∈ ChC
K
, their powering

VV ∈ ChC
K

(2.14)

is defined as the functor that assigns to each c ∈ C the internal hom [V,V(c)] ∈ ChK
and to each morphism γ : c0 → c1 in C the cochain map [id,V(γ )] : [V,V(c0)] →
[V,V(c1)] in ChK.

Given two functors V,W ∈ ChC
K
, their enriched hom

hom(V,W) ∈ ChK (2.15a)

is defined as the equalizer

(2.15b)

where V∗ is defined on the γ -component of the codomain by “pull-back” along γ :
c0 → c1 of the c1-component of the domain, i.e. prγ V∗ := [V(γ ), id] prc1 , while W∗
is defined on the γ -component of the codomain by “push-forward” along γ : c0 → c1
of the c0-component of the domain, i.e. prγ W∗ := [id,W(γ )] prc0 . More explicitly,
hom(V,W) ∈ ChK consists of the graded vector space given degree-wise for all n ∈ Z

by

hom(V,W)n =
{
η ∈

∏

c0∈C

[V(c0),W(c0)
]n : prc1η ◦ V(γ ) = W(γ ) ◦ prc0η, ∀γ : c0 → c1

}
,

(2.15c)

i.e. η = (ηc0)c0∈C is a degree n natural transformation fromV toW (regarded as functors
valued in graded vector spaces), and of the differential ∂ defined component-wise for all
c0 ∈ C by

prc0(∂η) := ∂(prc0η). (2.15d)

Tensoring, powering and enriched hom are related via the adjunctions exhibited by
the isomorphisms

ChC
K

(V,WV ) ∼= ChC
K

(
V ⊗ V,W) ∼= ChK

(
V, hom(V,W)

)
, (2.16)

which are natural with respect to V ∈ ChK and V,W ∈ ChC
K
.

Also in the functor category ChC
K
one has a notion of weak equivalences given by

the natural quasi-isomorphisms f : V → W in ChC
K
, i.e. the natural transformations

whose components fc : V(c) → W(c) in ChK are quasi-isomorphisms, for all c ∈ C.
This class of weak equivalences is part of the (projective) model category structure
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on ChC
K
, which is entirely determined by defining also the fibrations as the natural

transformations f : V → W in ChC
K
whose components fc : V(c) → W(c) in ChK

are fibrations, i.e. degree-wise surjective cochain maps, for all c ∈ C. (Once again, the
cofibrations are detected by the left-lifting property against acyclic fibrations.) With this
model category structure and the tensoring, powering and enrichedhomfromabove,ChC

K

turns out to be a ChK-model category, see [Hov99, Sec. 4.2]. In contrast to the model
categoryChK, whose objects are all fibrant and cofibrant, objects of the functor category
ChC

K
are in general fibrant, but they may fail to be cofibrant. As a consequence, the

enriched hom functor hom(−,−) : (ChC
K
)op ×ChC

K
→ ChK may fail to preserve weak

equivalences. This shortcoming is solved by constructing the associated derived functor
map(−,−) : (ChC

K
)op × ChC

K
→ ChK, which instead preserves weak equivalences

(see Remark 2.1). Concretely, we replace the enriched hom hom(V,W) ∈ ChK from
V ∈ ChC

K
to W ∈ ChC

K
with the mapping complex map(V,W) ∈ ChK defined below

as the homotopy limit of a suitable cosimplicial cochain complex C(V,W) ∈ Ch�
K
. See

also [Tam07, Sec. 3] for an alternative presentation of this construction and Remark 2.1
for a description in terms of resolutions and derived functors.

Mapping complex. The parallel pair in (2.15b) is only a truncation of the cosimplicial
cochain complex

(2.17a)

that consists of the cochain complexes

C(V,W)n :=
∏

c:[n]→C

[V(c0),W(cn)
] ∈ ChK, (2.17b)

for all integers n ≥ 0, of the coface maps

dk : C(V,W)n −→ C(V,W)n+1 (2.17c)

in ChK, defined in (2.18) below for all integers n ≥ 0 and k = 0, . . . , n + 1, and of the
codegeneracy maps

sk : C(V,W)n+1 −→ C(V,W)n (2.17d)

in ChK, defined in (2.19) below for all integers n ≥ 0 and k = 0, . . . , n. The product
in (2.17b) runs over all C-valued functors c : [n] → C on the totally ordered set

[n] := {0 < 1 < · · · < n} (regarded as a category). (Equivalently, c = (c0
γ0→ c1

γ1→
· · · γn−1→ cn) is an n-tuple of composable morphisms inC.) Denoting by k̂ : [n] → [n+1]
the injective order preserving map that skips the element k ∈ [n + 1], one defines the
coface map d0 by

(2.18a)
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the coface map dk , k = 1, . . . , n, by

(2.18b)

and the coface map dn+1 by

(2.18c)

Similarly, denoting by ǩ : [n + 1] → [n] the surjective order preserving map that hits
the element k ∈ [n] twice, one defines the codegeneracy map sk , k = 0, . . . , n, by

(2.19)

The mapping complex from V ∈ ChC
K
toW ∈ ChC

K
is defined as the homotopy limit

map(V,W) := holim(C(V,W)) ∈ ChK (2.20)

of the cosimplicial diagram C(V,W) ∈ Ch�
K
in (2.17). This may be computed by the∏

-total complex associatedwith the cosimplicial cochain complexC(V,W). Explicitly,
map(V,W) ∈ ChK consists of the graded K-vector space defined degree-wise for all
n ∈ Z by

map(V,W)n :=
∏

q≥0

C(V,W)q,n−q , (2.21)

where q ≥ 0 denotes the cosimplicial degree and n − q ∈ Z the cochain degree. The
(total) differential

δ := δh + δv (2.22a)

is the sum of the horizontal differential δh, defined component-wise by

pr0 ◦ δh := 0, prq ◦ δh :=
q∑

k=0

(−1)k dq−k ◦ prq−1, (2.22b)
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for all q ≥ 1, and of the vertical differential δv, defined component-wise for all q ≥ 0
and all c : [q] → C by

prq,c ◦ δv := (−1)q ∂ ◦ prq,c, (2.22c)

where prq,c := prc ◦ prq denotes the projection onto the (q, c)-component [V(c0),
W(cq)]n−q ofmap(V,W)n and ∂ is the differential of the internal hom [V(c0),W(cq)] ∈
ChK. The signs in δh can be understood projecting onto c-components. The k-th sum-
mand of δh acts via dq−k , hence δh is pulled through the last k morphisms in C of the
tuple c before acting. Since each of those morphisms contributes 1 to the total degree
and δh has degree 1, this gives rise to the sign (−1)k . Similarly, the sign in δv arises from
the fact that δv acts by ∂ after being pulled through c. Since the latter contributes q to
the total degree and δv has degree 1, this gives rise to the sign (−1)q .

Remark 2.1. The explicit model of the mapping complex map(−,−) presented above
stems from a cotriple resolution in the sense of [Fre09, Sec. 13.3]. Let us explain this
relation in more detail. Consider the forgetful functor U : ChC

K
→ ∏

c∈C ChK that
assigns to a functor V ∈ ChC

K
its family of values

(V(c)
)

c∈C on all objects. Because
the category ChK is cocomplete, this functor admits a left adjoint, i.e. there exists an
adjunction

(2.23)

which defines a concept of free objects in ChC
K
. Associated with this adjunction, one

defines a comonad (sometimes also called a cotriple) T := FU : ChC
K

→ ChC
K
with

coproduct T = FU → F(U F)U = T 2 constructed out of the adjunction unit and
counit T = FU → id given by the adjunction counit. For V ∈ ChC

K
, the comonad T

allows us to define a simplicial resolution

(2.24)

For W ∈ ChC
K
, composing the simplicial resolution above with the enriched hom

hom(−,W) computes the cosimplicial cochain complex

(2.25)

from (2.17). Finally, forming the
∏
-total complex computes the homotopy limit and

determines the mapping complex map(V,W) = holim(C(V,W)) ∈ ChK as in (2.20).
Similar techniques as in [Fre09, Lem. 13.3.3 and Ch. 17] show that this construction
presents the mapping complex map(−,−) as the derived functor of the enriched hom
hom(−,−).

Being a derived functor, it follows that map(−,−) preserves weak equivalences.
This can also be seen more directly via the following argument. Let f : V ′ → V and
g : W → W ′ in ChC

K
be natural quasi-isomorphisms. For each integer n ≥ 0 and each

functor c : [n] → C, one has that [ fc0 , gcn ] : [V(c0),W(cn)] → [V ′(c0),W ′(cn)] in
ChK is a quasi-isomorphism because the internal hom [−,−] : Chop

K
× ChK → ChK
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is a homotopical functor. This entails that C( f, g) : C(V,W) → C(V ′,W ′) in
Ch�

K
is a natural quasi-isomorphism of cosimplicial cochain complexes, i.e. a nat-

ural transformation that is a quasi-isomorphism in each cosimplicial degree. Since
the homotopy limit holim : Ch�

K
→ ChK is a homotopical functor, it follows that

map( f, g) := holim(C( f, g)) : map(V,W) → map(V ′,W ′) in ChK is a quasi-
isomorphism. �
Remark 2.2. Themapping complexmap(V,W) ∈ ChK in (2.20) formalizes a concept of
homotopy coherent natural transformations from V toW , as well as notions of (higher)
homotopies between such mappings. Indeed, an n-cochain η ∈ map(V,W)n consists
of an (n − q)-cochain prqη ∈ C(V,W)q,n−q for each q ≥ 0, whose components
prq,cη ∈ [V(c0),W(cq)]n−q are labeled also by functors c : [q] → C. The cocycle
condition δη = 0 can be interpreted as follows. For all c0 ∈ C, pr0,c0η are cocycles
since ∂(pr0,c0η) = pr0,c0(δη) = 0. Even though these may fail to be the components
of a natural transformation, η contains the data pr1,γ0η, for all γ0 : c0 → c1 in C, of a
homotopy witnessing this failure. Indeed, one has

W(γ0) ◦ (pr0,c0η) − (pr0,c1η) ◦ V(γ0) = pr1,γ0(δhη) = −pr1,γ0(δvη) = ∂(pr1,γ0η).

(2.26)

The data pr1,γ0η, for all γ0 : c0 → c1 inC, may again fail to be natural (in the appropriate
sense), but again this failure is controlled in a similar fashion by the higher homotopy

consisting of the data pr2,cη, for all c = (c0
γ0→ c1

γ1→ c2) in C. This pattern goes on
with increasingly higher homotopies.

Note that any n-cochain η ∈ hom(V,W)n in the enriched hom determines a cor-
responding n-cochain η̃ ∈ map(V,W)n in the mapping complex. The latter is defined

by setting pr0η̃ := η ∈ C(V,W)0,n and prq η̃ := 0 ∈ C(V,W)q,n−q for q ≥ 1. It is
straightforward to confirm that the assignment η �→ η̃ is compatible with the respective
differentials, hence we obtain an inclusion

hom(V,W)
⊆−→ map(V,W) (2.27)

in ChK. This inclusion may be interpreted by saying that (strict) naturality is a special
case of homotopy coherent naturality. In the rest of the paper we shall identify the
n-cochains η ∈ hom(V,W)n in the enriched hom with the corresponding n-cochains
η̃ ∈ map(V,W)n in the mapping complex, thus dropping the decoration ˜ from our
notation. �
dg-category structure. The functor category ChC

K
can be endowed with a dg-category

structure whose cochain complex of morphisms from V to W is given by the mapping
complex map(V,W). The identities are the obvious ones and the compositions are

explicitly given, for all V,W,Z ∈ ChC
K
, by the cochain maps

◦ : map(W,Z) ⊗ map(V,W) −→ map(V,Z) (2.28a)

in ChK that send g ∈ map(W,Z)n and f ∈ map(V,W)m to g ◦ f ∈ map(V,Z)m+n ,
which is defined component-wise, for all q ≥ 0 and all functors c : [q] → C, by

prq,c(g ◦ f ) :=
q∑

k=0

(−1)k(q−k+n) (prq−k,c≥k g) ◦ (prk,c≤k f ). (2.28b)
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In the equation displayed above c≤k := (c0
γ0→ · · · γk−1→ ck) and c≥k := (ck

γk+1→
· · · γq−1→ cq) denote the tuples of composable morphisms in C obtained by splitting c at
ck . Recalling that each morphism in C contributes 1 to the total degree in the mapping
complex, the sign of the k-th summand can be understood as the one that arises when
c≤k is pulled through c≥k and g.

Homotopy colimits. Along with mapping complexes, we shall make extensive use of
homotopy colimits hocolim : ChC

K
→ ChK. Specifically, we shall use the explicit model

presented below. Given a functor V ∈ ChC
K
, consider the simplicial cochain complex

(called the simplicial replacement of V)

(2.29a)

that consists of the cochain complexes

S(V)n :=
⊕

c:[n]→C

V(c0) ∈ ChK, (2.29b)

for all integers n ≥ 0, of the face maps

dk : S(V)n+1 −→ S(V)n (2.29c)

in ChK, defined in (2.30) below for all integers n ≥ 0 and k = 0, . . . , n + 1, and of the
degeneracy maps

sk : S(V)n −→ S(V)n+1 (2.29d)

in ChK, defined in (2.31) below for all integers n ≥ 0 and k = 0, . . . , n. One defines
the face map d0 by

(2.30a)

and the face map dk , k = 1, . . . , n + 1, by

(2.30b)

Furthermore, one defines the degeneracy map sk , k = 0, . . . , n, by

(2.31)
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The homotopy colimit

hocolim(V) ∈ ChK (2.32)

of V ∈ ChC
K
then may be computed by the

⊕
-total complex associated with the sim-

plicial cochain complex S(V) ∈ Ch�op

K
. Explicitly, hocolim(V) ∈ ChK consists of the

graded K-vector space defined degree-wise for all n ∈ Z by

hocolim(V)n :=
⊕

q≥0

S(V)q,n+q , (2.33)

where−q ≤ 0 denotes the (cohomological) simplicial degree and n +q ∈ Z the cochain
degree. The (total) differential

d := −dh + dv (2.34a)

is the sum of (the opposite of) the horizontal differential dh, defined component-wise by

dh ◦ ι0 := 0, dh ◦ ιq :=
q∑

k=0

(−1)−k ιq−1 ◦ dk, (2.34b)

for all q ≥ 1, and of the vertical differential dv, defined component-wise for all q ≥ 0
and all c : [q] → C by

dv ◦ ιq,c := (−1)−q ιq,c ◦ Q, (2.34c)

where ιq,c := ιq ◦ ιc denotes the inclusion of the (q, c)-component V(c0)n+q of
hocolim(V)n and Q is the differential ofV(c0) ∈ ChK. The signs in dh can be understood
including c-components. Since the k-th summand of dh acts via dk , dh is pulled through
the first k morphisms in C of the tuple c. Since each of those morphisms contributes
−1 to the total degree and dh has degree 1, this gives rise to the sign (−1)−k . Similarly,
the sign in dv arises from the fact that it acts by Q after being pulled through c. Since
the latter contributes −q to the total degree and dv has degree 1, this gives rise to the
sign (−1)−q . The additional relative sign between the horizontal and vertical parts of
the total differential d is purely conventional and chosen to ensure that the dg-adjunction
from Proposition 2.4 below holds true.

Remark 2.3. The homotopy colimit (2.32) comes (as usual) with a canonical natural
transformation

hocolim −→ colim (2.35)

to the ordinary colimit, whose component at V ∈ ChC
K
sends ι0,c0v ∈ hocolim(V)n ,

with c0 ∈ C and v ∈ V(c0)n , to ιc0v ∈ colim(V)n and ιq,cv ∈ hocolim(V)n , with q ≥ 1,
c : [q] → C and v ∈ V(c0)n+q , to 0 ∈ colim(V)n . (Here ιc0 : V(c0) → colim(V) in
ChK, for all c0 ∈ C, denote the canonical cochainmaps fromadiagram to its colimit.) Let
us emphasize that (2.35) is furthermore a natural quasi-isomorphismwhenC is a filtered
category as in this case the ordinary colimit is a model for the homotopy colimit (by the
AB5 axiom of Grothendieck Abelian categories). This situation will occur frequently in
Sects. 3 and 4. �
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The homotopy colimit as a dg-left adjoint. Let us extend the homotopy colimit to a dg-
functor by defining, for all V,W ∈ ChC

K
, its action on cochain complexes of morphisms

hocolim : map(V,W) −→ [hocolim(V), hocolim(W)] (2.36a)

in ChK through the adjunct cochain map (denoted with abuse of notation by the same
symbol)

hocolim : map(V,W) ⊗ hocolim(V) −→ hocolim(W) (2.36b)

inChK that sends η ∈ map(V,W)m and ιq,cv ∈ hocolim(V)n , with q ≥ 0, c : [q] → C
and v ∈ V(c0)n+q , to

hocolim(η)(ιq,cv) :=
q∑

k=0

(−1)−qm+k(q−k) ιq−k,c≥k ((prk,c≤k η)n+q v) ∈ hocolim(W)m+n .

(2.36c)

Recalling that each morphism in C contributes −1 to the total degree in the homotopy
colimit, the sign of each summand can be understood by observing that η is pulled
through c and furthermore c≤k : [k] → C is pulled through c≥k : [q − k] → C. A
straightforward check shows that this defines a dg-functor

hocolim : ChC
K

−→ ChK. (2.37)

Consider now also the diagonal dg-functor

� : ChK −→ ChC
K

(2.38)

that sends a cochain complex V ∈ ChK to the constant functor �V ∈ ChC
K
and, for

all V, W ∈ ChK, an n-cochain f ∈ [V, W ]n to the n-cochain � f ∈ map(�V,�W )n

defined by pr0,c0(� f ) := f , for all c0 ∈ C, and prq,c(� f ) := 0, for all q ≥ 1 and

c : [q] → C. Direct inspection shows that, for all V ∈ ChK and V ∈ ChC
K
, the cochain

map

map(V,�V ) −→ [hocolim(V), hocolim(�V )] −→ [hocolim(V), V ] (2.39a)

inChK, which is obtained by composing (2.36a) with the map induced by hocolim(�V )

→ colim(�V ) = V (see (2.35)), is an isomorphism that is natural with respect to both
V and V (in the dg-enriched sense). Explicitly, the previous cochain map is given by the
adjunct of the cochain map

map(V,�V ) ⊗ hocolim(V) −→ V (2.39b)

in ChK that sends η ∈ map(V,�V )m and ιq,cv ∈ hocolim(V)n , with q ≥ 0, c : [q] →
C and v ∈ V(c0)n+q , to (−1)−qm (prq,cη)n+q v ∈ V m+n . The isomorphism (2.39a)
will be used frequently throughout the rest of the paper to identify map(V,�V ) and
[hocolim(V), V ]. This result is summarized below.

Proposition 2.4. The homotopy colimit dg-functor hocolim : ChC
K

→ ChK from (2.37)
is dg-left adjoint to the diagonal dg-functor � : ChK → ChC

K
from (2.38).
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3. Green Hyperbolic Complexes

The purpose of this section is to introduce a generalization of Green hyperbolic linear
differential operators, see [Bar15], which we call Green hyperbolic complexes. Those
play a central role in the study of derived critical loci of gauge-theoretic quadratic action
functionals on globally hyperbolic Lorentzian manifolds, see [BBS20]. The core idea
is based on the new concept of retarded and advanced Green’s homotopies, which
extend the well-known retarded and advanced Green’s operators to a higher homologi-
cal context. Examples 3.3 and 3.6 clarify how one derives from Green hyperbolic linear
differential operators a class of examples of Green hyperbolic complexes. In analogy
with existence and uniqueness of retarded and advanced Green’s operators for Green
hyperbolic linear differential operators, Proposition 3.10 asserts that Green hyperbolic
complexes admit unique (in the appropriate sense) retarded and advancedGreen’s homo-
topies. Furthermore, introducing the analog of the retarded-minus-advanced propagator,
which we name retarded-minus-advanced cochain map, we shall prove in Theorem 3.14
a non-trivial generalization of the exact sequence (2.3) associated with any Green hyper-
bolic linear differential operator. Our theorem offers the following new interpretation of
the exact sequence (2.3): the latter witnesses the fact that the retarded-minus-advanced
propagator establishes a quasi-isomorphism between (suitably shifted versions of) the
complexes of sections with compact and respectively spacelike compact support, whose
differential is just the original Green hyperbolic linear differential operator.

For the rest of this section M will denote a fixed oriented and time-oriented globally
hyperbolic Lorentzian manifold of dimension m ≥ 2. We work over the field K = R of
real or K = C of complex numbers. We adopt the conventions of Sect. 2.1 for sections
of vector bundles with restricted support. Furthermore, given a (Z-)graded (K-)vector
bundle F → M (degree-wise of finite rank),

Fn := �(Fn) (3.1)

will denote the vector space of degree n smooth sections, i.e. smooth sections of the
degree n vector bundle Fn → M . Similarly, Fn

C := �C (Fn) and Fn
D := �D (Fn) will

denote the vector spaces of degree n smooth sections with support contained in a closed
subset C ⊆ M and, respectively, with D-support.

3.1. Retarded and advanced Green’s homotopies.

Definition 3.1. A complex of linear differential operators on M is a pair (F, Q) consist-
ing of a graded vector bundle F → M and of a collection Q = (Qn : Fn → Fn+1)n∈Z
of degree increasing linear differential operators such that, for all n ∈ Z, Qn+1 Qn = 0.

Example 3.2. The prime example of a complex of linear differential operators on M is
the de Rham complex (�•M, ddR), which consists of the graded vector bundle �•M
of differential forms on M and of the usual de Rham differential ddR. Note that, for
dimension m = 3, shifting by 1 the de Rham complex provides the complex of linear
differential operators (FCS, QCS) = (�•M[1], ddR [1]) associated with linear Chern–
Simons theory.

Example 3.3. Another class of examples of complexes of linear differential operators
arise from pairs (E, P) consisting of a vector bundle E → M and of a linear differential
operator P acting on its sections. The associated complex of linear differential operators
(F(E,P), Q(E,P)) consists of the graded vector bundle F(E,P) → M concentrated in
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degrees 0 and 1 and defined by Fn
(E,P) := E , for n = 0, 1, and of the collection of linear

differential operators Q(E,P), whose only non-vanishing component is Q0
(E,P) := P :

F0
(E,P) → F1

(E,P). The linear differential operator P = � + m2 : C∞(M) → C∞(M),
which governs the dynamics of a Klein-Gordon field of mass m ≥ 0, falls within this
class.

Example 3.4. A richer example is provided by Maxwell p-forms on M , for p ≤ m − 1.
Here the complex of linear differential operators (FMW, QMW) consists of the graded
vector bundle FMW → M concentrated between degrees −p and p + 1 and defined by

Fn
MW :=

{
�p+n M, n = −p, . . . , 0,
�p+1−n M, n = 1, . . . , p + 1,

(3.2)

where �k M → M denotes the vector bundle of differential k-forms on M , and of
the collection QMW of degree increasing linear differential operators, whose only non-
vanishing components are

Qn
MW :=

⎧
⎪⎨

⎪⎩

ddR, n = −p, . . . ,−1,
δdR ddR, n = 0,
δdR, n = 1, . . . , p,

(3.3)

where ddR and δdR := (−1)k ∗−1 ddR ∗ denote the de Rham differential and respectively
codifferential on k-forms. (The latter is obtained using the Hodge star operator ∗, which
is fixed by the metric and the orientation of M .) We observe that the underlying cochain
complex (FMW, QMW) ∈ ChR reproduces the derived critical locus of linear Yang-Mills
theory when p = 1, see [BBS20], and its higher generalizations for p = 2, . . . , m − 1,
see [AB22].

Recalling our conventions from Sect. 2.1, we shall denote the complex of sections
with support contained in a closed subset C ⊆ M by FC ∈ ChK. When also a directed
system D is considered, the cochain complexes FD ∈ ChK, for D ∈ D , and their
inclusions FD ⊆ FD′ , for D ⊆ D′ ∈ D , define the functor

F(−) ∈ ChD
K

(3.4)

in an obvious way. Passing to the (homotopy) colimit provides the cochain complexes

F(h)D := (ho)colim
(
F(−) : D → ChK

) ∈ ChK (3.5)

of D-supported sections and the canonical quasi-isomorphism

FhD
∼−→ FD (3.6)

in ChK, see Remark 2.3. For instance, when D = c is the directed system of compact
subsets of M , one obtains the cochain complex F(h)c ∈ ChK of compactly supported
sections as the (homotopy) colimit ofF(−) ∈ Chc

K
. Since the causal future/past J±

M (K ) ⊆
M of a compact subset K ⊆ M is closed and forming the causal future/past preserves
inclusions, one obtains order preserving maps J±

M : c → cl between directed sets. This
allows us to define the functor

FJ±
M (−) := F(−) ◦ J±

M ∈ Chc
K

(3.7)

by composing the functor F(−) ∈ Chcl
K
with the order preserving map J±

M regarded as a
functor.
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Definition 3.5. Let (F, Q) be a complex of linear differential operators on M .

(i) A retarded/advanced Green’s homotopy �± ∈ map(FJ±
M (−),FJ±

M (−))
−1 is a (−1)-

cochain in the mapping complex (2.20) from the functor FJ±
M (−) ∈ Chc

K
to itself,

whose differential δ�± = id is the identity natural transformation of the functor
FJ±

M (−) ∈ Chc
K
.

(ii) We say that (F, Q) is a Green hyperbolic complex if it admits a retarded and an
advanced Green’s homotopy �±.

Example 3.6. Let us consider retarded/advanced Green’s homotopies �± for the com-
plex of linear differential operators (F(E,P), Q(E,P)) arising from a single linear differ-
ential operator P acting on sections of a vector bundle E → M , see Example 3.3. In this
case, as we explain below, retarded/advanced Green’s homotopies are in one-to-one cor-
respondence with retarded/advanced Green’s operators for P . Hence, (F(E,P), Q(E,P))

is a Green hyperbolic complex if and only if P is a Green hyperbolic linear differential
operator.

Let us provide the relevant arguments. Since F(E,P) is concentrated in degrees 0 and 1,
the only possibly non-vanishing components of a retarded/advanced Green’s homotopy
�± for (F(E,P), Q(E,P)) are the linear maps

(pr0,K0
�±)1 : F1

J±
M (K0)

−→ F0
J±

M (K0)
, (3.8)

for all compact subsets K0 ⊆ M . Recalling the definition (2.22) of the mapping complex
differential δ, one finds that the condition δ�± = id has components of two types. The
first type, involving only the horizontal differential δh, is given by

F0
J±

M (K0⊆K1)
◦ (pr0,K0

�±)1 − (pr0,K1
�±)1 ◦ F1

J±
M (K0⊆K1)

= (pr1,K0⊆K1
(δh�±))1 = 0,

(3.9a)

for all inclusions K0 ⊆ K1 between compact subsets of M . The second type, involving
only the vertical differential δv, is given by

(pr0,K0
�±)1 ◦ P = (pr0,K0

�±)1 ◦ Q0
(E,P) = (pr0,K0

(δv�±))0 = id, (3.9b)

P ◦ (pr0,K0
�±)1 = Q0

(E,P) ◦ (pr0,K0
�±)1 = (pr0,K0

(δv�±))1 = id, (3.9c)

for all compact subsets K0 ⊆ M . We summarize below all conditions in fully explicit
form:

(a) The linear maps (pr0,K0
�±)1 : F1

J±
M (K0)

→ F0
J±

M (K0)
for all compact subsets K0 ⊆

M are compatible with inclusions K0 ⊆ K1 between compact subsets of M . In
other words, these are the components of a natural transformation (pr0,(−)�±)1 :
F1

J±
M (−)

→ F0
J±

M (−)
.

(b-c) The linear maps P ◦ (pr0,K0
�±)1 = id : F1

J±
M (K0)

→ F1
J±

M (K0)
and (pr0,K0

�±)1 ◦
P = id : F0

J±
M (K0)

→ F0
J±

M (K0)
coincide for all compact subsets K0 ⊆ M .

Recalling also the unique extensions of retarded/advanced Green’s operators from
[Bar15], see also Sect. 2.1, the datum of the natural transformation (pr0,(−)�±)1 :
F1

J±
M (−)

→ F0
J±

M (−)
from (a) subject to (b-c) is equivalent to the datum of a linear map
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G± : �c(E) → �(E) such that, for all ϕ ∈ �c(E), supp(G±ϕ) is contained in the causal
future/past J±

M (supp(ϕ)) of the support of ϕ and P G±ϕ = ϕ = G± Pϕ. This means
that the datum of a retarded/advanced Green’s homotopy �± for (F(E,P), Q(E,P)) is
equivalent to the datum of a retarded/advanced Green’s operator G± : �c(E) → �(E)

for P .

Example 3.7. The complexes of linear differential operators from Examples 3.2 and 3.4
are Green hyperbolic. We will prove this fact later in Sect. 4 by using the concept of
Green’s witnesses. See in particular Examples 4.4, 4.6, 4.10 and 4.12.

Remark 3.8. Our approach to the definition of retarded and advanced Green’s homo-
topies �± is purely algebraic, in the sense that we define �± as a collection of linear
maps subject to suitable algebraic conditions. In doing so, we follow the approach to
retarded and advanced Green’s operators G± adopted in [BGP07,Bar15]. Indeed, these
references prove continuity (with respect to suitable topologies) of G± as a consequence
of their algebraic definition. As a by-product, G± admit a presentation in terms of suit-
able distributional kernels. Retarded and advancedGreen’s homotopies aremore abstract
concepts, hence one does not expect that their algebraic definition already ensures con-
tinuity and presentation via distributional kernels. To achieve this goal one might, for
instance, try to endow the relevant complexes of sections with suitable additional struc-
tures, such as topologies. Unfortunately, topological vector spaces are well-known to
have a bad interplay with homological algebra (since they do not form an Abelian cat-
egory), while having a homologically well-behaved concept of retarded and advanced
Green’s homotopies is crucial to establish fundamental properties, such as uniqueness,
see Proposition 3.10. To circumvent this issue, we shall introduce in Sect. 4 the concept
of a Green’s witness W , consisting of a collection of degree decreasing linear differ-
ential operators. Using W one constructs retarded and advanced Green’s homotopies
�± := W G± by composing ordinary retarded and advanced Green’s operators with
linear differential operators. As a consequence, �± turn out to be continuous and admit
distributional kernels in the classical sense. Summing up: on the one hand, the algebraic
definition of retarded and advanced Green’s homotopies �± ensures their uniqueness in
the sense of contractible spaces of choices; on the other hand, the presence of a Green’s
witness W (which is very frequently available in concrete examples), ensures also that
the spaces of choices contain analytically well-behaved points �± := W G±. �

We have the following recognition principle for Green hyperbolic complexes.

Proposition 3.9. A complex of linear differential operators (F, Q) on M is Green hyper-
bolic if and only if, for all compact subsets K ⊆ M, the cochain complexes FJ+

M (K ) and
FJ−

M (K ) are both acyclic.

Proof. Given a retarded/advancedGreen’s homotopy�±, for each compact subset K0 ⊆
M , one has

∂(pr0,K0
�±) = pr0,K0

(δ�±) = id ∈ [FJ±
M (K0)

,FJ±
M (K0)

]0. (3.10)

This defines a contracting homotopy, hence the cochain complex FJ±
M (K0)

∈ ChK is
acyclic. Vice versa, when the cochain complexes FJ±

M (K ) ∈ ChK are acyclic for all

compact subsets K ⊆ M , it follows that the natural transformationFJ±
M (−) → 0 inChc

K
is

a weak equivalence. Since forming mapping complexes map(−,FJ±
M (−)) : (Chc

K
)op →
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ChK preserves weak equivalences, we obtain the quasi-isomorphism

0 ∼= map(0,FJ±
M (−))

∼−→ map(FJ±
M (−),FJ±

M (−)) (3.11)

in ChK, meaning that the mapping complex map(FJ±
M (−),FJ±

M (−)) is acyclic. It follows

that the 0-cocycles id ∈ map(FJ±
M (−),FJ±

M (−))
0 must be exact, i.e. there exist (−1)-

cochains �± ∈ map(FJ±
M (−),FJ±

M (−))
−1 such that δ�± = id. These provide retarded

and advanced Green’s homotopies according to Definition 3.5. ��
For a complex of linear differential operators (F, Q) on M , Definition 3.5 actually

provides a (possibly empty) set GH± of retarded/advanced Green’s homotopies, given
by the pullback

(3.12)

in Set, where {∗} ∈ Set denotes the singleton, the vertical arrow denotes the map that
assigns the 0-cocycle id ∈ Z0(map(FJ±

M (−),FJ±
M (−))) in the mapping complex and the

horizontal arrow is given by themapping complex differential δ acting on (−1)-cochains.
The set GH± provides however only an insufficient picture on the moduli problem
of retarded/advanced Green’s homotopies as it ignores homotopical phenomena. For
instance, two non-identical retarded/advanced Green’s homotopies �± and �′± that
differ by an exact term �± − �′± = δλ±, for some λ± ∈ map(FJ±

M (−),FJ±
M (−))

−2,
should be considered as “being the same”, as they define the same cohomology class
[�±] = [�′±], but they describe different elements in the set GH±. This issue can
be solved by upgrading the set GH± to a space (Kan complex) through the following
standard construction. Denoting the normalized chains functor by N : sSet → ChK and
the simplicial n-simplex by �n ∈ sSet, we define the simplicial set GH± ∈ sSet as the
pullback

(3.13)

in sSet, where {∗} ∈ sSet denotes the (constant) simplicial set with only one
point, the vertical arrow denotes the simplicial map that assigns the 0-cocycle id ∈
Z0([N (�•),map(FJ±

M (−),FJ±
M (−))]) that takes the constant value id in the mapping

complex and the horizontal arrow is given by the internal hom differential ∂ acting
on (−1)-cochains. The set of 0-simplices (GH±)0 = GH± coincides with the set of
retarded/advanced Green’s homotopies and the higher simplices encode the desired
homotopical phenomena mentioned above. One realizes that, when non-empty, the sim-
plicial set GH± is affine over the simplicial vector space

G H± := Z−1([N (�•),map
(
FJ±

M (−),FJ±
M (−)

)]) ∈ sVecK, (3.14)
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with the affine action

GH± × G H± −→ GH± (3.15)

in sSet that sends n-simplices ρ± ∈ (GH±)n and η± ∈ (G H±)n to their sum ρ± +η± ∈
(GH±)n . As a consequence of its affine structure, the simplicial set of retarded/advanced
Green’s homotopies GH± ∈ sSet is a Kan complex, see e.g. [Wei94, Lem. 8.2.8]. These
preliminaries allow us to prove a uniqueness result for retarded and advanced Green’s
homotopies.

Proposition 3.10. The Kan complex of retarded/advanced Green’s homotopies GH± ∈
sSet from (3.13) is either empty or contractible. In particular, when it exists, a
retarded/advanced Green’s homotopy is unique up to the contractible space of choices
GH±.

Proof. Suppose that GH± ∈ sSet is non-empty. We already observed that the Kan
complex of retarded/advanced Green’s homotopies GH± ∈ sSet from (3.13) is affine
over the simplicial vector space G H± ∈ sVecK from (3.14). By definition of the latter, it
follows that G H± ∼= �(τ≤0(map(FJ±

M (−),FJ±
M (−))[−1])) ∈ sVecK is isomorphic to the

simplicial vector space assigned by the Dold-Kan correspondence � : Ch≤0
K

→ sVecK
(see [SS03, Sec. 4.1] for a concise overview) to the good truncation τ≤0 : ChK → Ch≤0

K

of the (−1)-shifted mapping complex map(FJ±
M (−),FJ±

M (−))[−1] ∈ ChK. As GH± is by
hypothesis non-empty, there exists a retarded/advanced Green’s homotopy �±, hence it
follows from Proposition 3.9 that the mapping complex map(FJ±

M (−),FJ±
M (−)) ∈ ChK is

acyclic. Since both τ≤0 and� preserveweak equivalences, it follows thatG H± ∈ sVecK
is contractible, hence GH± ∈ sSet is contractible too. ��
Remark 3.11. We would like to note that all definitions and results stated so far in this
section admit a straightforward generalization to the category Locm of m-dimensional
oriented and time-oriented globally hyperbolic Lorentzianmanifolds M withmorphisms
f : M → M ′ given by orientation and time-orientation preserving isometric embed-
dingswhose image f (M) ⊆ M ′ is open and causally convex. Instead of a single complex
of linear differential operators (F, Q) on M , consider a family (F(M), QM )M∈Locm

of
complexes of linear differential operators that is natural with respect to M ∈ Locm .
Then one can upgrade the functors FJ±

M
∈ Chc

K
to let M ∈ Locm vary. Explicitly,

introduce the category LocCm , whose objects (M, K ) consist of an object M ∈ Locm
and of a compact subset K ⊆ M and whose morphisms f : (M, K ) → (M ′, K ′)
consist of a morphism f : M → M ′ in Locm such that K ′ ⊆ f (K ). Define the func-
tor FJ± : LocCop

m → ChK that assigns to an object (M, K ) ∈ LocCop
m the cochain

complex FJ±
M (K ) ∈ ChK of sections of the graded vector bundle F(M) → M with

support contained in J±
M (K ) and to a morphism f : (M, K ) → (M ′, K ′) in LocCm

the pullback FJ±( f ) : FJ±
M ′ (K ′) → FJ±

M (K ) in ChK of sections along f : M → M ′

in Locm . Replacing (F, Q) with (F(M), QM )M∈Locm
, c with LocCop

m and FJ±
M

∈ Chc
K

with FJ± ∈ ChLocC
op
m

K
in Definition 3.5, one obtains a notion of homotopy coherent

Locm-natural retarded and advanced Green’s homotopies. With the same substitutions,
the analogs of Propositions 3.9 and 3.10 hold true. In fact, these proofs rely only on
the structure of the mapping complex and, in particular, on the fact that it preserves
weak equivalences, but they are not sensitive to the shape of the category indexing the
ChK-valued functors that appear. �
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3.2. Retarded-minus-advanced quasi-isomorphism. Each Green hyperbolic linear dif-
ferential operator P has an associated exact sequence (2.3) formed by P itself and its
retarded-minus-advanced propagator G := G+ − G−, which involves sections both
with compact and with spacelike compact supports, see [BD15,Bar15]. The goal of
this section is to upgrade the exact sequence (2.3) to the broader context of Green
hyperbolic complexes. More precisely, Theorem 3.14 below will show that the retarded-
minus-advanced cochain map �h : Fhc[1] → Fhsc ∈ ChK, see Definition 3.12, is a
quasi-isomorphism from the (1-shift of the) complex of sections with compact support
to the complex of sections with spacelike compact support. Remark 4.15, which will
appear later in Sect. 4, will clarify how the well-known exact sequence (2.3) is just a
special case of Theorem 3.14.

In preparation for the next definition of retarded-minus-advanced cochain map, let
us introduce the following notation. For an inclusion C1 ⊆ C2 of closed subsets of M ,
we denote by

jC2
C1

: FC1

⊆−→ FC2 (3.16)

inChK the associated inclusion of the complexes of sectionswith support inCi , i = 1, 2.
In particular, associated with a natural transformation κ : F1 → F2 between functors
Fi : c → cl, i = 1, 2, sending compact subsets to closed subsets of M , one has a natural
transformation

j F2(−)
F1(−) : FF1(−) −→ FF2(−) (3.17)

inChc
K
.We shall frequently encounter instances of this natural transformation associated

with the natural inclusions K ⊆ J±
M (K ) ⊆ JM (K ) ⊆ M , for all compact subsets

K ⊆ M , which follow from the definition of causal future/past.
The next definition involves the homotopy colimit dg-functor hocolim : Chc

K
→

ChK from Sect. 2.3.

Definition 3.12. Let (F, Q) be a Green hyperbolic complex on M and consider a
choice of retarded and advanced Green homotopies�±. The associated retarded-minus-
advanced cochain map

�h := hocolim(�) : Fhc[1] −→ Fhsc (3.18a)

in ChK is defined evaluating the dg-functor hocolim from (2.37) on the (−1)-cocycle

� := j JM (−)

J+
M (−)

◦ �+ ◦ j
J+

M (−)

(−) − j JM (−)

J−
M (−)

◦ �− ◦ j
J−

M (−)

(−) ∈ Z−1(map
(
F(−),FJM (−)

))

(3.18b)

in the mapping complex. (Note that δ� = 0 follows from δ�± = id.)

Remark 3.13. The cochain complex F(h)sc ∈ ChK is defined in (3.5) as the (homotopy)
colimit of the functorF(−) ∈ Chsc

K
over the directed systemD = sc of spacelike compact

closed subsets of M . Note, however, that the functor JM : c → sc is (homotopy) final,
hence F(h)sc ∈ ChK is (quasi-)isomorphic to the (homotopy) colimit of the functor
FJM (−) = F(−) ◦ JM ∈ Chc

K
. Bearing this fact in mind, we shall always implicitly

identify F(h)sc ∈ ChK with the (homotopy) colimit of FJM (−) ∈ Chc
K
. For instance, this

identification is implicit in Definition 3.12. �
The main result of this section is the following theorem.
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Theorem 3.14. Let (F, Q) be a Green hyperbolic complex on M. Then the retarded-
minus-advanced cochain map �h : Fhc[1] → Fhsc in ChK from Definition 3.12 is a
quasi-isomorphism.

Proof. The proof is rather lengthy and it will be split into four steps. The first step
develops a geometric construction, which plays a crucial role in the next steps, the second
step defines a candidate quasi-inverse � to �h, the third step constructs a homotopy
� witnessing � ◦ �h ∼ id and the fourth step constructs a homotopy ϒ witnessing
�h ◦ � ∼ id.

Geometric construction. Choose two spacelike Cauchy surfaces �± ⊆ M such that
�+ ⊆ I +M (�−) lies in the chronological future of �− and consider an order preserving
map

� : c −→ c (3.19)

on the directed set c of compact subsets in M such that, for each compact subset K ⊆ M ,

J±
M (�∓) ∩ J∓

M (K ) ⊆ �(K ). (�)

Note that property (�) implies in particular that K ⊆ �(K ), for each compact subset
K ⊆ M . A (minimal) concrete example for such � : c → c is given by setting, for each
compact subset K ⊆ M , �(K ) := (J+

M (�−) ∩ J−
M (K )) ∪ (J−

M (�+) ∩ J+
M (K )).

Quasi-inverse � of �h. Choosing in addition to the data from the previous paragraph
a partition of unity {χ+, χ−} subordinate to the open cover {I +M (�−), I −

M (�+)} of M ,
one constructs a candidate quasi-inverse� to the retarded-minus-advanced cochain map
�h. Explicitly, the cochain map

� : Fhsc −→ Fhc[1] (3.20a)

in ChK will be determined uniquely by

hocolim
(

j JM (−)
(−)

)
◦ � := ±∂θ± ∈ [Fhsc,Fhsc]1, (3.20b)

with θ± defined in (3.21) below. Uniqueness of �, provided it exists, is a consequence
of hocolim

(
j JM (−)
(−)

) : Fhc → Fhsc in ChK being degree-wise injective. Recalling the
dg-adjunction hocolim � � from Proposition 2.4, the 0-cochain

θ± ∈ [
Fhsc,Fhsc

]0 ∼= map
(
FJM (−),�Fhsc

)0 (3.21a)

in the mapping complex is defined by assigning its components prq,K θ± ∈
[FJM (K0),Fhsc]−q , for all q ≥ 0 and K : [q] → c, according to

(prq,K θ±)nϕ := ιq,�(K )(χ±ϕ) ∈ F
n−q
hsc , (3.21b)

for all n ∈ Z and ϕ ∈ Fn
JM (K0)

. Note that the equation displayed above involves the order
preserving map � from (3.19) (regarded here as a functor). In particular, property (�)
entails that K0 ⊆ �(K0) and hence that χ±ϕ is supported in JM (K0) ⊆ JM (�(K0)).
Recalling from Sect. 2.3 the differential δ = δh + δv on the mapping complex and the
differential d = −dh + dv on the homotopy colimit, direct inspection shows that

(
prq,K (δθ±)

)n
ϕ = ιq,�(K )

(
Q(χ±ϕ) − χ±Qϕ

)
, (3.22)
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for all q ≥ 0, K : [q] → c, n ∈ Z and ϕ ∈ Fn
JM (K0)

. Because Q consists of differential
operators and χ+ + χ− = 1, it follows that Q(χ+ϕ) − χ+Qϕ = −(Q(χ−ϕ) − χ−Qϕ)),
hence the latter is a section supported in J+

M (�−)∩ J−
M (�+)∩ JM (K0) ⊆ �(K0), where

the inclusion follows from property (�). In particular, this proves that ∂θ+ = −∂θ− ∈
[Fhsc,Fhsc]1 factors through the inclusion hocolim( j JM (−)

(−) ), ensuring that � as defined
by (3.20) exists.

Remark 3.15. Let us emphasize that the construction of the cochain map � : Fhsc →
Fhc[1] inChK makes sense regardless of (F, Q) being Green hyperbolic and relies only
on the causal structure of M (through the choices of the two spacelike Cauchy surfaces
�±, of the order preserving map � and of the partition of unity {χ+, χ−}). �
Homotopy�witnessing�◦�h ∼ id.We shall now construct a homotopy�witnessing
that � is a left quasi-inverse of �h, i.e. ∂� = id− � ◦ �h. Explicitly, pulling the shifts
out of the internal hom displayed below (the corresponding isomorphism contributes
a sign (−1)n in degree n) and then using again the dg-adjunction hocolim � � from
Proposition 2.4, the (−1)-cochain

� ∈ [
Fhc[1],Fhc[1]

]−1 ∼= map
(
F(−),�Fhc

)−1 (3.23a)

in the mapping complex is defined by

� := ξ− ◦ �+ ◦ j
J+

M (−)

(−) + ξ+ ◦ �− ◦ j
J−

M (−)

(−) + ξ, (3.23b)

where �± are the retarded and advanced Green’s homotopies chosen in Definition 3.12
and ξ∓ and ξ are defined in (3.24) and respectively in (3.26) below. The 0-cochains

ξ∓ ∈ map
(
FJ±

M (−),�Fhc
)0 (3.24a)

in the mapping complex are defined by assigning the components prq,K ξ∓ ∈
[FJ±

M (K0)
,Fhc]−q , for all q ≥ 0 and K : [q] → c, according to

(prq,K ξ∓)nϕ := ιq,�(K )(χ∓ϕ) ∈ F
n−q
hc , (3.24b)

for all n ∈ Z and ϕ ∈ Fn
J±

M (K0)
. Note that the order preserving map � from (3.19)

enters this construction. In particular, χ∓ϕ is supported in J∓
M (�±)∩ J±

M (K0) ⊆ �(K0)

because of property (�). Direct inspection shows that

∓δξ∓ = � ◦ j JM (−)

J±
M (−)

∈ map
(
FJ±

M (−),�Fhc
)1

, (3.25)

with � from (3.20) regarded as a 1-cocycle � ∈ map(FJM (−),�Fhc)
1 in the mapping

complex. The (−1)-cochain

ξ ∈ map
(
F(−),�Fhc

)−1 (3.26a)

in themapping complex is definedbyassigning the components prq,K ξ ∈ [FK0 ,Fhc]−q−1,
for all q ≥ 0 and K : [q] → c, according to

(prq,K ξ)nϕ :=
q∑

k=0

(−1)q−k ιq+1,K ≤k⊆�(K ≥k)ϕ ∈ F
n−q−1
hc , (3.26b)
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for all n ∈ Z and ϕ ∈ Fn
K0
. The last formula may be understood as the sum over all paths

of length q + 1 in the commutative diagram K ⊆ �(K ) in c arising from K : [q] → c.
The sign of the k-th summand is interpreted as arising from pulling the morphism
Kk ⊆ �(Kk) in c through K ≥k : [q − k] → c and recalling that each morphism in c
contributes −1 to the total degree in the homotopy colimit. Direct inspection shows that

δξ = η − ξ− ◦ j
J+

M (−)

(−) − ξ+ ◦ j
J−

M (−)

(−) ∈ map
(
F(−),�Fhc

)0
, (3.27)

where η : id → � ◦ hocolim denotes the unit of the dg-adjunction hocolim � �.
Combining (3.25) and (3.27), one finds

∂� = id − � ◦ �h ∈ [
Fhc[1],Fhc[1]

]0
. (3.28)

Homotopy ϒ witnessing �h ◦ � ∼ id. We shall now construct a homotopy ϒ ∈
[Fhsc,Fhsc]−1 witnessing that � is a right quasi-inverse of �h, i.e. ∂ϒ = id − �h ◦ �.
Explicitly, consider the (−1)-cochain

ϒ :=
(

j JM (−)

J+
M (−)

)

h
◦ (�+)h ◦ υ+ +

(
j JM (−)

J−
M (−)

)

h
◦ (�−)h ◦ υ− + υ ∈ [Fhsc,Fhsc]−1

(3.29)

in the internal hom, where (−)h := hocolim denotes the homotopy colimit dg-functor
and υ± and υ are defined in (3.30) and respectively (3.32) below. Recalling from [Bar15]
the strictly past compact spc and strictly future compact sfc directed systems, the 0-
cochain

υ± ∈ [
Fhsc,Fhspcsfc

]0 (3.30a)

in the internal hom is uniquely determined by
(

j JM (−)

J±
M (−)

)

h
◦ υ± := θ± ∈ [

Fhsc,Fhsc
]0

, (3.30b)

where θ± is defined in (3.21). Indeed,
(

j JM (−)

J±
M (−)

)

h
is degree-wise injective, hence υ±

is unique, provided it exists. Furthermore, property (�) of the chosen order preserving
map � : c → c entails that χ±ϕ is supported in J±

M (�∓) ∩ JM (K0) ⊆ J±
M (�(K0))

when ϕ is supported in JM (K0), hence θ± factors through
(

j JM (−)

J±
M (−)

)

h
and υ± as defined

by (3.30) exists. Factoring out
(

j JM (−)

J±
M (−)

)

h
, it follows from (3.20) that

±∂υ± =
(

j
J±

M (−)

(−)

)

h
◦ � ∈ [

Fhsc,Fhspcsfc

]1
. (3.31)

The (−1)-cochain

υ ∈ [
Fhsc,Fhsc

]−1 ∼= map
(
FJM (−),�Fhsc

)−1 (3.32)

in the mapping complex is defined by the same formula as (3.26) (however here ϕ ∈
Fn

JM (K0)
). In particular, in a similar fashion one finds

∂υ = id −
(

j JM (−)

J+
M (−)

)

h
◦ υ+ −

(
j JM (−)

J−
M (−)

)

h
◦ υ− ∈ [

Fhsc,Fhsc
]0

. (3.33)

Combining (3.31) and (3.33), one finds

∂ϒ = id − �h ◦ �. (3.34)

This completes the proof of Theorem 3.14. ��
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3.3. Poisson structures from differential pairings. Working over K = R, this section
defines a suitable concept of differential pairing for complexes of linear differential
operators. This concept generalizes the usual fiber metrics on vector bundles and, at the
same time, encodes the structure that makes Stokes’ theorem available upon integration.
In analogy with the classical situation of a formally self-adjoint Green hyperbolic oper-
ator, see e.g. [BGP07], it shall be shown that endowing a complex of linear differential
operators with such a differential pairing determines two types of Poisson structures.
The first type relies crucially on (F, Q) being a Green hyperbolic complex and consists
of three Poisson structures τ±

M , τM : Fhc[1]∧2 → R inChR, defined on the 1-shift of the
complex of sections with compact support and related to each other by suitable homo-
topies, reflecting the multiple equivalent ways (2.9) of presenting the classical Poisson
structure (2.8). The second type of Poisson structure σ� : F∧2

hsc → R inChR relies on the
choice of a spacelike Cauchy surface � ⊆ M and is defined on the complex of sections
with spacelike compact support.

Definition 3.16. Let (F, Q) be a complex of linear differential operators on M . A differ-
ential pairing (−,−) on (F, Q) is a graded anti-symmetric linear bi-differential operator
(−,−) : F⊗2 → �•(M)[m − 1] that is a cochain map with respect to the differentials
Q⊗ and ddR [m−1], i.e.

(Qϕ1, ϕ2) + (−1)|ϕ1| (ϕ1, Qϕ2) = (−1)m−1 ddR(ϕ1, ϕ2), (3.35)

for all homogeneous sections ϕ1, ϕ2 ∈ F.

Example 3.17. Form = 3, recall the complex of linear differential operators (FCS, QCS)

associated with linear Chern–Simons theory from Example 3.2. On (FCS, QCS) one can
consider the differential pairing (−,−)CS, whose only non-vanishing components are
given by

(ε1, ε2)CS := ε1 ∧ ε2,

(A, ε)CS := −A ∧ ε =: −(ε, A)CS,

(A‡, ε)CS := A‡ ∧ ε =: (ε, A‡)CS,

(A1, A2)CS := −A1 ∧ A2,

(ε‡, ε)CS := −ε‡ ∧ ε =: −(ε, ε‡)CS,

(A‡, A)CS := A‡ ∧ A =: −(A, A‡)CS, (3.36)

for all ε, ε1, ε2 ∈ F−1
CS = �0(M), A, A1, A2 ∈ F0

CS = �1(M), A‡ ∈ F1
CS = �2(M)

and ε‡ ∈ F2
CS = �3(M). Note that (−,−)CS is just an appropriately shifted version of

the graded commutative multiplication ∧ : �•(M) ⊗ �•(M) → �•(M). This shift is
the source of the signs displayed in (3.36).

Example 3.18. Recall the complex of linear differential operators (F(E,P), Q(E,P)) from
Example 3.3. Additionally, assume the vector bundle E comes endowed with a fiber
metric 〈−,−〉 and suppose that P is of the form P = �∇+B, for∇ a connection on E and
B an endomorphism of E . (Note that all normally hyperbolic linear differential operators
are of this form, see [BGP07, Lem. 1.5.5].) Furthermore, suppose that the connection∇ is
metric and that the endomorphism B is symmetric. With these preparations one endows
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(F(E,P), Q(E,P)) with a differential pairing (−,−)(E,P), whose only non-vanishing
components are given by

(ϕ1, ϕ2)(E,P) := (−1)m〈ϕ1 ∧ ∗∇ϕ2 − ϕ2 ∧ ∗∇ϕ1〉,
(ϕ‡, ϕ)(E,P) := 〈ϕ‡ ∧ ∗ϕ〉 =: −(ϕ, ϕ‡)(E,P), (3.37)

for all ϕ, ϕ1, ϕ2 ∈ F0
(E,P) = �(E) and ϕ‡ ∈ F1

(E,P) = �(E). Compatibility with
the differentials follows from ∇ being a metric connection and B being a symmetric
endomorphism. The construction above applies manifestly to the Klein-Gordon field.

Example 3.19. Also the complex of linear differentials operators (FMW, QMW) associ-
atedwithMaxwell p-forms fromExample 3.4 can be endowedwith a differential pairing
(−,−)MW. For instance, when p = 1 (corresponding to the more familiar electromag-
netic vector potential), the only non-vanishing components of (−,−)MW are given by

(A, ε)MW := −ε ∧ ∗ddR A =: −(ε, A)MW,

(A‡, ε)MW := (−1)mε ∧ ∗A‡ =: (ε, A‡)MW,

(ε‡, ε)MW := ε‡ ∧ ∗ε =: −(ε, ε‡)MW,

(A1, A2)MW := (−1)m−1(A1 ∧ ∗ddR A2 − A2 ∧ ∗ddR A1
)
,

(A‡, A)MW := A‡ ∧ ∗A =: −(A, A‡)MW, (3.38)

for all ε ∈ F−1
MW = �0(M), A, A1, A2 ∈ F0

MW = �1(M), A‡ ∈ F1
MW = �1(M) and

ε‡ ∈ F2
MW = �0(M).

Let (−,−) be a differential pairing on a complex of linear differential operators
(F, Q) on M . The key ingredient to construct the first type of Poisson structures is the
evaluation pairing defined by the composition

(3.39)

in ChR. The construction above uses that, being a bi-differential operator, (−,−) pre-
serves supports and that, by Stokes’ theorem, integration over M defines a cochain map∫

M : �•
c(M)[m] → R in ChR. (Recall that m = dim(M) is the dimension of M .)

Let us construct the Poisson structure τ±
M , generalizing the last equivalent presenta-

tion in (2.9) of the classical Poisson structure (2.8). Given a retarded/advanced Green’s
homotopy �± for (F, Q) and recalling also (3.17), define the 0-cochain

�± h ∈ [Fhc[1],F]0 ∼= [Fhc,F]−1 (3.40a)

as the adjunct of the (−1)-cochain

hocolim
(

j M
J±

M (−)
◦ �± ◦ j

J±
M (−)

(−)

)
∈ map(F(−),�F)−1 (3.40b)

with respect to the dg-adjunction hocolim � � from Proposition 2.4. With these prepa-
rations we define the cochain map

τ±
M := ±evM ◦ (id ⊗ �± h) ∓ evM ◦ γ ◦ (�± h ⊗ id) : Fhc[1]⊗2 −→ R (3.41)
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in ChR, where γ denotes the symmetric braiding on ChR and the 1-shift of the F(−)-
component of the natural transformation hocolim → colim from (2.35) is suppressed
from our notation. To check that τ±

M as defined above is a cochain map, for all homoge-
neous ϕ1, ϕ2 ∈ Fhc[1], compute

(∂τ±
M )(ϕ1 ⊗ ϕ2) = ( ± evM (id ⊗ ∂�± h) ∓ evM ◦ γ ◦ (∂�± h ⊗ id)

)
(ϕ1 ⊗ ϕ2)

= ±(−1)|ϕ1|
∫

M
(ϕ1, ϕ2) ∓ (−1)(|ϕ1|+1)|ϕ2|

∫

M
(ϕ2, ϕ1)

= 0, (3.42)

where in the first step we used that both evM and γ are cochain maps, in the second
step we used that the 1-cochain ∂�± h ∈ [Fhc[1],F]1 ∼= [Fhc,F]0 is just the adjunct
of the inclusion F(−) → �F in Chc

R
with respect to the dg-adjunction hocolim � �

from Proposition 2.4 and in the last step we used the graded anti-symmetry of (−,−).
Since τ±

M is manifestly graded anti-symmetric, it descends to a Poisson structure τ±
M :

Fhc[1]∧2 → R.
Let us also construct the Poisson structure τM . Given a choice of retarded and

advanced Green’s homotopies �± for (F, Q), recall the associated retarded-minus-
advanced cochain map �h from Definition 3.12 and consider the composition

τ̃M := evM ◦ (id ⊗ �h) : Fhc[1]⊗2 −→ R (3.43)

in ChR, where we suppressed from our notation both the 1-shift of the F(−)-component
of the natural transformation hocolim → colim from (2.35) and the adjunct of the
inclusion FJM (−) → �F in Chc

R
with respect to the dg-adjunction hocolim � � from

Proposition 2.4. Graded anti-symmetrization defines the cochain map

τM := asym(̃τM ) : Fhc[1]⊗2 −→ R (3.44)

in ChR, which by construction descends to a Poisson structure τM : Fhc[1]∧2 → R on
Fhc[1].
Remark 3.20. Graded anti-symmetrization is required because we did not impose any
compatibility conditions between the Green’s homotopies and the differential pairing.
Hence, the cochainmap τ̃M in (3.43) will in general fail to be graded anti-symmetric. For
a large class of examples, including all the examples presented in this paper, there exist
particular choices of retarded/advanced Green’s homotopies that are compatible with
the differential pairing and thereby turn τ̃M into a graded anti-symmetric cochain map.
Such choices make the graded anti-symmetrization construction in (3.44) superfluous.
The details will be discussed in Sect. 4.2. �

The Poisson structures τ±
M , τM are related by homotopies that are constructed by the

graded anti-symmetrization

λM := asym(̃λM ) ∈ [Fhc[1]⊗2,R]−1 (3.45a)

of the (−1)-cochain

λ̃M ∈ [Fhc[1]⊗2,R]−1 (3.45b)

defined below. By abuse of notation, we shall denote by �± h := hocolim(�±) also the
homotopy colimit of the chosen retarded/advanced Green’s homotopy �±, interpreting
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�± h ∈ [Fhspcsfc
[1],Fhspcsfc

]0 as a 0-cochain in the internal hom involving cochain complexes

Fhspcsfc
of sections with strictly past/future compact support. Furthermore, we shall sup-

press from our notation all components of the natural transformation hocolim → colim
from (2.35), as well as the adjuncts of the inclusions F(−) → �F, FJM (−) → �F and
FJ±

M (−) → �F in Chc
R
with respect to the dg-adjunction hocolim � � from Proposi-

tion 2.4. Recalling that the intersection of a strictly past compact subset of M with a
strictly future compact one is compact and that the differential pairing (−,−) preserves
supports, we define λ̃M ∈ [Fhc[1]⊗2,R]−1 by

λ̃M (ϕ1 ⊗ ϕ2) := −
∫

M
(�+ hϕ1,�− hϕ2), (3.45c)

for all homogeneous ϕ1, ϕ2 ∈ Fhc[1]. Direct inspection shows that

∂λ̃M = τ+M − τ̃M = (τ−
M − τ̃M ) ◦ γ. (3.46)

Since their verifications are very similar, let us focus on the first equality only. For all
homogeneous ϕ1, ϕ2 ∈ Fhc[1], one computes

(∂λ̃M )(ϕ1 ⊗ ϕ2) = −
∫

M
(�+ hd[1]ϕ1,�− hϕ2) − (−1)|ϕ1|

∫

M
(�+ hϕ1,�− hd[1]ϕ2)

= −
∫

M
(d�+ hϕ1,�− hϕ2) +

∫

M
(ϕ1,�− hϕ2)

− (−1)|ϕ1|
∫

M
(�+ hϕ1, d�− hϕ2) + (−1)|ϕ1|

∫

M
(�+ hϕ1, ϕ2)

= −
∫

M
ddR [m−1](�+ hϕ1,�− hϕ2)

+
∫

M
(ϕ1,�− hϕ2) − (−1)|ϕ1||ϕ2|

∫

M
(ϕ2,�+ hϕ1)

= (τ+M − τ̃M )(ϕ1 ⊗ ϕ2). (3.47)

For the first step we used ∂(̃λM ) = λ̃M ◦ d[1]⊗, for the second step we used d ◦ �± h −
�± h ◦ d[1] = ∂(�± h) = id, for the third step we used �h = �+ h − �− h, the graded
anti-symmetry of (−,−) and its compatibility with the differentials (−,−) ◦ Q⊗ =
ddR [m−1] ◦ (−,−) (the passage from d to Q is suppressed here because the natural
transformation hocolim → colim from (2.35) has been suppressed from our notation).
For the last step we used Stokes’ theorem and the definitions of τ±

M in (3.41) and of
τ̃M in (3.43). Since λM is by definition anti-symmetrized, it descends to the homotopy
λM ∈ [Fhc[1]∧2,R]−1 such that

∂λM = asym(∂λ̃M ) = τ+M − τM = τM − τ−
M . (3.48)

We collect our findings so far in the proposition stated below.

Proposition 3.21. Let (F, Q) be a Green hyperbolic complex on M endowed with a
differential pairing (−,−). For a choice of retarded and advanced Green’s homotopies
�±, (3.41)and (3.44)define Poisson structures τ±

M , τM : Fhc[1]∧2 → RonFhc[1]. These
Poisson structures coincide τ±

M = τM±∂λM up to the homotopy±λM ∈ [Fhc[1]∧2,R]−1

from (3.45).
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Remark 3.22. The cochain map τ±
M (3.41) generalizes the classical Poisson structure

(2.8) as presented by the last step of (2.9), while τM generalizes the classical Poisson
structure as presented by the second and third steps of (2.9). In contrast to the classical
situation, in general the Poisson structures τ±

M , τM do not coincide, but are related by the
homotopy±λM , as stated byProposition 3.21. For a large class of examples, including all
the examples presented in this paper, there exist particular choices of retarded/advanced
Green’s homotopies that are compatible with the differential pairing. In this case it turns
out that τ+M = τ−

M = τM coincide. We will come back to this in more detail in Sect. 4.2.
�

To construct the second type of Poisson structure on a complex of linear differential
operators (F, Q) endowed with a differential pairing (−,−), the key ingredient is a
second type of evaluation pairing, which depends on the choice of a spacelike Cauchy
surface � ⊆ M and is defined by the composition

(3.49)

in ChR. The construction above uses that, being a bi-differential operator, (−,−) pre-
serves supports, that intersecting a spacelike compact subset of M with a spacelike
Cauchy surface � returns a compact subset of � and that, by Stokes’ theorem, inte-
gration over � defines a cochain map

∫
�

: �•
c(�)[m − 1] → R in ChR. (Recall that

dim(�) = dim(M) − 1 = m − 1.) The construction of the second Poisson structure
is summarized in the proposition below, which is a straightforward consequence of the
graded anti-symmetry of the differential pairing (−,−).

Proposition 3.23. Let (F, Q) be a complex of linear differential operators on M
endowed with a differential pairing (−,−). Denote by � ⊆ M a spacelike Cauchy
surface of M. Then the composition

(3.50)

in ChR is graded anti-symmetric and hence it descends to a Poisson structure σ� :
F∧2
hsc → R on Fhsc. The unlabeled morphism consists in its first factor of the FJM (−)-

component of the natural transformation hocolim → colim from (2.35) and in its
second factor of the adjunct of the inclusion FJM (−) → �F in Chc

R
with respect to the

dg-adjunction hocolim � � from Proposition 2.4.

Classically, the retarded-minus-advanced propagator is compatible with the usual
analogs of the two types of Poisson structures considered above, hence it is an isomor-
phism of Poisson vector spaces. Their cochain complex analogs are Poisson complexes,
i.e. pairs (V, τ ) consisting of a cochain complex V ∈ ChR and a Poisson structure
τ : V ∧2 → R in ChR. Morphisms of Poisson complexes f : (V1, τ1) → (V2, τ2) are
cochain maps f : V1 → V2 such that τ2 ◦ f ∧2 = τ1. It will be shown that, in the context
of Green hyperbolic complexes, the retarded-minus-advanced quasi-isomorphism �h is
not a morphism from the Poisson complexes (Fhc[1], τ±

M ) or (Fhc[1], τM ) of Proposi-
tion 3.21 to the Poisson complex (Fhsc, σ�) of Proposition 3.23, however this failure
is controlled by prescribed homotopies. Such weaker morphisms can be interpreted as
morphisms in a suitable simplicial category of Poisson complexes, see [GH18, Sec. 3.1].

For concreteness, let us concentrate on constructing the homotopy λh such that σ� ◦
�∧2

h = τM + ∂λh. (One can easily relate σ� also to the Poisson structure τ±
M from
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(3.41) by combining λh with the homotopy λM from (3.45) according to σ� ◦ �∧2
h =

τ±
M + ∂(λh ∓ λM ).) The relevant

λh := asym(̃λh) ∈ [
Fhc[1]∧2,R

]−1 (3.51a)

is the graded anti-symmetrization of the (−1)-cochain

λ̃h ∈ [
Fhc[1]⊗2,R

]−1 (3.51b)

defined, for all homogeneous ϕ1, ϕ2 ∈ Fhc[1], by
λ̃h(ϕ1 ⊗ ϕ2) :=

∫

�+

(
(�−)hϕ1,�hϕ2

)
+

∫

�−

(
(�+)hϕ1,�hϕ2

)
, (3.51c)

where on the right-hand side �± := J±
M (�), (−)h := hocolim denotes the homotopy

colimit dg-functor (2.37) and the relevant components of the natural transformation
hocolim → colim from (2.35) are suppressed from our notation. Indeed, direct inspec-
tion shows that, for all homogeneous sections ϕ1, ϕ2 ∈ Fhc[1], one has

(∂λ̃h)(ϕ1 ⊗ ϕ2) =
∫

�+

(
(�−)hd[1]ϕ1,�hϕ2

)
+ (−1)|ϕ1|

∫

�+

(
(�−)hϕ1,�hd[1]ϕ2

)

+
∫

�−

(
(�+)hd[1]ϕ1,�hϕ2

)
+ (−1)|ϕ1|

∫

�−

(
(�+)hϕ1,�hd[1]ϕ2

)

=
∫

�+

(
d(�−)hϕ1,�hϕ2

)

−
∫

�+

(
ϕ1,�hϕ2

)
+ (−1)|ϕ1|

∫

�+

(
(�−)hϕ1, d�hϕ2

)

+
∫

�−

(
d(�+)hϕ1,�hϕ2

)

−
∫

�−

(
ϕ1,�hϕ2

)
+ (−1)|ϕ1|

∫

�−

(
(�+)hϕ1, d�hϕ2

)

=
∫

�+
ddR [m−1]

(
(�−)hϕ1,�hϕ2

)

+
∫

�−
ddR [m−1]

(
(�+)hϕ1,�hϕ2

) −
∫

M

(
ϕ1,�hϕ2

)

= (−1)m−1
∫

�

ι∗
(
�hϕ1,�hϕ2

) −
∫

M

(
ϕ1,�hϕ2

)

= σ�(�hϕ1 ⊗ �hϕ2) − τ̃M (ϕ1 ⊗ ϕ2), (3.52)

where �± := J±
M (�). For the first step we used ∂(̃λh) = λ̃h ◦ d[1]⊗, for the second

step we used d ◦ (�±)h − (�±)h ◦ d[1] = ∂(�±)h = id and d ◦ �h = �h ◦ d[1], for
the third step we used (−,−) ◦ Q⊗ = ddR [m−1] ◦ (−,−) (the passage from d to Q is
suppressed here because the natural transformation hocolim → colim from (2.35) has
been suppressed from our notation) and for the fourth step we used Stokes’ theorem.
The last step is the definition of τ̃M in (3.43) and of σ� in (3.50). Recalling also the
definition of τM in (3.44), the previous computation shows that

∂λh = asym(∂λ̃h) = σ� ◦ �∧2
h − τM . (3.53)

Let us summarize our findings.
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Theorem 3.24. Let (F, Q) be a Green hyperbolic complex on M endowed with a dif-
ferential pairing (−,−). Denote by � ⊆ M a spacelike Cauchy surface of M. Then the
retarded-minus-advanced quasi-isomorphism �h : Fhc[1] → Fhsc from Theorem 3.14
is compatible with the Poisson structures τM and σ� from Propositions 3.21 and 3.23
up to the homotopy λh defined in (3.51), i.e. σ� ◦ �∧2

h − τM = ∂λh.

Remark 3.25. Classically, the Poisson structure σ� is independent of the choice of space-
like Cauchy surface � ⊆ M . The analogous conclusion in the present context may be
formalized as follows. Let �,�′ ⊆ M be two spacelike Cauchy surfaces of M . Then
there exists a homotopy λ��′ comparing the Poisson structures σ� and σ�′ , namely such
that σ� − σ�′ = ∂λ��′ . This statement is an immediate corollary of Theorem 3.24. In
fact, associated with � and �′ one has corresponding homotopies λh and λ′

h, both given
by (3.51), such that σ� ◦ �∧2

h − τM = ∂λh and σ�′ ◦ �∧2
h − τM = ∂λ′

h. Comparing
these equations, one gets (σ� − σ�′) ◦ �∧2

h = ∂(λh − λ′
h), therefore any choice of a

quasi-inverse for �h allows one to construct a homotopy λ��′ comparing σ� and σ�′ .
For instance, one choice of λ��′ is obtained combining λh and λ′

h with the quasi-inverse
� from (3.20) and the homotopy ϒ from (3.29) witnessing �h ◦ � ∼ id. �

4. Green’s Witnesses

4.1. Definition and results. This section introduces the concept of a Green’s witness,
which consists of a collection of degree decreasing linear differential operators defined
on a complex of linear differential operators satisfying suitable conditions.We shall show
that finding a Green’s witness is particularly useful because it entails that the underly-
ing complex of linear differential operators is Green hyperbolic. In particular, we shall
obtain several examples of Green hyperbolic complexes by constructing Green’s wit-
nesses. Furthermore, Green’s witnesses provide explicit retarded and advanced Green’s
homotopies that are strictly natural, in contrast to the general case. This provides sev-
eral simplifications compared to Sect. 3. Most notably, the retarded-minus-advanced
quasi-isomorphism simplifies considerably, which is particularly interesting in view of
applications to concrete examples of Green hyperbolic complexes admitting a Green’s
witness. Those simplifications shall be explored in detail in this section.

Definition 4.1. A Green’s witness W = (W n)n∈Z for a complex of linear differential
operators (F, Q) on M consists of a collection of degree decreasing linear differential
operators W n : Fn → Fn−1 such that, for all n ∈ Z, the linear differential operators

Pn := Qn−1 W n + W n+1 Qn : Fn −→ Fn (4.1)

are Green hyperbolic (in the ordinary sense), see Sect. 2.1.

Remark 4.2. Recall that, for a complexof linear differential operators (F, Q), the cochain
complex of its sections is denoted by F ∈ ChK, whose degree n ∈ Z component is the
vector space Fn from (3.1) and whose differential is Q. A Green’s witness W for (F, Q)

is in particular a (−1)-cochain in the internal hom [F,F] ∈ ChK whose differential
∂W = P returns a 0-coboundary whose components Pn are ordinary Green hyperbolic
linear differential operators. Since Q, W and P consist of linear differential operators,
which in particular preserve supports, they naturally restrict to the cochain complexes
of sections with restricted supports. �
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Remark 4.3. Our concept of Green’s witness has its roots in Hodge theory and, more
generally, in the theory of elliptic complexes. A recent and closely related concept, which
inspired us, is that of gauge fixing operator, appearing in the works of Costello and
Gwilliam [CG17,CG21]. We however would like to point out the following differences.
1.) The analogs in [CG17,CG21] of the differential operators Pn are assumed to be
elliptic instead of Green hyperbolic. This is due to the fact that Costello and Gwilliam
consider Riemannian instead of Lorentzian manifolds M . 2.) [CG17,CG21] include
a self-adjointness condition and a square-zero condition. In Definition 4.16, we shall
also introduce a relaxation of the square-zero condition, see item (i), and a certain self-
adjointness condition, see item (ii). Let us mention that both conditions are met by all
examples we shall present. �
Example 4.4. One observes that the de Rham codifferential δdR, defined out of the met-
ric and orientation of M , is a Green’s witness for the de Rham complex (�•M, ddR)

from Example 3.2. Indeed, the d’Alembert operator � := δdR ddR + ddR δdR is normally
hyperbolic, hence Green hyperbolic, in all degrees. For m = 3, the 1-shift of δdR defines
a Green’s witness WCS for the complex of linear differential operators (FCS, QCS) asso-
ciated with linear Chern–Simons theory.

Example 4.5. Recalling Example 3.3, when P is a Green hyperbolic linear differential
operator (e.g. the Klein-Gordon operator P = � + m2 : C∞(M) → C∞(M)), one
observes that W(E,P), consisting of a single non-vanishing component W 1

(E,P) := id :
F1

(E,P) → F0
(E,P), is a Green’s witness for (F(E,P), Q(E,P)).

Example 4.6. Recalling Example 3.4, for the complex of linear differential operators
(FMW, QMW) associated with Maxwell p-forms on M one constructs a Green’s witness
WMW by defining its only non-vanishing components according to

W n
MW :=

⎧
⎪⎨

⎪⎩

δdR, n = −p + 1, . . . , 0,
id, n = 1,
ddR, n = 2, . . . , p + 1.

(4.2)

Direct inspection shows that the only components of the linear differential operator
PMW = QMWWMW + WMWQMW that do not necessarily vanish are d’Alembert opera-
tors Pn

MW = δdR ddR + ddR δdR = �, for n = −p, . . . , p + 1. Since those are normally
hyperbolic and hence Green hyperbolic, it follows that WMW is a Green’s witness for
the complex of linear differential operators (FMW, QMW).

Theorem 4.7. Let (F, Q) be a complex of linear differential operators on M endowed
with a Green’s witness W . Then (F, Q) is a Green hyperbolic complex. Furthermore,
denote by Gn± : Fn

pc/fc → Fn
pc/fc the (extended) retarded/advanced Green’s operator

associated with the Green hyperbolic operator Pn from Definition 4.1. Then the (−1)-
cochain

�± ∈ hom
(
FJ±

M (−),FJ±
M (−)

)−1 ⊆ map
(
FJ±

M (−),FJ±
M (−)

)−1
, (4.3a)

defined, for all compact subsets K ⊆ M and all n ∈ Z, by

(prK �±)n := W n Gn±, (4.3b)

is a choice of retarded/advanced Green’s homotopy for (F, Q).
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Proof. Recalling Proposition 3.9, for the first part of the statement it suffices to show
that, for all compact subsets K ⊆ M , the complex FJ±

M (K ) ∈ ChK of sections supported
in the causal future/past of K is acyclic. To achieve this goal, we define a (−1)-cochain

�±,K ∈ [FJ±
M (K ),FJ±

M (K )]−1 (4.4a)

degree-wise for all n ∈ Z by

�n
±,K := W n Gn±. (4.4b)

Direct inspection shows that ∂�±,K = id, hence FJ±
M (K ) ∈ ChK is acyclic for all

compact subsets K ⊆ M , as claimed. More explicitly, one has

(∂�±,K )n = Qn−1 W n Gn± + W n+1 Gn+1± Qn = Pn Gn± = id, (4.5)

for all n ∈ Z, where we used in the first step the definition of ∂ from (2.11), in the second
step the identity

Gn+1± Qn = Qn Gn±, (4.6)

which follows from Qn Pn = Pn+1 Qn , seeRemark4.2, and in the last step the properties
of a retarded/advanced Green’s operator, see Sect. 2.1.

For the second part of the statement there remains to show that the (−1)-cochains
�±,K ∈ [FJ±

M (K ),FJ±
M (K )]−1, for all compact subsets K ⊆ M , assemble to form a

(−1)-cochain �± in the enriched hom according to prK �± = �±,K . Since strict nat-
urality follows from the support properties of the retarded/advanced Green’s operator,
see Sect. 2.1, the claim follows. ��
Remark 4.8. Note that Green’s witnesses provide particularly simple retarded and
advancedGreen’s homotopies. Indeed, those are strictly natural as they lie in the enriched
hom. This should be compared to the case of generic retarded and advanced Green’s
homotopies, which instead lie in the mapping complex and hence are not necessarily
strictly natural. The latter consist of a much more intricate hierarchy of data expressing
naturality in a homotopy coherent fashion. While this is not an issue from an abstract
point of view, for concrete applications the retarded and advanced Green’s homotopies
from Theorem 4.7 are certainly convenient. For instance, this fact will be exploited in
[BMS22] where we construct examples of strict algebraic quantum field theories and
of strict time-orderable prefactorization algebras from Locm-natural Green hyperbolic
complexes that are endowed with a natural Green’s witness. �
Remark 4.9. Recall that the spaces of retarded and advanced Green’s homotopies are
either empty or contractible, see Proposition 3.10. Informally, this means that, when they
exist, retarded and advanced Green’s homotopies are unique up to higher homotopies,
which are themselves unique up to even higher homotopies, and so on. Let us illustrate
this phenomenon concretely in the case of a complex of linear differential operators
(F, Q) endowed with a Green’s witness W . In this setting, along with the retarded
and advanced Green’s homotopies �± from Theorem 4.7, there exist other choices of
retarded and advanced Green’s homotopies �̃±. Consider, for instance,

�̃± ∈ hom
(
FJ±

M (−),FJ±
M (−)

)−1 ⊆ map
(
FJ±

M (−),FJ±
M (−)

)−1
, (4.7a)
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which is defined, for all compact subsets K ⊆ M and n ∈ Z, by

(prK �̃±)n := Gn−1± W n . (4.7b)

(Notice the order reversal compared to Theorem 4.7.) Strict naturality of �̃± follows
by the same argument as in the proof of Theorem 4.7. To confirm that �̃± is indeed a
retarded/advanced Green’s homotopy, recall (4.6) and (4.1) and compute

(∂�̃±)n = Qn−1 Gn−1± W n + Gn± W n+1 Qn = Gn± Pn = id. (4.8)

Let us exhibit an explicit (higher) homotopy λ± that relates �± and �̃±. Consider

λ± ∈ hom
(
FJ±

M (−),FJ±
M (−)

)−2 ⊆ map
(
FJ±

M (−),FJ±
M (−)

)−2
, (4.9a)

which is defined, for all compact subsets K ⊆ M and n ∈ Z, by

(prK λ±)n := W n−1 Gn−1± Gn−1± W n . (4.9b)

Strict naturality ofλ± follows as usual from the support properties of the retarded/advanced
Green’s operator, see Sect. 2.1. A straightforward computation shows that

(∂λ±)n = Qn−2 W n−1 Gn−1± Gn−1± W n − W n Gn± Gn± W n+1 Qn

= (Pn−1 − W n Qn−1) Gn−1± Gn−1± W n − W n Gn± Gn± (Pn − Qn−1 W n)

= Gn−1± W n − W n Qn−1 Gn−1± Gn−1± W n − W n Gn± + W n Gn± Gn± Qn−1 W n

= �̃n± − �n±, (4.10)

where we used (4.1) in the second step, the properties of retarded/advanced Green’s
operators, see Sect. 2.1, in the third step and (4.6) in the last step. It is not difficult
to come up with other choices λ̃± ∈ map(FJ±

M (−),FJ±
M (−))

−2 relating �± and �̃±.
Proposition 3.10 ensures that any two choices coincide up to a (even higher) homotopy,
and so on. �
Example 4.10. Let (�•M, ddR) be the de Rham complex from Example 3.2 and recall
the Green’s witness δdR from Example 4.4. Then Theorem 4.7 states that (�•M, ddR) is
a Green hyperbolic complex and provides a specific choice of retarded/advancedGreen’s
homotopy �dR±, whose only non-vanishing components are

(prK �dR±)n := δdR G�±, (4.11)

for all compact subsets K ⊆ M and n = 1, . . . , m, where G�± denotes the
retarded/advanced Green’s operator for the d’Alembert operator � acting on k-forms,
k = 0, . . . , m. Since ddR G�± = G�± ddR and δdR G�± = G�± δdR, we observe that
the retarded/advanced Green’s homotopy �̃dR± from Remark 4.9 coincides with�dR±.
In the same fashion, for m = 3, one concludes that the complex of linear differential
operators (FCS, QCS) associated with linear Chern–Simons theory is Green hyperbolic
and a specific choice of retarded/advanced Green’s homotopy �CS± is just the 1-shift
of �dR±.
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Example 4.11. Let (F(E,P), Q(E,P)) be the complex of linear differential operators from
Example 3.3 and recall theGreen’switnessW(E,P) fromExample 4.5. ThenTheorem4.7
states that (F(E,P), Q(E,P)) is aGreen hyperbolic complex and provides a specific choice
of retarded/advanced Green’s homotopy �(E,P) ±, which in this case coincides with
the (unique) retarded/advanced Green’s operator G± for P , see also Example 3.6. We
observe that also in this case the a priori different (yet equivalent) retarded/advanced
Green’s homotopy �̃(E,P) ± from Remark 4.9 actually coincides with �(E,P) ±.

Example 4.12. Let (FMW, QMW) be the complex of linear differential operators from
Example 3.4 associated with Maxwell p-forms and recall the Green’s witness WMW
from Example 4.6. Then Theorem 4.7 states that (FMW, QMW) is a Green hyperbolic
complex and provides a specific choice of retarded/advanced Green’s homotopy�MW±,
whose only non-vanishing components are

(prK �MW±)n :=

⎧
⎪⎨

⎪⎩

δdR G�±, n = −p + 1, . . . , 0,
G�±, n = 1,
ddR G�±, n = 2, . . . , p + 1,

(4.12)

for all compact subsets K ⊆ M , where G�± denotes the retarded/advanced Green’s
operator for the d’Alembert operator �. Once again we observe that also in this exam-
ple the retarded/advanced Green’s homotopy �̃MW± from Remark 4.9 coincides with
�MW±. This behavior is not accidental, but a consequence of the fact that these examples
admit a so-called formally self-adjoint Green’s witness in the sense of Definition 4.16,
see Remark 4.17.

Remark 4.13. A Green’s witness W simplifies considerably the construction of the
retarded-minus-advanced cochainmap. In fact, Theorem 4.7 provides specific choices of
retarded and advanced Green’s homotopies�± that are strictly natural, in contrast to the
general case. This entails that the construction of the retarded-minus-advanced cochain
map �h from Definition 3.12 “descends to ordinary colimits”. More explicitly, with this
specific choice of retarded and advanced Green’s homotopies, � from (3.18) actually
lies in the enriched hom subcomplex of the mapping complex and hence it defines a
natural transformation � : F(−)[1] → FJM (−) in ChcK. Taking the ordinary colimit, one
obtains a cochain map

� := colim(�) : Fc[1] −→ Fsc (4.13)

in ChK, which we denote with abuse of notation by the same symbol �. Recalling
also that c is a filtered category, it follows that the natural quasi-isomorphism (2.35)
comparing homotopy and ordinary colimits forms the commutative diagram

(4.14)

in ChK. The latter makes precise the previous claim that the retarded-minus-advanced
cochain map descends to ordinary colimits. �
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Remark 4.14. In the presence of a Green’s witness W for (F, Q), the statement and
proof of Theorem 3.14 can be simplified by passing from homotopy to ordinary colimits.
Indeed, using the commutative diagram (4.14), one finds that�h is a quasi-isomorphism
if and only if� is one. (Recall that, if twoout of the three cochainmaps f, g, g f are quasi-
isomorphisms, then all three are such. This is readily seen by passing to cohomology
and observing that if two out of the three graded linear maps H( f ), H(g), H(g f ) =
H(g)H( f ) are isomorphisms, then all three are such.) For�onefinds simpler (compared
to Sect. 3.2) explicit expressions of a quasi-inverse

� : Fsc −→ Fc[1], ϕ �−→ ±(
Q(χ±ϕ) − χ±Qϕ

)
, (4.15)

in ChK for �, of a homotopy

� ∈ [
Fc[1],Fc[1]

]−1
, ϕ �−→ −χ−�+ϕ − χ+�−ϕ, (4.16)

witnessing � ◦ � ∼ id and of a homotopy

ϒ ∈ [
Fsc,Fsc

]−1
, ϕ �−→ �+χ+ϕ + �−χ−ϕ, (4.17)

witnessing � ◦ � ∼ id. (The seeming sign discrepancy between (4.16) and (3.23) is
explained by the fact that (3.23) involves pulling the shifts out of the internal hom, which
contributes a sign (−1)n in degree n and hence −1 in degree −1.) Let us stress that this
simplified version of Theorem 3.14 is available for Examples 4.10, 4.11 and 4.12. �
Remark 4.15. Theorem 3.14 specializes to the usual exact sequence (2.3) when applied
to the Green hyperbolic complex (F(E,P), Q(E,P)) associated with a Green hyper-
bolic linear differential operator P acting on sections of a vector bundle E → M ,
see Examples 3.3 and 3.6. Indeed, recalling also Example 4.11, we observe that in
this case the only non-vanishing component of the retarded-minus-advanced cochain
map �(E,P) : F(E,P) c[1] → F(E,P) sc from (4.13) coincides with the retarded-minus-
advanced propagator G = G+−G− associated with P . It follows that the cone complex

(4.18)

is manifestly isomorphic to (2.3) regarded as a cochain complex concentrated between
degrees −1 and 2. Recalling that a cochain map is a quasi-isomorphism if and only
if its cone complex is acyclic [Wei94, Cor. 1.5.4], we conclude that (2.3) being exact
is equivalent to �(E,P) being a quasi-isomorphism. This explains how Theorem 3.14
generalizes the well-known exact sequence (2.3) associated with a Green hyperbolic
linear differential operator. We would like to mention that also [Lup15, Th. 5.2.3] proves
exactness of the sequence (2.3) by exhibiting a witnessing contracting homotopy. The
latter is closely related to our quasi-inverse andwitnessing homotopies fromRemark 4.14
specialized to the complex of linear differential operators (F(E,P), Q(E,P)) endowed
with the Green’s witness W(E,P) from Example 4.5. �
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4.2. Formally self-adjoint Green’s witnesses. This section introduces the concept of a
formally self-adjoint Green’s witness, i.e. a Green’s witness that is compatible with a
given differential pairing in a way that is partially reminiscent of formal self-adjointness
in the ordinary sense. Formally self-adjoint Green’s witnesses are such that the specific
choice of retarded and advanced Green’s homotopies from Theorem 4.7 simplifies the
construction and the comparison of the Poisson structures τM and σ� from Proposi-
tions 3.21 and 3.23. It will be shown at the end of this section that all examples consid-
ered here admit a formally self-adjoint Green’s witness and hence the associated Poisson
structures can be constructed and compared in the simpler way illustrated below.

Definition 4.16. Let (F, Q) be complex of linear differential operators on M endowed
with a differential pairing (−,−). A Green’s witness W for (F, Q) is called formally
self-adjoint when the compatibility conditions listed below are met:

(i) Q W W = W W Q,
(ii)

∫
M (Wϕ1, ϕ2) = (−1)|ϕ1|

∫
M (ϕ1, Wϕ2),

for all homogeneous sections ϕ1, ϕ2 ∈ F with compact overlapping support.

Remark 4.17. Recalling also Definition 4.1, let us emphasize some immediate conse-
quences of Definition 4.16.

(i) It follows that P W = W P , therefore one also has G± W = W G±, where G±
denotes the retarded/advancedGreen’s operator associatedwith the Green hyperbolic
linear differential operator P := Q W + W Q. In particular, the specific choice �±
of retarded and advanced Green’s homotopies from Theorem 4.7 coincides with the
one �̃± from Remark 4.9. As a consequence, the retarded-minus-advanced quasi-
isomorphism � : Fc[1] → Fsc in ChR from (4.13) can be equivalently expressed
as G W = � = W G, where G := G+ − G− denotes the retarded-minus-advanced
propagator associated with P .

(ii) One finds that P is formally self-adjoint, namely
∫

M (Pϕ1, ϕ2) = ∫
M (ϕ1, Pϕ2) for

all homogeneous sections ϕ1, ϕ2 ∈ F with compact overlapping support. From this
fact it follows that, for all homogeneous sections ϕ1, ϕ2 ∈ Fc with compact support,∫

M (G±ϕ1, ϕ2) = ∫
M (ϕ1, G∓ϕ2), and hence also

∫
M (Gϕ1, ϕ2) = − ∫

M (ϕ1, Gϕ2).

These observations shall be systematically used in the proof of Proposition 4.18. �
Recall that aGreen’switnessW leads to a simplified quasi-isomorphism� : Fc[1] →

Fsc between ordinary (as opposed to homotopy) colimits, see (4.13) and (4.14).When W
is formally self-adjoint, one realizes that also Propositions 3.21, 3.23 and Theorem 3.24
simplify considerably.

Proposition 4.18. Let (F, Q) be a complex of differential operators on M endowed with
a differential pairing (−,−) and a formally self-adjoint Green’s witness W . Consider
the retarded-minus-advanced cochain map � : Fc[1] → Fsc in ChR from Remarks 4.13
and 4.14. Then the composition

(4.19)

in ChR is graded anti-symmetric and hence it descends to a Poisson structure τM :
Fc[1]∧2 → R on Fc[1]. (Recall the definition of evM from (3.39).)
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Proof. Denoting the symmetric braiding on ChR by γ , one has to check that τM ◦ γ =
−τM . Since R ∈ ChR is concentrated in degree 0, it suffices to check this equality upon
evaluation on all sections ϕ1 ∈ Fc[1]q , ϕ2 ∈ Fc[1]−q and for all q ∈ Z. Recalling
Remark 4.17, one has

τMγ (ϕ1 ⊗ ϕ2) = (−1)q
∫

M
(ϕ2, W Gϕ1) = (−1)q+1

∫

M
(W Gϕ1, ϕ2) = −

∫

M
(ϕ1, GWϕ2)

= −τM (ϕ1 ⊗ ϕ2). (4.20)

The first step follows using the braiding γ and � = W G, see item (i) of Remark 4.17,
the second step follows from graded anti-symmetry of (−,−), the third step follows
combining item (ii) of Definition 4.16 and item (ii) of Remark 4.17 and the last step
follows from � = G W , see item (i) of Remark 4.17. ��
Remark 4.19. With the choice of retarded and advanced Green’s homotopies �± from
Theorem 4.7 and up to the quasi-isomorphism Fhc[1] � Fc[1], the cochain map τ̃M
from (3.43) coincides with the Poisson structure τM from (4.19). Indeed, the same
calculation as in the proof of Proposition 4.18 shows that τ̃M is already graded anti-
symmetric, making the graded anti-symmetrization in (3.44) superfluous, as anticipated
by Remark 3.20. Furthermore, calculations similar to the one in the proof of Proposi-
tion 4.18 show that, in the present setting, all Poisson structures from Proposition 3.21
coincide τ+M = τ−

M = τM , as anticipated by Remark 3.22. �
The next simplified version of Proposition 3.23 is a straightforward consequence of

the graded anti-symmetry of the differential pairing (−,−).

Proposition 4.20. Let (F, Q) be a complex of linear differential operators on M
endowed with a differential pairing (−,−). Denote by � ⊆ M a spacelike Cauchy
surface of M. Then the composition

(4.21)

in ChR is graded anti-symmetric and hence it descends to a Poisson structure σ� :
F∧2
sc → R on Fsc. (Recall the definition of ev� from (3.49).)

Even though � : Fc[1] → Fsc is not compatible with the simpler Poisson structures
from Propositions 4.18 and 4.20, there is a homotopy λ controlling this failure, which is
a simpler counterpart of the homotopy λh from (3.51). This determines a simplification
of Theorem 3.24. More explicitly, the relevant homotopy

λ := asym(̃λ) ∈ [
Fc[1]∧2,R

]−1 (4.22a)

is the graded anti-symmetrization of the (−1)-cochain

λ̃ ∈ [
Fc[1]⊗2,R

]−1 (4.22b)

defined, for all homogeneous sections ϕ1, ϕ2 ∈ Fc[1], by

λ̃(ϕ1 ⊗ ϕ2) :=
∫

�+
(�−ϕ1,�ϕ2) +

∫

�−
(�+ϕ1,�ϕ2), (4.22c)

where �± := J±
M (�). A similar, yet slightly simpler, computation as (3.52) leads to the

result below.
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Theorem 4.21. Let (F, Q) be a complex of linear differential operators on M endowed
with a differential pairing (−,−) and a formally self-adjoint Green’s witness W . Denote
by � ⊆ M a spacelike Cauchy surface of M. Then the retarded-minus-advanced quasi-
isomorphism � from Remarks 4.13 and 4.14 is compatible with the Poisson structures
τM and σ� from Propositions 4.18 and 4.20 up to the homotopy λ defined in (4.22), i.e.
σ� ◦ �∧2 − τM = ∂λ.

Example 4.22. For m = 3, recall from Examples 3.2, 3.17 and 4.4 the complex of
linear differential operators (FCS, QCS) associatedwith linear Chern–Simons theory, the
differential pairing (−,−)CS and the Green’s witness WCS. It follows from the standard
properties of the de Rham codifferential that WCS = δdR [1] is a formally self-adjoint
Green’s witness.

Example 4.23. Recall from Examples 3.3, 3.18 and 4.5 the complex of linear differential
operators (F(E,P), Q(E,P)), the differential pairing (−,−)(E,P) and the Green’s witness
W(E,P). In this example W(E,P) is (trivially) a formally self-adjoint Green’s witness and
the Poisson structure from Proposition 4.18 agrees with the standard Poisson structure
given by the retarded-minus-advanced propagator, see (2.8).

Example 4.24. Recall from Examples 3.4, 3.19 and 4.6 the complex of linear differen-
tial operators (FMW, QMW) associated with Maxwell p-forms, the differential pairing
(−,−)MW and the Green’s witness WMW. It follows from the standard properties of the
deRham (co)differential thatWMW is a formally self-adjoint Green’switness. For p = 1,
the Poisson complex from Proposition 4.18 agrees with the one for linear Yang-Mills
theory from [BBS20] and for p arbitrary with the one from [AB22].
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