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Abstract: We propose a conceptual frame to interpret the prolate differential operator,
which appears in Communication Theory, as an entropy operator; indeed, we write its
expectation values as a sumof terms, each subject to an entropy reading by an embedding
suggested by Quantum Field Theory. This adds meaning to the classical work by Slepian
et al. on the problemof simultaneously concentrating a function and its Fourier transform,
in particular to the “lucky accident” that the truncated Fourier transform commutes
with the prolate operator. The key is the notion of entropy of a vector of a complex
Hilbert space with respect to a real linear subspace, recently introduced by the author by
means of the Tomita-Takesaki modular theory of von Neumann algebras. We consider
a generalization of the prolate operator to the higher dimensional case and show that it
admits a natural extension commuting with the truncated Fourier transform; this partly
generalizes the one-dimensional result by Connes to the effect that there exists a natural
selfadjoint extension to the full line commuting with the truncated Fourier transform.

1. Introduction

The aim of this paper is to provide an interpretation of the prolate operator, which plays
an important role in the theory of signal transmission, as an entropy operator, by means
of the modular theory of von Neumann algebras, following recent concepts and abstract
analysis of entropy in the framework of Quantum Field Theory. We begin with a brief
account of the background of our work.
Band limited signals. Suppose Alice sends a signal to Bob that is codified by a function
of time f . Bob canmeasure the value f only within a certain time interval; moreover, the
frequency of f is filtered by the signal device within a certain interval. For simplicity, let
us assume these intervals are both equal to the interval B = (−1, 1). As is well known,
if a function f and its Fourier transform f̂ are both supported in bounded intervals, then
f is the zero function. So one is faced with the problem of simultaneously maximizing
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the portions of energy and amplitude spectrum within the intervals

|| f ||2B/|| f ||2 , || f̂ ||2B/|| f̂ ||2 , (1)

where || · ||, || · ||B denote the L2-norms on R and B, the concentration problem.
The problem of best approximating, with support concentration, a function and its

Fourier transform is a classical problem; in particular, it lies behind Heisenberg uncer-
tainty relations in QuantumMechanics and is studied in Quantum Field Theory too, see
[10].

In the ‘60ies, this problem was studied in seminal works by Slepian, Pollak and Lan-
dau [13,22], see also [21]. With F and EB the operators on L2(R) given by the Fourier
transform and the orthogonal projection onto L2(B), the truncated Fourier transform is
defined by

FB = EBFEB .

The functions that best maximize (1) are eigenfunctions of the angle operator F∗
BFB =

EB ÊB EB associated with the FB ; here ÊB = F−1EBF is the conjugate of EB by F .
This is a Hilbert-Schmidt integral operator whose spectral analysis is not easily doable a
priori. However, by the lucky accidentfigured out in [22], this integral operator commutes
with a linear differential operator, the prolate operator

W = d

dx
(1 − x2)

d

dx
− x2 , (2)

that shares its eigenfunctions with the angle operator, so these eigenfunctions were
computed.

W is a classical operator, it arises by separating the 3-dimensional scalar wave equa-
tion in a prolate spheroidal coordinate system. More recently, Connes has reconsidered
and raised new interest in this operator [5]. The papers [6,7] show an impressive relation
of the prolate spectrum with the asymptotic distribution of the zeros of the Riemann
ζ -function. Our paper is not related to this point; however, our Sect. 3 is inspired and
generalizes a small part of the analysis in [7].

Our purpose is to understand the role of the prolate operator on a conceptual basis,
in relation to the mentioned lucky accident. We shall argue that the prolate operator
gives rise to an entropy operator, in a sense that will be explained. Within our aim, we
shall generalize the prolate operator in higher dimensions and analyze it guided by the
Quantum Field Theory context.

We shall consider the prolate operator

Wmin = (1 − r2)∇2 − 2r∂r − r2 , (3)

on the Schwartz space S(Rd), with r the radial coordinate in R
d , and show it admits

a natural closed extension W that commutes with the truncated Fourier transform. We
shall see that the expectation values of πEBW on L2(Rd), with EB the orthogonal
projection onto L2(B), is positive, selfadjoint and its expectation values are indeed
entropy quantities.

In the one-dimensional case, W itself is selfadjoint [7], and this is probably true also
in higher dimensions; however, for our aim, it suffices to know that EBW is selfadjoint.
Modular theory, the entropy of a vector. In the ‘70ies, Tomita and Takesaki uncovered a
fundamental, deep operator algebraic structure. In particular, associated with any faith-
ful, normal state ϕ of a von Neumann algebra M, there is a canonical one-parameter
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automorphism group σϕ of M, the modular group, see [23]. The relevance of this in-
trinsic evolution in Physics was soon realized in the framework of Quantum Statistical
Mechanics since σϕ is characterized by the KMS thermal equilibrium condition, see [8].

Now, part of the modular theory shows up at a more elementary level, with potential
points of contact with contexts not immediately related toOperator Algebras: the general
framework is simply provided by a real linear subspace of complex Hilbert space, cf.
[14,19].

LetH be a complex Hilbert space and H a real linear subspace ofH; by considering
its closure, we may assume that H is closed. H is said to be a standard subspace if H
is closed and H + i H = H, H ∩ i H = {0}. Every closed real linear subspace H has
a standard subspace direct sum component and we may assume that H is standard by
restricting to this component.

With H standard, the anti-linear operator S : H + i H → H + i H , S(�1 + i�2) =
�1 − i�2 is then well-defined, closed, involutive. Its polar decomposition S = JH�

1/2
H

then gives an anti-linear, involutive unitary JH and a positive, non-singular, selfadjoint
operator �H onH, the modular conjugation and the modular operator, such that

�is
H H = H, JH H = H ′,

s ∈ R; here H ′ is the symplectic complement H ′ = (i H)⊥R of H , the orthogonal of i H
with respect to the real scalar product 	(·, ·). We refer to [15] for the modular theory
and basic results on standard subspaces.

We say that the standard subspace H is factorial if H ∩ H ′ = {0}. Thus H + H ′ is
dense inH and H + H ′ is the direct sum (as linear space) of H and H ′. Again, we may
assume that H is factorial by restricting to the factorial component. Our abstract results
have an immediate extension to the non-factorial, non-standard case.

The cutting projection relative to H is the real linear, densely defined projection

PH : H + H ′ → H, � + �′ 
→ �.

The entropy of a vector � ∈ H with respect to a standard subspace H ⊂ H is defined
by

S� = −�(�, PHi log�H �) = (�, i PH i log�H �) ; (4)

this notionwas introduced in [3,16]. A first way to realize the entropymeaning of S� is to
consider the von Neumann algebra R(H) associated with H by the second quantization
on the Fock Hilbert space over H; then S� is Araki’s relative entropy [1] between the
coherent state associated with � and the vacuum state on R(H). However, in this paper,
this fact does not play any direct role.

Note that i PH i log�H is a real linear operator. This is our first instance of an entropy
operator, namely a real linear, positive, selfadjoint operator whose expectation values
give the entropy of states. In concrete situations, the subspace H may correspond to a
region of a manifold and � to a signal, then S� acquires the meaning of local entropy
of �.
Entropy density of a wave packet. The local entropy of a wave packet has been studied in
[3,4,16] for the case of a half-space, and in [18] for the space ball case, which is directly
related to the present paper; these works were motivated by Quantum Field Theory.

Let T be the real linear space of wave packets, that is� ∈ T if� is a real function on
R
1+d that satisfies thewave equation ∂2t � = ∇2

x�, with Cauchy data in the real Schwartz
space Sr(Rd). Quantum Relativistic Mechanics tells us that T is equipped with a natural
(Lorentz invariant) complex pre-Hilbert structure so, by completion, we get a complex
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Hilbert space H. Wave packets with Cauchy data supported in the open, unit ball B of
R
d form a real linear subspace ofH denoted by H = H(B) (after closure). The entropy

of � in B is given by

S� = π

∫
B
(1 − r2)〈T00〉� dx + πD

∫
B

�2dx . (5)

Here D = (d − 1)/2 and 〈T00〉� = 1
2

(
(∂t�)2 + |∇x�|2) is the energy density of �.

We discuss here d > 1 case; the case d = 1 is similar but requires modifications due to
infrared singularities, which is not important for our discussion.

The two terms in 〈T00〉� have separate meanings, they correspond to the kinetic and
to the potential energy of the wave packet. H is naturally a direct sum of the two real
Hilbert subspaces associated with the Cauchy data.

In terms of the Cauchy data f, g of �, the modular Hamiltonian log�B relative to
B is given by

ı log�B = π

[
0 M

L − 2D 0

]
= π

[
0 (1 − r2)

(1 − r2)∇2 − 2r∂r − 2D 0

]
, (6)

[18]. Here,
L = (1 − r2)∇2 − 2r∂r (7)

is a higher-dimensional Legendre operator.
Each of the two terms in the expression of S�,

S� = −π( f, LD f )B + π(g, Mg)B ,

LD ≡ L − 2D, have an entropy meaning. As we will discuss on general grounds,
−π( f, LD f )B is the field entropy of f , and π(g, Mg)B is themomentum, or parabolic,
entropy of g, in B. We infer that also −π( f, L f )B is an entropy quantity, the Legendre
entropy of f in B.
The measure of concentration. We now return to the Communication Theory setting.
The truncated Fourier transform operator is obviously defined in any space dimension.
Indeed, the concentration problem often arises in higher dimensions too. It is also studied
in [20], although with a point of view different from the one in this paper.

As said, the higher dimensional prolate operator (3) extends to a natural operator W
on L2(Rd), that commutes bothwith the Fourier and the truncated Fourier transforms;W
also commutes with the orthogonal projection EB onto L2(B) and its Fourier conjugate
ÊB .

As −W + M = −L + 1, given f ∈ S(Rd) real, we have

−π( f,W f )B + π( f, M f )B = −π( f, L f )B + π( f, f )B ;
that is, −π( f,W f )B is the sum of the Legendre entropy of f and π || f ||2B (that we call
the Born entropy), minus the parabolic entropy of f , i.e.

−π( f,W f )B + π

∫
B
(1 − r2) f 2dx = π

∫
B
(1 − r2)|∇ f |2dx + π

∫
B
f 2dx .

We conclude that−π( f,W f )B is an entropy quantity, i.e. a measure of information, that
we call the prolate entropy of f w.r.t. B. In other words,−πEBW is an entropy operator.
The lucky accident [22], that W commutes with the truncated Fourier transform, finds a
conceptual clarification in this fact.
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Based on the ordering of eigenvalues result in [22], we then have

lower prolate entropy ←→ higher concentration

where the concentration is both on space and in Fourier modes as above. This is intuitive
since information is the opposite of entropy. The above correspondence holds in the
one-dimensional case, and we expect it to hold in general.

In other words, in order to maximize simultaneously both quantities in (1), we have
to minimize the prolate entropy.

2. Higher-Dimensional Legendre Operator

The Legendre operator is the one-dimensional linear differential operator d
dx (1− x2) d

dx .
It is a Sturm-Liouville operator, probably best known because its eigenfunctions on
L2(−1, 1) are the Legendre polynomials. In the following, we consider a natural higher-
dimensional generalization of this operator.

Let S(Rd) be the Schwartz space of smooth, rapidly decreasing functions, d ≥ 1.
For the moment, we deal with complex-valued functions; the corresponding results for
real-valued functions are obtained by restriction. We denote by Lmin the d-dimensional
Legendre operator, acting on S(Rd), that we define by

Lmin = ∇(1 − r2)∇ ; (8)

namely, Lmin is the divergence of the vector field (1−r2)∇, where∇ denotes the gradient
and r the radial coordinate in R

d . Lmin can be written as

Lmin = (1 − r2)∇2 − 2r∂r , (9)

indeed ∇ · (1 − r2)∇ = ∇(1 − r2) · ∇ + (1 − r2)∇2 = −2r∂r + (1 − r2)∇2.
We consider Lmin as a linear operator on the Hilbert space L2(Rd), with domain

D(Lmin) = S(Rd). The quadratic form associated with Lmin is

( f, Lming) = −
∫
Rd

(1 − r2)∇ f̄ ·∇g dx , f, g ∈ S(Rd) , (10)

because, by integration by parts, we have ( f,∇(1−r2)∇g) = − ∫
Rd (1−r2)∇g·∇ f̄ dx .

Lemma 2.1. Lmin is a Hermitian operator.

Proof. Equation (10) shows that

( f, Lming) = (Lmin f, g) ,

for all f, g ∈ S(Rd), therefore L is Hermitian. ��
Thus Lmin ⊂ Lmax, where Lmax ≡ L∗ denotes the adjoint of Lmin.

Lemma 2.2. D(Lmax) is the set of all f ∈ L2(Rd) such that ∇(1 − r2)∇ f ∈ L2(Rd),
where the derivatives are taken in the distributional sense, and Lmax f = ∇(1− r2)∇ f
on D(Lmax).
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Proof. Let f ∈ L2(Rd), in particular f ∈ S′(Rd) is a tempered distribution. With
g ∈ S(Rd), we have

( f,∇(1 − r2)∇g) = 〈∇(1 − r2)∇ f, g〉 ,

where the latter means the value of the distribution ∇(1 − r2)∇ f on the test function
g. Now, f ∈ D(Lmax) iff the linear functional g ∈ S(Rd) 
→ ( f,∇(1 − r2)∇g) is
continuous on L2(Rd), therefore iff ∇(1 − r2)∇ f ∈ L2(Rd) by Riesz lemma. ��

Let B be the unit open ball in R
d and EB the orthogonal projection of L2(Rd) onto

L2(B), that is EB is the multiplication operator by the characteristic function χB of B.
Note that

( f, L f ) ≤ 0 , f ∈ S(Rd), supp( f ) ⊂ B̄ ,

as follows from (10).

Lemma 2.3. Let f, g be smooth functions on R
d . We have

∫
B
f ∇(1 − r2)∇g = −

∫
B
(1 − r2)∇ f ·∇g . (11)

Proof. Taking into account that the vector field G = (1 − r2)∇g vanishes on ∂B, we
have

∫
B
f ∇(

(1 − r2)∇g
) =

∫
B
f divG = −

∫
B
G ·∇ f +

∫
∂B

f G ·n = −
∫
B
(1 − r2)∇g ·∇ f ,

thus (11) holds. ��
Lmin does not commute with EB , however, the following holds.

Proposition 2.4. Let f ∈ S(Rd). Then χB f ∈ D(Lmax) and we have

LmaxχB f = χB Lmin f . (12)

Moreover, Lmax is Hermitian on S(Rd) + χB S(Rd).

Proof. To prove the first part of the statement, namely Eq. (12), we must check that, for
every g ∈ S(Rd), we have ( f, χB Lming) = (χB Lmin f, g), that is

(χB f, Lming) = (Lmin f, χBg) . (13)

Taking into account that the vector field G = (1 − r2)∇g vanishes on ∂B, by Eq. (11)
we have

(χB f, Lming) =
∫
B
f̄ Lming =

∫
B
f̄ ∇(

(1 − r2)∇g
) = −

∫
B
(1 − r2)∇ f̄ ·∇g , (14)

thus (13) holds because the last term in the above equality is symmetric in f and g. ��
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We shall denote by L the closure of the restriction of Lmax to S(Rd) + χB S(Rd). By
Proposition 12, L is Hermitian and commutes with EB .

Given f ∈ L2(Rd), we denote by f̂ its Fourier transform

f̂ (p) = (2π)−d/2
∫
Rd

e−i x ·p f (x)dx ,

and by F the Fourier transform operator: F f = f̂ . By Plancherel theorem, F is a
unitary operator on L2(Rd).

In Fourier transform, Lmin is given by the operator L̂min = FLminF−1; clearly
D(L̂min) = S(Rd). We denote by

M = (1 − r2) (15)

the multiplication operator by (1 − r2) on L2(Rd).

Lemma 2.5. L̂min = −r2(1 + ∇2) − 2r∂r on S(Rd), where r denotes the radial coor-
dinate |p| also in the dual space R

d . Therefore

L̂min = Lmin − (∇2 + 1) + M . (16)

Proof. With f ∈ S(Rd), we have

−(
(1 − r2)∇2 f

)̂
(p) = (1 + ∇2

p)(|p|2 f̂ ) = |p|2 f̂ + 2d f̂ + |p|2∇2
p f̂ + 4p · ∇p f̂

therefore, taking into account the equality p · ∇p = r∂r ,

F
(
(1 − r2)∇2)F−1 = −r2(1 + ∇2) − 4r∂r − 2d .

On the other hand,

F(r∂r )F−1 = −r∂r − d

hence, accordingly with the expression (9),

L̂min = F
(
(1 − r2)∇2 − 2r∂r

)
F−1 = −r2(1 + ∇2) − 2r∂r .

Therefore

L̂min = (1 − r2)∇2 − 2r∂r − (∇2 + 1) + (1 − r2) = Lmin − (∇2 + 1) + M . (17)

��
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3. Higher-Dimensional Prolate Operator

We now extend to the higher dimension some results in [7, Sect. 1].
Let Wmin be the operator on L2(Rd) given by

Wmin = ∇(1 − r2)∇ − r2 = Lmin − r2 (18)

with D(Wmin) = S(Rd). Wmin is a higher-dimensional generalisation of the prolate
operator.

By Proposition 2.1, Wmin is a Hermitian, being a Hermitian perturbation of Lmin on
S(Rd); moreover,

−Wmin ≥ −Lmin ≥ 0

on D(Wmin) ∩ L2(B), so −Wmin is a positive operator on this domain.
We explicitly note the equality

−Lmin = −Wmin + M − 1 (19)

on S(Rd) and that

−Lmin ≤ −Wmin ≤ −Lmin + 1 on L2(B) ∩ D(Lmin) , (20)

because 0 ≤ M ≤ 1 on L2(B).

Proposition 3.1. Wmin commutes with the Fourier transformation F:

Ŵmin = Wmin .

Any linear combination of Lmin and M commuting with F is proportional to Wmin.

Proof. We have M̂ = 1 + ∇2, therefore (16) gives L̂min = Lmin + M − M̂ , thus

Lmin + M = L̂min + M̂

on S(Rd). By (19), we then have

Wmin = Lmin + M − 1 , (21)

so Wmin = FWminF−1, as desired.
Finally, if a ∈ R, we have

F(Lmin + aM)F−1 = (Lmin + M − M̂) + aM̂ = (Lmin + aM) + (1 − a)(M − M̂) ,

thus Lmin + aM commutes with F iff (1 − a)(M − M̂) = 0, that is iff a = 1. ��
Let ÊB = FEBF−1 be the Fourier transform conjugate of the orthogonal projection

EB : L2(Rd) → L2(B), thus (ÊB f )̂ = χB f̂ . In other words,

ÊB f = (2π)−
d
2 χ̃B ∗ f ,

where tilde denotes the Fourier anti-transform and ∗ the convolution product. We put
Wmax = W ∗

min. We have

D(Wmax) = {
f ∈ L2(Rd) : ∇(1 − r2)∇ f − r2 f ∈ L2(Rd) (distributional sense)

}
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and

Wmax f = ∇(1 − r2)∇ f − r2 f , f ∈ D(Wmax) , (22)

in the distributional sense. Clearly, by Proposition 3.1, also Wmax commutes with F

Wmax = FWmaxF−1 . (23)

Proposition 3.2. Let f ∈ S(Rd). Then EB f, ÊB f ∈ D(Wmax) and

WmaxEB f = EBWmin f, Wmax ÊB f = ÊBWmin f . (24)

Proof. Clearly M commutes with EB . SinceWmin = Lmin +M −1 (21), it follows from
Proposition 2.4 that EB f ∈ D(Wmax) and WmaxEB f = EBWmin f , namely the first
equation in (24) holds.

The second equation then follows from the first one by applying the Fourier transform
because Wmin, Wmax commute with F , ÊB = FEBF−1, and F S(Rd) = S(Rd). ��

By the above proposition, we have

D ≡ S(Rd) + χB S(Rd) + ̂χB S(Rd) ⊂ D(Wmax)

and

Wmax( f +χBg+ χ̂B ∗h) = Wmin f +χBWming+ χ̂B ∗Wminh , f, g, h ∈ S(Rd) ; (25)

recall that χ̂B is a smooth L2-function vanishing at infinity, χ̂B(p) =
√

2
π

sin p
p if d = 1.

Lemma 3.3. Let f ∈ D(Wmax) be a smooth function. Then, also the function χB f ∈
D(Wmax), and WmaxχB f = χBWmax f .

Proof. If f ∈ S(Rd) the lemma follows as in Proposition 3.2. Let now f ∈ D(Wmax)

be a smooth function. Choose f0 ∈ S(Rd) that is equal to f on a neighborhood of B̄.
Then χB f = χB f0, so χB f ∈ D(Wmax). Moreover,

WmaxχB f = WmaxχB f0 = χBWmin f0 = χBWmax f ,

where the last equality follows because Wmax acts locally on f by (22), so Wmax f =
Wmin f0 on a neighbourhood of B̄. ��
Lemma 3.4. For every g ∈ S(Rd), EB ÊBg belongs to D(Wmax) and we have

EBWmax ÊBg = WmaxEB ÊBg . (26)

Proof. We may apply Lemma 3.3 with f = ÊBg; indeed f = χ̂B ∗ g is a smooth
function because g is smooth, and f in the domain of Wmax by Proposition 3.2. ��
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Recall that a closed linear operator Z on a Hilbert space H commutes with the
orthogonal projection F onH if

ZF ⊃ FZ ; (27)

this means

u ∈ D(Z) �⇒ Fu ∈ D(Z) & ZFu = FZu .

IfD ⊂ D(Z) is a core for Z , then it suffices to verify the above condition for all u ∈ D.
Denote by FB = EBFEB the truncated Fourier transform. Note that

F∗
BFB = EBF∗EBFEB = EB ÊB EB

is the angle operator.

Proposition 3.5. The restriction of Wmax to D is Hermitian. Its closure

W = Wmax|D
is Hermitian and commutes with F and EB, thus with ÊB and FB too.

Proof. Wmax|D commutes with F because Wmax commutes with F , and D is globally
F-invariant.

We now show that Wmax|D is Hermitian. First, note that Wmax is Hermitian on
S(Rd) + χB S(Rd) by the Eq. (21), because Lmax is Hermitian on S(Rd) + χB S(Rd)

by Proposition 2.4, and M is Hermitian too on this domain. It then follows that Wmax is

Hermitian on S(Rd) + ̂χB S(Rd) too due to (23).
So we have to show that Wmax is symmetric on mixed terms in (25). By (11), we are

indeed left to check that (ÊBg,WmaxEBh) = (Wmax ÊBg, EBh), for all g, h ∈ S(Rd).
Now, by Proposition 3.2 and Lemma 3.4, we have

(ÊBg,WmaxEBh) = (ÊBg, EBWminh) = (EB ÊBg,Wminh) = (WmaxEB ÊBg, h)

= (EBWmax ÊBg, h) = (EB ÊBWming, h)

= (ÊBWming, EBh) = (Wmax ÊBg, EBh) .

So Wmax|D is Hermitian, hence its closure W is Hermitian too.
It remains to show thatW commutes with EB . We need to check that EBW ⊂ WEB .

With f, g, h ∈ S(Rd), we then have to verify that EB( f + EBg + ÊBh) belongs to the
domain of W and

WEB( f + EBg + ÊBh) = EBW ( f + EBg + ÊBh) . (28)

By linearity, we can check the above condition for each of the three terms individually.
Concerning the first term, that is the case g = h = 0, we have f ∈ D ⊂ D(W ) and by
Proposition 3.2

WEB f = WmaxEB f = EBWmin f = EBW f .

Consider now the last term. With k ≡ ÊBh, we have to show that EBk belongs to D(W )

and WEBk = EBWk. As k is smooth, we can pick k0 ∈ S(Rd) that agrees with k in a
neighborhood of B̄; so EBk = EBk0 ∈ D(W ), and by Lemma 3.3 we have

WEBk = WmaxEBk = WmaxEBk0 = EBWmaxk0 = EBWmaxk = EBWk ,
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where the equality EBWmaxk0 = EBWmaxk follows as in the proof of Lemma 3.3
because Wmax acts locally.

Concerning the remaining second-term case, take then g ∈ S(Rd); clearly EBEBg =
EBg ∈ D ⊂ D(W ) and we are left to show that WEBg = EBW EBg.

Now,WmaxEBg is supported in B̄ as distribution becauseWmax is local; on the other
hand, WmaxEBg is an L2-function, therefore WmaxEBg = EBWmaxEBg. We conclude
that

WEBg = WmaxEBg = EBWmaxEBg = EBW EBg ,

and the proof is complete. ��
W is the minimal closed extension of Wmin that commutes both with EB and ÊB .

Indeed, if W̃ is an extension of Wmin with this property, then D(W̃ ) must contain EBD
and W̃ EB f = EBWmin f , f ∈ S(Rd). Similarly with ÊB in place of EB . So W̃ ⊃ W .

Note that the angle operator EB ÊB EB is of trace class, indeed EB ÊB |L2(B) is the
positive Hilbert-Schmidt TB on L2(B) operator with kernel kB(x − y) where

kB(z) = 1

(2π)d/2

∫
B
e−i x ·zdx χB(z)

(kB = χ̂B on B, zero out of B). The eigenvalues of TB are strictly positive, λ1 > λ2 >

· · · λk > · · · > 0, with finite multiplicity. The equality

||F f ||2 = ( f,F∗
BFB f ) = ( fB, TB fB)B ,

fB = f |B , shows that the normalized k-th eigenfunctions of TB are concentrated at
level λk in an appropriate sense. Note that, on the even function subspace, F is a uni-
tary involution, thus FB is selfadjoint; so FB and F∗

BFB = EB ÊB EB share the same
eigenfunctions.

We now show that −W is positive on B, namely −EBW is positive.

Proposition 3.6. For every u ∈ D(W ), we have

−(u,Wu)B = −
∫
B
ūWu dx ≥ 0 . (29)

Proof. As D is a core for W , it suffices to check (29) with u = f + EBg + ÊBh, with
f, g, h ∈ S(Rd).

Now, χBu is a smooth function on B̄; choose u0 ∈ S(Rd) that agrees with u on B̄.
By Eq. (28), we have

∫
B
ūWudx =

∫
B
ūWmaxudx =

∫
B
ū0Wminu0dx = −

∫
B
ū0Lu0dx −

∫
B

|x |2|u0|2dx ≤ 0

by (14), because Wmax is local. ��
As seen, both W and L commute with EB , and we consider now their restrictions to

L2(B), which we denote by WB and LB .
LetC∞(B̄) be the space of smooth function on B̄, up to the boundary; wemay regard

C∞(B̄) as a subspace of L2(B) ⊂ L2(Rd). As is known, χB S(Rd) = C∞(B̄). We now
show that WB and LB are essentially selfadjoint on C∞(B̄). We will also denote by
C∞
0 (B) the space of smooth functions on B̄ with compact support contained in B.
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Corollary 3.7. Both WB and LB are selfadjoint, positive operators on L2(B). C∞(B̄)

is a core for both WB and LB.

Proof. As seen,WB isHermitian and commuteswith the positiveHilbert-Schmidt opera-
tor TB . Now, the kernel of TB is kB(x−y), and kB is smooth, therefore the eigenfunctions
of TB belong to C∞(B̄), hence to D(WB). Since all eigenvalues of TB are positive with
finite multiplicity, it follows that WB is selfadjoint.

Since W commutes with EB , D is a core of W and EBD ⊂ D, it follows that
EBD is a core for WB . On the other hand, EBD = χB S(Rd) because functions in
S(Rd) + ÊB S(Rd) are smooth; so χBD = C∞(B̄). Therefore C∞(B̄) is a core for WB .
WB is then positive by Proposition 3.6.

Since LB is a bounded perturbation ofWB on L2(B), also LB is selfadjoint with core
C∞(B̄). LB is then positive by Lemma 2.3. ��

In the one-dimensional case, the essentially selfadjointness of LB on C∞[−1, 1]
(thus of its bounded perturbationWB) follows by the well-known fact that the Legendre
polynomials form a complete orthogonal family of LB-eigenfunctions. Note that LB is
not essentially selfadjoint on C∞

0 (−1, 1), see [12].

Proposition 3.8. C∞
0 (B) is a form core for LB, thus for WB. Moreover,−LB and−WB

are the Friedrichs extensions of −LB |C∞
0 (B) and −WB |C∞

0 (B).

Proof. We consider LB only because WB is a bounded perturbation of it. Since LB
is essentially selfadjoint on C∞(B̄), it is enough to show that the form closure of the
quadratic form q of −LB |C∞

0 (B) contains C∞(B̄).
Now, q is given by (11) on C∞

0 (B). By [11, VI, Thm. 1.16], it suffices to show that,
given u ∈ C∞(B̄), there exists a sequence of functions un ∈ C∞

0 (B) such that un → u
and

q(un, un) =
∫
B
(1 − r2)|∇un|2dx

is bounded, n ∈ N. First suppose u = χB . Let hn ∈ C∞
0 (−1, 1) be even such that

hn = 1 on (0, 1 − 1
n ) and |h′

n| bounded by 2n and set un(x) = hn(r). Then un → χB
and the sequence

q(un, un) =
∫
B
(1 − r2)|∇un|2dx ≤

∫
1−1/n≤r≤1

(1 − r2)(2n)2dx ≤ const.
1

n2
(2n)2

is bounded. The case of a general u ∈ C∞(B̄) follows on the same lines by replacing
un by unu.

So, C∞(B̄) is in the domain of the square root
√−LF of the Friedrichs extension

−LF of −LB |C∞
0 (B). On the other hand, C∞(B̄) is a core for −LB , thus for

√−LB .
We conclude that LB = LF . ��

See e.g. [11] for the Friedrichs extension.

4. Modular Theory and Entropy of a Vector

In this section, we recall the basic structure concerning the modular theory of a standard
subspace H , the entropy of a vector relative to H , and their applications to the entropy
density of a wave packet.
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4.1. Entropy operators. Let H be a complex Hilbert space and H ⊂ H a standard
subspace, i.e. H is a real linear, closed subspace of H such that H ∩ i H = {0} and
H + i H = H, with H ′ the symplectic complement of H ,

H ′ = {�′ ∈ H : �(�,�′) = 0, � ∈ H} .

The Tomita operator

SH : �1 + i�2 ∈ H + i H 
→ �1 − i�2 ∈ H + i H , �1,�2 ∈ H ,

is anti-linear, closed, densely defined, and involutive on H. Let SH = JH�
1/2
H be the

polar decomposition of SH . �H is called the modular operator associated with H ; it is
a canonical positive, non-singular selfadjoint operator on H that satisfies

�is
H H = H , s ∈ R .

The one-parameter unitary group s 
→ �is
H onH is called the modular unitary group of

H , whose generator log�H is themodular Hamiltonian. JH is an anti-unitary involution
on H and JH H = H ′, named the modular conjugation of H .

For simplicity, let us assume that H is factorial, namely H ∩ H ′ = {0}, see e.g. [3,
Sect. 2.1] for the general case of a closed, real linear subspace.

The entropy of a vector� ∈ Hwith respect to a standard subspace H ⊂ H is defined
by

S� = SH
� = �(�, PH AH �) = −(�, P∗

H log�H �) (30)

(in a quadratic form sense), where PH is the cutting projection

PH : H + H ′ → H , � + �′ 
→ �

and AH = −i log�H [3,16], the semigroup generator d
ds�

−is
H |s=0 of the modular

unitary group.
We have P∗

H = −i PH i and the formula in [3]

PH = (1 − �H )−1 + JH�
1/2
H (1 − �H )−1 ; (31)

(PH is the closure of the right hand side of (31)).
The entropy operator EH is defined by

EH = i PH i log�H (32)

(closure of the right-hand side). We have

S� = (�, EH�) , � ∈ H . (33)

Here, S� is defined for any vector � ∈ H as follows. S� = q(�,�) with q the closure
of the real quadratic form 	(�, EH�), �,� ∈ D(EH ). So S� = +∞ if � is not in the
domain of q.

Proposition 4.1. The entropy operator EH is real linear, positive, and selfadjoint w.r.t.
to the real part of the scalar product.

Proof. EH is clearly real linear, and positive because the entropy of a vector is positive
[3, Prop. 2.5 (c)]. The selfadjointness of EH follows by the formula (31), see [18, Lemma
2.3]. ��
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In our view, an entropy operator E is a real linear operator on a real or complex
Hilbert space H, such E is positive, selfadjoint and its expectation values ( f, E f ), f ∈
H, correspond to entropy quantities (w.r.t. B). E may be unbounded, and ( f, E f ) is
understood in the quadratic form sense, so it takes values in [0,∞]. It is convenient to
consider more entropy operators by performing operations, that preserve our demand,
on the entropy operators.
Basic. If E is a real linear operator on a real Hilbert space H of the form (32), we say
that E is an entropy operator.
Restriction and direct sum. If E = E+ ⊕ E− on a real Hilbert space direct sum H =
H+ ⊕ H−, then E is an entropy operator on H , iff both E± are entropy operators.
Change of metric. Suppose that S ⊂ H is a core for the entropy E on H and (·, ·)′ is a
scalar product on S; denote by H ′ the corresponding real Hilbert space completion and
by j : S ⊂ H ′ → H the identification map. If j∗Ej is densely defined, its Friedrichs
extension E ′ is an entropy operator on H ′. Note that

( f, E ′ f )′ = ( f, E f ) , f ∈ S .

Sum, difference. If E1, E2 are entropy operators and E = E1 ± E2 is densely defined and
positive, the Friedrichs extension E is an entropy operator.
Born entropy.πEB ,with EB the orthogonal projectiononto L2(B), is an entropyoperator
on L2(Rd).
In order to justify the last item, note that ( f, EB f ) = || f ||2B . In Quantum Mechanics,
with the normalization || f ||2 = 1, || f ||2B is the particle probability to be localized in

, accordingly to Born’s interpretation. Moreover, in Communication Theory, || f ||2B
represents the part of energy of f contained in B [22]. We thus define

π( f, EB f ) = π || f ||2B = π

∫
B
f 2dx = Born entropy of f in B , (34)

f ∈ L2(Rd) real. The π normalization is chosen by compatibility reasons (Sect. 5);

4.2. Abstract field/momentum entropy. We consider two real linear spaces S+ and S−
and a duality f, g ∈ S+ × S− 
→ 〈 f, g〉 ∈ R. A real linear, invertible operator

μ : S+ → S−

is also given; we assume that μ is symmetric and positive with respect to the duality,
i.e.

〈 f1, μ f2〉 = 〈 f2, μ f1〉 , f1, f2 ∈ S+ ,

〈 f, μ f 〉 ≥ 0 , f ∈ S+ , (35)

with 〈 f, μ f 〉 = 0 only if f = 0.
So S± are real pre-Hilbert spaces with scalar products

( f1, f2)+ = 〈 f1, μ f2〉 , (g1, g2)− = 〈μ−1g2, g1〉 , f1, f2 ∈ S+, g1, g2 ∈ S− ,

and μ is a unitary operator.
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Let H± be the real Hilbert space completion of S±. Then μ extends to a unitary
operator H+ → H−, still denoted by μ. Moreover, the duality between S+ and S−
extends to a duality between H+ and H−

〈 f, g〉 = ( f, μ−1g)+ = (μ f, g)− , f ∈ H+, g ∈ H− .

Set H = H+ ⊕ H−. The bilinear form β on H
β(�,�) = 〈g1, f2〉 − 〈 f1, g2〉 (36)

� ≡ f1 ⊕ g1, � ≡ f2 ⊕ g2, is symplectic and non-degenerate (the coefficient 1
2 is

to conform with the next section case). This will be the imaginary part of the complex
scalar product of H: �(�,�) = β(�,�).

Now, the operator

ı =
[

0 μ−1

−μ 0

]
, (37)

namely ı : f ⊕ g 
→ μ−1g ⊕ −μ f , is a unitary on H = H+ ⊕ H−.
By (35), ı preserves β, that is β(ı�, ı�) = β(�,�). As ı2 = −1, the unitary ı

defines a complex structure (multiplication by the imaginary unit) onH that becomes a
complex Hilbert space with a scalar product

(�,�) = β(�, ı�) + iβ(�,�)

(i = √−1). That is

(�,�) = [〈 f1, μ f2〉 + 〈μ−1g2, g1〉
]
+ i

[〈 f2, g1〉 − 〈 f1, g2〉
]
,

� ≡ f1 ⊕ g1, � ≡ f2 ⊕ g2 as above.
Suppose now K± ⊂ H± are closed, real linear subspaces. The symplectic comple-

ment K ′ of K ≡ K+ ⊕ K− is

K ′ = {
f ⊕ g ∈ H : β( f ⊕ g, h ⊕ k) = 0, h ⊕ k ∈ K

} = Ko− ⊕ Ko
+ ,

where Ko± denote the annihilatotors of K± in H∓ under the duality 〈·, ·〉.
Let us consider the case K is standard and factorial. Then the cutting projection

PK = K + K ′ → K

is diagonal

PK =
[
P+ 0
0 P−

]
,

with P± the projection P± : K± + Ko∓ → K±.
Proposition 4.2. The modular Hamiltonian log�K and conjugation JK are diagonal;
so AK = −ı log�K is off-diagonal, that is

AK = π

[
0 M
L 0

]
, (38)

withM and L operators H± → H∓.
The entropy of � ≡ f ⊕ g ∈ H with respect to K is given by

S� = −π〈 f, P−L f 〉 + π 〈g, P+Mg〉 . (39)

In particular, if � ∈ K,

S� = −π〈 f,L f 〉 + π〈g,Mg〉 .



488 R. Longo

Proof. As K = K+⊕K− and ı K = μ−1K−⊕μK+ are direct sum subspaces, the Tomita
operator SK is clearly diagonal, and so is its adjoint S∗

K . The modular operator �K =
S∗
K SK is thus diagonal. Since the logarithm function is real on (0,∞), by functional

calculus the modular Hamiltonian log�K is diagonal too. Also JK is diagonal due to
formula (31).

So AK is off-diagonal because ı is off-diagonal and we may write AK as in (38). We
have

PK AK = π

[
0 P+M

P−L 0

]
, (40)

thus the entropy of � is given by

S� = β( f ⊕ g, PK AK f ⊕ g) = πβ( f ⊕ g, P+Mg ⊕ P+L f )

= −π〈 f, P−L f 〉 + π〈g, P+Mg〉 .

��
The fact that log�K is diagonal was shown in [2], based on the the formula PK −

ı PK ı = 2(1 − �K )−1, which follows from (31).
The entropy operator is given by

EK = π

[−μ−1P−L 0
0 μP+M

]
. (41)

Note that, since AK is skew-selfadjoint and complex linear onH, we have the relations

M∗ = −L = μMμ . (42)

Clearly,

−π〈 f, P−L f 〉 = S f ⊕0 , π〈g, P+Mg〉 = S0⊕g .

We then define:

− π〈 f, P−L f 〉 field entropy of f ∈ S+ w.r.t. K+ ,

π〈g, P+Mg〉 momentum entropy of g ∈ S− w.r.t. K− .

(quadratic form sense). Note that only the duality, not the Hilbert space structure, enters
directly into the definitions of the above entropies.

4.3. Local entropy of a wave packet. The above structure concretely arises in the wave
space context; namely, in the free,massless, one-particle space inQuantumField Theory.

Denote by Sr(Rd) the real Schwartz space. As is known, if f, g ∈ Sr(Rd), there is a
unique smooth real function �(t, x) on R

1+d which is a solution of the wave equation

�� ≡ ∂2t � − ∇2
x� = 0

(a wave packet or, briefly, a wave) with Cauchy data �|t=0 = f , ∂t�|t=0 = g. We set
� = w( f, g) and denote by T the real linear space of these �’s; we will often use the
identification

Sr(R
d) ⊕ Sr(R

d) ←→ T , f ⊕ g ←→ w( f, g) . (43)
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We thus deal directly with Sr(Rd) ⊕ Sr(Rd) and consider the symplectic form on it

β( f1 ⊕ g1, f2 ⊕ g2) = (g1, f2) − ( f1, g2) , (44)

where the scalar product in (44) is the one in L2(Rd).
We set S+ = Sr(Rd), S− = μSr(Rd), with μ the given by

μ̂ f (p) = |p| f̂ (p) . (45)

The duality between S+ and S− is given by the L2 scalar product. Let H± be the real
Hilbert space of tempered distributions f ∈ Sr(Rd)

′
such that f̂ is a Borel function with

‖ f ‖2± =
∫
Rd

|p|±1| f̂ (p)|2dp < +∞ . (46)

S± is dense in H±, yet S(Rd) ⊂ H− only if d > 1. The complex Hilbert space is H is
the real Hilbert space H = H+ ⊕ H− equipped with complex structure given ı (37).

With

H±(B) = {
f± ∈ S± : supp( f±) ⊂ B

}−
,

the standard subspace K ≡ H(B) ⊂ H is

H(B) = H+(B) ⊕ H−(B) .

Set�B = �H(B) for the modular operator associated with H(B), and AB = −ı log�B .
The action of �is

B , s ∈ R, on T is geometric [9], so AB is computable.

Theorem 4.3. [18]. On Sr(Rd) × Sr(Rd), d > 1, we have

AB = π

[
0 (1 − r2)

(1 − r2)∇2 − 2r∂r − 2D 0

]
, (47)

namely

AB = π

[
0 M
LD 0

]
(48)

with LD = L − 2D; here, L : H+ → H−, M : H− → H+ are the closure of the
operators (7), (15) on S(Rd), and D = (d − 1)/2 (the scaling dimension).

Case d = 1: the above formula still holds on Sr(R)× Ṡr(R), with Ṡr(R) the subspace
of Sr(R) consisting of functions with zero mean [17].

In the following, we assume d > 1. The case d = 1 is similar, it is sufficient to replace
Sr(R) × Sr(R) by Sr(R) × Ṡr(R) as above.

Corollary 4.4. [18].Let� = w( f, g) be awave packet withCauchy data f, g ∈ Sr(Rd).
The entropy of � in B (i.e. with respect to H(B)) is given by

S� = −π( f, L f )B + π(g, Mg)B + 2πD|| f ||2B
(L2-scalar product)1.

1 The symplectic form in [3,18] is defined as 1/2 the one given by (44). The entropy values in this paper
are twice the ones there.
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Proof. The corollary follows by (39) because the cutting projection PH(B) is given by the
multiplication by the characteristic functionχB on both components of Sr(Rd)×Sr(Rd),
and the duality 〈·, ·〉 by the L2 scalar product. So

S� = −π( f, χB LD f ) + π(g, χBMg)

= π

∫
B
(1 − r2)|∇ f |2dx + πD

∫
B
f 2dx + π

∫
B
(1 − r2)g2dx

= −π( f, L f )B + π(g, Mg)B + πD|| f ||2B
by the equality (14). ��

More generally, if f, g ∈ L2(Rd), we set

S f ⊕g = −π( f, LBEB f ) + π(g, Mg)B + 2πD|| f ||2B , (49)

in the quadratic form sense. As a consequence, we have a lower bound for the entropy.

Corollary 4.5. The entropy of � = f ⊕ g in B, f, g ∈ L2(B), is lower bounded by

S� ≥ 2πD|| f ||2B . (50)

The inequality (50) is an equality if f = χB, g = 0; in this case

S f ⊕g = 2πVol(B)D .

Proof. The inequality (50) is immediate as both terms −π( f, L f )B and π(g, Mg)B are
non-negative.

Since χB belongs to the domain of LB and LBχB = 0, the inequality is an equality
if f = χB , g = 0 by (49). ��

Note that, since −Lmin = −Wmin + M − 1, we may rewrite S� as follows, � =
w( f, g): we have

S� = π
(

− ( f,W f )B + ( f, M f )B + (g, Mg)B +
d − 2

2
|| f ||2B

)
. (51)

We are going to see in the next section that each individual term on the right-hand side
of the above equality has an entropy interpretation.

We end this section by writing up the formula |∇|(1− r2)|∇| = −L +2D on S(Rd),
which follows from (42), where |∇| = √−∇2, the square root of minus Laplacian on
L2(Rd).

5. Prolate Entropy

By Theorem 4.3, the modular Hamiltonian log�B = ı AB is the closure of the linear
operator on H = H+ ⊕ H− given by

log�B = π

[−μLD 0
0 μ−1M

]

with core domain S(Rd) ⊕ S(Rd).
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The cutting projection w.r.t. H(B) is PB =
[
χB 0
0 χB

]
, therefore the entropy operator

EB = ı PBı log�B on H is given by

EB =
[−πχB LD 0

0 πχBM

]
. (52)

Let j± : S(Rd) ⊂ L2(Rd) → H± be the identification map on S(Rd). Then j∗± = μ∓1.
The entropy operator E ′

B on L2(Rd) ⊕ L2(Rd) corresponding to EB in the sense of
Sect. 4.1 is therefore given by

E ′
B =

[−πEBLD 0
0 πEBM

]
. (53)

So each of the two components of E ′
B is an entropy operator on L2(Rd); and so is

−EBLB = −EBLD − 2DEB , due to (34). More precisely, MEB is essentially self-
adjoint on S(Rd); the Friedrichs extensions of −EBLB on S(Rd) is equal to LBEB
by Proposition 3.8; so both −πLBEB and πMEB are entropy operators on the Hilbert
space L2(Rd) (see Sect. 4.1).

With f ∈ L2(Rd) real, we set

π( f, M f )B = π

∫
B
(1 − r2) f 2dx = parabolic entropy of f in B .

This is equal to the entropy S� of the flat wave � = w(0, f ).
Similarly, we set

−π( f, L f )B = π

∫
B
(1 − r2)|∇ f |2dx = Legendre entropy of f in B .

This is equal to the entropy S� of the stationary wave � = w( f, 0).
Now,−LEB = −WEB +MEB − EB , so πWEB is an entropy operator too; we thus

define:

−π( f,W f )B = π

∫
B

(
(1 − r2)|∇ f |2 + r2

)
dx = prolate entropy of f in B ,

f ∈ L2(Rd) real.
We summarize our discussion in the following theorem.

Theorem 5.1. −πWEB is an entropy operator on L2(Rd). The sum of the prolate en-
tropy and the parabolic entropy is equal to the sum of the Legendre entropy and the Born
entropy, all with respect to B. Namely, the relation (54) holds for every f ∈ L2(Rd), in
the quadratic form sense.

W EB commutes with the truncated Fourier transform FB. Let V be a real linear
combination of LEB, MEB and EB commuting with FB; then V = aW EB + bEB for
some a, b ∈ R. If V is also positive, and the spectral lower bound of V |L2(B) is zero,
then V = aW EB, a ≥ 0.
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Proof. The first statement is immediate from our discussion and the relation

−( f,W f )B + ( f, M f )B = −( f, L f )B + || f ||2B , (54)

cf. (21), taking into account that the Friedrichs extensions of −EBL on S(Rd) is equal
to −LBEB by Proposition 3.8.

WEB commutes with FB by Proposition 3.5. The characterization of V follows by
an argument similar to the one in the proof of Proposition 3.1. ��

The parabolic distribution (1 − r2) appears in both the parabolic and the Legendre
entropy expression. Near the center of B, the parabolic entropy is close to the Born
entropy. On the other hand, near the boundary of B, the prolate entropy gets close to the
Born entropy.

Let us specialize now on the one-dimensional case as studied in [22] (on the even
functions subspace of L2(B)). As TB is strictly positive and Hilbert-Schmidt, its eigen-
values can be ordered as λ1 > λ2 > · · · > 0; moreover, they are simple; the eigenvalues
of −WB can be ordered as α1 < α2 < · · · < ∞; they correspond to the λk’s in inverse
order, that is TB and −WB share the same k-the eigenfunction fk , which is unique up to
a phase once we normalize it as || fk ||2B = 1. Then

( fk, TB fk)B = λk , −( fk,WB fk)B = αk ,

and παk is the prolate entropy of fk .
As the information is the opposite of the entropy, the above relations show the intuitive

fact that the functions with lower prolate entropy, thus higher information in B, are the
ones with better support concentration in B in space and Fourier modes. f1 carries the
best information as it is optimally concentrated.

We expect the ordering correspondence between the eigenvalues of TB and WB to
hold in the higher dimensional case too.

6. Concentration in Balls of Arbitrary Radius

We briefly indicate here how the results in this paper easily extend to the case of local-
ization in balls of any radius. The more general prolate operator

Wmin(c) = ∇(1 − r2)∇ − c2r2

is studied in [22], c > 0. We consider Wmin(c) as an operator on L2(Rd) with domain
S(Rd). Denote by δλ, λ > 0, the dilation operator on L2(Rd)

(δλ f )(x) = λ−d/2 f (λ−1x) ,

so δλ is a unitary operator. We also set Fλ = δ−1
λ F ; in particular, F2π is the commonly

used Fourier transform in Communication Theory and elsewhere.

Proposition 6.1. Wmin(c) commutes with Fc.

Proof. Since δ−1
λ rδλ = λr and δ−1

λ ∇δλ = λ−1∇, we have

FcWmin(c)F−1
c = δ−1

c F
(∇(1 − r2)∇ − c2r2

)
F−1δc

= δ−1
c F

(∇(1 − r2)∇ − r2 + r2 − c2r2
)
F−1δc
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= δ−1
c F

(∇(1 − r2)∇ − r2
)
F−1δc + δ−1

c F
(
r2 − c2r2

)
F−1δc

= δ−1
c

(∇(1 − r2)∇ − r2
)
δc − δ−1

c

(∇2 − c2∇2)δc
= c−2(∇(1 − c2r2)∇) − c2r2 − c−2∇2 + ∇2

= ∇(c−2 − r2)∇ − c2r2 − c−2∇2 + ∇2

= ∇(1 − r2)∇ − c2r2 = Wmin(c) .

��
The analysis of Wmin(c) is now the same as in the case c = 1. Wmin(c) admits a

natural extension Wc that commutes with Fc, EB , ÊBc , where Bc denotes the ball of
radius c centered at the origin.

The prolate operator corresponding to the localization in balls Bλ, and Bλ′ in Fourier
transform, is obtained by conjugating Wc by the dilation operator, that is Wλ,λ′ =
δλWcδ

−1
λ ,

Wλ,λ′ = ∇(λ2 − r2)∇ − λ′2r2 ,

λλ′ = c. Wλ,λ′ commutes with EBλ = δλEBδ−1
λ and δλ ÊBcδ

−1
λ = ÊBλ′ .

Now,

Wλ,λ′ = ∇(λ2 − r2)∇ + λ−2c2(λ2 − r2) − c2 = ∇(λ2 − r2)∇ + λ′2Mλ − c2

on L2(Bλ), with Lλ is the natural extension of ∇(λ2 − r2)∇ and Mλ = (1 − r2), thus

−π( f,Wλ,λ′ f )Bλ + λ2λ′2π || f ||2Bλ
= −π( f, Lλ f )Bλ + λ′2π( f, Mλ f )Bλ , (55)

an entropy relation that generalizes Theorem 5.1.
The first term on the left of (55) is the prolate entropy of f w.r.t. Bλ and Bλ′ . Note

however that the Legendre entropy −π( f, Lλ f )Bλ does not depend on λ′; as λ′ → 0,
the prolate entropy approaches the Legendre entropy.
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