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Abstract: We construct a Fock model of the minimal representation of the exceptional
Lie supergroup D(2, 1;α). Explicit expressions for the action are given by integrating
to group level a Fock model of the Lie superalgebra D(2, 1;α) constructed earlier by
the authors. It is also shown that the representation is superunitary in the sense of de
Goursac–Michel.

1. Introduction

The main result of this paper is the construction of a Fock model of the minimal repre-
sentation of the Lie supergroup D(2, 1;α). We do this by integrating to group level the
representation of the Lie superalgebra D(2, 1;α) considered in [1]. In that sense, this
paper can be seen as a sequel to [1]. We also show that this Fock model is superunitary
in the sense of [2].

Minimal representations of Lie groups have a long tradition and can be constructed
in many settings [3–9]. In the philosophy of the orbit method, minimal representations
correspond to the minimal nilpotent orbit of the coadjoint action of the Lie group on
the dual Lie algebra. They are ‘small’ infinite-dimensional representations, or more
technically, they attain the smallest Gelfand–Kirillov dimension of all possible infinite-
dimensional representations [5]. This implies that there are a lot of symmetries in their
realisations which leads to a rich representation theory.

Recently, there has been an effort to generalize the framework of minimal represen-
tations to the setting of Lie supergroups and Lie superalgebras [1,10–12]. Although this
is a logical next step, there are lot of technical and conceptual hurdles. For instance, a
lot of tools used for Lie groups are not yet developed or become much more complex in
the super setting. Another obstacle is the fact that in [13] it is shown that there are no su-
perunitary representations for a large class of Lie supergroups in the standard definition
[14] of a superunitary representation. This has lead to the development of alternative
definitions of what should be a superunitary representation [2,15,16]. However, at the
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moment no satisfactory definition has been found. Therefore it is important to construct
concrete models of representations that ‘ought’ to be superunitary, as we will do in this
paper.

For the orthosymplectic Lie supergroup OSp(p, q|2n) a Schrödinger model of the
minimal representation was constructed in [11] using the framework of Jordan (su-
per)algebras developed in [6]. This generalizes the minimal representation of O(p, q)

considered in [7,17–19]. Later, also a Fock model and intertwining Segal-Bargmann
transform for OSp(p, q|2n) were obtained in [12].

Recently, a Schrödingermodel, Fockmodel andSegal-Bargmann transformof theLie
superalgebra D(2, 1;α) were constructed [1]. The paper [1] works entirely on algebra
level. In particular it does not say anything about unitarity. It does, however, show that
there exists a superhermitian product for which the Fock model is invariant. The goal
of this paper is to integrate the Fock model considered in [1] to group level. We will
show that the superhermitian product can be extended to a Hilbert space and that our
representation extend to a superunitary representation in the sense of [2].

1.1. Contents. Let us now describe the contents of this paper. We start in Sect. 2 by
recalling the definition of the Lie superalgebra D(2, 1;α) and giving an explicit expres-
sion of the Fock model considered in [1]. In Sect. 3, we introduce the Lie supergroup
D(2, 1;α) and deduce some properties we need to integrate the representation, while in
Sect. 4, we recall the necessary properties of the polynomial Fock space considered in
[1] and complete it to a Hilbert superspace.

Section 5 contains the main content of this paper. We start by giving an explicit form
of the representation of the Lie supergroupD(2, 1;α) in Theorem 5.1. We also give two
alternatives way to present this representation (Corollaries 5.2 and 5.3). Note, however,
that for one generating element ofD(2, 1;α) we were only able to give an explicit form
if α > 0.

In Sect. 5.3 we recall the definition of a superunitary representation (SUR) as intro-
duced by de Goursac and Michel in [2] and show that the Fock model is such a SUR if
α < 0 (Theorem 5.10). The definition of a SUR of de Goursac and Michel has a major
drawback, namely too many representations become SUR in the non-super case. We do
not only recover unitary representations, but also Krein-unitary representations.

To remedy this situation, the authors in [2] introduce the concept of a strong SUR.
However, we show that the Fock model we construct is never a strong SUR (Theo-
rem 5.12).

1.2. Notations. The field K will always mean the real numbers R or the complex
numbers C. Function spaces will always be defined over C. We use the convention
N = {0, 1, 2, . . .} and denote the complex unit by ı .

A supervector space is a Z/2Z-graded vector space V = V0 ⊕ V1. An element
v ∈ V is called homogeneous if v ∈ Vi , i ∈ Z/2Z. We call i its parity and denote
it by |v|. When we use |v| in a formula, we are considering homogeneous elements,
with the implicit convention that the formula has to be extended linearly for arbitrary
elements. If dim(Vi ) = di , then we write dim(V ) = (d0|d1). We denote the super vector
space V with V0 = Km and V1 = Kn as Km|n . A superalgebra is a supervector space
A = A0 ⊕ A1 for which A is an algebra and Ai A j ⊆ Ai+ j .
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2. The Lie Superalgebra D(2, 1; α)

2.1. The construction of D(2,1;α). Wecan deform D(2, 1) = osp(4|2) to obtain a one-
parameter family of (9|8)-dimensional Lie superalgebras of rank 3. We will define these
Lie superalgebras in the same way as we did in [1] using a construction of Scheunert.
We will use the same notations as in [20].

Consider a two-dimensional vector space V with basis u+ and u−. Introduce a non-
degenerate skew-symmetric bilinear form ψ by ψ(u+, u−) = 1. We will need three
copies (Vi , ψi ), i = 1, 2, 3 of (V, ψ) and the corresponding Lie algebra sl(Vi ) = sp(ψi )

of linear transformations preserving ψi .
We use the following data to define a Lie superalgebra:

• a Lie algebra g0̄,• a g0̄-module g1̄,
• a g0̄-morphism p : S2(g1̄) → g0̄, with S2(g1̄) the symmetric tensor power,
• for all a, b, c ∈ g1̄ the morphism p satisfies

[p(a, b), c] + [p(b, c), a] + [p(c, a), b] = 0, (2.1)

where we denoted the g0̄-action on g1̄ by [·, ·].
Then g = g0̄ ⊕ g1̄ is a Lie superalgebra [21, Remark 1.5].

We set

g0̄ = sp(ψ1) ⊕ sp(ψ2) ⊕ sp(ψ3)

g1̄ = V1 ⊗ V2 ⊗ V3

and define the action of g0̄ on g1̄ by the outer tensor product

(A, B,C) · x ⊗ y ⊗ z = A(x) ⊗ y ⊗ z + x ⊗ B(y) ⊗ z + x ⊗ y ⊗ C(z).

The g0̄-morphism p is given by

p(x1 ⊗ x2 ⊗ x3, y1 ⊗ y2 ⊗ y3) = σ1ψ2(x2, y2)ψ3(x3, y3)p1(x1, y1)

+ σ2ψ3(x3, y3)ψ1(x1, y1)p2(x2, y2)

+ σ3ψ1(x1, y1)ψ2(x2, y2)p3(x3, y3),

where σi ∈ K and pi : Vi × Vi → sp(ψi ) is defined by

pi (x, y)z = ψi (y, z)x − ψi (z, x)y.

Then g = g0̄ ⊕ g1̄ is a Lie superalgebra if the morphism p satisfies the Jacobi identity
(2.1). This is the case if and only if σ1 + σ2 + σ3 = 0, see [20, Lemma 4.2.1]. If we
denote g by �(σ1, σ2, σ3) then we have

�(σ1, σ2, σ3) ∼= �(σ ′
1, σ

′
2, σ

′
3)

if and only if there is a non-zero scalar c and a permutation π of (1, 2, 3) such that
σ ′
i = cσπ(i) [20, Lemma 5.5.16].
We set

D(2, 1;α) := �

(
1 + α

2
,
−1

2
,
−α

2

)
.
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The Lie superalgebra D(2, 1;α) is simple unless α = 0 or α = −1. Furthermore, we
have the isomorphism

D(2, 1;α) ∼= D(2, 1;β)

if and only if α and β are in the same orbit under the transformations α 	→ α−1 and
α 	→ −1 − α.

Consider the matrices

Ei =
(
0 1
0 0

)
, Fi =

(
0 0
1 0

)
, Hi =

(
1 0
0 −1

)
.

They give a realisation of sl(Vi ) where the vector space Vi is given by

ui+ = (1, 0)t , ui− = (0, 1)t .

We also obtain p from

pi (u
i
+, u

i
+) = 2Ei , pi (u

i
+, u

i−) = −Hi , pi (u
i−, ui−) = −2Fi .

For the odd basis elements u1± ⊗ u2± ⊗ u3± of D(2, 1;α) we introduce a more compact
notation

u±±± := u1± ⊗ u2± ⊗ u3±.

We have the following realisation of sl(2) in D(2, 1;α)

{E2 + E3, H2 + H3, F2 + F3}.
The corresponding three-grading by the eigenspaces of ad(H2 + H3) is given by

g+ = {E3, E2, u−++, u+++}
g− = {F3, F2, u+−−, u−−−}
g0 = {H1, H2, H3, E1, F1, u−+−, u++−, , u+−+, u−−+}. (2.2)

2.2. The Fock representation. In [1] a Fock representation dρ depending on a parameter
λ ∈ {1, α} was constructed on the so called polynomial Fock space Fλ. We will briefly
reconstruct it here and refer to [1, Section 4.3] for further details. Note that from now on
we will exclude α = 0 and α = 1 since for that case the picture becomes quite different.
Remark that α = 1 correspond to the non-deformed case D(2, 1; 1) = osp(4|2), while
for α = 0, the algebra D(2, 1; 0) is not simple. See [1, Section 4.2] for a more detailed
explanation.

Let z1, z2 and z3, z4 be the even resp. odd representatives of the coordinates on
P(C2|2). We define

Vα := {a(2z1z2 + z3z4) + bz22 + cz2z3 + dz2z4 | a, b, c, d ∈ K} ⊂ P2 if λ = α and

V1 := {a(2αz1z2 + z3z4) + bz21 + cz1z3 + dz1z4 | a, b, c, d ∈ K} ⊂ P2 if λ = 1.

Definition 2.1. Suppose λ ∈ {1, α}, then the polynomial Fock space is defined as the
superspace

Fλ := P(C2|2)/Iλ,

with Iλ := P(C2|2)Vλ.
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As shown in [1, Section 5.1], if p ∈ Fα , then there exists pi,k ∈ C such that

p = p1,0 +
∞∑
k=1

zk−1
1 (p1,k z1 + p2,k z2 + p3,k z3 + p4,k z4).

The explicit expression for the Fock representation dρ on Fλ is as follows.
For g− we obtain

dρ(F2) = − ı

2
(z1 + Bλ(z1)) − ı

2
(−λ + 2z1∂z1 + z3∂z3 + z4∂z4),

dρ(F3) = − ı

2
(z2 + Bλ(z2)) − ı

2
(−λ

α
+ 2z2∂z2 + z3∂z3 + z4∂z4),

dρ(u−−−) = ı

2
(z3 + Bλ(z3)) +

ı

2
(z3∂z1 + 2αz2∂z4 + z3∂z2 + 2z1∂z4),

dρ(u+−−) = ı

4
(z4 + Bλ(z4)) +

ı

4
(z4∂z1 − 2αz2∂z3 + z4∂z2 − 2z1∂z3).

For g+ we have

dρ(E2) = − ı

2
(z1 + Bλ(z1)) +

ı

2
(−λ + 2z1∂z1 + z3∂z3 + z4∂z4),

dρ(E3) = − ı

2
(z2 + Bλ(z2)) +

ı

2
(−λ

α
+ 2z2∂z2 + z3∂z3 + z4∂z4),

dρ(u−++) = − ı

2
(z3 + Bλ(z3)) +

ı

2
(z3∂z1 + 2αz2∂z4 + z3∂z2 + 2z1∂z4),

dρ(u+++) = − ı

4
(z4 + Bλ(z4)) +

ı

4
(z4∂z1 − 2αz2∂z3 + z4∂z2 − 2z1∂z3).

For g0 we have

dρ(F1) = 2z3∂z4 , dρ(E1) = 2−1z4∂z3 , dρ(H1) = z4∂z4 − z3∂z3 ,

dρ(H2) = z1 − Bλ(z1), dρ(H3) = z2 − Bλ(z2),

dρ(u−−+ + u−+−) = −(z3 − Bλ(z3)), dρ(u+−+ + u++−) = −2−1(z4 − Bλ(z4)),

dρ(u−−+ − u−+−) = −z3∂z1 − 2αz2∂z4 + z3∂z2 + 2z1∂z4 ,

dρ(u+−+ − u++−) = 2−1(−z4∂z1 + 2αz2∂z3 + z4∂z2 − 2z1∂z3).

Here Bλ(zi ) denotes the Bessel operator of zi and are expicitly given by

Bλ(z1) = (−λ + z1∂z1 + z3∂z3 + z4∂z4)∂z1 − 2αz2∂z3∂z4 ,

Bλ(z2) = (−λ

α
+ z2∂z2 + z3∂z3 + z4∂z4)∂z2 − 2z1∂z3∂z4 ,

Bλ(z3) = (−2λ + 2z1∂z1 + 2αz2∂z2 + 2(1 + α)z3∂z3)∂z4 + z3∂z1∂z2 ,

Bλ(z4) = (2λ − 2z1∂z1 − αz2∂z2 − 2(1 + α)z4∂z4)∂z3 + z4∂z1∂z2 .
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2.3. Additional representations. As mentioned in Sect. 2.1, we have the isomorphisms
D(2, 1;α) ∼= D(2, 1;β) if and only if β is in the same orbit as α under the transforma-
tions α 	→ α−1 and α 	→ −1 − α, i.e.,

β ∈ {α,−1 − α,−1 − α−1, α−1, (−1 − α)−1, (−1 − α−1)−1}
These isomorphisms give rise to additional representations of D(2, 1;α). A straightfor-
ward verification shows the isomorphism between D(2, 1;α) and D(2, 1;α−1) respects
the three grading introduced in Eq.2.2, while the isomorphism between D(2, 1;α) and
D(2, 1;−1 − α), in general, does not.

Let dρα
λ denote the Fock representation corresponding to D(2, 1;α) with parameter

λ ∈ {1, α}. The isomorphism between D(2, 1;α) and D(2, 1;α−1) induces an equiv-
alence between dρα

λ with parameter λ = α and dρα−1

λ with λ = 1. Therefore, without
loss of generality, we may choose λ = α and set dρα := dρα

α .
For an arbitrary α we now find that precomposing dρβ with the isomorphism

D(2, 1;α) → D(2, 1;β) for all possible values of β gives us

dρα, dρ−1−α, dρ−1−α−1
dρα−1

, dρ(−1−α)−1
, dρ(−1−α−1)−1

,

which are all possibly distinct representations of D(2, 1;α).

3. The Lie supergroup D(2,1; α)

In this section we define the supergroup D(2, 1;α) which has D(2, 1;α) as its Lie
superalgebra. We also give some basic results of SL(V ), which we will need later on.
Note that in this section we will work over the field R of real numbers.

3.1. Definition ofD(2, 1;α). Wewill use the characterisation of Lie supergroups based
on pairs, see for example [22, Chapter 7] for more details.

Definition 3.1. A Lie supergroup G is a pair (G0, g) together with a morphism σ :
G0 → End(g) where G0 is a Lie group and g is a Lie superalgebra for which

• Lie(G0) ∼= g0.• For all g ∈ G0 we have σ(g)|g0 = Ad(g), where Ad is the adjoint representation
of G0 on g0.• For all X ∈ g0 and Y ∈ g we have

dσ(X)Y = d

dt
σ(exp(t X))Y

∣∣∣∣
t=0

= [X,Y ].

Since σ extends the adjoint representation of G0 on g0 we call it the adjoint represen-
tation of G0 on g and denote it by Ad.

Note that these Lie supergroups are called super Harish-Chandra pairs in [2]. The
term Lie supergroup is then used for a supermanifold endowed with a group structure
for which the multiplication is a smooth map. However, as is mentioned in [2] these two
structures are categorically equivalent.

Recall g = D(2, 1;α) and define G0 := SL(V1) × SL(V2) × SL(V3), where Vi is a
copy of the two dimensional vector space V with basis u+ and u−. Then D(2, 1;α) :=
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(G0, g) is a Lie supergroup if we extend the adjoint representation as follows. For
Ai ∈ SL(Vi ) and x ⊗ y ⊗ z ∈ g1 = V1 ⊗ V2 ⊗ V3 we define

Ad(A1, A2, A3)x ⊗ y ⊗ z := A1(x) ⊗ A2(y) ⊗ A3(z)

and for Xi ∈ {Hi , Ei , Fi } we define

Ad(A1, A2, A3)Xi := Ai Xi A
−1
i

and extend it linearly.

3.2. Properties of SL(V ). Define the following one-dimensional subgroups of SL(Vi )
for i ∈ {1, 2, 3}

Ki :=
{
Ki (ki ) :=

(
cos(ki ) − sin(ki )
sin(ki ) cos(ki )

)
| ki ∈ R

}
,

Ai :=
{
Ai (ai ) :=

(
exp(ai ) 0

0 exp(−ai )

)
| ai ∈ R

}
.

On the one hand we have the Cartan decomposition of SL(Vi ).

Theorem 3.2 (Cartan decomposition). We have a decomposition SL(V ) = K AK , i.e.,
every g ∈ sl(V ) can be written as g = kak′ with k, k′ ∈ K and a ∈ A.

This decomposition implies that a representation of SL(Vi ) is fully determined by
its restriction to Ki and Ai . On the other hand we have an explicit integration of sl(Vi )
to SL(Vi ).

Lemma 3.3. Suppose A, B and C are three anticommuting variables. Then

(A + B + C)2 j =
∑

a+b+c= j

(
j

a, b, c

)
A2a B2bC2c,

for all j ∈ N.

Proof. This follows immediately from the multinomial theorem and the fact that (A +
B + C)2 = A2 + B2 + C2 is a sum of three commuting variables. �

Theorem 3.4. Suppose g ∈ SL(Vi ). There exists an X ∈ Lie(SL(Vi )) such that g =
exp(X) if and only if g is the identity or

g =
(
cosh(ρ) + aρ−1 sinh(ρ) (l − k)ρ−1 sinh(ρ)

(l + k)ρ−1 sinh(ρ) cosh(ρ) − aρ−1 sinh(ρ)

)
,

for some a, k, l ∈ R such that ρ := √
a2 + l2 − k2 �= 0. In this case we have X =

k(Fi − Ei ) + aHi + l(Fi + Ei ).
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Proof. Any element X ∈ sl(Vi ) can be written as X = k(Fi − Ei ) + aHi + l(Fi + Ei )

for a, k, l ∈ R. We will calculate exp(X) explicitly. Note that Fi − Ei , Hi and Fi + Ei
anticommute with each other and (ı(Fi − Ei ))

2 = H2
i = (Fi + Ei )

2 = I . Using
Lemma 3.3 we find

exp(X) =
∞∑
j=0

1

j ! (k(Fi − Ei ) + aHi + l(Fi + Ei ))
j

=
∞∑
j=0

1

(2 j)! (k(Fi − Ei ) + aHi + l(Fi + Ei ))
2 j

+ (k(Fi − Ei ) + aHi + l(Fi + Ei ))

×
∞∑
j=0

1

(2 j + 1)! (k(Fi − Ei ) + aHi + l(Fi + Ei ))
2 j

=
∞∑
j=0

∑
u+v+w= j

k2ua2vl2w j !
(2 j)!u!v!w! (Fi − Ei )

2u H2v
i (Fi + Ei )

2w

+ (k(Fi − Ei ) + aHi + l(Fi + Ei ))

×
∞∑
j=0

∑
u+v+w= j

k2ua2vl2w j !
(2 j + 1)!u!v!w! (Fi − Ei )

2u H2v
i (Fi + Ei )

2w

= I
∞∑
j=0

∑
u+v+w= j

(ık)2ua2vl2w j !
(2 j)!u!v!w!

+ (k(Fi − Ei ) + aHi + l(Fi + Ei ))

∞∑
j=0

∑
u+v+w= j

(ık)2ua2vl2w j !
(2 j + 1)!u!v!w!

= cosh(ρ)I + (k(Fi − Ei ) + aHi + l(Fi + Ei ))ρ
−1 sinh(ρ),

for ρ �= 0. For ρ = 0 this calculation gives us exp(X) = I . �

Note that in particular, we have

Ki = {exp(ki (Fi − Ei )) | ki ∈ R}, Ai = {exp(ai Hi ) | ai ∈ R}.
This implies that from an explicit representation of sl(Vi ) we can obtain an explicit
action of elements in Ki and Ai when integrated to the group level. Because of the
Cartan decomposition this then defines an action of SL(Vi ).

Since we can write every element of SL(Vi ) as a finite product of exponentials of
elements of sl(Vi ), we obtain the following corollary for D(2, 1;α).

Corollary 3.5. Every element of G0 = SL(V1) × SL(V2) × SL(V3) can be written as
a finite product of exponentials of elements of g0, i.e., for all g ∈ G0 we have

g =
n∏

i=1

exp(Xi ),

for some Xi ∈ g0 and n ∈ N.
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4. The Fock space F
In this section we introduce the notion of a Hilbert superspace as defined in [2]. We also
extend the polynomial Fock space Fλ to the Fock space F and show it is such a Hilbert
superspace when combined with the Bessel-Fischer product.

From now on we will restrict ourselves to the case α ∈ R \ N since only then the
Bessel-Fischer product will be non-degenerate. Furthermore, we also choose λ = α and
denote the polynomial Fock space Fλ by F. Recall from Sect. 2.3 that the case λ = 1 is
always equivalent to a representation with λ = α.

4.1. The Bessel-Fischer product. In [1, Section 5], a non-degenerate, sesquilinear, su-
perhermitian form on F was introduced. This product is a generalization of the Bessel-
Fischer inner product on the polynomial space P(Cm) considered in [23, Section 2.3].

Definition 4.1. For p, q ∈ F we define the Bessel-Fischer product of p and q as

〈p, q〉B := p(Bλ)q̄(z)|z=0 ,

where q̄(z) = q(z̄) is obtained by conjugating the coefficients of the polynomial q and
p(Bλ) is obtained by replacing zi by Bλ(zi ).

From [1, Proposition 5.6.] we obtain the following explicit form of the Bessel-Fischer
product.

Proposition 4.2. Suppose p, q ∈ {zk1, zk1z2, zk1z3, zk1z4}, with k ∈ N. Then the only
non-zero evaluations of 〈p, q〉B are〈

zk1, z
k
1

〉
B = −

〈
zk1z2, z

k
1z2

〉
B = k!(−α)k,〈

zk1z3, z
k
1z4

〉
B = −

〈
zk1z4, z

k
1z3

〉
B = 2k!(−α)k+1,

where we used the Pochhammer symbol (a)k = a(a + 1)(a + 2) · · · (a + k − 1).

From this explicit formwe can easily see that theBessel-Fischer product is degenerate
if and only if α ∈ N, which is why we assume α ∈ R \ N.

4.2. Definitions.

Definition 4.3. A Hermitian superspace (H, 〈· , ·〉) is a supervector spaceH = H0 ⊕
H1 endowed with a non-degenerate, superhermitian, sesquilinear form 〈·, ·〉. If the inner
product is a homogeneous form of degree σ(H) ∈ Z/2Z, then H is called a Hermitian
superspace of parity σ(H).

According to the propositions in [1, Section 5], the polynomial Fock space F endowed
with the Bessel-Fischer product 〈· , ·〉B is such a Hermitian superspace.

Definition 4.4. A fundamental symmetry of a Hermitian superspace (H, 〈· , ·〉) is an
endomorphism J of H such that J 4 = 1, 〈J (x), J (y)〉 = 〈x, y〉 and (· , ·)J defined by

(x, y)J := 〈x, J (y)〉 ,

for all x, y ∈ H is an inner product on H.
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For F we find the following condition on its fundamental symmetries with respect to
the Bessel-Fischer product.

Proposition 4.5. For all fundamental symmetries of F we must have

J (zk1)zk1
= ε1,k sgn((−α)k), J (zk1z2)zk1z2

= −ε2,k sgn((−α)k),

J (zk1z3)zk1z4
= ε3,k sgn((−α)k+1), J (zk1z4)zk1z3

= −ε4,k sgn((−α)k+1),

for all k ∈ N. Here J (a)b denotes the coefficient of b in J (a) and εi,k > 0 for all
i ∈ {1, 2, 3, 4}.
Proof. Suppose J is an arbitrary fundamental symmetry of F, then we have(

zk1, z
k
1

)
J

=
〈
zk1, J (zk1)

〉
B = J (zk1)zk1

〈
zk1, z

k
1

〉
B = J (zk1)zk1

k!(−α)k > 0,

for all k ∈ N. Therefore, J (zk1)zk1
= ε sgn((−α)k) for an ε > 0. The other three cases

are similar. �

Based on this condition, we define the endomorphism S of F by the linear extension

of

S(zk1) := sgn((−α)k)z
k
1, S(zk1z2) := − sgn((−α)k)z

k
1z2,

S(zk1z3) := sgn((−α)k+1)z
k
1z4, S(zk1z4) := − sgn((−α)k+1)z

k
1z3,

for all k ∈ N. Then, one can easily verify that S is a fundamental symmetry of F with
respect to the Bessel-Fischer product.

Proposition 4.6. Suppose p, q ∈ {zk1, zk1z2, zk1z3, zk1z4}, with k ∈ N. Then the only
non-zero evaluations of (p, q)S are

(zk1, z
k
1)S = (zk1z2, z

k
1z2)S = k!|(−α)k |,

(zk1z3, z
k
1z3)S = (zk1z4, z

k
1z4)S = 2k!|(−α)k+1|,

where we used the Pochhammer symbol (a)k = a(a + 1)(a + 2) · · · (a + k − 1).

Proof. This follows immediately from Proposition 4.2. �

Definition 4.7. A Hermitian superspace (H, 〈· , ·〉) is a Hilbert superspace if there
exists a fundamental symmetry J such that (H, (· , ·)J ) is a Hilbert space.

Note that the choice of a fundamental symmetry does not matter for the topology,
thanks to [2, Theorem 3.4].

Denote byF the completion of F with respect to (· , ·)S , then (F , 〈· , ·〉B) is a Hilbert
superspace, which we call the Fock space. Define ‖ f ‖S := √

( f, f )S , then we have

F =
{
f = f1,0 +

∞∑
k=1

zk−1
1 ( f1,k z1 + f2,k z2 + f3,k z3 + f4,k z4) : ‖ f ‖S < ∞, fi,k ∈ C

}
.

The condition ‖ f ‖S < ∞ on f is equivalent to the condition that the sums
∞∑
k=0

k!|(−α)k || f1,k |2,
∞∑
k=1

(k − 1)!|(−α)k−1|| f2,k |2,
∞∑
k=1

(k − 1)!|(−α)k || f3,k |2,
∞∑
k=1

(k − 1)!|(−α)k || f4,k |2

converge.
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5. The superunitary representation ρ0

In this section we explicitly integrate the differential action dρ of D(2, 1;α) on F to
an action ρ0 of D(2, 1;α) on F . We also introduce the notion of superunitary rep-
resentations as defined in [2]. Then, we prove that our action defines a superunitary
representation on F for α < 0.

Recall from Sect. 4 that we assume α ∈ R \ N.

5.1. Definition and explicit form. We define ρ0(exp(X)) := exp(dρ(X)) for all X ∈ g0.
Because of Corollary 3.5 this defines a representation of all of G0. We will now describe
this representation more explicitly. Note that we omit the action of A2(a2) from our
explicit representation. This case will be discussed in Sect. 5.2.

Theorem 5.1. The representation ρ0 acting on f = f (z1, z2, z3, z4) ∈ F is given by

ρ0(K1(k1)) f = f (z1, z2, cos(k1)z3 − 2−1 sin(k1)z4, 2 sin(k1)z3 + cos(k1)z4), (5.1)

ρ0(K2(k2)) f = exp(ıαk2) f (exp(−2ık2)z1, z2, exp(−ık2)z3, exp(−ık2)z4), (5.2)

ρ0(K3(k3)) f = exp(ık3) f (z1, exp(−2ık3)z2, exp(−ık3)z3, exp(−ık3)z4), (5.3)

ρ0(A1(a1)) f = f (z1, z2, exp(−a1)z3, exp(a1)z4), (5.4)

ρ0(A3(a3)) f = (cosh(a3) + sinh(a3)z2)

× f (z1, tanh(a3) + cosh(a3)
−2z2, cosh(a3)

−1z3, cosh(a3)
−1z4),

(5.5)

Proof.

(5.1) We have

ρ0(K1(k1)) = exp(dρ(k1(F1 − E1))) = exp(k1(2z3∂z4 − 1

2
z4∂z3))

=
∞∑
i=0

ki1
i ! (2z3∂z4 − 1

2
z4∂z3)

i ,

with

(2z3∂z4 − 1

2
z4∂z3)

2 = −(z3∂z3 + z4∂z4),

(2z3∂z4 − 1

2
z4∂z3)

3 = −(2z3∂z4 − 1

2
z4∂z3),

and therefore

ρ0(K1(k1)) = 1 − (z3∂z3 + z4∂z4) +
∞∑
i=0

(−1)i
k2i1

(2i)! (z3∂z3 + z4∂z4)

+
∞∑
i=0

(−1)i
k2i+11

(2i + 1)! (2z3∂z4 − 1

2
z4∂z3)

= 1 − z3∂z3 − z4∂z4 + cos(k1)(z3∂z3 + z4∂z4)

+ sin(k1)(2z3∂z4 − 1

2
z4∂z3).
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This gives us

ρ0(K1(k1)) f (z1, z2, z3, z4) = f (z1, z2,

(
cos(k1) −2−1 sin(k1)
2 sin(k1) cos(k1)

) (
z3
z4

)
).

(5.2) and (5.3) We have

ρ0(K2(k2)) = exp(dρ(k2(F2 − E2)))

= exp(αık2 − 2ık2z1∂z1 − ık2z3∂z3 − ık2z4∂z4)

= exp(αık2) exp(−2ık2z1∂z1) exp(−ık2z3∂z3) exp(−ık2z4∂z4),

and

ρ0(K3(k3)) = exp(dρ(k3(F3 − E3)))

= exp(ık3 − 2ık3z2∂z2 − ık3z3∂z3 − ık3z4∂z4)

= exp(ık3) exp(−2ık3z2∂z2) exp(−ık3z3∂z3) exp(−ık3z4∂z4).

Since exp(azi∂zi ) f (zi ) = f (exp(a)zi ) for all a ∈ C we get

ρ0(K2(k2)) f (z1, z2, z3, z4) = eıαk2 f (e−2ık2 z1, z2, e
−ık2 z3, e

−ık2 z4),

and

ρ0(K3(k3)) f (z1, z2, z3, z4) = eık3 f (z1, e
−2ık3 z2, e

−ık3 z3, e
−ık3 z4),

respectively.
(5.4) We have

ρ0(A1(a1)) f = exp(a1dρ(H1)) f = exp(a1(z4∂z4 − z3∂z3)) f

= f (z1, z2, exp(−a1)z3, exp(a1)z4)

(5.5) We have

ρ0(A3(a3)) f = exp(a3dρ(H3)) f = exp(a3(z2 + ∂z2)) f =
∞∑
i=0

ai3
i ! (z2 + ∂z2)

i f

with

(z2 + ∂z2)
2i f =

∞∑
k=0

zk−1
1 ( f1,k z1 + f2,k z2),

(z2 + ∂z2)
2i−1 f =

∞∑
k=0

zk1 f2,k+1 +
∞∑
k=0

zk−1
1 z2 f1,k−1

=
∞∑
k=0

zk−1
1 ( f2,k+1z1 + f1,k−1z2),
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for i ≥ 1. Therefore

ρ0(A3(a3)) f = f + (cosh(a3) − 1)
∞∑
k=0

zk−1
1 ( f1,k z1 + f2,k z2)

+ sinh(a3)
∞∑
k=0

zk−1
1 ( f2,k+1z1 + f1,k−1z2)

=
∞∑
k=0

zk−1
1 ((cosh(a3) f1,k + sinh(a3) f2,k+1)z1

+ (cosh(a3) f2,k + sinh(a3) f1,k−1)z2 + f3,k z3 + f4,k z4)

= (cosh(a3) + sinh(a3)z2)

× f (z1, tanh(a3) + cosh(a3)
−2z2, cosh(a3)

−1z3, cosh(a3)
−1z4)

�

Wehave two alternativeways to present this representation. The first one is as follows.

Suppose f ∈ F and define

f1(z1) :=
∞∑
k=0

zk1 fi,k and fi (z1) :=
∞∑
k=0

zk1 fi,k+1,

for i ∈ {2, 3, 4}. Then we have f = f1(z1)+ f2(z1)z2 + f3(z1)z3 + f4(z1)z4 and we can
view f as the vector

f =
⎛
⎜⎝

f1(z1)
f2(z1)
f3(z1)
f4(z1)

⎞
⎟⎠ .

The representation ρ0 on F can now be given by matrices acting on f ∈ F .

Corollary 5.2. The representation ρ0 acting on f ∈ F given by

ρ0(K1(k1)) f =
⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 cos(k1) 2 sin(k1)
0 0 −2−1 sin(k1) cos(k1)

⎞
⎟⎠ f,

ρ0(K2(k2)) f =

⎛
⎜⎜⎝
eık2(α−2E) 0 0 0

0 eık2(α−2E) 0 0
0 0 eık2(α−1−2E) 0
0 0 0 eık2(α−1−2E)

⎞
⎟⎟⎠ f,

ρ0(K3(k3)) f =

⎛
⎜⎜⎝
eık3 0 0 0
0 e−ık3 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ f,

ρ0(A1(a1)) f =
⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 e−a1 0
0 0 0 ea1

⎞
⎟⎠ f,
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ρ0(A3(a3)) f =
⎛
⎜⎝
cosh(a3) sinh(a3) 0 0
sinh(a3) cosh(a3) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ f,

where E := z1∂z1 denotes the Euler operator on fi (z1), i ∈ {1, 2, 3, 4}.
The second method is as follows. Denote by Pk(C

m|n) the space of homogeneous
superpolynomials of degree k in m even variables and n odd variables. Then

φ : Fλ → Peven(C
1|2) :=

∞⊕
k=0

P2k(C
1|2)

(z1, z2, z3, z4) 	→ (2−1
21, 
2
3, 
1
3, 
1
2),

defines an isomorphism between Fλ and the space of even degree superpolynomials in
the even variable 
1 and the two odd variables 
2, 
3. Here the “even” in Peven(C

1|2)
refers to the degree and not the parity of the superpolynomial terms.

The representation ρ0 on F can now be given as an action on f (
1, 
2, 
3) ∈ φ(F).

Corollary 5.3. The representation ρ0 acting on f = f (
1, 
2, 
3) ∈ φ(F) is given by

ρ0(K1(k1)) f = f (
1, cos(k1)
2 + 2 sin(k1)
3,−2−1 sin(k1)
2 + cos(k1)
3),

ρ0(K2(k2)) f = exp(ıαk2) f (exp(−ık2)
1, 
2, 
3),

ρ0(K3(k3)) f = exp(ık3) f (
1, exp(−ık3)
3, exp(−ık3)
4),

ρ0(A1(a1)) f = f (
1, exp(a1)
2, exp(−a1)
3),

ρ0(A3(a3)) f = (cosh(a3) + sinh(a3)
2
3) f (
1, cosh(a3)
−1
2, cosh(a3)

−1
3)

+ sinh(a3)( f (
1, 1, 1) − f (
1, 1, 0) − f (
1, 0, 1) + f (
1, 0, 0)

+ tanh(a3)( f (
1, 
2, 
3) − f (
1, 
2, 0) − f (
1, 0, 
3) + f (
1, 0, 0))).

Note that the symbolic change of odd variables 
2 and 
3 to the constant 1 is only well
defined if we use the convention that every instance of 
3
2 in f is first rewritten as
−
2
3.

5.2. The action of A2(a2). For the action ρ0(A2(a2)) we were unable to find an explicit
form if α < 0.

For α > 0 we can write F in terms of a Generalised Laguerre polynomial basis,

F =
{
g = exp(−z1)

( ∞∑
k=0

(g1,k + g2,k z2)L
(−1−α)
k (2z1)

+
∞∑
k=1

(g3,k z3 + g4,k z4)L
(−α)
k−1 (2z1)

)
: ‖g‖S < ∞, gi,k ∈ C

}
,

Here

L(a)
k (2x) = (−1)k

k! U(−k, a + 1, 2x) = (−1)k

k!
k∑

i=0

(−1)i

i ! (−a − k)i (−k)i (2x)
k−i
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are the generalised Laguerre polynomials and U(a, b, c) is the confluent hypergeometric
function of the second kind. Note that this does not define a basis of F if α < 0, since
then ‖exp(−z1)‖S �< ∞. We can now give the actions of A2(a2) with respect to this
basis.

Proposition 5.4. For α > 0 we have

ρ0(A2(a2))g(z) = exp(−z1)

( ∞∑
k=0

exp(a2(2k − α))(g1,k + g2,k z2)L
(−1−α)
k (2z1))

+
∞∑
k=1

exp(a2(2k − α − 1))(g3,k z3 + g4,k z4)L
(−α)
k−1 (2z1))

)
.

Proof. We have

ρ0(A2(a2)) = exp(a2dρ(H2)) = exp(a2(z1 − Bλ(z1)))

= exp(a2(z1 + (α − z1∂z1 − z3∂z3 − z4∂z4)∂z1))

=
∞∑
i=0

ai2
i ! D

i ,

with

D = z1 + (α − z1∂z1 − z3∂z3 − z4∂z4)∂z1 .

Since

D(exp(−z1)L
(−1−α)
k (2z1)) = (2k − α) exp(−z1)L

(−1−α)
k (2z1)

and

D(exp(−z1)z j L
(−α)
k−1 (2z1)) = (2k − α − 1) exp(−z1)z j L

(−α)
k−1 (2z1),

for j ∈ {3, 4}, we obtain the desired result. �

Despite not having an explicit form α < 0, we can show that this action is unitary if

and only if α < 0.

Proposition 5.5. The action ρ0(A2(a2)) is a unitary operator on (F , 〈· , ·〉B) for all
a2 ∈ R if and only if α < 0.

Proof. First assume α > 0. From Proposition 5.4 we see that the eigenvalues of
ρ0(A2(a2)) are of the form exp(a), with a ∈ R. Since these eigenvalues are not roots of
unity, ρ0(A2(a2)) can not be a unitary operator on (F , 〈· , ·〉B).

Now assume α < 0. In this case, we can easily see that the Fundamental symmetry
S commutes with ρ0(A2(a2)). Because of [1, Proposition 6.3] we have

〈dρ(H2)p, q〉B = −〈p, dρ(H2)q〉B ,

for p, q ∈ F. This implies

(ρ0(A2(a2))p, q)S = 〈ρ0(A2(a2))p, S(q)〉B = 〈exp(a2dρ(H2))p, S(q)〉B
= 〈p, exp(−a2dρ(H2))S(q)〉B = 〈p, ρ0(A2(−a2))S(q)〉B
= 〈p, S(ρ0(A2(−a2))q)〉B = (p, ρ0(A2(−a2))q)S,

for p, q ∈ F, i.e., ρ0(A2(a2)) acts as a unitary operator when acting on F. Since F is
dense in F , we are finished. �
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5.3. Superunitary representations. The following definitions can be found in [2].

Definition 5.6. Let (H1, 〈· , ·〉1) and (H2, 〈· , ·〉2) be Hilbert superspaces and suppose
T : H1 → H2 is a linear operator. We call T a bounded operator betweenH1 andH2
if it is continuous with respect to their Hilbert topologies. The set of bounded operators
is denoted by B(H1,H2) and B(H1) := B(H1,H1).

Definition 5.7. Let (H1, 〈· , ·〉1) and (H2, 〈· , ·〉2) be Hilbert superspaces and suppose
T ∈ B(H1,H2). The superadjoint of T is the operator T † ∈ B(H2,H1) such that

〈
T †(x), y

〉
1

= (−1)|T ||x | 〈x, T (y)〉2 ,

for all x ∈ H2, y ∈ H1.

Definition 5.8. Let (H1, 〈· , ·〉1) and (H2, 〈· , ·〉2). A superunitary operator between
H1 and H2 is a homogeneous operator ψ ∈ B(H1,H2) of degree 0 satisfying ψ†ψ =
ψψ† = 1. The set of superunitary operators is denoted by U(H1,H2) and U(H1) :=
U(H1,H1).

Definition 5.9. A superunitary representation of a Lie supergroup G = (G0, g) is a
triple (H, π0, dπ) such that

• H is a Hilbert superspace.
• π0 : G0 → U(H) is a group morphism.
• For all v ∈ H, the maps πv

0 : g 	→ π0(g)v are continuous on G0.
• dπ : g → End(H∞) is aR-Lie superalgebra morphism such that dπ = dπ0 on g0,
dπ is skew-supersymmetric with respect to 〈· , ·〉 and

π0(g)dπ(X)π0(g)
−1 = dπ(Ad(g)(X)), for all g ∈ G0 and X ∈ g1.

HereH∞ is the space of smooth vectors of the representation π0 and Ad is the adjoint
representation of G0 on g.

Using this definition of a superunitary representation we can now prove the following
result.

Theorem 5.10. Assume α < 0. The triple ((F , 〈· , ·〉B), ρ0, dρ) is a superunitary rep-
resentation of D(2, 1;α).

Proof. Thanks to Corollary 3.5, we only need to consider the representation ρ0 on
elements of the form g = exp(X1) · · · exp(Xn) ∈ G0, with Xi ∈ g0 and n ∈ N. We now
prove the different conditions of Definition 5.9.

• (F , 〈·, ·〉B) is a Hilbert superspace:
This follows from the definitions.

• ρ0 : G0 → U(F) is a group morphism:
Wewish to prove that ρ0(exp(X1) · · · exp(Xn)) is a superunitary operator ofF . Because
of [1, Proposition 6.3] we have

〈ρ0(exp(X))p, q〉B = (−1)|X ||p| 〈p, ρ0(exp(−X))q〉B ,

which implies that the superadjoint ofρ0(exp(X1) · · · exp(Xn)) is givenbyρ0(exp(−Xn)

· · · exp(−X1)) and therefore it is a superunitary operator of F .
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• For all f ∈ F , the maps ρ
f
0 : g 	→ ρ0(g) f are continuous on G0:

We need to prove the following

(∀g ∈ G0)(∀ε > 0)(∃U neighborhood of g)(h ∈ U �⇒ ||ρ f
0 (g) − ρ

f
0 (h)||S < ε).

Since

Ur :=
{

3∏
i=1

Ki (ki )Ai (ai )Ki (k
′
i )g :

3∑
i=1

|ki | + |ai | + |k′
i | < r

}

is a neighbourhood of g for all r > 0, it suffices to prove

(∀g ∈ SL(Vi ))(∀ε > 0)(∃δ > 0)(||ρ0(Xi (δ)) f − f ||S < ε),

for i ∈ {1, 2, 3} and Xi ∈ {Ki , Ai }.
For A2 we know from Proposition 5.5 that the actions is unitary if α < 0. Since unitarity
implies continuity, we are done.
For K3 we have

ρ0(K3(δ)) f = eıδ
∞∑
k=0

zk−1
1 ( f1,k z1 + e−2ıδ f2,k z2 + e−ıδ( f3,k z3 + f4,k z4))

=
∞∑
k=0

zk−1
1 (eıδ f1,k z1 + e−ıδ f2,k z2 + f3,k z3 + f4,k z4)

and therefore

‖ρ0(K3(δ)) f − f ‖2S =
∥∥∥∥∥

∞∑
k=0

zk−1
1 ((eıδ − 1) f1,k z1 + (e−ıδ − 1) f2,k z2)

∥∥∥∥∥
2

S

= (2 − eıδ − e−ıδ)

×
∞∑
k=0

k!|(−α)k || f1,k |2 + (k − 1)!|(−α)k−1|| f2,k |2,

which goes to 0 as δ goes to 0.
For A3 we have

ρ0(A3(δ)) f − f =
∞∑
k=0

zk−1
1 (((cosh(δ) − 1) f1,k + sinh(δ) f2,k+1)z1

+ ((cosh(δ) − 1) f2,k + sinh(δ) f1,k−1)z2)



468 S. Barbier, S. Claerebout

and therefore

‖ρ0(A3(δ)) f − f ‖2S =
∞∑
k=0

|(cosh(δ) − 1) f1,k + sinh(δ) f2,k+1|2|(−α)k |k!

+ |(cosh(δ) − 1) f2,k + sinh(δ) f1,k−1|2|(−α)k−1|(k − 1)!

≤ 2(cosh(δ) − 1)2
∞∑
k=0

| f1,k |2|(−α)k |k!

+ 2 sinh(δ)2
∞∑
k=0

| f2,k+1|2|(−α)k |k!

+ 2(cosh(δ) − 1)2
∞∑
k=1

| f2,k |2|(−α)k−1|(k − 1)!

+ 2 sinh(δ)2
∞∑
k=1

| f1,k−1|2|(−α)k−1|(k − 1)!

which goes to 0 as δ goes to 0.
For K2 we have

ρ0(K2(δ)) f − f =
∞∑
k=0

(eıδ(α−2k) − 1)(zk1 f1,k + z2z
k
1 f2,k+1)

+
∞∑
k=0

(eıδ(α−2k−1) − 1)(z3z
k
1 f3,k+1 + z4z

k
1 f4,k+1)

and therefore

‖ρ0(K2(δ)) f − f ‖2S
=

∞∑
k=0

2(1 − cos(δ(α − 2k)))(| f1,k |2 + | f2,k+1|2)k!|(−α)k |

+
∞∑
k=0

4(1 − cos(δ(α − 2k − 1)))(| f3,k+1|2 + | f4,k+1|2)k!|(−α)k+1|

≤ 4
∞∑
k=0

(| f1,k |2 + | f2,k+1|2)k!|(−α)k | + 8
∞∑
k=0

(| f3,k+1|2 + | f4,k+1|2)k!|(−α)k+1|

= 4 ‖ f ‖2S
Using Lebesgue’s dominated convergence theorem we now find

lim
δ→0

‖ρ0(K2(δ)) f − f ‖2S

=
∞∑
k=0

2 lim
δ→0

(1 − cos(δ(α − 2k)))(| f1,k |2 + | f2,k+1|2)k!|(−α)k |
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+
∞∑
k=0

4 lim
δ→0

(1 − cos(δ(α − 2k − 1)))(| f3,k+1|2 + | f4,k+1|2)k!|(−α)k+1|

= 0,

as desired.
Lastly, the K1 and A1 cases are analogous to the K3 and A3 cases.

• dρ : g → End(F) is a R-Lie superalgebra morphism such that
(i) dρ = dρ0 on g0,
(ii) dρ is skew-supersymmetric with respect to 〈· , ·〉 and
(iii) ρ0(g)dρ(X)ρ0(g)−1 = dρ(Ad(g)(X)), for all g ∈ G0 and X ∈ g1:

Item (i) follows from

dρ0(X)p = d

dt
ρ0(exp(t X))p

∣∣∣∣
t=0

= d

dt
exp(tdρ(X))p

∣∣∣∣
t=0

= dρ(X)p,

for all p ∈ F and X ∈ g0. Item (ii) follows directly from [1, Proposition 6.3] and item
(iii) follows from

ρ0(exp(Y ))dρ(X)ρ0(exp(Y ))−1 = ρ0(exp(Y ))dρ(X)ρ0(exp(−Y ))

= exp(dρ(Y ))dρ(X) exp(dρ(−Y ))

= dρ(exp(Y )X exp(−Y ))

= dρ(Ad(exp(Y ))(X)),

for all X ∈ g1 and Y ∈ g0.

�

The assumption α < 0 is only used to prove the continuity of ρ0(A2(δ)). Note that

Proposition 5.5 only implies that the actions are not unitary if α > 0. It tells us nothing
about the continuity in this case. It is possible that Theorem 5.10 holds even without the
assumption α < 0.

From the discussion in Sect. 2.3, we can at least conclude that for everyα there always
exists a superunitary representation of D(2, 1;α). Indeed, if α > 0, we can look at the
Fock representation ofD(2, 1;−1−α) instead of the Fock representation ofD(2, 1;α).

5.4. Strong superunitary representation. In [2, Section 4.4] the notion of a strong supe-
runitary representation is also defined. However, it is easy to prove that our superunitary
representation is not a strong superunitary representation.

Definition 5.11. A strong superunitary representation of a Lie supergroup G =
(G0, g) is a superunitary representation (H, π0, dπ) such that

• (H, π0) is unitarizable,
• (H, π0, dπ) admits a restriction to (D(G0), D(gR)).

Here D(G0) is the connected Lie subgroup of G0 with Lie algebra [(gR)1, (gR)1] and
D(gR) := [(gR)1, (gR)1] ⊕ (gR)1.

Theorem 5.12. There does not exist a fundamental symmetry onF such that ((F , 〈·, ·〉B),

ρ0) is unitarizable. As a consequence ((F , 〈· , ·〉B), ρ0, dρ) is not a strong superunitary
representation.
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Proof. Let J be an arbitrary fundamental symmetry on F. Thanks to Proposition 4.5 we
may assume

J (zk1)zk1
= ε1,k sgn((−α)k), J (zk1z2)zk1z2

= −ε2,k sgn((−α)k),

J (zk1z3)zk1z4
= ε3,k sgn((−α)k+1), J (zk1z4)zk1z3

= −ε4,k sgn((−α)k+1),

with εi,k > 0 for all k ∈ N and i ∈ {1, 2, 3, 4}. Suppose ((F , 〈·, ·〉B), ρ0) is unitarizable,
then the inner product on F should be invariant under the derived action of ρ0, i.e.,

(dρ(X)p, q)J = − (p, dρ(X)q)J (5.6)

for all X ∈ D(2, 1;α)0, p, q ∈ F. Set X = E3 + F3, p = z2 and q = 1. Then
dρ(X) = −ı(z2 − ∂z2) and the left hand side of equation (5.6) becomes

(dρ(X)p, q)J = 〈ı, J (1)〉B = ıε1,0

while the right hand side becomes

− (p, dρ(X)q)J = −〈z2,−ı J (z2)〉B = −(−ı)ε2,0 = −ıε2,0,

which implies equation (5.6) holds only if

ε1,0 + ε2,0 = 0.

Since both ε1,0 and ε2,0 are greater than zero, this gives us a contradiction. �


5.5. Harish-Chandra supermodules. We will end this paper by giving an alternative,
non-explicit, way to integrate the algebra representation of D(2, 1;α) to group level.
We do this by using the framework of Harish-Chandra supermodules developed in [24].
It would be interesting to know if this abstract integration gives the same representation
as the explicit integration of Theorem 5.1, but we were unable to verify this.

Definition 5.13. [24, Definition 4.1] Let V be a complex super-vector space, G =
(G0, g) a Lie supergroup and K amaximal compact subgroup ofG0. Then V is a (g, K )-
module if it is a locally finite K -representation that has also a compatible g-module
structure, that is, the derived action of K agrees with the Lie(K )-module structure:

dπ0(X)(v) = d

dt
π0(exp(t X))(v)

∣∣∣∣
t=0

= dπ(X)(v) for all X ∈ Lie(K ), v ∈ V

and

π0(k)(dπ(X)(v)) = dπ(Ad(k)(X))(π0(k)(v)), for all k ∈ K , X ∈ g, v ∈ V,

where π0 is the K -representation and dπ the g-representation. A (g, K )-module is a
Harish–Chandra supermodule if it is finitely generatedoverU (g) and is K -multiplicity
finite.

The maximal compact subgroup of SL(Vi ) is Ki . The maximal compact subgroup
of G0 is therefore the 3-Torus K := K1 × K2 × K3.

Proposition 5.14. The module F is a Harish–Chandra supermodule.
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Proof. That F is a (g, K )-module follows from

dρ0(X)(p) = d

dt
ρ0(exp(t X))(p)

∣∣∣∣
t=0

= d

dt
exp(tdρ(X))(p)

∣∣∣∣
t=0

= dρ(X)p,

and

ρ0(exp(Y ))(dρ(X)p) = ρ0(exp(Y ))dρ(X)ρ0(exp(−Y ))ρ0(exp(Y ))p

= (exp(dρ(Y ))dρ(X) exp(−dρ(Y )))ρ0(exp(Y ))p

= dρ((exp(Y )X exp(−Y ))ρ0(exp(Y ))p

= dρ((Ad(exp(Y ))X)ρ0(exp(Y ))p,

for all p ∈ F and X,Y ∈ g. From the decomposition in [1, Theorem 6.4] it immediately
follows that F is locally K -finite. Using Proposition 5.1 we also see that F is also K -
multiplicity finite. �

Corollary 5.15. The (g, K )-module F integrates to a unique smooth Fréchet represen-
tation of moderate growth for the Lie supergroup D(2, 1;α).

Proof. This follows immediately from [24, Theorem 4.6]. �
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