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Abstract: We prove that quasinormal modes (or resonant states) for linear wave equa-
tions in the subextremal Kerr and Kerr–de Sitter spacetimes are real analytic. The main
novelty of this paper is the observation that the bicharacteristic flow associated to the lin-
ear wave equations for quasinormal modes with respect to a suitable Killing vector field
has a stable radial point source/sink structure rather than merely a generalized normal
source/sink structure. The analyticity then follows by a recent result in the microlocal
analysis of radial points by Galkowski and Zworski. The results can then be recast with
respect to the standard Killing vector field.
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1. Introduction

When studying linear and nonlinear wave equations on black hole spacetimes, such as
the Kerr spacetime and Kerr–de Sitter spacetime, quasinormal modes play a prominent
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role. Indeed, for linear equations, within certain limitations corresponding to trapped
null-geodesics, solutions have an asymptotic expansion at timelike infinity in quasinor-
mal modes. Such expansions, or the corresponding decay or lack thereof statements,
have a long history which in the mathematics literature goes back to Sá Barreto and
Zworski [SBZ97], Bony and Häfner [BH08], Dyatlov [Dya11,Dya12], Vasy [Vas13],
Shlapentokh-Rothman [SR15], Hintz and Vasy [HV15] and Gajic andWarnick [GW20].
In the physics literature the importance of these has been clear even longer, going
back to Regge and Wheeler [RW57], Vishveshwara [Vis70], Zerilli [Zer70], Whiting
[Whi89], Kodama, Ishibashi and Seto [KIS00] and others. For nonlinear equations the
non-decaying quasinormal modes become an obstacle to solvability; for equations with
gauge freedom, such as Einstein’s equation, it is non-decaying modes that are not ‘pure
gauge’ that play an analogous role [HV18].

Quasinormal modes are solutions of the homogeneous wave equation which are
eigenfunctions of the covariant derivative along appropriate Killing vector fields. A
key consideration for applications is that for similar covariant eigenfunctions as the
forcing (right hand side of the wave equation), there should be a satisfactory Fredholm
theory. In this case the covariant eigenvalues (resonances) form a discrete set, and the
corresponding eigenspaces are finite dimensional. Since Fredholm theory is global, this
necessitates working relative to Killing vector fields with suitable global behavior.

Recently Galkowski and Zworski [GZ21] showed that quasinormal modes for non-
rotating black holes are real analytic at the horizon; indeed they obtained a substantially
stronger microlocal result. In this paper we generalize their result to the case of rotating
black holes whose importance is underlined by their ubiquity. Our proof relies crucially
on the ability to locally transform the rotating black hole quasimode problem to the
non-rotating one, and thus being able to apply the result of [GZ21]. This transformation
is facilitated by locally considering analogues of quasinormal modes with respect to a
different Killing vector field that is lightlike on the horizon; this change is very simple in
theKerr andKerr–de Sitter case as we discuss below, but in fact works in general for non-
degenerate Killing horizons under an additional condition, as is also described below.
While these modes are with respect to a different Killing vector field, we can in fact
relate these to the quasinormal modes with respect to the original globally well-behaved
vector field to obtain the real analyticity result. Indeed, a key feature of the Kerr–de
Sitter setting is the presence of two horizons, and the well-behaved Killing vector fields
with respect to each of these horizons, while globally well-defined, are ill-behaved at
the other horizon. Thus, it is of central importance for our approach to be able to work
locally near a horizon to obtain the analyticity conclusions.

It is conceivable that the results of [GZ21] could be proven in the more general
setting of [Vas13], which would imply analyticity in the case of rotating black holes.
However, such a proof would be significantly more technically involved than the proof
we give here. The proof of analytic hypoellipticity in [GZ21] relies on a microlocal
normal form of Haber [Hab14], which in turn relies on the relevant Lagrangian (in our
case the conormal bundle of the horizon) being radial with respect to the Hamilton vector
field. For rotating black holes, there is more intricate internal dynamics and one could
therefore not directly apply the results of Haber. Indeed, our reduction to [GZ21] can
be considered as a way of ‘straightening’ the dynamics and thus bringing it to a model
form.

Furthermore, it could perhaps bepossible to prove analytic hypoellipticity ofKeldysh-
type operators more explicitly using ODE theory and separation of variables and thereby
avoid referring to [GZ21]. This was the approach by Lebeau and Zworski in [LZ19] (see
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also the work by Zuily in [Zui17]), where an explicit class of Keldysh type operators
where studied, and certain values for the subprincipal symbol had to be excluded. How-
ever, the main purpose of this paper is to reduce the hypoanalyticity of quasinormal
modes in Kerr(-de Sitter) spacetimes to the irrotational, i.e. Keldysh-type, case. Apply-
ing the ODE approach directly in the rotational case seems cumbersome and it is not
clear to us whether it would work.

In the rest of the introduction we describe the precise results in the rotating black
hole setting, as well as the generalization to non-degenerate Killing horizons. Then in
Sect. 2 we discuss geometric aspects of these Killing horizons. In Sect. 3 we then prove
our general local result. In Sect. 4 we use these local results to obtain a global result for
joint modes of two Killing vector fields on Kerr and Kerr–de Sitter spacetimes. Finally,
in Sect. 5 we show how these results imply the real analyticity of the quasinormal modes
on Kerr and Kerr–de Sitter spacetimes, with modes taken with respect to the standard
Killing vector field.

1.1. Kerr and Kerr–de Sitter spacetime. Fix three parameters a ∈ R and m,� ≥ 0,
such that the polynomial

μ(r) :=
(

r2 + a2
) (

1 − �r2

3

)
− 2mr (1)

has four distinct real roots r− < rC < re < rc if � > 0 and two distinct real roots
rC < re if � = 0. The latter condition is equivalent to |a| < m.

Assuming � > 0, the domain of outer communication in the sub-extermal Kerr–de
Sitter spacetime is given in Boyer-Lindquist coordinates by the real analytic spacetime

Rt × (re, rc)r × S1
φ × (0, π)θ ,

with real analytic metric

g = (r2 + a2 cos2(θ))

(
dr2

μ(r)
+

dθ2

c(θ)

)

+
c(θ) sin2(θ)

b2
(
r2 + a2 cos2(θ)

)
(

adt −
(

r2 + a2
)
dφ

)2

− μ(r)

b2
(
r2 + a2 cos2(θ)

)
(
dt − a sin2(θ)dφ

)2
,

(2)

where

b := 1 +
�a2

3
, c(θ) := 1 +

�a2

3
cos2(θ).

The domain of outer communication in the subextremal Kerr spacetime is defined anal-
ogously, by passing to the limit � = 0. We set rc = ∞ if � = 0. The Boyer–Lindquist
coordinates could be thought of as spherical coordinates around the black hole, where
the black hole is centered at r = 0. Even though they are not defined at the north and
south poles θ = 0 and π , it is straightforward to check that the metric (2) extends real
analytically to

M := Rt × (re, rc)r × S2
φ,θ .
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Since the metric extends real analytically, so does linear wave equations with a principal
symbol given by the metric in these coordinates. We refer to [HV18, Sec. 3], for a more
thorough discussion of the geometry of Kerr–de Sitter spacetimes.

These coordinates are singular at the roots of μ(r). In order to define quasinormal
modes, we need to extend this metric real analytically over the future event horizon
and the future cosmological horizon, corresponding to the roots r = re and r = rc,
respectively. This can be done, for instance, by the following coordinate change:

t∗ := t − �(r),

φ∗ := φ − �(r),

where � and � satisfy

�′(r) = b
r2 + a2

μ(r)
f (r),

� ′(r) = b
a

μ(r)
f (r).

In the case � > 0, we let f : (re − δ, rc + δ) → R, for a small δ > 0, be a real analytic
function such that

f (re) = −1

and

f (rc) = 1.

In the case � = 0, there is no cosmological horizon, so we instead assume that

lim
r→∞ f (r) = 1.

The metric (2) extends real analytically to the manifold

M∗ := Rt∗ × (re − δ, rc + δ)r × S2
φ∗,θ ,

and is given by

g∗ = (r2 + a2 cos2(θ))
1 − f (r)2

μ(r)
dr2

− 2

b
f (r)(dt∗ − a sin2(θ)dφ∗)dr

− μ(r)

b2
(
r2 + a2 cos2(θ)

)
(
dt∗ − a sin2(θ)dφ∗

)2

+
c(θ) sin2(θ)

b2
(
r2 + a2 cos2(θ)

)
(

adt∗ −
(

r2 + a2
)
dφ∗

)2

+ (r2 + a2 cos2(θ))
dθ2

c(θ)
.

(3)

We will throughout the paper assume that f is chosen as in [PV, Rmk. 1.1], so that the
hypersurfaces

{t∗ = c} × (re − δ, rc + δ)r × S2
φ∗,θ
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are spacelike, for all c ∈ R, and that δ > 0 is small enough so that the hypersurfaces

Rt∗ × {r = re − δ} × S2
φ∗,θ ,

Rt∗ × {r = rc + δ} × S2
φ∗,θ

are spacelike. The two real analytic lightlike hypersurfaces

H+
e := Rt∗ × {re} × S2

φ∗,θ ,

H+
c := Rt∗ × {rc} × S2

φ∗,θ

are called the future event horizon and future cosmological horizon, respectively. Note
that the real analytic Killing vector fields ∂t and ∂φ , in Boyer-Lindquist coordinates,
extend to real analytic Killing vector fields ∂t∗ and ∂φ∗ on (M∗, g∗).

We will consider wave equations on complex tensors. Fixing r, s ∈ N0, let T s
r U

denote the complex (r, s)-tensors on an open subset U ⊂ M∗ and let ∇ denote the Levi-
Civita connection acting on T s

r U . We let C∞(T s
r U) and Cω(T s

r U) denote the smooth
and real analytic complex tensor fields, respectively. Let P be a wave operator, i.e. is a
linear differential operator with principal symbol given by the dual metric, i.e.

P = −gαβ∇α∇β + lower order terms.

More precisely, there are complex tensor fields

A : T ∗U ⊗ T s
r U → T s

r U ,

B : T s
r U → T s

r U ,

such that

P = ∇∗∇ + A ◦ ∇ + B.

We consider solutions to wave equations Pu = f , where the coefficients A and B are
invariant under the Killing vector fields ∂t∗ and ∂φ∗ . This is a natural assumption for
geometric wave equations, where A and B are typically given by curvature expressions.
Our first main result is the following:

Theorem 1.1. Let (M∗, g∗) be the subextremal Kerr(-de Sitter) spacetime, extended real
analytically over the future event horizon (and future cosmological horizon if � > 0).
Assume that

• A and B are real analytic in M∗,
• L∂t∗ A = L∂φ∗ A = 0 and L∂t∗ B = L∂φ∗ B = 0 in M∗.

If u ∈ C∞(T s
r M∗) satisfies

(i) Pu ∈ Cω(T s
r M∗),

(ii) L∂t∗ u = −iσu for some σ ∈ C,
(iii) L∂φ∗ u = −iku for some k ∈ Z,

then u ∈ Cω(T s
r M∗).
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Smooth tensor fields satisfying (ii) and (iii) in Theorem 1.1 and Pu = 0 are called
quasinormal modes. For functions, these conditions are equivalent to assuming that

u(t∗, r, φ∗, θ) = e−i(σ t∗+kφ∗)v(r, θ), (4)

which is perhaps the more common way to express quasinormal modes.
Combining Theorem 1.1 with the Fredholm theory developed by the second author

in [Vas13] and [Vas] (see also [VZ00,Vas21]) and by both authors in [PV], we deduce
our second main result, where we consider quasinormal modes only with respect to the
Killing vector symmetry

∂t∗ +
a

r20 + a2
∂φ∗ , (5)

where r0 ∈ (re, rc) is the unique point such that μ′(r0) = 0, as opposed to modes with
respect to both ∂t∗ and ∂φ∗ separately (as in Theorem 1.1). Concretely, this means that
quasinormal modes are supposed to satisfy

L∂t∗+ a
r20 +a2

∂φ∗ u = −iσu.

For solutions to linear scalar wave equations on any subextremal Kerr–de Sitter space-
time, there is an asymptotic expansion in these quasinormalmodes up to an exponentially
decaying term [PV, Thm. 1.5]. This extends the result of [Vas13], by removing restric-
tions on the angular momentum.

For the Fredholm theory to go through in the case � = 0, we will need the induced
operator on the modes to be a scattering operator with self-adjoint (i.e. real) scattering
principal symbol near spatial infinity in the sense of Melrose [Mel94]. Let us use the
convention that if � = 0, then r0 = ∞, giving the standard notion of quasinormal
modes on the Kerr spacetime. This amounts to making appropriate decay assumptions
on A and B:

Theorem 1.2. Let (M∗, g∗) be the subextremal Kerr(-de Sitter) spacetime, extended real
analytically over the future event horizon (and future cosmological horizon if � > 0).
Assume that

• A and B are real analytic in M∗,
• L∂t∗ A = L∂φ∗ A = 0 and L∂t∗ B = L∂φ∗ B = 0 in M∗.

If u ∈ C∞(T s
r M∗) satisfies

(i) Pu = 0,
(ii) L∂t∗+ a

r20 +a2
∂φ∗ u = −iσu for some σ ∈ C,

(iii) in case � = 0 we also assume that Im σ ≥ 0 and
• if Im σ > 0, then assume that A, B ∈ O∞

(
r−ε

)
and u|t∗=0 ∈ S ′,

• if σ ∈ R\{0}, then assume that P − P∗ ∈ O∞
(
r−1−ε

)
and A, B ∈ O∞(r−ε)

and that u|t∗=0 ∈ r
1
2−ε L2,

• if σ = 0, then assume that A ∈ O∞
(
r−1−ε

)
and B = O∞

(
r−2−ε

)
and u|t∗=0 ∈

S ′,
for some ε > 0,

then u ∈ Cω(T s
r M∗).
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Herewe used the notationS ′ for tempered distributions and the notation F ∈ O∞(rα)

for a complex tensor field F if and only if for all k ∈ N0, there is a constant Ck > 0,
such that

∣∣∣∇k F
∣∣∣ ≤ Ckrα−k,

where |·| is the positive definite norm on complex tensors induced from the Euclidean
metric dt2 + dr2 + r2gS2 . The notation Q ∈ O∞(rα) for a differential operator Q means
that the coefficients of Q are in O∞(rα).

Remark 1.3. In the case when � = 0, one could weaken the assumptions on u, A and
B at spatial infinity in various ways and still get a Fredholm problem following the
arguments of [Vas]. Indeed, the natural condition on u|t∗=0 in the case σ ∈ R\{0} is
formulated microlocally in terms of variable order Sobolev spaces, c.f. [Vas, Prop. 5.28].

Moreover, the threshold growth r
1
2 could be adjusted depending on A and B, to allow for

more general coefficients, see [Vas, Sec. 5.4.8]. We restrict for simplicity to this setting.

The restriction Im σ ≥ 0 for Kerr spacetimes is due to the lack of a directly applicable
Fredholm theory for the Fourier conjugated (in −t∗) operators in this case, though
alternatives are still available for studying these resonances. For functions, the condition
(ii) in Theorem 1.2 is equivalent to assuming that

u(t∗, r, φ∗, θ) = e−iσ t∗w(r, φ∗, θ),

which should be compared with equation (4) above.
In the special case when a = 0, the Kerr(-de Sitter) spacetime simplifies to the

Schwarzschild(-de Sitter) spacetime. In this case, Theorem 1.1 and Theorem 1.2 can be
immediately deduced from the framework developed by Galkowski–Zworski in [GZ21]
as follows: Wave equations for modes with respect to (5) reduce in the coordinate sys-
tem (t∗, r, φ∗, θ) to a Keldysh type operator, exactly of the type studied in [GZ21].
Galkowski–Zworski prove in [GZ21, Thm. 1] (generalizing [Zui17, Thm. 1.3]) the an-
alytic hypoellipticity of such operators, thus proving the real analyticity of quasinormal
modes when a = 0. In fact, if a = 0, the argument goes through without assuming
that the coefficients A and B are invariant under ∂φ∗ . Due to the rotation in the Kerr(-de
Sitter) spacetime when a = 0, this argument does not go through immediately. The key
to be able to apply the analytic hypoellipticity theory by Galkowski–Zworski to the case
a = 0 is the main new idea of this paper and is described in the next subsection.

1.2. Non-degenerate Killing horizons. By checking the formula (3) for the extended
metric g∗, one observes that the Killing vector field

∂t∗ +
a

r20 + a2
∂φ∗ , (6)

where r0 ∈ (re, rc) is the unique point such that μ′(r0) = 0, is lightlike at the horizons if
and only if a = 0. This turns out to be exactly why the modes with respect to (6) satisfy
the useful Keldysh type equation if and only if a = 0. In the Kerr(-de Sitter) spacetime,
the Killing vector fields

∂t∗ +
a

r2e + a2 ∂φ∗ , (7)
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and ∂t∗ +
a

r2c + a2 ∂φ∗ (if � > 0), (8)

are lightlike at the horizonsH+
e andH+

c (if � > 0), respectively. We show that the mode
solutions with respect to these Killing vector fields satisfy equations which are almost
of Keldysh type. More precisely, the bicharacteristics associated to the mode equation
will have the radial point structure assumed by Galkowski–Zworski in their analytic
hypoellipticity result [GZ21, Thm. 2]. Now, if u satisfies the assumption of Theorem
1.1, then

L∂t∗+ a
r2e +a2

∂φ∗ u = −i

(
σ +

a

r2e + a2 k

)
u, (9)

and similarly with re replaced by rc. This shows that u is a mode solution with respect to
both Killing vector fields (7) and (8). The analytic hypoellipticity result by Galkowski–
Zworski thus shows that u is real analytic near the horizonsH+

e andH+
c (if � > 0). This

is the main step in the proof of Theorem 1.1, the rest follows by standard propagation
of real analyticity for wave equations and analytic hypoellipticity of elliptic equations
(c.f. [Mar02, Chapter 4]).

In fact, this method is not specific to the Kerr(-de Sitter) spacetime, but turns out
to work for any Killing horizon in any real analytic spacetime, assuming the surface
gravity of theKilling horizon is nowhere vanishing.Assume therefore that (M, g) is a real
analytic spacetime, i.e. a time-orientedLorentzianmanifold, of dimension n+1 ≥ 2,with
sign convention (−,+, . . . ,+) and with a real analytic lightlike hypersurface H ⊂ M .
We assume in particular that the metric g is real analytic.

Definition 1.4. A real analytic Killing vector field W on M , such that W |H is lightlike
and tangent to H, is called a horizon Killing vector field with respect toH.

For each Killing horizon H and horizon Killing vector field W , it is straightforward to
check that

∇W W |H = κW |H, (10)

for a real analytic function κ : H → R such that W |Hκ = 0.

Definition 1.5. Given a Killing horizon H and a horizon Killing vector field W , the
surface gravity is the real analytic function κ defined in (10).

The key assumption to prove real analyticity of quasinormal modes is that the surface
gravity κ is nowhere vanishing. All horizons in Kerr(-de Sitter) spacetimes have surface
gravity proportional to μ′ at the horizons, where μ was defined in (1) (c.f. Step 1 in the
proof of Theorem 1.1). This is the reason our result only applies to subextremal Kerr(-de
Sitter) spacetimes, since subextremality makes sure that μ′ does not vanish at the roots
of μ, i.e. at the horizons.

Remark 1.6. We note in Lemma A.1 that if

Ric(X, W )|H = 0 (11)

for all X ∈ TH and H is connected, then the surface gravity κ is constant. In practice,
the condition (11) is often satisfied. Indeed, it is for example satisfied if the spacetime
satisfies theEinstein equationwith a cosmological constant of any sign or if the spacetime
satisfies the dominant energy condition (c.f. [Pet21a, Rmk. 1.16]). In case κ is constant,
we get a dichotomy of non-degenerate Killing horizons, where κ = 0, and degenerate
Killing horizons, where κ = 0.
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As in the previous subsection, we fix r, s ∈ N0 and consider linear wave operators on
complex (r, s)-tensors T s

r M and write

P = ∇∗∇ + A ◦ ∇ + B

with complex tensor fields

A : T ∗M ⊗ T s
r M → T s

r M,

B : T s
r M → T s

r M.

Our third main result in this paper is the following theorem:

Theorem 1.7. Assume that

• (M, g) is a real analytic spacetime,
• H ⊂ M is a real analytic lightlike hypersurface,
• W is a real analytic horizon Killing vector field,
• the surface gravity κ is nowhere vanishing,
• A and B are real analytic and LW A = 0 and LW B = 0 on M.

If u ∈ C∞(T s
r M) satisfies

(i) Pu ∈ Cω(T s
r M),

(ii) LW u = −iσu for some σ ∈ C,

then there is an open subset U ⊃ H, such that u ∈ Cω(T s
r U).

Note that all assumptions in Theorem 1.7 are local. As explained above, we will apply
Theorem 1.7 with

W = ∂t∗ +
a

r2e + a2 ∂φ∗ ,

and with

W = ∂t∗ +
a

r2c + a2 ∂φ∗ ,

if � > 0, which will prove the main step in Theorem 1.1 and Theorem 1.2, namely the
real analyticity near the horizons.

Our methods require the existence of a horizon Killing vector field. This allows to
reduce thewave equation for themodes to the useful (almost)Keldysh form.Surprisingly,
a horizon Killing vector field is quite often guaranteed to exist in vacuum spacetimes
with horizons. Proving the existence of a horizon Killing vector field has been the
central tool in various black hole uniqueness results for the subextremal Kerr spacetime.
This line of argument was pioneered by Hawking, who showed that stationary real
analytic vacuum black holes with a non-degenerate event horizon necessarily admit a
horizon Killing vector field [Haw72,HE73]. This result was later generalized to higher
dimensional analytic vacuum black holes by Hollands–Ishibashi–Wald [HIW07] and
Moncrief-Isenberg [MI08].

There is an analogous problem for compact (also called cosmological) Cauchy hori-
zons in vacuum spacetimes. A conjecture by Moncrief and Isenberg [MI83] states that
any compact Cauchy horizon in a vacuum spacetime admits a horizon Killing vector
field. The existence of a horizon Killing vector field in that setting would prove that
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vacuum spacetimes with compact Cauchy horizons are non-generic, which would sup-
port the Strong Cosmic Censorship Conjecture in cosmology. During the last decades,
Moncrief and Isenberg have made important progress on their conjecture, assuming that
the spacetime metric is real analytic [MI83,IM85,MI20].

Remarkably, the existence of a horizonKilling vector field does often not even rely on
the real analyticity of the spacetime metric. Alexakis, Ionescu and Klainerman proved in
[AIK10a] (see also [IK13]) an analogue of Hawking’s theorem, showing the existence
of a horizon Killing vector field in a neighbourhood of any bifurcate horizon in smooth
vacuum spacetimes, as opposed to real analytic. This result has been central in their
approach to prove uniqueness of subextremal Kerr black holes [AIK10b,AIK14] in
the smooth setting. For compact Cauchy horizons in smooth vacuum spacetimes, as
opposed to real analytic, a horizon Killing vector field has been shown to exist by
Petersen in [Pet21b], assuming that the surface gravity is a non-zero constant (extending
[FRW99,Pet21a,PR]). The assumption on constant surface gravity has recently been
shown to be equivalent to a weak non-degeneracy assumption for compact Cauchy
horizons in vacuum spacetimes, see [BR21] and [GM22].

Though the above mentioned results mainly concern vacuum spacetimes without
cosmological constant, one expects them to extend to the case of positive cosmological
constant and electro-vacuum spacetimes as well (c.f. [Rac00]). In conclusion, studying
wave equations close to non-degenerate horizons (bifurcate or constant non-zero surface
gravity), one might in quite wide generality be able to pass to modes with respect to
the horizon Killing vector field and analyze the (almost) Keldysh type equation they are
known to satisfy by the arguments in this paper.

2. Suitable Coordinates Near Non-degenerate Killing Horizons

The first step towards proving Theorem 1.7 is to define appropriate coordinates near the
lightlike hypersurface H:

Proposition 2.1. Assume the same as in Theorem 1.7. Then, for any p ∈ H, there is a
real analytic coordinate system (x0, . . . , xn), defined on an open neighborhood U � p,
such that

• ∂x0 = W |U ,
• x1 is a defining function for U ∩ H (i.e. U ∩ H = x−1

1 (0) and dx1|U∩H = 0),
• the metric g expressed in these coordinates satisfies

g|x1=0 =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
1 0 0 . . . 0
0 0 g22|x1=0 . . . g2n|x1=0
...

...
...

. . .
...

0 0 gn2|x1=0 . . . gnn|x1=0

⎞
⎟⎟⎟⎟⎠

, (12)

where ⎛
⎜⎝

g22|x1=0 . . . g2n|x1=0
...

. . .
...

gn2|x1=0 . . . gnn|x1=0

⎞
⎟⎠ , (13)

is positive definite and

∂1g00|x1=0 = −2κ,



Analyticity of Quasinormal Modes 2557

where κ is the (nowhere vanishing) surface gravity.

Remark 2.2. These coordinates are essentially the Gaussian null coordinates introduced
by Moncrief-Isenberg in [MI83], with the extra condition that ∂0 is the horizon Killing
vector field restricted to an open neighborhood. (This is precisely what is obtained a
posteriori after the construction of the horizon Killing vector field in [MI83].)

Example 2.3. The simplest example of a spacetime satisfying all our assumptions is
M = R

n+1, equipped with the real analytic Misner metric

g = 2dx1dx0 + x1dx20 +
n∑

j=2

(dx j )2,

where H = {x1 = 0}, W = ∂0 and surface gravity κ = − 1
2 .

Example 2.4. In fact, even in the subextremal Kerr(-de Sitter) spacetime, one can easily
choose coordinates which almost satisfy the conditions in Proposition 2.1, with one (in-
significant) difference. To define these, it will be convenient to introduce an intermediate
coordinate system, which will only be defined near one of the horizons. Let us start with
the event horizon. In terms of Boyer-Lindquist coordinates, define

t̃∗ := t − �̃(r),

φ̃∗ := φ − �̃(r),

where �̃ and �̃ satisfy

�̃′(r) = −b
r2 + a2

μ(r)
,

�̃ ′(r) = −b
a

μ(r)
,

near r = re. This commonly used analytic coordinate system (t̃∗, r, φ̃∗, θ) is defined
near the future event horizon. Choose now the coordinates

x0 = t̃∗,
x1 = r − re,

x2 = φ̃∗ − a

r2e + a2 t̃∗,

x3 = θ,

from which we get

∂x0 = ∂t̃∗ +
a

r2e + a2 ∂φ̃∗ .

Defining

ψ(x3) := b
r2e + a2

r2e + a2 cos2(x3)
,



2558 O. Petersen, A. Vasy

one easily computes that the metric g∗ at the future event horizon is given by

ψg∗|x1=0 =
⎛
⎜⎝
0 1 0 0
1 0 0 0
0 0 g∗22|x1=0 0
0 0 0 g∗33|x1=0

⎞
⎟⎠ , (14)

in these coordinates, where g∗22|x1=0, g∗33|x1=0 > 0. Moreover, we have

∂1(ψg∗00)|x1=0 = −2κe,

where the surface gravity κe is given by

κe = μ′(re)

2b
(
r2e + a2

) > 0,

c.f. the computation in Step 1 in the proof of Theorem 1.1. These coordinates coincide
with the coordinates in Proposition 2.1, up to themultiplication by the positive conformal
factor ψ . Since conformal changes of the geometry only reparametrize the lightlike
geodesics,ψ is irrelevant for the analysis. However, it is of course natural to construct the
coordinates in Proposition 2.1 without a conformal factor. This would here correspond
to changing x1 to x̃1 by solving the geodesic equation

∇∂x̃1
∂x̃1 = 0, ∂x̃1 |x1=0 = ψ∂x1 |x1=0,

and changing the remaining coordinates x j to x̃ j by demanding that

[∂x̃1, ∂x̃ j ] = 0, ∂x̃ j |x1=0 = ∂x j |x1=0.

In this new coordinate system, we get precisely the conditions in Proposition 2.1. One
analogously constructs similar coordinates near the future cosmological horizon.

Proof of Proposition 2.1. Let first (x0, x2, . . . , xn) be real analytic coordinates in an
open neighborhood V ⊆ H of p, such that

∂0 = W |V .

Now let L be the unique lightlike real analytic vector field (transversal to H) along V
such that

g(L , L)|V = g(L , ∂ j )|V = 0, g(L , ∂0)|V = 1 (15)

for j = 2, . . . , n. Define now the real analytic coordinate x1 in an open neighborhood
U ⊂ M of p, such that V = U ∩ H, by solving the geodesic equation in direction of L ,
i.e. we solve

∇∂1∂1 = 0,

∂1|V = L

and set x1 = 0 atH. It follows that x1 is a defining function for U ∩ H. We also extend
the other coordinates to U by demanding that

[∂1, ∂0] = [∂1, ∂ j ] = 0
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in U , for j = 2, . . . , n. The inverse function theorem for real analytic functions implies
that this forms a coordinate system.

We now show that ∂0 = W |U . Recall first that ∂0|x1=0 = W |x1=0. By uniqueness of
ODE and since [∂0, ∂1] = 0, it suffices to show that [∂1, W |U ] = 0. This is equivalent
to W leaving the integral curves of ∂1 invariant. Since W is a Killing vector field and
the integral curves of ∂1 are geodesics, it thus suffices to prove that the initial velocity
∂1|x1=0 of the geodesics are invariant under W , i.e. that

[W, ∂1]|x1=0 = (∇W ∂1 − ∇∂1W
) |x1=0 = 0.

Since W |x1=0 = ∂0|x1=0, it follows that ∇W ∂1|x1=0 = ∇∂0∂1|x1=0 and therefore, since
[∂0, ∂1]|x1=0 = 0, it suffices to prove that ∇∂1W |x1=0 = ∇∂1∂0|x1=0. Using that W is a
Killing vector field, we observe that

g(∇∂1W, ∂1) = 1

2
LW g(∂1, ∂1)

= 0.

We also have

g(∇∂1∂0, ∂1)|x1=0 = g([∂1, ∂0], ∂1)|x1=0 − g(∇∂0∂1, ∂1)|x1=0

= −1

2
∂0g(∂1, ∂1)|x1=0

= 0,

hence

g(∇∂1W, ∂1)|x1=0 = 0 = g(∇∂1∂0, ∂1)|x1=0.

Moreover, for all j = 0, 2, . . . , n, we have

g(∇∂1W, ∂ j )|x1=0 = LW g(∂1, ∂ j )|x1=0 − g(∇∂ j W, ∂1)|x1=0

= −g(∇∂ j ∂0, ∂1)|x1=0

= −g(∇∂0∂ j , ∂1)|x1=0

= −∂0g(∂ j , ∂1)|x1=0 + g(∂ j ,∇∂0∂1)|x1=0

= g(∇∂1∂0, ∂ j )|x1=0,

where we have used that g(∂ j , ∂1)|x1=0 is constant by (15). This shows that

∇∂1W |x1=0 = ∇∂1∂0|x1=0.

Taken together, this shows our claim that ∂0 = W |U .
It is now clear that the metric has the form (12) at x1 = 0 and that the part (13) is

positive definite. Using (10), we compute

∂1g00|x1=0 = 2g(∇∂1∂0, ∂0)|x1=0

= 2∂0g(∂1, ∂0)|x1=0 − 2g(∂1,∇∂0∂0)|x1=0

= −2g(∂1,∇W W )|x1=0

= −2κg(∂1, W )|x1=0

= −2κ.

This finishes the proof. ��
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3. Real Analyticity Near General Horizons

The goal of this section is to prove Theorem 1.7. In order to explain the idea, let us start
by discussing the following example:

Example 3.1. The d’Alembert operator in Example 2.3 is given by

� = ∂1 (x1∂1 − 2∂0) −
n∑

j=2

∂2j .

The condition (ii) in Theorem 1.7 is that

u(x0, . . . , xn) = e−iσ x0v(x1, . . . , xn).

Such a mode solution to �u = 0 must satisfy the reduced equation

∂1(x1∂1v) −
n∑

j=2

∂2j v + 2iσ∂1v = 0.

This is a Keldysh type equation on the quotient space

R
n+1/∼ = R

n,

and [GZ21, Thm. 1] implies that v and hence u is real analytic.

The proof of Theorem 1.7 is a generalization of the argument in Example 3.1:

Proof of Theorem 1.7. Shrinking U if necessary, we can write the coordinates from
Proposition 2.1 as

(x0, . . . , xn) : U → (−ε, ε)x0 × (−δ, δ)x1 × Kx2,...,xn ⊂ R
n+1,

where K ⊂ R
n−1 is an open relatively compact subset and ε, δ > 0 are sufficiently

small. Since

∂0 = W |U
is a Killing vector field, we would like to eventually reduce P in the x0-direction. For
this, we first set

V := U/∼,

where p ∼ q if and only if

(x1(p), . . . , xn(p)) = (x1(q), . . . , xn(q)),

i.e. only x0(p) and x0(q) may differ. The induced coordinates on the quotient space are

(x1, . . . , xn) : V → (−δ, δ)x1 × Kx2,...,xn ,

i.e. we have “dropped” the x0-coordinate.
The complex (r, s)-tensors on U are complex linear combinations of basis elements

of the form

eI := ∂i0 ⊗ . . . ⊗ ∂ir ⊗ dx j0 ⊗ . . . ⊗ dx js ,
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where I := (i1, . . . , ir , j1, . . . , js), and we of course have

L∂0eI = 0.

Let us define f := Pu and write

u =
∑
I

uIeI, f =
∑
I

fIeI.

Since ∂0 = W |U is a Killing vector field, we note that

[L∂0 ,∇] = 0,

and by the assumption in Theorem 1.7, we know that

L∂0 A = LW A = 0, L∂0 B = LW B = 0.

It thus follows that the wave equation Pu = f , restricted to the subset U , can be written
as a linear system of scalar wave equations

n∑
α,β=0

−gαβ∂α∂βuI +
n∑

γ=0

∑
J

AJ
I,γ ∂γ uJ +

∑
J

BJ
IuJ = fI, (16)

for each I := (i1, . . . , ir , j1, . . . , js), where the coefficients

gαβ, AJ
I,γ , BJ

I

are independent of x0. By the mode condition (ii), we note that

∂0uI = −iσuI, ∂0 fI = −iσ fI,

which implies that

uI = e−iσ x0uI|x0=0, fI = e−iσ x0 fI|x0=0.

Inserting this into (16) gives a new system of equations

n∑
i, j=1

−gi j∂i∂ j uI|x0=0 +
n∑

k=1

∑
J

CJI,k∂kuJ|x0=0 +
∑
J

DJ
IuJ|x0=0 = fI|x0=0,

where the new coefficients CJI,k andDJ
I are independent of x0. Note also that the sums now

exclude derivatives in x0. We have thus shown that the equation Pu = f is equivalent
to a system of equations

P̂u|x0=0 = f |x0=0

on the quotient space

V = U/∼,

where the principal symbol of P̂ is

p(x1, . . . , xn, ξ1, . . . , ξn)Id, (17)
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where Id is the identity matrix and

p(x1, . . . , xn, ξ1, . . . , ξn) :=
n∑

i, j=1

g(x1, . . . , xn)i jξiξ j

for any (x1, . . . , xn, ξ1, . . . , ξn) ∈ T ∗V .
This is where the information about the metric g in Proposition 2.1 becomes useful.

We claim that first that

{p = 0} ∩ {x1 = 0} = N∗{x1 = 0}, (18)

where N∗{x1 = 0} denotes the conormal bundle of the horizon {x1 = 0}. In order to
compute the components gi j , for i, j = 1, . . . , n, we first need to invert the full matrix
of metric components. By Proposition 2.1, we conclude that

gαβ |U∩{x1=0} =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
1 0 0 . . . 0
0 0 g22|x1=0 . . . g2n|x1=0
...

...
...

. . .
...

0 0 gn2|x1=0 . . . gnn|x1=0

⎞
⎟⎟⎟⎟⎠

(19)

for α, β = 0, . . . , n. The components appearing in (17) are given, at x1 = 0, by

gi j |x1=0 =

⎛
⎜⎜⎜⎝

0 0 . . . 0
0 g22|x1=0 . . . g2n|x1=0
...

...
. . .

...

0 gn2|x1=0 . . . gnn|x1=0

⎞
⎟⎟⎟⎠ .

Since the matrix
⎛
⎜⎝

g22|x1=0 . . . g2n|x1=0
...

. . .
...

gn2|x1=0 . . . gnn|x1=0

⎞
⎟⎠

is positive definite by Proposition 2.1, we have proven (18).
By standard microlocal analytic hypoellipticity at elliptic points in T ∗V , see for

example [Mar02, Thm. 4.2.2 & Exe. 4.6.4], we hence conclude that uI is microlocally
real analytic everywhere at x1 = 0 except potentially at the conormal bundle N∗{x1 = 0},
i.e. the analytic wave front set at x1 = 0 is contained in the conormal bundle. We will
show the real analyticity at the conormal bundle by applying [GZ21, Thm. 2], which
requires a computation of the Hamiltonian vector field Hp at N∗{x1 = 0}. For this, we
first compute ∂1p|N∗{x1=0}. At an arbitrary point

q := (0, x2, . . . , xn, ξ1, 0, . . . , 0) ∈ N∗{x1 = 0},
using (19) and Proposition 2.1, we compute

∂1p|q = ∂1g11|q(ξ1)
2

= −
n∑

α,β=0

gα1(∂1gαβ)gβ1|q(ξ1)
2
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= −∂1g00|q(ξ1)
2

= 2κ(ξ1)
2.

We may now compute the Hamiltonian vector field as

Hp|q =
n∑

j=1

(∂ξ j p)∂ j |q − (∂ jp)∂ξ j |q

= −(∂1p)∂ξ1 |q
= −2κ(ξ1)

2∂ξ1 |q ,

where we recall that κ is nowhere vanishing. In particular

dp|N∗{x1=0}\{0} = 0

and

Hp|N∗{x1=0}\{0} ‖ ξ · ∂ξ ,

whichmeans that the assumptions in [GZ21, Thm. 2] are satisfied. Note here that [GZ21,
Thm. 2] is only proven for scalar valued wave equations, but the argument goes through
line by line for systems of equations with a scalar principal symbol, as in our case.
Indeed, [GZ21, Thm. 2] relies on Haber’s normal form in [Hab14] only for the principal
symbol. Thus, having scalar principal symbol suffices. Hence [GZ21, Thm. 2] implies
that uI|t∗=0 is microlocally real analytic also at the conormal bundle. It follows that
uI|t∗=0 is real analytic in an open subset containing {x1 = 0}. Consequently, uI and
therefore u is real analytic in an open neighborhood containing p, which completes the
proof. ��

4. Joint Quasinormal Modes

We continue by proving the next main result of this paper:

Proof of Theorem 1.1. Let us for simplicity restrict in this proof to the case of complex
functions, as opposed to complex tensor fields of higher rank. This will make the proof
more transparent and avoid the technical details involved with working with system of
equations. All such technicalities are already present in the proof of Theorem 1.7 above.
We thus consider functions of the form

u(t∗, r, φ∗, θ) = e−i(σ t∗+kφ∗)v(r, θ),

which are smooth on

U = Rt∗ × (re − δ, rc + δ)r × S2
φ∗,θ ⊂ M∗.

We aim to prove that u is real analytic on U .
Step 1: Real analyticity near the horizons. We would like to apply Theorem 1.7

withH = H+
e/c and therefore need to check that all assumptions of Theorem 1.7 are sat-

isfied. Firstly, the Kerr(-de Sitter) spacetime is a vacuum spacetime with a non-negative
cosmological constant, so the dominant energy condition is clearly satisfied. Moreover,
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the horizonsH+
e/c are real analytic lightlike hypersurfaces. Secondly, the Killing vector

fields

We/c := ∂t∗ +
a

r2e/c + a2
∂φ∗

are clearly lightlike atH+
e/c, respectively. Since A and B are invariant under ∂t∗ and ∂φ∗ ,

they are also invariant under We/c. Further, the surface gravity κe/c of the horizons is
computed using the extended metric in (3) as follows:

∂r g∗
(
We/c, We/c

) |re/c = 2g∗
(∇∂r We/c, We/c

) |re/c

= 2g∗
(∇We/c∂r , We/c

) |re/c

= −2g∗
(
∂r ,∇We/c We/c

) |re/c

= −2κe/c g∗
(
∂r , We/c

) |re/c

= ∓2κe/c

b

r2e/c + a2 cos2(θ)

r2e/c + a2
.

On the other hand, we have

∂r g∗
(
We/c, We/c

) |re/c = −∂r

⎛
⎝ μ(r)

b2
(
r2 + a2 cos2(θ)

)
(

r2 + a2 cos2(θ)

r2e/c + a2

)2
⎞
⎠ |re/c

+ ∂r

⎛
⎝ c(θ) sin2(θ)

b2
(
r2 + a2 cos2(θ)

)
(

a − a
r2 + a2

r2e/c + a2

)2
⎞
⎠ |re/c

= −μ′(re/c)

b2
r2e/c + a2 cos2(θ)

(
r2e/c + a2

)2 .

The surface gravity of the horizons H+
e/c is thus given by

κe/c = ± μ′(re/c)

2b(r2e/c + a2)
.

Since this is non-zero, we conclude thatH+
e/c are non-degenerate Killing horizons with

respect to We/c. Finally, we compute that

LWe/c u = L∂t∗ u +
a

r2e/c + a2
L∂φ∗ u

= −iσu − i
a

r2e/c + a2
ku

= −i

(
σ +

a

r2e/c + a2
k

)
u,

which shows that u is a mode with respect to We/c. We may therefore apply Theorem
1.7 and conclude that u is real analytic in open neighborhoods of the horizons, which
are invariant under We and Wc, respectively.
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Step 2: Real analyticity in the domain of outer communication. We now prove
real analyticity of u in the open subset

W := Rt∗ × (re, rc)r × S2
φ∗,θ .

(Recall that rc = ∞ in the Kerr spacetime). The Boyer-Lindquist coordinates (t, r, φ, θ)

are defined on this set and are convenient to work with. Since

∂t = ∂t∗ |W , ∂φ = ∂φ∗ |W ,

the conditions (ii) and (iii) in Theorem 1.1 imply that

u(t, r, φ, θ) = e−i(σ t+kφ)w(r, θ),

so we can equally well consider the modes with respect to the Boyer-Lindquist coordi-
nates. The dual metric G of g in Boyer-Lindquist coordinates is

(r2 + a2 cos2(θ))G = μ(r)∂2r + c(θ)∂2θ +
b2

c(θ) sin2(θ)

(
a sin2(θ)∂t + ∂φ

)2

− b2

μ(r)

(
(r2 + a2)∂t + a∂φ

)2
.

(20)

We begin by proving real analyticity of w in the open subset

(re, rc)r × (0, π)θ

i.e. we leave out the north and the south pole of S2
φ,θ for the moment. Since we have

assumed that the coefficients of P are independent of t and φ, the function w satisfies
an induced equation on (re, rc)r × (0, π)θ , with principal part given by

1

r2 + a2 cos2(θ)

(
μ(r)∂2r + c(θ)∂2θ

)
. (21)

Since μ(r), c(θ) > 0 in this set, the induced equation for w is elliptic with real analytic
coefficients. Standard analytic hypoellipticity, see for example [Mar02, Thm. 4.2.2 &
Exe. 4.6.4] therefore implies that w is real analytic in (re, rc)r × (0, π)θ and hence u is
real analytic in

Rt × (re, rc)r × S1
φ × (0, π)θ .

We now turn to show that u is also real analytic at the north and south poles of S2
φ,θ ,

i.e. at the limits θ = 0 and θ = π , still with r ∈ (re, rc). Note that the expression (21)
does not extend smoothly to those points. We now write

u(t, r, φ, θ) = e−iσ t z(r, φ, θ),

i.e. the idea is to show real analyticity of

z(r, φ, θ) := e−ikφw(r, θ),

which is smooth in

(re, rc)r × S2
φ,θ .
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Since the coefficients of P are independent of t , we get an induced equation for z, with
real analytic coefficients and principal part

μ(r)∂2r + c(θ)∂2θ +
b2

c(θ) sin2(θ)
∂2φ − b2

μ(r)
a2∂2φ. (22)

We claim that this operator is elliptic at θ = 0 and θ = π . For this, we note that

c(θ)∂2θ +
b2

c(θ) sin2(θ)
∂2φ =

(
c(θ) − b2

c(θ)

)
∂2θ +

b2

c(θ)

(
1

sin2(θ)
∂2φ + ∂2θ

)

= 1

c(θ)

(
c(θ)2 − b2

)
∂2θ +

b2

c(θ)
GS2

= 1

c(θ)

((
b − �a2

3
sin2(θ)

)2

− b2
)

∂2θ +
b2

c(θ)
GS2

= h(θ) sin2(θ)∂2θ +
b2

c(θ)
GS2 ,

for some function h, which extends real analytically to S2 and where GS2 is the dual
metric to the standardmetric on S2. Since both sin2(θ)∂2θ andGS2 extend real analytically
to S2, we can evaluate this expression at θ = 0 or θ = π and conclude that (22) is simply

μ(r)∂2r + bGS2

at the north and the south pole of S2. Since μ(r) > 0 for r ∈ (re, rc) and b > 0,
we conclude that (22) is indeed elliptic there as well. Again, standard real analytic
hypoellipticity, as in for example [Mar02, Thm. 4.2.2 & Exe. 4.6.4], implies that z, and
therefore u, is real analytic also at the north and the south pole if r ∈ (re, rc). To sum up,
we now know that u is real analytic in the domain of outer communication and slightly
beyond the horizons, i.e. in a region of the form

Rt∗ × (re − ε, rc + ε)r × S2
φ∗,θ .

Step 3: The region beyond the horizons. It remains to prove real analyticity in the
regions beyond the horizons (only the event horizon if� = 0). Consider first the region

Rt∗ × (re − δ, re)r × S2
φ∗,θ ,

beyond the event horizon.Wemay use Boyer–Lindquist coordinates also here, since this
region does not intersect any horizon, where the coordinates would not be defined. Let
us again consider

z(r, φ, θ) := e−ikφw(r, θ),

which by assumption is smooth in

(re − δ, re)r × S2
φ,θ .

In this set, we have μ(r) < 0. Again, the coefficients of P are independent of t and the
principal part of the induced equation for z can be read off from (22) to be

− |μ(r)| ∂2r + c(θ)∂2θ +

(
b2

c(θ) sin2(θ)
+

b2

|μ(r)|a2
)

∂2φ.
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Since the operator

c(θ)∂2θ +

(
b2

c(θ) sin2(θ)
+

b2

|μ(r)|a2
)

∂2φ.

is elliptic on

{r} × S2
φ,θ ,

for all r ∈ (re − δ, re), we conclude that all inextendible bicharacteristics of the induced
operator pass through all hypersurfaces

{r} × S2
φ,θ

precisely once. Moreover, the induced equation for z is a linear wave operator with real
analytic coefficients on the

(re − δ, re)r × S2
φ∗,θ .

and we know by Step 1 that z is real analytic in an open subset

(re − ε, re) × S2
φ∗,θ

for some ε > 0. Propagation of analytic singularities, see for example [Mar02, Thm.
4.3.7 & Exe. 4.6.4], therefore implies that z is real analytic in

(re − δ, re)r × S2
φ,θ ,

and hence u is real analytic in

Rt × (re − δ, re)r × S2
φ,θ .

One similarly treats the subset

Rt × (rc, rc + δ)r × S2
φ,θ ,

in case � > 0. This finishes the proof. ��

5. Standard Quasinormal Modes

We finish by proving our last main result:

Proof of Theorem 1.2. As in the proof of Theorem 1.1, let us for simplicity restrict to
the case of complex functions, as opposed to complex tensors of higher rank. This will
again make the proof more transparent and avoid technical details that are completely
analogous to the corresponding part of the proof of Theorem 1.7. It is convenient to
change coordinate system to one that is better suited for the quasinormal mode condition
(ii) in Theorem 1.2. We introduce the new coordinate system (τ∗, r, ψ∗, θ), where

(
τ∗
ψ∗

)
:=

(
t∗

φ∗ − a
r20 +a2

t∗

)
, (23)
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with again r0 ∈ (re, rc) is uniquely defined by

μ′(r0) = 0,

and r0 = ∞ if � = 0. Note that

∂τ∗ = ∂t∗ +
a

r20 + a2
∂φ∗ , ∂ψ∗ = ∂φ∗

are bothKilling vector fields, sincea and r0 are constant. It follows that u is a quasinormal
mode if and only if

u(τ∗, r, ψ∗, θ) = e−iστ∗ z(r, ψ∗, θ).

where z is smooth in

(re − δ, rc + δ)r × S2
ψ∗,θ ,

where rc = ∞ if � = 0. Since the coefficients of P are independent of t∗ and φ∗, and
therefore of τ∗, it follows that z satisfies a τ∗-reduced equation

Pσ z = 0, (24)

in

(re − δ, rc + δ)r × S2
ψ∗,θ ,

where

Pσ u := eiστ∗ P
(

e−iστ∗u
)

.

We now further decompose into angular modes

z(r, ψ∗, θ) =
∑
k∈Z

e−ikψ∗vk(r, θ), (25)

where we claim that each summand

e−ikψ∗vk(r, θ) = 1

2π
e−ikψ∗

∫ 2π

0
eiks z(r, s, θ)ds

is smooth on (re − δ, rc + δ)r × S2
ψ∗,θ . Indeed, let u be the unique solution at a point

(s, r, p) ∈ Rs × (re − δ, rc + δ)r × S2
ψ∗,θ

to

(∂s + ik) u(s, r, p) = 1

2π
z
(
r, expp

(
s∂ψ∗

))
,

u(0, r, p) = 0.

where exp(s∂ψ∗) denotes the flow along ∂ψ∗ at time s, starting at p. Then u is smooth
and since

e−ikψ∗vk(r, θ) = u(2π, r, p),
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where p = (ψ∗, θ), it is smooth as claimed. Since the coefficients of P are independent
of t∗ and φ∗, and therefore of ψ∗, and Pσ acts diagonally on the ψ∗-Fourier modes, it
follows that

Pσ

(
e−ikψ∗vk

)
= 0,

in

(re − δ, rc + δ)r × S2
ψ∗,θ ,

for each k ∈ Z.
Now, if � > 0, then [PV, Thm. 2.1] implies that the operator Pσ is a Fredholm

operator between appropriate function spaces containing e−ikψ∗vk . Since the kernel is
finite dimensional, it follows that only finitely many such terms can be non-zero. We
conclude that

z(r, ψ∗, θ) =
N∑

j=1

e−ik j ψ∗vk j (r, θ) (26)

and therefore

u(τ∗, r, ψ∗, θ) =
N∑

j=1

e−i(στ∗+k j ψ∗)vk j (r, θ)

=
N∑

j=1

e
−i

((
σ− a

r20 +a2
k j

)
t∗+k j φ∗

)

vk j (r, θ).

Each term satisfies the assumption of Theorem 1.1 and are therefore analytic. Hence the
finite sum is also real analytic, concluding the proof when � > 0.

In order to similarly proceed in the case � = 0, we need to instead use the Fredholm
theory developed in [Vas] (remember that the above coordinate change is trivial when
� = 0) to deduce that in fact

z(r, φ∗, θ) =
N∑

j=1

e−ik j φ∗vk j (r, θ) (27)

is a finite sum. In this case we have rc = ∞ and the cosmological horizon is replaced by
an asymptotically Euclidean end. For the analysis near the event horizon, the methods
based on [Vas13] described above can be appliedwithout changes. However, the analysis
near the asymptotically Euclidean end cannot be based on [Vas13], we instead need to
use a slight generalization of [Vas, Prop. 5.28]. Let us therefore briefly recall how the
Fredholm problem was set up in [Vas, Prop. 5.28]. We begin by bordifying the space

(re − δ,∞)r × S2
φ∗,θ ,

at r = ∞ by introducing x := 1
r , i.e. we radially compactify spacelike infinity. We thus

write

V :=
[
0,

1

re − δ

)

x
× S2

φ∗,θ ⊂ R3,
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where R3 is the radially compactified R
3. On these spaces, we define

Ys,l
sc :=

{
u|V | u ∈ Hs,l(R3)

}
,

where s, l are variable order differential and decay orders (as x → 0), which we will
choose below. We refer to [Vas, Sec. 5.3.9] for the definition of variable order weighted
Sobolev spaces Hs,l(R3). Note that near the spacelike hypersurface

{
x = 1

re − δ

}
,

Ys,l
sc is similar to Ys introduced above. Analogous to above, define

X s,l
sc :=

{
u ∈ Ys,l

sc | P̂u ∈ Ys−1,l+1
sc

}

and consider

P̂ : X s,l
sc → Ys−1,l+1

sc . (28)

The characteristic set of P̂ has two components, one close to the event horizon and a
scattering characteristic set at x = 0, in particular, the characteristic set at fiber infinity
near x = 0 is empty. By the decay assumptions on A and B, the scattering principal
symbol of P̂ at x = 0 is given by

p|x=0(ξ) = |ξ |2 Id − σ 2,

for the fixed σ with Im σ ≥ 0, and any

ξ ∈ scT ∗{x=0}V.

If Im σ > 0 it follows that σ 2 /∈ [0,∞), which implies that P̂ is elliptic as set up in (28)
and consequently a Fredholm operator for any order s, l. However, in case σ ∈ R\{0},
there is a scattering characteristic set at x = 0, given by all ξ ∈ scT ∗{x=0}V with |ξ | = |σ |.
As shown in [Vas, p. 311–314], the sets

L± =
{
(y, ξ) ∈ scT ∗{x=0}V | y = cξ, |ξ |2 = σ 2,±c > 0

}
,

act as a source and a sink, respectively, for the Hamiltonian flow. It is also shown that
(28) is a Fredholm operator (c.f. [Vas, Prop. 5.28]), if l is chosen such that either

l|L+ < −1

2
and l|L− > −1

2

or the other way around (with L+ and L− swapped). The decay assumption on u|t∗=0

in Theorem 1.2 ensures that z|t∗=0 ∈ X s,l
sc , and therefore each summand in (25), is in

ker(P̂) as set up in (28). We have thus proven (26), for the case when � = 0 and σ = 0
(and Im σ ≥ 0).

The case which remains is when � = σ = 0. The structure of the operator P̂ now
changes drastically near x = 0 and is more naturally thought of as a b-operator in the
sense of Melrose [Mel93], see also [GH08,GH09]. We follow [Vas, Sec. 5.6] for the
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Fredholm theory. Concretely, we note that the fast decay assumptions on A and B ensure
that

x− n−2
2 x−2 P̂x

n−2
2

is a b-operator with normal operator

−(x∂x )
2 + �h +

(n − 2)2

4

at x = 0. Choose a smooth function f : [0,∞) → [0,∞), such that f (x) = x for
x ≤ ε and f (x) = 1 for x ≥ 2ε and define

L := f (x)−
n−2
2 f (x)−2 P̂ f (x)

n−2
2 ,

where ε > 0 small enough so that the component of the characteristic set of P̂ away
from x = 0 is unaffected by this conjugation. We now define the spaces

Ys,l
b := {u|V | u ∈ Hs,l

b (R3)},
where Hs,l

b (R3) is defined in [Vas, p. 353] and

X s,l
b :=

{
u ∈ Ys,l

b | Lu ∈ Ys−1,l
b

}
.

By combining the discussion on [Vas, p. 361] (c.f. also [Vas, Thm. 5.11]) with the theory
near the event horizon described above, we know that

L : X s,l
b → Ys−1,l

b

is a Fredholm for all s, l ∈ R, such that

l2 − (n − 2)2

4

is not an L2 eigenvalue of � on the 2-sphere. Since the set of L2-eigenvalues is discrete,
we can choose l arbitrarily large and still have a Fredholm operator. It follows that the
kernel of L is finite dimensional. Now, the kernel of P̂ and the kernel of L are related
just by a multiplication with f (x)

n−2
2 and we have thus proven the ker(P̂) is finite

dimensional and consequently (26). This finishes the proof. ��
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A. Surface Gravity of a Killing Horizon

Let us verify the claim in Remark 1.6 about the surface gravity of a Killing horizon:

Lemma A.1. Consider a smooth spacetime (M, g), with a smooth connected lightlike
hypersurface H ⊂ M and a smooth Killing vector field W on M, such that W |H
is nowhere vanishing, lightlike and tangent to H. If (11) is satisfied, then there is a
constant κ ∈ R, such that

∇W W |H = κW |H.

Proof. Using that W |H is lightlike and tangent to H, we compute that for all vector
fields X, Y , tangent toH, we have

g(∇X W, Y )|H = 1

2
LW g(X, Y )|H +

1

2
(g(∇X W, Y )|H − g(∇Y W, X)|H)

= 1

2
(Xg(W, Y )|H − Y g(W, X)|H − g(W, [X, Y ])|H)

= 0,

since also [X, Y ] is tangent toH. Hence∇X W is tangent toH and normal toH, meaning
that there is a unique one-form ω on H, such that

∇X W |H = ω(X)W |H.

The assertion in the lemma is thus that ω(W |H) is constant. Since W is a Killing vector
field, with W |H tangent toH, it is immediate that

LW ω|H = 0.

For any X ∈ TH, we have

X (ω(W |H)) = dω(X, W |H) + W |H (ω(X)) + ω([X, W |H])
= dω(X, W |H) + LW |Hω(X)

= dω(X, W |H).

http://creativecommons.org/licenses/by/4.0/
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It thus remains to show that dω(X, W |H) = 0, for all X ∈ TH. For this, we first note
that for all X, Y ∈ TH, we have

R(X, Y )W |H = ∇X∇Y W |H − ∇Y ∇X W |H − ∇[X,Y ]W |H
= ∇X (ω(Y )W |H) − ∇Y (ω(X)W |H) − ω([X, Y ])W |H
= X (ω(Y ))W |H + ω(Y )ω(X)W |H − Y (ω(X))W |H

− ω(X)ω(Y )W |H − ω([X, Y ])W |H
= dω(X, Y )W |H.

Let e0 := W |H, e2, . . . , en locally span TH and let e1 be the unique locally defined
vector field along H, transversal toH, such that

g(e1, e0)|H = 1, g(e1, e j )|H = 0,

for j = 1, . . . , n. We now trace the curvature expression using this local frame, with
any X ∈ TH, and compute

Ric(X, W )|H =
n∑

α,β=0

gαβ R
(
eα, X, W, eβ

) |H

= R (W, X, W, e1) |H + R (e1, X, W, W ) |H
+

n∑
i, j=2

gi j R
(
ei , X, W, e j

) |H

= dω(W |H, X)g(W, e1) +
n∑

i, j=2

gi jdω(ei , X)g(W, e j )|H

= dω(W |H, X).

We therefore conclude that

Xκ = X (ω(W |H))

= dω(W |H, X)

= Ric(X, W )|H
= 0,

for all X ∈ TH, which proves that κ is constant. ��
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