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Abstract: We study a class of one-dimensional full branchmaps admitting two indiffer-
ent fixed points as well as critical points and/or unbounded derivative. Under some mild
assumptions we prove the existence of a unique invariant mixing absolutely continuous
probability measure, study its rate of decay of correlation and prove a number of limit
theorems.

1. Introduction

The purpose of this paper is to study the ergodic properties of a large class of full branch
intervalmapswith twobranches, includingmapswith two indifferent fixedpoints (which,
as we shall see below, affects both the results and the construction of the induced map
which we require). We also allow the derivative to go to zero as well as to infinity at
the boundary between the two branches, and we do not assume any symmetry, even the
domains of the branches can be of arbitrary length. Such maps are known to exhibit a
wide range of behaviour from an ergodic point of view and many of them have been
extensively studied, we give a detailed literature review below.

In Sect. 1.1 we give the precise definition of the class of maps we consider, which
includes many cases already studied in the literature as well as many cases which have
not yet been studied; in section 1.2 we give the precise statements of our results; in
section 1.3 we give a literature review of related results and include specific examples
of maps in our family; in Sect. 2 we give a detailed outline of our proof, emphasising
several novel aspects of our construction and arguments. Then in Sect. 3 we give the
construction and estimates related to our “double-induced” map and in Sect. 4 apply
these estimates to complete the proofs of our results

1.1. Full branch maps. We start by defining the class of maps which we consider in this
paper. Let I, I−, I+ be compact intervals, let I̊ , I̊−, I̊+ denote their interiors, and suppose
that I = I− ∪ I+ and I̊− ∩ I̊+ = ∅.
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(A0) g : I → I is full branch: the restrictions g− : I̊− → I̊ and g+ : I̊+ → I̊
are orientation preserving C2 diffeomorphisms and the only fixed points are the
endpoints of I .

To simplify the notation we will assume that

I = [−1, 1], I− = [−1, 0], I+ = [0, 1]
but our results and proofs will be easily seen to hold in the general setting.

(A1) There exists constants �1, �2 ≥ 0, ι, k1, k2, a1, a2, b1, b2 > 0 such that:

(i) if �1, �2 �= 0 and k1, k2 �= 1, then

g(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + b1(1 + x)1+�1 in U−1,

1− a1|x |k1 in U0−,

−1 + a2xk2 in U0+,

x − b2(1− x)1+�2 in U+1,

(1)

where

U0− := (−ι, 0], U0+ := [0, ι), U−1 := g(U0+), U+1 := g(U0−). (2)

(ii) If �1 = 0 and/or �2 = 0 we replace the corresponding lines in (1) with

g|U±1(x):= ± 1 + (1 + b1)(x + 1) ∓ ξ(x), (3)

where ξ is C2, ξ(±1) = 0, ξ ′(±1) = 0, and ξ ′′(x) > 0 on U−1 and ξ ′′(x) < 0 on
U+1.
If k1 = 1 and/or k2 = 1, then we replace the corresponding lines in (1) with the
assumption that g′(0−) = a1 > 1 and/or g′(0+) = a2 > 1 respectively, and that g
is monotone in the corresponding neighbourhood.

Remark 1.1. It is easy to see that the definition in (1) yields maps with dramatically dif-
ferent derivative behaviour depending on the values of �1, �2, k1, k2, including having
neutral or expanding fixed points and points with zero or infinite derivative, see Re-
mark 1.3 for a detailed discussion. For the moment we just remark that the assumptions
described in part ii) of condition (A1) are consistent with (1) but significantly relax the
definition given there as in these cases (1) would imply that the map is affine in the cor-
responding neighbourhood, whereas we only need expansivity. In particular this allows
us to include uniformly expanding maps in our class of maps. In the calculations below
we will explicitly consider the cases �1 = 0 and/or �2 = 0, which correspond to assum-
ing that one or both the fixed points are expanding instead of neutral, since they yield
different estimates (several quantities decay exponentially rather than polynomially in
these cases) and different results, and still include some maps which, as far as we know,
have not been studied in the literature. For simplicity, on the other hand, we will not
consider explicitly the cases k1 = 1 and/or k2 = 1, which just correspond to assuming
the derivative at one or both sides of the discontinuity is finite instead of being zero
or infinite. These correspond to much simpler special cases and the required estimates
follow by arguments which are very similar to arguments and calculations we give here,
and which are essentially already considered in the literature, but treating them explicitly
would require a significant amount of additional notation and calculations.
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Our final assumption can be intuitively thought of as saying that g is uniformly
expanding outside the neighbourhoods U0± and U±1. This is however much stronger
than what is needed, and therefore we formulate a weaker and more general assumption
forwhichweneed to describe someaspects of the topological structure ofmaps satisfying
condition (A0). First of all we define

�−
0 := g−1(0, 1) ∩ I− and �+

0 := g−1(−1, 0) ∩ I+. (4)

Then we define iteratively, for every n ≥ 1, the sets

�−
n := g−1(�−

n−1) ∩ I− and �+
n := g−1(�+

n−1) ∩ I+ (5)

as the n’th preimages of �−
0 ,�+

0 inside the intervals I−, I+. It follows from (A0) that
{�−

n }n≥0 and {�+
n}n≥0 are mod 0 partitions of I− and I+ respectively, and that the

partition elements depend monotonically on the index in the sense that n > m implies
that �±

n is closer to ±1 than �±
m , in particular the only accumulation points of these

partitions are −1 and 1 respectively. Then, for every n ≥ 1, we let

δ−n := g−1(�+
n−1) ∩�−

0 and δ+n := g−1(�−
n−1) ∩�+

0 . (6)

Notice that {δ−n }n≥1 and {δ+n }n≥1 are mod 0 partitions of �−
0 and �+

0 respectively and
also in these cases the partition elements depend monotonically on the index in the sense
that n > m implies that δ±n is closer to 0 than δ±m , (and in particular the only accumulation
point of these partitions is 0). Notice moreover, that

gn(δ−n ) = �+
0 and gn(δ+n ) = �−

0 .

We now define two non-negative integers n± which depend on the positions of the
partition elements δ±n and on the sizes of the neighbourhoods U0± on which the map g
is explicitly defined. If �−

0 ⊆ U0− and/or �+
0 ⊆ U0+, we define n− = 0 and/or n+ = 0

respectively, otherwise we let

n+ := min{n : δ+n ⊂ U0+} and n− := min{n : δ−n ⊂ U0−}. (7)

We can now formulate our final assumption as follows.

(A2) There exists a λ > 1 such that for all 1 ≤ n ≤ n± and for all x ∈ δ±n we have
(gn)′(x) > λ.

Notice that (A2) is an expansivity condition for points outside the neighbourhoods U0±
and U±1 but is much weaker than assuming that the derivative of g is greater than 1
outside these neighbourhoods, which would be unnatural and unnecessarily restrictive
in the presence of critical points. This completes the set of conditions which we require,
and for convenience we let

F̂:={g : I → I which satisfy (A0)-(A2)}
The class F̂ contains many maps which have been studied in the literature, including

uniformly expanding maps and various well known intermittency maps with a single
neutral fixed point. We will give a more in-depth literature review in Sect. 1.3. Here we
make a few technical remarks concerning these assumptions before proceeding to state
our results in the next subsection.
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Fig. 1. Graph of g for various possible values of parameters

Remark 1.2 (Remark on notation). To simplify many statements which will be made
through the paper, it will be useful to recall some relatively standard notation as follows.
Given sequences (sn) and (tn) of non-negative terms, we write sn = O(tn), or sn � tn ,
if sn/tn is uniformly bounded above; sn ≈ tn if sn/tn is uniformly bounded away from
0 and ∞; sn = o(tn) if sn/tn → 0 as n → ∞; and sn ∼ tn if sn/tn = 1 + o(1), i.e. if
sn/tn converges to 1 as n →∞.

Remark 1.3. Changing the parameter values �1, �2, k1, k2 gives rise to maps with quite
different characteristics. For example, if �1 > 0, we have

g′|U−1(x) = 1 + b1(1 + �1)(1 + x)�1 and g′′|U−1(x) = b1(1 + �1)�1(1 + x)�1−1. (8)

Then g′(−1) = 1 and the fixed point−1 is a neutral fixed point. Similarly, when �2 > 0
the fixed point 1 is a neutral fixed point. On the other hand, when �1 = 0, from (3) we
have

g′|U−1(x) = 1 + b1 + ξ ′(x) and g′′|U−1(x) = ξ ′′(x) (9)

and thus the fixed point −1 is hyperbolic repelling with g′(−1) = 1 + b. When k1 �= 1
we have

g′|U0−(x) = a1k1|x |k1−1 and g′′|U0−(x) = a1k1(k1 − 1)|x |k1−2. (10)

Then k1 ∈ (0, 1) implies that |g′|U0−(x)| → ∞ as x → 0, in which case we say that
g|U0− has a (one-sided) singularity at 0, whereas k1 > 1 implies that |g′|U0−(x)| → 0 as
x → 0, and therefore we say that g|U0− has a (one-sided) critical point at 0. Analogous
observations hold for the various values of �2 and k2 and Fig. 1 shows the graph of g for
various combinations of these exponents.

For future reference we mention also some additional properties which follow from
(A1). First of all notice that if �1 ∈ (0, 1) we have g′′(x) → ∞ but if �1 > 1 we
have g′′(x) → 0, as x → −1 and, as we shall see, this qualitative difference in the
higher order derivative plays a crucial role in the ergodic properties of g. Analogous
observations apply to g|U1 when �2 > 0. Secondly, notice also that for every x ∈ U−1
we have

g′′(x)/g′(x) � (1 + x)�1−1 (11)

and an analogous bound holds for x ∈ U1. Similarly, in U0 we have

|g′′(x)|/|g′(x)| � x−1, (12)
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and notice that in this case the bound does not actually depend on the value of k1 or k2
and in particular does not depend on whether we have a critical point or a singularity.
Finally, we note that when �1 = 0, it follows from (9) and from the assumption that
ξ ′′(x) > 0 that

ξ ′(x) > ξ(x)/(1 + x) (13)

for every x ∈ U−1. Indeed, notice that 1 + x is just the distance between x and −1 and
thus ξ(x)/(1+ x) is the slope of the straight line joining the point (−1, 0) to (x, ξ(x)) in
the graph of ξ , which is exactly the average derivative of ξ in the interval [−1, x]. Since
ξ ′′ > 0, the derivative is monotone increasing and thus the derivative ξ ′ is maximal at
the endpoint x , which implies (13). The same statement of course holds for �2 = 0 and
for all x ∈ U+1.

1.2. Statement of results. Our first result is completely general and applies to all maps
in F̂.

Theorem A. Every g ∈ F̂ admits a unique (up to scaling by a constant) invariant
measure which is absolutely continuous with respect to Lebesgue; this measure is σ -
finite and equivalent to Lebesgue.

This is perhaps not completely unexpected but also certainly not obvious in the full
generality of the maps in F̂, especially for maps which admit critical points (which
can, moreover, be of arbitrarily high order). Our construction gives some additional
information about the measure given in Theorem A, in particular the fact that its density
with respect to Lebesgue is locally Lipschitz and unbounded only at the endpoints ±1.
We will show that, depending on the exponents k1, k2, �1, �2, the density may or may
not be integrable and so the measure may or may not be finite. More specifically, let

β1:=k2�1, β2:=k1�2, and β:=max{β1, β2}.
We will show that the density is Lebesgue integrable at -1 or 1 respectively if and only
if β1 and β2 respectively are < 1. In particular, letting

F := {g ∈ F̂ with β < 1}
we have the following result.

Theorem B. A map g ∈ F̂ admits a unique ergodic invariant probability measure μg
absolutely continuous with respect to (indeed equivalent to) Lebesgue if and only if
g ∈ F.

Notice that the condition β < 1 is a restriction only on the relative values of k1 with
respect to �2 and of k2 with respect to �1. It still allows k1 and/or k2 to be arbitrarily
large, thus allowing arbitrarily “degenerate” critical points, as long as the corresponding
exponents �2 and/or �1 are sufficiently small, i.e. as long as the corresponding neutral
fixed points are not too degenerate.

We now give several non-trivial results about the statistical properties maps g ∈ F
with respect to the probabilitymeasureμg . To state our first result recall that themeasure-
theoretic entropy of g with respect to the measure μ is defined as

hμ(g) := sup
P

⎧
⎨

⎩
lim
n→∞

1

n

∑

ωn∈Pn

−μ(ωn) lnμ(ωn)

⎫
⎬

⎭
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where the supremum is taken over all finite measurable partitions P of the underlying
measure space and Pn := P ∨ f −1P ∨ · · · ∨ f −nP is the dynamical refinement of P
by f .

Theorem C. Let g ∈ F. Then μg satisfies the Pesin entropy formula: hμg (g) = ∫
log |g′|dμg.

For Hölder continuous functions ϕ,ψ : [−1, 1] → R and n ≥ 1, we define the
correlation function

Cn(ϕ, ψ) :=
∣
∣
∣
∣

∫

ϕψ ◦ gndμ −
∫

ϕdμ

∫

ψdμ

∣
∣
∣
∣ .

It is well known that μg is mixing if and only if Cn(ϕ, ψ) → 0 as n → ∞. We say that
μg is exponentially mixing, or satisfies exponential decay of correlations if there exists
a λ > 0 such that for all Hölder continuous functions ϕ,ψ there exists a constant Cϕ,ψ

such that Cn(ϕ, ψ) ≤ Cϕ,ψe−λn . We say that μg is polynomially mixing, or satisfies
polynomial decay of correlations, with rate α > 0 if for all Hölder continuous functions
ϕ,ψ there exists a constant Cϕ,ψ such that Cn(ϕ, ψ) ≤ Cϕ,ψn−α .

Theorem D. Let g ∈ F. If β = 0 then μg is exponentially mixing, if β ∈ (0, 1) then μg
is polynomially mixing with rate (1− β)/β.

Notice that the polynomial rate of decay of correlations (1 − β)/β itself decays to
0 as β approaches 1, which is the transition parameter at which the invariant measure
ceases to be finite. Intuitively, as β → 1, the measure, while still equivalent to Lebesgue,
is increasingly concentrated in neighbourhoods of the neutral fixed points, which slow
down the decay of correlations.

Our final result concerns a number of limit theorems for maps g ∈ F, which depend
on the parameters of the map and, in some cases, also on some additional regularity
conditions. These are arguably some of the most interesting results of the paper, and
those in which the existence of two indifferent fixed points, instead of just one, really
comes into play, giving rise to quite a complex scenario of possibilities. We start by
recalling the relevant definitions. For integrable functions ϕ with

∫
ϕdμ = 0 we define

the following limit theorems.

CLT ϕ satisfies a central limit theorem with respect to μ if there exists a σ 2 ≥ 0 and
a N (0, σ 2) random variable V such that

lim
n→∞μ

(∑n−1
k=0 ϕ ◦ gk√

n
≤ x

)

= μ(V ≤ x),

for every x ∈ R for which the function x �→ μ(Vσ 2 ≤ x) is continuous.
CLT_ns ϕ satisfies a non-standard central limit theoremwith respect toμ if there exists

a σ 2 ≥ 0 and a N (0, σ 2) random variable V such that

lim
n→∞μ

(∑n−1
k=0 ϕ ◦ gk√
n log n

≤ x

)

= μ(V ≤ x),

for every x ∈ R for which the function x �→ μ(Vσ 2 ≤ x) is continuous.



Doubly Intermittent Full Branch Maps with Critical Points 1851

SLα ϕ satisfies a stable law of index α ∈ (1, 2), with respect to a measureμ, if there
exists a stable random variable Wα such that

lim
n→∞μ

(∑n−1
k=0 ϕ ◦ gk
n1/α

≤ x

)

= μ(Wα ≤ x),

for every x ∈ R for which the function x �→ μ(Wα ≤ x) is continuous.

Finally, we say that an observable ϕ : [−1, 1] → R is a co-boundary if there exists a
measurable function χ : [−1, 1] → R such that ϕ = χ ◦ g − χ . We are now ready to
state our result on the various limit theorems which hold under some conditions on the
parameters and on the observable ϕ. In order to state these conditions it is convenient to
introduce the following variable:

βϕ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if ϕ(−1) = 0 and ϕ(1) = 0
β1 if ϕ(−1) �= 0 and ϕ(1) = 0
β2 if ϕ(−1) = 0 and ϕ(1) �= 0
β if ϕ(−1) �= 0 and ϕ(1) �= 0,

(14)

We can then state our results in all cases in a clear and compact way as follows.

Theorem E. Let g ∈ F and ϕ : [−1, 1] → R be Hölder continuous with
∫

ϕdμ = 0
and satisfying

(H) ν1 > (β1 − 1/2)/k2 and ν2 > (β2 − 1/2)/k1,

where ν1, ν2 are the Hölder exponents of ϕ|[−1,0] and ϕ|(0,1] respectively. Then
1. if βϕ ∈ [0, 1/2) then ϕ satisfies CLT,
2. if βϕ = 1/2 then ϕ satisfies CLTns,
3. if βϕ ∈ (1/2, 1) then ϕ satisfies SL1/βϕ .

In case 3 we can replace the Hölder continuity condition (H) by the weaker (in this
case) condition

(H′) ν1 > (β1 − βϕ)/k2 and ν2 > (β2 − βϕ)/k1.

Moreover, in all cases where (CLT) holds we have that σ 2 = 0 if and only if ϕ is a
coboundary.

Remark 1.4. Our results highlight the fundamental significance of the value of the ob-
servable ϕ at the two fixed points, and how the fixed point at which ϕ is non-zero, in some
sense dominates, and determines the kind of limit law which the observable satisfies. If
ϕ is non-zero at both fixed points, then it is the larger exponent which dominates.

Remark 1.5. Note that (H) and (H′) are automatically satisfied for various ranges of
β1, β2, for example if β ≤ 1/2 then (H) always holds and if β = βϕ then (H′) always
holds. These Hölder continuity conditions arise as technical conditions in the proof and
it is not clear to us if they are really necessary and what could be proved without them. It
may be the case, for example, that some limit theorems still hold under weaker regularity
conditions on ϕ.

Remark 1.6. We remark also that the compact statement of Theorem E somewhat “con-
ceals” quite a large number of cases which express an intricate relationship between the
map parameters and the values and regularity of the observable. For example, the case
βϕ = 0 allows all possible values β1, β2 ∈ [0, 1) and the case βϕ = β1 allows all pos-
sible values of β2 ∈ [0, 1). We therefore have a huge number of possible combinations
which do not occur in the case of maps with just a single intermittent fixed point.
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1.3. Examples and literature review. There is an extensive literature on the dynamics and
statistical properties of full branch maps, which have been studied systematically since
the 1950s. Their importance stems partly from the fact that they occur very naturally,
for example any smooth non-invertible local diffeomorphism of S1 is a full branch map,
but also, and perhaps most importantly, because many arguments in Smooth Ergodic
Theory apply in this setting in a particularly clear and conceptually straightforward
way. Indeed, arguably, most existing techniques used to study hyperbolic (including
non-uniformly hyperbolic) dynamical systems are essentially (albeit often highly non-
trivial) extensions and generalisations of methods first introduced and developed in the
setting of one-dimensional full branch maps.

Our class of maps F̂ is quite general and includes many one-dimensional full branch
maps which have been studied in the literature as well as many maps which have not
been previously studied. We give below a brief survey of some of these examples and
indicate for which choices of parameters these correspond to maps in our family.1

Arguably one of the very first and simplest general class of maps for which the
existence of an invariant ergodic and absolutely continuous probability measure was
proved are uniformly expanding full branch maps with derivatives uniformly bounded
away from 0 and infinity, a result often referred to as the Folklore Theorem and generally
attributed to Renyi. Some particularly simple examples of uniformly expanding maps
are piecewise affine maps such as those given by

g(x) =
{
ax for x ∈ [0, 1/a]
a

a−1

(
x − 1

a

)
for x ∈ (1/a, 1] (15)

for parameters a > 1, see Fig. 2a. These are easily seen to be contained in the class F̂with
parameters (�1, �2, k1, k2, a1, a2, b1, b2) = (0, 0, 1, 1, a, a/(a − 1), a−1, a/(a − 1)−
1).

In the late ’70 s, physicists Maneville and Pomeau [PM80] introduced a simple but
extremely interesting generalisation consisting of a class of full branch one-dimensional
maps g : [0, 1] → [0, 1], which they called intermittency maps, defined by

g(x) = x(1 + xα) mod 1 (16)

for α > 0, see Fig. 2b (notice that for α = 0 this just gives the map g(x) = 2x mod 1,
which is just (15) with a = 2). These maps can be seen to be contained in our class F̂
by taking the parameters (�1, �2, k1, k2, a1, a2, b1, b2) = (α, 0, 1, 1, a, a, 1, 1), where
a = g′(x0), and x0 ∈ (0, 1) is the boundary of the intervals on which the two branches of
the map are defined. The Maneville-Pomeau maps are interesting because the uniform
expansivity condition fails at a single fixed point on the boundary of the interval, where
we have g′(0) = 1 Their motivation was to model fluid flow where long period of stable
flow is followed with an intermittent phase of turbulence, and they showed that this
simple model indeed seemed to exhibit such dynamical behaviour. It was then shown
in [Pia80] that for α > 2, the intermittency maps failed to have an invariant ergodic
and absolutely continuous probability measure and satisfies the extremely remarkable
property that the time averages of Lebesgue almost every point converge to the Dirac-
delta measure δ0 at the neutral fixed point, even though these orbits are dense in [0, 1]
and the fixed point is topologically repelling.

1 Recall that we have fixed the domains of the branches of our maps as [−1, 0) and (0, 1] for convenience.
In the examples below, when listing parameters, we slightly abuse notation and assume an affine change of
coordinates which transforms the given domains into the ones used in our class.
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(b)(a)

Fig. 2. aGraph of (15) with a = 5. bGraph of (16) with α = 9/10. Graphs of a piecewise affine, Manneville–
Pomeau, and Liverani–Saussol—Vaienti maps

Various variations of intermittency maps have been studied extensively from various
points of views andwith different techniques yielding quite deep results, see e.g. [LSV99,
You99,Sar01,Mel09,PS09,FL01,Gou04a,Gou04b,NTV18,CHT21,Fre+16,Kor16,BS16,
Ter16,SS13,Zwe03]. One well known version is the so-called Liverani-Saussol-Vaienti
(LSV) map g : [0, 1] → [0, 1] introduced in [LSV99] and defined by

g(x) =
{
x(1 + 2αxα) for x ∈ [0, 1/2]
2x − 1 for x ∈ (1/2, 1)

(17)

with parameter α > 0, see Fig. 3a. This maintains the essential features of theManeville-
Pomeau maps (16), i.e. it is uniformly expanding except at the neutral fixed point at the
origin, but in slightly simplified form where the two branches are always defined on the
fixed domains [0, 1/2] and 1/2, 1) and the second branch is affine, both of which make
the map family easier to study, including the effect of varying the parameter. The family
of LSV maps (17) can be seen to be contained in our class F̂ by taking the parameters
(�1, �2, k1, k2, a1, a2, b1, b2) = (α, 0, 1, 1, 2, 2, 2α, 1).

In an earlier paper [Pik91], Pikovsky had introduced the maps g : S1 → S
1, defined

(in a somewhat unwieldy way) by the implicit equation

x =
{

1
2α (1 + g(x))α for x ∈ [0, 1/2α]
g(x) + 1

2α (1− g(x))α for x ∈ (1/2α, 1)
(18)

for x ∈ [0, 1), and then by the symmetry g(x) = g(−x) for x ∈ (−1, 0], see Fig. 3b.
These maps have a neutral fixed point at the left end point, like in (16) and (17) but with
the added complication of having unbounded derivative at the boundary between the
domains of the two branches. On the other hand the definition is specifically designed
in such a way that the order of intermittency is the inverse of the order of the singularity
and, together with the symmetry of the two branches, this implies that Lebesguemeasure
is invariant for all values of the parameter α > 0. Ergodic and statistical properties of
these maps were studied in [AA04,Cri+10,BM14] and they can be seen to be contained
within our class F̂ by taking the parameters (�1, �2, k1, k2, a1, a2, b1, b2) = (α−1, α−
1, 1/α, 1/α, (2α)1/α, (2α)1/α, 1/2α, 1/2α).

Finally, [Ino92, Cui21] consider a class of maps, see Fig. 3c for an example, with
a single intermittent fixed point and multiple critical points with each critical point
mapping to the fixed point. These include some maps which are more general than those
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(a) (b) (c)

Fig. 3. a Graph of (17) with α = 9/10. b Graph of (18) with α = 3. c An example from [Cui21]. Graphs of
previsously studied generalisations of the Manneville-Pomeau map

we consider here as they are defined near the fixed and critical points through some
bounds rather than explicitly as we do here, but are also more restrictive as they only
allow for a single neutral fixed point. Under a condition on the product of the orders of
the neutral and (the most degenerate) critical point which is exactly analogous to our
condition β < 1, the existence of an invariant ergodic probability measure is proved
which exhibits decay of correlations but no bounds are given for the rate of decay and
no limit theorems are obtained.

2. Overview of the Proof

We discuss here our overall strategy and prove our Theoremsmodulo some key technical
Propositions which we then prove in the rest of the paper. Our argument can be naturally
divided into three main steps which we describe in some detail in the following three
subsections.

2.1. The induced map. The first step of our arguments is the construction of an induced
full branch Gibbs-Markovmap, also known as a Young Tower. This is relatively standard
for many systems, including intermittent maps, however, the inducing domain which we
are obliged to use here due to the presence of two indifferent fixed points is different
from the usual inducing domains and requires a more sophisticated double inducing
procedure, which we outline here and describe and carry out in detail in Sect. 3. Recall
the definition of �−

0 in (4) and, for x ∈ �−
0 , let

τ(x):=min{n > 0 : gn(x) ∈ �−
0 }

be the first return time to �−
0 . Then we define the first-return induced map

G : �−
0 → �−

0 by G(x):=gτ(x)(x). (19)

We say that a first return map (or, more generally, any induced map), saturates the
interval I if

⋃

n≥0

n−1⋃

i=0

gi ({τ = n}) =
⋃

n≥0
gn({τ > n}) = I (mod 0). (20)

Intuitively, saturation means that the return map “reaches” every part of the original
domain of the map g, and thus the properties and characteristics of the return map
reflect, to some extent, all the relevant characteristics of g.
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Remark 2.1. If G is a first return induced map, as in our case, then all sets of the form
gi ({τ = n}) are pairwise disjoint and therefore form a partition of I mod 0.

The first main result of the paper is the following.

Proposition 2.2. Let g ∈ F̂. Then G : �−
0 → �−

0 is a first return inducedGibbs-Markov
map which saturates I .

We give the precise definition of Gibbs-Markov map, and prove Proposition 2.2,
in Sect. 3. In Sect. 3.1 we describe the topological structure of G and show that it a
full branch map with countably many branches which saturates I (we will define G
as a composition of two full branch maps, see (37) and (40), which is why we call
the construction a double inducing procedure); in Sect. 3.2 we obtain key estimates
concerning the sizes of the partition elements of the corresponding partition; in Sect. 3.3
we show that G is uniformly expanding; in Sect. 3.4 we show that G has bounded
distortion. From these results we get Proposition 2.2 from which we can then obtain our
first main Theorem.

Proof of Theorem A. By standard resultsG admits a unique ergodic invariant probability
measure μ̂−, supported on �−

0 , which is equivalent to Lebesgue measure m and which
has Lipschitz continuous density ĥ− = dμ̂−/dm bounded above and below. We then
“spread” the measure over the original interval I by defining the measure

μ̃:=
∞∑

n=0

gn∗(μ̂−|{τ ≥ n}) (21)

where gn∗(μ̂−|{τ ≥ n})(E) := μ̂−(g−n(E) ∩ {τ ≥ n}). Again by standard arguments,
we have that μ̃ is a sigma-finite measure which is ergodic and invariant for g and, using
the non-singularity of g, it is absolutely continuous with respect to Lebesgue. The fact
that G saturates I implies moreover that μ̃ is equivalent to Lebesgue, which completes
the proof. ��
Remark 2.3. We emphasize that we are not assuming any symmetry in the two branches
of the map g. It is not important that the branches are defined on intervals of the same
length and, depending on the choice of constants, we might even have a critical point
in one branch and a singularity with unbounded derivative on the other. Interestingly,
however, there is some symmetry in the construction in the sense that for x ∈ �+

0 , we can
define thefirst returnmapG+ : �+

0 → �+
0 in a completely analogousway to thedefinition

of G above (see discussion in Sect. 3.1). Moreover, the conclusions of Proposition 2.2
hold for G+ and thus G+ admits a unique ergodic invariant probability measure μ̂+

which is equivalent to Lebesgue measure m and such that the density ĥ+ := dμ̂+/dm is
Lipschitz continuous and bounded above and below. The twomapsG andG+ are clearly
distinct, as are the measures μ̂− and μ̂+, but exhibit a subtle kind of symmetry in the
sense that the corresponding measure μ̃ obtained by substituting μ̂− by μ̂+ in (21) is,
up to a constant scaling factor, exactly the same measure.

Corollary 2.4. The density h̃ of μ̃|�−
0 ∪�+

0
is Lipschitz continuous and bounded and

μ̃|�−
0
= μ̂.

Proof. Since G is a first return induced map it follows that the measure μ̃ defined in
(21) satisfies μ̃|�−

0
= μ̂ and so the density h̃ of μ̃ is Lipchitz continuous and bounded
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away from both 0 and infinity on �−
0 . Moreover, as mentioned in Remark 2.3, μ̃|�+

0
is

equal, up to a constant, to the measure μ̂+ and so the density of μ̃|�+
0
is also Lipschitz

continuous and bounded away from 0 and infinity. ��
Remark 2.5. We have used above the notation G rather than G− for simplicity as this
is the map which plays a more central role in our construction, see Remark 3.3 below.
Similarly, we will from now on simply use the notation μ̂ to denote the measure μ̂−.

2.2. Orbit distribution estimates. The second step of the argument is aimed at establish-
ing conditions under which the measure μ̃ is finite, and can therefore be renormalized
to a probability measure μ := μ̃/μ̃(I ), and aimed at studying the ergodic and statis-
tical properties of μ. Our approach here differs even more significantly from existing
approaches in the literature, although it does have some similarities with the argument
of [Cri+10]: rather than starting with estimates of the tail of the inducing time (which
would themselves anyway be significantly more involved than in the usual examples of
intermittency maps with a single critical point due to our double inducing procedure),
we carry outmore general estimates on the distribution of iterates of points in I− and I+
before they return to �−

0 . More precisely, we define the functions τ±(x) : �−
0 → N by

τ+(x) := #{1 ≤ i ≤ τ : gi (x) ∈ I+}, and τ−(x) := #{1 ≤ j ≤ τ : g j (x) ∈ I−}.
(22)

These functions count the number of iterates of x in I− and I+ respectively before
returning to�−

0 . Then for any a, b ∈ Rwe defineweighted combination τa,b : �0− → R

by

τa,b(x) = aτ+(x) + bτ−(x) (23)

As we shall see as part of our construction of the induced map, both of these functions
are unbounded and their level sets have a non-trivial structure in �0− and, moreover, the
inducing time function τ : �−

0 → N of the induced map G− corresponds exactly to τ1,1
so that

τ(x) = τ1,1(x) = τ+(x) + τ−(x). (24)

The key results of this part of the proof consists of explicit and sharp asymptotic
bounds for the distribution of τa,b for different values of a, b, from which we can then
obtain as an immediate corollary the rates of decay of the inducing time function τ , and
which will also provide the core estimates for the various distributional limit theorems.
To state our results, let

B1 := a−1/k1
1 (�2b2)

−1/β2 and B2 := a−1/k2
2 (�1b1)

−1/β1 , (25)

(the expressions defining the constants B1, B2 will appear in the proof of Proposition 3.5
below).

Recall from Corollary 2.4 that the density h̃ of μ̃ is bounded on �−
0 ∪�+

0 and let
h̃(0−) and h̃(0+) denote the values of this density on either side of 0. Then, for any
a, b ≥ 0, we let

Ca :=h̃(0−)B1a
1/β2 , and Cb:=h̃(0+)B2b

1/β1 . (26)

Then we have the following distributional estimates.
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Proposition 2.6. Let g ∈ F̂. Then for every a, b ≥ 0 we have the following distribution
estimates.

For every γ ∈ [0, 1)

μ̃(aτ+ + bτ− > t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cbt−1/β1 + Cat−1/β2 + o(t−γ−1/β) if �1, �2 > 0
Cbt−1/β1 + o(t−γ−1/β1) if �1 > 0, �2 = 0
Cat−1/β2 + o(t−γ−1/β2) if �1 = 0, �2 > 0
O
(
(1 + b1)−t/k2 + (1 + b2)−t/k1

)
if �1 = 0, �2 = 0

(27)

μ̃(aτ+ − bτ− > t) =
{
Cat−1/β2 + o(t−γ−1/β) if �2 > 0
O
(
(1 + b2)−t/k1

)
, if �2 = 0

(28)

μ̃(aτ+ − bτ− < −t) =
{
Cbt−1/β1 + o(t−γ−1/β) if �1 > 0
O
(
(1 + b1)−t/k2

)
, if �1 = 0.

(29)

Remark 2.7. We have assumed in Proposition 2.6 that a, b ≥ 0 to avoid stating explicitly
too many cases, but one can easily read off the tails for τa,b for arbitrary a, b ∈ R. For
example, if a < 0 and b > 0 we can write μ̃(−aτ+ + bτ− > t) = μ̃(aτ+− bτ− < −t)
and get the corresponding estimate from (29). Notice moreover, that the estimates for
�1 = 0 and/or �2 = 0 are exponential.

Recall from Corollary 2.4 that μ̂ = μ̃ on the inducing domain �0− and therefore
all the above estimates hold for μ̂ with exactly the same constants. In particular by
Proposition 2.6 and (24), we immediately get the corresponding estimates for the tail
μ̂(τ > t) = μ̃(τ > t).

Corollary 2.8. If β = 0 then μ̂(τ > t) decay exponentially as t → +∞. If β > 0 then
there exists a positive constant Cτ (which can be computed explicitly) such that

μ̂(τ > t) ∼ Cτ t
−1/β .

Proposition 2.6 will be proved in Sect. 4.1, here we show how it implies Theo-
rems B, C, D.

Proof of Theorems B, C, and D. From the definition of μ̃ in (21) and since g−n(I ) = I
we have

μ̃(I ):=
∞∑

n=0

μ̂−(g−n(I ) ∩ {τ > n}) =
∞∑

n=0

μ̂−(I ∩ {τ > n}) =
∞∑

n=0

μ̂−(τ > n).

By Corollary 2.8, if β = 0, the quantities μ̂−(τ > n) decay exponentially and, if β > 0
we have

μ̃(I ) = C
∞∑

n=1

n−
1
β (1 + o(1)),

for some C > 0. This implies that μ̃(I ) < ∞ if and only if β ∈ [0, 1), i.e. if and
only if g ∈ F. Thus, for g ∈ F we can define the measure μg := μ̃/μ̃(I ), which is
an invariant ergodic probability measure for g, and is unique because it is equivalent to
Lebesgue, thus proving Theorem B. Theorem C follows from TheoremA in [AM21] by



1858 D. Coates, S. Luzzatto, M. Muhammad

noticing that P = {(−1, 0), (0, 1)} is a Lebesgue mod 0 generating partition such that
Hμg (P) < ∞ and hμg (g,P) < ∞, and therefore hμg (g) < ∞. Finally, Theorem D
follows by well known results [You99] which show that the decay rate of the tail of the
inducing times provides upper bounds for the rates of decay of correlations as stated. ��

2.3. Distribution of induced observables. The last part of our argument is focused on
obtaining the limit theorems stated in Theorem E.When β = 0 the decay of correlations
is exponential and the result follows from [YouRecurrenceTimesRates1999]. Similarly,
after having established Proposition 2.2 andCorollary 2.8, the case that only one of �1, �2
is positive implies that there is only one intermittent fixed point, and thus essentially
reduces to the argument given in [Gou04a, Theorem 1.3] for the LSV map. We only
therefore need to consider the case that both �1, �2 > 0, which implies in particular that
β ∈ (0, 1).

Given an observable ϕ : [0, 1] → R, we define the induced observable� : �−
0 → R

by

�(x):=
τ(x)−1∑

k=0

ϕ ◦ gk .

Definition 2.9. We write � ∈ Dα if ∃c1, c2 ≥ 0, with at least one of c1, c2 non-zero,
such that

μ̂(� > t) = c1t
−α + o(t−α) and μ̂(� < −t) = c2t

−α + o(t−α), (30)

In certain settings, limit theorems can be deduced from properties of the induced
observable �. In particular, it is proved in Theorems 1.1 and 1.2 of [Gou04a] that,
precisely in our setting2:

if � ∈ L2(μ̂) then ϕ satisfies (CLT ), (31)

if � ∈ D2 then ϕ satisfies (CLTns), (32)

if � ∈ Dα with α ∈ (1, 2) then ϕ satisfies SLα. (33)

We will argue that in each case of Theorem E, the induced observable � satisfies one of
the above. To prove this, we first decompose a general observable ϕ : [−1, 1] → R by
letting a := ϕ(1) and b := ϕ(−1) and writing

ϕ = ϕa,b + ϕ̃ where ϕa,b:=bχ[−1,0) + aχ[0,1] and ϕ̃:=ϕ − ϕa,b, (34)

where χ[−1,0), χ[0,1] are the characteristic functions of the intervals [−1, 0) and (0, 1]
respectively. The induced observable of ϕ is the sum of the induced observables of ϕa,b
and ϕ̃ giving

�(x) =
τ(x)−1∑

k=0

ϕa,b ◦ gk(x) +
τ(x)−1∑

k=0

ϕ̃ ◦ gk(x) = τa,b + �̃, (35)

2 The assumptions of [Gou04a, Theorems 1.1 and 1.2] are that ϕ is Hölder continuous and G is an induced
Gibbs-Markov map with invariant absolutely continuous probability measure μ̂ and return time satisfying
μ̂(τ > n) = O(n−γ ) for some γ > 1, which holds in our case by Corollary 2.8 and the fact that β ∈ (0, 1).
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where �̃ denote the induced observable of ϕ̃, and τa,b is defined in (23), indeed, ϕa,b ◦
gk(x) takes only two possible values, a or b, depending on whether gk(x) ∈ (0, 1] or
gk(x) ∈ [−1, 0), and therefore the corresponding induced observable is precisely τa,b.

To prove Theorem E we obtain regularity and distribution results for the induced
observables τa,b and �̃ and substitute them into (35) to get the various cases (31)-(33).
The motivation for the decomposition (34) is given by the observation that ϕ̃(−1) =
ϕ̃(1) = 0, which allows us to prove the following estimate for the corresponding induced
observable �̃.

Proposition 2.10. Let g ∈ F with β ∈ (0, 1) and let ϕ̃ : [−1, 1] → R be a Hölder
continuous observable such that ϕ̃(−1) = ϕ̃(1) = 0. Then

(H) �⇒ �̃ ∈ L2 and (H′) �⇒ μ̂(±�̃ > t) = o(t−1/βϕ ). (36)

Proposition 2.6 gives results for τa,b.

Corollary 2.11 (Corollary to Proposition 2.6). If at least one of a:=ϕ(1), b:=ϕ(−1) is
non-zero then:

βϕ ∈ [0, 1/2) �⇒ τa,b ∈ L2(μ̂), and βϕ ∈ [1/2, 1) �⇒ τa,b ∈ D1/βϕ .

We prove Corollary 2.11 and Proposition 2.10 in Sect. 4.2. For now we show how
they imply Theorem E.

Proof of Theorem E. If ϕ(−1) = ϕ(1) = 0 then τa,b ≡ 0 and so � = �̃, Proposi-
tion 2.10 implies that � ∈ L2(μ̂) and so (31) holds. If at least one of ϕ(−1), ϕ(1) is
non-zero, we have two cases. If βϕ ∈ (0, 1/2), Proposition 2.10 and Corollary 2.11 give
that both τa,b, �̃ ∈ L2(μ̂), which implies that � ∈ L2(μ̂) and therefore (31) holds. If
βϕ ∈ [1/2, 1) then τa,b ∈ D1/βϕ by Corollary 2.11 and μ̂(±�̃ > t) = o(t−1/βϕ ) by

Proposition 2.10, and therefore � = τa,b + �̃ ∈ D1/βϕ since the tail of �̃ is negligible
compared to that of τa,b. Whence, (32) holds when βϕ = 1/2 and (33) holds otherwise.
��
Remark 2.12. The relation between � and τa,b is given formally in (35) but it can be
useful to have a heuristic idea of this relationships. Given a point x ∈ δi, j with i, j both
large we know that most of the first i iterates x, g(x), . . . , gi−1(x) will lie near the fixed
point 1. Similarly, most of the next j iterates gi (x), . . . , gi+ j−1 will lie near the fixed
point −1. Thus, if we assume that ϕ is “sufficiently well behaved” near 1 and −1 (in a
sense that is made precise by conditions (H) and (H′)), it is reasonable to hope that the
induced observable � at the point x will behave like �(x) =∑n−1

k=0 ϕ ◦ gk ≈ ai + bj =
τa,b(x) when a = ϕ(1), b = ϕ(−1) are not both zero.

3. The Induced Map

In this section we prove Proposition 2.2. We begin by recalling one of several essentially
equivalent definitions of Gibbs-Markov map.

Definition 3.1. An interval map F : I → I is called a (full branch) Gibbs-Markov map
if there exists a partition P of I (mod 0) into open subintervals such that:

1. F is full branch: for all ω ∈ P the restriction F |ω : ω → int (I ) is a C1 diffeomor-
phism;
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2. F is uniformly expanding: there exists λ > 1 such that |F ′(x)| ≥ λ for all x ∈ ω for
all ω ∈ P;

3. F has bounded distortion: there exists C > 0, θ ∈ (0, 1) s.t. for all ω ∈ P and all
x, y ∈ ω,

log

∣
∣
∣
∣
F ′(x)
F ′(y)

∣
∣
∣
∣ ≤ Cθ s(x,y),

where s(x, y):= inf{n ≥ 0 : Fnx and Fn y lie in different elements of the partition
P}.
We will show that the first return map G defined in (19) satisfies all the conditions

above as well as the saturation condition (20). In Sect. 3.1 we describe the topological
structure ofG and show that it is a full branch map with countably many branches which
saturates I ; this will require only the very basic topological structure of g provided by
condition (A0). In Sect. 3.2 we obtain estimates concerning the sizes of the partition
elements of the corresponding partition; this will require the explicit form of the map g
as given in (A1). In Sect. 3.3 we show that G is uniformly expanding; this will require
the final condition (A2). Finally, in Sect. 3.4 we use the estimates and results obtained
to show that G has bounded distortion.

3.1. Topological construction. In this section we give an explicit and purely topological
construction of the first return maps G− : �−

0 → �−
0 and G+ : �−

0 → �−
0 which

essentially depends only on condition (A0), i.e. the fact that g is a full branch map with
two orientation preserving branches. Recall first of all the definitions of the sets �±

n and
δ±n in (5) and (6). It follows immediately from the definitions and from the fact that each
branch of g is a C2 diffeomorphism, that for every n ≥ 1, the maps g : δ−n → �+

n−1 and
g : δ+n → �−

n−1 are C
2 diffeomorphisms, and, for n ≥ 2, the same is true for the maps

gn−1 : �−
n−1 → �−

0 , and gn−1 : �+
n−1 → �+

0, which implies that for every n ≥ 1, the
maps

gn : δ−n → �+
0 and gn : δ+n → �−

0

are C2 diffeomorphisms. We can therefore define two maps

G̃− : �−
0 → �+

0 and G̃+ : �+
0 → �−

0 by G̃±|δ±n := gn . (37)

Notice that these are full branchmaps although they have different domains and ranges,
indeed the domain of one is the range of the other and viceversa. The fact that they are
full branch allows us to pullback the partition elements δ±n into each other: for every
m, n ≥ 1 we let

δ−m,n := g−m(δ+n ) ∩ δ−m and δ+m,n := g−m(δ−n ) ∩ δ+m .

Then, form ≥ 1, the sets {δ−m,n}n≥1 and {δ+m,n}n≥1 are partitions of δ−m and δ+m respectively
and so

P− := {δ−m,n}m,n≥1 and P+ := {δ+m,n}m,n≥1 (38)
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are partitions of �−
0 ,�+

0 respectively, with the property that for every m, n ≥ 1, the
maps

gm+n : δ−m,n → �−
0 and gm+n : δ+m,n → �+

0 (39)

are C2 diffeomorphisms. Notice that m + n is the first return time of points in δ−m,n and
δ+m,n to�−

0 and�+
0 respectively and we have thus constructed two full branch first return

induced maps

G− := G̃+ ◦ G̃− : �−
0 → �−

0 and G+ := G̃− ◦ G̃+ : �+
0 → �+

0 . (40)

for which we have G−|δ−m,n
= gm+n and G+|δ+m,n

= gm+n .

Lemma 3.2. The maps G− and G+ are full branch maps which saturate I

Proof. The full branch property follows immediately from (39). It then also follows
from the construction that the families

{g j (δ−m,n)} m,n≥1
0≤ j<m+n

and {g j (δ+m,n)} m,n≥1
0≤ j<m+n

of the images of the partition elements (38) are each formed by a collection of pairwise
disjoint intervals which satisfy

⋃

δ−m,n∈P−

m+n−1⋃

j=0

g j (δ−m,n) =
⋃

δ+m,n∈P+

m+n−1⋃

j=0

g j (δ−m,n) = I mod 0

and therefore clearly satisfy (20), giving the saturation. ��
Remark 3.3. Notice that the map G− is exactly the first return map G defined in (19)
and therefore Lemma 3.2 implies the first part of Proposition 2.2.

3.2. Partition estimates. The construction of the full branch induced mapsG± : �±
0 →

�±
0 in the previous section is purely topological and works for any map g satisfying

condition (A0). In this section we proceed to estimate the sizes and positions of the
various intervals defined above, and this will require more information about the map,
especially the formsof themap as given in (A1).Before stating the estimateswe introduce
some notation. First of all, we let (x−n )n≥0 and (x+n )n≥0 be the boundary points of the
intervals �−

n ,�+
n so that �−

0 = (x−0 , 0),�+
0 = (0, x+0 ) and, for every n ≥ 1 we have

�−
0 = (x−0 , 0), �+

0 = (0, x+0 ), �−
n = (x−n , x−n−1), �+

n = (x+n−1, x
+
n ). (41)

The following proposition gives the speed at which the sequences (x+n ), (x−n ) converge
to the fixed points 1,−1 respectively and gives estimates for the size of the partition
elements �±

n for large n in terms of the values of �1 and �2. To state the result we let

C1 = (�1b1)
−1/�1 , C2 = (�2b2)

−1/�2 , C3 = �
−(1+1/�1)
1 b−1/�1

1 C4 = �
−(1+1/�2)
2 b−1/�2

2 .
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Proposition 3.4. If �1 = 0, then

(1 + b1 + ε)−n � 1 + x−n � (1 + b1)
−n and |�−

n | � (1 + b1)
−n . (42)

If �1 > 0, then

1 + x−n ∼ C1n
−1/�1 and |�−

n | ∼ C3n
−(1+1/�1). (43)

If �2 = 0, then

(1 + b2 + ε)−n � 1− x+n � (1 + b2)
−n and |�+

n | � (1 + b2)
−n . (44)

If �2 > 0, then

1− x+n ∼ C2n
−1/�2 and |�+

n | ∼ C4n
−(1+1/�2). (45)

Proof. We will prove (44) and (45) and then (44) and (45) follow by exactly the same
arguments. Notice first of all that from (7) we have δ+n ⊂ U0+ for all n > n+ and, since
from (2) we have that U−1 := g(U0+), this implies that �−

n−1 := g(δ+n ) ⊂ U−1 for all
n > n+, and thus �−

n ⊂ U−1 for all n ≥ n+ which, by the definition of xn in (41),
implies that x−n ∈ U−1 for n ≥ n+.

Now suppose that �1 > 0. For n ≥ n+, by definition of the x−n , we have that
g(x−n+1) = x−n , and so 1 + x−n = 1 + x−n+1 + b1(1 + x−n+1)1+�1 . Setting zn = 1 + x−n we can

write this as zn = zn+1(1 + b1z
�1
n+1) and, taking the power −�1 and expanding we get

1

z�1n
= 1

z�1n+1
(1 + b1z

�1
n+1)

−�1 = 1

z�1n+1

(
1− �1b1z

�1
n+1 + O(z2�1n+1)

)
= 1

z�1n+1
− �1b1 + o(1).

From the above we know that z−�1
n = z−�1

n−1 + b1�1 + o(1) and applying this relation

recursively we obtain that z−�1
n = �1b1n +o(n) which yields x−n +1 = (�1b1n)−1/�1(1+

o(1)), thus giving the first statement in (45). Now, by definition �−
n = [x−n , x−n−1) =

[x−n , g(x−n )), so, for all n large enough, |�−
n | = g(x−n )− x−n = b1(1+ x−n )1+�1 . Inserting

x−n +1 ∼ C1n−1/�1 into this expression for |�−
n | thenyields |�−

n | ∼ �
−(1+1/�1)
1 b1n−1−1/�1 ,

completing the proof of (45).
Now, for �1 = 0, since g(x−n ) = x−n−1, the mean value theorem implies (1 + b1) ≤

(x−n−1+1)/(x
−
n +1) ≤ (1+b1+o(1))which can bewritten as (1+b1+o(1))−1(x−n−1+1) ≤

x−n + 1 ≤ (1 + b1)−1(x−n−1 + 1). Iterating this relation we obtain the claimed bounds for
x−n + 1. As in the previous case we may calculate using (3) that |�−

n | = g(x−n )− x−n =
−1+(1+b1)(1+x−n )+ξ(x−n )−xn−1 = b1(1+x−n )+o(1) � (1+b1)−n , which concludes
the proof. ��

To get analogous estimates for the intervals δ−n , δ+n , we let (y−n )n≥0 and (y+n )n≥0 be
the boundary points of the intervals δ−n , δ+n respectively, so that for every n ≥ 1 we have

δ−n = (y−n−1, y
−
n ) and δ+n = (y+n , y+n−1).

In particular, y−0 = x−0 , y+0 = x+0 , and g(y−n ) = x+n−1, g(y
+
n ) = x−n−1 for n ≥ 1. Then

we let

B1 = a−1/k1
1 (�2b2)

−1/β2 , B2 = a−1/k2
2 (�1b1)

−1/β1 , B3 = B1/β2, B4 = B2/β1.

Recall that B1, B2 have already been defined in (25).
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Proposition 3.5. If �1 = 0, then for every ε > 0

(
1

1 + b2 + ε

) n
k1 � −y−n �

(
1

1 + b2

) n
k1

and |δ−n | �
(

1

1 + b2

)n

. (46)

If �1 > 0, then

y−n ∼ −B1n
− 1

β2 , and |δ−n | ∼ B3n
−
(
1+ 1

β2

)

. (47)

If �2 = 0, then for every ε > 0

(
1

1 + b1 + ε

) n
k2 � y+n �

(
1

1 + b1

) n
k2

, and |δ+n | �
(

1

1 + b1

)n

. (48)

If �2 > 0, then

y+n ∼ B2n
− 1

β1 , and |δ+n | ∼ B4n
−
(
1+ 1

β1

)

, (49)

Proof. We will prove (48) and (47), as (48) and (49) follow by analogous arguments.
Suppose first that �1 > 0. As x+n → 1, and as g−(y−n ) = x+n−1 we know that for all n
sufficiently large we have g−(y−n ) = 1− a1(−y−n )k1 = x+n−1. Solving for yn this gives

y−n = − ((1− x+n−1)/a1
)1/k1 = −a−1/k1

1 (�2b2n)−1/�2k1 (1 + o(1))

which is the first statement in (47). Now we turn our attention to the size of the in-
tervals δ−n . First let us note that for any γ > 0 we have that n−γ − (n + 1)−γ =
n−γ
[
1− (1 + 1/n)−γ

] = n−γ
[
1− (1− γ /n + O(n−2)

)] = γ n−(1+γ )(1 + O(1/n))

and therefore

|δn | = y−n − y−n+1 = B1(n
−1/�2k1 − (n + 1)−1/�2k1)(1 + o(1)) = B1

�2k1
n−(1+1/�2k1)(1 + o(1))

which completes the proof of (47). Now for �2 = 0 we proceed as before, and by (44)
we get

(1 + b2 + ε)−n/k1 � −y−n = ((1− x+n−1)/a1
)1/k1 � (1 + b2)

−n/k1 .

For the size of the interval δ−n , we may use the mean value theorem to conclude that

g′(un) =
x+n−2 − x+n−1

y−n−1 − y−n
= |�+

n−1|
|δ−n |

,

for some un ∈ δ−n . As g′ is monotone on U−
0 we know, from the above and (44), that

|δ−n | � |�+
n−1|/g′(y−n ) � (1 + b2 + ε)−n/k1(1 + b2)

−n � (1 + b2)
−n .

which concludes the proof. ��
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δ+n+1 δ+n

Δ−
n Δ−

n−1

φ

g g

g

Fig. 4. Definition of the map φ : �+
0\δ+1 → �+

0

3.3. Expansion estimates.

Proposition 3.6. For every g ∈ F̂ the first return map G : �−
0 → �−

0 is uniformly
expanding.

It is enough to prove uniform expansivity for the two maps G̃−, G̃+, recall (37),
since this implies the same property for their composition G = G−, recall (40). To
simplify the notation we will only prove the statement for G̃+, i.e. we will prove that
x ∈ δ+n ⇒ (gn)′(x) > λ. The fact that x ∈ δ−n ⇒ (gn)′(x) > λ follows by an identical
argument.

Notice first of all that if k2 ∈ (0, 1), the derivative in �+
0 is greater than 1 and

therefore the uniform expansion of G̃+ is immediate. So throughout this section we will
assume that k2 ≥ 1 which means that g has a critical point and the derivative of g in �+

0
can be arbitrarily small. For points outside the neighourhood U0+ on which the map g
has a precise form, more precisely for 1 ≤ n ≤ n+ and for x ∈ δ+n , the expansivity is
automatically guaranteed by condition (A2), but for points close to 0where the derivative
can be arbitrarily small the statement is non-trivial. It ultimately depends on writing
G̃+(x) := gn(x) for x ∈ δ+n , so that (G̃+)′(x) = (gn)′(x) = (gn−1)′(g(x))g′(x), and
then showing that the small derivative g′(x) near the critical point is compensated by
sufficiently large number of iterates where the derivative is > 1. This clearly relies very
much on the partition estimates in Sect. 3.2 which provide a relation between the position
of points, and therefore their derivatives, and the corresponding values of n. A relatively
straightforward computation using those estimates shows that we get expansion for
sufficiently large n ≥ 1, which is quite remarkable but not enough for our purposes as it
does not give a complete proof of expansivity for G̃+ at every point in �+

0 . We therefore
need to use a somewhat more sophisticated approach that shows that the derivative of
G̃+ has a kind of “monotonicity” property in the following sense. Define the function
φ : �+

0\δ+1 → �+
0 given implicitly by g2 = g ◦ φ and explicitly by

φ:=(g|U0+)
−1 ◦ g|U−1 ◦ g|U0+ (50)

Notice that φ is the bijection which makes the diagram in Fig. 4 commute.
The key step in the proof of Proposition 3.6 is the following lemma.

Lemma 3.7. For all n ≥ n+ and x ∈ δ+n+1 we have

(g2)′(x) > g′(φ(x)).
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Remark 3.8. Lemma 3.7 is equivalent to (g2)′(x)/g′(φ(x)) > 1 which is equivalent to

g′(x)
g′(φ(x))

g′(g(x)) > 1. (51)

Notice that the ratio g′(x)/g′(φ(x)) is < 1 and measures how much derivative is “lost”
when choosing the initial condition x instead of the initial condition φ(x) (since φ(x) >

x and the derivative is monotone increasing), whereas g′(g(x)) > 1measures howmuch
derivative is “gained” from performing an extra iteration of g. The Lemma says that the
gain is more than the loss.

Proof. To simplify the notation let us set a = a2, b = b1, k = k2, and � = �1. Notice
first of all that by the form of g in U0+ given in (A1) we have

g′(x)
g′(φ(x))

=
(

x

φ(x)

)k−1

=
(

φ(x)

x

)1−k

(52)

Recall that k > 1 and x < φ(x) and so the ratio above is < 1. To estimate g′(g(x))
we consider two cases depending on �. If � > 0, using the form of g given in (A1) and
plugging into 50 we get

φ(x) =
[
xk + ba�xk(�+1)

]1/k
and therefore

(
φ(x)

x

)k

= 1 + ba�xk�

and, therefore, using the form of G in U−1, this gives

g′(g(x)) = g′(−1 + axk) = 1 + ba�xk� + b�a�xk� =
(

φ(x)

x

)k

+ b�a�xk�. (53)

From (52) and (53) and the fact that x < φ(x) we immediately get

g′(x)
g′(φ(x))

g′(g(x)) =
(

φ(x)

x

)1−k
[(

φ(x)

x

)k

+ b�a�xk�
]

>
φ(x)

x
> 1

which establishes (51) and completes the case that � > 0. For � = 0, proceeding as
above we obtain

φ(x) =
[
(1 + b)xk + ξ(g(x))/a

]1/k
and therefore

(
φ(x)

x

)k

= (1 + b) +
ξ(g(x))

axk
. (54)

Since g(x)=−1+axk , from (13)we have ξ ′(g(x)) ≥ ξ(g(x))/(1+g(x))=ξ(g(x))/axk),
and so

g′(g(x)) = (1 + b) + ξ ′(g(x)) ≥ (1 + b) +
ξ(g(x))

axk
=
(

φ(x)

x

)k

.

Together with (52), as above, we get the statement in this case also. ��
As an almost immediate consequence of Lemma 3.7 we get the following.
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Corollary 3.9. For all n ≥ n+ and x ∈ δ+n+1 we have

(G̃+)′(x) > (G̃+)′(φ(x)).

Proof. By Lemma 3.7 and (51), for any 1 ≤ m ≤ n we have

(gm+1)′(x) = g′(x)g′(g(x)) · · · g′(gm(x)) = g′(x)g′(g(x))
g′(φ(x))

(gm)′(φ(x)) > (gm)′(φ(x)).

(55)

��
Proof of Proposition 3.6. Condition (A2) implies that (G̃+)′(x) ≥ λ for all x ∈ δ+n for
1 ≤ n ≤ n+. Then, for x ∈ δ+n++1 we have φ(x) ∈ δ+n+ and therefore

(G̃+)′(x) > (G̃+)′(φ(x)) ≥ λ

Proceeding inductively we obtain the result. ��

3.4. Distortion estimates.

Proposition 3.10. For all g ∈ F̂ there exists a constant D > 0 such that for all 0 ≤
m < n and all x, y ∈ δ±n ,

log

(
gn−m
)′

(gm(x))
(
gn−m
)′

(gm(y))
≤ D|gn(x) − gn(y)|.

As a consequence we get that G is a Gibbs-Markov map with constants C = Dλ and
θ = λ−1.

Corollary 3.11. For all x, y ∈ δi, j ∈ P with x �= y we have

log

∣
∣
∣
∣
G ′(x)
G ′(y)

∣
∣
∣
∣ ≤ Dλ−s(x,y)+1.

Proof. Letn:=s(x, y). SinceG is uniformly expanding,wehave1 ≥ |Gn(x)−Gn(y)| =
|(Gn−1)′(u)||G(x)−G(y)| ≥ λn−1|G(x)−G(y)| and therefore |G(x)−G(y)| ≤ λ−n+1.

By Proposition 3.10 this gives log |G ′(x)/G ′(y)| ≤ D|G(x) − G(y)| ≤ Dλ−n+1 =
Dλ−s(x,y)+1. ��
Proof of Proposition 3.10. We begin with a couple of simple formal steps. First of all,
by the chain rule, we can write

log

(
gn−m
)′

(gm(x))
(
gn−m
)′

(gm(y))
= log

n−1∏

i=m

g′(gi (x))
g′(gi (y))

=
n−1∑

i=m

log
g′(gi (x))
g′(gi (y))

.

Then, since gi (x), gi (y) are both in the same smoothness component of g, by the Mean
Value Theorem, there exists ui ∈ (gi (x), gi (y)) such that

log
g′(gi (x))
g′(gi (y))

= log g′(gi (x)) − log g′(gi (y)) = g′′(ui )
g′(ui )

|gi (x) − gi (y)|.
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Substituting this into the expression above, and writing Di := g′′(ui )/g′(ui ) for sim-
plicity, we get

log

(
gn−m
)′

(gm(x))
(
gn−m
)′

(gm(y))
=

n−1∑

i=m

Di |gi (x) − gi (y)| ≤
n−1∑

i=0

Di |gi (x) − gi (y)|. (56)

We will bound the sum above in two steps. First of all we will show that it admits
a uniform bound D̂ independent of m, n. We will then use this bound to improve our
estimates and show that by paying a small price (increasing the uniform bound to a larger
boundD := D̂2/|�−

0 |) we can include the term |gn(x)− gn(y)| as required. Ultimately
this gives a stronger result since it takes into account the closeness of the points x, y.

Let us suppose first for simplicity that x, y ∈ δ+n , the estimates for δ−n are identical.
Then for 1 ≤ i < n we have that gi (x), gi (y), ui ∈ �−

n−i and therefore we can bound
(56) by

n−1∑

i=0

Di |gi (x) − gi (y)| ≤ D0|x − y| +
n−1∑

i=1

Di |gi (x) − gi (y)| ≤ D0δ
+
n +

n−1∑

i=1

Di |�−
n−i |.

(57)

From (12) and using the relationship between the y+n and the x−n we may bound the first
term by

D0|δ+n | � u−1
0 |δ+n | �

y+n − y+n+1
y+n+1

�
(

1 + x−n
1 + x−n+1

)1/k

− 1 → c < ∞ (58)

where we have used the fact that that for some sequence ξn → −1 we have (1 + x−n )/

(1 + x−n+1) = g′(ξn) which converges to 1 if � > 0 (and therefore c = 0) or 1 + b1
otherwise (and therefore c = b1). If �1 = 0 then Di is uniformly bounded for i > 0, if
�1 > 0, then from (11) and (45) we know that

Di |�−
n−i | � (1 + ui )

�1−1|�−
n−i | � (n − i)

− �1−1
�1 (n − i)

−
(
1+ 1

�1

)

= (n − i)−2. (59)

Then by (58) and (59) we find that

D̂:= exp

{

D0δ
+
n +

∞∑

i=1

Di�n−i

}

≤ exp

{

D0 +
∞∑

i=1

Di�n−i

}

< ∞. (60)

Substituting this back into (57) and then into (56) we get

log

∣
∣
∣
∣

(
gn−m
)′

(gm(x))
(
gn−m
)′

(gm(y))

∣
∣
∣
∣ ≤ log D̂ (61)

which completes the first step in the proof, as discussed above. We now take advantage
of this bound to improve our estimates as follows. By a standard and straightforward
application of theMeanValue Theorem, (61) implies that the diffemorphisms gn : δ+n →
�−

0 and gn−m : �−
n−m → �−

0 all have uniformly bounded distortion in the sense that
for every x, y ∈ δ+n and 1 ≤ m < n we have

|x − y|
|δ+n |

≤ D̂
|gn(x) − gn(y)|

|�−
0 |

(62)
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and

|gm(x) − gm(y)|
|�+

n−m |
≤ D̂

|gn−m(gm(x)) − gn−m(gm(y))|
|�−

0 |
= D̂

|gn(x)) − gn(y)|
|�−

0 |
. (63)

Therefore

|x − y| ≤ D̂

|�−
0 |
|gn(x)− gn(y)||δ+n | and |gm(x)− gm(y)| ≤ D̂

|�−
0 |
|gn(x)− gn(y)||�−

n−m |.

Substituting these bounds back into (56) (with i = m), and letting D := D̂2/|�−
0 |, we

get

log

(
gn−m
)′

(gm(x))
(
gn−m
)′

(gm(y))
≤

n−1∑

i=0

Di |gi (x) − gi (y)| = D0|x − y| +
n−1∑

i=1

Di |gi (x) − gi (y)|

≤ D0
D̂

|�−
0 |
|gn(x) − gn(y)||δ+n | +

n−1∑

i=1

Di
D̂

|�−
0 |
|gn(x) − gn(y)||�−

n−i |

= D̂

|�−
0 |

[

D0|δ+n | +
n−1∑

i=1

Di |�−
n−i |
]

|gn(x) − gn(y)|

≤ D̂2

|�−
0 |
|gn(x) − gn(y)| = D|gn(x) − gn(y)|.

Notice that the last inequality follows from (60). This completes the proof. ��
We state here also a simple corollary of Propositions 3.5 and 3.10 which we will use

in Sect. 4.

Lemma 3.12. For all i, j ≥ 1 we have

μ̃(δi, j ) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i−(1+1/β2) j−(1+1/β1), if �1, �2 > 0
(1 + b2)−i , if �1 = 0, �2 > 0
(1 + b1)− j , if �2 = 0, �1 > 0
min{(1 + b1), (1 + b2)}−i− j , if �1 = 0, �2 = 0

(64)

Proof. Proposition 3.10 implies that |δi j | ≈ |δ−i ||δ+j | uniformly for all i, j ≥ 1. In-

deed, more precisely, it impliesD−1|gi (δi j )|/|gi (δi )| ≤ |δi j |/|δi | ≤ D|gi (δi j )|/|gi (δi )|
which implies |δ−i ||δ+j |/D|�+

0 | ≤ |δi j | ≤ D|δ−i ||δ+j |/|�+
0 |.As μ̃ is equivalent toLebesgue

on �−
0 ∪�+

0 we obtain the Lemma immediately from Proposition 3.5. ��

4. Statistical Properties

In Sect. 4.1 we prove Proposition 2.6 and in Sect. 4.2 we prove Proposition 2.10 and
Corollary 2.11. As discussed in Sect. 2.3 this completes the proof of Theorem E.
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4.1. Distribution and tail estimates. In this section we prove Proposition 2.6. We will
only explicitly prove (27) and (28) as the proof of (29) is identical to that of (28). For
a, b ≥ 0 consider the following decompositions

μ̃(aτ+ + bτ− > t) = μ̃(aτ+ > t) + μ̃(bτ− > t) (65)

− μ̃(aτ+ > t, bτ− > t) + μ̃(aτ+ + bτ− > t,max{aτ+, bτ−} ≤ t) (66)

and

μ̃(aτ+ − bτ− > t) =μ̃(aτ+ > t) (67)

− μ̃(aτ+ > t, aτ+ − bτ− ≤ t). (68)

We can then reduce the proof to two further Propositions. First of all we give precise
asymptotic estimates of the terms μ(aτ+ > t), μ(bτ− > t) which make up (65) and
(67).

Proposition 4.1. For every a, b ≥ 0 and for every γ ∈ (0, 1)

μ̃(aτ+ > t) =
{
Cat−1/β2 + o(t−γ−1/β2) if �1 > 0
O
(
(1 + b2)−t/ak1

)
if �1 = 0

(69)

and

μ̃(bτ− > t) =
{
Cbt−1/β1 + o(t−γ−1/β1) if �2 > 0
O
(
(1 + b1)−t/bk2

)
if �2 = 0

(70)

Then, we show that the remaining terms (66) and (68) in the decompositions above
have negligible contribution to the leading order asymptotics of the tail.

Proposition 4.2. If at least one of �1, �2 are not zero, then for every a, b ≥ 0, γ ∈ (0, 1)
we have

μ̃(aτ+ > t, bτ− > t) + μ̃(aτ+ + bτ− > t,max{aτ+, bτ−} ≤ t) = o(t−γ−1/β) (71)

and

μ̃(aτ+ > t, aτ+ − bτ− ≤ t) = o(t−γ−1/β) (72)

As we shall see, (72) actually holds for all γ ∈ (0, 1/β) (where 1/β > 1 since
β ∈ (0, 1) by assumption) but we will not need this stronger statement. We prove
Proposition 4.1 in Sect. 4.1.1 and Proposition 4.2 in Sect. 4.1.2, but first we show how
they imply Proposition 2.6.

Proof of Proposition 2.6. To prove (27), first suppose that least one of �1, �2 is non-zero.
Substituting the corresponding lines of (70) and (70) into (66) and substituting (71) into
(68) we obtain (27) in this case. If �1 = �2 = 0 we only need to establish an upper
bound for μ̃(aτ+ + bτ− > t) rather than an asymptotic equality and therefore, instead
of the decomposition in (65) and (66), we can use the fact that

μ̃(aτ+ + bτ− > t) ≤ μ̃(aτ+ > t) + μ̃(bτ− > t) (73)

The result then follows by inserting the corrsponding lines of (70) and (70) into (73).
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To prove (28), if �2 > 0 the result follows by substituting the corresponding line of
(70) into (67) and substituting (72) into (68). Again, if �2 = 0 we only need to establish
an upper bound for μ̃(aτ+− bτ− > t) rather than an asymptotic equality and therefore,
instead of the decomposition in (67) and (68), we can use the fact that

μ̃(aτ+ − bτ− > t) ≤ μ̃(aτ+ > t) (74)

The result then follows by inserting the corresponding line of (70) into (74). ��

4.1.1. Leading order asymptotics Weprove Proposition 4.1 via two lemmaswhich show
in particular how the values h̃(0−), h̃(0+) of the density of the measure μ̃ turn up in the
constantsCa,Cb defined in (26). Our first lemma shows that the tails of the distributions
μ̃(τ+ > t) and μ̃(τ− > t) have a very geometric interpretation.

Lemma 4.3. For every t > 0 we have

μ̃(τ+ > t) = μ̃(y−�t�, 0) and μ̃(τ− > t) = μ̃(0, y+�t�). (75)

Remark 4.4. While the first statement in (75) is relatively straightforward, the second
statement is not at all obvious since τ− is defined on �−

0 and there is no immediate
connection with the interval (0, y+�t�) in �+

0 . As we shall see, the proof of Lemma 4.3
requires a subtle and interesting argument.

Remark 4.5. Since μ̃ is equivalent to Lebesgue measure on�−
0 and�+

0 , we immediately
have that μ̃(y−�t�, 0) ≈ |y−�t�| and μ̃(0, y+�t�) ≈ y+�t�, and we can then use (47) and (49),
and Lemma 4.3, to get upper bounds for the distributions μ̃(τ+ > t) and μ̃(τ+ > t).
This is however not enough for our purposes as we require sharper estimates for the
distributions, and we therefore need a more sophisticated argument which yields the
statement in the following lemma.

Lemma 4.6. For every t > 0 we have

μ̃(y−�t�, 0) = y−�t�h̃(0−) + O((y−�t�)
2) and μ̃(y+�t�, 0) = y+�t�h̃(0+) + O((y+�t�)2).

Before proving these two lemmas we show how they imply Proposition 4.1.

Proof of Proposition 4.1. Let us first show (70). Recall from the definition of Ca in (26)
that a = 0 ⇒ Ca = 0, so if a = 0 there is nothing to prove. Let us suppose then that
a > 0. By Lemmas 4.3 and 4.6 we have

μ̃(aτ+ > t) = μ̃(τ+ > t/a) = y−�t/a�h̃(0−) + O((y−�t/a�)
2).

Then, using the asymptotic estimates (48) and (47) for y−n in Proposition 3.5; and since
O(t−2/β1) = o(t−γ−1/β1) for every γ ∈ (0, 1); and by the definition of Ca in (26), we
obtain

μ(aτ+ > t) =
{
B1h̃(0−)(t/a)−1/β2 + O(t−2/β2) = Cat−1/β2 + o(t−γ−1/β2) if �1 > 0
O
(
(1 + b2)−t/ak1

)
if �1 = 0

yielding (70). To show (70) we can proceed similarly to the above. As before, if b = 0
there is nothing to prove so we assume b > 0 in which case Lemmas 4.3 and 4.6 we
have μ̃(bτ− > t) = μ̃(τ− > t/b) = y+�t/b�h̃(0−) + O((y+�t/b�)2). Now using (48) and
(49), and arguing as above we find that (29) holds for every γ ∈ (0, 1). ��
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We complete this section with the proofs of Lemmas 4.3 and 4.6.

Proof of Lemma 4.3. By definition, recall (22), τ+(x) = i, τ−(x) = j for all x ∈ δi, j ,
and therefore

μ̃(τ+ > t) =
∑

i>t

∞∑

j=1

μ̃(δi, j ) and μ̃(τ− > t) =
∑

j>t

∞∑

i=1

μ̃(δi, j ). (76)

We claim that for every i, j ≥ 1 we have

∞∑

j=1

μ̃(δi, j ) = μ̃(δ−i ) and
∞∑

i=1

μ̃(δi, j ) = μ̃(δ+j ). (77)

Then, substituting (77) into (76) we get

μ̃(τ+ > t) =
∑

i>t

∞∑

j=1

μ̃(δi, j ) =
∑

i>t

μ̃(δ−i ) = μ̃(y−�t�, 0), (78)

and

μ̃(τ− > t) =
∑

j>t

∞∑

i=1

μ̃(δi, j ) =
∑

j>t

μ̃(δ+i ) = μ̃(0, y+�t�)

which is exactly the statement (75) in the Lemma.
Thus it only remains to prove (77). As already mentioned in Remark 4.4, despite the

apparent symmetry between the two statements, the situation in the two expressions is
actually quite different. Indeed, from the topological construction of the induced map,
for each i ≥ 1 we have

δ−i =
∞⋃

j=1

δi, j (79)

which, since the intervals δi, j are pairwise disjoint, clearly implies the first equality in
(77). The second equality is not immediate since, for each fixed j ≥ 1, the intervals
δi, j are spread out in �−

0 , with each δi, j lying inside the corresponding interval δ
−
i , and

indeed the δi, j do not even belong to δ+j and therefore we cannot just substitute i and j to
get a corresponding version of (79).We use instead a simple but clever argument inspired
by a similar argument in [Cri+10, Lemma 8] which takes advantage of the invariance of
the meaure μ̃. Recall first of all from the construction of the induced map, that g−1(δ+j )

consists of exactly two connected components, one is exactly the interval δ1, j and the
other one is a subinterval of �+

1. So for any j ≥ 1 we have

g−1(δ+j ) = δ1, j ∪ {x : �+
1 : g(x) ∈ δ+j }.

By the invariance of the measure μ̃, and since these two components are disjoint, this
implies

μ̃(δ+j ) = μ̃(g−1(δ+j )) = μ̃(δ1, j ) + μ̃({x : �+
1 : g(x) ∈ δ+j }) (80)
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The preimage of the set {x : �+
1 : g(x) ∈ δ+j } itself also has two disjoint connected

components

g−1{x ∈ �+
1 : g(x) ∈ δ+j } = δ2, j ∪ {x ∈ �+

2 : g2(x) ∈ δ+j }
and therefore, again by the invariance of μ̃, we get

μ̃(g−1{x ∈ �+
1 : g(x) ∈ δ+j }) = μ̃(δ2, j ) + μ̃({x ∈ �+

2 : g2(x) ∈ δ+j })
and, substituting this into (80), we get

μ̃(δ+j ) = μ̃(g−1(δ+j )) = μ̃(δ1, j ) + μ̃(δ2, j ) + μ̃({x ∈ �+
2 : g2(x) ∈ δ+j }).

Repeating this procedure n times gives

μ̃(δ+j ) =
n∑

i=1

μ̃(δi, j ) + μ̃({x ∈ �+
n : gn(x) ∈ δ+j })

and therefore inductively, we obtain (77), thus completing the proof. ��
Proof of Lemma 4.6. From Lemma 4.3 we can give precise estimates for μ̃(τ± > t) in
terms of the y�t� by making use of the fact that h̃ is Lipschitz on �±

0 (see Corollary 2.4).
Indeed,

μ̃(τ− > t) = μ̃(0, y+�t�) =
∫ y+�t�

0
h̃(x)dx = y+�t�h̃(0+) +

∫ y+�t�

0
h̃(x) − h̃(0+)dx .

Using the fact that the density is Lipschitz we have
∣
∣
∣
∣
∣

∫ y+�t�

0
h̃(x) − h̃(0+)dx

∣
∣
∣
∣
∣
�
∫ y+�t�

0
xdx � (y+�t�)2

and so μ̃(τ− > t) = y+�t�h̃(0+) + O((y+�t�)2). The statement for μ(τ+ > t) follows in
the same way. ��

4.1.2. Higher order asymptotics In this subsection we prove Proposition 4.2. For clarity
we prove (71) and (72) in two separate lemmas.Wewill make repeated use of some upper
bounds for the measure μ̃(δi, j ) of the partition elements which are given in Lemma 3.12

Lemma 4.7. If at least one of �1, �2 are not zero, then for every a, b ≥ 0

μ̃(aτ+ > t, bτ− > t) + μ̃(aτ+ + bτ− > t,max{aτ+, bτ−} ≤ t) = o(t−γ−1/β) (81)

for any γ ∈ (0, 1).

Proof. First note that if one of a, b is 0 then (81) is automatically satisfied.
Now suppose that a, b > 0. For the first term in (81), from Lemma 3.12 we get

μ̃(aτ+ > t, bτ− > t) =
∞∑

i=t/a

∞∑

j=t/b

μ̃(δi, j ) �
∞∑

i=t/a

∞∑

j=t/b

(i j)−(1+1/β) � t−2/β (82)
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which is o(t−γ−1/β) for every γ ∈ (0, 1/β) and therefore in particular for every γ ∈
(0, 1).

For the second term in (81) we obtain from Lemma 3.12 that

μ̃(aτ+ + bτ− > t,max{aτ+, bτ−} ≤ t) =
t/a∑

i=1

t/b∑

j= t−ai+1
b

μ̃(δi, j ) �
t/a∑

i=1

t/b∑

j= t−ai+1
b

i−1−1/β j−1−1/β

�
t/a∑

i=1

i−1−1/β

[(
t − ai + 1

b

)−1/β

−
(
t

b

)−1/β
]

� t−1/β
t/a∑

i=1

i−1−1/β

[(

1− ai − 1

t

)1/β

− 1

]

(83)

Making the change of variables k = �ai − 1� and using that the first term in the sum is
0 we obtain

μ̃(aτ+ + bτ− > t,max{aτ+, bτ−} ≤ t) � t−1/β
t−1∑

k=1

k−1−1/β

[(

1 +
k

t

)1/β

− 1

]

.

Let us set ak(t):=k−1−1/β
[(
1 + k

t

)1/β − 1
]
and use the binomial theorem to get

ak(t) = 1

k1+1/β

∞∑

m=1

(−1/β

m

)(

− k

t

)m

= 1

tk1/β

∞∑

m=1

(−1/β

m − 1

)(
1

m

(
1

β
− 1

)

+ 1

)(

− k

t

)m−1

.

As
(
1
β
− 1
)

/m is uniformly bounded above by some constant depending only on β we

obtain

ak(t) � k−1/β t−1
∞∑

k=0

(−1/β

m − 1

)(

−k

t

)m−1

= k−1/β t−1
(

1− k

t

)−1/β

.

Using the fact that n/(n − 1) < 2 and that 1/β > 1 we may conclude

μ̃(aτ+ + bτ− > t,max{aτ+, bτ−} ≤ t) � t−1−1/β
t−1∑

k=1

(
t

k(t − k)

)1/β

� t−1−1/β
t−1∑

k=1

t

k(t − k)

� t−1−1/β
∫ t−1

1

t

x(t − x)
dx � t−1−1/β log(t) = o(t−γ−1/β )

for any γ ∈ (0, 1). ��
Lemma 4.8. If �1, �2 are not both zero, then for every a, b ≥ 0, γ ∈ (0, 1/β) we have

μ̃(aτ+ > t, aτ+ − bτ− ≤ t) = o(t−γ−1/β).

Proof. By Lemma 3.12 we get

μ̃(aτ+ > t, aτ+ − bτ− ≤ t) =
∑

i>t/a

μ̃(τ+ = i, bτ− ≥ ai − t) =
∑

i>t/a

∑

j≥(ai−t)/b

μ̃(δi, j )

�
∑

i>t/a

i−(1+1/β)(ai − t)−1/β �
∞∑

i=1

(i + t)−(1+1/β)i−1/β .
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We claim that
∞∑

i=1

(t + i)−1−1/β i−1/β � t−γ−1/β

for every 0 < γ < 1/β, which is equivalent to showing that

∑

i=1

tγ+1/β

(t + i)1+1/β i1/β
≤ C

for some C > 0 independent of t . Indeed, for every i ,

tγ+1/β

(t + i)1+1/β i1/β
≤ (t + i)γ+1/β

(t + i)1+1/β i1/β
= 1

(t + i)1−γ i1/β
= 1

(t/ i + 1)1−γ i1−γ+1/β ≤ 1

i1−γ+1/β

which is summable for every 0 < γ < 1/β. This implies the claim and thus the lemma.
��

4.2. Estimates for the induced observables. In this section we prove Corollary 2.11 and
Proposition 2.10.We recall (see paragraph at the beginning of Sect. 2.3) that wewill only
explicitly treat the case that �1, �2 > 0 (and thus in particular β > 0). Throughout this
section we will assume that ϕ is a Hölder obervable and define a = ϕ(1), b = ϕ(−1).

4.2.1. Proof of Corollary 2.11 We first consider the case where βϕ = β. Recall from
(14) that βϕ = β occurs when ϕ is non-zero at a fixed point corresponding to the
maximum of β1, β2; and that βϕ �= β occurs when β1 �= β2 and ϕ is zero at the fixed
point corresponding to the minimum of β1, β2.

Lemma 4.9. If βϕ = β, then τa,b ∈ D1/βϕ . In particular, if βϕ ∈ (0, 1/2) then τa,b ∈
L2(μ̂).

Proof. Notice first of all that if τa,b ∈ D1/βϕ then, in particular, μ̃(±τa,b > t) � t−1/βϕ

and so, if βϕ ∈ (0, 1/2) we obtain that τa,b ∈ L2(μ̂). Thus we just need to prove that
τa,b ∈ D1/βϕ .

Suppose first that a, b do not have opposite signs, i.e. either a, b ≥ 0 or a, b ≤ 0,
in which case the distribution of τa,b is determined by the first case of (27). Therefore,
taking γ = 0 we get

μ̃(τa,b > t) = Cat
−1/β2 + Cbt

−1/β1 + o(t−1/β) = ct−1/β + o(t−1/β)

for some constant c > 0, which may be equal to Ca , Cb, or Ca + Cb, depending on
the relative values of β1, β2. If a, b ≥ 0, and exactly the same tail for μ̃(τa,b < −t) if
a, b ≤ 0. By (30) and the fact that βϕ = β we get that τa,b ∈ D1/βϕ , thus proving the
result in this case. If a ≥ 0, b ≤ 0 the distribution of τa,b is given by (28) and (29) and
so, taking γ = 0 gives

μ̃(τa,b > t) = Cat
−1/β2 + o(t−1/β) = c1t

−1/β + o(t−1/β)

and

μ̃(τa,b < −t) = C|b|t−1/β1 + o(t−1/β) = c2t
−1/β + o(t−1/β)



Doubly Intermittent Full Branch Maps with Critical Points 1875

where c1 = Ca and c2 = C|b| if β2 = β and β1 = β respectively, and equal to 0
otherwise. At least one of the c1, c2 has to be non-zero as βϕ = β implies that ϕ is non-
zero at a fixed point corresponding to the largest of β1, β2 and so if β1 = max{β1, β2}
we know from (26) that c2 = C|b| > 0 and if β2 = max{β1, β2} we know from (26)
that c1 = Ca > 0. Thus, since β = βϕ , we get τa,b ∈ D1/βϕ . If a ≤ 0, b ≥ 0 the same
argument holds exchanging the roles of the positive and negative tails. ��
Proof of Corollary 2.11. We have already proved the result for βϕ = β in Lemma 4.9
so we can assume that βϕ �= β. This implies that β1 �= β2 and that ϕ is only non-zero
at the fixed point corresponding to the smallest of the β1, β2. This situation can arrise
in two ways: either (i) a �= 0, b = 0 and βϕ = β2 < β1; or (ii) a = 0, b �= 0 and
βϕ = β1 < β2. We will assume (i) and give an explcit proof of the Lemma. The proof
of the Lemma in situation (ii) then follows in the same way.

Under our assumptions we know from Proposition 2.6 that the tail of τa,b is deter-
mined by (27), and we recall from (26) that Cb = 0. If βϕ = β2 = 0 then we know from
the second line of (27) that

μ̂(±τa,b > t) � t−γ−1/β1 .

Since β = β1 < 1 by assumption, we may choose γ ∈ [0, 1) such that γ + 1/β1 > 2
yielding τa,b ∈ L2(μ̂). If βϕ ∈ (0, 1/2) then the first line of (27) gives that

μ̂(±τa,b > t) � max{t−1/βϕ , t−γ−1/β}
for any γ ∈ [0, 1). Choosing γ as before so that γ + 1/β1 > 2 we again obtain that
τa,b ∈ L2(μ̂). If βϕ = β2 ∈ [1/2, 1) then, choosing γ ∈ [0, 1) so that γ + 1/β1 > 1/β2
we know from (27) that the non-zero tail of τa,b is given by

μ̂(±τa,b > t) � Cat
−1/β2 + o(t−γ−1/β1) = Cat

−1/β2 + o(t−1/β2)

yielding τa,b ∈ D1/βϕ . ��

4.2.2. Proof of Proposition 2.10

Proof of Proposition 2.10. For a point x ∈ δ−i, j we know that τ(x) = i + j and that

gk(x) ∈ �+
i−k ∀ 1 ≤ k ≤ i; and gi+k(x) ∈ �−

j−k ∀ 1 ≤ k ≤ j − 1. (84)

Recall that by Proposition 3.4 we have 1 − x+n � n−1/�2 , and |�+
n | � n−(1+1/�2) !

1 − x+n , which means that we can use the fact that ϕ̃(1) = 0 and the Hölder continuity
of ϕ̃(0,1] to obtain

|ϕ̃ ◦ gk(x)| � (1− x+i−k)
ν2 ≤ (i − k)−ν2/�2 , (85)

for all 1 ≤ k ≤ i−1. Similarly, using the fact that ϕ̃(−1) = 0 and the Hölder continuity
of ϕ̃[−1,0),

|ϕ̃ ◦ gi+k(x)| � (1 + x+j−k)
ν1 ≤ ( j − k)−ν1/�1 , (86)

for all for 1 ≤ k ≤ j − 1. For x ∈ δi, j we know from (85) and (86) that

|�̃(x)| �
i−1∑

k=1

(i − k)
− ν2

�2 +
j−1∑

k=1

( j − k)
− ν1

�1 . (87)
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We now consider two cases. Suppose first that �1 < ν1 and �2 < ν2. Then |�̃(x)| is
uniformly bounded in x , as both (85) and (86) are summable in k and therefore the sums
in (87) both converge. Therefore �̃ ∈ Lq(μ̂) for every q > 0, in particular �̃ ∈ L2(μ̂)

giving the first implication in (36), and by Chebyshev’s inequality, μ̂(±�̃ > t) =
O(t−q) for every q > 0, giving the second implication in (36). Notice that we have not
required in this case the conditions (H) and (H′).

Now suppose that �1 ≥ ν1 and/or �2 ≥ ν2 and suppose also that

ν1 >
β1 − 1/q

k2
and ν2 >

β2 − 1/q

k1
. (88)

Notice that for q = 2 this gives exactly condition (H) and for q = 1/βϕ this gives
exactly (H′). We can also suppose without loss of generality that in fact �1 > ν1 and/or
�2 > ν2 since we can decrease slightly the Hölder exponent while still satisfying (88).
In this case the sums in (87) diverge but admit the following bounds:

|�̃(x)| �
i−1∑

k=1

(i − k)
− ν2

�2 +
j−1∑

k=1

( j − k)
− ν1

�1 � i
1− ν2

�2 + j
1− ν1

�1 .

We can then bound the integral by

∫

�−
0

|�̃(x)|qdm �

⎡

⎣
∞∑

i=1

∞∑

j=1

|δi, j |
(
i
1− ν2

�2 + j
1− ν1

�1

)q
⎤

⎦

Then, since |δi, j | = O(i−(1+1/β2) j−(1+1/β1)) we get

∫

�−
0

|�̃(x)|qdm �

⎡

⎣
∞∑

i, j=1

i
q− qν2

�2

i
1+ 1

β2 j
1+ 1

β1

+
∞∑

i, j=1

j
q− qν1

�1

i
1+ 1

β2 j
1+ 1

β1

⎤

⎦ �
∞∑

i=1

i
q− qν2

�2
−1− 1

β2

+
∞∑

j=1

j
q− qν1

�1
−1− 1

β1

The latter sums are bounded exactly when (88) holds. As mentioned above, for q = 2
this is exactly condition (H) and therefore we get that �̃ ∈ L2(μ̂). For q = 1/βϕ this
is exactly condition (H′) and therefore we get that �̃ ∈ Lq(μ̂). In fact if (88) holds for
q = 1/βϕ then there exists some ε > 0 such that (88) holds for all q ∈ [1/βϕ, 1/βϕ + ε)

and therefore �̃ ∈ Lq(μ̂) for every q ∈ [1/βϕ, 1/βϕ + ε). From this and Chebyschev’s
inequality we get μ̂(±�̃ > t) = o(t−1/βϕ ). ��
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