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Abstract: We prove results for the study of the double copy and tree-level colour/
kinematics duality for tree-level scattering amplitudes using the properties of Lie poly-
nomials.We show that the ‘S-map’ that was defined to simplify super-Yang–Mills multi-
particle superfields is in fact a Lie bracket. A generalizedKLTmap fromLie polynomials
to their dual is obtained by studying our new Lie bracket; the matrix elements of this
map yield a recently proposed ‘generalized KLT matrix’, and this reduces to the usual
KLT matrix when its entries are restricted to a basis. Using this, we give an algebraic
proof for the cancellation of double poles in the KLT formula for gravity amplitudes.
We further study Berends–Giele recursion for biadjoint scalar tree amplitudes that take
values in Lie polynomials. Field theory amplitudes are obtained from these ‘Lie polyno-
mial amplitudes’ using numerators characterized as homomorphisms from the free Lie
algebra to kinematic data. Examples are presented for the biadjoint scalar, Yang–Mills
theory and the nonlinear sigma model. That these theories satisfy the Bern–Carrasco–
Johansson amplitude relations follows from the structural properties of Lie polynomial
amplitudes that we prove.
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1. Introduction

The results in this paper show how Lie polynomials [1] and the combinatorics of words
[2] are basic to the study of tree-level scattering amplitudes in field theory and string
theory.We give self-contained proofs of the identities that underpin coloured amplitudes
and the double copy at tree-level using simple properties of Lie polynomials. We will
see that the cleanest description is in terms of the Berends–Giele multiparticle fields of
biadjoint scalar theory, with values in Lie polynomials.

The free Lie algebra, L , is the space of linear combinations of ‘Lie monomials’,
which are nested commutators of ‘letters’; our letters will be taken to be the natural
numbers (1, 2, 3, . . .). L is a subspace of the space of linear combinations of ‘words’
formed from the natural numbers. The connection to gauge theory arises because there is
a natural map from Lie monomials � ∈ L to the colour structures that appear in gauge
theories, for any choice of gauge Lie algebra, and for any (single trace) gauge theory
Lagrangian. Moreover, there is also a correspondence between Lie monomials � ∈ L
and labelled binary trees with a given root.

The double copy starts by expressing Yang-Mills tree amplitudes in the form [3]

A =
∑

�

N�c�

s�

. (1.1)

Here � denotes trivalent graphs, s� denotes the product of denominator propagator
factors associated to the graph, and c� denotes the corresponding colour factor.1 The
numerators N� are functions of momenta and gluon polarization data. These are said

1 The colour factor c� is formed from the graph � by associating Lie algebra structure constants at each
vertex, Kronecker-deltas along each internal propagator and taking inner products with the ‘external colours’
at the leaves.
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to be ‘BCJ numerators’ if they satisfy colour-kinematics duality, which means that they
satisfy

N� + N�′ + N�′′ = 0,

whenever � + �′ + �′′ = 0. In other words, the N� are ‘BCJ numerators’ if � �→ N�

is a homomorphism from L to the space of functions of the kinematic data.2 Such
numerators exist for Yang-Mills, and the key example of the double copy is that replacing
c� in (1.1) by another copy of N� yields gravity amplitudes [4]. BCJ numerators are
known for many coloured theories and can be used to obtain the tree amplitudes of any
theory known to participate in the double copy. This includes gauge and gravity theories
and their relatives, such as brane theories, with and without supersymmetry, as well as
tree-level string amplitudes; see [5] for an up-to-date review of progress and references
to the literature. The most basic example is to replace N� in (1.1) by c� . This yields the
amplitudes of the biadjoint scalar theory, which is the backbone of the double copy.

Lie polynomials are ubiquitous in the auxiliary structures that are used to study ampli-
tudes, andwith hindsight can be seen in themultiparticle vertex operators in conventional
string theory [6], in the geometry of the space of Mandelstam variables [7], and in the
CHY formulae and ambitwistor strings [8,9], where a prominent role is played byM0,n ,
the moduli space of n-points on the Riemann sphere [10,11]. However, our aim here is
to prove basic results directly using only the Lie polynomial structure.

The following sections summarize our results.

1.1. Berends–Giele recursion and planar binary trees. In Sect. 2, we review the proper-
ties of the space of Lie polynomials,L , and its dualL ∗. Elements of the dual,L ∗, can
be expressed as ‘words modulo shuffles’. For a Lie monomial � ∈ L and a word P , the
duality pairing is denoted (P, �). There is a correspondence between Lie monomials
� ∈ L (up to sign) and binary trees, i.e., trivalent rooted tree graphs [12]. If P is a word
such that (P, �) = 1, then P defines a planar embedding of the tree associated to �.

Section 3 reviews the Berends–Giele recursion relations for biadjoint scalar theory.
For P ∈ L ∗, we reduce this problem to studying the recursion (as in [13])

b(P) = 1

sP

∑

XY=P

[b(X), b(Y )] , b(i) = i (1.2)

where sP is the Mandelstam variable associated to the word P . The b(P) are valued in
the space of Lie polynomials, L . Moreover, the relation (1.2) is solved by

b(P) =
∑

�

(P, �)�

s�

, (1.3)

where the sum is over Lie monomials �, defined up to sign.
Theb(P) naturally definewhatwe callLie polynomial amplitudes. These are obtained

by removing the off-shell external propagator to obtain colour ordered partial amplitudes
m(Pn) valued in Lie polynomials:

m(Pn) := lim
sP→0

sP b(P). (1.4)

2 We will describe the space of functions of kinematics that arise in amplitudes in general. But it is possible
to describe the image of this homomorphism for any gauge theory that participates in the double copy.
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The pairing of (1.4) with an ordering gives the double colour ordered partial amplitudes
of the biadjoint theory m(Pn, Qn) := (Q, m(Pn)) [14].

For a given gauge theory, we interpret BCJ numerators N� as given by homomor-
phism, N , from the free Lie algebra to functions of their kinematic data, as in [10]. The
existence of such a homomorphism is special to those gauge theories that participate in
the double copy, and we write down examples for NLSM and SYM theories in § 7. The
amplitudes are obtained by acting on m(Pn)with N . They satisfy the Kleiss Kuijf (KK)
relations and the Bern Carrasco Johansson (BCJ) relations because of the basic results
that we prove about theL -valued b(P).

1.2. BCJ amplitude relations from a new Lie bracket. It was argued in [6–15] that BCJ
amplitude relations could be expressed using the map defined in [6] that was there called
the ‘S-map’. We will show that this map defines a Lie bracket in the dual space of Lie
polynomials. We will call this Lie bracket the S-bracket and denote it with braces: { , }.

We prove that the BCJ amplitude relations of [6–15] follow from the basic identity

b({P, Q}) = [b(P), b(Q)] , (1.5)

which generalizes the off-shell BCJ relations of [16]. Thus b maps the {, }-bracket to the
standard Lie bracket. We also show that b : P �→ b(P) is an invertible map, and that
{, } is the pullback of [, ] under this map. In particular {, } is a Lie bracket.

The BCJ relations for amplitudes are a consequence of (1.5), which implies that
b({P, Q}) does not have pole in 1/sP Q , and hence that

m({P, Q}, n) = 0,

in the limit as sP Q → 0.

1.3. The KLT inner product and its generalized matrix. TheKawai–Lewellen-Tye (KLT)
matrix [17–19] relates Yang-Mills partial amplitudes to gravity amplitudes. It arises in a
natural way from the S-bracket. If � is a Lie monomial, let {�} be obtained by replacing
every pair of brackets [, ]with an S-bracket {, }. This iswell definedbecause the S-bracket
is Lie. We use this to define a KLT map:

S : � �→ {�},
which is valued in L ∗. Using the duality pairing between L and L ∗, the KLT map
defines a symmetric bilinear form on L : S(�1, �2) := ({�1}, �2). The conventional
KLT matrix is recovered by evaluating the matrix elements of this map in a basis. In
particular, the ‘generalized KLT matrix’ of [13] is given by

S(P, Q) = ({�[P]}, �[Q]) , (1.6)

where � denotes the complete left bracketings:

�[123 . . . n] := [. . . [1, 2] . . . n] . (1.7)

Cachazo, He and Yuan [8] showed that biadjoint scalar amplitudes are in some sense the
inverse to the KLT matrix, see [20–22]. Using the Berends–Giele formula for biadjoint
amplitudes, [14], this statement precisely follows from the basic statement that the maps
b and S are inverses of each other, which is our main result.
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1.4. Numerators and cobrackets. In Sect. 8we show that the “contact termmap” defined
in [23] is the Lie co-bracket dual to { , }; it gives rise to a Lie co-algebra structure on
L ∗. In the context of pure spinor superstrings, [23] the contact-term map encodes
the BRST variations of local multiparticle superfield numerators satisfying generalized
Jacobi identities [6,24,25]. These BRST variations play a central role in the recent
developments in the explicit calculation of superstring amplitudes, from tree-level to
3-loops.

Moreover, in Sect. 7 we study BCJ numerators. Our approach shows that BCJ-like
numerators always exist, and are given by N� = B({�}), if B(P) are the Berends–Giele
currents of the theory. However, there is no guarantee that these N� are local, except in
special cases. We review known numerators including for the non-linear sigma model
(NLSM), where we give a conjecture that has since been proved elsewhere [26]. We also
study the numerators for super–Yang–Mills (sYM), Z-theory and the open superstring.

2. Review of Lie Polynomials, Combinatorics on Words and Colour Factors

Let W be the vector space of linear combinations of words over the natural numbers.
The free Lie algebraL is the subspace of W linearly spanned by Lie monomials, �. A
Lie monomial is a complete bracketing of a word, such as such as

� = 123 − 132 − 231 + 321 = [1, [2, 3]]. (2.1)

The left- and right-bracketings are surjective maps from W onto L given by

�[123 . . . n] := [[[1, 2], 3], . . . , n],
r [123 . . . n] := [1, [2, [3, . . . , [n − 1, n] . . .]]]. (2.2)

For a letter i and a word P ,

�[Pi] = [�[P], i] (2.3)

(and similarly r [i P] = [i, r [P]]). This inductively implies Baker’s identity [1]

�[P�[Q]] = [�(P), �[Q]]. (2.4)

Write |P| for the length of a word P . If P denotes the reverse of P , then the so-called
‘antipode’ can be defined as

α(P) := (−1)|P| P . (2.5)

The antipode relates �[P] and r [P] by

�[P] = −r [α(P)]. (2.6)
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2.1. L and its dualL ∗. This section recalls the duality pairing betweenL and its dual,
L ∗, which is central to the results of the paper. For words P, Q ∈ W , write (P, Q) for
the trivial inner product on W :

(P, Q) :=
{
1 if P = Q;
0 otherwise.

(2.7)

The shuffle product on W ,� , is inductively defined by

(i P)� ( j Q) := i(P � ( j Q)) + j ((i P)� Q), (2.8)

for letters i, j , and words P, Q. The base case is i� j = i j + j i . The expression P�Q
is sometimes referred to as the sum over ordered permutations of P and Q, preserving
the ordering of the letters of P and of Q. Ree’s theorem characterizesL in terms of the
shuffle product:

Theorem (Ree) [27].� ∈ W is a Lie polynomial iff (P�Q, �) = 0 for all nonempty
P, Q ∈ W .
Write Sh ⊂ W for the subspace spanned by all proper shuffles, P � Q, with P, Q
nonempty. Ree’s theorem implies thatL is the orthogonal subspace of Sh, with respect
to ( , ). Thus the dual vector space to L (with respect to ( , )) is given by the vector
space quotient,

L ∗ = W/Sh. (2.9)

Elements of L ∗ are equivalence classes, P + Sh, for some P ∈ W . If two expressions
in W , P and Q, belong to the same equivalence class, write P ∼ Q. If P ∼ Q, then
there exist some words Ai , Bi and coefficients ci so that

P = Q +
∑

i

ci Ai � Bi . (2.10)

On account of the ambiguity in how to represent elements ofL ∗ andL , it is useful to
find bases.

A word P is Lyndon if it is smaller in the dictionary ordering than any of its suffixes:
P is Lyndon if P = Q R for nonempty Q and R, then P < R in the dictionary ordering.
The Lyndon words, P , give a basis of L ∗ [1]. Dually, the set of Lie monomials, �[P],
for Lyndon words P , is a basis ofL . These two bases are dual because, for two Lyndon
words P and Q, the smallest letter must come first in both words. But, for any letter i ,

(i P, �[i Q]) = (i P, i Q) = (P, Q), (2.11)

because the only term in the word expansion of �[i Q] that has i at the beginning is i Q.

2.2. Appearance in gauge theory. The algebra recalled above is ubiquitous in gauge
theory because of the colour factors. In this context, it will be helpful to write Wn ⊂ W
for the words in W that have no repeated letters, and only involve letters 1, 2, . . . , n.
Likewise write Ln = L ∩ Wn for the Lie monomials restricted to letters 1, 2, . . . , n.
Its dual isL ∗

n = Wn/(Sh ∩ Wn).
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1 2 3 4

1
s12s34s1234

Fig. 1. The product of propagators 1
s�

and the planar binary tree associated to the Lie monomial [[1, 2], [3, 4]]
according to the definition (2.17)

Fix n elements of a Lie algebra: ta
i ∈ g, for i = 1, . . . , n. For any Lie monomial

� ∈ Ln−1, let t(�) be obtained by writing � as a nested bracketing of 1, . . . , n − 1, and
replacing i with ti and [ , ] with the Lie bracket of g. This defines a linear map

t : Ln−1 → g. (2.12)

If tr is the invariant inner product on g, then for every Lie monomial � ∈ Ln−1, the
associated colour factor is

c� = tr(t(�)tn). (2.13)

The replacement � �→ c� also defines a homomorphism out ofLn−1.
The colour factor c� arises in cubic scalar theory as the colour factor for a specific

cubic Feynman graph, that we write as T� . Regard T� as a rooted binary tree, with root
at n. Then T� is defined inductively as follows. T[1,2] is the tree with two external legs,
1 and 2, connected by one vertex to the root. If � = [�′, �′′], then T� is the tree formed
by connecting (or ‘grafting’) the roots of T�′ and T�′′ to make a new vertex. Every pair
of brackets in � corresponds to a vertex in T� . An example is shown in Fig. 1. The trees
T� and T−� are the same. So there is a 1:1 correspondence between Lie monomials up
to sign, ±�, and binary trees, T.

In massless theories, the contribution of a graph T� to the amplitude is a function
of external momenta, kμ

i , i = 1, . . . , n, with ki · ki = 0. Write si j for the Mandelstam
variable

si j := 2ki · k j . (2.14)

For every subset I ⊂ N with at least two elements, write

kμ
I :=

∑

i∈I

kμ
i , (2.15)

and

sI := k2I =
∑

{i, j}⊂I

si j . (2.16)

Take � and T� as above. When written as a nested bracket expression, each pair of
brackets in � defines a subset of {1, . . . , n − 1}. If I is a subset that appears like this,
write I ∈ �, and define

s� :=
∏

I∈�

sI . (2.17)
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The inverse, 1
s�
, is then the product of propagators of the tree graph, T� , associated to

�, including a propagator for the root of T� .
Given this, it will be useful to writeM for the Laurent ring in the variables sI , subject

to the relation (2.16). Clearly the propogator factors 1/s� belong toM.

2.3. Identities for amplitudes. The duality between Ln and L ∗
n leads to helpful iden-

tities that we collect in this section. A Lyndon basis for L ∗
n is given by the words of

the form 1P , that begin with 1. This basis is dual to the basis ofLn given by the corre-
sponding Lie monomials �[1P]. Given that these are dual bases, we have the following
basis expansion inL ∗

n ,

P ∼
∑

Q

(P, �[1Q])1Q (2.18)

where the sum is over all permutations, Q, of 23 . . . n. For i P ∈ Wn and some letter i ,
it can be checked that

�[i P] = ∑
P∈X�Y (−1)| X |X̄ iY . (2.19)

This follows from (2.3). Substituting this formula for �[i P] into (2.18) implies that,

XiY ∼ (−1)|X |i(X̄ � Y ) , (2.20)

for XiY ∈ Wn is a permutation of 12 . . . n, and some distinguished letter i .3 Wewill later
see that this implies the Kleiss-Kuijf (KK) relations among partial amplitudes. Setting
Y to be empty in (2.20) gives

P ∼ −(−1)|P| P̄, (2.22)

for any word P .
We also have the dual basis expansion inLn . For � ∈ Ln ,

� =
∑

Q

(1Q, �) �[1Q], (2.23)

where the sum is over permutations of 23 . . . n − 1. For example, this gives

[[1, 2], [3, 4]] = �[1234] − �[1243], (2.24)

which follows also from the Jacobi identity.
Finally, we will need to use the adjoints of � and r , which we write as �∗ and r∗:

(�∗(P), Q) = (P, �(Q)), (r∗(P), Q) = (P, r(Q)). (2.25)

3 Another way to find (2.20) is to prove the following identity at the level of words:

Bi A − (−1)|B|i(A� B̄) = −
∑

XY=B
X 
=∅

(−1)|X | X̄ � (Y i A) . (2.21)

This is stated in [28] and proven in [29] (see also equation (41) in [30]).
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It follows from (2.3) that the adjoints can be computed recursively as

�∗(123 . . . n) = �∗(123 . . . n − 1)n − �∗(23 . . . n)1, �∗(i) := i,

r∗(123 . . . n) = 1r∗(23 . . . n) − nr∗(123 . . . n−1), r∗(i) := i,
(2.26)

Likewise, (2.19) implies that

�∗(A) =
∑

A=XiY

(−1)| X | i(X̄ � Y ) ,

r∗(A) =
∑

A=XiY

(−1)|Y |(X � Ȳ )i .
(2.27)

Note that �∗ and r∗ are well-defined on L ∗ as �∗(P � Q) = 0 = r∗(P � Q) for
nonempty P, Q. This follows from (�∗(P � Q), R) = (P � Q, �[R]), which vanishes
by Ree’s theorem.

3. Berends–Giele Recursion and Lie Polynomials

Berends–Giele (BG) is a recursive method to compute tree-level scattering amplitudes.
[31] This section formulas Berends–Giele recursion in terms of fields with values in
Lie polynomials. This is similar to the ‘perturbiner’ method of [15,28,32,33], and will
allow us to make full use of the properties of Ln and L ∗

n reviewed in Sect. 2.4

3.1. Berends–Giele recursion for biadjoint scalar theories. Consider a biadjoint scalar
field � with values in the tensor product of two Lie algebras g ⊗ g̃. Let these have
structure constants f abc and f̃ ãb̃c̃ and invariant inner products for which we take an
orthonormal basis. Then the Lagrangian is

LBS = 1

2
∇μ�aã∇μ�aã +

1

3! fabc f̃ãb̃c̃�
aã�bb̃�cc̃ , (3.1)

where μ = 1, . . . , d is a space-time index and a, b ã, b̃ are Lie algebra indices. The
field equations are

��aã = 1

2
fabc f̃ãb̃c̃�

bb̃�cc̃ . (3.2)

Our aim is to solve this field equation perturbatively. We will do this by solving a closely
related problem. Let φ(x) be a field with values in Ln ⊗ Ln and subject to the field
equaiton

�φ = 1

2
[[φ, φ]] , (3.3)

where [[ , ]] is the symmetric bracket:

[[�1 ⊗ �̃1, �2 ⊗ �̃2]] := [�1, �2] ⊗
[
�̃1, �̃2

]
. (3.4)

4 In [14], the perturbative solution to the biadjoint scalar field equations was also written as a perturbiner-
like [32] expansion in the spirit of Berends–Giele [31] leading to the desired recursion (3.10) for b(P) that
we find below. Also, the identity b(P � Q) = 0 was proved using different methods in the appendix of [28].
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For some null momenta k1, . . . , kn , the field

φ1 =
n∑

j=1

eik j ·x j ⊗ j ∈ L ⊗ L , (3.5)

gives a homogenous solution to (3.3). We use this to seed a recursive solution of (3.3).
WriteL≤k for the subspace ofLn spanned by Lie monomials � with length |�| ≤ k.

Given a solution to (3.3) with values inL≤k , consider the field

φk = φ1 + proj≤k�−1 1

2
[[φk−1, φk−1]] , (3.6)

where proj≤k denotes the projection ontoL≤k . Let us iteratively applying (3.6), starting
withφ1. At each step in this recursion, the coefficient of aword P in�k has x dependence
eikP ·x . So the inverse wave operator, �−1, acts on such a term to give 1/k2P = 1/sP .
When k = n, we have

φn = φ1 + �−1 1

2
[[φn−1, φn−1]] , (3.7)

which is a solution to (3.3), with values inLn ⊗ Ln . By construction, φn is symmetric
in its two Lie polynomials factors. It follows that, for a word P ∈ Wn , pairing with the
left or right factor of φn gives the same result: (P, φn) = (φn, P). So write

φ(P) := (P, φn) = (φn, P). (3.8)

The x dependence is given by eikP ·x . So the Fourier transform of φ(P) to momentum
space is just

b(P) = e−ikP ·x�(P), (3.9)

which plays the same role in our context as a Berends–Giele ‘current’.
Proposition [13]. The Berends–Giele ‘currents’ satisfy

b(P) = 1

sP

∑

XY=P

[b(X), b(Y )], b(i) = i , (3.10)

where the sum is over all deconcatenations, P = XY , of P .

Proof. Consider the identity, for �1, �2 ∈ Ln ,

(P, [�1, �2])
[
�1,�2

]

=
∑

XY=P

[(X, �1)�1, (Y, �2)�2] + [(X, �2)�2, (Y, �1)�1] . (3.11)

This implies that

1

2
[[φ, φ]](P) =

∑

XY=P

[φ(X), φ(Y )], (3.12)

and the result then follows by pairing (3.6) with P . ��



A Lie Bracket for the Momentum Kernel 1317

Moreover, since b(P) takes values inLn , Ree’s theorem implies that

b(R � S) = 0 , (3.13)

for nonempty R, S. Thus b : P �→ b(P) defines a homomorphism

b : L ∗
n → Ln ⊗ M, (3.14)

where M is the Laurent ring of Mandelstam variables.
The field theory n +1-particle amplitude can be obtained from b(P) by removing the

last propagator, 1/s12...n . Imposing momentum conservation, s12...n → 0. So define the
‘Ln-valued amplitude’ by

m(P, n + 1) = lim
sP→0

sP b(P), (3.15)

for a word P ∈ L∗
n−1.

3.2. The tree diagram expansion of b(P). The recursion relation (3.10) can be solved
explicitly, to recover the usual Feynman diagram expansion. Write s� for the product of
variables sI defined in (2.17). Then we claim that

b(P) =
∑

�

(P, �)�

s�

, (3.16)

where the sum is over � ∈ Ln .

Lemma. The formula in (3.16) satisfies (3.10).

Proof. For any Lie monomial � there are �1 and �2 so that � = [�1, �2], and these
monomials are unique up to sign. So, for a fixed Lie monomial �,

(P, �)�

s�

= (X, �1)(Y, �2) [�1, �2]

sP s�1s�2

− (Y, �1)(X, �2) [�1, �2]

sP s�1s�2

, (3.17)

where P = XY and |X | = |�1|, |Y | = |�2|. Summing over all Lie monomials (up to
sign), �1 and �2, that have length strictly smaller than |P| gives (3.10). ��
The first few examples of b(P) are:

b(12) = [1, 2]
s12

,

b(123) = [[1, 2], 3]
s12s123

+
[1, [2, 3]]

s23s123
,

b(1234) = [[[1, 2], 3], 4]
s12s123s1234

+
[[1, [2, 3]], 4]
s123s1234s23

+
[[1, 2], [3, 4]]

s12s1234s34
+

[1, [[2, 3], 4]]
s1234s23s234

+
[1, [2, [3, 4]]]
s1234s234s34

.

(3.18)

See Fig. 2 for this last example. Since b(P) is valued in Ln , it can be expanded in a
basis using (2.23), to get

b(P) =
∑

R

b(P|i R)�[i R], (3.19)



1318 H. Frost, C. R. Mafra, L. Mason

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

[[[1,2],3],4]
s12s123s1234

[[1,[2,3]],4]
s23s123s1234

[[1,2],[3,4]]
s12s34s1234

[1,[2,[3,4]]]
s34s234s1234

[1,[[2,3],4]]
s23s234s1234

+ + + +

+ + + +

Fig. 2. The Catalan expansion b(1234) from (3.10). Viewed as cubic graphs and removing the overall propa-
gator 1/s1234, they correspond to the expansion of a color-ordered five-point tree amplitude A(12345) [13].
Note the leg 5 does not enter in the Lie elements in the numerators and that the root is unlabelled. By labelling
the root and assigning leg 5 to the Catalan expansion of b(5) one recovers the free Lie algebra correspondence
(3.21) for the case n = 5

where i is the smallest letter in P , and where

b(P|Q) = (b(P), �[Q]). (3.20)

The usual biadjoint scalar partial tree amplitude is then given by [14]

m(Pn, Qn) =: lim
sP→0

sP b(P|Q) = (Q, m(Pn)). (3.21)

Wewill see in Sect. 7 how b(P) can be dressedwith BCJ numerators to givemultiparticle
fields and amplitudes for other gauge theories.

4. A New Lie Bracket for Tree-Level Scattering Amplitude Relations

This section introduces the S-bracket, { , }, and shows that it is a Lie bracket. The S-
bracket is then used to define the ‘generalized KLT matrix’ and to prove the identities
conjectured in [13].

4.1. The S-bracket. A bilinear map was introduced in [6–15] (where it was called the
‘S map’) to express the BCJ relations for super-Yang–Mills amplitudes from its action
on Berends–Giele currents MP from [34]. It was abstracted to a map acting on words in
[13] and the off-shell BCJ relations for b(P) was conjectured, but no general proof was
given. Here we will see that this map defines a Lie bracket on L ∗, the ‘S bracket’, and
this will lead to a new formulation of the fundamental BCJ relations.

Definition. (S bracket). Define a multilinear pairing { , } : L∗ ⊗ L∗ → L∗ by [13]

{P, Q} := r∗(P) � �∗(Q), (4.1)

where r∗ and �∗ are defined in (2.26) and

Ai � j B := si j Ai j B (4.2)

for words A, B and letters i, j .

This definition implies that the S-bracket can be recursively computed using

{i A j, B} = i{Aj, B} − j{i A, B},
{B, i A j} = {B, i A} j − {B, Aj}i,

{i, j} = si j i j

(4.3)
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which follows from (2.27). Altneratively, for P, Q ∈ L ∗, equation (2.27) also gives an
explicit closed formula: [6]

{P, Q} =
∑

XiY=P
R j S=Q

si j (X � α(Y ))i j (α(R)� S). (4.4)

For example,

{1, 2} = s1212,

{1, 23} = s12123 − s13132,

{12, 34} = s231234 − s241243 − s132134 + s142143.

(4.5)

Given that the adjoints r∗ and �∗ annihilate proper shuffles, the definition (4.1)manifestly
satisfies {A� B, C} = 0.

The S-bracket is antisymmetric. Indeed, by (4.4),

{Q, P} =
∑

XiY=P
R j S=Q

si j (R � α(S)) j i(α(X)� Y ) ∼ −(−1)Q+P {P, Q}, (4.6)

because, inL ∗, X ∼ −(−1)X X . It follows that,

{P, Q} ∼ −{Q, P}. (4.7)

Moreover, Sect. 5.1, below, shows that { , } is a Lie bracket onL ∗
S , and so it also satisfies

the Jacobi identity,

{P, {Q, R}} + {Q, {R, P}} + {R, {P, Q}} ∼ 0. (4.8)

4.2. The BCJ amplitude relations. This section proves the main property of the S
bracket, { , }, generalising the off-shell fundamental BCJ relation [16]. The on-shell
identities follow directly from the off-shell relations, as explained at the end of this
section.

Proposition. For P, Q ∈ L ∗, the S bracket { , } satisfies

b({P, Q}) = [b(P), b(Q)], (4.9)

i.e., b maps the S-bracket to the Lie bracket.
The proposition is proved in appendix B. It is interesting to observe that the property
(4.9) mimics the identity obeyed by the Poisson bracket {, } of Hamiltonian vector fields
X f : X{ f,g} = [X f , Xg] for functions f and g.

Corollary (Off-shell BCJ relations [16]) Taking P = i , a single letter, we obtain

b({i, Q}) :=
∑

Q=X jY

si j b(i jα(X)� Y ) = [i, b(Q)], (4.10)

where α(X) = (−1)|X | X̄ . Equivalently, we also have
∑

Q=XY

si,Y b(XiY ) = [i, b(Q)] . (4.11)
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Proof. (4.10) is immediate. (4.11) follows by showing that

{i, Q} ∼
∑

Q=XY

si,Y XiY. (4.12)

To prove this identity, use (2.18) to write the RHS (4.12) in the basis of words beginning
with the letter i ,

∑

Q=XY

(ki · kY ) XiY ∼
∑

Q=XY

(ki · kY ) i(α(X)� Y ) (4.13)

Further manipulations give

RH S =
∑

Q=X jY

(ki · k jY ) i j (α(X)� Y ) − (ki · kY ) i j (α(X)� Y ),

=
∑

Q=X jY

si j i j (α(X)� Y ),
(4.14)

where we use the property of the shuffle product, (2.8). ��
Corollary (BCJ relations) The tree-level partial amplitudes (3.15) satisfy

m({P, Q}, n) = 0, (4.15)

where P and Q are words that partition 1, 2, . . . , n − 1 into two parts.

Proof. By the definition (3.15),

m({P, Q}, n) = lim
sP Q→0

sP Qb({P, Q}) = lim
sP Q→0

sP Q[b(P), b(Q)] = 0. (4.16)

The last term vanishes because neither b(P) nor b(Q) has a 1/sP Q pole. ��
The original so called ‘fundamental BCJ relations’ are [35,36]

m({i, Q}n) =
∑

Q=RS

(ki · kS)m(Ri Sn) = 0, (4.17)

which follows in this form from (4.11). The first few examples are, [3]

0 = m({1, 23}4) = s12m(1234) − s13m(1324),

0 = m({1, 234}, 5) = s12m(12345) − s13m(13245) − s13m(13425) + s14m(14325).
(4.18)

As observed in [6–15], (4.15) also implies other BCJ relations, such as

0 = m({12, 34}, 5) = s23m(1234, 5) − s13m(2134, 5)

−s24m(1243, 5) + s14m(2143, 5), (4.19)

while similar formulas using the shuffle product appear in [37–39]. The BCJ relations
for Yang–Mills theory were first proven from the field-theory limit of string theory in
[37,38]. By now these relations have been proven for a variety of theories at tree-level.
See the recent review [5] and references therein.
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5. The KLT Matrix as Nested Brackets

This section introduces a canonical KLT map S. We find that S is the inverse of b, and
that this implies that { , } is a Lie bracket. When bases are chosen for Ln and L ∗

n , the
matrix elements of S give the ‘generalized KLT matrix’ S(P|Q) proposed in [13]. We
prove the conjectured properties of S(P|Q) as well as additional ones.

5.1. The KLT map. Let � be a Lie monomial, and write it as a nested bracketing. Let
{�} ∈ L ∗ be obtained by replacing every commutator [ , ] in the bracketed expression
of � with a { , }. Since { , } is antisymmetric, this is well defined. By nested applications
of (4.9), it follows from the proposition in the previous section that

Proposition. For any Lie monomial �,

� = b({�}). (5.1)

These are surprising identities. For example, one can verify that

[[1, 2], [3, 4]] = s12s34
(
s23b(1234) − s24b(1243) − s13b(2134) + s14b(2143)

)
.

(5.2)

Define the KLT map S : Ln → L ∗
n ⊗ M by

S : � �→ {�}, (5.3)

for Lie monomials �. It is not obvious that S is well defined as a map from Ln to
L ∗

n ⊗M. The map S would be well defined provided that { , }was a Lie bracket. And if
S is well defined, then b is clearly an inverse, since clearly b(S(�)) = �. This is verified
in the following in the proof of the following:

Proposition. The maps b : L ∗ → L and S : L → L ∗ are inverses. In particular, b
is invertible.

Proof. Take dual Lyndon bases of L ∗
n and Ln , as in Sect. 2. Then define a map, S′:

S′ : �(P) �→ {�(P)}, (5.4)

for monomials �(P) in the given basis ofLn . We show that (i) S′ and b are inverse, and
(ii) that the S′ in (5.4) is the map, S, in (5.3). This proves that (5.3) is well-defined.

(i) By (5.1),

b(S′(�)) =
∑

P∈Basis

(�, P)b({�(P)}) =
∑

P∈Basis

(�, P)�(P) = �. (5.5)

Conversely,

S′(b(P)) =
∑

Q∈Basis

(b(P), Q){�(Q)}. (5.6)

Expanding {�(Q)} ∈ L ∗
n ⊗ M in the given basis gives (by (2.18)),

{�(Q)} =
∑

R∈Basis

({�(Q)}, �(R))R. (5.7)
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But notice that

({�}, �′) = ({�}, b({�′})) = (b({�}), {�′}) = (�, {�′}), (5.8)

by the self-adjointness of b. Combining (5.7) and (5.8) gives that

S′(b(P)) =
∑

Q,R∈Basis

b(P, Q)(�{Q}, �(R))R =
∑

R∈Basis

(P, �(R))R = P. (5.9)

So b is invertible, with inverse S′.
(ii) But b({�}) = �, by (5.1). So

S′(�) = S′(b({�})) = {�}, (5.10)

which shows that S′ is the map S : � �→ {�}.
��

The self-adjointness of b, (5.8), implies that the KLT map, S, is itself self adjoint:

(�, S(�′)) = (S(�), �′). (5.11)

Corollary. { , } is a Lie bracket on L ∗ ⊗ M.

Proof. Given that S and b are inverse, (4.9) shows that { , } is the pull back of [ , ] from
L toL ∗ by b−1. So {, } is skew and satisfies the Jacobi relation. ��

5.2. The generalized and standard KLT matrix. This section finds explicit formulas for
the KLT map, S, in terms of the matrix elements of S. Let us again take dual Lyndon
bases: P ∈ L ∗

n for every Lyndon word P , and �[P] ∈ Ln for every Lyndon word P .
Define the generalized KLT matrix (introduced in [13]) to be the matrix elements in this
basis5

S�(P|Q) := (S(�[P]), �[Q]) = ({�[P]}, �[Q]). (5.12)

Some example entries of the generalized KLT matrix are

S�(12|12) = s12, S�(12|21) = −s12,

S�(123|123) = s12(s13 + s23), S�(312|123) = −s12s13.
(5.13)

It follows from (5.8) that the generalized KLT matrix is symmetric:

S�(P|Q) = S�(Q|P). (5.14)

5 Alternative formulas for the generalized KLT matrix arise by choosing any pair of dual bases. E.g.
one can define Sr (P, Q) := (r{P}, r(Q)), but as P, Q ∈ L , by Lemma 1.7 of [1], r{P} := −�{α(P)}
and r(P) = −�(α(P)) so Sr (P|Q) = S�(P̄|Q̄). These alternative choices explain redefinitions during its
evolution to the version given in [40], see e.g. footnote 10 in [41]. As pointed out in [13], the generalized KLT
matrix S�(P|Q) can be defined for any two words P, Q, instead of restricting P, Q to a set of Lyndon words.
This was proposed in [13] to eliminate the choice of special leg i in the standard definition of the KLT matrix
S(R|S)i . This prevented the KLT matrix S(R|S)i from satisfying generalized Jacobi identities in R and S
given in (5.40).
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Moreover, (5.5) implies that the generalized KLT matrix satisfies

�[P] =
∑

Q∈Basis

S�(P|Q) b(Q). (5.15)

Or, equivalently,

(R, �[P]) =
∑

Q∈Basis

S�(P|Q) b(Q|R), (5.16)

and so, also:

b(P|Q) =
∑

X,Y∈Basis

b(P|X) S�(X |Y ) b(Y |Q). (5.17)

This is what we might call an ‘off shell KLT relation’. We study it further in the next
subsection.

The standard KLT matrix arises, as in [13], as a restriction of the generalized one to
a fixed basis, and is conventionally written

S(P|Q)i := S�(i P|i Q), (5.18)

for some fixed letter i , called the ‘fixed leg’. The identity, (5.16), together with the
definition (5.18), amount to a purely algebraic proof that the standard KLT matrix is the
inverse to the biadjoint scalar BG double current:

∑

R

S�(P|R)i b(i R|i Q) = δP,Q . (5.19)

This is in accord with the discussions of [8,14]. Moreover, we can easily recover explicit
formulas for S(P|Q)i . Using the definition of { , }, and (4.12), we get

S�(12 . . . n|1A) =
n∏

i=2

⎛

⎝
∑

Ci =Ai i Bi

si,Ai

⎞

⎠ , (5.20)

in agreement with [17–19]. We derive (5.20) in greater detail in appendix C. Finally, the
matrix elements can also be efficiently computed using the following recursion relation,
originally conjectured in [42].

Lemma. The standard KLT matrix can be recursively computed using

S(Ai, BiC)m = ki · km B S(A, BC)m, (5.21)

where m is the fixed leg. The recursion is seeded by S(∅|∅)m := 1.

Proof. By definition, �{Ai} = {�{A}, i}. Using the formula for {P, i}, (4.12),
�{Ai} =

∑

X,Y

si,X (XY, �{A})XiY. (5.22)

Since S(Ai, BiC)m = (�{m Ai}, �(m BiC)), it follows from (5.22) that

S(Ai, BiC)m =
∑

X,Y

si,X (XY, �{m A})(XiY, �(m BiC)). (5.23)
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The generalizedKLTmatrix is thematrix of coefficients that arises in the basis expansion
of �{P}:

�{P} ∼
∑

Q∈Basis

(�{P}, �[Q])Q =
∑

Q∈Basis

S�(P|Q)Q, (5.24)

So expanding �{m A} in a basis,
�{m A} =

∑

P

S(A, P)m m P. (5.25)

Equation (5.23) becomes

S(Ai, BiC)m =
∑

X,Y,P

si,X S(A, P)m(XY, m P)(XiY, �(m BiC)). (5.26)

The only contributions in the sum come fromwords, X = m X ′, that begin with the letter
m. Expanding �(m BiC), one sees that (m X ′iY, �(m BiC)) = δX ′,BδY,C . ��

5.3. The momentum kernel and the KLT gravity formula. The (n − 2)! version of the
KLT relation, given by [36,43], is

Mgravity
n = lim

s1P→0

∑

P,Q

1

s1P
A(1Pn)S(P|Q)1Ã(1Qn), (5.27)

where the double sum is over permutations of 23 . . . n − 1. In this formula, the gauge
theory partial amplitudes Ã(1Qn) andA(1Pn) are understood to have independent sets
of polarization vectors, but the same external momenta. It is not immediately obvious
that the limit on the RHS of (5.27) is well defined. As we will see, the cancellation of the
1/s1P pole on the RHS is best understood using the derivation of S(P|Q)1 in Sect. 5.1,
above.

A Lie polynomial version of (5.27) follows immediately from our results in Sect. 5.1.
Indeed, (5.17) shows that the off-shell KLT matrix satisfies a KLT-like relation:

b(P|Q) =
∑

R,U

b(P|i R)S(R|U )i b(iU |Q). (5.28)

To obtain a relation of the form (5.27), write

A(1P, n) := s1P b(1P) = s1P

∑

R∈Sn−2

b(1P|1R)�(1R), (5.29)

for the on-shell ‘Lie polynomial partial amplitude’. We also write

Mn =
∑

P,Q∈Sn−2

s1P �(1P)b(1P|1Q)�(1Q) (5.30)

for the Lie polynomial valued gravity-like amplitude. Notice that, by (3.19), Mn is
equivalently written as

Mn = s12...n−1

∑

|�|=n−1

� ⊗ �

s�

. (5.31)
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Then (5.28) implies the KLT relation

Mn = lim
s1P=0

∑

P,Q∈Sn−2

1

s1P
S(P|Q)1 A(1Pn) ⊗ A(1Qn). (5.32)

All the double poles from the right-hand side of (5.27) are manifestly absent in its free
Lie algebra version (5.32) due to the generalized KLT matrix property (5.28). The only
poles in (5.28) are those that appear in b(1P|1Q).

Another manifestation of the cancellation of the 1/s1P pole follows from (5.19),
above. This implies that

∑

Q

S�(1P|1Q)m(1Q, n|R, n) = 0, (5.33)

where m(1Q, n|R, n) = limsi P→0 si P b(1Q|R). The expression vanishes because there
is no 1/si P pole in (5.9). This is a remarkable identity, because the components S(P, Q)i
do not have si P as a factor. On the other hand, b(i P, i Q) certainly does have a 1/si P
pole. This cancellation is the key reason why the KLT relation, (5.27), is well defined.
As discussed below, these results will also make it clear why the existence of a ‘BCJ
form’ for gravity (i.e. of the form of Mn) is equivalent to existence of the KLT relation
of this kind.

To illustrate these surprising cancellations, we end this section with an example of
the four-point gravity-like amplitude and its KLT relation. On the one hand, M4 can be
written as

M4 = [[1, 2], 3] ⊗ [[1, 2], 3]
s12

+
[[1, 3], 2] ⊗ [[1, 3], 2]

s13
+

[1, [2, 3]] ⊗ [1, [2, 3]]
s23

.

(5.34)

On the other hand, we can present is as a KLT sum using (5.32) as:

M4 = lim
s123→0

1

s123

[
s12s23A(123, 4) ⊗ A(123, 4) − s12s13A(123, 4) ⊗ A(132, 4)

− s12s13A(132, 4) ⊗ A(123, 4) + s13s23A(132, 4) ⊗ A(132, 4)
]
,

where, for example,

A(123, 4) = [[1, 2], 3]
s12

+
[1, [2, 3]]

s23
. (5.36)

The poles and numerators in this sum organise to cancel the s123 pole and give (5.34) in
the limit.

5.4. Discussion: generalized Jacobi identities. The main property of the S-bracket { , }
is that b({P, Q}) = [b(P), b(Q)]. However, since b and S are inverse, this also implies
the surprising identity,

{P, Q} = S([b(P), b(Q)]). (5.37)
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Thebracket {P, Q} is polynomial in theMandelstamvariables,whereas S([b(P), b(Q)])
is naively a rational function of the Mandelstam variables. As observed in Sect. 5.1, the
S-bracket is a Lie bracket, and so satisfies

{1, 2} ∼ −{2, 1} {{1, 2}, 3} + {{2, 3}, 1} + {{3, 1}, 2} ∼ 0, (5.38)

as identities inL ∗ ⊗ M. It follows that { , } also satisfies

�{Pi Q} ∼ −�{i�[P]Q} (5.39)

which can be deduced from two applications of (2.4). This makes it clear that the gen-
eralized KLT matrix, S�(P, Q), given in (5.12), satisfies

S(XiY |Q) = −S(i�[X ]Y |Q), (5.40)

which is called the ‘generalized Jacobi identities’ in [13]. This property of the generalized
KLTmatrix has no analog for the standard KLTmatrix, S(XiY |Q) j , because of the fixed
leg j .6

6. The Contact Term Map as a Lie Co-bracket

A series of studies of string theory correlators and BCJ numerators experimentally
discovered the so-called contact term map, which appears in the action of the BRST
operator and in studies of Yang-Mills BCJ numerators [23] in the context of Berends
Giele recursion. This section identifies the contact term map as the Lie co-bracket dual
to { , }. The main properties of the contact map follow directly.

Definition (Contact term map). The contact term map, C , is the dual of { , }. For a Lie
monomial, �,

(P ⊗ Q, C(�)) := ({P, Q}, �). (6.1)

An explicit formula for C(�) follows from (6.1) by choosing a basis, for example:

C(�) =
∑

P,Q

({P, Q}, �) �[P] ⊗ �[Q], (6.2)

where the sum is over a Lyndon basis of L ∗.

It is convenient to write

P ∧ Q := P ⊗ Q − Q ⊗ P. (6.3)

Then the first few examples of the map C are

C([1, 2]) = (k1 · k2)(1 ∧ 2),

C([1, [2, 3]]) = (k2 · k3) ([1, 2] ∧ 3 + 2 ∧ [1, 3]) + (k1 · k23) (1 ∧ [2, 3]) .
(6.4)

6 The identity, (5.40), motivated the introduction of the generalized KLTmatrix in [13]. In the multiparticle
pure spinor superfield framework, where VP are local superfields satisfying generalized Jacobi identities
and MQ are Berends–Giele current superfields satisfying shuffle symmetries, we have the relation Vi A =∑

B S(A|B)i MB . However, the fixed leg i prevents the Jacobi identities of Vi A being manifest. See § 7.5 for
further discussion.
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C satisfies the dual Jacobi identity,

(C ⊗ I d) ◦ C − (I d ⊗ C) ◦ C − (I d ⊗ A) ◦ (C ⊗ 1) ◦ C = 0, (6.5)

where A is the swapmap: X⊗Y �→ Y ⊗X . This dual Jacobi identity follows immediately
from the Jacobi identity satisfied by the S-bracket. Moreover, recall that

b({P, Q}) = [b(P), b(Q)]. (6.6)

This can be used to show:

Lemma. C satisfies [23]

C(b(P)) =
∑

P=XY

b(X) ∧ b(Y ). (6.7)

Proof. (6.6) implies that

(P ⊗ Q, C(b(R))) = ([b(P), b(Q)], R). (6.8)

The RHS can be expanded by deconcatenation (as in the derivation of (3.10)):

RH S =
∑

R=XY

(b(P), X)(b(Q), Y ) − (X ↔ Y ). (6.9)

But b is self-adjoint, and so

(P ⊗ Q, C(b(R))) =
∑

R=XY

(P, b(X))(Q, b(Y )) − (X ↔ Y ), (6.10)

and this is equivalent to (6.7). (6.7) can also be checked using the formula, (6.2). ��
We finish this section by deriving a recursive formula for C . First define the standard

extension of the adjoint representation ofL toL ⊗ L :

[P, X ⊗ Y ] := [P, X ] ⊗ Y + X ⊗ [P, Y ],
[X ⊗ Y, Q] := [X, Q] ⊗ Y + X ⊗ [Y, Q].

This makes L ⊗ L into an adjoint representation of L .

Lemma (Recursion). For �1, �2 ∈ L , the action of C on [�1, �2] is given by

C([�1, �2]) := k1 · k2 �1 ∧ �2 + [C(�1), �2] + [�1, C(�2)] , (6.11)

where k1 and k2 are the momenta associated to �1 and �2. With C(i) := 0, (6.11) can
be taken as a definition of C, as in [23].

Proof. This is a consequence of the identity, (B.5). We again use deconcatenation, as in
(6.8), to write

({P, Q}, [�1, �2]) = (δ{P, Q}, �1 ⊗ �2) − (1 ↔ 2). (6.12)
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Then (B.5) gives

(P ⊗ Q, C([�1, �2])) = kP · kQ(P, �1)(Q, �2)

+
∑

P=XY

(X, �1)({Y, Q}, �2)

−
∑

Q=XY

({P, X}, �1)(Y, �2) − (1 ↔ 2).

(6.13)

But ({Y, Q}, �2) = (Y ⊗ Q, C(�2)) and ({P, X}, �1) = (P ⊗ X, C(�1)), and so (6.13)
is equivalent to (6.11). ��

The recursive relation, (6.11), can be solved to find an explicit formula for C(�). To
see this, write

D(�) := k1 · k2 �1 ∧ �2, (6.14)

for Lie monomials � = [�1, �2]. Nesting (6.11) then leads to a sum over the edges in
the tree T� . For I ∈ � an edge in the tree T� , let �I be the associated Lie monomial. For
example, if � = [[1, 2], [3, 4]], then �12 = [1, 2]. Then the solution to the recursion,
(6.11), is

C(�) =
∑

I∈�

�/�I [D(�I )], (6.15)

where �/�I [D(�I )] denotes the replacement, in �, of �I by D(�I ). For example, if
� = [[1, 2], [3, 4]], then C(�) is

C(�) = D(�) + �/�12[D(�12)] + �/�34[D(�34)], (6.16)

where

�/�34[D(�34)] = s34[[1, 2], 3 ⊗ 4] = s34 ([[1, 2], 3] ⊗ 4 + 3 ⊗ [[1, 2], 4]) , (6.17)

and

D(�) = k12 · k34 [1, 2] ∧ [3, 4]. (6.18)

We will see applications of these structures in the discussion of numerators in Sect. 7.5.

7. BCJ Numerators

In the previous sections we used Berends–Giele recursion and the properties of Lie
polynomials to relations for our Lie polynomial version of biadjoint scalar theory. When
dressed with BCJ numerators these results apply to other gauge theories. In this section,
we first argue that any gauge theory that admits the Berends–Giele framework can be
understood in this way. There are clear distinctions between the behaviour of numerators
for on-shell amplitudes, versus those for the partially off-shell Berends–Gielemultiparti-
cle fields; for a given Berends–Giele description we will see that numerators are unique,
but ambiguities arise due to gauge transformations and field redefinitions. We then use
this to study examples of numerators N theory

� for different theories.
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7.1. BCJ numerators off-shell. Many gauge theories have perturbation expansions that
can be expanded in colour factors of the form (2.13); this is the case for any gauge theory
whose Lagrangian is second order and single trace in the Lie algebra. The tree amplitudes
for such gauge theory can be solved using Berends–Giele recursion forL -valued fields.
The recursion produces colour-ordered Berends–Giele currents, Btheory(P), that give
the partial amplitudes of the theory as

Atheory(Pn) = lim
sP→0

sP Btheory(P) · εn, (7.1)

where εn is the polarization of the nth particle. These partial amplitudes satisfy shuffle
relations as a consequence of the B(P) being defined as functions of P ∈ L ∗. The
amplitudesA(Pn) obtained this way are necessarily invariant under both field redefini-
tions and gauge transformations. However, the Berends–Giele currents, Btheory(P), are
not invariant. Different choices of gauge fixing and field redefinition lead to different
Berends–Giele recursions and different associated currents.

We now study the properties of these Btheory(P) for a general gauge theory, and in the
next section derive necessary conditions for this theory to have KLT relations. Dropping
the superscript ‘theory’, fix some gauge theory, and let B(P) be the BG currents of the
theory obtained using some choices of gauge fixing and field redefinitions. We derive
B(P) using theL -valued recursion method given for biadjoint scalar in Sect. 3 and for
Yang-Mills in appendix A. This means that the B(P) are functions ofL ∗ and so satisfy

Btheory(R � S) = 0, (7.2)

for R, S 
= ∅. This allows us to define
Ñ� := B({�}) , (7.3)

where we recall that {�} is only well-defined as an element of L ∗. We call the Ñ�

‘off-shell BCJ numerators’ for the currents B(P). The map, Ñ : L → K, given by

Ñ : � �→ Ñ� (7.4)

is a homomorphism, since the S-bracket is a Lie bracket. Moreover, the Ñ� defined by
(7.3) are unique. Note that the numerators Ñ� may have free indices that we do not
write (e.g. for YM, Ñ� has a free gluon polarization index). It follows from the results
of Sect. 5 that Ñ relates B(P) to the biadjoint scalar b(P) by

B(P) = Ñ (b(P)). (7.5)

To be more explicit, we write (7.5) and (7.3) in a basis. Using (5.24), the Ñ� for a
basis of Ln is given by

Ñ�[P] = B(�{P}) =
∑

Q∈Basis

S�(P|Q)B(Q) . (7.6)

If wemultiply this by sP , contract free indices with the nth particle polarization, and take
the limit sP → 0, (7.6) becomes the formula for on-shell amplitude BCJ numerators
given in [44] (see also [42]). Also, in this basis, the relation (7.5) reads

∑

Q∈Basis

Ñ�[Q] b(P|Q) =
∑

Q,R∈Basis

S�(Q|R) B(R) b(P|Q) . (7.7)
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The off-shell BCJ numerators defined by Ñ in turn define ‘on-shell BCJ numerators’
for the amplitude, given by

N� = lim
sP→0

Ñ� · εn . (7.8)

This again defines a homomorphism N : � �→ N� out of Ln . Moreover, by (7.1) and
(7.5), the partial amplitudes of the theory are given by

A(Pn) = N (m(Pn)), (7.9)

where m(Pn) are theL -valued biadjoint scalar amplitudes (m(Pn) = sP b(P)). Unlike
the Ñ� , the numerators N� are subject to a new gauge freedom, given by replacements

N� �→ N� + N gauge
� , (7.10)

where the gauge freedom is spanned by ‘trivial’ numerators of the form

N gauge
� =

∑

R,S

CR,S({R, S}, �), (7.11)

for some arbitrary kinematic functions CR,S ∈ K. These trivial numerators give

N gauge
� (b(P)) =

∑

R,S

CR,Sb(P|{R, S}) =
∑

R,S

CR,S(P, [b(R), b(S)]) . (7.12)

This contribution vanishes on-shell, because the RHS (7.12) has no 1/sP pole, and so
vanishes when multiplied by sP , in the sP → 0 limit. This gauge freedom, in a different
guise, led to the original discovery of the BCJ relations in [3], where it was argued
that there are (n − 2)! − (n − 3)! independent pure gauge numerators of this form.
However, (7.12) shows that these no longer vanish off-shell. The off-shell numerators
are therefore not subject to the freedom, (7.11), and are unique once a choice of Berends
Giele formulation has been made.

7.2. BCJ numerators and KLT. Two gauge theories with BG currents B(P) and B ′(P)

satisfy an off-shell KLT relation if we can write

M =
∑

P,Q∈Basis

S�(P|Q)B(P)B ′(Q) , (7.13)

for M the current for some gravity-like theory. If M arises from a local field theory,
the current M must have the appropriate kinematic poles for factorization. This places
constraints on the RHS of (7.13), which must have the same poles. Note that

∑

P

S�(P|Q)B(P) = Ñ (�[Q]). (7.14)

So the only poles on the RHS of (7.13) come from B ′(Q) = N ′(b(Q)) and Ñ . To
guarantee the correct poles, we demand that the off-shell numerators Ñ and Ñ ′ have
no kinematic poles. We will say that Ñ is local if it has no poles in the Mandelstam
variables.
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For a generic choice of gauge theory and currents B(P), there is no reason to ex-
pect that the off-shell numerators obtained from (7.3) will be local. For example, an
obstruction to locality for Yang-Mills Berends Giele currents in Lorenz gauge is iden-
tified in [15,23,28].7 However, if the off-shell numerators Ñ are local, they restrict to
give local on-shell numerators for the amplitudes of the theory, using (7.8).8 Local BCJ
numerators are known for both the nonlinear sigma model (NLSM), [42–44] and for
(super-)Yang-Mills [11,15,23,44–47]. See [5] for a review.

If the off-shell numerators, Ñ , of a gauge theory are local, this implies that the theory
satisfies the on-shell BCJ relations. Indeed,

B({P, Q}) = Ñ (b({P, Q})). (7.15)

If Ñ is local, B({P, Q}) will have no 1/sP Q pole, since b({P, Q}) has no 1/sP Q pole.
It follows that the partial amplitudes associated to B(P) satisfy

Atheory({P, Q}, n) = lim
sP Q→0

sP Q Btheory({P, Q}) · εn = 0, (7.16)

which are the fundamental BCJ relations. Given this, we propose:

Conjecture: If a theory’s partial amplitudes satisfy the BCJ relations, then there exists
a field redefinition and gauge fixing of its Berends–Giele recursion so that it has local
off-shell numerators.

The following subsections review what is known in the cases of the biadjoint scalar,
NLSM, Yang-Mills, and Z theory.

7.3. Biadjoint scalar. The Berends–Giele recursion for the biadjoint scalar theory was
studied in Sect. 3, where we obtained ‘currents’,

b(P|Q) = (b(P), Q), (7.17)

where recall that b(P) takes values in L , and ( , ) is the pairing between L and L ∗.
This can be written as

b(P|Q) = N (Q)(b(P)), (7.18)

where N (Q) is the homomorphism� �→ (Q, �). In otherwords, the off-shell numerators
for these currents is

Ñ�(Q) = (Q, �). (7.19)

The on-shell numerators are then

N�(Q) = (Q, �). (7.20)

With these numerators, the biadjoint amplitudes m(Pn|Qn) are then given by,

m(Pn|Qn) = lim
sP→0

sP (P, b(Q))) = lim
sP→0

sP

∑

�

(P, �)N�(Q)

s�

, (7.21)

7 Their approach was to extract the numerators as the coefficients of 1/s� and to show that these N� could
not be chosen to be BCJ. This led the authors to the introduction of ‘BCJ gauge’ in which local numerators
are obtained.

8 An arbitrary set of local on-shell BCJ numerators for the theory may not be the restriction of the off-shell
numerators, because of the gauge freedom, (7.11).
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As observed in Sect. 4.2, the Kleiss-Kuijf relations follow from Ree’s theorem as b(R�
S|Q) = 0 because b(Q) is a Lie polynomial, while the BCJ relations follow from the
{, }-bracket.

Examples of biadjoint amplitudes with the numerators N (Q) are obtained from
b(123) and b(1234):

m(1234|1234) = 〈123, [[1, 2], 3]〉
s12

+
〈123, [1, [2, 3]]〉

s23
= 1

s12
+

1

s23
,

m(12345|14235) = 〈1234, [[[1, 4], 2], 3]〉
s14s124

+
〈1234, [[1, [4, 2]], 3]〉

s124s24

+
〈1234, [[1, 4], [2, 3]]〉

s14s23

+
〈1234, [1, [[4, 2], 3]]〉

s24s234
+

〈1234, [1, [4, [2, 3]]]〉
s234s23

= − 1

s23s234
,

(7.22)

where the expansion of b(123) and b(1234) can be found in (3.18).

Remark. This perspective on biadjoint scalar theory was developed in a series of papers.
[14] showed that these amplitudes could be derived from solving the biadjoint scalar
field equations to get Berends–Giele ‘currents’ b(P|Q). In [13], these ‘currents’ were
rewritten in terms of b(P), with values in planar binary trees. Following [8], it was also
pointed out in [14] that this Berends–Giele multiparticle field b(i P|i Q) gives rise to an
efficient algorithm to compute the inverse of the KLT matrix S(P|Q)i , but no proof was
given for this statement. The statement that theKLTmatrix is the inverse to the “biadjoint
amplitudes” had already been argued on general grounds in [20–22]. The direct proofs
of this statement and of the recursion for S(P|Q)i conjectured in [14], are given above
in Sect. 5.

7.4. NLSM. NLSM amplitudes [42] can be studied by BG recursion, as above for biad-
joint scalar theory. Several authors have suggested the following formula the (off-shell)
BCJ numerators for NLSM:

ÑNLSM
� :=

∑

P

(P, �)S�(P|P), for |�| = n (7.23)

where the sum is over a basis. It is clear that ÑNLSM is a homomorphism out of Ln .
We refer to [26] for a proof of (7.23) using methods adapted to M0,n ; alternatively,
this result also follows from the Berends–Giele currents produced by the Lagrangian for
NLSM introduced in [48]. The NLSM amplitudes are then given by

ANLSM(Pn) = lim
sP→0

sP ÑNLSM(
b(P)

)
. (7.24)

The numerators at n = 4 points are given by

NNLSM[[1,2],3] = s12(s23 + s13),

NNLSM[1,[2,3]] = s12(s23 + s13) − s13(s23 + s12) = s23(s12 − s13).
(7.25)

Substituting this into (7.24) then gives the 4-point amplitude:

ANLSM(1234) = s123 ÑNLSM(b(123)) = s12 + s23. (7.26)
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From the existence of the map ÑNLSM, and the results in Sect. 4, it follows that the
KK and BCJ relations are automatically satisfied by the NLSM amplitudes, as was first
proved using amplitudes methods in [49]. In [42], master BCJ numerators with fixed
legs 1 and n of the NLSM amplitudes were conjectured to be N1|P|n = (−1)n/2S(P|P)1
for even n. This follows from (7.23).

7.5. Super-Yang–Mills. String theory OPEs (or supersymmetric BG recursion) can be
used to recursively compute local SYM multiparticle superfields {A�

α , Aμ
�, W α

� , Fμν
� },

μ, ν = 1, . . . , 10 in the BCJ gauge which are labelled by Lie monomials � ∈ L
[6,23,28]. As demonstrated in [23,28], the words labelling these superfields satisfy
‘generalized Jacobi identities’ (as in Sect. 5.4). For example,

Aμ
[[1,2],[3,4]] = Aμ

[[[1,2],3],4] − Aμ
[[[1,2],4],3]. (7.27)

This leads to a proposal for local off-shell BCJ numerators ÑSYM
μ from which SYM tree

amplitudes arise from

ASYM(Pn) = Aμ
n lim

sP→0
sP ÑSYM

μ

(
b(P)

)
, (7.28)

where Aμ
n is the polarization vector of the nth particle while the action of ÑSYM

μ on the
Lie polynomials � in (3.10) is given by

Aμ
n ÑSYM

μ� := Anμ Aμ
� , (7.29)

in terms of the θ = 0 component of the superfield Am
� . This representation manifestly

satisfies the BCJ identities. For example, the five-point color-ordered amplitudes in the
Kleiss–Kuijf basis following from the maps (7.28) and (7.29) are given by

A(12345) =
( Aμ

[[[1,2],3],4]
s12s45

+
Aμ

[1,[[2,3],4]]
s23s51

+
Aμ

[[1,2],[3,4]]
s12s34

+
Aμ

[[1,[2,3]],4]
s45s23

+
Aμ

[1,[2,[3,4]]]
s51s34

)
A5μ

(7.30)

together with the other 5 permutations of 2, 3, 4. The BCJ numerator identities are
manifestly satisfied. For example, comparing the above parametrization with the one in
[3] leads to

n3 = Am[[1,2],[3,4]] Am
5 , n5 = Am[1,[2,[3,4]]] Am

5 , n8 = Am[[1,[4,3]],2] Am
5 , (7.31)

from which the identity n3 − n5 + n8 = 0 can easily be verified.
In section 6.1.2 of [23] two alternatives were presented for the map ÑSYM

μ writing
for � = [�1, �2]

Aμ
n ÑSYM

μ� := 〈V�1V�2Vn〉 = H ′
�1,�2,n (7.32)

where the superfields V� are defined in [6,23] and are related to the unintegrated vertex
operator in the pure spinor formalism and 〈·〉 represents the pure spinor bracket from
[24]. The superfields H ′

P,Q,R are computed to all orders in [23].
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The contact term map C plays a key role in the definition of the V� [6,23,28].
Associated to the V� are SYMBerends–Giele currents, MP = V (b(P)), where V (�) :=
V� . For example,

M1 = V1, M12 = V[1,2]
s12

, M123 = V[[1,2],3]
s12s123

+
V[1,[2,3]]
s23s123

. (7.33)

The equation of motion of MP under the action of the pure spinor BRST charge Q is
computed in examples and is conjecturally

QMP =
∑

XY=P

MX MY . (7.34)

Whereas the equation of motion for V� is conjecturally

QV� = (V ⊗ V, C(�)) =
∑

P,Q

V�(P)V�(Q)(P ⊗ Q, C(�)), (7.35)

where the sum is over a basis. For example,

QV[1,2] = (k1 · k2)V1V2,

QV[[1,2],3] = (k1 · k2)(V[1,3]V2 + V1V[2,3]) + (k12 · k3)V[1,2]V3,

QV[1,[2,3]] = (k2 · k3)
(
V[1,2]V3 + V2V[1,3]

)
+ (k1 · k23)V1V[2,3],

(7.36)

Equation (6.7) above, allows one to prove (7.34) as an immediate consequence of equa-
tion (7.35), as explained in [23]. This was previously only known to be true examples.
It remains to prove (7.35) itself, using string theory methods.

7.6. Z-theory and the open superstring. In order to upgrade the discussion in the previ-
ous subsection to the open superstring with α′ corrections we will exploit non-abelian
Z-theory to evaluate α′ expansions of open string disk integrals. Z-theory disk integrals
can be computed via the Berends–Giele method as

Z(P, n|Q, n) = lim
sP→0

sP bα′
(P|Q) (7.37)

where the Berends–Giele currents bα′
(P|Q) are computed using the equations ofmotion

of the non-abelian Z-theory [50]. In principle, these can be obtained from ‘currents’
bα′

(P) with values in Ln by computing α′ corrections to the Catalan expansion (3.10)
and defining

bα′
(P|Q) = (bα′

(P), Q) (7.38)

which togetherwith (7.37) implies that Z-theory admits a free Lie algebra representation.
The bα′

(P|Q) are known up to α′7 order following [30]. Using this result, we can
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compute bα′
(P) to the same order. The first few orders are given by

sP bα′
(P) =

∑

XY=P

[bα′
(X), bα′

(Y )]

+ α′2ζ2
∑

XY Z=P

kX · kY [bα′
(X), [bα′

(Z), bα′
(Y )]]

− α′2ζ2
∑

XY Z=P

kY · kZ [[bα′
(X), bα′

(Y )], bα′
(Z)]

+ α′2ζ2
∑

XY Z W=P

[[bα′
(X), bα′

(Y )], [bα′
(W ), bα′

(Z)]]

− α′2ζ2
∑

XY Z W=P

[[bα′
(X), bα′

(Z)], [bα′
(W ), bα′

(Y )]] +O(α′3)

(7.39)

and so on. It remains to discover a simple way to extend this calculation to all orders in
α′.

Note that bα′
(P|Q) 
= bα′

(Q|P). Indeed, bα′
(P) is not a function of P ∈ L ∗

n , but
rather satisfies shuffle-like relations that are twisted by the monodromies of the Z-theory
disk integrals, as explained in [50]. Whereas we take the second factor in bα′

(P|Q) to
belong to Q ∈ L ∗

n . It follows that bα′
(P|R� S) = 0, because bα′

(P) is valued inLn .
Finally, we conjecture that the full open superstring disk amplitudes including α′

corrections are given by using the super-Yang-Mills numerators ÑSYM from the previous
subsection:

Astring(P, n) = Aμ
n lim

sP→0
sP ÑSYM

μ (bα′
(P)).

This proposal has been verified for the bosonic components of the amplitudes at low n.

8. Conclusions

Wehave seen thatmany nontrivial properties of gauge theory tree amplitudes follow from
the properties of L and its dual. Moreover, these results are particularly important for
the study of gauge theories that have KLT relations. This lead us to our main conjecture:
Conjecture: If a theory’s partial amplitudes satisfy the BCJ relations, then there exists
a field redefinition and gauge fixing of its Berends–Giele recursion so that it has local
off-shell numerators.

If a theory has local off-shell BCJ numerators, we showed above that this immediately
implies that it satisfies the KLT relations to give the amplitudes of some gravity-like
theory. We showed that, for a given gauge theory, every formulation of Berends–Giele
recursion of that theory produce a unique set of off-shell numerators Ñ . It is a well-posed
question to ask whether there exists a field redefinition and gauge fixing of BG recursion
such that the Ñ are local, and we hope that this question can be answered systematically.

We conclude by explaining how our results bear on three outstanding problems in this
area: the existence of so-called ‘kinematic algebras’, the existence of BCJ numerators
for string theory, and the extension of KLT relations to all orders in perturbation theory.
Kinematic algebras. An ongoing topic of research is the identification of the kinematic
algebra for a given theory, see the review [5]. Our results in 7 suggests a possible route
to defining the kinematic algebra systematically. For a given gauge theory, BG recursion
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leads to some currents, B(P), and their associated off-shell numerators Ñ� . These Ñ�

satisfy

Ñ[�1,�2] = B({[�1, �2]}). (8.1)

The Ñ� take values in some (off-shell) kinematic space K. Motivated by (8.1), we can
define a bracket

{Ñ�1, Ñ�2}K := B({[�1, �2]}), (8.2)

where { , }K is defined the image of Ñ in K. This { , }K is a Lie bracket because
{ , } is Lie and Ñ is a homomorphism by construction. Imposing that { , }K is linear in
Mandelstam variables, this definition implies a BCJ-like relation,

B({P, Q}) = {B(P), B(Q)}K, (8.3)

where, by linearity,

{B(P), B(Q)}K :=
∑ (P, �1)

s�1

(Q, �2)

s�2

{Ñ�1 , Ñ�2}K. (8.4)

If the off-shell numerators Ñ are local, then The definition (8.2), together with (8.1),
implies that the numerators in a basis are given by complete bracketings of { , }K:

Ñ� = {�}K. (8.5)

Moreover, if the Ñ are local, then the numerators of the amplitude are given by

N� = lim
sP→0

{�}K · εn . (8.6)

In this case, it would therefore be reasonable to call { , }K the “kinematic algebra”
of the theory. This suggests that, for a theory satisfying BCJ relations, the existence
of a kinematic algebra is another consequence of our main conjecture proposed above.
(Although see [51] for an off-shell BCJ relation for NLSM that is not of the form (8.3).)

Strings and α′ expansions. The duality betweenLn andL ∗
n exploited in this paper is

closely related to the geometry of M0,n , the moduli space of n points on the Riemann
sphere. This is because the top-dimensional homology of M0,n is generated by cycles
naturally labelled by Lie polynomials; conversely, the top-dimensional cohomology is
generated by cocycles naturally labelled by the elements ofL ∗

n−1. This helps to explain
the success of using M0,n integrals, which arise in CHY formulas and in ambitwitor
strings, to study tree level BCJ numerators for amplitudes. See for example [10,52,53],
and details of the connection to Ln in [26]. This connection also strongly suggests an
extension of our methods to string theory at tree level.

A perturbativemethod for computing theα′ expansions of tree level string amplitudes
using the ‘Drinfeld associator’ was given in [54]. The calculations reviewed in Sect. 7.6
can be related to this method by the equation of motion for QVP [55]. This equation of
motion involves the contact term map, C , which is the dual of the S-bracket studied in
this paper. This suggests that our results about the S-bracket will be useful for advancing
the efforts to compute α′ corrections in [50]. Moreover, the method in [54] is based on
the Drinfeld associator, which is itself is a Lie series. This suggests that the duality
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between L and L ∗ will be central to advancing the use of this method to all orders in
α′.
Beyond tree level. It is an open question to discover whether KLT-like relations hold
at higher loop order in the gauge theory perturbation series. As we have seen, tree level
colour factors are labelled by Lie monomials, and partial tree amplitudes are labelled
by permutations modulo shuffle relations. This is the leading order avatar of the more
general story, at arbitrary orders in the perturbation series, in which colour factors are
associated to ribbon graphs, and partial amplitudes are labelled by marked surfaces with
boundary (possibly with genus g > 0). The results in the present paper are essentially all
derived from the Jacobi identity satisfied by Lie monomials is. Colour factors labelled
by ribbon graphs at higher order satisfy analogous identities; as studied in [26]. This
raises the possibility that the biadjoint scalar amplitudes at higher orders in perturbation
theory play a role similar to role played by the L -valued b(P) at tree level, in giving
rise to KLT-relations.
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Appendix A. Berends–Giele Recursion for Yang–Mills in the Free Lie Algebra

Here we repeat the discussion of Sect. 3 replacing the biadjoint scalar by Yang-Mills.
Consider pure Yang–Mills theory in d-dimensions with the Lagrangian

LY M = 1

4
tr(FμνF

μν), Fμν := −[∇μ,∇ν]. (A.1)

The trace is over the generators ta of a Lie algebra, g, the covariant derivative is given by
∇μ = ∂μ −Aμ and Aμ = A

a
μta is the gluon potential. In the Lorenz gauge, ∂μA

μ = 0,
the field equation [∇μ,Fμν] = 0 becomes

�A
ν(x) = [

Aμ(x), ∂μ
A

ν(x)
]
+

[
Aμ(x),Fμν(x)

]
. (A.2)

We now define a perturbative solution A that takes values in L rather than some
given Lie algebra L . (A.2) leads to the following iteration forA≤n , with values inL≤n :

A
ν≤n+1 = A

ν
1 + projL≤n+1

�−1 ([Aμ
≤n(x), ∂μA

ν≤n(x)] + [A≤nμ(x),F
μν
≤n(x)]) ,

F
μν
≤n+1 = projL≤N+1

2∂ [μ
A

ν]
≤n+1 − [Aμ

≤n,Aν≤n]. (A.3)

where projL≤n+1
projects onto the L≤n+1 part. The recursion is seeded by

A
μ
1 =

∑

i∈N
eμ

i exp(iki · x) i (A.4)

http://creativecommons.org/licenses/by/4.0/
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where the letter i replaces the usual generator ta
i ∈ g and eμ

i is the polarization vector of
the i th gluon. Note that �−1 acts on momentum eigenstates exp(ik · x) to give −1/k2.

To obtain the amplitude, define the multi-particle field A
μ
n−1, which is the degree

n − 1 part of Aμ
≤n−1:

A
μ
n−1 := projLn−1

A
μ
≤n−1. (A.5)

In terms of Aμ
n−1, the L -valued version of the amplitude is

An = s12...n−1 e−ik12...n−1·x enμ A
μ
n−1 , (A.6)

where eμ
n is the polarization of the nth gluon. The colour polarizations t1, . . . , tn ∈ g

define the map t : L → g, and the YM amplitude is then given by ta
n t(An)

a . The partial
tree amplitudes are given by

An(P, n) := (P,An), (A.7)

for permutations P .
The Berends–Giele current for an ordering P is

Jμ
P := (P,Aμ) exp(−ikP · x), (A.8)

where the factor of exp(−ikP · x) removes the x-dependence in (P,A
μ
|P|). Jμ

P is linear
in each ei with i ∈ P , with coefficients that depend only on the momenta. Taking inner
products (A.3) with a word P gives the YM Berends–Giele recursion relation:

Jμ
P = 1

sP

∑

XY=P

[
Jμ

X (kX · JY ) + J ν
XFμν

Y − (X ↔ Y )
]
,

Fμν
Y = kμ

Y J ν
Y − kν

Y Jμ
Y −

∑

RS=Y

(
Jμ

R J ν
S − J ν

R Jμ
S

) (A.9)

where Jμ
i for a letter i is equal to the polarization vector eμ

i of the i-th gluon. Here again
we have used the following deconcatenation identity,

(P, �) =
∑

XY=P

(X, �1)(Y, �2) − (X, �2)(Y, �1) , (A.10)

for a word P , and a Lie monomial � = [�1, �2].
Since An ∈ L , it follows from Ree’s theorem that

J m
R�S = 0 , (A.11)

cf. the discussions in [56] and [28]. In terms of Jμ
P , the YM partial tree amplitudes are

[31]

AYM(Pn) = sP JP · Jn, (A.12)

which is equivalent to the earlier definition, (A.7).
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Appendix B. The Main Property of the S-Bracket

This appendix proves the following proposition, from § 4.2:

Proposition. For P, Q ∈ L ∗, the S bracket { , } satisfies

b({P, Q}) = [b(P), b(Q)] , (B.1)

i.e., b maps the S-bracket to the Lie bracket.
The proof uses the following definitions. The deconcatenation coproduct δ : W →

W ⊗ W is defined on words P by

δ(P) =
∑

XY=P

X ⊗ Y . (B.2)

Write δ′(P) to be as above but with the sum restricted to non-empty words X, Y . Further,
write

δ∧(P) =
∑

XY=P

X ⊗ Y − Y ⊗ X, (B.3)

and similarly for δ′∧. Finally, define the S-bracket to act on L ∗ ⊗ L ∗ as

{X ⊗ Y, Q} = X ⊗ {Y, Q} , {P, X ⊗ Y } = {P, X} ⊗ Y . (B.4)

Lemma. The deconcatenation of the S-bracket is

δ′{P, Q} ∼ {δ∧ P, Q} + {P, δ∧Q} + sP,Q P ⊗ Q . (B.5)

Proof. First note that for non-empty X, Y

δ′(XY ) = δ′(X) · (e ⊗ Y ) + (X ⊗ e) · δ′(Y ),+X ⊗ Y , (B.6)

where e is the empty word. So

δ′{P, Q} = δ′r∗(P) � �∗(Q) + r∗(P) � δ′�∗(b)

+
∑

P=XiY,Q=Z jW

si j (X � Ȳ )i ⊗ j (Z �W ), (B.7)

where we have used the explicit formulas for �∗ and r∗ of (2.27). The KK relations give
XiY ∼ i(X̄ Y ) ∼ (X Ȳ )i , so the third term in (B.7) sums to sP,Q P ⊗ Q. The decon-
catenation of �∗ and r∗ can be evaluated using (2.27). For example, the deconcatenation
of a single term in (2.27) is

δ(i X̄ � Y ) =
∑

X=X1X2

∑

Y=Y1Y2

i X̄2 � Y2 ⊗ X̄1 � Y2. (B.8)

Total shuffles vanish inL ∗. So, inL ∗ ⊗ L ∗,

δ(i X̄ � Y ) =
∑

Y=Y1Y2

i X̄ � Y2 ⊗ Y2 +
∑

X=X1X2

i X̄2 � Y ⊗ X̄1. (B.9)

This can be used to find that

δ′(�∗(P)) = (�∗ ⊗ 1) ◦ δ′∧(P), (B.10)

and a similar identity for r∗(Q). ��
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Proof. (of the proposition) When P, Q are single letters, (B.1) follows directly. Note
that BG recursion can be written as

b(P) = 1

sP

∑

X,Y

(X ⊗ Y, δ′(P)) [b(X), b(Y )], (B.11)

for any homogeneous P ∈ L ∗. Substituting {P, Q} for P into this recursion, the lemma
gives that

sP Qb({P, Q}) =
∑

X,Y

(
X ⊗ Y, {δ′∧ P, Q} + {P, δ′∧(Q)} + sP,Q P ⊗ Q

)
[b(X), b(Y )] ,

= sP,Q [b(P), b(Q)]

+
∑

P=XY

[b(X), b({Y, Q})] − (X ↔ Y )

+
∑

Q=XY

[b({P, X}), b(Y )] − (X ↔ Y ) .

(B.12)

By induction, write b({Y, Q}) = [b(Y ), B(Q)] in the second last line to find

∑

P=XY

[b(X), [b(Y ), b(Q)] − (X ↔ Y )

=
∑

P=XY

[[b(X), b(Y )], b(Q)] = sP [b(P), b(Q)] , (B.13)

using the Jacobi identity followed by BG recursion. The same argument applied to the
third line shows that the RHS of (B.12) is [b(P), b(Q)] multiplied by sP Q . ��

Appendix C. The KLT Matrix Elements

This appendix recovers again the standard formula for the KLT matrix,

S�(1A|1B) =
n∏

i=2

si,Ai (A|B), (C.1)

where Ai (A|B) is the subset of {1, 2, 3, . . . , n} containing all letters that both precede i in
1B and follow i in 1A. We explicitly compute S�(12 . . . n|1A) by expanding �[12 . . . n],
which is in spirit similar to the argument in [16]. The idea is to iteratively apply our main
identity:

[b(P), k] = b({P, k}), (C.2)

for a letter k. Using the formula for {P, k}, equation (4.12), this gives

[. . . [[1, 2]3] . . . , n] = s12[. . . [b(12), 3] . . . , n]
= s12s1,3[. . . [b(132), 4] . . . , n]

+ s12s12,3[. . . [b(123), 4] . . . , n]
= . . .

(C.3)
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The RHS can be resummed to give the nested sum:

RH S = s12

⎛

⎝
∑

12=A2B2

s2,A2

⎛

⎝. . .

⎛

⎝
∑

An−1nBn−1−An Bn

sn,An b(AnnBn)

⎞

⎠ . . .

⎞

⎠

⎞

⎠ . (C.4)

Here all the words Ai begin with the letter 1 and by convention si,A = 0 when A is
empty. S�(12 . . . n|1A) is the coefficient of b(1A) in (C.4). Reversing the order of the
summations gives this coefficient as

S�(12 . . . n|1A) =
n∏

i=2

⎛

⎝
∑

Ci =Ai i Bi

si,Ai

⎞

⎠ (C.5)

where Ci is the word 1A with the letters 1, . . . , i − 1 removed. In other words, Ai is
a word in the letters j such that j < i in the ordering 1A and i < j in the ordering
12 . . . n.
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