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Abstract: Thequantumrandomenergymodel (QREM) is a randommatrix ofAnderson-
type which describes effects of a transversal magnetic field on Derrida’s spin glass. The
model exhibits a glass phase as well as a classical and a quantum paramagnetic phase.
We analyze in detail the low-energy spectrum and establish a localization-delocalization
transition for the corresponding eigenvectors of the QREM. Based on a combination of
random matrix and operator techniques as well as insights in the random geometry, we
derive next-to-leading order asymptotics for the ground-state energy and eigenvectors
in all regimes of the parameter space. Based on this, we also deduce the next-to-leading
order of the free energy, which turns out to be deterministic and on order one in the
system size in all phases of the QREM. As a result, we determine the nature of the
fluctuations of the free energy in the spin glass regime.

1. Introduction and Main Results

1.1. Quantum random energy model. In the theory of disordered systems the random
energy model (REM) is a simple, yet ubiquitous toy model. It assigns to every N -bit or
Ising string σ = (σ1, . . . , σN ) ∈ {−1, 1}N=:QN a rescaled Gaussian random variable

U (σ ) := √
N ω(σ )

with (ω(σ )) forming 2N canonically realized independent and identically distributed
(i.i.d.) randomvariables with standard normal lawP. TheHamming cubeQN is rendered
a graph by declaring two bit strings connected by an edge if they differ by a single
bit flip: introducing the flip operators Fjσ := (σ1, . . . ,−σ j , . . . , σN ) on components
j ∈ {1, . . . , N }, the edges of the Hamming cube are formed by all pairs of the form
(σ , Fjσ ). The graph’s negative adjacency matrix

(Tψ) (σ ) := −
N∑

j=1

ψ(Fjσ )
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is defined on ψ ∈ �2(QN ), the 2N -dimensional Hilbert space of complex-valued func-
tions on N -bit strings. Since every vertex in QN has a constant degree N , the negative
graph Laplacian, T + N1, just differs by N times the identity matrix. We study the
quantum random energy model (QREM) which is the random matrix

H := � T +U, (1.1)

where � ≥ 0 is a parameter, andU is diagonal in the canonical configuration basis (δσ )

of �2(QN ), i.e.,Uδσ = U (σ )δσ andψ(σ ) = 〈δσ |ψ〉. As usual in mathematical physics,
we choose the scalar product 〈·|·〉 on �2(QN ) to be linear in its second component.

The QREM is a random matrix of Anderson type—albeit on a quite unconventional
graph whose connectivity grows to infinity with the system size N , and with a scaling
of the random potential U which enforces the operator norm of both, T and U , to be of
the same order N (cf. (1.4) and (1.9)). It is thus natural to investigate the localization
properties of its eigenfunctions. The interest in the QREM is however many-faceted. In
mathematical biology, the model has received attention under the name REM House-
of-Cards model [63] as an element of a simplistic probabilistic model of population
genetics, in whichQN is the space of gene types andU encodes their fitness [7,8,39,42].
In this interpretation, the operator T implements mutations of the gene type, and one is
interested in the long-time limit of the semigroup generated by H (cf. [6], in which the
parameter regime� = κ/N with fixed κ > 0 corresponding to the normalized Laplacian
is considered).

The Anderson-perspective has also attracted attention in discussions of many-body
or Fock-space localization, where theQREMoccasionally serves as an analyticallymore
approachable toy to test ideas about more realistic disordered spin systems [9,14,27,45].
We will comment on some of the conjectures in the physics literature concerning the
localization properties of the eigenfunctions after presenting our results on this topic.

In statistical mechanics, the QREM was introduced [37] as a simplified model to
investigate the quantum effects caused by a transversal magnetic field on classical
mean-field spin-glass models [62]. In this context, the Hilbert space �2(QN ) is uni-
tarily identified with the tensor-product Hilbert space ⊗N

j=1C
2 of N spin- 12 quantum

objects. A corresponding unitary maps the canonical basis (δσ ) to the tensor-product
basis in which the Pauli-z-matrix is diagonal on each tensor component. The Pauli ma-

trices σ x =
(
0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
are naturally lifted to ⊗N

j=1C
2 by

their action on the j th tensor component, σ x
j := 1⊗· · ·⊗ σ x ⊗· · ·⊗1. Upon the above

unitary equivalence, T corresponds to −∑N
j=1 σ x

j , i.e., a constant field in the negative

x-direction exerted on all N spin- 12 (cf. [52]). In this interpretation, the random potential
U is the energy operator of the spin- 12 -objects, which interact disorderly only through
their z-components. Derrida [28,29] originally invented the classical REM potential U
as a simplification to other mean-field spin glasses such as the Sherrington-Kirkpatrick
model.

The phenomenon common to such classical spin glass models is a glass freezing
transition into a low temperature phase which, due to lack of translation invariance, is
described by an order parameter (due to Parisi) more complicated than a global mag-
netization [54,57,58,65]. In the absence of external fields the latter typically vanishes.
These thermodynamic properties are encoded in the (normalized) partition function

Z(β, �) := 2−N Tr e−βH
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Fig. 1. Phase diagram of the QREM as a function of the transversal magnetic field � and the temperature β−1

[37,50]. The first-order transition occurs at fixed β and �c(β). The freezing transition is found at temperature
β−1
c , which is unchanged in the presence of a small magnetic field

at inverse temperature β ∈ [0,∞), or, equivalently, its pressure


N (β, �) := ln Z(β, �). (1.2)

Up to a factor of −β−1, the latter coincides with the free energy. In the thermodynamic
limit N → ∞, the specific pressure of the REM converges almost surely [17,28,29,56],

N−1
N (β, 0) → pREM(β) =
{

1
2β

2 if β ≤ βc,

1
2β

2
c + (β − βc)βc if β > βc.

(1.3)

It exhibits a freezing transition into a low-temperature phase characterized by the van-
ishing of the specific entropy above

βc := √
2 ln 2.

In the presence of the transversal field, the spin-glass phase of the REM disappears
for large � > 0 and a first-order phase transition into a quantum paramagnetic phase
described by

pPAR(β�) := ln cosh (β�)

occurs at the critical magnetic field strength

�c(β) := β−1 arcosh
(
exp

(
pREM(β)

))
.

In particular, �c(0) = 1 and �c(βc) = β−1
c arcosh(2). The precise location of this first-

order transition and the shape of the phase diagram of the QREM, which we sketch
in Fig. 1, had been predicted by Goldschmidt [37] in the 1990s and was rigorously
established in [50].

Proposition 1.1 [50]. For any �, β ≥ 0 we have the almost sure convergence as N →
∞:

N−1
N (β, �) → max{pREM(β), pPAR(β�)}.
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1.2. Low energy states. Through the low-temperature limit β → ∞, Proposition 1.1
contains also information on the ground state energy of the QREM,

N−1 inf spec H →
{

−βc if � < βc,

−� if � > βc.

Thecritical coupling for this quantumphase transition is at the endpoint limβ→∞ �c(β) =
βc of the first order phase transition. As will be demonstrated below, this ground-state
phase transition at � = βc is manifested by a change of the nature of the corresponding
eigenvector from sharply localized to (almost) uniformly delocalized. To provide some
heuristics, it is useful to compare the ground-state energy and eigenvectors of the two
operators entering H = �T +U :

1. The spectrum of T consists of N + 1 eigenvalues,

spec T = {2n − N | n ∈ N0, n ≤ N }, (1.4)

with degeneracy given by the binomials
(N
n

)
. The corresponding �2-normalized eigen-

vectors are the natural orthonormal basis for the Hadamard transformation, which
diagonalizes T . They are indexed by subsets A ⊂ {1, . . . , N }:


A(σ ) := 1√
2N

∏

j∈A

σ j . (1.5)

The eigenvalue to 
A is 2|A| − N with |A| the cardinality of the set. In particular,
the unique ground-state of �T is 
∅ with energy −N�. All eigenvectors 
A are
maximally uniformly delocalized over the Hamming cube.

2. In contrast, all eigenvectors δσ of U are maximally localized. The REM’s min-
imum energy, minU , is roughly at −Nβc. For η > 0 the event that ‖U‖∞ :=
maxσ∈QN |U (σ )| > (βc + η)N has exponentially small probability, i.e,

�REM
N ,η := {‖U‖∞ ≤ (βc + η)N },

P(�REM
N ,η ) ≥ 1 − 2N+1e− 1

2 (η+βc)
2N = 1 − 2 e−N (ηβc+

η2

2 ), (1.6)

where the inequality follows from the union bound and a Markov-Chernoff estimate.
A more precise description of the extremal value statistics of minU is [17,46]

P (minU ≥ sN (x)) =
(
1 − 2−Ne−x+o(1)

)2N
(1.7)

for any x in terms of the function sN given by

sN (x) := −βcN +
ln(N ln 2) + ln(4π)

2βc
− x

βc
. (1.8)

By symmetry of the distribution, a similar expression applies to the maximum.

These limiting cases suggest the following heuristic, perturbative description of the
ground-state of H = �T +U in the regimes of small and large �. To our knowledge, it
goes back to [40]:
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1. For small �, second-order perturbation theory starting from the vector δσmin , which
is localized at σmin := argminU , reads:

inf spec H ≈ minU + � 〈δσmin |T δσmin〉 + �2

∑

σ �=σmin

∣∣〈δσ | T δσmin〉
∣∣2

U (σmin) −U (σ )
≈ −Nβc − �2

βc
. (1.9)

The first-order term vanishes. The sum in the second-order term is restricted to the
neighbors of the minimum, whose potential term typically is only of the order

√
N .

2. For large �, second-order perturbation theory starting from the ground state 
∅ of
T reads:

inf spec H ≈ −N� + 〈
∅|U
∅〉 −
∑

A �=∅

|〈
∅| U
A〉|2
2|A| �

≈ −N� − 〈
∅| U 2
∅〉
N �

≈ −N� − 1

�
. (1.10)

The next-to-leading term, 〈
∅|U
∅〉 = 2−N ∑
σ∈QN

U (σ ), vanishes by the law of
large numbers. In the order �−1-term, one uses the approximation that most of the
states of T are found near |A| ≈ N/2. As will be explained in more detail in Sect. 3,
one crucial point is that U is exponentially small when restricted to the eigenspace
of T outside an interval around |A| ≈ N/2. By a decomposition of unity one is
therefore left with 〈
∅| U 2
∅〉 ≈ N , again by the law of large numbers.

Unlike in a finite-dimensional situation, higher orders in this naive perturbation theory
turn out to be of lower order with N−1 the relevant parameter. One result of this paper is
that these predictions can be confirmed: for � < βc the ground state is sharply localized
near a lowest-energy configuration of the REM. In contrast, for � > βc the ground
state resembles the maximally delocalized state given by the ground state of T . In both
cases, the ground state is energetically separated and the ground-state gap only closes
exponentially near � = βc, see also [1]. In fact, we do not only restrict attention to the
ground state but characterize a macroscopic window of the entire low-energy spectrum
in the different parameter regimes.

Before delving into the details, let us emphasize that the localization-delocalization
transition at extreme energies presented here relies on the delocalization properties of
T onQN , which fundamentally differ from the finite-dimensional situation. The eigen-
functions of T can only form localized states from linear combinations in the center of
its spectrum. This is given a precise mathematical formulation in the form of novel esti-
mates on the spectral shift and Green function of Dirichlet restrictions of T to Hamming
balls in Sect. 2, and random matrix estimates on projections of multiplication operators
in Sect. 3. A separation of the localized versus delocalized parts of the spectrum beyond
the extremal energies, on which the subsequent results concerning the finite-size correc-
tions of the free energy rest, is facilitated by a novel detailed description of the geometry
of extremal fluctuations the REM in Sect. 5.

Aside from Theorem 1.10, our results pertain to fixed, but arbitrarily large N on
the product probability space �N corresponding to 2N i.i.d. standard normal random
variables whose product measure we denote by P. We suppress its dependence on N . In
this setting, the results apply to all realizations ω, aside from exceptional events whose
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probability will be estimated and go (exponentially) to zero as N → ∞. This strong
concentration enables in Theorem 1.10 (and also Proposition 1.1) the use of Borel-
Cantelli arguments, applied to the product space

∏∞
N=1 �N . To present our results and

estimates in a precise, yet reader-friendly, manner, we will make use of an “indexed”
version of Landau’s O-notation.

Definition 1.2. Let � = (θ1, . . . , θk) be a tuple of parameters, (aN )N∈N a real and
(bN )N∈N a positive sequence. We then write

aN = O�(bN ) if lim sup
N→∞

|aN |
bN

≤ C(�), (1.11)

for some positive constant C(�), which may depend on �. Analogously, we write

aN = o�(bN ) if |aN | ≤ cN (�)|bN |, (1.12)

where cN (�) denotes a sequence which tends to zero.

In particular, the appearing constant C(�) or, respectively sequence cN (�), does
not depend on any other parameters in question not included in �. That is, if aN is a
random sequence and the realization ω of the randomness is not included in the list �

of parameters, the estimates are understood to hold uniformly on the event of interest.

1.2.1. Paramagnetic regime � > βc. Our first main result shows that in the paramag-
netic regime the addition of the REM shifts the eigenvalues (1.4) of T at energies below
the minimum of U deterministically.

Theorem 1.3. For � > βc and any τ ∈ (0, 1) there are events �
par
N ,τ with probability

P(�
par
N ,τ ) ≥ 1 − e−N/C

and C ∈ (0,∞) a universal constant such that for all sufficiently large N and any η > 0
on �

par
N ,τ ∩ �REM

N ,η (cf. (1.6)) all eigenvalues of H = �T + U below −(βc + 2η)N are

found in the union of intervals of radius O�,η(N
τ−1
2 ) centered at

(2n − N )� +
N

(2n − N )�
(1.13)

with n ∈ {m ∈ N0 |(2m − N )� < −(βc + 2η)N }. Moreover, the interval centered
at (1.13) contains exactly

(N
n

)
eigenvalues of H.

For the ground-state in the regime � > βc, Theorem 1.3 implies that with over-
whelming probability

inf spec H = −�N − 1

�
+ o�(1). (1.14)

The energy shift with respect to the ground state of �T is as predicted by naive second-
order perturbation theory (1.10). Second-order perturbation theory for the eigenvalues
corresponds to first-order perturbation theory for the eigenvectors: the eigenvectors are
well approximated by their first order corrections. In particular, the ground state in the
paramagnetic phase is close to the fully paramagnetic state 
∅. This is made more
precise in our next main result, whose proof alongside that of Theorem 1.3 can be found
in Sect. 3.
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Theorem 1.4. In the situation of Theorem 1.3 on the event �par
N ,τ ∩ �REM

N ,η with 0 < η <

(� − βc)/4 the �2-normalized ground state ψ of H = �T +U satisfies:

1. The �2-distance of ψ and 
∅ is ‖ψ − 
∅‖ = O�(N
τ−1
2 ).

2. The ground state ψ is exponentially delocalized in the maximum norm, i.e.

‖ψ‖2∞ ≤ 2−NeNγ ((βc+η)/(2�))+o�(N ), (1.15)

where γ : [0, 1] → R denotes the binary entropy

γ (x) := −x ln x − (1 − x) ln(1 − x). (1.16)

The true �2-distance of the ground-state function to the fully delocalized state 
∅ is

presumably of order N− 1
2 up to a logarithmic correction in N . The norm estimate (1.15)

is not expected to be sharp: we conjecture a delocalization bound of the form ‖ψ‖2∞ ≤
2−N+o(N ). Section3, in which the proofs of Theorems 1.3 and 1.4 can be found, also
contains (non-optimal) �∞-delocalization estimates for all eigenvalues strictly below the
threshold −βcN in the paramagnetic regime. The optimal decay rates for excited states
are not known.

1.2.2. Spin glass regime � < βc. In the spin glass phase the low-energy configurations
of the REM, which occur on the extremal sites

Lε := {σ |U (σ ) ≤ −εN } with ε ∈ (0, βc), (1.17)

are also shifted by a deterministic, order-one correction by the transverse field as pre-
dicted by second-order perturbation theory. To characterize localization properties of the
corresponding eigenvectors in the canonical z-basis, i.e., the configuration basis (δσ ) of
�2(QN ), we let

BR(σ ) := {σ ′| d(σ , σ ′) ≤ R}, SR(σ ) := {σ ′| d(σ , σ ′) = R}
stand for the Hamming ball and sphere of radius R, which are defined in terms of the
Hamming distance

d(σ , σ ′) := 1

2

N∑

i=1

|σi − σ ′
i |

of two configurations σ , σ ′ ∈ QN .

Theorem 1.5. For � < βc and δ > 0 small enough there are events �loc
N ,�,δ with

probability

P(�loc
N ,�,δ) ≥ 1 − e−cN

for some c = c(�, δ) such that the following applies for sufficiently large N on �loc
N ,�,δ:

1. The eigenvalues E of H = �T +U below−(βc−δ)N and low-energy configurations
U (σ ) are in a one-to-one correspondence such that

E = U (σ ) +
�2N

U (σ )
+O�,δ(N

−1/4). (1.18)

In particular, the estimate O�,δ(N−1/4) is independent of σ ∈ Lβc−δ .
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2. The �2-normalized eigenvector ψ corresponding to E and σ concentrates near this
configuration in the sense that:
(a) Close to extremum: For any K ∈ N and for all σ ′ ∈ SK (σ ):

|ψ(σ ′)| = O�,δ,K (N−K ), and
∑

σ ′ /∈BK (σ )

|ψ(σ )|2 = O�,δ,K (N−(K+1)).

(b) Far from extremum: For any 0 < α < 1, there is cα ∈ (0,∞) such that
∑

σ ′ /∈BαN (σ )

|ψ(σ ′)|2 ≤ e−cαN . (1.19)

This theorem covers states in the extreme localization regime in which the eigenvec-
tors are sharply localized—each in its own extremal site of the potential. In this regime,
the estimates on the decay rate of the eigenvectors close to the extremum are optimal and
far from the extremum they are optimal up to determining the decay rate cα . Concrete,
non-optimized values of the energy threshold−N (βc−δ) as well as more precise values
of the error terms can be found in the proof of Theorem 1.5 in Sect. 4. In essence, the
localization analysis in Sect. 4 proves that resonances and tunneling among different
large deviation sites does not play a role in this energy regime. An upper bound for our
technique to fail is at δ = βc/2. The energy threshold at which eigenvectors are believed
[9,14] to occupy a positive fraction of QN is strictly larger than −Nβc/2 and for small
fields yet smaller than −N�.

The precise low energy statistics of the REM U beyond the location of the mini-
mum (1.7) is well known. Utilizing the rescaling (1.8) around its minimal value, the
point process

∑

σ∈QN

δs−1
N (U (σ ))

→ PPP(e−x dx) (1.20)

converges weakly to the Poisson point process with intensity measure e−x dx on R

(i.e, when integrating the random measure against a continuous compactly supported
function, the resulting random variables converge weakly, see e.g. [17, Thm 9.2.2] or
[46]). Theorem 1.5 implies a similar result for the low energy statistics in the QREM.

Corollary 1.6. Let � < βc and let

sN (x;�) := −βcN +
ln(N ln 2) + ln(4π)

2βc
− �2

βc
− x

βc
. (1.21)

Then, the rescaled eigenvalue process spec H of the QREM H = �T + U converges
weakly

∑

E∈spec H
δs−1

N (E;�)
→ PPP(e−x dx). (1.22)

In particular, the ground state energy converges weakly

inf spec H −
(

−βcN +
ln(N ln 2) + ln(4π)

2βc
− �2

βc

)
→ − X

βc
, (1.23)

where X is a random variable distributed according to the law of the maximum of a
Poisson point process PPP(e−x dx) with intensity e−x dx on the real line.
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Proof. Corollary 1.6 is a straightforward consequence of Theorem 1.5 combined with
(1.20). ��

Theorem 1.5 in particular covers the ground-state of the QREM and thus extends
the result [6, Lemma 2.1] on the leading asymptotics of the ground-state energy in the
parameter regime � = κ/N with κ > 0. The proof already contains more information
on the �2-properties of the ground-state eigenvector, which we record next. More can
be said on its �1-localization properties. The latter is of interest in the context of the
interpretation of the QREM in population genetics [7,8,39].

Theorem 1.7. For � < βc there are events �̂loc
N ,� with probability

P(�̂loc
N ,�) ≥ 1 − e−cN

for some c = c(�) such that on �̂loc
N ,� for all N large enough there is δ > 0 and σ 0 ∈

Lβc−δ such that the positive �2-normalized ground state ψ of the QREM Hamiltonian
is concentrated near σ 0 in the sense that:

1. the �2-distance of ψ and δσ 0 is ‖ψ − δσ 0‖2 = O�

( 1
N

)
, and its first order correction

ξ :=
√

1 − �2

β2
c N

δσ 0 +
�

βcN

∑

σ∈S1
δσ (1.24)

has the same energy as ψ up to order one, and ‖ψ − ξ‖2 = O�

(
1
N2

)
.

2. the �1-norm of ψ converges to a bounded constant:

‖ψ‖1 =
∑

σ

ψ(σ ) = βc

βc − �
+ o�(1), (1.25)

and, for any 1 < p < ∞: ‖ψ‖p
p =

∑

σ

|ψ(σ )|p = 1 + o�,p(1).

It is natural to assume that the configuration σ 0 on which the ground-state is asymp-
totically localized and the classical minimal configuration σmin := argminU agree.
While this is true with high probability, it does not hold almost surely. In the situation
of Theorem 1.7 one may show that there are two constants C ≥ c > 0 such that for N
large enough:

c

N
≤ P(σ 0 �= σmin) ≤ C

N
. (1.26)

The reason for this is found in the following description of low-energy eigenvalues,

Eσ = U (σ ) − �2

βc
+

�2

β2
c N

Zσ +O�(N−5/4), Zσ := 1

N

∑

σ ′∈S1(σ )

U (σ ′),

which is proved in Lemma 4.3 below and which takes into account the next leading term
in comparison to (1.18). The random variables Zσ are standard normal distributed and
independent of the large deviationsU (σ )with σ ∈ Lβc−δ and δ > 0 small enough. Since
the extremal energies form a Poisson process with mean density of order one, the normal
fluctuations in the energy-correction of orderO(1/N ) are able to cause the event (1.26).
More generally, the method presented in this paper allows for a systematic control of
subleading corrections in an expansion of the energy eigenvalues. As we will see, they
are determined by potential fluctuations on increasing spheres around the extremal sites.
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1.2.3. Critical case � = βc. We complete the picture on the ground state by describing
the situation in the critical case � = βc, where the quantum phase transition occurs.
Adapting techniques, one may also prove that typically one observes a paramagnetic
behavior at criticality.

Proposition 1.8. Let � = βc. On an event of probability 1−O(N−1/2) the ground state
is at inf spec H = −�N − �−1 +O(N−1/4) and the eigenvector ψ is paramagnetic in
the sense that ‖ψ −
∅‖ = O(N−1/4). On an event of probabilityO(N−1/2) the ground
state is at inf spec H = minU − � +O(N−1/4), and the eigenvector ψ is localized in
the sense that ‖ψ − δσ 0‖ = O(N−1/4).

The heuristics explanation for this is the following. For � = βc the ground state
energy of �T is given by −βcN , whereas the classical minimal energy is given by
minU = −βcN + C ln(N ) + O(1) with C > 0. The logarithmic correction in this
expression ensures that the paramagnetic behavior is dominant. This argument also
suggests that the phase transition should be observed at the N -dependent field strength
�N , where the energy predictions of Theorems 1.3 and 1.5 agree,

−�N N − 1

�N
= minU +

�2
N N

minU

which leads to

�N = −minU

N
+

1

N

(
N

minU
− minU

N

)
+ o(N−1). (1.27)

Indeed, in an o(N−1) neighborhood of �N one can observe a sign of critical behavior,
the exponential vanishing gap of the Hamiltonian.

Proposition 1.9. Let �N (�) > 0 denote the energy gap of the QREM Hamiltonian.
Then, for some c > 0 and N large enough

min
�≥0

�N (�) ≤ e−cN (1.28)

except for a exponentially small event. The minimum is attained at some ��
N satisfy-

ing (1.27).

The proof of both Proposition 1.8 and 1.9 are found in the extended arXive version
[49]. It relies on a spectral analysis of H and is completely different from the derivation
in [1].

1.3. Free energy and partition function. The spectral techniques presented here also
allow to pin down the pressure 
N and its fluctuations up to order one in N in all three
phases of the QREM: the spin-glass phase as well as the classical (’unfrozen REM’) and
quantum paramagnetic phase, cf. Fig. 1.

Theorem 1.10. 1. If � > �c(β) the pressure
N (β, �) is up to order one deterministic
and one has the almost sure convergence


N (β, �) − (ln cosh(β�))N → β

� tanh(β�)
. (1.29)
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2. If � < �c(β) and β ≤ βc, the pressure 
N (β, �) differs from the REM’s pressure

N (β, 0) by a deterministic β-independent shift of order one, i.e., one has the almost
sure convergence


N (β, �) − 
N (β, 0) → �2. (1.30)

3. If� < �c(β)andβ > βc, the pressure
N (β, �)differs from theREM’s pressure by a
deterministicβ-dependent shift of order one, i.e., one has the almost sure convergence


N (β, �) − 
N (β, 0) → �2β

βc
. (1.31)

The proof of the almost-sure convergence, for which the probability space is the product∏∞
N=1 �N of independently redrawn variables for every single N , is based on a Borel-

Cantelli argument and contained in Sect. 5.
At all values of β > 0, the fluctuations of the REM’s pressure 
N (β, 0) below

its deterministic leading term NpREM(β) have been determined in [20] (see also [17,
Thm. 9.2.1]). Their nature and scale changes from normal fluctuations on the scale
exp

(− N
2 (ln 2 − β2)

)
for β ≤ βc/2 into a more interesting form of exponentially small

fluctuations in the regimeβ ∈ (βc/2, βc). In the spin glass phaseβ > βc, the fluctuations
are of order one [34] and asymptotically described by Ruelle’s partition function of the
REM [59]. More precisely, one has the weak convergence [20, Thm. 1.6]:

e−N [ββc−ln 2]+ β
2βc

[ln(N ln 2)+ln 4π ]ZN (β, 0) →
∫ ∞

−∞
exβ/βc PPP(e−x dx). (1.32)

As a consequence of Theorem 1.10, we thus obtain the analogous result for the QREM.

Corollary 1.11. If � < �c(β) and β > βc, we have the weak convergence:

e−N [ββc−ln 2]+ β
2βc

[ln(N ln 2)+ln 4π ]− β�2

βc ZN (β, �) →
∫ ∞

−∞
exβ/βc PPP(e−x dx).

Proof. By the continuity of the exponential function, this follows immediately from(1.31)
and (1.32). ��

The fluctuations of the QREM’s partition function outside the spin glass phase are
expected to be much smaller—for � < �c(β) and β < βc most likely on a similar scale
as in the REM and for the paramagnetic regime presumably even smaller. The methods
in this paper do not allow to determine fluctuations on an exponential scale.

1.4. Comments. We close this introduction by putting our main results into the broader
context of related questions discussed in the physics and mathematics literature.
In the past years, the QREM has attained interest in the physics community as basic test-
ing ground for quantum annealing algorithms [40,41] and, somewhat related, physicist
have started to investigate many-body localization in the QREM [9,14,22,32,45]. Based
on numerical computations and non-rigorousmethods such as the forward-scattering ap-
proximation and the replica trick, they predict a dynamical phase transition between er-
godic and localized behavior in the parameter region� < �c(β), β < βc. This transition
is expected to be reflected in a change in the spread of eigenfunctions at the correspond
energies, which in the ergodic regime is neither uniform nor localized. It is an interesting
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mathematical challenge to investigate this. As this requires a good understanding of the
eigenfunctions far away from the spectral edges, the methods presented in this paper are
not yet sharp enough to tackle those problems.

In simplified models of Rosenzweig-Porter type, such non-ergodic delocalization
regimes have been predicted [44,61] and confirmed by a rigorous analysis [68]. In an
evenmore simplifiedmodel inwhich one replaces T by the orthogonal projection onto its
ground-state −|
∅〉〈
∅|, a fully detailed description of the localization-delocalization
transition has been worked out in [5].

Focusing on the physics of spin glasses, the independence of the REM is an over-
simplification. This was the main motivation for Derrida to introduce the Generalized
Random EnergyModel (GREM) [30,31], in which the basic random variables are corre-
lated, but still with a prescribed hierarchical structure. The free energy of the GREM has
been studied extensively [18,19,23,59]. On the quantum side, the specific free energy
of the QGREM has been determined in [52]; and in [53] the effects of an additional
longitudinal field have been considered. We expect that our methods can be adapted to
the case of a finite-level QGREM to derive analogous results as in Theorems 1.3, 1.5 and
1.10. More precisely, we conjecture that the multiple phase transitions in the QGREM
are reflected in the behavior of the ground state wavefunction, i.e., at the critical field
strengths �k the wavefunction undergoes a transition from being localized in the block
σk to a delocalized states in the respective part of the spin components. The infinite-
level case might require substantially new ideas, as standard interpolation techniques
do not reveal order-one corrections. Our methods, however, are strong enough to cover
non-Gaussian REM type models, i.e., a centered square integrable i.i.d. process, whose
distribution satisfies a large deviation principle (see also [52, Assumption 2.1]). Clearly,
explicit expressions in analogous versions of Theorem 1.3, 1.5 and 1.10 will depend on
the distribution of the process as already the parameter βc is specific to Gaussians.

Among spin glass models with a transversal field, the Quantum Sherrington-
Kirkpatrick (QSK) model, in which one substitutes in (1.1) for U the classical SK
potential, is of particular interest [62]. In contrast to the classical SK model, which is
solved by Parisi’s celebrated formula, such an explicit expression for the free energy
of the QSK is lacking, and its analysis remains a physical and mathematical challenge.
So far, the universality of the limit of the free energy has been settled in [25], and in
[2] the limit of the free energy was expressed as a limit of Parisi-type formulas for
high-dimensional vector spin glass models. Unfortunately, despite the knowledge of a
Parisi-type formula, the qualitative features of the phase transition in the QSK could
only be analyzed by other means, adapting the methods of [4,21]. In terms of the glass
behavior, the analysis in [48] shows that the glass parameter vanishes uniformly in � for
all β ≤ 1. This is complemented by [47], where the existence of a glass phase has been
established for β > 1 and weak magnetic fields �.

The localization-delocalization transition for the QREM differs drastically from re-
lated results on a finite-dimensional graph such as Zd (see e.g. [3,43] and references).
Unlike on Z

d , all low-energy eigenvectors on QN are delocalized in a regime of large
� (a regime, which is also absent if one takes � = κ/N as in [6]). The localized states
appear only for small �. Although the norm of the adjacency matrix T is on the same
scale N as the random potential U , which is not the case for the any of the variety of
unbounded distributions studied on subsets of Zd , the localization of eigenvectors for
extremal energies is even stronger onQN . For the Gaussian distribution studied here, the
mass of the eigenvectors sharply concentrates not only for a finite number of eigenvalues
in one of the extremal sites ofU , but rather for all eigenvalues below a threshold (cp. [38]
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with Theorem 1.5). In the finite-dimensional setting, the ground state and the first few
excited states concentrate on a small, but growing subdomain of Zd and, hence, a finite
�1-norm for the ground state is specific to the QREM. This seemingly contradictory
strong localization property compared to Zd can be traced to the adjacencies matrix’s T
bad localization properties to balls, on which we elaborate in Sect. 2: the spectral shift
due to localization on a ball of radius K is of order N and not K−2 as on Z

d . This to-
gether with the sparseness of the potential’s extremal sites does not allow for resonances
(cf. Lemma 4.4). In this sense, our proof is in fact somewhat simpler (and hence also
stronger) than existing proofs of localization in the extremal sites of a random potential
on Z

d . E.g. most recently and notably, in [15] the statistics of a finite number of eigen-
values above the ground state and the localization properties of their eigenvectors were
studied for single-site distributions with doubly exponential tails (see also [43] for more
references). While the degree of localization in the � < β phase is significantly stronger
than in the models studied in [15], we observe a similar exponential decay of the local-
ized states for larger distances, and in both cases the extremal statistics is governed by a
Poisson process. In the study of the parabolic Anderson model, an interesting question
is how the shape of the localized eigenstates and the speed of convergence depend on
the underlying distribution of the random potential [43]. For the sake of concreteness,
we only study the most prominent case of a Gaussian distribution. Although several
quantities such as the constant βc depend crucially on the Gaussian nature, we expect
the qualitative aspects of the localization–delocalization transition to be persistent even
with other unbounded distributions (e.g. those which meet [52, Ass 2.1]).

The operator T coincides up to a diagonal shift N with the Laplacian, i.e., the gener-
ator of a simple clock process onQN . This correspondence gives rise to yet another link
with the parabolic Anderson model on Z

d . The dynamics of the Anderson model is a
vast research topic and its study has revealed many interesting phenomena such as age-
ing. The spin glass nature is believed to be reflected in non-equilibrium properties and
a slow relaxation to equilibrium. However, aging in spin glasses is typically not studied
under an unbiased random walk, but rather under the Glauber dynamics for which the
transition rates depend on the sites’ energies. In the case of the REM, the related Glauber
dynamics has drawn considerable interest as a well treatable case for metastability and
aging [10,11,24,35,36]. Our spectral methods might provide some further insights into
the dynamics of REM-type clock processes.

2. Adjacency Matrix on Hamming Balls

This section collects results on the spectral properties of the restriction of T to Hamming
balls. We focus on the analysis of the Green’s function, which by rank-one perturbation
theory, is closely related to the ground state for potentials corresponding to a narrow deep
hole - a situation typically encountered in potentials of REM type. Most of the spectral
analysis in the literature related to T is motivated by the theory of error corrections
(see e.g. [16,26,33] and references therein). The methods we use are rather different
and neither rely on elaborate combinatorics nor a Hadamard transformation, which is
applicable on a full Hamming cube only.

2.1. Norm estimates. In the following, we fix σ 0 ∈ QN and 0 ≤ K ≤ N ∈ N. The
restriction TK of T to the Hamming ball BK (σ 0) is defined through its matrix elements
in the canonical orthonormal basis on �2(BK (σ 0)), which is naturally embedded in
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�2(QN ):

〈δσ |TK δσ ′ 〉 =
{

〈δσ |T δσ ′ 〉 if σ , σ ′ ∈ BK (σ 0)

0 otherwise.
(2.1)

We start with two known results on TK . The first part of the following lemma has
been already proved in [33] in case K = �N , and a simpler proof is included in [49].
The second part is just a special case of the spectral symmetry of any bipartite graph’s
adjacency matrix (cf. [26]).

Proposition 2.1 (cf. [33]). For the restriction TK to balls BK (σ 0) of radius K ≤ N/2:

1. The operator norm is bounded according to

‖TK ‖ ≤ 2
√
K (N − K + 1), (2.2)

and for any radius �N with 0 < � < 1/2:

EN (�) := inf spec T�N = −‖T�N‖ = −2
√

�(1 − �)N + o�(N ). (2.3)

2. If ϕ is an eigenvector of TK , then ϕ̂ given by ϕ̂(σ ) := (−1)d(σ ,σ 0)ϕ(σ ) is also
an eigenvector of TK with 〈ϕ̂|TK ϕ̂〉 = −〈ϕ|TKϕ〉. Consequently, the spectrum is
symmetric, spec(TK ) = − spec(TK ).

If K is of order one as a function of N , we have ‖TK ‖ = OK (
√
N ). This drastic shift

of the operator norm due to confinement should be compared to the finite-dimensional
situation where this shift for a ball of radius K is propartional to K−2.

In the remaining part of this section, we will analyze TK and its Green function in
the two extreme cases in relation to N : (1) fixed-size balls in Sect. 2.2, and (2) growing
balls with radius K = �N with some 0 < � < 1/2 in Sect. 2.3.

2.2. Green function for balls of fixed size. The Green’s function of the operator TK on
�2(BK (σ 0)) is defined by

GK (σ , σ 0; E) :=
〈
δσ | (−TK − E)−1δσ 0

〉
. (2.4)

Before we derive decay estimates in case E �∈ [−‖TK ‖, ‖TK ‖], we recall some general
facts:

1. By radial symmetry, GK (σ , σ 0; E) only depends on the distance d(σ , σ 0).
2. All �2-normalized eigenvectors (ϕ j ) of TK with eigenvalues (E j ) can chosen to be

real, and we have

GK (σ , σ 0; E) =
∑

j

ϕ j (σ )ϕ j (σ 0)

E j − E
=

∑

j

(−1)d(σ ,σ 0)
ϕ j (σ )ϕ j (σ 0)

−E j − E

= (−1)d(σ ,σ 0)+1GK (σ , σ 0;−E),

where the second equality follows from the symmetry of the spectrum stated in
Lemma 2.1. Thus, it is sufficient to derive decay estimates for E < −‖TK ‖.
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3. The Green function at E < −‖TK ‖ is related to the ground-state ϕ of the rank-one
perturbation

H (E) := TK − α(E)|δσ 0 〉〈δσ 0 | (2.5)

on �2(BK (σ 0)). More precisely, by rank-one perturbation theory
α(E) := GK (σ 0, σ 0; E)−1 is the unique value at which H (E) has a ground-state
at E < −‖TK ‖, and

GK (σ , σ 0; E) = 1

α(E)

ϕ(σ )

ϕ(σ 0)
, (2.6)

cf. [3, Theorem 5.3]. By the Perron-Frobenius theorem, ϕ and hence the Green
function is strictly positive on BK (σ 0). A decay estimate for GK (·, σ 0; E) translates
to a bound on the ground state ϕ of H (E) and vice versa. Our proof of the localization
results in Sect. 4 will make use of this relation.

In order to establish decay estimates, we employ the radial symmetry and write the
Green function as a telescopic product

GK (σ , σ 0; E) =
dist(σ ,σ 0)∏

d=0

�K (d; E) (2.7)

with factors �K (0; E) := GK (σ 0, σ 0; E) and

�K (d; E) := GK (σ , σ 0; E)

GK (σ ′, σ 0; E)
, if 1 ≤ d = dist(σ , σ 0) = dist(σ ′, σ 0) − 1.

The choice of σ ∈ Sd(σ 0) and σ ′ ∈ Sd−1(σ 0) in the last definition is irrelevant due to
the radial symmetry.

The fundamental equation (−TK −E)GK (·, σ 0; E) = δ·,σ 0 yields for a configuration
σ with 1 ≤ d = dist(σ , σ 0) ≤ K

0 = [(TK − E)GK (·, σ 0; E)](σ )

= −d
d−1∏

j=0

�K ( j; E) − E
d∏

j=0

�K ( j; E) − (N − d)

d+1∏

j=0

�K ( j; E)

=
(

d

�K (d; E)
− E + (N − d)�K (d + 1; E)

) d∏

j=0

�K ( j; E),

where we use the convention �K (K + 1; E) := 0. In the case d = 0, we have 1 =
(−N�K (1; E) − E)�K (0; E). That translates to the following recursive relation of
Riccati type:

�K (d; E) = Md,E ( �K (d + 1; E) ), 0 ≤ d ≤ K . (2.8)

with the fractional linear transformation acting on C:

Md,E (�) = max{d, 1}
−E − (N − d) �

. (2.9)

We now analyze the behavior of solutions to the recursive relation in the various regimes
of interest.
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Proposition 2.2. For any K ∈ N there is some CK < ∞ such that for any N > 2K and
E < −‖TK ‖ we have

GK (σ , σ 0; E) ≤ CK

|E + ‖TK ‖|
(

N

d(σ , σ 0)

)−1/2
(√

N

|E |

)d(σ ,σ 0)

. (2.10)

Since the proof of Proposition 2.2 is arguably simpler than the one of Proposition 2.4,
we refer to [49] for the arguments.

2.3. Green function for growing balls. We now turn to the behavior of the Green’s
function on balls, which grow with N . This will require a more detailed analysis of the
recursion relation (2.8). To see what to expect, we first derive an estimate on the Green’s
function of the full Hamming cube.

Lemma 2.3. For any N ∈ N, E < −N = −‖T ‖ and σ , σ 0 ∈ QN :

GN (σ , σ 0; E) ≤ 1

|E + N |
(

N

|E |
)d (

N

d(σ , σ 0)

)−1

. (2.11)

Proof. The Neumann series formula readily implies the operator identity

1

1 − X
=

d−1∑

k=0

Xk + Xd 1

1 − X
(2.12)

for any operator with ‖X‖ < 1. Setting d = d(σ , σ 0), we thus obtain

〈
δσ

∣∣(T − E)−1δσ 0

〉
= −1

E

〈
δσ

∣∣(1 − T/E)−1δσ 0

〉
= 1

Ed

〈
δσ

∣∣∣
T d

T − E
δσ 0

〉
,

since terms in (2.12) corresponding to k < d vanish. Radial symmetry of the Green
function yields

〈
δσ

∣∣(T − E)−1δσ 0

〉
=

(
N

d

)−1 ∑

σ∈Sd (σ 0)

〈
δσ

∣∣(T − E)−1δσ 0

〉

≤
(
N

d

)−1
√
2N

Ed

〈

∅

∣∣T d 1

T − E
δσ 0

〉
=

(
N

d

)−1 ( N

|E |
)d 1

|E | − N
,

where 
∅(σ ) = 2−N/2 denotes the lowest energy eigenfunction of T , and we applied
the eigenfunction equation, T
∅ = −N
∅, in the last step. ��

Amain difference between the small versus large ball behavior of theGreen’s function
is in the factor (

√
N/|E |)d in (2.10) versus (N/|E |)d in (2.11). In the case of interest

where |E | is of order N , we arrive at a decay of the order N−d/2 versus e−Cd .
There are at least two strategies to derive upper bounds on the Green function

G�N (σ , σ 0; E) for E < EN (�) = −2
√

�(1 − �)N + o(N ) and 0 < � < 1/2, cf. (2.3).
The first strategy is to apply the arguments, which led to (2.11) and which yield

G�N (σ , σ 0; E) ≤ 1

EN (�) − E

(
EN (�)

E

)d ��(σ 0)

��(σ )

(
N

d

)−1

, (2.13)
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with �� ∈ �2(B�N (σ 0)) the �2-normalized, positive eigenfunction corresponding to
EN (�). It then remains to establish a bound on the ratio ��(σ 0)/��(σ ). We, however,
will instead proceed by an analysis of the factors �ρN defined in (2.7).

Proposition 2.4. Let 0 < � < 1/2, and ε > 0. Then for E ≤ EN (�) − εN, all
σ ∈ BρN (σ 0) and all N large enough:

G�N (σ , σ 0; E) ≤ 1

εN

(
N

d(σ 0, σ )

)−1/2

2−min{d(σ 0,σ ), ρ0(�)N } (2.14)

where 0 < �0(�) < � is the unique solution of the equation 2
√

�(1 − �) = 3√
�0(1 − �0). Moreover, for any fixed K ∈ N there is some CK < ∞ such that for

all N large enough:

1. for all σ ∈ SK (σ 0): G�N (σ , σ 0; E) ≤ 1

εN

CK√
NK

(
N

d(σ 0, σ )

)−1/2

.

2.
∑

σ �∈BK (σ 0)

G�N (σ , σ 0; E)2 ≤ CK

ε2NK+2 .

Proof. It is convenient to separate the combinatorial factor
( N
d(σ 0,σ )

)−1/2
and study

Ĝ�N (σ , σ 0; E) :=
(

N

d(σ 0, σ )

)1/2
G�N (σ , σ 0; E) =

d(σ ,σ 0)∏

d=0

�̂�N (d; E). (2.15)

By direct inspection of (2.15) one obtains the relation �̂�N (d; E) :=
√

N−d
d ��N (d; E)

for d ≥ 1, which in turn implies the recursive relation

�̂�N (d; E) = 1
|E |
V (d)

− m(d)�̂�N (d; E)
for 1 ≤ d ≤ �N

with V (d) := √
d(N − d), m(d) :=

√
(d + 1)(N − d)

d(N − d + 1)
and

�̂�N (�N + 1; E) = 0, �̂�N (0; E) = ��N (0; E) = G�N (σ 0, σ 0; E). (2.16)

We will now analyze the solution of these recursive relations.
We first claim that for all N large enough:

�̂�N (d; E) ≤ 1 for all d ∈ [�0N , �N ]. (2.17)

This is proven by induction on d starting from d = �N + 1, where it trivially holds.
For the induction step from d + 1 to d, we recall that EN (�) = −2

√
�(1 − �) + o�(N )

from (2.3). The monotonicity of V (d) andm(d) then implies that for all �0N ≤ d ≤ �N
and all N large enough:

|E |
V (d)

≥ 2 +
ε

2
√

�(1 − �)
, m(d) ≤ m(�0N ) =

√
1 + 1/(�0N )

1 − 1/(�N )
= 1 +O�(N−1).

Inserting these estimates into the recursion relation (2.16), the claimed inequality (2.17)
follows.
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We now control the recursion relation in the regime 1 ≤ d ≤ �0N . To this end, note
that the definition of �0 implies that for any d ≤ ρN and N large enough: |E |/V (d) ≥
3+ε/(2

√
ρ(1 − ρ)).Using �̂�N (�0N+1; E) ≤ 1one readily establishes �̂�N (d; E) ≤ 1

2
inductively as long as m(d) ≤ 2. The monotonicity m(d) ≤ m(1) = √

2 (1 +O(N−1))

implies that this is true for any d ≥ 1 at sufficiently large N . The proof of the claimed
exponential decay (2.14) is then completed using the trivial norm bound

�̂�N (0; E) = G�N (σ 0, σ 0; E) ≤
∥∥∥(T�N − E)−1

∥∥∥ = dist(E, spec(T�N ))−1 ≤ 1

εN
.

Let us finally consider the case of fixed integers K . Note that for any K ≥ 1 we know
by the above �̂�N (K + 1; E) ≤ 1/2. The recursion relation (2.16) then yields for any
1 ≤ d ≤ K

�̂�N (d; E) ≤ dK√
N

with some constants dK = dK (ρ). This completes the proof of the first item. For the
second itemwe organize the summation into sums over spheres of radius greater or equal
to K + 1:

∑

σ �∈BK (σ 0)

G�N (σ , σ 0; E)2

=
K∏

d=0

�̂�N (d; E)2

⎛

⎝
�oN∑

D=K+1

D∏

d=K+1

�̂�N (d; E)2 +
�N∑

D=�oN

D∏

d=K+1

�̂�N (d; E)2

⎞

⎠ .

The product in the prefactor is estimated by CK /(ε2NK+2) using the first item. The
second product is dominated by 4K−D such that the summation over D ≥ K + 1 is
bounded by a geometric series. The last product is bounded by 4K−�0N such that the
sum is bounded trivially by this exponential factor times �N . This completes the proof.

��
The decay established in Proposition 2.4 for fixed distance K to the center of the ball

agrees in its dependence on N with the result of Proposition 2.2. Moreover, the rough
decay estimate (2.14) is ’qualitatively correct’ in the sense that we expect an estimate
of the form

G�N (σ , σ 0; E) ≤ 1

εN

(
N

d(σ 0, σ )

)−1/2

e−L(E,�,d(σ 0,σ ))N

with some positive function L(E, �, d(σ 0, σ )). However, it is clear from the proof of
Proposition 2.4 that we did not attempt to derive a sharp bound for L as it requires a
more elaborate analysis of the factors �̂�N (d; E).

3. Delocalization Regime

3.1. Spectral concentration. The analysis of the low-energy spectrum in the paramag-
netic phase is based on the Schur complement method [3, Theorem 5.10] for which we
define the spectral projections for ε ∈ (0, 1)

Qε := 1(−εN ,εN )(T ) Pε := 1 − Qε, (3.1)
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which separate eigenstates of T with energies at the center of its spectrum from the
edges. Here and in the following, 1(·) stands for the indicator function. A Chernoff
bound shows that the dimension of the range of Pε is only an exponential fraction of the
total dimension of the Hilbert space:

dim Pε =
∑

|k− N
2 |> εN

2

(
N

k

)
≤ 2N+1 e−ε2N/2. (3.2)

The exact asymptotics of dim Pε is in fact well-known, ln dim Pε = (γ ( 1−ε
2 ) + o(1))N ,

in terms of the binary entropy γ defined in (1.16).
The following spectral concentration bound expresses the exponential smallness of

the projection of symmetric random multiplication operators to the above subspace. It
will be our main working horse in the paramagnetic phase.

Proposition 3.1. Let ε > 0 and W (σ ), σ ∈ QN , be independent and identically dis-
tributed random variables such that

i. the mean is zero, E [W (σ )] = 0,
ii. the variance of W (σ ) is bounded by one, i.e. E

[
W (σ )2

] ≤ 1, and
iii. W is bounded, i.e. ‖W‖∞ ≤ MN with some MN < ∞, and M2

N N dim Pε/2N ≤ 1.

Then there are (universal) constants c,C ∈ (0,∞) such for any λ > 0:

P

(
‖PεWPε‖ − E [‖PεWPε‖] > λ

√
dim Pε

2N

)
≤ Ce−cλ2 . (3.3)

Moreover, we have the following bound:

E [‖PεWPε‖] ≤ C
√
N

√
dim Pε

2N
. (3.4)

Proof. The first statement follows from Talagrand’s concentration inequality [64] (see
also [66, Thm. 2.1.13]) by considering F : RQN → R given by F(W ) := ‖PεWPε‖.
We need to show that F is Lipschitz continuous and convex. Convexity, i.e., F(αW +
(1 − α)W ′) ≤ αF(W ) + (1 − α)F(W ′) for all α ∈ [0, 1], is evident from the triangle
inequality. To establish the Lipschitz continuity, let W,W ′ ∈ R

QN and ψ ∈ Pε�
2(QN )

with ‖ψ‖ = 1 be such that ‖Pε(W − W ′)Pε‖ = 〈ψ, (W − W ′)ψ〉. Then, one has
∣∣F(W ) − F(W ′)

∣∣ ≤ 〈ψ, (W − W ′)ψ〉 =
∑

σ

|ψ(σ )|2(W (σ ) − W ′(σ ))

≤ ‖W − W ′‖2‖ψ‖24 ≤ ‖W − W ′‖2‖ψ‖∞ ≤ max
σ

√〈δσ |Pεδσ 〉 ‖W − W ′‖2.
The first estimate is the triangle inequality. The next two estimates are special cases
of Hölder’s inequality, in which we also use ‖ψ‖ = 1. The last estimate results from
the Cauchy-Schwarz inequality applied to ‖ψ‖∞ = maxσ |〈Pεδσ |ψ〉| and the fact that
‖Pεδσ ‖ = √|〈Pεδσ |δσ 〉|. Since by symmetry for any σ ∈ QN :

〈δσ |Pεδσ 〉 = dim Pε

2N
, (3.5)

we conclude that F is Lipschitz with constant 2−N/2 √
dim Pε. This finishes the proof

of (3.3).
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The second statement is derived from the matrix Bernstein inequality [55,67]. For its
application, we note that the matrix under consideration is a sum of independent random
matrices,

PεWPε =
∑

σ

S(σ ) , with S(σ ) := dim Pε

2N
W (σ ) |ψ(σ )〉〈ψ(σ )|,

where |ψ(σ )〉〈ψ(σ )| denotes the rank-one projection onto ψ(σ ) :=
√

2N
dim Pε

Pεδσ ,
which in view of (3.5) is a normalised vector. By assumption the matrices S(σ ) are
centred, E [S(σ )] = 0, and bounded

‖S(σ )‖ ≤ MN
dim Pε

2N
≤

√
dim Pε

N 2N
.

The mean variance matrix of PεWPε is

∑

σ

E

[
S(σ )2

]
=

(
dim Pε

2N

)2 ∑

σ

E

[
W (σ )2

]
|ψ(σ )〉〈ψ(σ )| ≤ dim Pε

2N
Pε.

The last inequality follows from the assumption, E
[
W (σ )2

] ≤ 1, as well as the fact that
(δσ ) form an orthonormal basis. Consequently, [67, Thm. 6.6.1] together with the trivial
bound, dim Pε ≤ 2N , on the dimension of the matrices implies

E [‖PεWPε‖] ≤
(√

2 ln 2N+1 +
ln 2N+1

3
√
N

)√
dim Pε

2N
,

which completes the proof. ��
Alternatively to Talagrand’s concentration inequality, the concentration of measure

part of the matrix Bernstein inequality [67, Thm. 6.6.1] would also have been sufficient
for proving a slightly less sharp upper bound on the upper tail of the large-deviation
probability (3.3).

As an application, we state the following straightforward corollary. Its assumptions
are tailored to fit in particular the case of the REM.

Corollary 3.2. Suppose that W (σ ), σ ∈ QN are i.i.d. random variables which are

i. mean zero with variance wN := E
[
W (σ )2

] ≤ N and obey a moment bound
E
[
W (σ )8

] ≤ c N 4 for some c < ∞.
ii. linearly bounded in the sense that there is some c < ∞ such that ‖W‖∞ ≤ c N.

Then, there is some C ∈ (0,∞) such that for any τ ∈ (0, 1) there are events �N ,τ with

P(�N ,τ ) ≥ 1 − e−N/C (3.6)

such that for all sufficiently large N and at ε = N
τ−1
2 :

‖PεWPε‖ ≤ C N e−N τ /4 , (3.7)
∥∥∥Pε(W

2 − wN )Pε

∥∥∥ ≤ C N
3
2 e−N τ /4 , (3.8)

∥∥PεW
pPε

∥∥ ≤ CN
p
2 for all p ∈ [1, 4]. (3.9)
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Proof. The proof of these inequalities follows by three applications of Proposition 3.1
with different W ′ always at the same λ = √

N . We note that by (3.2) our choice

ε = N
τ−1
2 implies dim Pε ≤ 2N+1e−N τ /2. This in turn yields for any polynomial MN

and N large enough M2
N N dim Pε/2N ≤ 1, which indeed checks one of the assumptions

of Proposition 3.1. We then construct three events �
( j)
N ,τ with j ∈ {1, 2, 3} each with

probability P(�
( j)
N ,τ ) ≥ 1 − 3−1e−N/C with some (universal) C < ∞ and all N large

enough. Their intersection �N ,τ := �
(1)
N ,τ ∩ �

(2)
N ,τ ∩ �

(3)
N ,τ then defines the required

events.
More specifically, for a proof of (3.7), we takeW ′(σ ) = W (σ )/

√
N . The event�(1)

N ,τ
on which (3.7) holds then satisfies the required probability estimate.
The proof of (3.8) follows again from Proposition 3.1 with W ′(σ ) = c−1/4 (W (σ )2 −
wN )/N and the prefactor ensuring E

[
W ′(σ )2

] ≤ 1. In this way, we construct �(2)
N ,τ .

By Jensen’s inequality 〈ψ,W pψ〉4/p ≤ 〈ψ,W 4ψ〉 for any p ∈ [1, 4], it suffices to
establish (3.9) for p = 4. We choose W ′(σ ) = c−1/2 (W (σ )4 − E

[
W (σ )4

]
)/N 2 to

define �
(3)
N ,τ . ��

3.2. Proof of Theorem 1.3. We now use the estimates of the preceding subsection in
our Schur’s complement analysis for the proofs of Theorem 1.3 and 1.4. These results
will actually follow from a slightly more general theorem on operators H = �T +W of
QREM-type. As a preparation and motivation of the following lemma, we collect some
basic facts about these operators. The kinetic part of the block component QεHQε =
�T Qε + QεWQε is estimated by

‖T Qε‖ ≤ εN , (3.10)

which implies

− ‖W‖∞ − �ε N ≤ inf spec QεHQε . (3.11)

For any z ∈ CwithRe z < ‖W‖∞−�ε N , the operator QεHQε−z is hence invertible on
Qε�

2(QN ) with inverse denoted by Rε(z) := (QεHQε − zQε)
−1. The latter features

in Schur’s complement formula for the resolvent of H projected onto the subspace
Pε�

2(QN ):

Pε(H − z)−1Pε = (Pε(H − z)Pε − PεWQεRε(z)QεWPε)
−1 . (3.12)

Our main observation is that Schur’s complement is approximated by an operator pro-
portional to the identity.

Lemma 3.3. Consider the operator H := �T + W on �2(QN ) with W satisfying the
assumptions in Corollary 3.2 and let �N ,τ with τ ∈ (0, 1) be the events constructed

there. Then on �N ,τ and at ε = N
τ−1
2 for all N large enough:

∥∥∥∥PεWRε(z)WPε + Pε

wN

z

∥∥∥∥ ≤ max{1, �} C
d2

N
τ−1
2 , Rε(z) :=(QεHQε − zQε)

−1,

(3.13)

for all z ∈ C such that min{|z| , dist(spec QεHQε, z)} ≥ d N with d ∈ (0, 1].



1280 C. Manai, S. Warzel

Proof. We use the resolvent equation to write

Pε

(
WRε(z)W +

wN

z

)
Pε = 1

z
Pε (wN − WQεW +WRε(z)QεHQεW ) Pε

= 1

z
Pε(wN − WQεW )Pε +

1

z
Pε (WRε(z)QεHQε)W ) Pε, (3.14)

and estimate both terms in the second line separately. For the first expression we rewrite

Pε(wN − WQεW )Pε = Pε(wN − W 2)Pε + PεWPεWPε . (3.15)

According to (3.7) and (3.8), the norm of the two terms in the right side is negligible in

comparison to N
τ−1
2 for all N large enough. It hence remains to estimate the norm of

the second term in the right side of (3.14). To do so, we split the terms as follows

1

z
PεWRε(z)QεHQεWPε = 1

z
PεWRε(z)Qε�T QεWPε +

1

z
PεWRε(z)QεWQεWPε

and use (3.10) together with ‖Rε(z)‖ ≤ (dN )−1 (since dist(spec QεHQε, z) ≥ dN )
and ‖PεW‖2 = ‖PεW 2Pε‖ ≤ CN by (3.8). On �N ,τ for all N large enough, we thus
conclude:

|z|−1 ‖PεWRε(z)�T QεWPε‖ ≤ C

d2N
‖T Qε‖ ≤ C

d2
N

τ−1
2 . (3.16)

Similarly, we estimate

|z|−1 ‖PεWRε(z)QεWQεWPε‖ ≤ |z|−1 ‖PεW‖ ‖Rε(z)‖ ‖WQεWPε‖
≤ C

d2N 3/2

√∥∥PεWQεW 2QεWPε

∥∥ . (3.17)

In order to estimate the norm in the right side with the help of (3.9), we rewrite

PεWQεW
2QεWPε = PεW

4Pε−PεW
3PεWPε−PεWPεW

3Pε + PεWPεW
2PεWPε.

(3.18)

On �N ,τ the norm of this operator is bounded by C N 2 for all N large enough by (3.9).
This concludes the proof. ��

These preparations enable us to prove the following general result.

Theorem 3.4. Consider the operator H = �T + W on �2(QN ) with W satisfying the
assumptions in Corollary 3.2 and let �N ,τ with τ ∈ (0, 1) arbitrary be the events
constructed there. Then on�N ,τ and for all N large enough the eigenvalues of H below

−‖W‖∞ − ηN with η > 0 are found in the union of intervals of radius O�,η(N
τ−1
2 )

centered at

(2n − N )� +
wN

(2n − N )�
(3.19)

with n ∈ {m ∈ N0 |(2m−N )� < −‖W‖∞−ηN }. Moreover, the ball centered at (3.19)
contains exactly

(N
n

)
eigenvalues of H if � > η + ‖W‖∞/N.
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Proof. Wewrite H using the block decomposition of �2(QN ) induced by Pε and employ
the Schur complement method. Since the Qε block is lower bounded according to (3.11),
all eigenvalues E of H strictly below −‖W‖∞ − �εN can be read from the equation

0 ∈ spec (Tε(E)) with Tε(E) := Pε

(
�T +

N

E

)
− E + Yε(E),

Yε(E) := PεWPε −
(
Pε

N

E
+ PεWRε(E)WPε

)
. (3.20)

Lemma 3.3 combined with (3.11) and (3.7) implies that for any η > 0 at ε = N (τ−1)/2

and on the event �N ,τ in Corollary 3.2

sup
E<−‖W‖∞−ηN

‖Yε(E)‖ ≤ C max{1, �} η−2 N
τ−1
2 , (3.21)

for all N large enough. As a consequence of standard perturbation theory [13, Corol-
lary 3.2.6] and using the explicit values (1.4) of the spectrum of T , within this energy
region the solution of (3.20) are found within the union of intervals of radius at most
C max{1, �}η−2N (τ−1)/2 from the solutions to the equation

(2n − N )� +
wN

z
− z = 0

with integers 2n < N (� − ‖W‖∞ − η)/�. This leads to

z = 2n − N

2
� −

√
1
4 (2n − N )2�2 + wN = (2n − N )� +

wN

(2n − N )�
+O�

(
N−1

)
,

which completes the proof of (3.19). The assertion concerning the range of the spectral
projections on the small intervals around the above points follows from themonotonicity
of Tε(E) and the fact that the eigenvalue 2n − N of T has multiplicity

(N
n

)
. ��

Theorem 1.3 now immediately follows.

Proof of Theorem 1.3. On �REM
N ,η/2 the REM’s extremal values are bounded by ‖U‖∞ ≤

N (βc + η). Moreover, E
[
U (σ )2

] = N and E
[
U (σ )8

] = 105 N 4, so that U satisfies all
requirements on W in Corollary 3.2. The claim is thus a straightforward consequence
of Theorem 3.4 with W = U . ��

3.3. Proof of Theorem 1.4. The proof of our second main result, Theorem 1.4, is based
on delocalization properties of the eigenprojection of T , which will be derived using the
semigroup properties of T . More generally, let B ⊂ QN be any subset of the Hamming
cube and T (B) the corresponding restriction, i.e, the operator with matrix elements
〈δσ | T (B) δσ ′ 〉 := −1d(σ ,σ ′)=11B(σ )1B(σ ′). For Hamming balls BK (σ 0) the operator
T (BK (σ 0)) was studied in Section 2 and abbreviated there by TK . Standard semigroup
techniques may be used to obtain for any V : B → R the bound

0 ≤ 〈δσ | e−β(T (B)+V )δσ ′ 〉 ≤ e−min βV 〈δσ | e−βT (B)δσ ′ 〉. (3.22)

for all β ≥ 0 and σ , σ ′ ∈ QN , cf. [49]. Since −T (B) and −T have nonnegative matrix
elements and 〈δσ | (−T (B)) δσ ′ 〉 ≤ 〈δσ | (−T ) δσ ′ 〉 for any σ , σ ′, we also conclude

〈δσ | e−βT (B)δσ ′ 〉 ≤ 〈δσ | e−βT δσ ′ 〉 = (cosh β)N (tanh β)d(σ ,σ ′), (3.23)

where the last equality is by an explicit calculation using the Hadamard transformation,
i.e., the representation of T in terms of Pauli matrices.
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Proposition 3.5. Let B ⊂ QN and V : B → R a potential with V ≥ −vN for some
0 ≤ v < 1. Then the eigenprojection PE := 1(−∞,E)(T (B) + V ) onto eigenvalues
E ∈ [−N (1 + v),−vN ] satisfies:

max
σ

〈δσ | PE δσ 〉 ≤ 2−N exp

(
Nγ

(
1 + ν(E))

2

))
(3.24)

with the binary entropy γ from (1.16) and ν(E) := E
N + v. Moreover, for all normalised

states ψ ∈ �2(B):

‖PEψ‖2∞ ≤ 2−N exp

(
Nγ

(
1 + ν(E))

2

))
. (3.25)

Proof. The spectral theorem combined with an exponential Markov inequality im-
plies for any β ≥ 0: 〈δσ |1(−∞,E)(T (B) + V ) δσ 〉 ≤ eβE 〈δσ | e−β(T (B)+V ) δσ 〉 ≤
eβν(E)N (cosh β)N . An elementary optimization with respect to β concludes the proof
(cf. [49]). ��

We are now ready to complete the proofs of the main results in the paramagnetic
regime.

Proof of Theorem 1.4. We pick τ ∈ (0, 1) and 0 < η < (�−βc)/4 arbitrary and restrict
our attention to the event �

per
N ,τ ∩ �REM

N ,η on which the assertions of Corollary 3.2 for
W = U and Theorem 1.3 are valid.

For a proof of the first assertion, we apply Schur’s complement formula to the ground
stateψ = ψ1+ψ2 of H = �T +U .We splitψ intoψ1 ∈ Pε�

2(QN ) andψ2 ∈ Qε�
2(QN )

such that:

(PεHPε − E − PεHRε(E)HPε) ψ1 = 0

ψ2 = −Rε(E)QεHPεψ1,

where E = inf spec H = −�N − 1
�
+O�(N

τ−1
2 ) is the ground-state energy according

to Theorem 1.3 since �N − ‖U‖∞ > 1
2 (� − βc)N > ηN on �REM

N ,η by the choice for
η. Sticking to the notation (3.20), from the proof of Theorem 1.3 we conclude that the
first equation can be rewritten in terms of

PεHPε − E − PεHRε(E)HPε = Pε�T Pε + (NE−1 − E)Pε + Yε(E),

with ‖Yε(E)‖ ≤ O�(N
τ−1
2 ). Since T has an energy gap 2 above its unique ground state


∅ (cf. (1.4)), we thus conclude

‖(1 − |
∅〉〈
∅|)ψ1‖ ≤ O�

(
N

τ−1
2

)
.

To further estimate the norm of ψ2 = −Rε(E)QεUψ1, we recall that ‖Rε(E)‖ ≤ C�

N
and ‖Uψ1‖2 ≤ ‖PεU 2Pε‖ ≤ O(N ) by Corollary 3.2. Hence, ‖ψ2‖2 ≤ O�

( 1
N

)
. We

thus arrive at

‖ψ − 
∅‖2 = O�

(
N τ−1

)
. (3.26)

For the second part, we recall the bound (1.7), and write H = �(T +U/�). The claim
now follows directly from Proposition 3.5. ��
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4. Extreme Localization Regime

4.1. Deep-hole geometry. The proof of our main results in the spin-glass regime are
based on the deep-hole geometry of the REM. They rest on the fact that the large
extremal sites Lβc−δ of the REM, which were defined in (1.17), are well separated on
QN at least if δ ∈ (0, βc) is not too large.

Definition 4.1. Let ε, δ > 0 and α ∈ (0, 1
2 ). Then U : QN → R is said to satisfy:

1. a local (ε, δ, α)-deep hole scenario on BαN (σ ) with σ ∈ Lβc−δ if:
(a) |U (σ ′)| ≤ εN for all σ ′ ∈ BαN (σ ) with σ ′ �= σ ,
(b) u(σ ) := 1

N2

∑
σ ′∈S1(σ ) |U (σ ′)| ≤ N−1/4.

2. a global (ε, δ, α)-deep hole scenario if:
(a) U satisfies a local (ε, δ, α)-deep hole scenario on BαN (σ ) for all σ ∈ Lβc−δ ,
(b) BαN (σ ) ∩ BαN (σ ′) = ∅ for all pairs σ , σ ′ ∈ Lβc−δ with σ �= σ ′.
The probabilistic estimate for the occurrence of a global deep-hole scenario in the

REM is the subject of the following lemma.

Lemma 4.2. Let ε, δ > 0 and α ∈ (0, 1/2) be such that

2γ (3α) + δ(2βc − δ) < ε2. (4.1)

The event �N (ε, δ, α) := {Usatisfies a global(ε, δ, α) − deep hole scenario} occurs
with probability exponentially close to one, i.e., there is some c(ε, δ, α) > 0 such that
for all N sufficiently large:

P (�N (ε, δ, α)) ≥ 1 − e−c(ε,δ,α)N . (4.2)

Proof. We first bound the probability of the event

�̂N (ε, δ, α) := {∃ σ ∈ Lβc−δ, σ ′ ∈ B3αN (σ )\{σ } s.t. |U (σ ′)| > εN
}
.

On its complement, all σ ∈ Lβc−δ satisfy the first requirement in the local deep-hole
definition on BαN (σ ) ⊂ B3αN (σ ), and the balls of radius αN around the large deviation
sites are disjoint., i.e., the second requirement in the global deep-hole definition is also
checked. By a union bound and independence, we conclude:

P
(
�̂N (ε, δ, α)

) ≤
∑

σ∈QN

∑

σ ′∈B3αN (σ )\{σ }
P(U (σ ) ≤ −(βc − δ)N ) P(|U (σ ′)| ≥ εN )

≤ 2N+1 |B3αN | e−(βc−δ)2N/2e−ε2N/2 ≤ e

(
γ (3α)+βcδ− δ2+ε2

2 +o(1)
)
N
.

The second line is a result of the usual Gaussian-tail estimates and the fact that the
volume of a Hamming ball of radius αN < N/2 is asymptotically given in terms of the
binary entropy, ln |BαN | = N (γ (α) + o(1)) as N → ∞. Using assumption (4.1), we
see that the above probability is exponentially small in N .

The proof is concluded by showing that the event

�u
N :=

{
max

σ∈QN

u(σ ) ≤ N−1/4
}

(4.3)

occurs with a probability, which is exponentially close to one, i.e.

P(∃ σ ∈ QN s.t. u(σ ) > N−1/4) ≤ 22Ne−N3/2/2. (4.4)
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For a proof of this bound, we rewrite the moment-generating function of u(σ ) for any
t > 0 in terms of a standard normal variable g:

E[etu(σ )] = E[etN−3/2|g|]N ≤ 2NE[etN−3/2g]N = 2Net
2/(2N2).

ByanexponentialChebychev-Markovestimatewith t = N 7/4, this thenyieldsP(u(σ ) >

N−1/4) ≤ 2Ne−N3/2/2, and hence the claim by a union bound using |QN | = 2N . ��

4.2. Rank-one analysis. IfU satisfies a local (ε, δ, α)-deep hole scenario on BαN (σ ) at
some fixed σ ∈ Lβc−δ , it is natural to consider the Hamiltonian HαN (σ ) = �TαN +U
restricted to �2(BαN (σ )), i.e.

〈δτ |HαN (σ )δτ ′ 〉 = 〈δτ |Hδτ ′ 〉 1BαN (σ )(τ )1BαN (σ )(τ
′),

A spectral analysis of these self-adjoint matrices is facilitated by rank-one perturbation
theory. Since δσ is a cyclic vector for HαN (σ ), the spectrum can read from zeros of the
meromorphic function given by

〈δσ | (HαN (σ ) − z)−1 δσ 〉−1 = U (σ ) − �(σ , z),

�(σ , z) := −〈δσ |(H ′
αN (σ ) − z

)−1
δσ 〉−1,

(4.5)

where H ′
αN (σ ) coincides with the matrix H ′

αN (σ ) when setting U (σ ) = 0. Moreover,
an �2-normalized eigenvector ϕE corresponding to E ∈ spec HαN (σ ) is given in terms
of the free resolvent, i.e.,

ϕE (τ ) = −U (σ ) ϕE (σ )〈δτ | (H ′
αN (σ ) − Eσ

)−1
δσ 〉, (4.6)

for any τ ∈ BαN (σ ), cf. [3, Theorem 5.3]. The deep-hole scenario then entails the
following information about the low-energy part of the spectrum.

Lemma 4.3. SupposeU satisfies a local (ε, δ, α)-deep hole scenario on BαN (σ ) at some
σ ∈ Lβc−δ with

2�
√

α(1 − α) + ε < βc − 2δ. (4.7)

Then for all sufficiently large N, the spectrum specEδ
HαN (σ ) := spec HαN (σ ) ∩

(−∞, Eδ) below Eδ := −N (βc − δ) consists only of one simple eigenvalue Eσ which
satisfies

Eσ = U (σ ) +
�2N

Eσ
+

�2

E2
σ

∑

σ ′∈S1(σ )

U (σ ′) +O�,δ,ε

(
N−5/4

)

= U (σ ) +
�2N

U (σ )
+O�,δ

(
N−1/4

)
. (4.8)

The �2-normalized eigenfunction ψσ corresponding to Eσ satisfies:

1. for any K ∈ N and for all σ ′ ∈ SK (σ )

|ψ(σ ′)| = O�,δ,K (N−K ), and
∑

σ ′ /∈BK (σ )

|ψ(σ ′)|2 = O�,δ,K (N−(K+1)). (4.9)
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2. for any α′ ∈ (0, α] there are C = C(�, δ), c = c(α, α′) ∈ (0,∞), such that
∑

σ ′ /∈Bα′N (σ )

|ψσ (σ ′)|2 ≤ CN exp (−Nc) . (4.10)

Proof. The deep-hole scenario together with (2.3) and (4.7) implies that for all suffi-
ciently large N :

H ′
αN (σ ) ≥ �TαN − εN ≥ −(βc − 2δ)N > Eδ. (4.11)

By rank-one perturbation theory, there is exactly one zero of (4.5) and hence one simple
eigenvalue Eσ of HαN (σ ) below inf spec H ′

αN (σ ). A Rayleigh-Ritz bound

Eσ ≤ 〈δσ |HαN (σ )δσ 〉 = U (σ ) ≤ Eδ (4.12)

provides a first, crude estimate on this eigenvalue. According to (4.6) the corresponding
�2-normalized eigenvector ψσ satisfies for all σ ′ ∈ BαN (σ ):

ψσ (σ ′) = −U (σ ) ψσ (σ )〈δσ ′ | (H ′
αN (σ ) − Eσ

)−1
δσ 〉

≤ −U (σ ) 〈δσ ′ | (�TαN − (Eσ + εN ))−1 δσ 〉
≤ −U (σ ) �−1 〈δσ ′ |

(
TαN − (U (σ ) + εN )�−1

)−1
δσ 〉. (4.13)

As in (4.11), these inequalities are consequence of the deep-hole scenario, the crude
bound (4.12) combined with the positivity of the semigroup, cf. (3.22). The asser-
tions (4.9) and (4.10) concerning the decay rates of the eigenfunction are now a straight-
forward consequence of Proposition 2.4. For its application, we note that the assump-
tion (4.7) ensure that dist(�−1 spec TαN ,U (σ )+ εN ) ≥ �−1(Eδ −U (σ )+ δ)N ≥ δ

�
N .

The first inequality in Proposition 2.4 then yields

|ψσ (σ ′)| ≤ βc − δ

δ

(
N

d(σ 0, σ )

)−1/2

2−min{d(σ ,σ ′), ρ0(α)N }, (4.14)

where we also used that the function U �→ −U
x−U is monotone increasing in U on

(−∞, x). Hence, (4.10) follows after a summation over the spheres Sd(σ ) with d ∈
(α′N , αN ]. The above binomial decay factor is thereby exactly compensated by the
volume |Sd(σ )| = (N

d

)
. The claimed bounds (4.9) follow analogously from the respective

bounds in Proposition 2.4.
For a proof of the asymptotics (4.8), we first consider the eigenvalue equation at any

σ ′ ∈ S1(σ ):

Eσ ψσ (σ ′) = U (σ ′)ψσ (σ ′) − �ψσ (σ ) − �
∑

σ ′′∈S1(σ ′)\{σ }
ψσ (σ ′′)

= U (σ ′)ψσ (σ ′) − �ψσ (σ ) +O�,δ(N
−1). (4.15)

The uniformO�,δ(N−1) estimate is a direct consequence of (4.9). This equation can be
rewritten as

ψσ (σ ′) = − �

Eσ −U (σ ′)

(
ψσ (σ ) +O�,δ(N

−1)
)

, (4.16)



1286 C. Manai, S. Warzel

which we insert into the eigenvalue equation at σ :

Eσ ψσ (σ ) = U (σ )ψσ (σ ) − �
∑

σ ′∈S1(σ )

ψσ (σ ′)

= U (σ )ψσ (σ ) +
�2

Eσ

⎛

⎝
∑

σ ′∈S1(σ )

ψσ (σ ) +O�,δ(N−1)

1 −U (σ ′)/Eσ

⎞

⎠

=
⎡

⎣U (σ ) +
�2N

Eσ
+

�2

Eσ

⎛

⎝
∑

σ ′∈S1(σ )

U (σ ′)
Eσ

⎞

⎠

⎤

⎦ψσ (σ ) +O�,δ,ε(N
−5/4).

(4.17)

The third equality follow from a second-order Taylor expansion with an error estimate
using |U (σ ′)|2 ≤ εN |U (σ ′)| as well as the bound on u(σ ) in the deep-hole assumption
in Definition 4.1. Since ψσ (σ ) = 1 + O(N−1), the first identity in (4.8) follows. For
a proof of the second identity, we again use the bound on u(σ ) as well as our crude
estimate (4.12) to estimate the last term in the above square brackets by O�,δ(N−1/4).
This concludes the proof. ��

4.3. Spectral averaging. In order to control the probability of resonances between dis-
tinct extremal sites, we will use the spectral averaging technique from the theory of
random operators [3, Chapter 4.1].

Lemma 4.4. Let ε, δ > 0 and α ∈ (0, 1/2) be such that (4.1) and (4.7) holds. Then,
there is some c = c(ε, δ, α) > 0 such that for all N sufficiently large and

1. for any real interval I :

P
(∃ σ ∈ Lβc−δ s.t. specEδ

HαN (σ ) ∩ I �= ∅) ≤ 2|I | eβcδN−δ2N/2 + e−cN .

(4.18)

2. for any r > 0:

P
(∃ σ , σ ′ ∈ Lβc−δ, σ �= σ ′ s.t. dist

(
specEδ

HαN (σ ), specEδ
HαN (σ ′)

) ≤ r
)

≤ 4re(2βcδ−δ2)N + e−cN . (4.19)

Proof. For a proof of the above estimates, we may thus restrict attention to events in
�N (ε, δ, α), cf. Lemma 4.2.

1. According to Lemma 4.3, under the deep-hole scenario specEδ
HαN (σ ) ∩ I �= ∅ if

and only if Eσ = inf spec HαN (σ ) ∈ I . Since ψσ (σ )2 ≥ 1/2 by Lemma 4.3 for
sufficiently large N and all σ ∈ Lβc−δ , the latter implies 〈δσ |PI δσ 〉 ≥ 1/2, where
PI denotes the spectral projection of HαN (σ ) onto I . A union bound hence enables
to estimate the probability of the event in the left side of (4.18) and its intersection
with �N (ε, δ, α) by

∑

σ∈QN

P
(
σ ∈ Lβc−δ and 〈δσ |PI δσ 〉 ≥ 1/2

) ≤ 2 E
[
1[σ ∈ Lβc−δ] 〈δσ |PI δσ 〉] .
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The inequality is a Chebychev-Markov estimate. Conditioning on all random vari-
ables aside from U (σ ), the integration of pI (U (σ )) := 〈δσ |PI δσ 〉 with respect to
the random variable U (σ ) is bounded with the help of the spectral averaging lemma
(also referred to as Wegner estimate, cf. [3, Thm. 4.1]).

2. On �N (ε, δ, α), we may assume that BαN (σ ) ∩ BαN (σ ′) = ∅ for all pairs σ , σ ′ ∈
Lβc−δ . This ensures that the random variables Eσ ′ = inf spec HαN (σ ′) and U (σ ′)
are independent of all random variables in BαN (σ ). Using the strategy as in 1., we
thus bound the probability of the event in the left side of (4.19) and its intersection
with �N (ε, δ, α) by

∑

σ ,σ ′∈QN

E
[
1[σ ′ ∈ Lβc−δ and BαN (σ ) ∩ BαN (σ ′) = ∅]

× P

(
σ ∈ Lβc−δ and 〈δσ |P(Eσ ′−r,Eσ ′+r)δσ 〉 ≥ 1/2 | BαN (σ )c

)]
≤ 22N+2e−(βc−δ)2Nr.

where P(·|BαN (σ )c) denotes the conditional expectation, conditioned on all random
variables aside from those in BαN (σ ) and PI is still the spectral projection of HαN (σ )

onto I . The last inequality resulted from an application of the bound from 1. to the
conditional expectation. ��

4.4. Proof of Theorem 1.5. The proof of Theorem 1.5 makes use of the deep-hole ge-
ometry of the REM. If U satisfies a global (ε, δ, α)-deep hole scenario, we study the
auxiliary Hamiltonian

H ′ :=
⎛

⎝
⊕

σ∈Lβc−δ

HαN (σ )

⎞

⎠
⊕

Hr , (4.20)

with operators HαN (σ ), whose action is restricted to the non-intersecting balls BαN (σ )

around extremal sites σ ∈ Lβc−δ . These operator have been introduced and studied in
Sect. 4.2. The remainder Hr is that part of H which purely belongs to the complement
of the union of balls,

〈δτ |Hrδτ ′ 〉 = 〈δτ |Hδτ ′ 〉
⎛

⎝1 −
∑

σ∈Lβc−δ

1BαN (σ )(τ )

⎞

⎠

⎛

⎝1 −
∑

σ∈Lβc−δ

1BαN (σ )(τ
′)

⎞

⎠ .

The difference between the Hamiltonian of interest H = �T +U and the auxiliary H ′
is

H − H ′=: − �A=: − �
⊕

σ∈Lβc−δ

Aσ .

It describes the hopping between the balls and the complementary configuration space,
i.e.,

〈δτ |Aσ δτ ′〉 = 1d(τ ,τ ′)=1(1d(τ ,σ )=αN1d(τ ′,σ )=αN+1 + 1d(τ ,σ )=αN+11d(τ ′,σ )=αN ).

The norm of A can be bounded as follows

‖A‖ = max
σ∈Lβc−δ

‖Aσ ‖ ≤ ‖TαN+1‖ = 2N
√

α(α − 1) + oα(N ), (4.21)
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where the last equality is (2.2). It is easy to see that ‖A‖ is indeed of order N . However,
for energies below Eδ = −N (βc − δ), the perturbation is of a much smaller magnitude.
This is the basic idea in the proofs of our main results for the localization regime. As a
preparation, we also need the following result, which is implicitly contained in [52].

Proposition 4.5 (cf. [52]). For all �, δ > 0 the truncated Hamiltonian H := �T +
U1U≥−(βc−δ)N acting on �2(QN ) is lower bounded by

inf spec H ≥ −N max{�, βc − δ} + o�,δ(N )

except for an event of exponentially small probability.

Proof of Theorem 1.5. We only study the joint event �N (�, δ, α) on which i) the bound
in Proposition 4.5 applies, and ii) U satisfies a global (ε, δ, α)-deep hole scenario with
parameters

ε = βc

2
and δ ∈ (0,min{βc − �, βc/8}),

and α > 0 small enough such that (4.1) and 2�
√

α(1 − α) < δ/8, and hence in par-
ticular (4.7) is satisfied. Together with Lemma 4.2 this ensures that �N (�, δ, α) occurs
with a probability of at least 1 − e−cN with at some c ≡ c(�, δ, α) > 0. Moreover:

1. From Lemma 4.3 we learn that for any σ ∈ Lβc−δ the spectrum spec HαN (σ ) below
Eδ = −N (βc − δ) consists of just one eigenvalue Eσ = inf spec HαN (σ ), which is
given by (4.8) with an error term O�,δ

(
N−1/4

)
uniformly for all σ ∈ Lβc−δ .

2. By the variational principle and the natural embedding of Hilbert spaces, the ground
state energy of Hr is bounded from below by that of�T +U1U≥−(βc−δ)N on �2(QN ).
The lower bound in Proposition 4.5 then shows that

inf spec Hr ≥ −N
(
βc − δ + o�,δ(1)

)
.

Hence, Hr does not contribute to the low-energy spectrum of H ′ below Eδ/2 = −N (βc−
δ/2) for all N large enough. Moreover, the spectral projection Pδ := 1(−∞,Eδ/2)(H

′)
can be written as

Pδ =
∑

σ∈Lβc−δ, Eσ <Eδ/2

|ψσ 〉〈ψσ | (4.22)

in terms of rank-one projections of the �2-normalized ground states ψσ of HαN (σ ). We
thus conclude for some C = C(�, δ) < ∞, and c = c(α) > 0

‖APδ‖ = max
σ∈Lβc−δ

‖Aσ ψσ ‖ ≤ ‖A‖ max
σ∈Lβc−δ

( ∑

σ ′∈SαN (σ )

∣∣ψσ

(
σ ′)∣∣2

)1/2 ≤ C N 2 e−cN ,

(4.23)

where the inequalities follow from (4.21) and (4.10) together with the fact that Aσ only
acts on the part of ψσ on SαN (σ ).

We then rewrite H using the block decomposition of �2(QN ) induced by Pδ and
Qδ := 1 − Pδ and again employ the Schur complement method. Since H ′ is diagonal
in this decomposition and its Qδ projection has a spectrum above the threshold energy
Eδ/2, it remains to investigate the blocks of the perturbation �A:
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1. Since Pδ is supported entirely on the balls, the first diagonal term vanishes, i.e.
PδAPδ = 0. The operator norms of the off-diagonals ‖PδA(1 − Pδ)‖ ≤ ‖APδ‖ are
exponentially small by (4.23).

2. The operator QδAQδ is bounded from below by −‖A‖ which is estimated in (4.21).
We thus conclude that for all N large enough:

QδH
′ + QδAQδ ≥ Eδ/2 − ‖A‖ ≥ −N

(
βc − δ/2 + 2�

√
α(1 − α) + o�,α(1)

)

≥ −N (βc − δ/4) .

Consequently, the Schur complement matrix

Sδ(E) := (
QδH

′ + QδAQδ − E
)−1

is well defined on Qδ�
2(QN ) and bounded, ‖Sδ(E)‖ ≤ (Eδ/4 − E)−1 for any E <

Eδ/4.

The spectrum of H below Eδ/4 = −N (βc − δ/4) is thus characterized using Schur’s
method, which yields:

1. E < Eδ/4 is an eigenvalue of H if and only if E ∈ spec
(
PδH ′ − PδASδ(E)APδ

)
.

2. The �2-normalized eigenvector ψ corresponding to E and H satisfies:

(PδH
′ − EPδ)ψ = PδASδ(E)APδψ

Qδψ = −Sδ(E)APδψ. (4.24)

We now proceed with the completion of the proof of the assertion on the spectrum and
eigenvectors separately.

Spectrum: The spectrum of H below Eδ/8 is determined through the above Schur com-
plementmethod. Since for all E ≤ Eδ/8 at at someC = C(�, δ) < ∞ and c = c(α) > 0

‖PδASδ(E)APδ‖ ≤ ‖Sδ(E)‖ ‖APδ‖2 ≤ C N 3 e−2cN , (4.25)

the eigenvalues below Eδ/8 thus coincide with the eigenvalues of PδH ′ below this en-
ergy up to an error, which is exponentially small in N [13, Corollary 3.2.6]. Since the
eigenvalues of PδH ′ are given by (4.8), the assertion in Theorem 1.5 follows.
Eigenvectors: We concentrate our attention on energies below Es = −N (βc − s) with
s ∈ (0, δ/8] small enough such that 2βcs < c with the decay rate c > 0 from (4.25).
This ensures that e−αcN < e−2βcsN=:r(s) for all sufficiently large N . According to the
spectral averaging Lemma 4.4, since s ≤ δ/8 and the condition (4.7) is monotone in δ,
the event

{∀ σ , σ ′ ∈ Lβc−s, σ �= σ ′ : dist
(
specEs

HαN (σ ), specEs
HαN (σ ′)

)
> r(s)

}

(4.26)

has probability of at least 1−4e−s2N − e−cN for some c > 0. We may therefore assume
its occurrence.

Perturbation theory based on the above Schur complement analysis and (4.25) (com-
bined with the characterization of eigenvalues established in Theorem 1.5) then guar-
antees that the eigenvector ψ of H corresponding to the eigenvalue E = U (σ ) +
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�2N/U (σ ) +O(N−1/4), which is uniquely characterized by σ ∈ Lβc−s , is norm-close
to the ground-state eigenvector ψσ of HαN (σ ), i.e.,

‖ψ − ψσ ‖ ≤ ‖Pδψ − ψσ ‖ + ‖Qδψ‖
≤ ‖PδASδ(E)APδ‖

r(s)
+ ‖Sδ(E)‖ ‖APδ‖ ≤ C e−cN . (4.27)

Here, the inequalities combine (4.24)–(4.26). The rest of the claim on the �2-estimates
of the eigenvectors then follows from the respective properties of ψσ established in
Lemma 4.3. The event �loc

N ,�,δ is then defined by specifying a value for α0 = α0(�, δ)

and intersecting �N (�, δ, α0) with (4.26). ��

4.5. Proof of Theorem 1.7. All assertions concerning the �2-properties of the ground-
state can easily be collected from the proof of Theorem 1.5.

Proof of Theorem 1.7 (�2-properties). According to Theorem 1.5 for all events aside
from one of exponentially small probability, there is some σ 0 ∈ QN such that the
ground state eigenvector is approximated by ‖ψ − δσ 0‖2�2 = O�

( 1
N

)
. The estimate

O�

( 1
N

)
does not depend on δ anymore as we may fix δ, if we only consider the ground

state. This will be always assumed in the following.Moreover, the ground-state energy is
E = U (σ 0)+ �2N

U (σ 0)
+O�

(
N−1/4

)
, whereU (σ 0) is one of the REM’s extremal energies

for which we may assume that

|U (σ 0) + βcN | ≤ O(
√
N ), and hence |E + βcN | ≤ O(

√
N ) (4.28)

at the expense of excluding another event of exponentially small probability stemming
from deviations to the known extremal statistics of the REM, cf. (1.7).

It thus remains to establish the assertion on the first order perturbation ξ ∈ �2(QN ).
That 〈ξ |Hξ 〉 agrees with the ground state energy up to order o�(1) is a result of a
simple calculation and a comparison with the above formula for E . It remains to prove
‖ψ − ξ‖2 = O�(N−2). To this end, we revisit the proof of Theorem 1.5. From the
validity of the global (βc/2, δ, α)-deep hole scenario specified there and in view of
(4.9), it suffices to show

∣∣∣∣∣ψ(σ0) −
√

1 − �2

β2
c N

∣∣∣∣∣

2

= O�(N−2) and
∑

σ∈S1(σ 0)

∣∣∣∣ψ(σ ) − �

βcN

∣∣∣∣
2

= O�(N−2).

(4.29)

For a proof of these assertions, we use the eigenvalue equation (4.16) on S1(σ 0)

together with ψ(σ 0) = 1 +O�(N−1). If we pick σ ∈ S1(σ 0), this yields

ψ(σ ) − �

βcN
= − �

E −U (σ )

(
1 +O�(N−1)

)
− �

βcN

= �U (σ )

βcN (E −U (σ ))
+O�(N−3/2).
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Here the last step also relied on the estimate |U (σ )| ≤ εN valid in the (ε, δ, α)-deep
hole scenario, as well as (4.28). With a suitable constant C = C(�) < ∞, we then have

∑

σ∈S1(σ 0)

∣∣∣∣ψ(σ ) − �

βcN

∣∣∣∣
2

≤ C

N 4

∑

σ∈S1(σ 0)

U (σ )2 +O�(N−2)

AnexponentialChebychev-Markov estimate leads toP(N−2 ∑
σ∈S1(σ 0)

(U (σ )2−N )) ≥
1) ≤ e−cN for some c > 0. Thus, except for an event of exponentially small probability
the second claim in (4.29) holds. Since ψ is �2-normalized, this leads to

ψ(σ0)
2 = 1 −

∑

σ∈S1(σ 0)

ψ(σ )2 +O�(N−2) = 1 − �2

β2
c N

+O�(N−2),

which readily implies the first claim in (4.29).
For a proof of the �1-estimate on the ground state eigenfunction, we need to sharpen

estimates on the large-deviation geometry of the REM. To this end we define for ε, δ > 0
the following tripartition of the Hamming cube:

A1(ε) := {σ ∈ QN | |U (σ )| ≤ εN }
A2(ε, δ) := {σ ∈ QN | εN < |U (σ )| ≤ (βc − δ)N }
A3(δ) := {σ ∈ QN | |U (σ )| > (βc − δ)N }.

A modification of ideas used in the proof of Lemma 4.2 and [51, Lemma 2] yields:

Lemma 4.6. For any ε > 0 there exist K = K (ε) ∈ N and a family of events �ε,N such
that for N large enough

(i) For any σ ∈ A2(ε, δ) ∪ A3(δ): |B4(σ ) ∩ (A2(ε, δ) ∪ A3(δ))| ≤ K on �ε,N .
(ii) P(�ε,N ) ≥ 1 − 2−N .

Proof. Let �ε,N ,K be the event, where the assertion (i) holds true with constant K . It
remains to show that the complement satisfies P(�c

ε,N ,K ) ≤ 2−N for an appropriate
choice for K and N large enough. To this end we estimate

P(�c
ε,N ,K ) = P(∃ σ ∈ A2(ε, δ) ∪ A3(δ) s.t. |B4(σ ) ∩ (A2(ε, δ) ∪ A3(δ))| ≥ K )

≤
∑

σ 0∈QN

P(|U (σ 0)| ≥ εN )P(∃ K − 1 different σ 1, . . . σ K−1 ∈ B4(σ 0)\{σ 0} s.t.

|U (σ j )| ≥ εN for j = 1, . . . , K − 1)

≤
(

N 4

K − 1

)
2N P(|U (σ 0)| ≥ εN )K ≤ N 4K 2Ne−K Nε2/2.

Here the second line is a consequence of the union bound and the third line follows from
the independence and a simple counting argument. Choosing K > 4 ln 2/ε2, we see that
P(�c

ε,N ,K ) < 2−N for N large enough. ��
As a final preparation, we also need the following elementary observation on the size

of large deviation sites.
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Lemma 4.7. For any δ ∈ (0, βc) and all N:

P

(
|A3(δ)| ≥ 2eβcδN

)
≤ e−Nδ2/2.

Proof. The cardinality |A3(δ)| is a sum of 2N independent Bernoulli variables with suc-

cess probability p = P(|U (σ )| > (βc−δ)N ) ≤ 2e− 1
2 (βc−δ)2N such thatE[|A3((δ))|] =

2N p. The claim thus follows from a standard Markov estimate. ��
We are finally ready to finish the proof of our main result in the localization regime.

Proof of Theorem 1.7(�p-properties). We first observe that the claims on the �p-
norms immediately follow from the �1-norm asymptotics (1.25). To see this, recall that
ψ(σ 0) = 1 + o�(1) for some σ 0 ∈ QN , and that ψ(σ ) ≤ c N−1 for all σ �= σ 0. Hence
for any 1 < p < ∞:

1 + o�(1) ≤ ‖ψ‖p
�p ≤ 1 +

cp−1

N p−1

∑

σ �=σ 0

ψ(σ ) ≤ 1 +
cp−1

N p−1 ‖ψ‖�1 = 1 + o�,p(1).

It therefore remains to establish (1.25).
Recalling that the ground state wavefunction ψ is positive, we can write ‖ψ‖�1 =∑
σ ψ(σ ). The eigenvalue equation for ψ leads to

E
∑

σ

ψ(σ ) = +�
∑

σ

(Tψ)(σ ) +
∑

σ

(Uψ)(σ ) = −�N
∑

σ

ψ(σ ) −
∑

σ

U (σ )ψ(σ )

= −�N
∑

σ

ψ(σ ) +U (σ 0)ψ(σ 0) +
∑

σ �=σ 0

U (σ )ψ(σ ).
(4.30)

The second equality follows from the fact that each σ has N neighbors. The main idea is
now to show that the remainder term

∑
σ �=σ 0

U (σ )ψ(σ ) can be controlled by the other
two terms on the right side. Here, we use the tripartition A1(ε), A2(ε, δ), A3(δ) of the
configuration space and bound the contribution of each Ai separately.

In the following, we fix δ, α > 0 small enough, such that the REM satisfies a global
(βc/2, δ, α)-deep hole scenario with a probability which is exponentially close to one.
Moreover, we pick ε > 0 arbitrary and fix K = K (ε) ∈ N the assertions of Lemma 4.6
hold on a joint event on which the global (βc/2, δ0, α0)-deep hole scenario applies as
well. This event still has a probability of at least 1 − e−c(δ,α)N with some c(δ, α) > 0,
which is independent of ε.

Contribution of A1(ε): In this case we use the trivial estimate,
∣∣∑

σ∈A1
U (σ )ψ(σ )

∣∣ ≤
εN‖ψ‖�1 .

Contribution of A3(δ): We only consider δ ≤ δ0, such that sites σ ∈ A3(δ)\{σ 0} lie
outside the ball Bα0N (σ 0). In particular, there is some c > 0 such that for all N large
enough and all σ ∈ A3(δ)\{σ 0} the ground state is uniformly bounded, |ψ(σ )| ≤
e−cN . We now pick δ := min{δ0, c/(4βc)} and shrink the considered event such that
|A3(δ)| ≤ 2 eNc/4. According to Lemma 4.7 this event still has a probability greater
than 1 − e−c(δ,α)N with some c(δ, α) > 0. On this event, we conclude for all N large
enough

∑

σ∈A3(δ)\{σ 0}
|U (σ )|ψ(σ ) ≤ e−Nc/2.



Spectral Analysis of the Quantum Random Energy Model 1293

Contribution of A2(ε, δ): We first consider the configurations in A2(ε, δ) close to the
center σ 0, which we estimate for N large by

∑

σ∈A2(ε,δ)∩B4(σ 0)

|U (σ )|ψ(σ ) ≤ |A2(ε, δ) ∩ B4(σ 0)| max
σ∈B4(σ 0)\{σ 0}

|U (σ )|ψ(σ ) ≤ C K

with some C = C(�). We use |U (σ )| ≤ βcN/2 due to the validity of the global
(βc/2, δ, α)-deep hole scenario as well as the pointwise bound ψ(σ ) ≤ CN−1 for all
σ ∈ B4(σ 0) with σ �= σ 0.

It remains to consider σ ∈ A2(ε, δ)\B4(σ 0). The eigenvalue equation reads

|E −U (σ )|ψ(σ ) = �
∑

σ ′∈S1(σ )

ψ(σ ′).

Since E ≤ (βc − δ/2)N for N large enough, we obtain for σ ∈ A2(ε, δ) the bound

ψ(σ ) ≤ 2�

δN

∑

σ ′∈S1(σ )

ψ(σ ′).

The essence of the following argument is that the value of any ψ(σ ) is comparable to
the mean on the corresponding S1(σ ) sphere and, thus, ψ cannot take especially large
values on A2(ε, δ). To make this intuition precise, we separate the A3(δ) configurations,
which we possibly encounter in the spherical mean and repeat the procedure for the
remaining σ ′ ∈ S1(σ ). This leads to

ψ(σ ) ≤ 2�

δN

∑

σ ′∈S1(σ )∩A3(δ)

ψ(σ ′) + 4�2

δ2N 2

∑

σ ′∈S1(σ )\A3(δ)

∑

σ ′′∈S1(σ ′)
ψ(σ ′′)

≤ 2�

δN

∑

σ ′∈S1(σ )∩A3(δ)

ψ(σ ′) + 4�2

δ2N
ψ(σ ) +

8�2

δ2N 2

∑

σ ′∈S2(σ )

ψ(σ ′),

which for N large enough implies

ψ(σ ) ≤ 4�

δN

∑

σ ′∈S1(σ )∩A3(δ)

ψ(σ ′) + 16�2

δ2N 2

∑

σ ′∈S2(σ )

ψ(σ ′).

We now further shrink the considered event to ensure that ‖U‖∞ ≤ 2βcN holds true.
This happens for all but an event of exponentially probability, cf. (1.6). Thus, for N large
enough

∣∣∣∣
∑

σ∈A2\B4(σ 0)

U (σ )ψ(σ )

∣∣∣∣ ≤ 2βcN
∑

σ∈A2\B4(σ 0)

ψ(σ )

≤
∑

σ∈A2\B4(σ 0)

(8βc�

δ

∑

σ ′∈S1(σ )∩A3(δ)

ψ(σ ′) + 16βc�
2

δ2N

∑

σ ′∈S2(σ )

ψ(σ ′)
)

≤ 8βcK�

δ

∑

σ∈A3(δ)\{σ 0}
ψ(σ ) +

16βc�
2K

δ2N
‖ψ‖�1 ≤ e−Nc/4 +

16βc�
2K

δ2N
‖ψ‖�1 .



1294 C. Manai, S. Warzel

In the third line we used the observation that each configuration σ ∈ QN appears in the
summation at most K times due to Lemma 4.6. The last step is a consequence of our
exponential bound on ψ(σ ) on the A3(δ)-configurations.

Combining the partial results on each AJ , we arrive with some C = C(�) at the
bound

∣∣∣
∑

σ �=σ 0

U (σ )ψ(σ )

∣∣∣ ≤ (2ε +OK ,�(N−1))N‖ψ‖�1 + 4CK

which is valid on with probability of at least 1 − e−cN with some c > 0 which in
independent of ε. Since ε > 0 was arbitrary, the claimed convergence now follows
from (4.30).

5. Free Energy Asympotics

For our proof of Theorem 1.10 we exploit that the partition function is determined by
the eigenvalues close to the thermal averages

〈U 〉clβ := TrUe−βU

Tr e−βU
or 〈T 〉pmβ := Tr T e−βT

Tr e−βT
, (5.1)

depending on the phase. To determine their behavior we consider the local region around
σ ∈ Lε, where ε > 0 has to be allowed to be arbitrarily small. In this case, we cannot
guarantee anymore that all balls BR(σ ) are disjoint. However, we will show that this
is still true for isolated extremal sites σ ∈ Lε, which are in the majority. Then, we
establish the order-one corrections of Theorem 1.5 for those isolated large deviations.
Based on these results, we prove Theorem 1.10 via a suitable approximation argument
using auxiliary operators on cut domains of the configuration space.

5.1. Basic large deviations. We first record some standard facts in the statistical me-
chanics of the pure REM and pure paramagnet.

Proposition 5.1. 1. For any β ≥ 0 we have 〈T 〉pmβ = −N tanh β. Moreover, for any
β ≥ 0, δ > 0 there exists some c = c(β, δ) > 0 such that

Tr 1[−N (tanh β+δ),−N (tanh β−δ)](T )e−βT

Tr e−βT
≥ 1 − e−cN . (5.2)

2. For β < βc we have almost surely 〈U 〉clβ = −(β + o(1))N. Moreover, for β < βc

and δ > 0 there exists some c = c(β, δ) > 0 such that

Tr 1[−N (β+δ),−N (β−δ)](U )e−βU

Tr e−βU
≥ 1 − e−cN (5.3)

except for an exponentially small event.
3. For β > βc we have almost surely 〈U 〉clβ = −(βc + o(1))N. Moreover, for β > βc

and δ > 0 there exists some c = c(δ) > 0 such that

Tr 1(−∞,−N (βc−δ)](U )e−βU

Tr e−βU
≥ 1 − e−cN . (5.4)



Spectral Analysis of the Quantum Random Energy Model 1295

The proof for the expressions of the thermal averages 〈T 〉pmβ , 〈U 〉clβ is by differentiating
the explicit formulas for the pressure with respect to β. The results on the concentration
of the Gibbs measure are then of Cramér type and follow from the usual convexity
estimates of the (explicit) free energy.

5.2. Spectral analysis on clusters. In the proofs of Theorem 1.5 and 1.7 we derived
the order-one correction of the energy levels U (σ ) caused by extremal sites σ ∈ Lε

with ε ≈ βc from a local analysis on non-overlapping balls BR(σ ) of some radius R.
For the proof of Theorem 1.10 however, we need good control on all eigenvalues with
energy below −εN with ε > 0 arbitrary and, thus, the large deviation set Lε has to
be considered for any ε > 0. The balls BR(σ ) then have a nonempty intersection and
the aim of this subsection is to deal with this modified situation. Let us introduce some
definitions and notation.

Definition 5.2. Let ε > 0 and k ∈ N0. We denote σ
k∼ σ ′ ⇐⇒ d(σ , σ ′) ≤ 2k + 2. We

call a set G ⊂ Lε (k, ε)-connected (with respect to
k∼) if for any σ , σ ′ ∈ G there exists

a sequence σ = σ (0), σ (1), · · · , σ (m) = σ ′ such that σ (i) ∈ G and σ (i) k∼ σ (i+1) for all
0 ≤ i ≤ m − 1. If G ⊂ Lε is (k, ε)-connected and for any (k, ε)-connected G ′ with
G ⊂ G ′ ⊂ Lε it follows G = G ′, we call G a (k, ε)-component. We denote the family
of (k, ε)-components of Lε by Gk,ε.

We call σ ∈ QN (k, ε)-isolated if G = {σ } ∈ Gk,ε and Ik,ε denotes the collection of
(k, ε)-isolated configurations.

The case k = 0 coincides with the notion of ’gap-connected’ used in [50–52].
The extremal set Lε naturally decomposes in its components, i.e., Lε = ∪G∈Gk,εG.

We define for each (k, ε)-component G the corresponding cluster

Ck(G) :=
⋃

σ∈G
Bk(σ ).

By construction d(Ck(G),Ck(G ′)) ≥ 2 for different k-components G �= G ′.
We start with a combinatorial lemma which shows that the size of (k, ε)-components

remains bounded and that most (k, ε)-components are isolated.

Lemma 5.3. Let ε > 0 and k ∈ N0 be fixed, but arbitrary.

1. There exists an M = M(k, ε) ∈ N such that

�N ,M (ε, k) :=
{
max
G∈Gk,ε

|G| ≤ M

}
. (5.5)

occurs with probability P(�N ,M (k, ε)) ≥ 1 − e−cN for some c > 0.
2. Let ε < a < b and b < βc. Then for all events, but one of exponentially small

probability:

|La,b ∩ I ck,ε|
|La,b| ≤ e−ε2N/4, (5.6)

where La,b := La ∩ Lc
b and (·)c indicates the complement of that set.
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3. Let a = βc − δ and suppose that δ(2βc − δ) < ε2. Then, besides of an exponentially
small event

La ∩ I ck,ε = ∅. (5.7)

Proof. For a proof of the first assertion, we estimate for any M ∈ N using a union bound

P( max
G∈Gk,ε

|G| ≥ M) ≤ 2N
(|B(2k+2)M |

M

)
e− 1

2 ε2MN .

As the binomial coefficient is a polynomial in N the claim follows forM > 2 ln 2/ε2.
For a proof of the second assertion, we rewrite |La,b| = ∑

σ Zσ , where Zσ are i.i.d.
Bernoulli variables with success probability

pN := P(σ ∈ La,b) ≥
√
N (b − a)√

2π
e−Nb2/2. (5.8)

Since b < βc, the average size E[|La,b|] = 2N pN is exponentially large and, by a
Markov estimate, the same applies to all events aside from one of super-exponentially
small probability, i.e., P(|La,b| ≤ 2N−1 pN ) ≤ e−eCN

for some C > 0. Similarly, the
conditional probability Pσ := P (·|{σ }c) of the configuration to not be (ε, k)-isolated
equals the probability to find on Bo

2k+2 := B2k+2(σ )\{σ } another large deviation in Lε

and hence Pσ (∃ σ ′ ∈ I ck,ε ∩ Bo
2k+2) ≤ |B2k+2|e−Nε2/2 ≤ N 2k+2e−Nε2/2 by the union

bound and the Gaussian-tail estimate. This allows us to estimate

E
[|La,b ∩ I ck,ε|

] =
∑

σ∈QN

E
[
1[σ ∈ La,b]Pσ (σ ∈ I ck,ε)

] ≤ 2N pN N 2k+2e−Nε2/2

(5.9)

with pN from (5.8). Excluding the event on which |La,b| ≤ 2N−1 pN , we thus arrive at

P

(
|La,b ∩ I ck,ε| ≥ e−ε2N/4|La,b|

)
≤ eε2N/4

2N−1 pN
E
[|La,b ∩ I ck,ε|

]
+ e−eCN

by a Chebychev-Markov estimate. Inserting the bound (5.9) completes the proof.
For the last assertion, we note that by Lemma 4.2 the condition on δ implies that

for α > 0 small enough a global (ε, δ, α)-deep hole scenario occurs with probability
exponentially close to one. ��

The next lemma establishes the spectral properties of the restriction HCk (G) of the
QREM Hamiltonian to the Hilbert space �2(Ck(G)) of a cluster corresponding to G ∈
Gk,ε. For its formulation, we define for δ > 0 the spectral projections

Pδ(G) := 1(−∞,−δN )(HCk (G)), Qδ(G) := 1 − Pδ(G).

Recall the events �u
N defined in (4.3) and �N ,M (k, ε) defined in (5.5).

Lemma 5.4. Let ε > 0 and k ≥ 2. On the event �u
N ∩ �N ,M (ε, k) the following

assertions are valid for all N large enough:

1. max
G∈Gk,ε

‖HCk (G) −UCk (G)‖ = O�,k,M (
√
N ).
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2. If ψ is an �2-normalized eigenfunction of HCk (G) with 〈ψ, HCk (G)ψ〉 ≤ − 3
2εN, we

have

|ψ(σ )| = O�,k,M,ε(N
− dist(G,σ )), (5.10)

and

‖1Ck (G)\Gψ‖2 = O�,k,M,ε(N
−1), ‖1∂Ck (G)ψ‖2 = O�,k,M,ε(N

−k), (5.11)

where 1∂Ck (G) is the natural projection onto the boundary of Ck(G). In particular,
all estimates are independent of ψ and G.

3. sup
G∈Gk,ε

sup
σ∈L2ε∩G

〈δσ |Q3ε/2(G)δσ 〉 = O�,k,M,ε(N
−1).

4. If G = {σ0} is (k, ε)-isolated and U (σ 0) ≤ −2εN, then the ground state energy of
HCk (G) is given by

Eσ0 := inf spec HCk (G) = U (σ 0) +
�2N

U (σ 0)
+O�,k,ε(N

−1/4). (5.12)

Proof. 1. We write HCk (G) = UCk (G) + �TCk (G) and recall that Ck(G) is a union of
at most M Hamming balls Bk(σ ) with σ ∈ G. Thus, by the triangle inequality and
Proposition 2.1 we obtain ‖TCk (G)‖ ≤ Mck

√
N , and hence the claim.

2. We introduce the modified spheres Sr (G) for 0 ≤ r ≤ k,

Sr (G) := Cr (G)\Cr−1(G) = {σ ∈ Ck(G) | dist(σ ,G) = r}
and for the eigenvector ψ the maximal values on the spheres, sr := maxσ∈Sr (G)

|ψ(σ )|. We use the convention S0(G) = G and note that Sk(G) = ∂Ck(G).
Moreover, we observe that for any σ ∈ Sr (G) and 1 ≤ r ≤ k:

|S1(σ ) ∩ Sr (G)| ≤ M, r ≤ |S1(σ ) ∩ Sr−1(G)| ≤ rM,

N − (r + 1)M ≤ |S1(σ ) ∩ Sr+1(G)| ≤ N − r.

We now use the eigenvalue equation

−Eψ(σ ) = �
∑

σ ′∈S1(σ )

ψ(σ ′) −U (σ )ψ(σ ),

to derive the claimed decay estimate. Inserting the above geometric bounds into
the eigenvalue equation, we obtain for all 1 ≤ r ≤ k with the convention sk+1 = 0:

− Esr ≤ �rMsr−1 + �(N − r)sr+1 + (εN + �M)sr . (5.13)

We claim that for all 1 ≤ r ≤ k and N large enough

sr ≤ 2M�k

|E | − εN − �M
sr−1.

This is immediate from (5.13) in case r = k (even without the factor 2). In case
1 ≤ r < k, the bound is proven recursively. If the inequality holds for r + 1,
then (5.13) implies

|E |sr ≤ �rMsr−1 +

(
2N�2k

|E | − εN − �M
+ εN + �M

)
sr ,
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and hence the claimed inequality for all N large enough. Since s0 ≤ 1, this estab-
lishes (5.10) by iteration.

The first claim in (5.11) follows from (5.10) using |G| ≤ M . Indeed, for some C =
C(�, k, M, ε)

∑

σ �=σ 0

|ψ(σ )|2 ≤ C
K∑

r=1

N−2r |{σ | dist(σ ,G) = r}| ≤ CM
K∑

r=1

N−r = CM

N − 1
.

Since |∂Ck(G)| ≤ MNk the second inequality in (5.11) follows similarly.

3. We will repeatedly make use of a coupling principle which follows from 1., namely
the fact that the eigenvalues of HCk (G) andUCk (G) agree up to a uniform error of order
O�,k,M (N 1/2). Since |Lε ∩ G| ≤ |G| ≤ M , this implies that dim P3ε/2(G) ≤ M for
any component G ∈ Gk,ε if N is chosen large enough. By the pigeon-hole principle,
for any component G we find some a = a(G) ∈ [3ε/2, 2ε] such that

Pa−ε/(2M)(G) − Pa+ε/(2M)(G) = 1(−(a+ε/(2M))N ,−(a−ε/(2M))N (HCk (G)) = 0.

(5.14)

Since Q3ε/2(G) ≤ Qa(G), it is enough to prove the assertion with Q3ε/2(G) replaced
by Qa(G).
To this end, we fix a component G ∈ Gk,ε and observe that the coupling principle and
(5.14) yield

|La ∩ G| = dim Pa(G)=:ma (5.15)

with a natural number ma ≤ M . We denote by ψ1, . . . ψma the normalized low en-
ergy eigenfunctions of HCk (G) corresponding to Pa(G), which form an orthonormal
basis for this subspace. The first inequality in (5.11) bounds the contribution of each
eigenfunction to Ck(G)\G. Moreover, the eigenvalue equation readily implies for
σ ∈ G\La :

|ψ j (σ ))| ≤ �

|E j −U (σ )|
∑

σ ′∈S1(σ )

|ψ j (σ
′))| ≤ 2M�

εN

∑

σ ′∈S1(σ )

|ψ j (σ
′))| ≤ 2M�

ε
√
N

,

with E j = 〈ψ j , HCk (G)ψ j 〉 ≤ −aN the eigenvalue corresponding toψ j . The second
inequality follows from (5.14) and the last step is a consequence of the Cauchy-
Schwarz inequality and ‖ψ j‖ = 1. As |G\La | ≤ M , we also conclude that

∑

σ∈Ck (G)\La

|ψ j (σ )|2 ≤ C

N

with a uniformC = C(�, k, M, ε) < ∞.We thus learn that sup j ‖1La∩G ψ j−ψ j‖2 ≤
C/N . Lemma 5.5 below shows that (with P = 1La∩G and F = Pa(G))

sup
σ∈La∩G

〈δσ |Qa(G)δσ 〉 ≤ ‖Qa(G)1La∩G‖ ≤ 4(
√
ma + ma)

2 C

N
≤ 16M2 C

N
.

Since a ≤ 2ε, this proves the claim.



Spectral Analysis of the Quantum Random Energy Model 1299

4. By the Rayleigh-Ritz variational principle, we have Eσ 0 ≤ −2εN , and hence the
results of 2. apply to the corresponding ground state wavefunction ψ ∈ �2(Ck(G)).
By (5.11) this ensures ψ(σ 0) = 1 + O�,k,ε(N−1/2). Following the steps in anal-
ysis (4.15)–(4.17) of the eigenfunction equation, in which we use (5.10) and the
assumed bound on u, we thus conclude that (4.8) remains valid. This concludes the
proof of (5.12). ��
In the proof of Lemma 5.4 we used the following result on finite-rank projections:

Lemma 5.5. SupposeH is a finite-dimensional Hilbert space, P an orthogonal projec-
tion of rank m and f1, f2, . . . fm a sequence of m orthonormal vectors inH, which span
the projection F. If for some c < ∞

max
j=1,...,m

‖P f j − f j‖ ≤ c, (5.16)

then ‖P − F‖ ≤ (m + 2
√
m)c.

Proof. We employ the triangle inequality ‖P − F‖ ≤ ‖PF − F‖ + ‖PF − PFP‖ +
‖P − PFP‖ and bound the three terms on the right-hand side individually. For the first
term we invoke that PF − F vanishes on the orthogonal complement Im F⊥ and, thus,
a Frobenius norm estimate yields

‖PF − F‖ ≤
√√√√

m∑

j=1

‖(P − F) f j‖2 =
√√√√

m∑

j=1

‖P f j − f j‖2 ≤ √
mc.

Our bound on the second term, relies on the norm estimate for the first term, ‖PF −
PFP‖ = ‖P(F − FP)‖ ≤ ‖F − FP‖ = ‖PF − F‖ ≤ √

mc, where we used that
‖P‖ = 1 for the first bound and applied the elementary identity ‖A‖ = ‖A∗‖. For
the last term, we employ the operator inequality 0 ≤ PFP ≤ P and the fact that the
operator norm is bounded by the trace norm ‖ · ‖1:

‖P − PFP‖ ≤ ‖P − PFP‖1 = Tr P − Tr PFP =
m∑

j=1

〈ψ j , (1 − P)ψ j 〉 ≤ mc.

This completes the proof. ��

5.3. Proof of Theorem 1.10. Before we dive into the details of the proof, we fix some
notation. For k ∈ N and ε > 0, we will use the restricted Hamiltonian corresponding to
the collection of all clusters Ck(G),

H (c) :=
⊕

G∈Gk,ε

HCk (G)

acting on the complete Hilbert space �2(QN ). We further denote by

P(c)
ε := 1(−∞,−3Nε/2)(H

(c)) =
⊕

G∈Gk,ε

P3ε/2(G), Q(c)
ε := 1 − P(c)

ε

the spectral projections of H (c). The factor 3/2 is motivated by the third assertion of
Lemma 5.4. The subspace corresponding to P(c)

δ represents the "localized" part of the
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QREM and Q(c)
δ corresponds to the "delocalized" part. Corresponding to this block

decomposition, we set the diagonal parts of H as well as their partition functions:

H (1) := P(c)
ε HP(c)

ε , H (2) := Q(c)
ε HQ(c)

ε , (5.17)

Z ( j)
N (β, �) := 2−NTr j e

−βH ( j)
, j = 1, 2. (5.18)

Here the traces Tr j (·) run over the natural subspaces P(c)
ε �2(QN ) in case j = 1, or

Q(c)
ε �2(QN ) in case j = 2, on which H ( j) acts non-trivially.
The key observation is now that P(c)

ε commuteswith the restriction of H to the clusters
H (c). If we denote by A the adjacency matrix between the inner and outer boundaries
of the clusters Ck(G), we see

P(c)
ε HQ(c)

ε = �P(c)
ε AQ(c)

ε . (5.19)

We recall that d(Ck(G),Ck(G ′)) ≥ 2 for two different components G �= G ′ ∈ Gk,ε,
which implies that the adjacency matrix A is a direct sum of operators ACk (G) corre-
sponding to each cluster Ck(G). This in turn yields

‖A‖ ≤ Mck
√
N (5.20)

by Proposition 2.1on the event on which the assertions in Lemma 5.3 apply. We further
observe that A only acts nontrivially on the boundaries ∂Ck(G). Exploiting the decay
estimate (5.11) from Lemma 5.4, we arrive at

‖P(c)
ε HQ(c)

ε ‖ = O�,k,M,ε(N
−(k−1)/2).

We conclude that for any k ≥ 2:

ZN (β, �) = eo�,k,M,ε(1)(Z (1)
N + Z (2)

N ). (5.21)

The proof of Theorem 1.10 now reduces to an analysis of Z (1)
N and Z (2)

N .

Proof of Theorem 1.10. Since our claims in case β = 0 and � = 0 are trivial, we fix
β, � > 0 away from the phase transition, and pick

0 < ε <
1

8
min{β, βc, � tanh β�,min{1, β−1} ln cosh β�}.

In the following, we will only work on the event �REM
N ,βc

∩ �u
N ∩ �N ,M (ε, k), where

the conditions of Lemma 5.3 are valid at k ≥ 2 and some M . According to Lemma 5.4
and (4.4) as well as (1.7), this event can be chosen to have a probability of at least
1 − e−cN .

We now proceed in four steps. We first analyze the localized part Z (1)
N . As a second

and third step we derive an upper and lower bound for Z (2)
N . The last part then collects

these estimates.
Step 1—Analysis of Z (1)

N : Let us first remark that H (1) = P(c)
ε HP(c)

ε = P(c)
ε H (c)P(c)

ε

and hence H (1)P(c)
ε = H (c)P(c)

ε . It thus remains to consider the low energy spectrum
of H (c). We abbreviate

u := u(β) := lim
N→∞〈U 〉clβ /N =

{
−β, β ≤ βc,

−βc, β > βc,
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by Proposition 5.1. Since 8ε < −u, the dominant energy levels of U are not effected
by the projection P(c)

ε . We now split Z (1)
N into the contribution arising from energy

levels within Jδ := [(u − δ)N , (u + δ)N ] with 0 < δ < min{−u/2 − 3ε/4, ε2/(16β)}
arbitrarily small, and a remainder:

Z (1)
N (β, �) = 2−N

(
Tr e−βH (1)

1Jδ (H
(1)) + Tr e−βH (1)

1(−∞,−3εN/2)\Jδ (H (1))
)

.

The second term is estimated using Lemma 5.4 and subsequently Proposition 5.1, which
yields some c = c(β, δ) > 0 such that for all sufficiently large N :

Tr e−βH (1)
1R\Jδ (H (1)) ≤ eβO�,k,M (

√
N ) Tr e−βU1R\Jδ/2(U ) ≤ e−cN 2N ZN (β, 0).

(5.22)

The remaining term is decomposed further into the contribution of isolated and non-
isolated clusters:

Tr e−βH (1)
1Jδ (H

(1)) =
∑

G∈Ik,ε
Tr e−βHCk (G)1Jδ (HCk (G))

+
∑

G∈Gk,ε\I ck,ε
Tr e−βHCk (G)1Jδ (HCk (G)). (5.23)

Since supG∈Gk,ε
‖HCk (G) − UCk (G)‖ ≤ O�,k,M (

√
N ) by Lemma 5.4, we bound the

second term for all sufficiently large N as follows:
∑

G∈Gk,ε\I ck,ε
Tr e−βHCk (G)1Jδ (HCk (G)) ≤ e−βN (u−δ)

∑

G∈Gk,ε\I ck,ε
Tr 1J2δ (UCk (G))

≤ e−Nε2/4e3βNδ
∑

G∈Gk,ε

Tr e−βUCk (G)1J2δ (UCk (G)) ≤ e−cN 2N ZN (β, 0). (5.24)

At the expense of throwing out another event of exponentially small probability, we
consult Lemma 5.3 and assume in case u > −βc the validity of (5.6) with a = −u − 2δ
and b = −u + 2δ and in case u = −βc the validity of (5.7) with a = −u − 2δ.
This guarantees that non-isolated clusters are exponentially rare. The last inequality is
a consequence of the choice of δ and of the fact our definition of the partition function
ZN includes a normilisation by 2−N .

The first term on the right side of (5.23) can be expressed using the energy correction
formula (5.12) for isolated extremal sites. At the expense of excluding or including small
subintervals at the boundary of Jδ , which are negligible in comparison to the main term
by Proposition 5.1, this first term is of the form

∑

σ∈Ik,ε∩Lu−δ,u+δ

e−β(U (σ )+ �2N
U (σ )

+o(1)) = S − R,

where, similarly to (5.24), the remainder is again bounded using (5.6):

R :=
∑

σ∈I ck,ε∩Lu−δ,u+δ

e−β(U (σ )+ �2N
U (σ )

+o(1)) ≤ e−cN 2N ZN (β, 0).

The main term is
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S :=
∑

σ∈QN

e−βU (σ )+ �2N
U (σ )

+o(1))1[U (σ ) ∈ Jδ].

By definition of Jδ and since the REM’s partition function concentrates around u by
Proposition 5.1, S equals 2N Z(β, 0) plus an error which is bounded by e−cN2N Z(β, 0).

In summary, in this first step we have shown that for any δ > 0 small and N large
enough:

e− β�2

u−δ
+o(1)ZN (β, 0) ≤ Z (1)

N (β, �) ≤ e− β�2

u+δ
+o(1)ZN (β, 0). (5.25)

Step 2—Upper bound on Z (2)
N : We write U<

ε := U1U≥−2εN and U>
ε := U1U>−2εN as

well as Uε := U1|U |≤2εN , and estimate using the Jensen-Peierls inequality [12]:

2N Z (2)
N (β, �) = Tr 2e

−βQ(c)
ε [�T+U<

ε +Q(c)
ε U>

ε Q(c)
ε ]Q(c)

ε

≤ Tr Q(c)
ε e−β[�T+U<

ε +Q(c)
ε U>

ε Q(c)
ε ] ≤ Tr e−β[�T+Uε+Q

(c)
ε U>

ε Q(c)
ε ].

The last inequality follows from a trivial extension of the trace and the monotonicity of
eigenvalues in the potential, U<

ε ≥ Uε. From Lemma 5.4 we learn that

maxσ∈L2ε ‖Q(c)
ε δσ ‖2 ≤ CN−1. Moreover, if σ ∈ Ck(G) for some component G, the

projection Q(c)
ε δσ has only support on Ck(G). As any cluster Ck(G) has at most M

configurations σ ∈ L2ε, these observations result in the norm estimate

‖Q(c)
ε U>

ε Q(c)
ε ‖ ≤ CM‖U‖∞N−1.

Since on the event considered we also have ‖U‖∞ ≤ 2βc and the operator Q
(c)
ε U>

ε Q(c)
ε

only acts non trivially on the clustersCk(G), we thus conclude that for some D ∈ (0,∞):

Q(c)
ε U>

ε Q(c)
ε ≥ V := −D1C = −D

∑

G∈Gk,ε

1Ck (G), C :=
⋃

G∈Gk,ε

Ck(G)

To summarize, we have thus shown that Z (2)
N (β, �) ≤ 2−NTr e−β[�T+Uε+V ].

From here, there are at least two possible ways to continue the proof. One could show
that the potential Uε + V meets the requirements of Theorem 3.4. Then, one needs to
control V, which is a little bit technical. Instead, wewill employ a convexity argument. To
this end, we introduce for λ ∈ R the family of pressures and correspondingHamiltonians
on �2(QN ):


N (β, �, λ) := ln 2−NTr e−βH(λ), H(λ) := �T +Uε + λV (5.26)

The pressure 
N (β, �, λ) is convex [60] in λ, and λ = 1 is the case of interest.
Let us first discuss the case λ = 0 in which case Theorem 3.4 is applicable with

W = Uε. Since ‖Uε‖∞ ≤ 2εN and E
[
Uε(σ )2

] ≤ N (1 − e−2ε2N ) ≤ N , Theorem 3.4
guarantees that all eigenvalues of �T +Uε below E < −4εN , counted with multiplicity,
are shifted with respect to the eigenvalues E of �T to E + N

E + o(1). Since 〈�T 〉pmβ =
−N� tanh β� ≤ −8εN , Proposition 5.1 allows to spectrally focus the partition function
onto an interval around 〈�T 〉pmβ of arbitrarily small size 0 < δ < � tanh β� − 4ε. A
similar argument as in Step 1, then yields for all sufficiently large N :
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N (β, �, 0) ≤ N ln cosh β� +
β

� tanh β� − δ
+ o(1).

Next, we consider general parameters λ. Recall that 1C stands for the orthogonal pro-
jection onto the subspace of the union of all clusters, and that 1Cc is the orthogonal
complement. In terms of the operator A introduced in (5.19), the norm estimate (5.20)
yields: ‖H(λ) − 1CH(λ)1C − 1Cc H(λ)1Cc‖ ≤ ‖A‖ ≤ C

√
N and hence

Tr e−βH(λ) ≤ eC
√
NTr e−β(1CH(λ)1C+1Cc H(λ)1Cc )

= eC
√
N
[
Tr 1Ce−β(1CH(λ)1C) + Tr 1Cc e−β(1Cc H(λ)1Cc )

]

at some C < ∞, which is independent of N and λ. Each of the traces in the right side
is now estimated separately:

2−NTr 1Ce−β(1CH(λ)1C) ≤ eβ‖1CH(λ)1C‖ ≤ exp
(
β
(
C�

√
N + 2εN + λD

))

where we used the triangle inequality for the operator norm as well as (5.20) again. Since
H(λ) and H(0) agree on 1Cc �2(QN ), we also have

2−NTr 1Cc e−β1Cc H(λ)1Cc = 2−NTr 1Cc e−β1Cc H(0)1Cc

≤ 2−NTr 1Cc e−βH(0) ≤ e
N (β,�,0).

The first inequality relied on the Jensen–Peierls estimate, which allows to pull down the
projections [12].

Since 
N (β, �, 0) > 4βεN , the correction to the pressure at λ0 := εN
D , is still of

order O(
√
N ):


N (β, �, λ0) ≤ 
N (β, �, 0) + C
√
N .

We are now in the situation to exploit convexity:


N (β, �, 1) ≤ (1 − λ−1
0 ) 
N (β, �, 0) + λ−1

0 
N (β, �, λ0)

≤ N ln cosh β� +
β

� tanh β� − δ
+ o(1).

Step 3—Paramagnetic lower bound: To show that the upper bound of Step 2 is also an
asymptotic lower bound, it is more convenient to work with the full partition function
ZN , which by (5.21) is a lower bound on Z (2)

N up to a multiplicative error of eo(1).
For an estimate on ZN , we split the potential U = Uε + Vε, where Vε := U1[|U | >

2ε]. The pressure 
N (β, �, 0) of H(0) = �T + Uε, which is defined in (5.26), was
already analyzed in Step 2. Here, we now consider the following family of Hamiltonians
H(λ) = �T + Uε + λVε, which differs from the one in Step 2. By a slight abuse of
notation, we nevertheless denote the corresponding pressure again by 
N (β, �, λ) :=
ln Tr 2−NTr e−βH(λ). The convexity of the pressure in λ is again the basis for our argu-
ment.

Since on the event considered, we may assume ‖U‖ ≤ 2βcN , the potential W =
Uε + λVε meets the requirements of Theorem 3.4 with ‖W‖∞ ≤ N max{2ε, 2λβc}
and E

[
W (σ )2

] ≤ N (1 − e−2ε2N ) ≤ N . Thus if λ < ε/βc the eigenvalues of H(λ)

below E < −4εN , counted with multiplicity, are shifted with respect to the eigenvalues
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E of �T to E + N
E + o(1) and we have 
N (β, �, λ) = 
N (β, �, 0) + o(1). Fixing

λ0 := ε
2βc

< 1, convexity implies:


N (β, �, 1) ≥ 
N (β, �, 0) +
1

λ0
(
N (β, �, λ0) − 
N (β, �, 0))

= N ln cosh(β�) +
β

� tanh β� + δ
+ o(1).

The last step, which holds for all δ > 0 sufficiently small, is the desired lower bound,
again relied on an explicit estimate based on the concentration of the partition function
of �T around energies near −� tanh β�, cf. Proposition 5.1.

Step 4—Completing the proof. Away from the first-order phase transition at � = �c(β)

described in Proposition 1.1 and on the event on which Step 1–3 are valid, the partition
function (5.21) is either dominated by the REM-term Z (1)

N in case � < �c(β), or by the

paramagnetic term Z (2)
N in case � > �c(β).

More precisely, in case � < �c(β) and since the probability of the event, which is
excluded in Step 1–3, is exponentially small in N and hence summable, we conclude
for any ε > 0:

∑

N≥1

P

(∣∣∣∣
N (β, �) − 
N (β, 0) +
β�2

u(β)

∣∣∣∣ > ε

)
< ∞. (5.27)

The claimed almost-sure convergence then follows by a Borel-Cantelli argument. The
analogous argument establishes the claim in case � > �c(β). ��
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