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Abstract: The vanishing of the Fefferman–Graham obstruction tensor was used by
Anderson and Chruściel to show stability of the asymptotically de Sitter spaces in even
dimensions. However, the existing proofs of hyperbolicity of this equation contain gaps.
We show in this paper that it is indeed a well-posed hyperbolic system with unique
up to diffeomorphism and conformal transformations smooth development for smooth
Cauchy data. Our method applies also to equations defined by various versions of the
Graham–Jenne–Mason–Sparlingoperators. In particular,weuse oneof these operators to
propagateGover’s condition of being almost Einstein (basically conformal to Einsteinian
metric). This allows us to study initial data also for Cauchy surfaces which cross the
conformal boundary. As a by-product we show that on globally hyperbolic manifolds
one can always choose a conformal factor such that Branson Q-curvature vanishes.

1. Anderson–Fefferman–Graham Equation

An important issue in General Relativity is the long time, asymptotic behaviour of solu-
tions to Einstein’s equations. In the case of positive cosmological constant the problem
was solved by Friedrich [1,2]. He showed that there exists in four dimensions a hyper-
bolic system of equations for a metric and some derived variables which is satisfied if a
metric is conformal to a solution of Einstein equation with a cosmological constant. This
allows to study compactified versions of the solutions via conformal Penrose compacti-
fication and replace difficult long time analysis by a simpler finite time problem. Future
asymptotically simple solutions are those satisfying the following condition: there exists
a smooth conformal compactification in which the future boundary of physical space�+
is a Cauchy surface. An important example of such a spacetime is de Sitter universe. For
this reason, these spacetimes are often called asymptotically de Sitter. In fact, we need
to assume positive cosmological constant in order for the conformal boundary surface
to be spacelike. From hyperbolicity of the new system one obtains immediately stability
in this class of spacetimes. Moreover, the method gives explicit description of the initial
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data on the conformal boundary�+. However, Friedrich’s method does not extend easily
to higher dimension. Another important drawback is that no Lagrangean formulation for
it exists. Such formulations are important for analysis of the initial data and conserved
charges.

The alternative method proposed by Anderson in [3] and futher developed by Ander-
son and Chruściel in [4] is using the Fefferman–Graham obstruction tensor Hμν which
is defined for even dimensions d ≥ 4 [5]. We will describe the original definition of [5]
(see [6]) in Sect. 4. This tensor can be defined as the variation of the Lagrangean

cd

∫
Q(h)

√
hdd x, (1)

over the metric hμν , where Q is the Branson curvature [7], a covariant object with
nice conformal transformations, and cd is a constant depending on the dimension. This
functional is invariant (up to boundary terms) under both diffeomorphisms and conformal
transformations. Consequently, the Hμν tensor has interesting properties

1. It is a covariant object built out of the metric and its derivative,
2. It is conformally covariant, namely for h1

μν = e2σ h2
μν , for σ a smooth function

e(d−2)σ Hμν(h
1) = Hμν(h

2). (2)

3. It is divergenceless ∇μ Hμν = 0 and traceless Hμ
μ = 0.

Even more remarkably,
4 if hμν satisfies vacuumEinstein equationswith a cosmological constant�, Gμν(h) =

�hμν , then Hμν = 0 [6].

The method proposed in [3,4] is to consider conformally invariant Anderson–
Fefferman–Graham (AFG) equations

Hμν = 0, (3)

instead of the Einstein equations and impose the later as a constraint at the initial surface
�+. Ifwewant to use thismethod, it is necessary to prove that the system (3) iswell-posed
after fixing diffeomorphism and conformal gauge.

However, this is a tricky problem. It is shown in [4] that one can impose gauge
�h(xμ) = 0 and Rh = 0 (where �h is a scalar d’Alembert operator for the metric h,
xμ are coordinates and Rh is the Ricci scalar). In this specific gauge the equations take
the form

�d/2
0 hμν + Fh

μν(Dd−1hμν) = 0, (4)

where �0 := h
μν

∂μ∂ν and Dmhμν denote m-th jets of the metric i.e. all derivatives
∂khμν for k ≤ m. The principal symbol is hyperbolic, but the roots have multiplicities,
thus the system is not strictly hyperbolic. Such systems are complicated as we can see
in the following example:

Example 1. (Not well-posed) Consider an equation on R× S1 with x1 being time coor-
dinate

(∂21 − ∂22 )3φ + ∂2(∂1 + ∂2)
3φ = 0. (5)

The principal symbol is hyperbolic (it is a power of d’Alembert operator for a flatmetric),
but it has multiple characteristics. Functions φk(x1, x2) = ei(ω(k)x1+kx2) are solutions
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for ω(k) = k + −1−i
√
3

2 k1/3 with property |φk | = e
√
3
2 k1/3x1 . The smooth initial data on

� = {x1 = 0}
∂n
1φ|� =

∞∑
k=0

inω(k)ne−k1/4eikx2 , n = 0 . . . 5, (6)

does not admit a Cauchy development because for every k ≥ 0 the mode function should
behave like e−k1/4φk(x1, ·) for x1 > 0 but the series

∑
k≥0 e−k1/4φk(x1, x2) does not

converge even in L2(S1).

We see that in order to establish hyperbolicity of the equations with a non-strictly
hyperbolic principal part, one needs to control a few lower order derivatives of the equa-
tion (by so called Levi conditions, see [8–10]). Unfortunately, the Fefferman–Graham
obstruction tensor is quite complicated and one would need to control more and more
of these terms the higher dimension we consider. The conditions on the lower order
symbols are necessary for the case of multiple characteristics. This is the reason, why
proofs of well-posedness of the Anderson–Fefferman–Graham equation in [3] and [4]
cannot be correct, and our example shows that indeed it is not the case. We will provide
in this paper a proof of well-posedness of AFG equations for smooth data. However,
our proof will not be based on Levi conditions but on certain structural property of the
obstruction tensor and the standard results for quasi-linear wave equations. Our method
is in fact a modification of the approach from [4], but the special form of the system
needs to be taken into account.

The problem is less complicated in lower dimensions. It is worth to mention that the
well-posedness in dimension 4 was proven in [11].1 Our approach can be regarded as a
generalization, which put also [11] in a proper context.

2. Summary of the Results

TheCauchy problem of theAnderson–Fefferman–Graham (AFG) equation (3) is similar
to that of the Einstein equations. Themetric itself is an object of equations, which leads to
additional geometric complications as the meaning of the Cauchy development depends
itself on the solution (see [12]). The initial data on the surface � will be a set of d − 1
jets of symmetric tensors fields in R × � at �

Dd−1hμν |� ∈ C∞(�), (7)

where hμν is a Lorentzian metric. We introduce a normal �N to � with respect to this
metric and we assume that it is a timelike vector. Assume that (7) satisfy constraints
(well-defined because we know sufficiently many derivatives)

H( �N , ·)|� = 0, (8)

We will consider a specific (local) coordinate system and a choice of conformal factor
given by conditions introduced in [4]

R = 0, ∀μ �(xμ) = 0, (9)

1 In dimension 4 the obstruction tensor is proportional to the celebrated Bach tensor and the analysis is less
complicated.
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where R is the Ricci scalar. As it is shown in [4] we can always locally transform the
metric by diffeomorphism and rescaling, such that these conditions are satisfied. We
then show that equations (3) are hyperbolic in this gauge. The standard analysis [12]
thus shows:

Theorem 1. The AFG equation (3) with initial data (7) and subject to constraints (8)
forms a C∞ well-posed system (in the Anderson–Chruściel gauge (9)). Every two local
solutions differ by diffeomorphisms and conformal transformations.

We will now describe our approach to the problem. Fefferman–Graham obstruction
tensor is obtained by ambient metric construction. We consider expansion coefficients
of the ambient metric g̃[k]

μν for k = 0, . . . d
2 − 1. This is a family of symmetric tensors on

M , such that g̃[0]
μν = hμν . The vanishing of the Fefferman–Graham tensor is equivalent

to

S̃[k]
μν = 0, k = 0, . . . ,

d

2
− 1, (10)

where S̃[k]
μν is a part of the expansion of the Ricci tensor for the ambient metric. These are

also symmetric tensors on the spacetime. Every tensor S̃[k]
μν depends on the second jets of

the tensors g̃[n]
μν , n = 0, . . . k in a way reminiscent of the Ricci tensor on the metric. We

will briefly describe the ambient construction in Sect. 4. The AFG equation is obtained
by recursive determination of g̃[k]

μν for k = 1, . . . d
2 − 1 in terms of g̃[0]

μν = hμν .
Instead of solving recursively, we will consider the equations (10) as a dynamical

system for g̃[k]
μν for k = 0, . . . d

2 − 1. Ricci tensor depends on the second jets of the
metric, thus every equation in (10) is of second order. However, the system is not of
hyperbolic type. It is not surprising because we need gauge fixing. Following standard
Choquet–Bruhat method we write

S̃[k]
μν = Ẽ [k]

μν + ∂μG̃[k]
ν + ∂ν G̃[k]

μ + . . . , (11)

where Ẽ [k]
μν is of hyperbolic type and G̃[k]

μ are gauge fixing functions. The addition . . .

comes from an additional conformal gauge fixing term that is basically of the form
g̃[0]
μνγ̃

[k], for some additional (scale) gauge fixing functions γ̃ [k]. As in the standard
method we will solve system Ẽ [k]

μν = 0. However, the system is still not strictly hy-
perbolic. Fortunately, it is some generalized type of hyperbolic equation for which we
provide a proof of well-posedness in Sect. 3. The standardmethod now use Bianchi iden-
tity to show that gauge fixing functions G̃[k]

μ and γ̃ [k] propagate by a linear hyperbolic
system.

Here the next problem appears. We use only part of the Ricci tensor from the ambient
metric. The Bianchi identities are already used to deduce that the remaining parts of this
tensor, S̃[k]

μ∞ and S̃[k]∞∞ vanish. We denote by ∞ the ambient direction. In some way,
the ambient metric is already in the partially gauge fixed form and additional gauge
fixing is excessive. We circumvent this problem by building G̃[k]

μ and γ̃ [k] from these
remaining parts of the ambient Ricci tensor in such a way that Bianchi identities provide
generalized hyperbolic system for the gauge fixing functions (see Sect. 4.1.1).

Our method of treating the ambient metric equations is more general and allows to
prove well-posedness of various equations constructed with aid of the ambient construc-
tion. In particular, it is true for Graham–Jenne Mason–Sparling (GJMS) [13] equation
and its various generalizations. It is a linear system of the similar type as gauge fixed
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Anderson–Fefferman–Graham equation thus it has a unique development with a given
initial data, which is global on globally hyperbolic spacetimes. Using this result, we
show that there always exists a metric in the conformal class with vanishing Branson
Q-curvature [14] for a given globally hyperbolic spacetime. Another application is prop-
agation of covariantly constant tractor [15,16] from the initial Cauchy surface. Existence
of the covariantly constant tractor is equivalent for metric to be conformal to Einsteinian
metric, except when certain nondegeneracy condition is not satisfied what corresponds
to conformal boundary (see [17]). In this way one can show that the condition of being
Einstein propagates to the whole development of AFG equation in a uniform way. The
initial Cauchy surface can now also cross the conformal boundary (see Proposition 23).

The organization of the paper is as follows: In Sect. 3 we introduce a generalization of
quasilinear wave systems which we call generalized hyperbolic (Definition 1). We prove
that they are well-posed in the smooth category in Proposition 3. We provide a natural
way of obtaining such systems by an ambient space construction in Sect. 3.1. Subject
to the additional condition of being recursive (Definition 3), the system is equivalent
to a higher order so-called derived equation (Definition 4). This equivalence and the
relation between the initial data of the system and its derived equation is shown in
Lemmas 4 and 5. Section 4 is devoted to well-posedness of the AFG equation in the
Anderson–Chruściel gauge. We introduce a gauge-fixed system Ẽμν in Sect. 4.1 and
prove that it is well-posed in Lemma 6. In Sect. 4.1.1 we show that the gauge fixing
functions vanish if they vanish on the intial surface. We translate this condition into
properties of the initial data for the AFG equation in Sect. 4.1.2 (see Lemma 9). We
finish the proof of well-posedness in Sect. 4.2. In the rest of the paper we consider
general GJMS operators. We prove well-posedness of the homogeneous (Corollary 15)
and inhomogeneous (Proposition 17) equations for GJMS-type operators. This proves
existence of a metric in the conformal class with vanishing Branson Q-curvature [14]
for a given globally hyperbolic spacetime (Corollary 18). In Sect. 5.4 we consider the
condition of being almost Einstein (existence of a covariantly constant tractor).We prove
that the Einstein scale satisfies a certain supercritical GJMS equation (Lemma 21). We
use this equation to propagate covariantly constant tractor from the initial Cauchy surface
provided the obstruction tensor vanishes (Lemma 23). Some applications to the stability
problem are given in Sect. 5.6.

3. Generalized Hyperbolic Systems

We denote by M a d-dimensional Lorentzian manifold. We use abstract index notation
and Einstein summation convention in the paper. We denote indices of tensors in M
by Greek letters. We use symbol Dmu to denote m jets on M of the field u on M . We
assume that x1 is a time coordinate and in what follows � = {x1 = 0} ⊂ M .

We will consider a bit more general situation then a standard second order hyperbolic
system.We consider a family of fields u(k) for k = 0, . . . N , where each field is a section
of some vector bundle over M . These vector bundles might be different for each field.
We call such family a multifield.

Definition 1. Consider a system involving amultifield u(k) for k = 0, . . . N and a system
of equations on M for fields u(k), k = 0, · · · N

K (k) = −1

2
gμν(x, u(0))∂μ∂νu(k)+F (k)

(
x, u(l), ∂μu(l), ∂μ∂νu(l)

)
= 0, k = 0, . . . , N ,

(12)
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where functions F (k)(x, u(l), v
(l)
μ , w

(l)
μν) depends smoothly on coordinates x and u(l)

for l ≤ max(k + 1, N ), v
(l)
μ for l ≤ k, w

(l)
μν for l ≤ k − 1. Function gμν(x, u(0)) is

a lorentzian metric smoothly depending on x and u(0).2 We will call such a system
K (n) = 0, n = 0, . . . N generalized hyperbolic for u(k), k = 0, . . . N .

Remark 1. Equation (12) is not a system of quasi-linear wave equations because of the
non-trivial dependence of functions F (k) on second derivatives of the fields.

We assume that� ⊂ M is spacelike and compact. The assumption of being spacelike
is a condition for u|� if themetric is u dependent.We consider smooth initial data defined
by functions f (l)

0 and f (l)
1

u(l)|� = f (l)
0 , ∂1u(l)|� = f (l)

1 , l = 0, . . . N . (13)

We assumed here some local coordinate system xμ on M such that � = {x1 = 0}.
We denote ∂μ = ∂

∂xμ . Locally around �, x1 is a time function. We are interested in
well-posedness in the smooth category. It means a series of important properties (see
[18]):

1. Existence of a unique local solution: There exists I = (−T−, T+), T± > 0 such
that on M = I × � we have a unique smooth solution with the given initial data at
{0} × �. Moreover, every surface {s} × � is a Cauchy surface with respect to the
metric gμν(x, u(0)), thus M is globally hyperbolic. We can choose T± maximal with
this property.

2. The speed of propagation is equal to the speed of light: Namely, if two initial data
u, u′ are equal on some open setU ⊂ � then u(x) = u′(x) at all points such that their
future and past developments J±

g(u)(x) satisfy [J+
g(u)(x) ∪ J−

g(u)(x)] ∩ {0} × � ⊂ U .
From this we can deduce some version of well-posedness also for arbitrary non-
compact Cauchy surfaces.

3. Smooth dependence on the initial data: For arbitrary T ′± < T± the solution is
defined for an open neighbourhood of a given initial data. The solution depends
smoothly on the initial data (as a map from a Fréchet space of smooth sections on
� to a Fréchet space of smooth sections on M). In particular, the derivative of the

family of solutions
du(l)

λ

dλ

∣∣∣∣
λ=0

satisfies a system obtained by linearization at {u(l)
0 }.

Let us first notice that the system is non-characteristic on every Cauchy surface. Suppose
that � = {x1 = 0}, and x1 is a time function.

Lemma 2. There exist smooth functions L(k)
(

D̄2u(l)
l≤k, D̄∂1u(l)

l≤k, u(k+1)
)

, k = 0, . . . N,

valued in the same field spaces as u(k) (with dependence on u(k+1) only if k < N), such
that the following conditions are equivalent

1. K (k)|� = 0 for k = 0, . . . N,
2. ∂21u(k)|� = L(k)(D̄2u(l)

l≤k |�, D̄∂1u(l)
l≤k |�, u(k+1)|�) for k = 0, . . . N,

where D̄n denotes n jets on �.

2 These conditions should hold for some open neighbourhood of values of u (for some open set in the
standard Fréchet topology on smooth sections on �). We will take this condition as obvious in what follows.
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Proof. We will prove by induction in k0 the statement:

(
∀k < k0 : K (k)|� = 0

)

⇐⇒
(
∀k < k0 : ∂21u(k)|� = L(k)(D̄2u(l)

l≤k |�, D̄∂1u(l)
l≤k |�, u(k+1)|�)

)
. (14)

The statement for k0 = 0 is tautological. Suppose that it is true for some k0 ≥ 0. Using
g11 �= 0 we can write

− 2

g11 K (k0)|� = ∂21u(k0)|� + . . . , (15)

where . . . is a smooth function of D̄1∂1u(k) for k ≤ k0, D̄2u(k) for k ≤ k0, ∂21u(k) for
k < k0 and u(k0+1) if k0 < N . We can express ∂21u(k) for k < k0 by L(k) by induction
hypothesis, thus we obtain desired function finishing the induction proof. ��
Proposition 3. The generalized hyperbolic system K (n) = 0, n = 0, . . . N (12) for
the multifield u(k), k = 0, . . . N is well-posed in the smooth category. If the system is
linear (or linear with a source term) then the solution is defined on the whole globally
hyperbolic spacetime.

Proof. Wewill prove Proposition 3 by induction with respect to the order N . For N = 0
it is a known result (see for example [19] Chapter 16.1-16.3 and [12] Appendix III). The
following system is well-posed:

−1

2
gμν(x, u)∂μ∂νu + F(x, D1u) = 0, (16)

where gμν(x, u) is a lorentzian metric smoothly depending on coordinates x and u and
F is a smooth function of coordinates and D1u (first jets of u).

We assume now that we proved the statement for all 0 ≤ N < N0. Consider gener-
alized hyperbolic system with fields u(k) for k = 0, . . . N0 (i.e. order N0)

−1

2
gμν(x, u(0))∂μ∂νu(k) + F (k)

(
x, u(l), ∂μu(l), ∂μ∂νu(l)

)
= 0, k = 0, . . . N0, (17)

for some functions F (k)(x, u(l), v
l)
μ, w

(l)
μν) depending on variables described in the def-

inition of generalized hyperbolic system. Differentiating equation for u(k) with respect
to ∂ρ we get

− 1

2
gμν∂μ∂ν∂ρu(k) − 1

2

∂gμν

∂u(0)
∂ρu(0)∂μ∂νu(k) − 1

2

∂gμν

∂xρ
∂μ∂νu(k)

+
∂ F (k)

∂u(l)
∂ρu(l) +

∂ F (k)

∂v
(l)
μ

∂μ∂ρu(l) +
∂ F (k)

∂w
(l)
μν

∂μ∂ν∂ρu(l) +
∂ F (k)

∂xρ
= 0, (18)

where summation over l is implicitely assumed (as well as standard Einstein summation
convention). Introducing p(k)

μ = ∂μu(k) for k ≤ N0 − 1 we can write it as

−1

2
gμν∂μ∂ν p(k)

ρ + G(k)
ρ

(
x, u(l), ∂μu(l), ∂μ∂νu(l), p(l)

ρ , ∂μ p(l)
ρ , ∂μ∂ν p(l)

ρ

)
= 0, (19)
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where

G(k)
ρ (x, u(l), v(l)

μ , w(l)
μν, p(l)

ρ , q(l)
μρ, s(l)

μνρ)

= −1

2

∂gμν

∂u(0)
p(0)
ρ q(k)

μν +
∂ F (k)

∂u(l)
p(l)
ρ +

∂ F (k)

∂v
(l)
μ

q(l)
μρ +

∂ F (k)

∂w
(l)
μν

s(l)
μνρ − 1

2

∂gμν

∂xρ
q(k)
μν +

∂ F (k)

∂xρ
,

(20)

where all derivatives of F (k) and gμν retain their original variables. We introduce new
multifields

u′(k) = {u(k), p(k)
μ } for k < N0 − 1, (21)

u′(N0−1) = {u(N0−1), p(N0−1)
μ , u(N0)}, (22)

and the system of equations

− 1

2
gμν(x, u(0))∂μ∂ν p(k)

ρ

+ G(k)
ρ

(
x, u(l), ∂μu(l), ∂μ∂νu(l), p(l)

ρ , ∂μ p(l)
ρ , ∂μ∂ν p(l)

ρ

)
= 0, k ≤ N0 − 1, (23)

− 1

2
gμν(x, u(0))∂μ∂νu(k) + F (k)

(
x, u(l), ∂μu(l), ∂μ∂νu(l)

)
= 0, k ≤ N0 − 1, (24)

− 1

2
gμν(x, u(0))∂μ∂νu(N0) + F (N0)

(
x, u(l), ∂μu(l), ∂μ p(l)

ν

)
= 0. (25)

It is of the generalized form but the order is now N0 − 1.
From solution of original system we can form solution of this system by taking

p(k)
μ = ∂μu(k). (26)

We proved uniqueness by induction hypothesis.
In order to prove existence we construct initial data

p(k)
μ |� = ∂μu(k)|�, ∂1 p(k)

μ |� = ∂1∂μu(k)|�, (27)

with ∂1∂μu(k)|� obtained by Lemma 2 (the original system is non-characteristic with
respect to a Cauchy surface, thus it is possible).

Now we notice that the difference ∂ρ (24) – (23) is equal to

− 1

2
gμν∂μ∂νw

(k)
μ − 1

2

∂gμν

∂u(0)
w(0)

ρ ∂μ∂νu(k)
ν − 1

2

∂gμν

∂u(0)
p(0)
ρ ∂μw(k)

ν − 1

2

∂gμν

∂xρ
∂μw(k)

ν

+
∂ F (k)

∂u(l)
w(l)

ρ +
∂ F (k)

∂v
(l)
μ

∂μw(l)
ρ +

∂ F (k)

∂w
(l)
μν

∂μ∂νw
(l)
ρ = 0, k ≤ N0 − 1, (28)

wherew
(k)
μ = ∂μu(k) − p(k)

μ , k = 0, . . . N0 −1. These equations form linear generalized

hyperbolic system for w
(k)
μ and as the initial data

w(k)
μ |� = ∂μu(k) − p(k)

μ |� = 0, ∂1w
(k)
μ |� = ∂1∂μu(k) − ∂1 p(k)

μ |� = 0, (29)
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we have by uniqueness of solution (due to induction hypothesis)

p(k)
μ = ∂μu(k), (30)

and the solution of the lower order system gives the solution of the original one.
The solution of u′ system depends smoothly on the initial data, so it is also true for

the original system. The induction is complete. ��
Remark 2. In fact one can show that it is well-posed in Sobolev spaces, but of different
order for every u(k). We leave the details for further investigations. Such hyperbolic
systems with shifted weights were first considered by Leray. The theory for first order
hyperbolic systems is described for example in his book [20].

3.1. The ambient construction. We consider an ambient space3

M̃ = M × R. (31)

with coordinates (xμ, ρ) where xμ are coordinates on M . We will denote fields on M̃
with .̃ We regard them as a formal series in ρ. We denote differentiation with respect
to ρ by ∂∞ or ′. As before, we denote indices in M by greek letters. Coordinate x1 is a
time coordinate and � = {x1 = 0} ⊂ M . We use D̃mũ to denote m jets on M̃ of the
field ũ, whereas Dmu is the m jets on M of the field u on M .

Let us consider a ρ-dependent field on M , ṽ. It can be also regarded as a field on M̃ .
We can write an expansion

ṽ =
∑
m=0

ṽ[m](xμ)ρm + O(ρ∞), (32)

where ṽ[m] are rescaled Taylor expansion coefficients and O(ρ∞) means a term that
vanishes to infinite order at ρ = 0 surface. In what follows we will be interested in such
formal series.

Remark 3. Every term ṽ[m] in the expansion is a field on M . Thus, we have a family of
fields ṽ[k], k = 0, . . .. Moreover, every differential equation K̃ (ṽ) = 0 on M̃ , induces
system of equations K̃ [k] = 0 on M . We will now apply results of Sect. 3 to systems
obtained in this way.

Definition 2. Let ũ be a field on M̃ . We say that a formal series F̃ in ρ is of order N in
ũ if for each n = 0, . . ., F̃ [n] is a function of x and

{
Dmũ[l]} , m = min{n + N − l, 2}, l ≤ n + N . (33)

For example for F̃ of order 2, we have dependences

F̃ [0](x, D2ũ[0], D1ũ[1], ũ[2]), F̃ [1](x, D2ũ[0], D2ũ[1], D1ũ[2],
ũ[3]), F̃ [2](x, D2ũ[0], . . . D2ũ[2], D1ũ[3], ũ[4]), . . .

3 We will consider later another ambient space M = R × M̃ which was introduced by Fefferman and
Graham [6].
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and so on. Remind, that D̃mũ denotes m jets on M̃ of the field ũ. If F̃(x, D̃2ũ) is a
smooth function then it is of order 2. Let f̃ μν(x, ũ) be a smooth tensor function then

f̃ μν∂μ∂ν ũ = [ f̃ μν][0]∂μ∂ν ũ + F̃, (34)

where F̃ is of order 1.
Important example of generalized hyperbolic systems can be obtained from K̃ [n] = 0,

n = 0, . . . , N for a multifield ũ[n], n = 0, . . . , N if

K̃ = −1

2
g̃μν∂μ∂ν ũ + F̃, (35)

and F̃ is of order 1 and F̃ [n] for n ≤ N decouple in the sense that they do not depend

on O(ρN+1) part of the expansion.

3.2. The derived equation. The equations of interest have also another important prop-
erty:

Definition 3. We say that a system K (n)(x, D2u) = 0, n = 0, . . . , N for u(k), k =
0, . . . , N is recursive (or recursive till order N) if

1. For every n < N , K (n) is a function of D2u(k) for k ≤ n and u(n+1),
2. For every n < N , K (n) depends linearly on u(n+1) and we can determine u(n+1) from

equation K (n) = 0 in terms of other variables.

We will consider in this paper the generalized hyperbolic systems given by

K̃ [k] = −1

2
gμν(ũ[0])∂μ∂ν ũ[k] + [F̃][k], (36)

which are recursive till order N . In order to determine this property it is enough to study
F̃ .

The property of being recursive allows us to determine higher order variables from
sufficiently high jets of the lowest order u(0). In our application we need a local version
of this procedure that is described by a following lemma:

Lemma 4. Let K (n) be recursive in u(k) for 0 ≤ k ≤ N till order N. There exist smooth
functions H (n)

K for 0 < n ≤ N depending on x ∈ M and on variables D2nu(0), such
that for any point x ∈ M and an integer N ′ > 0 the following conditions are equivalent

1. DN ′−2k−2K (k)(x) = 0 for 0 ≤ k ≤ N − 1, 2k + 2 ≤ N ′,
2. DN ′−2k

(
u(k) − H (k)

K

(
x, D2ku(0)

))
(x) = 0 for 1 ≤ k ≤ N, 2k ≤ N ′.

where Dm denotes m-th jets. In the case of linear system the functions H (n)
K are also

linear. If the system does not directly depend on x then the same is true for H (n)
K .

Remark 4. We will use subscript for H (k) to indicate which system is used to determine
recursive functions.
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Proof. We proceed by induction in k0. Suppose that

DN ′−2ku(k)(x) = DN ′−2k H (k)
K

(
x, D2ku(0)

)
|x , 1 ≤ k ≤ k0 − 1 (37)

is equivalent to
DN ′−2k−2K (k)(x) = 0, 0 ≤ k ≤ k0 − 2. (38)

Solving equation K (k0−1) = 0 for u(k0) we introduce functions G(k0)

u(k0) = G(k0)
(

x,
{

D2u(l)
}

l≤k0−1

)
(39)

Let us notice that for k0 ≤ N and 2k0 ≤ N ′

DN ′−2k0 K (k0−1)(x) = 0,⇐⇒ DN ′−2k0(u(k0) − G(k0))|x = 0, (40)

due to linear dependence. By inserting recursively variables from the lower orders we
show the result. Induction starts with k0 = 0 where it is a trivial statement. ��

This lemma allows us to determine initial data for the generalized hyperbolic system
from the sufficienty high jets of the lowest order field u(0) on the Cauchy surface.
Important is that the evolved generalized system will have u(0) in agreement with this
data. This property is guaranteed by the following fact:

Lemma 5. Let K (n) = 0 be the generalized hyperbolic system, recursive in the multifield
u(k), k = 0, . . . N. Consider initial data

u(k)|� = H (k)
K

(
·, D2kv|�

)
, ∂1u(k)|� = ∂1H (k)

K

(
·, D2kv|�

)
, (41)

defined by jets D2N+1v|� of the field v. Then a solution with these initial data satisfies
on the Cauchy surface

D2N+1u(0)|� = D2N+1v|�. (42)

Proof. Let u(k) be a development. We denote

∂m
1 v(k)|� = ∂m

1 H (k)
K

({
Dmv|�

}
m≤2k

)
, m + 2k ≤ 2N + 1. (43)

Consider a set

A = {(m, k) ∈ Z×Z : m ≥ 0, k ≥ 0, m+2k ≤ 2N +1, ∂m
1 v(k)|� �= ∂m

1 u(k)|�}. (44)

We should show that this set is empty. By contradiction assume otherwise and define

m0 = min(m : ∃k, (m, k) ∈ A), k0 = min(k : (m0, k) ∈ A). (45)

We notice that m0 ≥ 2 because of the way u(k)|� and ∂1u(k)|� are defined. Consider
∂

m0−2
1 K (k0) in terms of u(k0)

∂
m0−2
1 K (k0)|� = −1

2
g11∂

m0
1 u(k0)|� + . . . , (46)

where . . . is a function of the terms which do not belong to A by definition. Similarly

∂
m0−2
1 K (k0)|� = −1

2
g11∂

m0
1 v(k0)|� + . . . , (47)
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and as . . . of the same property. From the definition of (m0, k0) the remainders . . . are
equal thus

−1

2
g11∂

m0
1 u(k0)|� = −1

2
g11∂

m0
1 v(k0)|�, (48)

and as g11|� is nonvanishing we obtain a contradiction. ��
If the equation system K (n) = 0 is recursive till order N and it decouples at this

order, then the equation for n = N gives us by Lemma 4 the equation of higher order
for u(0)

0 = K (N )

(
x,

{
D2u(l)

}
l≤N

)
. (49)

This object will be of some importance, thus we introduce a definition.

Definition 4. Consider a generalized hyperbolic system K (n) = 0, n = 0, . . . N for a
multifield u(k), k = 0, . . . N , which is recursive till order N and decouples at this order.
We will call

ĤK

(
x, D2N+2v

)
:= K (N )

(
x,

{
D2u(l)

}
l≤N

)
, u(l) := H (k)

K

(
x, D2kv

)
(50)

the derived operator for the system K (n) and the equation ĤK = 0 will be called the
derived equation for this system.

In case of a linear system the derived operator is also linear.
If the system K (n) = 0 , n = 0, . . . , N is satisfied, then the equation ĤK = 0 for u(0)

also holds. From solution of the derived equation we can obtain solution to the system.
Initial conditions for this equation provide also initial conditions for the system, if we
know sufficiently high jets on the initial surface.

4. The Fefferman–Graham Ambient Metric Construction

We are working in even d dimensions. Moreover we assume that d ≥ 4. Let us introduce
an ambient space M for the spacetime M

M = R+ × M̃, M̃ = M × R, (51)

with coordinates (t, xμ, ρ) and (xμ, ρ) respectively, where xμ are coordinates on M
and the metric on M takes the form

gI J dx I dx J = 2ρdt2 + 2tdtdρ + t2g̃μν(xμ, ρ)dxμdxν . (52)

In the following we will denote objects on M̃ with ˜ and objects on M bold. We denote
by gI J , ∇I , SI J metric covariant derivative and Ricci tensor respectively on M. Indices
I = 0,∞ or μ in the case of index on M . We use gI J to raise or lower indices. The
metric g̃μν , connection ∇̃μ and Ricci tensor R̃μν are ρ-dependent objects on M . We use
g̃μν to raise and lower indices for such objects.

Let hμν be a given metric on M . The ambient metric on M is a metric that satisfies
g̃[0]
μν = hμν and

SI J = O(ρd/2−1), S = O(ρd/2), (53)



Well-Posedness of the Ambient Metric Equations 2971

whereSI J andS areRicci tensor andRicci scalar of themetric onM. SymbolF = O(ρn)

means that limρ→0 ρ−nF exists.
One can show that S0I = 0 and that SI J is t independent. Essentially, it is a function

on M̃ (see [6])
Sμν := S̃μν, Sμ∞ := S̃μ∞, S∞∞ := S̃∞∞. (54)

We have (eq. 3.17 in [6])

S̃μν = ρ g̃′′
μν − ρ g̃ξχ g̃′

ξμg̃′
χν −

(
d

2
− 1

)
g̃′
μν − 1

2
g̃ξχ g̃′

ξχ g̃μν + R̃μν, (55)

S̃μ∞ = 1

2
g̃ξχ

(
∇̃ξ g̃′

μχ − ∇̃μg̃′
ξχ

)
, (56)

S̃∞∞ = −1

2
g̃ξχ g̃′′

ξχ +
1

4
g̃ξχ g̃μν g̃′

μξ g̃′
νχ , (57)

where R̃μν denotes the Ricci tensor in the metric g̃μν depending on ρ. The equations
(53) are equivalent to

S̃[n]
μν = 0, n = 0, . . . d/2 − 2, (58)

(g̃[0])μν S̃[d/2−1]
μν = 0, (59)

and then other components automatically vanish. Namely, (see [6] and compare with
Proposition 26),

S̃μ∞ = O(ρd/2−1), S̃∞∞ = O(ρd/2−1). (60)

One can check that S̃[n]
μν is recursive till order d/2 − 1. Thus, we obtain4

g̃[n]
μν = H (n)

S̃, μν
(D2n g̃[0]), n ≤ d/2 − 1, (61)

so higher orders of the metric are determined through g̃[0]
μν = hμν . The last equation

(g̃[0])μν S̃[d/2−1]
μν = 0 allows to compute the trace tr g̃[d/2] = (g̃[0])μν g̃[d/2]

μν . The formula

for S̃[d/2−1]
μν depends on g̃[d/2] only through the trace. It does not depend on the choice

of the ambient metric.
The Fefferman–Graham obstruction tensor for hμν is defined by

Hμν = S̃[d/2−1]
μν . (62)

The constraints Hμν = 0 are equivalent to

S̃[n]
μν = 0, n = 0, . . . d/2 − 1. (63)

Let us notice, that the specific combination

S̃[d/2−1]
μν − 1

d/2 − 1
g̃[0]
μν S̃[d/2−2]∞∞ (64)

depends only on g̃[k] for k ≤ d/2 − 1 and its derivatives. Importantly,

Hμν = S̃[d/2−1]
μν − 1

d/2 − 1
g̃[0]
μν S̃[d/2−2]∞∞ , (65)

because S̃[d/2−2]∞∞ = 0 by (60). This form of the obstruction tensor does not involve
tr g̃[d/2].

4 This recurrence procedure breaks down for n = d/2 − 1 and this is the source of the obstruction tensor.
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4.1. Hyperbolicity of the Anderson–Fefferman–Graham equation. The system of (10)
is not hyperbolic for the same reason as Einstein’s gravity, because of the gauge trans-
formations. The first step is to introduce a hyperbolic system in a specific gauge. We
will use a natural gauge introduced in [3]. Then we show that this gauge is preserved in
the evolution and as a result the obtained solution is also a solution of the Anderson–
Fefferman–Graham equations. It is a standard treatment in gravity (see [12] for applica-
tion to Einstein’s equations).

Let us remind the following known identity (see [12])

R̃μν = −1

2
g̃ξχ∂ξ ∂χ g̃μν +

1

2

(
∂μ F̃ν + ∂ν F̃μ

)
+ . . . , (66)

where ... means terms of order 1 (see Definition 2) and

F̃μ = g̃ξχ

(
∂ξ g̃χμ − 1

2
∂μg̃ξχ

)
. (67)

We notice that

∂2∞ F̃μ = g̃ξχ

(
∂ξ g̃′′

χμ − 1

2
∂μg̃′′

ξχ

)
+ . . . , (68)

where . . . denotes terms of order at most 2. Comparing it with

∂∞ S̃μ∞ = 1

2
g̃ξχ

(
∂ξ g̃′′

μχ − ∂μg̃′′
ξχ

)
+ . . . , (69)

∂μ S̃∞∞ = −1

2
g̃ξχ∂μg̃′′

ξχ + . . . , (70)

we obtain the formula

∂2∞ F̃μ = 2∂∞ S̃μ∞ − ∂μ S̃∞∞ + . . . , (71)

where . . . denotes terms of order at most 2.
In order to write a slightly modified F̃μ in terms of S̃μ∞ and S̃∞∞ we extend the

notion of derivatives with respect to ρ. For n > 0 we introduce n-times integration of a
multifield ũ (a collection of fields on M̃)

∂−n∞ ũ(xμ, ρ) =
∫ ρ

0
dρ′ (ρ − ρ′)n−1

(n − 1)! ũ(xμ, ρ′), (72)

that is ∂−n∞
∑

k=0 u[k]ρk = ∑
k=0

1
(k+1)···(k+n)

u[k]ρk+n . Suppose that F̃ is of order N

then ∂−n∞ F̃ is of order N − n.
We introduce additional tensors

γ̃ = −1

2
g̃[0]ξχ g̃[1]

ξχ + ∂−1∞ S̃∞∞, (73)

G̃μ = F̃ [0]
μ + 2∂−1∞ S̃μ∞ − ∂μ∂−1∞ γ̃ , (74)

Ẽμν = S̃μν − 1

2
(∇̃μG̃ν + ∇̃ν G̃μ) − g̃μνγ̃ , (75)

These tensorswill be used in our analysis of theAFGequations. The reason for occurence
of additional term g̃μνγ̃ is explained in the proof below.
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Lemma 6. The equation system

Ẽμν = O(ρd/2) (76)

is generalized hyperbolic and recursive in g̃[n]
μν , n = 0, . . . , d/2 − 1 till order d/2 − 1

and it decouples at this order. Thus, it is well-posed.

Proof. We will first prove that it is recursive till order d/2 − 1 and that it decouples at
this order. Functions G̃μ and γ̃ are of order 1. Hence, Ẽμν is of order 2. Moreover, G̃[n]

μ

does not depend on g̃[k]
μν , k > n (nor its derivatives). The dependence of S̃[n]

μν and γ̃ [n] on
Dm g̃[k]

μν , k > n is only by linear terms in g̃[n+1]
μν . In fact, we can compute

[S̃μν − g̃μνγ̃ ][n] =
(

n − d

2
+ 1

)
(n + 1)g̃[n+1]

μν + . . . , (77)

where . . . are terms depending on D2 g̃[l]
μν for l ≤ n. For n < d/2 − 1 we can uniquely

determined g̃[n+1]
μν . Additionally, [S̃μν − g̃μνγ̃ ][d/2−1] depends only on g̃[k]

μν for k ≤
d/2−1 and their derivatives (see also (64)). Thus, the system is recursive and it decouples.

We need to show that Ẽμν is of the form (35). As a preliminary step we prove that

F̃ν = G̃ν + . . . , (78)

where . . . denotes term of order 0. Indeed, F̃ [0]
ν = G̃[0]

ν . Direct computation gives

G̃[1]
μ = [∂∞G̃μ][0] = 2S̃[0]

μ∞ − ∂μγ̃ [0], (79)

which can be compared to

F̃ [1]
μ = 2S̃[0]

μ∞ +
1

2
∂μ(g̃[0]ξχ g̃[1]

ξχ ) + . . . , (80)

where . . . denotes terms depending on x and Dm g̃[k]
μν for m + k ≤ 1. Finally, by (71) we

obtain
∂2∞ F̃ν = ∂2∞G̃ν + . . . , (81)

where . . . denotes term of order 2. This shows (78).
We thus have

∇̃μ F̃ν = ∇̃μG̃ν + . . . , (82)

where . . . denotes term of order 1 (both F̃μ and G̃μ depends only on up to first derivatives
of the metric). Taking this and (66) into account, the following yields

Ẽμν = S̃μν − 1

2
(∇̃μG̃ν + ∇̃ν G̃μ) − g̃μνγ̃

= R̃μν − 1

2
(∇̃μ F̃ν + ∇̃ν F̃μ) + . . . = −1

2
g̃ξχ∂ξ ∂χ g̃μν + . . . , (83)

where . . . is of order 1. Expanding first term the form described in (35) is obtained.
Well-posedness follows from Proposition 3. ��
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4.1.1. Propagation of the gauge In this section we will explain that G̃μ = O(ρd/2) and
γ̃ = O(ρd/2−1) provided that these functions vanish on the initial surface together with
their time derivatives and secondly Ẽ = O(ρd/2). As usual this is achieved by showing
that these variables obey a system of linear hyperbolic equations.

Let us introduce two tensors

B̃1
μ = −1

2
∇̃ξ ∇̃ξ G̃μ − 1

2
R̃ν

μG̃ν −
(

d

2
− 1 − ρ∂∞

)
∂∞G̃μ

+
1

2
g̃ξχ g̃′

ξχρ∂∞G̃μ +
1

2
ρ g̃ξχ g̃′

ξχ∂μγ̃ , (84)

B̃2 = −1

2
∇̃μ∂μγ̃ −

(
d

2
− 2 − ρ∂∞

)
∂∞γ̃ + g̃μν g̃′

μνρ∂∞γ̃

+
1

2
Q̃μG̃μ +

1

2
g̃′
μν∇̃μG̃ν +

1

2
g̃′
μν g̃μνγ̃ , (85)

where Q̃μ = ∂∞(g̃νξ �̃
μ
νξ ) and �̃

μ
ξχ is ρ-dependent Christoffel symbol.

We will prove in Proposition 30 of Appendix A that if Ẽ = O(ρd/2) then B̃1
μ =

O(ρd/2) and B̃2 = O(ρd/2−1). The next two lemmas will show that the system of
equations B̃1

μ = O(ρd/2) and B̃2 = O(ρd/2−1) allows us to deduce that the gauge

functions vanish (G̃μ = O(ρd/2) and γ̃ = O(ρd/2−1)) if their initial data vanish on the
Cauchy surface.

Lemma 7. The equation system

B̃1
μ = O(ρd/2), B̃2 = O(ρd/2−1) (86)

is linear generalized hyperbolic for G̃[n]
μ , n = 0, . . . d/2−1 and γ̃ [n], n = 0, . . . d/2−2.

Moreover, if (86) is satisfied and at a point x ∈ M the following equations are true

Dd−2G̃[0]
μ (x) = 0, Dd−3γ̃ [0](x) = 0, (87)

then

Dd−2k−2G̃[k]
μ (x) = 0, k = 0, . . . d/2− 1, Dd−2k−3γ̃ [k](x) = 0, k = 0, . . . d/2− 2.

(88)

Proof. Inspection of the equations shows that

B̃1
μ = −1

2
g̃μν∂μ∂ν G̃μ + F̃1

μ, B̃2 = −1

2
g̃μν∂μ∂ν G̃μ + F̃2, (89)

where F̃1
μ and F̃2 are of order 1. Generalized hyperbolicity follows from two facts which

ensure that the system decouples:

1. The dependence of [B̃1
μ][n] on Dm G̃[k]

ν for k > n is by

[(
d

2
− 1 − ρ∂∞

)
∂∞G̃μ

][n]
=

(
d

2
− 1 − n

)
(n + 1)

[
G̃μ

][n+1]
, (90)

and it does not depend on Dm γ̃ [k] for k ≥ n.
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2. The dependence of [B̃2][n] on Dm γ̃ [k] for k > n is by

[(
d

2
− 2 − ρ∂∞

)
∂∞γ̃

][n]
=

(
d

2
− 2 − n

)
(n + 1)

[
γ̃
][n+1]

, (91)

and it does not depend on Dm G̃[k]
μ for k > n.

Let us now prove the second statement of the lemma by induction on k0. Suppose that
for all 0 ≤ k < k0

Dd−2k−2G̃[k]
μ = 0, Dd−2k−3γ̃ [k](x) = 0, (92)

then taking up to d − 2k0 − 2 derivatives of [B̃1
μ][k0−1] = 0 and up to d − 2k0 − 3

derivatives of [B̃2][k0−1] = 0 we get due to (92)

Dd−2k0−2G̃[k0]
μ = 0, Dd−2k0−3γ̃ [k0](x) = 0, (93)

which shows the induction together with a trivial statement for k0 = 1. ��
As a result, we obtain:

Lemma 8. Suppose that Ẽμν = O(ρd/2) and on the initial surface

G̃μ|� = ∂1G̃μ|� = O(ρd/2), γ̃ |� = ∂1γ̃ |� = O(ρd/2−1), (94)

then G̃μ = O(ρd/2) and γ̃ = O(ρd/2−1).

Proof. It follows from Proposition 30 that B̃1
μ = O(ρd/2) and B̃2 = O(ρd/2−1) and by

generalized hyperbolicity the solution is unique. From linearity, it is just zero. ��
Additionally, we have

γ̃ [d/2−1] = − 1

2(d/2 − 1)
g[0]μν g̃[d/2]

μν + . . . , (95)

where . . . denote terms depending only on g̃[n]
μν for n ≤ d/2 − 1. By modifying g̃[d/2]

μν

we can assume that γ̃ [d/2−1] = 0.

4.1.2. Gauge fixing conditions We assume that on the initial surface

Dd−2G̃[0]
μ |� = 0, Dd−3γ̃ [0]|� = 0, (96)

and prove that in such a case

G̃μ|� = ∂1G̃μ|� = O(ρd/2), γ̃ |� = ∂1γ̃ |� = O(ρd/2−1). (97)

We show it by noticing that the equations B̃1
μ = O(ρd/2), B̃2 = O(ρd/2−1) hold. We

can invoke Lemma 7 to show that

Dd−2k−2G̃[k]
μ |� = 0, k ≤ d

2
− 1, Dd−2k−3γ̃ [k]|� = 0, k ≤ d

2
− 2. (98)

Comparing with (97) we see that the missing condition is ∂1G̃[d/2−1]
μ |� = 0.
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Lemma 9. Suppose that Ẽμν = O(ρd/2) and on the Cauchy surface �

H( �N , ·)|� = 0, ∂k
1 G̃[n]

μ |� = 0, ∂k
1 γ̃ [n]|� = 0, k + 2n ≤ d − 2, (99)

then ∂1G̃[d/2−1]
μ |� = 0 and Dd−2k−1g̃[k]

μν |� = Dd−2k−1H (k)

S̃, μν
(g̃[0]

ξχ )|� .

Proof. Wewill assume for simplicity that �N = ∂1. The modification of the proof for the
general case is minor. We have the identity for jets

Dd−2n−3 S̃[n]
μν |� = Dd−2n−3

[
Ẽμν +

1

2
(∇̃μG̃ν + ∇̃ν G̃μ) + g̃μνγ̃

][n]
|� = 0 (100)

From Lemma 4 the jets of the expansion of the ambient metric

Dd−2k−1g̃[k]
μν |�, (101)

agree with the Fefferman–Graham ambient metric construction. As S̃[d/2−1]
1ν depends

only on first derivatives of g̃[d/2−1]
μν in x1 direction, we deduce

0 = H1ν(h)|� = S̃[d/2−1]
1ν |� − 1

d/2 − 1
g̃[0]
1ν S̃[d/2−2]∞∞ |� = S̃[d/2−1]

1ν |�, (102)

by using (65) and S̃[d/2−2]∞∞ |� = 0 (due to γ̃ [d/2−1]|� = 0). Additionally, from γ̃ |� =
O(ρd/2) and G̃μ|� = O(ρd/2) it follows that

0 = S̃[d/2−1]
1ν |� = Ẽ [d/2−1]

1ν |� +
1

2
([∇̃1G̃ν ][d/2−1]|� + [∇̃ν G̃1][d/2−1]|�) + [g̃1ν γ̃ ]|[d/2−1]

�

= 1

2
∂1G̃[d/2−1]

ν |�, (103)

for ν �= 1. Similarly, for ν = 1 we get

0 = S̃[d/2−1]
11 |� = Ẽ [d/2−1]

11 |� +
1

2
([∇̃1G̃1][d/2−1]|� + [∇̃1G̃1][d/2−1]|�) + [g̃11γ̃ ]|[d/2−1]

�

= ∂1G̃[d/2−1]
1 |�, (104)

showing the statement of the lemma. ��
We can combine the results obtained so far to prove a proposition about existence

of the solution in the Anderson–Chruściel gauge. We consider initial data ∂k
1hμν |� ,

k = 0, . . . d − 1 subject to the conditions on the initial surface �:

Dd−2(�xν)|� = 0, Dd−3(R)|� = 0, H( �N , ·)|� = 0. (105)

The conditions are well-defined because �xμ depends on jets of the metric up to the
first order, R depends on jets of the metric up to the second order and H( �N , ·) depends
on d − 1 order jets of the metric on � (see [4] p. 564-565 for a thorough discussion).

Proposition 10. We consider initial data ∂k
1hμν |� , k = 0, . . . d −1. Suppose that on the

initial surface � conditions (105) are satisfied. Then there exists a unique solution to
AFG system Hμν = 0 with the given initial data and which satisfies �xν = 0, R = 0.



Well-Posedness of the Ambient Metric Equations 2977

Proof. As Ẽμν is recursive till order d/2− 1 we compute by Lemma 4 the initial value
data for the system by

h̃[k]
μν |� = H (k)

Ẽ μν
(D2khμν |�), ∂1h̃[k]

μν |� = ∂1H (k)

Ẽ μν
(D2khμν |�), k ≤ d/2 − 1.

(106)
This allows us to determine the initial data for the equation Ẽ = O(ρd/2). We consider
a unique solution g̃μν of this equation. Since the system is generalized hyperbolic, we
get

∂n
1 g̃[0]

μν |� = ∂n
1 hμν |�, n ≤ d − 1, (107)

by Lemma 5. Thus, the solution has prescribed initial data.
In particular, it is true that

Dd−2G̃[0]
μ |� = Dd−2

(
hμνhξχ�ν

ξχ

)
= −Dd−2(hμν�xν) = 0, (108)

and by (55), (75) and (73)

Dd−3
[

Rμν −
(

d

2
− 1

)
g̃[1]
μν

]∣∣∣∣
�

= Dd−3
[

Ẽμν +
1

2
(∇̃μG̃ν + ∇̃ν G̃μ)

][0]∣∣∣∣∣
�

= 0.

(109)
We take the trace of this equality to derive

Dd−3γ̃ [0]|� = Dd−3
[
−1

2
g̃[0]ξχ g̃[1]

ξχ

]∣∣∣∣
�

= −Dd−3 R

d − 2

∣∣∣∣
�

= 0, (110)

This means that the condition (96) is satisfied. From Lemmas 8 and 9 we conclude

G̃μ = O(ρd/2), γ̃ = O(ρd/2−1). (111)

We can always assume γ̃ [d/2−1] = 0 (see (95) and (65)). Taking this into account, we
obtain

S̃[n]
μν = Ẽ [n]

μν +
1

2
([∇̃μG̃ν][n] + [∇̃ν G̃μ][n]) + [g̃μνγ̃ ][n] = 0, (112)

for n ≤ d/2 − 1. We have a solution with S̃μν = O(ρd/2). ��

4.2. The AFG equation in the Anderson–Chruściel gauge. In this section, the corre-
spondence of our gauge functions to R = 0 and �xμ = 0 gauge will be investigated.
This gauge was proposed in [3] and [4].

4.2.1. Uniqueness of the solution of the AFG equation Assume that we have a solution
Hμν(h) = 0 with the given initial conditions at �.

Lemma 11. [3,4] Suppose that we have a local coordinate system y2, . . . yd on �.
Locally there exists a coordinate system xμ and a conformal factor σ such that for
h′

μν = e2σ hμν ,

1. �′xμ = 0, R′ = 0,
2. xξ |� = yξ for ξ = 2, . . . d, x1|� = 0,
3. ∂1 is a unit normal vector to �
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Here �′ is a scalar d’Alembert operator with respect to the metric h′. Function σ is
freely specified by initial data σ |� and ∂1σ |� .

Proof. First we find σ as a solution of Yamabe problem (that is R[e2σ h] = 0), which
is a nonlinear hyperbolic system for σ (see [4] for discussion). Define xξ for ξ ≥ 2 as a
unique solution to �′φ = 0 with initial conditions (local development)

φ|U = yξ , Nμ∂μφ|U = 0, (113)

where Nμ is a unit normal to �. Finally, we define x1 as a unique solution with initial
value

φ|U = 0, Nμ∂μφ|U = 1. (114)

One can check that on U ′ ⊂ U this new coordinates are independent, so it is also true
in the small neighborhood of the Cauchy surface. ��

We can thus work in this gauge. From the solution to Hμν = 0 we now construct
iteratively

g̃[n+1]
μν n ≤ d/2 − 2. (115)

by (61). Let us notice that g̃[0]
μν = hμν and g̃[1]

μν = 2Pμν

where Pμν = 1
d−2

(
Rμν − 1

2(d−1) Rhμν

)
is the Schouten tensor [6]. Due to the gauge

condition, one obtains

G̃[0]
μ = hμνhξχ�ν

ξχ = −hμν�xν = 0, γ̃ [0] = −hμν Pμν = − 1

2(d − 1)
R = 0.

(116)
Moreover, from S̃μ∞ = O(ρd/2−1) and S̃∞∞ = O(ρd/2−1) we have5

G̃μ = O(ρd/2), γ̃ = O(ρd/2). (117)

Additionally, S̃μν = O(ρd/2) and so

Ẽμν = O(ρd/2). (118)

From the uniqueness of the solution of (118) we obtain the uniqueness of the solution
of AFG equation (in the given gauge).

4.2.2. Existence of the solutions of the AFG equation Let us now assume that the initial
data is given by

∂n
1 hμν |�, n = 0, . . . d − 1, (119)

which satisfies the constraints H( �N , ·)|� = 0 and the gauge is satisfied:

∂n
1�xμ|� = 0, n = 0, . . . d − 2, (120)

∂n
1 R|� = 0, n = 0, . . . d − 3. (121)

The conditions are well-defined because �xμ depends on the jets of the metric up to
first order and R depends on the jets of the metric up to the second order.

5 Notice that the additional normalization in the Fefferman–Graham ambient metric allows us to obtain
vanishing of γ̃ to one order higher than from propagation equation. This should be compare with (95).
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By a formal coordinate change on � ⊂ M we can always assume these conditions
together with �N = ∂1 where N is a normal vector. In this way, the constraints take the
form

H1μ|� = 0. (122)

We also compute

Dd−2G̃[0]
μ |� = −Dd−2(hμν�xν)|� = 0, Dd−3γ̃ [0]|� = 1

2(d − 2)
Dd−3R|� = 0,

(123)
by (120) and (121). The existence of the solution of AFG equation would follow from
Proposition 10 if we were able to use this gauge globally on a compact �. However, it
is not possible (see [4] Remark 4.4 for discussion), so we need to apply some version of
a gluing argument.

4.2.3. Proof of the Theorem 1 The harmonic gauge is well-suited for � = R
d−1. If we

want to apply our result, we need to extend the notion of this gauge to compact Cauchy
surfaces. This can be done in the case of � being a torus, where xμ for μ = 2, . . . d
are defined modulo 2π . Due to the finite speed of propagation, the method provides an
existence and uniqueness result also for open subsets of the torus. Uniqueness of the
development allows to apply the standard gluing argument [12] to obtain Theorem 1.

4.3. Infinite order extension of the ambient metric. Suppose that the obstruction tensor
vanishes. The results of [6] show that Taylor expansions of the metrics, which are Ricci
flat of the order O(ρ∞), are in one-to-one correspondence with the traceless symmetric
tensors kμν satisfying

∇μkμν = Dν, (124)

where Dν is a certain 1-form (defined in eq. 3.36 in [6]). The tensors kμν define trace-free

part of g̃[d/2]
μν since the trace is already determined. In the case of Euclidean signature

manifolds, it is not obvious that such a tensor exists. We will prove that this is the case
for any globally hyperbolic spacetime.

Proposition 12. There exists kμν satisfying (124) on a AFG globally hyperbolic space-
time.

Proof. We will look for the tensor given in a special form

kμν = ∇μuν + ∇νuμ − 2

d
hμν∇ρuρ, (125)

for some covector field uμ. It is already symmetric, traceless and the equation (124)
takes a form

Dν = ∇μ∇μuν + Rρ
ν uρ +

(
1 − 2

d

)
∇ν(∇ρuρ). (126)

Taking the divergence, we obtain an additional equation

∇ν Dν = ∇μ∇μ(∇νuν) + 2∇μ(Rν
μuν) +

(
1 − 2

d

)
∇μ∇μ(∇νuν), (127)
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where we used ∇ν∇μ∇μuν = ∇μ∇μ(∇νuν) + ∇μ(Rν
μuν). We now introduce a new

variable A = 1
d ∇μuμ and a system of equations (equivalent to (126) and (127), respec-

tively)

∇μ∇μuν + Rρ
ν uρ + (d − 2)∇ν A = Dν, (128)

2(d − 1)∇μ∇μ A + 2∇μ(Rν
μuν) = ∇ν Dν. (129)

It is indeed a hyperbolic second-order linear system if we regard variables A and uν as
independent. Thus, with any given initial data on a Cauchy surface, it has a solution.
We need to show that A and uν obtained by evolution satisfies d A = ∇νuν if the initial
data is chosen properly. Substracting (129) from the divergence of (128) we obtain an
equation:

∇μ∇μ(∇ρuρ − d A) = 0, (130)

which is satisfied for every solution of the system (128), (129). If we choose the ini-
tial data such that A|� = d−1∇ρuρ |� and ∂1A|� = d−1∂1∇ρuρ |� (computed by
the Cauchy–Kovalevskaya algorithm), then A = 1

d ∇ρuρ in the whole spacetime and
∇μkμν = Dν . ��

We can thus always assume that the metric is Ricci flat to an infinite order, but it is
not uniquely defined except terms g̃[n]

μν for n ≤ d/2 − 1 and tr g̃[d/2].

5. GJMS Type Operators for Tractor Bundles

We will now concentrate on various linear systems, which arise by the ambient metric
construction in a recursive fashion simlar to the way the gauge fixed AFG equations
are obtained from Ẽμν system. They share the common property with the gauged fixed
AFG equation, that the principal symbol is a power of the d’Alembert operator. In this
part of the paper, we will also shortly describe Graham–Jenne–Mason–Sparling (GJMS)
type systems. A quite general method of introducing this type of operators is by tractor
calculus [21,22]. We will only focus on the essential parts of this theory in terms of the
ambient metric construction (see [23]). For the short review of the tractor calculus in
application to general relativity, we refer the reader to [17]. We only use tractors with
lowered indices.

5.1. Tractors from the ambient metrics. We work on manifold M = R× M̃ , T = t∂t is
a conformal Killing vector with property that for every vector field FI it satisfies

∇FT = F, ∇I TJ = gI J . (131)

We also introduce � = 1
2TI TI = ρt2 with the properties:

∇I � = TJ ∇I TJ = TI , ∇I ∇I � = ∇I TI = (d + 2), ∇I �∇I � = 2�. (132)

An important submanifold N = {� = 0} = {ρ = 0} is preserved by T. It can be
identified with a tautological bundle of conformal scales over M [6]. Results of [23]
allows us to define tractors in the following way.
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Definition 5. An n-tractor of weight w ∈ R, UI1...In is a section of a bundle (T ∗M|N)⊗n

over N ⊂ M with the property

LTUI1...In = (w + n)UI1...In . (133)

Simplifying the notation, we will often skip tractor indices if it does not cause confu-
sion. By evaluating UI1...In at t = 1 we can identify tractors with sections of the bundle
T ⊗n

UI1...In = UI1...In |t=1 ∈ �(T ⊗n), where T = T ∗M|t=1,ρ=0 = R⊕T ∗M ⊕R, (134)

We used symbol R to denote the trivial 1-dimensional vector bundle over M . The fiber
basis of T is dt, dxμ, dρ. We will call both UI1...In and UI1...In tractors, but to avoid
confusion we denote the tractors as functions over N by caligraphic letters. We will
work mostly with the restrictions to t = 1. Importance of the tractors is based on their
simple transformation law under conformal change of the metric. Let us remind that
every conformal transformation hμν −→ e2σ hμν induces a (formal) diffeomorphism of
the ambient space [6].6 This diffeomorphism � is uniquely determined by conditions
(see [6] Theorem 2.3 and Proposition 2.6):

1. It preserves submanifold N = {ρ = 0} and

�|N(t, xμ, 0) = (eσ t, xμ, 0). (135)

2. It preserves the form of the ambient metric described in (52).

This diffeomorphism preserves not only submanifold N, but also the function � and the
vector field T. As a consequence, it induces also transformation of the tractor. It is easy
to check that this transformation is linear (see [17] for direct derivation by the Cartan
method).

There is a natural way to obtain tractors. For every n-covector U in the ambient space
satisfying

LTUI1...In = (w + n)UI1...In , (136)

its restriction to N = {ρ = 0} is an n-tractor of weight w, namely

U := U|ρ=0 or in our identification U := U|t=1,ρ=0. (137)

Using our identification we can regard Ũ = U|t=1 as a ρ-dependent family of tractors.
It should be stress that this identification is not conformally covariant except for ρ = 0.

A choice of homogeneity w + n in the definition of the weight will simplify certain
computations as it is explained by the following lemma:

Lemma 13. Suppose that LTUI1...In = (w + n)UI1...In then ∇TU = wU, where n is a
valency of the field.

6 It is a formal diffeomorphism defined by a series in ρ. In the even dimension the ambient metric is
determined uniquely only till the order O(ρd/2). The extension to the infinite order is an additional data,
which also need to transform accordingly under conformal transformations.
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Proof. We use induction on n. For n = 0 (that means U is a functions) Lie derivative
and covariant derivative agrees. Suppose that the result is true for n < n0. Consider a
vector field FI with homogeneity 0 (LTF = 0). We have

∇TF = LTF + ∇FT = F. (138)

For any UI1...In0
, n0 covector with weight w, we denote by F�U

UI1...In0
FI1 . (139)

It is a n0 − 1 covector with weight w + 1, thus

(w + 1)F�U = ∇T(F�U) = F�(∇TU) + (∇TF)�U = F�(∇TU) + F�U. (140)

So F�[wU − ∇TU] = 0. As the restriction to t = 1, F̃ I is arbitrary, we show the
induction. ��

5.2. GJMS operators. The GJMS operators were introduced in [13] (initially for scalar
functions) as conformal powers of the Laplacian. They are constructed with the help of
the d’Alembert operator in the ambient space M. We consider an operator � defined on
n-covectors:

�U = ∇I ∇I U. (141)

The result has the weight w − 2. We can thus define

�̃wŨ = [�U]|t=1 for Ũ = U|t=1, LTU = (w + n)U. (142)

Proposition 14. For any n, the operator �̃w on ρ-dependent n-tractors Ũ of weight w

has the property

�̃wŨ = g̃μν∂μ∂νŨ + (d − 2 + 2w − 2ρ∂∞) ∂∞Ũ + F̃, (143)

where F̃ [m] depends only on D1Ũ [k] for k ≤ m.

In other words

[�̃wŨ ][m] = [g̃μν∂μ∂νŨ ][m] + (d − 2 + 2w − 2m) (m + 1)Ũ [m+1] + F̃ [m]. (144)

Proof. Clearly, we can write

�̃wŨ = g̃μν∂μ∂νŨ + G̃, (145)

where G̃[m] depends on D1Ũ [k] for k ≤ m + 1 and Ũ [m+2].
We need to determine the dependence of [�̃Ũ ][m] on DlŨ [k] for k > m. This can

be done by considering fields that depend only on the Taylor expansion coefficients
for k > m. The most convenient way is to use � = ρt2 in the expansion instead
of ρ, because � is covariantly defined. We consider U = �m+1F = O(ρm+1) where
LTF = (w + n − 2(m + 1))F (in order that U has the proper weight) and thus

∇TF = (w − 2(m + 1))F. (146)



Well-Posedness of the Ambient Metric Equations 2983

We substitute the special form of U to obtain the following formula

∇I ∇I U = (m + 1)�m−1
[
F

(
m∇I �∇I � + �(∇I ∇I �)

)
+ 2�∇ I �∇I F

]
+�m+1∇I ∇I F.

(147)
We use the known form of derivatives of � to get the nice expression:

∇I ∇I U = (m + 1)�m ((2m + d + 2)F + 2∇T F) + O(ρm+1) =
= (m + 1)�mF (d − 2 + 2w − 2m) + O(ρm+1). (148)

This shows that
�̃wŨ = (d − 2 + 2w − 2ρ∂∞) ∂∞Ũ + H̃ (149)

where H̃ [m] depends on D2Ũ [k] for k ≤ m. Together with the previous expansion (145)
it proves the lemma. ��

Together with Proposition 3 this result leads immediately to a corollary:

Corollary 15. Let n ∈ Z+ ∪ {0} and w ∈ Z such that N = d/2 − 1 + w ∈ Z+ ∪ {0},
then the system

�̃wŨ + D̃(Ũ ) = O(ρN+1) for Ũ [k], k = 0, . . . , N (150)

for Ũ [k] (n-tractors of weight w) is generalized hyperbolic, recursive and linear. Here
D̃ is linear transformation on the space of n-tractors. In particular, the Cauchy problem
with smooth initial data is well-posed.

Proof. The assumption about the metric is sufficient to satisfy the requirements for the
linear generalized hyperbolic system to be well-posed in Proposition 3. ��
Remark 5. The ambient metric construction determines g̃[k]

μν for k = 0, . . . , d/2− 1 and
tr g̃[d/2]. Consequently, only equations depending on this part of the metric expansion
are defined uniquely. They provide conformal equations on the spacetime M . This holds
if 0 > w > 1 − d/2. Interestingly, it is also true for �̃0 on scalars of weight 0, where
the operator depends on the aforementioned trace. If n ≥ 1 and w ≥ 0, then the system
of equations explicitly depends on the choice of the extension of the ambient metric.

The initial data for the derived equation Ĥ�̃w
= 0 is given by ∂k

1 Ũ [0]|� , k ≤ 2N + 1
and we get from Lemma 5 and Proposition 3 the unique global development. Let us
remind that [13]7

Ĥ�̃w
(U ) = cd�N+1U + . . . , N = d

2
− 1 + w ∈ Z+ ∪ {0}, cd ∈ R (151)

In particular, the scalar GJMS operators P2k are (up to a nonzero constant depending
only on dimension and k) derived operators for �̃w acting on scalar tractors of weight
w = k − d

2 ,

P2k f := ck Ĥ�̃w
( f ), ck ∈ R. (152)

We thus obtain a corollary (due to Lemma 5 and Proposition 3):

Corollary 16. The equation P2k f = 0 involving scalar GJMS operators for k > 0 is
well-posed in the smooth category.

Let us remark that operators P2k are also well-defined for k > d
2 (the so called

supercritical case), but they depend on the choice of the ambient metric extension.

7 In [13] only the scalar case was considered, but the method applied in [13] extends almost verbatim to
the general tractor case.
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5.3. Spacetimes with vanishing Q curvature. We can apply the Corollary 15 to the
problem of finding a conformal factor, which yields the vanishing Branson Q curvature
[7]. This is an important and quite mysterious object in conformal geometry (see [24,25]
for an introduction to the application and meaning of the Q curvature). In particular Q
curvature has an interesting affine type of conformal transformation [7]

edσ Q[e2σ h] = Q[h] + Pdσ, (153)

where the critical GJMS operator Pd is defined with respect to the metric h (in fact, Pd
for metric e2σ h differs only by a factor of edσ ). In order to find metric in the conformal
class with vanishing Q curvature one needs to solve inhomogeneous equation

Pdσ = −Q. (154)

The existence (and classification) of solutionswill follow from the following proposition:

Proposition 17. Consider an equation Ĥ�̃w
(U ) = V for U, where V is given. Here U

and V are n-tractors of weight w. This system is well-posed in the smooth category.

Proof. The equation Ĥ�̃w
(U ) − V = 0 is the derived equation for the system for Ũ [k],

k = 0, . . . N

�̃wŨ − ρN V = O(ρN+1), N = d

2
− 1 + w. (155)

It is a recursive, decoupled and generalized hyperbolic equation by Corollary 15. The
well-posedness of the derived equation follows from Lemma 5 and Proposition 3. ��

We can apply Proposition 17 to equation (154).

Corollary 18. On every globally hyperbolic spacetime, there exists a function σ such
that Q[e2σ h] = 0.

The proof raises a question whether other forms of source terms than considered in
(155) are interesting. In fact, we can show that all of them can be reduced to the case
used in the proof of Proposition 17. Suppose that we would like to solve (N = d

2 −1+w)

�̃wŨ = Ṽ + O(ρN+1), (156)

for a fixed ρ-dependent n-tractor Ṽ of weight w. By recursive property of the equation,
there exists F̃ such that

�̃w F̃ = Ṽ + O(ρN ), F̃ [0] = 0, (157)

and it is locally determined. If we write W = [Ṽ − �̃w F̃][N ] then

�̃w(Ũ − F̃) = ρN W + O(ρN+1), (158)

which is the form considered in the proof of Proposition 17.
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5.4. Almost Einstein condition. It is a standard computation [22,26] that the conformally
rescaledmetric f −2hμν for a smooth function f ∈ C∞(M) satisfies Einstein’s equations
with a cosmological constant if and only if f �= 0 and

tf(∇μ∇ν f + Pμν f ) = 0, (159)

where tf denotes the trace-free part. It is natural to skip the non-degeneracy condition
f �= 0. Following [27] we call a spacetime almost Einstein if there exists a non-trivial
(i.e. not everywhere zero) solution of (159). We will say that such solution f defines an
almost Einstein structure. The condition of being almost Einstein describes in a uniform
way physical space and its conformal boundary { f = 0}. It turns out that this condition
has also a very nice interpretation in terms of 1-tractors of weight 0, introduced in [22]
(see [26] for an alternative derivation).8

Tractors of weight 0 have especially nice properties. In particular, we can introduce a
connection on the tractor bundle. The tractor derivative for 1-tractor UI of weight 0 (see
tractor derivative, for example, in [16] and [17] with a version for covectors) is defined
by the formula:

∇T
μ

⎛
⎝ U0

Uν

U∞

⎞
⎠ =

⎛
⎝ ∇μU0 − Uμ

∇μUν + hμνU∞ + PμνU0
∇μU∞ − Pν

μUν

⎞
⎠ . (160)

It is a conformally covariant object. It is shown in [22] that the metric is almost Einstein
if there exists a non-trivial 1-tractor of weight 0, UI which is covariantly constant

∇T
μ UI = 0. (161)

Indeed, this condition is equivalent to

U0 = f, Uμ = ∂μ f, U∞ = − 1

d
(∇μ∇μU + Pμ

μ f ), (162)

for some function f satisfying (159).
The conformal factor rescaling the metric to Einsteinian is given by eσ = U0 and

the cosmological constant is equal � = cdU I UI where cd is a dimension dependent
constant [26]. The conformally invariant scalar product for weight 0 tractors is given by

UI U I := 2U0U∞ + UμUμ. (163)

Conformal boundary corresponds to U0 = 0. This set is a hypersurface (apart from
possibly some isolated point in the case of � = 0) with vanishing extrinsic curvature
and it enjoys very special properties [27]. In almost Einstein spaces, the Fefferman–
Graham obstruction tensor vanishes.

It turns out that the tractor derivative has a natural interpretation from the ambient
point of view. Namely, let VI be a covector field on M such that (weight 0)

LTVI = VI , VI |t=1,ρ=0 = VI , (164)

then (see [23])
∇T

μ VI = [∇μVI
]

t=1,ρ=0 . (165)

The identity extends to the case of tensors of higher valency.

8 We are working in a specific metric [26,27] and not in a framework of conformal densities [22].
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This point of view raises a natural question about ambient metric version of the
condition (161). It is shown in [16] that one can prolong the covariant tractor from
ρ = 0 surface. We will need a detailed statement of this result. We remind the following
fact (proven in [16], see also [27])

Proposition 19. Suppose that ∇T
μ UI = 0 for a tractor of weight 0, then there exists UI

on the ambient space such that UI |t=1,ρ=0 = UI and

∇I UJ = O(ρd/2−1), LTUI = UI . (166)

In general, we cannot ensure vanishing of the error term O(ρd/2−1) (see [16], Propo-
sition 4.5) unless the metric is so-called even with respect to the conformal boundary.

Our goal is to find a propagation equation for UI . It is useful to remind first the
structure of UI in the case of the odd dimension, which was analyzed in details in
[27] (see also [28,29] for the case of Einstein metrics). In this case we can assume
∇I UJ = O(ρ∞), where UI = ∂I f for some function f , such that

f |t=1,ρ=0 = f. (167)

This function satisfies �f = O(ρ∞). In fact, this harmonicity condition together with
(167) determines f uniquely due to recursive property of the equation.

We will look for a similar description in the case of even dimension. In the even
dimension d the recursive relation breaks at order d

2 , thus in general we can only assume
�f = O(ρd/2). This allows us to determine f up to order O(ρd/2+1) and then Pd+2 f =
ck[�f |t=1][d/2]. Although, the supercritical GJMS operator Pd+2 depends on a choice of
the extension of the ambient metric, one can check that f + O(ρd/2+1) does not depend
on this choice (see Appendix B).

We will first need an auxiliary result allowing us to determine vanishing of
∇I UJ |t=1,ρ=0 from properties of function f . For future applications, we will state it
in a local form (a symbol Dn denote jets on M):

Lemma 20. Let x ∈ M. Suppose that f satisfies D2
[
tf(∇μ∇ν f + Pμν f )

]
(x) = 0 and

function f is such that

�f |t=1 = O(ρd/2), LTf = f, f |t=1,ρ=0 = f. (168)

Then ∇I ∇J f |t=1,ρ=0(x) = 0.

Proof. We compute using [∇I ∇I f][0] = 0

k := [f][1]|t=1 = − 1

d
(∇μ∇μ f + Pμ

μ f ). (169)

Let us now define UI = ∂I f , UI = [UI ][0]|t=1. We notice that

U0 = f, Uμ = ∂μ f, U∞ = k. (170)

Due to S̃I J = O(ρd/2−1) we obtain

�UJ = ∇I ∇I ∇J f = ∇J (∇I ∇I f) + O(ρd/2−1) = O(ρd/2−1). (171)
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It is useful to introduce Thomas D̂-operator [22], which in such case is proportional
to covariant derivative (see [23] for the ambient metric definition of this operator for
tractors of weight 0)

D̂I UJ := [(d − 2)∇I UJ + TI � UJ ] |[0]t=1 = (d − 2) [∇I UJ ] |[0]t=1. (172)

The advantage is that this operator depends only on the value of UI on N. The formula
for D̂ operator acting on weight 0 tractors is given by (see [17])

D̂0UJ = 0 (173)

D̂μUJ = (d − 2)∇T
μ UJ (174)

D̂∞UJ = −�T UJ , (175)

where �T UJ = hμν∇T ∗ M⊗T
μ ∇T

ν UJ is the d’Alembert operator on the tractor bundle.

We need to show that D̂I UJ (x) = 0.
The condition D2

[
tf(∇μ∇ν f + Pμν f )

]
(x) = 0 gives by (160)

D1∇T
μ UJ (x) = 0. (176)

The nontrivial condition for ∇T
μ U∞ is shown by divergence of (159) (see [17]). For this

reason, we only get the condition for D1 jets.
We can now show by (176)

D̂∞UJ (x) = −�T UJ (x) = −hμν∇T ∗ M⊗T
μ ∇T

ν UJ (x) = 0. (177)

Finally we see that ∇I UJ |[0]t=1(x) = 1
d−2 D̂I UJ (x) = 0. ��

We remind that on almost Einstein spacetimes, the obstruction tensor vanishes (AFG
equations are satisfied) and by Proposition 12 we have a distinguished class of exten-
sions that are Ricci flat to infinite order in ρ. We can now state our enhancement of
Proposition 19.

Proposition 21. Let f be a non-trivial solution of (159). Then there exists f satisfying
the following conditions

1. LTf = f , f |[0]t=1 = f .
2. In an arbitrary extension of the ambient metric that is Ricci flat to infinite order in ρ

�f = O(ρd/2+1). (178)

In particular Pd+2 f = 0.
3. The covector UI := ∂I f satisfies (166), that is

∇I UJ = O(ρd/2−1). (179)

The proof of the proposition will be based on some relation which wewill use also for
propagation of the almost Einstein condition. Let us record an identity for an arbitrary
function F

�(∇I ∇J F) = ∇I ∇J (�F) + (∇J SK
I + ∇I SK

J − ∇K SI J )∇K F, (180)
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where SK L
I J , SK

I are the Riemann tensor and Ricci tensor on M and we introduced an
operator � on 2- covectors KI J on M

�(KI J ) = ∇L∇LKI J + 2SK L
I J KK L − SK

I KK J − SK
J KK I . (181)

Similarly as in the case of wave operator we define

�̃w K̃ I J = [�(KI J )]t=1, KI J |t=1 = K̃ I J , LTKI J = (w + 2)KI J . (182)

We will be mainly interested in �̃−1. By Corollary 15, �̃−1 is recursive till order d
2 −2.

Remark 6. Let us notice that both �̃1 and �̃−1 depend on the choice of the extension of
the ambient metric. Once such an extension is chosen, they are well-defined operators.
Nonetheless, in their definition we need more structure than just the conformal class of
the metric.

Proof of Proposition 21. We define f up to O(ρd/2+1) order by

�f = O(ρd/2), LTf = f, ft=1,ρ=0 = f. (183)

As we said earlier, f does not depend on the choice of Ricci flat extension of the ambient
metric. Let us choose such an extension. Then from (180) and SI J = O(ρ∞) it follows
that

�(DI J ) = ∇I ∇J (�f) + O(ρ∞) = O(ρd/2−2), DI J = ∇I ∇J f . (184)

Thus, [�(DI J )|t=1][d/2−2] = Ĥ�̃−1
(DI J ) (derived operator) where DI J =

∇I ∇J f |t=1,ρ=0. However, by Lemma 20, DI J = 0 and by recursive property of �̃−1

DI J = O(ρd/2−1) �⇒ ∇I UJ = O(ρd/2−1). (185)

Additionally Ĥ�̃−1
(DI J ) = 0 and hence �(DI J ) = O(ρd/2−1). We obtain by equation

(180) and SI J = O(ρ∞)

∇I ∇J (�f) = �(DI J ) + O(ρ∞) = O(ρd/2−1) �⇒ �f = O(ρd/2+1). (186)

This property holds independently of the chosen ambient metric extension provided it
is Ricci flat to infinite order. It means that Pd+2 f = 0. ��

It is a bit surprising that although Pd+2 depends on a choice of the Ricci flat extension,
Pd+2 f = 0 independently of this choice. It is explained by the following fact proven in
Appendix B.

Proposition 22. Let g̃±
μν be two extensions of the ambient metric of hμν which are Ricci

flat to infinite order in ρ. Denote

kμν = [g̃+
μν][

d
2 ] − [g̃−

μν][
d
2 ]. (187)

It is a symmetric, traceless and divergence-free tensor. Let P±
d+2 denote the supercritical

GJMS operators defined by extensions g̃±
μν . Then

P+
d+2φ − P−

d+2φ = −ckkμν
(∇μ∇νφ + Pμνφ

)
, (188)

where constant ck is defined in (152). In particular, for functions φ satisfying (159), the
right-hand side vanishes.
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5.5. Propagation of the almost Einstein structure. Proposition 21 is an important ob-
servation. As f is a scalar of weight 1, (178) is a generalized hyperbolic system for
f̃ = f |t=1. We will use it to evolve f from the Cauchy surface to the whole globally
hyperbolic development. We will prove that this f defines an almost Einstein structure.
Indeed, identity (180) shows that if (178) holds, then∇I UJ satisfies a linear hyperbolic
equation too and then what remains is to show that the initial data for this system van-
ish.9 In order to define evolution of f we need to specify the choice of extension of the
ambient metric. We will choose an arbitrary extension that is Ricci flat to all orders. In
principle, the solution may depend on this choice, but we will see that this particular one
does not.

Proposition 23. Let us consider a metric satisfying the AFG equation. We also choose
an extension of the ambient metric which is Ricci flat to infinite order in ρ. Suppose that
we have initial data Dd+1 f |� such that

Dd−1 tf(∇μ∇ν f + Pμν f )|� = 0. (189)

Then the metric is almost Einstein with a covariant tractor given by

U0 = f, Uμ = ∂μ f, U∞ = − 1

d
(∇μ∇μ f + Pμ

μ f ), (190)

where f is the solution of the scalar supercritical GJMS equation:

Pd+2 f = 0, (191)

with the given initial data. The solution f does not depend on the choice of the Ricci flat
extension.

Proof. We define now f as a solution to generalized hyperbolic system

�f = O(ρd/2+1), LTf = f, (192)

that is �̃1 f̃ = O(ρd/2+1) for f̃ = f |t=1. The initial data D1 f̃ |� are prescribed by
Dd+1 f |� according to Lemma 5. Equation (180) together with SI J = O(ρ∞) and
(192) gives the following system for D̃I J = ∇I ∇J f |t=1

�̃−1 D̃I J = O(ρd/2−1). (193)

By proposition 14, this is a generalized hyperbolic and recursive equation for 2-tractors
of weight −1, D̃[k]

I J , k = 0, . . . d/2 − 2. We thus need to show that

D̃I J |� = O(ρd/2−1), ∂1 D̃I J |� = O(ρd/2−1). (194)

From recursive property (see Lemma 5), this is equivalent to showing that

Dd−3[∇I ∇J f]|[0]t=1,� = 0. (195)

A symbol Dn denote jets in directions of M . We can now apply Lemma 20 to show that
(195) holds if (189) is satisfied.

Finally, although we used a specific ambient extension to obtain f , the result does
not depend on this choice. In fact, we can now check that Pd+2 f = 0 for every Ricci
flat extension by Proposition 21. ��

9 Such method of propagation equations is widely used in General Relativity (see [30]).
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Remark 7. In the case f �= 0 on the Cauchy surface, we can change conformally the
metric such that it satisfies Einstein constraints on the initial surface. Therefore, we can
evolve Einstein equations. The result needs to agree with the metric evolved with AFG
equation up to conformal rescaling and diffeomorphism. In this way we obtain propa-
gation of the Einsteinian condition up to the conformal boundary (see [3]). Prescribing
initial data on a surface with f = 0 is more delicate. Our method has the advantage that
it allows to treat all cases simultaneously. For example, the initial Cauchy surface can
cross the conformal boundary.

Remark 8. Appearance of non-conformally invariant operators may seem a bit puzzling
in propagation of a conformally invariant condition. However, these are only auxiliary
systems used for this purpose. As in the case of Killing initial data, there may exist other
equations which can be used in this context. However, it is not obvious if one can find
conformally invariant equations of this kind. We expect it to be unlikely, at least in the
class of generalized hyperbolic systems, in light of non-existence of conformal operators

of the form � d
2 +1 + . . . [31].

5.6. Application to stability of asymptotically de Sitter spacetimes. Theorem 1 together
with Proposition 23 allow us to prove various results about asymptotic properties of
solutions to Einstein’s equations with a positive cosmological constant. This was the
initial motivation for studying the AFG equations. We will state some of these results,
refering readers to [3,4] for various extensions. Let us notice that we proved well-
posedness in the smooth category. The case of Sobolev spaces would demand various
shifting with respect to what is stated in [3,4]. We are working in even dimension d.
Well-posedness of the AFG equation together with propagation of the almost Einstein
condition proves:

Theorem 24 (cf. [4] Thm. 6.1). Let � be a compact Cauchy surface. The initial data on
� that correspond to the future (or past) asymptotically simple solutions of the Einstein’s
equations form an open set in C∞ topology.

In particular, initial data close to de Sitter spacetime develop a complete future and
past asymptotically simple solution.We can also define initial data at a conformal bound-
ary. It is known (see for example [6] Theorem 4.8) that the initial data on conformal
boundary � for the Einstein equation is given by a smooth pair (γi j , κi j ) where γ is an
Euclidean metric and κ is a symmetric two form satisfying

∇ i
γ κi j = 0, κ i

i = 0. (196)

We use latin indices for tensors on �. Such data define a formal solution of the Einstein
equations with a positive cosmological constant.10 Namely, there exists a smooth func-
tion f , vanishing at � and a metric hμν such that gμν = f −2hμν satisfies Einstein’s
equations up to infinite jets at �. The metric γ is a restriction of hμν to �, whereas κ

is equal to the so-called holographic stress-energy tensor which is an object obtained
from high derivatives of hμν and f at � (see [6,32]). Let us notice that existence of a
formal solution to the Einstein equations allow us to compute from (196) the initial data
for AFG equations. The data satisfy AFG constraints. Similarly we can compute initial

10 The value of the cosmological constant is fixed, but arbitrary.
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data for the scale f and this initial data satisfy assumptions of Proposition 23. We can
thus replace the formal expansion by an analytic result.

If two pairs (h±
μν, f ±) are related by a diffeomorphism � then corresponding initial

data transform by a restriction of � to �. The other gauge tranformation is given by
conformal rescaling

h+
μν = e2σ h−

μν, f + = eσ f −. (197)

This induces the following tranformation of the initial data (see [32])

γ +
i j = e2σ0γ −

i j , κ+
i j = e−(d−3)σ0κ−

i j . (198)

where σ0 = σ |� . We see that two initial data (γ ±
i j , κ±

i j ) give equivalent solutions if and

only if there exist diffeomorphism � on � and a smooth function σ0 such that

γ + = e2σ0�∗γ −, κ+ = e−(d−3)σ0�∗κ−. (199)

Lemma 11, Proposition 23 and Theorem 1 now show (� > 0 is chosen):

Theorem 25. Let (γi j , κi j ) on a compact surface � satisfy constraints (196). There exist
(on a neighbourhood of � ⊂ M) a metric hμν and a function f such that

1. � = { f = 0},
2. γ is the metric h restricted to � and κ is the holographic stress energy tensor,
3. f −2hμν satisfies Einstein’s equations with cosmological constant �.

Two initial data (γ ±
i j , κ±

i j ) give locally equivalent solutions if and only if there exist

diffeomorphism � on � and a smooth function σ0 such that (199) is satisfied. Solutions
are unique up to diffeomorphism and conformal transformation.

6. Summary

The Fefferman–Graham obstruction tensor andGJMS operators are very special objects.
One additional nice property is related to their behavior as evolution systems. BothGJMS
as well as Fefferman–Graham tensor in the suitable gauge have multiple characteristics,
thus they are in principle only weakly hyperbolic. However, we proved that still they
enjoy well-posed Cauchy problem. In addition, the property of being almost Einstein
propagates from the initial surface. We proved it in the smooth category, but with an
arbitrary Cauchy surface. Namely, the Cauchy surface can cross or partially coincide
with the conformal boundary of the spacetime. This allows to use AFG equation for
proving the stability of asymptotically simple solutions (as was done in [3,4]). We
should notice that this is not the most effective proof of stability as the metric needs to
be of high regularity. However, it provides some advantages: it is a Lagrangean theory,
which allows to apply various techniques like Noether charge definition, Hamiltonian
formulations on the level of conformally compactified spacetime. The meaning of such
defined charges for Einsteinian solutions is still unclear. The relation to GR charges
should be investigated in future.
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A Bianchi identities

For convenience of the reader, we provide here a proof of the Bianchi identities in the
ambient space. Our first goal is to show that

Proposition 26. The following holds

∇̃μ

(
S̃μν − 1

2
g̃μν S̃

)
+ ρ∂μ S̃∞∞ + (d − 2 − 2ρ∂∞)S̃μ∞ − ρ g̃ξχ g̃′

ξχ S̃μ∞ = 0,

(200)

∇̃μ S̃μ∞ + (d − 2 − ρ∂∞)S̃∞∞ − ρ g̃μν g̃′
μν S̃∞∞ − 1

2
g̃′
μν S̃μν − 1

2
∂∞ S̃ = 0, (201)

where S̃ = S̃μ
μ .

The proof will be divided in a series of lemmas. Let us denote by gI J , ∇I , SI J metric
covariant derivative and Ricci tensor respectively in the ambient space M . Indices are
I = 0,∞ or μ in the case of index on M .

Lemma 27. Let F̃μ be a ρ-dependent one-form and F̃∞ a function on M̃. Define a
one-form FI on M by

Fμ = F̃μ, F∞ = F̃∞, F0 = 0. (202)

Then

∇I FI = t−2
(
∇̃μ F̃μ + (d − 2 − 2ρ∂∞)F̃∞ − ρ g̃μν g̃′

μν F̃∞
)

. (203)

Proof. Let us notice the identity

gI J ∇I FJ = 1√
g
∂I (

√
ggI J FJ ). (204)

http://creativecommons.org/licenses/by/4.0/
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Now g0∞ = g∞0 = t−1, g∞∞ = −2ρt−2 and gμν = g̃μν the rest of the components
vanishes. Moreover,

√
g = td+1

√
g̃. Thus, remembering that F0 = 0 it follows that

gI J ∇I FJ = t−2 1√
g̃
∂μ(

√
g̃g̃μν F̃ν)

+
1

td+1
√

g̃
∂0(t

d+1
√

g̃t−1 F̃∞) +
1√
g̃
∂∞(

√
g̃(−2ρt−2)F̃∞)

= t−2
(
∇̃μ F̃μ + (d − 2 − 2ρ∂∞)F̃∞ − ρ g̃μν g̃′

μν F̃∞
)

, (205)

where we used 1√
g̃
∂μ(

√
g̃g̃μν F̃ν) = ∇̃μ F̃μ. ��

Lemma 28. Let DI J be a symetric tensor and U a vector field, then

(∇I DI J )UJ = ∇I (DI J UJ ) − 1

2
DI JLUgI J , (206)

where LU is a Lie derivative

Proof. Follows from LUgI J = ∇I UJ + ∇J UI and symmetry of DI J . ��
Lemma 29. We have

∇I SIμ = t−2
(
∇̃ν S̃νμ + (d − 2 − 2ρ∂∞)S̃μ∞ − ρ g̃μν g̃′

μν S̃μ∞
)

, (207)

∇I SI∞ = t−2
(

∇̃ν S̃ν∞ + (d − 2 − 2ρ∂∞)S̃∞∞ − ρ g̃μν g̃′
μν S̃∞∞ − 1

2
S̃νμ g̃′

μν − S̃∞∞
)

.

(208)

Proof. Let us choose first Uμ = Uμ, U0 = 0 and U∞ = 0 for some Uμ, vector field
on M . The form SI J UJ satisfies assumptions of Lemma 27, thus

∇I (SI J UJ ) = t−2
(
∇̃ξ (S̃ξνU ν) + (d − 2 − 2ρ∂∞)S̃∞μUμ − ρ g̃μν g̃′

μν S̃∞ξU ξ
)

=
= t−2

(
Uμ∇̃ξ S̃ξμ + S̃ξν(∇̃ξU ν) + (d − 2 − 2ρ∂∞)S̃∞μUμ − ρ g̃μν g̃′

μν S̃∞ξU ξ
)

.

(209)

Moreover, we have

(LUgI J )dx I dx J = t2(LU g̃ξν)dxξ dxν = t22(∇̃ξUν)dxξ dxν, (210)

By Lemma 28 we derive

UJ ∇I SI J = t−2Uμ
(
∇̃ξ S̃ξμ + (d − 2 − 2ρ∂∞)S̃∞μ − ρ g̃ξν g̃′

ξν S̃∞μ

)
, (211)

which shows (207). Similarly choosing UI = δ I∞ we have

(LUgI J )dx I dx J = 2dt2 + t2g̃′
μνdxμdxν, (212)

where g̃′
μν is the derivative in ρ. Finally, we obtain

∇I (SI J UJ ) = t−2
(
∇̃ξ S̃ξ∞ + (d − 2 − 2ρ∂∞)S̃∞∞ − ρ g̃μν g̃′

μν S̃∞∞
)

. (213)
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Thus we conclude

∇I SI∞ = t−2
(
∇̃ν S̃ν∞ + (d − 2 − 2ρ∂∞)S̃∞∞ − ρ g̃μν g̃′

μν S̃∞∞ − 1

2
S̃μν g̃′

μν − S̃∞∞
)
,

(214)

which shows the result. ��
Proof of Proposition 26. Let us now notice that

gI J SI J = t−2(g̃μν S̃μν − 2ρ S̃∞∞). (215)

Now we use identity

∇I SI J − 1

2
∂J (gK L SK L) = 0, (216)

to get

∇̃μ

(
S̃μν − 1

2
g̃μν S̃

)
+ ρ∂μ S̃∞∞ + (d − 2 − 2ρ∂∞)S̃μ∞ − ρ g̃ξχ g̃′

ξχ S̃μ∞ = 0,

(217)

∇̃μ S̃μ∞ + (d − 2 − ρ∂∞)S̃∞∞ − ρ g̃μν g̃′
μν S̃∞∞ − 1

2
g̃′
μν S̃μν − 1

2
∂∞ S̃ = 0, (218)

which is the result. ��
Let us remind

B̃1
μ = −1

2
∇̃ξ ∇̃ξ G̃μ − 1

2
R̃ν

μG̃ν −
(

d

2
− 1 − ρ∂∞

)
∂∞G̃μ

+
1

2
g̃ξχ g̃′

ξχρ∂∞G̃μ +
1

2
ρ g̃ξχ g̃′

ξχ∂μγ̃ , (219)

B̃2 = −1

2
∇̃μ∂μγ̃ −

(
d

2
− 2 − ρ∂∞

)
∂∞γ̃ + g̃μν g̃′

μνρ∂∞γ̃

+
1

2
Q̃μG̃μ +

1

2
g̃′
μν∇̃μG̃ν +

1

2
g̃′
μν g̃μνγ̃ , (220)

where Q̃μ = ∂∞(g̃νξ �̃
μ
νξ ). We will prove the following important properties of these

objects.

Proposition 30. Suppose that Ẽμν=O(ρd/2) then B̃1
μ=O(ρd/2) and B̃2=O(ρd/2−1).

Proof. We will use the Bianchi identity (200) and (201). Let us now also notice

∇̃μ
(
∇̃μG̃ν + ∇̃ν G̃μ − g̃μν∇̃ξ G̃ξ

)
= ∇̃ξ ∇̃ξ G̃ν + R̃μ

ν G̃μ. (221)

Then we compute

∇̃μ

(
S̃μν − 1

2
g̃μν S̃

)
= ∇̃μ

(
Ẽμν − 1

2
g̃μν Ẽ

)
+
1

2
(∇̃ξ ∇̃ξ G̃ν + R̃μ

ν G̃μ) −
(

d

2
− 1

)
∂μγ̃ .

(222)
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Moreover, differentiating (73) and (74) with respect to ρ we get

S̃∞∞ = ∂∞γ̃ , S̃μ∞ = 1

2
(∂∞G̃μ + ∂μγ̃ ). (223)

Remembering that Ẽ = O(ρd/2) and combining (223) with (200) and (222) we obtain

1

2
∇̃ξ ∇̃ξ G̃μ +

1

2
R̃ν

μG̃ν

+

(
d

2
− 1 − ρ∂∞

)
∂∞G̃μ − 1

2
g̃ξχ g̃′

ξχρ∂∞G̃μ − 1

2
ρ g̃ξχ g̃′

ξχ∂μγ̃ = O(ρd/2).

(224)

Similar computation with

S̃ = Ẽ + ∇̃μG̃μ + dγ̃ = ∇̃μG̃μ + dγ̃ + O(ρd/2), (225)

g̃′
μν S̃μν = g̃′

μν Ẽμν + g̃′
μν∇̃μG̃ν + g̃′

μν g̃μνγ̃ = g̃′
μν∇̃μG̃ν + g̃′

μν g̃μνγ̃ + O(ρd/2),

(226)

reveals after inserting it into (201)

1

2
∇̃μ(∂μγ̃ + ∂∞G̃μ) + (d − 2 − ρ∂∞)∂∞γ̃ − g̃μν g̃′

μνρ∂∞γ̃

+ −1

2
∂∞∇̃μG̃μ − d

2
∂∞γ̃ − 1

2
g̃′
μν∇̃μG̃ν − 1

2
g̃′
μν g̃μνγ̃ = O(ρd/2−1). (227)

Taking into account that

∂∞∇̃μG̃μ − ∇̃μ∂∞G̃μ = Q̃μG̃μ, Q̃μ = ∂∞g̃νξ �̃
μ
νξ , (228)

we conclude

1

2
∇̃μ∂μγ̃ +

(
d

2
− 2 − ρ∂∞

)
∂∞γ̃ − g̃μν g̃′

μνρ∂∞γ̃

− 1

2
Q̃μG̃μ − 1

2
g̃′
μν∇̃μG̃ν − 1

2
g̃′
μν g̃μνγ̃ = O(ρd/2−1), (229)

and the proposition is proven. ��

B Scalar GJMS Operators

We will prove some basic properties of supercritical scalar GJMS operator Pd+2 which
were recalled in the main part of the paper. By direct computation we obtain

�̃1φ̃ = �̃φ̃ + (d − 2ρ∂∞)φ̃′ + (∂∞ ln
√

g̃)(−2ρφ̃′ + φ̃). (230)

This shows that [�̃1φ̃][n] depends only on the g̃[k]
μν for k ≤ n and tr g̃[n+1]. In particular,

recursive determination of φ̃ + O(ρd/2+1) involves beside φ̃[0] only g̃[k]
μν for k ≤ d

2 − 1

and tr g̃[ d
2 ]. This part of themetric is determined by the Fefferman–Graham construction.
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Proof of Proposition 22. Let us now analyze [�̃1φ̃][ d
2 ]. We consider the metric hμν with

vanishing obstruction tensor and let g̃μν be an extension of the ambient metric for hμν

which is Ricci flat to infinite order in ρ. For any tensor kμν satisfying

∇μkμν = 0, tr k = 0, (231)

we can consider a Ricci flat extension g̃μν(s) defined by the property that

[g̃μν(s)][d/2] = [g̃μν][d/2] + skμν (232)

The higher order expansion is uniquely determined by this property [6]. Our goal is to

compute d
ds [�̃1φ̃][ d

2 ].

Lemma 31. The following holds

d

ds
g̃μν(s)|s=0 = −ρ

d
2 kμν + O(ρd/2+1) (233)

d

ds
ln

√
g̃(s)|s=0 = − 2

d + 2
ρ

d
2 +1kμ

ν Pν
μ + O(ρd/2+2) (234)

where Pμν is the Schouten tensor.

Proof. The first equation is shown by direct computation

d

ds
g̃μν(s)|s=0 = −g̃μξ d

ds
g̃ξσ (s)|s=0 g̃σν = −g̃μξ

(
ρ

d
2 kξσ + O(ρd/2+1)

)
g̃σν

= −ρ
d
2 kμν + O(ρd/2+1). (235)

Let us introduce Ãμ
ν (s) := g̃μξ (s)g̃′

ξν(s). We remark that Ãμ
μ(s) = 2∂∞ ln

√
g̃(s). The

condition S̃∞∞(s) = O(ρ∞) gives

−1

2
∂∞ Ãμ

μ(s) − 1

4
Ãμ

ν (s) Ãν
μ(s) = O(ρ∞), (236)

by (57). We now differentiate (236) to obtain

−∂2∞
(

d

ds
ln

√
g̃(s)

)
− 1

2
Ãμ

ν (s)
d

ds
Ãν

μ(s) = O(ρ∞). (237)

We now notice that

Ãν
μ(s) = 2Pν

μ + O(ρ),
d

ds
Ãν

μ(s) = d

2
ρ

d
2 −1kν

μ + O(ρd/2), (238)

thus by (237)

∂2∞
(

d

ds
ln

√
g̃(s)

)
= −d

2
ρ

d
2 −1Pν

μkμ
ν + O(ρd/2). (239)

As
[

d
ds ln

√
g̃(s)

][0] = d
ds ln

√
g̃ = 0 and

[
d
ds ln

√
g̃(s)

][1] = d
ds Pμ

μ = 0 we conclude

(234) by integrating twice (239). ��
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From (230)

d

ds
�̃1φ̃(s)

∣∣∣∣
s=0

=
(

d

ds
�̃

)
φ̃ + �̃dφ̃

ds
+ (d − 2ρ∂∞)

dφ̃′

ds

+

(
∂∞

d

ds
ln

√
g̃

)
(−2ρφ̃′ + φ̃) +

(
∂∞ ln

√
g̃
) d

ds
(−2ρφ̃′ + φ̃).

(240)

Let us remind that d
ds φ̃(s)

∣∣∣
s=0

= O(ρd/2+1), thus �̃ dφ̃
ds = O(ρd/2+1). Moreover,

[
(d − 2ρ∂∞)

dφ̃′

ds

][
d
2

]

= 0,

[
d

ds
(−2ρφ̃′ + φ̃)

][ d
2 ]

= 0. (241)

The two remaining terms in (240) can be computed:

d

ds
�̃ = ρd/2 1√

g
∂μ

(−kμν√g∂ν

)
+ O(ρd/2+1) = ρd/2∇μ

(−kμν∇ν

)
+ O(ρd/2+1)

(242)
However, ∇μkμν = 0 thus

d

ds
�̃ = −ρd/2kμν∇μ∇ν + O(ρd/2+1). (243)

Similarly, (
∂∞

d

ds
ln

√
g̃

)
= −ρ

d
2 kμ

ν Pν
μ + O(ρd/2+1). (244)

Finally,

d

ds
[�̃1φ̃(s)][ d

2 ]
∣∣∣∣
s=0

=
[

d

ds
�̃

][ d
2 ]

φ̃[0] +
[
∂∞

d

ds
ln

√
g̃

][ d
2] ] [−2ρφ̃′ + φ̃][0]

= −kμν
(
∇μ∇νφ̃

[0] + Pμνφ̃
[0]) . (245)

We can now integrate the result over s from 0 to 1 assuming g̃μν = g̃−
μν and kμν =

[g̃+
μν][d/2] − [g̃−

μν][d/2] to obtain Proposition 22. ��
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