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Abstract: The vanishing of the Fefferman—Graham obstruction tensor was used by
Anderson and Chrusciel to show stability of the asymptotically de Sitter spaces in even
dimensions. However, the existing proofs of hyperbolicity of this equation contain gaps.
We show in this paper that it is indeed a well-posed hyperbolic system with unique
up to diffeomorphism and conformal transformations smooth development for smooth
Cauchy data. Our method applies also to equations defined by various versions of the
Graham-Jenne—Mason—Sparling operators. In particular, we use one of these operators to
propagate Gover’s condition of being almost Einstein (basically conformal to Einsteinian
metric). This allows us to study initial data also for Cauchy surfaces which cross the
conformal boundary. As a by-product we show that on globally hyperbolic manifolds
one can always choose a conformal factor such that Branson Q-curvature vanishes.

1. Anderson-Fefferman—-Graham Equation

An important issue in General Relativity is the long time, asymptotic behaviour of solu-
tions to Einstein’s equations. In the case of positive cosmological constant the problem
was solved by Friedrich [1,2]. He showed that there exists in four dimensions a hyper-
bolic system of equations for a metric and some derived variables which is satisfied if a
metric is conformal to a solution of Einstein equation with a cosmological constant. This
allows to study compactified versions of the solutions via conformal Penrose compacti-
fication and replace difficult long time analysis by a simpler finite time problem. Future
asymptotically simple solutions are those satisfying the following condition: there exists
a smooth conformal compactification in which the future boundary of physical space X,
is a Cauchy surface. An important example of such a spacetime is de Sitter universe. For
this reason, these spacetimes are often called asymptotically de Sitter. In fact, we need
to assume positive cosmological constant in order for the conformal boundary surface
to be spacelike. From hyperbolicity of the new system one obtains immediately stability
in this class of spacetimes. Moreover, the method gives explicit description of the initial
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data on the conformal boundary Y .. However, Friedrich’s method does not extend easily
to higher dimension. Another important drawback is that no Lagrangean formulation for
it exists. Such formulations are important for analysis of the initial data and conserved
charges.

The alternative method proposed by Anderson in [3] and futher developed by Ander-
son and Chrusciel in [4] is using the Fefferman—Graham obstruction tensor H,,, which
is defined for even dimensions d > 4 [5]. We will describe the original definition of [5]
(see [6]) in Sect. 4. This tensor can be defined as the variation of the Lagrangean

cd / Q(h)vVhdx, (1)

over the metric h,,, where Q is the Branson curvature [7], a covariant object with
nice conformal transformations, and ¢4 is a constant depending on the dimension. This
functional is invariant (up to boundary terms) under both diffeomorphisms and conformal
transformations. Consequently, the H),, tensor has interesting properties

1. It is a covariant object built out of the metric and its derivative,
2. It is conformally covariant, namely for & }w = ezahfw, for o a smooth function
TP H,, (') = Hyp (h). )

3. Itis divergenceless V¥ H,, = 0 and traceless H}, = 0.
Even more remarkably,

4 if h,, satisfies vacuum Einstein equations with a cosmological constant A, G, (h) =
Ahy,y, then Hy,, = 0 [6].

The method proposed in [3,4] is to consider conformally invariant Anderson—
Fefferman—Graham (AFG) equations

pr =0, 3)

instead of the Einstein equations and impose the later as a constraint at the initial surface
.. If we want to use this method, it is necessary to prove that the system (3) is well-posed
after fixing diffeomorphism and conformal gauge.

However, this is a tricky problem. It is shown in [4] that one can impose gauge
Uz (x*) = 0 and R;; = O (where [J; is a scalar d’ Alembert operator for the metric £,
xt are coordinates and Rj; is the Ricci scalar). In this specific gauge the equations take
the form B

O3 %Ry + F' (DY) =0, (4)

v

where [y := E’”au d, and D’”EW denote m-th jets of the metric i.e. all derivatives

Bkﬁw for k < m. The principal symbol is hyperbolic, but the roots have multiplicities,
thus the system is not strictly hyperbolic. Such systems are complicated as we can see
in the following example:

Example 1. (Not well-posed) Consider an equation on R x S! with x! being time coor-
dinate

(07 = 95)°¢ +02(91 + 32)°¢ = 0. )
The principal symbol is hyperbolic (it is a power of d’ Alembert operator for a flat metric),
but it has multiple characteristics. Functions ¢y (x!, x?) = e/ (@®)x '+ are solutions
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, V/371/3
for w(k) = k + #klﬂ with property |¢x| = 373]‘1/3)‘1. The smooth initial data on
T ={xl=0)
ad 14 1.2
Mls = Zi"w(k)”e_k R n=0...5, (6)
k=0

does not admit a Cauchy development because for every k > 0 the mode function should
behave like e_k]/4¢k(x1, -) for x! > 0 but the series Zkzo e_k]/4¢k(x1, x2) does not
converge even in L2(Sh.

We see that in order to establish hyperbolicity of the equations with a non-strictly
hyperbolic principal part, one needs to control a few lower order derivatives of the equa-
tion (by so called Levi conditions, see [8—10]). Unfortunately, the Fefferman—Graham
obstruction tensor is quite complicated and one would need to control more and more
of these terms the higher dimension we consider. The conditions on the lower order
symbols are necessary for the case of multiple characteristics. This is the reason, why
proofs of well-posedness of the Anderson—Fefferman—Graham equation in [3] and [4]
cannot be correct, and our example shows that indeed it is not the case. We will provide
in this paper a proof of well-posedness of AFG equations for smooth data. However,
our proof will not be based on Levi conditions but on certain structural property of the
obstruction tensor and the standard results for quasi-linear wave equations. Our method
is in fact a modification of the approach from [4], but the special form of the system
needs to be taken into account.

The problem is less complicated in lower dimensions. It is worth to mention that the
well-posedness in dimension 4 was proven in [11].! Our approach can be regarded as a
generalization, which put also [11] in a proper context.

2. Summary of the Results

The Cauchy problem of the Anderson—Fefferman—Graham (AFG) equation (3) is similar
to that of the Einstein equations. The metric itself is an object of equations, which leads to
additional geometric complications as the meaning of the Cauchy development depends
itself on the solution (see [12]). The initial data on the surface X will be a set of d — 1
jets of symmetric tensors fields in R x ¥ at ¥

Dy lx € CX(D), 7)

where h,, is a Lorentzian metric. We introduce a normal N to ¥ with respect to this
metric and we assume that it is a timelike vector. Assume that (7) satisfy constraints
(well-defined because we know sufficiently many derivatives)

H(N,)|s =0, (8)

We will consider a specific (local) coordinate system and a choice of conformal factor
given by conditions introduced in [4]

R=0, ¥, Ox") =0, ©)

! In dimension 4 the obstruction tensor is proportional to the celebrated Bach tensor and the analysis is less
complicated.
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where R is the Ricci scalar. As it is shown in [4] we can always locally transform the
metric by diffeomorphism and rescaling, such that these conditions are satisfied. We
then show that equations (3) are hyperbolic in this gauge. The standard analysis [12]
thus shows:

Theorem 1. The AFG equation (3) with initial data (7) and subject to constraints (8)
Sforms a C* well-posed system (in the Anderson—Chrusciel gauge (9)). Every two local
solutions differ by diffeomorphisms and conformal transformations.

We will now describe our approach to the problem. Fefferman—Graham obstruction
tensor is obtained by ambient metric construction. We consider expansion coefficients

of the ambient metric gﬂ‘l fork=0,... % — 1. This is a family of symmetric tensors on

M, such that g}?ﬂ = hyy. The vanishing of the Fefferman—Graham tensor is equivalent

to J
Slk]l —
S#U_O, k_O,...,E—l, (10)

where § Lk\} is a part of the expansion of the Ricci tensor for the ambient metric. These are

also symmetric tensors on the spacetime. Every tensor S L[ij depends on the second jets of
the tensors g,&’ﬂ, n =0, ...k in a way reminiscent of the Ricci tensor on the metric. We
will briefly describe the ambient construction in Sect. 4. The AFG equation is obtained
by recursive determination of g,[fj fork=1,... % — 1 in terms of g,[?v] = hyy.

Instead of solving recursively, we will consider the equations (10) as a dynamical
system for g,[ﬁ] fork =0,... % — 1. Ricci tensor depends on the second jets of the
metric, thus every equation in (10) is of second order. However, the system is not of
hyperbolic type. It is not surprising because we need gauge fixing. Following standard

Choquet-Bruhat method we write
S =EN +0,60+0,Gl + .. (11)

where E ,[fﬂ is of hyperbolic type and Ggf] are gauge fixing functions. The addition . ..
comes from an additional conformal gauge fixing term that is basically of the form

§,[?,J)7[k], for some additional (scale) gauge fixing functions 7*!. As in the standard

method we will solve system E"E‘,} = 0. However, the system is still not strictly hy-
perbolic. Fortunately, it is some generalized type of hyperbolic equation for which we
provide a proof of well-posedness in Sect. 3. The standard method now use Bianchi iden-
tity to show that gauge fixing functions GH‘] and 7! propagate by a linear hyperbolic
system.

Here the next problem appears. We use only part of the Ricci tensor from the ambient
metric. The Bianchi identities are already used to deduce that the remaining parts of this
tensor, S,[j‘;o and S‘gé]oo vanish. We denote by oo the ambient direction. In some way,
the ambient metric is already in the partially gauge fixed form and additional gauge
fixing is excessive. We circumvent this problem by building Gﬂ‘] and 7¥ from these
remaining parts of the ambient Ricci tensor in such a way that Bianchi identities provide
generalized hyperbolic system for the gauge fixing functions (see Sect. 4.1.1).

Our method of treating the ambient metric equations is more general and allows to
prove well-posedness of various equations constructed with aid of the ambient construc-
tion. In particular, it is true for Graham—Jenne Mason—Sparling (GIMS) [13] equation
and its various generalizations. It is a linear system of the similar type as gauge fixed
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Anderson—Fefferman—Graham equation thus it has a unique development with a given
initial data, which is global on globally hyperbolic spacetimes. Using this result, we
show that there always exists a metric in the conformal class with vanishing Branson
Q-curvature [14] for a given globally hyperbolic spacetime. Another application is prop-
agation of covariantly constant tractor [15, 16] from the initial Cauchy surface. Existence
of the covariantly constant tractor is equivalent for metric to be conformal to Einsteinian
metric, except when certain nondegeneracy condition is not satisfied what corresponds
to conformal boundary (see [17]). In this way one can show that the condition of being
Einstein propagates to the whole development of AFG equation in a uniform way. The
initial Cauchy surface can now also cross the conformal boundary (see Proposition 23).

The organization of the paper is as follows: In Sect. 3 we introduce a generalization of
quasilinear wave systems which we call generalized hyperbolic (Definition 1). We prove
that they are well-posed in the smooth category in Proposition 3. We provide a natural
way of obtaining such systems by an ambient space construction in Sect. 3.1. Subject
to the additional condition of being recursive (Definition 3), the system is equivalent
to a higher order so-called derived equation (Definition 4). This equivalence and the
relation between the initial data of the system and its derived equation is shown in
Lemmas 4 and 5. Section 4 is devoted to well-posedness of the AFG equation in the
Anderson—Chrusciel gauge. We introduce a gauge-fixed system E wv in Sect. 4.1 and
prove that it is well-posed in Lemma 6. In Sect. 4.1.1 we show that the gauge fixing
functions vanish if they vanish on the intial surface. We translate this condition into
properties of the initial data for the AFG equation in Sect. 4.1.2 (see Lemma 9). We
finish the proof of well-posedness in Sect. 4.2. In the rest of the paper we consider
general GIMS operators. We prove well-posedness of the homogeneous (Corollary 15)
and inhomogeneous (Proposition 17) equations for GIMS-type operators. This proves
existence of a metric in the conformal class with vanishing Branson Q-curvature [14]
for a given globally hyperbolic spacetime (Corollary 18). In Sect. 5.4 we consider the
condition of being almost Einstein (existence of a covariantly constant tractor). We prove
that the Einstein scale satisfies a certain supercritical GIMS equation (Lemma 21). We
use this equation to propagate covariantly constant tractor from the initial Cauchy surface
provided the obstruction tensor vanishes (Lemma 23). Some applications to the stability
problem are given in Sect. 5.6.

3. Generalized Hyperbolic Systems

We denote by M a d-dimensional Lorentzian manifold. We use abstract index notation
and Einstein summation convention in the paper. We denote indices of tensors in M
by Greek letters. We use symbol D"'u to denote m jets on M of the field u on M. We
assume that x! is a time coordinate and in what follows = {x! = 0} ¢ M.

We will consider a bit more general situation then a standard second order hyperbolic
system. We consider a family of fields u® fork =0, ... N, where each field is a section
of some vector bundle over M. These vector bundles might be different for each field.
We call such family a multifield.

Definition 1. Consider a system involving a multifield u® fork = 0, ... N and a system
of equations on M for fields u® k=0,.--N
1
K® = —Eg’”(x, u(o))aﬂavu(k)+F(k) (x, u®, 8Mu(l), 8M8Uu(1)) =0, k=0,...,N,
12)
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where functions F® (x, u®, va, w,(f‘),) depends smoothly on coordinates x and u®
for I < max(k + 1, N), v,(f) for [ < k, w,(f,), for I < k — 1. Function g, (x, u(o)) is

a lorentzian metric smoothly depending on x and u®.2 We will call such a system
K™ =0,n=0,...N generalized hyperbolic for u® k=0,...N.

Remark 1. Equation (12) is not a system of quasi-linear wave equations because of the
non-trivial dependence of functions F*) on second derivatives of the fields.

We assume that ¥ C M is spacelike and compact. The assumption of being spacelike
is a condition for u |y, if the metric is u dependent. We consider smooth initial data defined

by functions fo(l) and fl(l)
uPls = 1", 0@z =£", 1=0,...N. (13)

We assumed here some local coordinate system x* on M such that ¥ = {x' = 0}.
We denote 0, = BxLM Locally around X, x! is a time function. We are interested in
well-posedness in the smooth category. It means a series of important properties (see

[18]):

1. Existence of a unique local solution: There exists I = (—7_, 7}), T+ > 0 such
that on M = I x ¥ we have a unique smooth solution with the given initial data at
{0} x 2. Moreover, every surface {s} x X is a Cauchy surface with respect to the
metric g, (X, u®), thus M is globally hyperbolic. We can choose 7'+ maximal with
this property.

2. The speed of propagation is equal to the speed of light: Namely, if two initial data
u, u’ are equal on some open set U C X then u(x) = u’(x) atall points such that their
future and past developments J ;?u)(x) satisfy [Jg(u)(x) U Jg?u)(x)] N{0} x ¥ CU.
From this we can deduce some version of well-posedness also for arbitrary non-
compact Cauchy surfaces.

3. Smooth dependence on the initial data: For arbitrary 7} < T4 the solution is
defined for an open neighbourhood of a given initial data. The solution depends
smoothly on the initial data (as a map from a Fréchet space of smooth sections on
% to a Fréchet space of smooth sections on M). In particular, the derivative of the

0
A

. . d . . Y
family of solutions 57 satisfies a system obtained by linearization at {ug ) }.

A=0

Let us first notice that the system is non-characteristic on every Cauchy surface. Suppose
that © = {x! = 0}, and x! is a time function.
Lemma 2. There exist smooth functions L® ([_)214;2,(, l_)alul(lgk, u(k“)), k=0,...N,

valued in the same field spaces as u® (with dependence on u**V only ifk < N), such
that the following conditions are equivalent

1.K®|s =0fork=0,...N,
_ _ !
2 b5 = LGl Is, Bivufly 5. 1015 fork =0,... N

where D" denotes n jets on .

2 These conditions should hold for some open neighbourhood of values of u (for some open set in the
standard Fréchet topology on smooth sections on X). We will take this condition as obvious in what follows.
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Proof. We will prove by induction in k¢ the statement:

(Vk <ko: KWy = 0)
— (Vk<k0: 02u®s = LOD U 15, Do ls, u (k+1)|2)). (14)

The statement for ky = 0 is tautological. Suppose that it is true for some kg > 0. Using
' £ 0 we can write

2
—@K("O)lz = 3tu® g +. .., (15)

where ... is a smooth function of Dlalu(k) for k < ko, D*u® for k < ko, 81214(") for
k < ko and u0*D if kg < N. We can express a7u®) for k < ko by L) by induction
hypothesis, thus we obtain desired function finishing the induction proof. O

Proposition 3. The generalized hyperbolic system K™ = 0, n = 0,...N (12) for
the multifield u®, k = 0, ... N is well-posed in the smooth category. If the system is
linear (or linear with a source term) then the solution is defined on the whole globally
hyperbolic spacetime.

Proof. We will prove Proposition 3 by induction with respect to the order N. For N = 0
itis a known result (see for example [19] Chapter 16.1-16.3 and [12] Appendix III). The
following system is well-posed:

1
—Eg“”(x,u)auavu+F(x, D'u) =0, (16)

where g, (x, u) is a lorentzian metric smoothly depending on coordinates x and u and
F is a smooth function of coordinates and D'u (first jets of u).

We assume now that we proved the statement for all 0 < N < Ny. Consider gener-
alized hyperbolic system with fields u® fork =0, ... No (i.e. order No)

1
—zgf“(x, u®)a,8,u® + F® (x, u®,8,u®, aﬂauu@) =0, k=0,...Ng, (17)

for some functions F® (x, u®, vQ w,(fl),) depending on variables described in the def-

inition of generalized hyperbolic system. Differentiating equation for #® with respect
to 0, we get

1 1 9gh¥ 1 9ghv
/3% ky _ (0) k) _
2g 0,0y0,u 2 34O 0pu™" 0, 0yu 2 ox? —— 0,0y ulk
JF® 0 dF® o gF® ; dF®
+ dou"t’ + 0 + d,0,0,u"’ + =0, 18
u® " g o owl) " dxp (e

where summation over / is implicitely assumed (as well as standard Einstein summation
convention). Introducing pflk) = 9,u® for k < No — 1 we can write it as

1
—38"9,0,p + G (x4, 0,6, 8,0, p. 3, pD, 0,0,p) =0, (19)
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where

® ey ® O @ O GO D
G (6w v Wys Pps ups Spvp)

k) *) *) *)
19g"” 8" 0 OF W O 0 O o 1087 g OFT
"~ 29u© O av M ) Suvp 9 T I T e

(20)

where all derivatives of F*) and g,,, retain their original variables. We introduce new
multifields

W = u®, p®) fork < N — 1, 1)
y/ No=D) = (uWo- 1 p(NO*l) u(NO)} (22)
/“L 9 9

and the system of equations

_ %guv(x, £ )38, p®

+ GO (x.u®, 0, 9,000, pD. 0, pD. 0,0,p0) =0, k= No—1, (23)
- %g’“)(x, u®)a,8,u® + F® (x, u®,9,u®, a,@u(’)) =0, k<No—1, (24
- %g“”(x, w3, 0,0 + FOO (4, 5,0, 9,p) = 0. (25)

It is of the generalized form but the order is now Ny — 1.
From solution of original system we can form solution of this system by taking

P = a,u®. (26)

We proved uniqueness by induction hypothesis.
In order to prove existence we construct initial data

PPls =0,u® s, 9pPls =010,u®s, @7

with 818Mu(k)|); obtained by Lemma 2 (the original system is non-characteristic with
respect to a Cauchy surface, thus it is possible).
Now we notice that the difference 9, (24) — (23) is equal to

1 1 ogh¥ 1 ogh¥ 1 agh?
— _ghv (k) 5,0 (k) _ (©) k) _ w®
78 0, 0yw 28u(0)w" E)Ma,)uv X 30 Pr duwy 2 ox7 — 0wy
(k) k)
oF o . OF W, dFk

0) _
T ) + —~ (1)3 dwl =0, k<No—1, (28)

where wl(f) = 8Mu(k) - p,(f), k=0, ...No— 1. These equations form linear generalized

(k)

hyperbolic system for w,;” and as the initial data

wP|p =0,u® - pP1x =0, dwPls=00u® -0pP1x=0, (9
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we have by uniqueness of solution (due to induction hypothesis)
P& = d,u®, (30)

and the solution of the lower order system gives the solution of the original one.
The solution of u’ system depends smoothly on the initial data, so it is also true for
the original system. The induction is complete. O

Remark 2. In fact one can show that it is well-posed in Sobolev spaces, but of different
order for every u®). We leave the details for further investigations. Such hyperbolic
systems with shifted weights were first considered by Leray. The theory for first order
hyperbolic systems is described for example in his book [20].

3.1. The ambient construction. We consider an ambient space’
M=M xR. (31)

with coordinates (x*, p) where x* are coordinates on M. We will denote fields on M
with ~. We regard them as a formal series in p. We denote differentiation with respect
to p by s Or ". As before, we denote indices in M by greek letters. Coordinate x! is a
time coordinate and £ = {x! = 0} ¢ M. We use D" to denote m jets on M of the
field &, whereas D™ u is the m jets on M of the field u on M.

Let us consider a p-dependent field on M, v. It can be also regarded as a field on M.
We can write an expansion

o= "ae" +0(0™), (32)

m=0

where 7" are rescaled Taylor expansion coefficients and O(p>°) means a term that
vanishes to infinite order at p = 0 surface. In what follows we will be interested in such
formal series.

Remark 3. Every term 5" in the expansion is a field on M. Thus, we have a family of
fields 9¥!, k = 0, .. .. Moreover, every differential equation K (v) = 0 on M, induces

system of equations K'Y = 0 on M. We will now apply results of Sect. 3 to systems
obtained in this way.

Definition 2. Let ii be a field on M. We say that a formal series F in p is of order N in
i if foreachn = 0, ..., FI"l is a function of x and

[U%WL m=min{n+N —1,2), [ <n+N. (33)

For example for F of order 2, we have dependences
FOl (e, p2l01 plglh 20 Fll(, p2l0) p2ah pigl2l
iy, FRl(x, D23 p2a plall g4y, .

3 We will consider later another ambient space M = R x M which was introduced by Fefferman and
Graham [6].



2968 'W. Kaminski

and so on. Remind, that D" denotes m jets on M of the field i. If F(x, D%i) is a
smooth function then it is of order 2. Let f*¥(x, &) be a smooth tensor function then

8,00 = [ #1198, + F, (34)

where F is of order 1. ~
Important example of generalized hyperbolic systems can be obtained from K" = 0,
n=0,...,N foramultifield i, n =0, ..., N if

~ 1 -
K =—28" i+ F. (35)

and F is of order 1 and FI"! for n < N decouple in the sense that they do not depend
on O (pN*1) part of the expansion.

3.2. The derived equation. The equations of interest have also another important prop-
erty:

Definition 3. We say that a system K™ (x, D2u) =0,n=20,...,N foru® k =
0, ..., N isrecursive (or recursive till order N) if

1. Foreveryn < N, K™ is a function of D*u® for k < n and u™*D,
2. Forevery n < N, K™ depends linearly on u"*! and we can determine "+ from
equation K™ = 0 in terms of other variables.

We will consider in this paper the generalized hyperbolic systems given by
. 1 ~
KW = 2" @a,0,a" + (F1%), (36)

which are recursive till order N. In order to determine this property it is enough to study
F.

The property of being recursive allows us to determine higher order variables from
sufficiently high jets of the lowest order #?). In our application we need a local version
of this procedure that is described by a following lemma:

Lemma 4. Let K™ be recursive in u® for0 <k < N till order N. There exist smooth

functions H I((") for 0 < n < N depending on x € M and on variables D*"u©, such
that for any point x € M and an integer N' > 0 the following conditions are equivalent

1. DN =220 () =0for0 <k <N —1,2k+2 <N/,
2. DN~ (u(k) — HP (x, D2ku<0>)) (x)=0forl <k <N, 2k <N

wnere enotes n- jets. In the case of linear system the functions are aLso
here D™ denot th jets. In th l ystem th t H,(<”) l

linear. If the system does not directly depend on x then the same is true for H I((" ),

Remark 4. We will use subscript for H® to indicate which system is used to determine
recursive functions.
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Proof. We proceed by induction in kg. Suppose that

PV B ) = DN EHE (x, D! O) | Tk sko-1  (37)
is equivalent to
DV TH2K B () =0, 0<k <ky—2. (38)
Solving equation K %0~ = 0 for u*0) we introduce functions G *0’
uk0) — Ggo) (x, [D2u(1)] ) (39)
I<ko—1

Let us notice that for kg < N and 2kg < N’
DV o g*o=D () = 0, = DN "Ho k) — k)| =, (40)

due to linear dependence. By inserting recursively variables from the lower orders we
show the result. Induction starts with kg = O where it is a trivial statement. O

This lemma allows us to determine initial data for the generalized hyperbolic system
from the sufficienty high jets of the lowest order field u® on the Cauchy surface.
Important is that the evolved generalized system will have u(?) in agreement with this
data. This property is guaranteed by the following fact:

Lemma 5. Let K" = 0 be the generalized hyperbolic system, recursive in the multifield
u® k =0,...N. Consider initial data

k k
iz =B (L 0%uz), 0Bl =aHd (L 0¥ols), @D

defined by jets D*N*\v|x of the field v. Then a solution with these initial data satisfies
on the Cauchy surface
D2N+1M(O)|Z =D2N+1U|2. (42)

Proof. Let u® be a development. We denote
amy®)y = gmH® ({Dmv|g}m52k), m+2k <2N +1. (43)
Consider a set
A={(m k) €ZxZ:m=>0, k=0, m+2k <2N+1, 3"v® |5 £ 0"u®|5). (44)
We should show that this set is empty. By contradiction assume otherwise and define
mo = min(m: Ik, (m, k) € A), ko= min(k: (mg, k) € A). (45)

We notice that my > 2 because of the way u® |z and 81u(k)|2 are defined. Consider
8{"0_21( ko) in terms of u *0)

_ 1
g o)y = —5g o s+ (46)
where . . . is a function of the terms which do not belong to A by definition. Similarly

_ 1
8;”0 2K(1<o)|E :—zg“BI"Ov(kO)lz+.--, (47)
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and as ... of the same property. From the definition of (m, ko) the remainders . .. are
equal thus

1 1
—Eg”af”“u(k“)lz =—§g“81"0v(k0)|2, (48)

and as g'!|y is nonvanishing we obtain a contradiction. O

If the equation system K = 0 is recursive till order N and it decouples at this
order, then the equation for n = N gives us by Lemma 4 the equation of higher order

for u®
xnlelel)

This object will be of some importance, thus we introduce a definition.

Definition 4. Consider a generalized hyperbolic system K™ = 0,n = 0,... N for a
multifield «®, k = 0, ... N, which is recursive till order N and decouples at this order.
We will call

ﬁK (x, D2N+2v) = K(N) X, [Dzu(l)] s u(l) = HI((k) (x, Dzkv) (50)
I<N

the derived operator for the system K ™ and the equation Hg = 0 will be called the
derived equation for this system.

In case of a linear system the derived operator is also linear.

If the system K™ =0,n =0, ..., N is satisfied, then the equation Hx = 0 for u(®
also holds. From solution of the derived equation we can obtain solution to the system.
Initial conditions for this equation provide also initial conditions for the system, if we
know sufficiently high jets on the initial surface.

4. The Fefferman—Graham Ambient Metric Construction

We are working in even d dimensions. Moreover we assume that d > 4. Let us introduce
an ambient space M for the spacetime M

M=R,xM, M=M xR, (51)

with coordinates (¢, x**, p) and (x*, p) respectively, where x* are coordinates on M
and the metric on M takes the form

grydxldx’ = 2pdt® + 2tdtdp + 128, (x*, p)dx"dx". (52)

In the following we will denote objects on M with~and objects on M bold. We denote
by g7, V1, Sy metric covariant derivative and Ricci tensor respectively on M. Indices
I = 0,00 or p in the case of index on M. We use g;; to raise or lower indices. The
metric g;w, connection V and Ricci tensor RM are p-dependent objects on M. We use
8uv to raise and lower 1nd1ces for such objects.

Let A, be a given metric on M. The ambient metric on M is a metric that satisfies
g,[?,} = hy, and

Si17 =00, S=0(0"%, (53)
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where S;; and S are Ricci tensor and Ricci scalar of the metric on M. Symbol F = O (p™)
means that lim,_.¢ p™"F exists.
One can show that So; = 0 and that S;; is ¢ independent. Essentially, it is a function
on M (see [6]) ~ B _
Suv = Suvs Spoo = Sucos Sooso 1= Socco- 54)
We have (eq. 3.17 in [6])

- 5 ey, L d - | -~
Spv = P&y — P88 — <— — 1) 8 — 5878, 8w + Ry, (55)

2 2
5 Lo (0,50 _% 3
Suoo = 58 (Vedpx — Viudhy ) - (56)
~ | | S
Soovo = =38 &Yy + 8" Ze 0y (57)

where Ié,w denotes the Ricci tensor in the metric g,,, depending on p. The equations
(53) are equivalent to

Sil=0, n=0,...d/2-2, (58)
(g[o])u,l)gl[ldv/2—l] — O, (59)

and then other components automatically vanish. Namely, (see [6] and compare with
Proposition 26),

Spoe = 001771, Saese = 0(p*71). (60)
One can check that S,[L",,] is recursive till order d/2 — 1. Thus, we obtain?

~[n] _ () 2n [0]

gM"U_H& W(D "gvh, n<d/2-1, (61)

so higher orders of the metric are determined through g,[?v] = hyy. The last equation

(gl0hymv Sladv/z_l] = 0 allows to compute the trace tr g4/ = (g[o])ﬂvg,[fv/z]. The formula

for SL‘{/ 2 depends on g[?/2] only through the trace. It does not depend on the choice

of the ambient metric.
The Fefferman—Graham obstruction tensor for %, is defined by

Hy, = Sla/>1, (62)
The constraints H,,, = 0 are equivalent to
Sil=0, n=0,...d/2—1. (63)
Let us notice, that the specific combination
- 1 ~1d/2—
d/2—1 ~[0] ald/2-2]
S = B SR (64)
depends only on g for k < d/2 — 1 and its derivatives. Importantly,
~ 1 ~
d/2—1 5101 gld/2-2]
Hyw = $° 71 = o Bl S (65)
because S‘([)Uol{,?z] = 0 by (60). This form of the obstruction tensor does not involve
tr gld/21,

4 This recurrence procedure breaks down for n = d/2 — 1 and this is the source of the obstruction tensor.
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4.1. Hyperbolicity of the Anderson—Fefferman—Graham equation. The system of (10)
is not hyperbolic for the same reason as Einstein’s gravity, because of the gauge trans-
formations. The first step is to introduce a hyperbolic system in a specific gauge. We
will use a natural gauge introduced in [3]. Then we show that this gauge is preserved in
the evolution and as a result the obtained solution is also a solution of the Anderson—
Fefferman—Graham equations. It is a standard treatment in gravity (see [12] for applica-
tion to Einstein’s equations).
Let us remind the following known identity (see [12])

- 1~§X B 1 - -
Ruw = -8 E)gaxg/w+5<8MFV+31)FM>+..., (66)

where ... means terms of order 1 (see Definition 2) and

2 55X 5 LY
Fu= e 8yn — Eaugéx : (67)
We notice that .
L F, = g% (85(;5;(/# - zauggx) ..., (68)

where . . . denotes terms of order at most 2. Comparing it with

i 1,/ _

oo Sce = 58 (3§gl/ix - auggx) +o (69)
N 1

3y Sooco = —Eggxauggx +..., (70)

we obtain the formula
02 F = 2800800 — 93 Soco0 + - - » (71)

where . . . denotes terms of order at most 2. _ ~
In order to write a slightly modified F,, in terms of S, and Seooo We extend the
notion of derivatives with respect to p. For n > 0 we introduce n-times integration of a
multifield # (a collection of fields on M)
i (xH p) = /p d,O/ Mﬁ(xﬂ ;O/) (72)
o0 9 O (n _ 1)! 9 9
that is 9" o uM o = Y4 g ™M e" . Suppose that F is of order N

then 93" F is of order N — n.
We introduce additional tensors

_ 1 j0gey ~ e
Gu=F+20' Sy00 — 9,057, (74)
- ~ 1 -~ - - = -~ -
Euy = Spv — E(V#GV +ViGu) — guvvs (75

These tensors will be used in our analysis of the AFG equations. The reason for occurence
of additional term g,y is explained in the proof below.
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Lemma 6. The equation system
Eu = 0" (76)

is generalized hyperbolic and recursive in g,[fv], n=20,...,d/2—1till orderd/2 — 1
and it decouples at this order. Thus, it is well-posed.

Proof. We will first prove that it is recursive till order d/2 — 1 and that it decouples at
this order. Functions G /t and y are of order 1. Hence, E wv 1s of order 2. Moreover, G []
does not depend on g,w, k > n (nor its derivatives). The dependence of S l[wJ and y" on
D’"g,w, k > n is only by linear terms in g["+1] In fact, we can compute

- d
S — &7 = (n -5 1) (n+ D+ (77)

where . .. are terms depending on ng,w forl] <n.Forn <d/2—1we can uniquely

determlned gl Additionally, [S,, — 2,0,7114/>~1) depends only on gw, for k <
d/2—1 and their derlvatives (see also (64)). Thus, the system is recursive and it decouples.
We need to show that £, is of the form (35). As a preliminary step we prove that

=Gy+..., (78)
where . .. denotes term of order 0. Indeed, 13150] = GE,O]. Direct computation gives

Gl =[0:0G 1 = 280L — 9,71, (79)

JLOO

which can be compared to

1 - -
F“ — 250 +§3M(g[015xg§1)3)+m, (80)

JLOO

where . . . denotes terms depending on x and D™ g guv for m + k < 1. Finally, by (71) we
obtain . ~
0L F, =0%Gy+..., (81)

where . .. denotes term of order 2. This shows (78).
We thus have

VuF, =V,Gy+..., (82)
where . . . denotes term of order 1 (both F, w and G « depends only on up to first derivatives
of the metric). Taking this and (66) into account, the following yields
(6uéu + 61)(;;1) — 8wV

. S 1._ _
=Ry — ~(VuF, +VyE) +... = —EgEXaganw +..., (83)

where ... is of order 1. Expanding first term the form described in (35) is obtained.
Well-posedness follows from Proposition 3. O
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4.1.1. Propagation of the gauge In this section we will explain that G uw=0 (p%/?) and
7 = 0(p4/* 1 provided that these functions vanish on the initial surface together with

their time derivatives and secondly E = O (p?/?). As usual this is achieved by showing
that these variables obey a system of linear hyperbolic equations.
Let us introduce two tensors

N P 2. g
BN« = _EV VSGU- - ERMGV - 5 -1 _10800 aOOGM
1., ~ | B -
+EggxgéxpaooGﬂ-"E'Oggxgéxaﬂy’ (84)
< INIL d
M 1 " 1 e
Q G+ 38, VG + 2 8,,8" 7, (85)

where Q" = 95(3%¢ F“ ) and F 4 18 p-dependent Christoffel symbol.
We will prove in Proposmon 30 of Appendix A that if E = O(p?/?) then BIL =

0(p9/?) and B2 = 0(p%/*1). The next two lemmas will show that the system of
equations BIL = 0(p%/?) and B> = 0(p?/*>1) allows us to deduce that the gauge

functions vanish (Gu = 0(p??)and 7 = O(p?/?~1)) if their initial data vanish on the
Cauchy surface.

Lemma 7. The equation system
Bl = 00", B> = 0(p"*") (86)

is linear generalized hyperbolic for GMn=o,.. d2—land ", n=0,...d/2-2.
Moreover, if (86) is satisfied and at a point x € M the following equations are true

D2 G0y =0, DIPy0x) =0, (87)
then

D426 M () =0, k=0,...d/2—1, D*3 M) =0, k=0,...d/2-2.
(88)

Proof. Inspection of the equations shows that
~ 1 ~ - ~ 1 ~ -
Bl = _ngauavcﬂF,ﬁ, B* = —Eg’“’aﬂavGﬂ+F2, (89)

where F /1 and F2 are of order 1. Generalized hyperbolicity follows from two facts which
ensure that the system decouples:

1. The dependence of [BI]L][”] on DmGLk] for k > n is by

P S L L nle, " 0
(£ sea (oo,

and it does not depend on D" p!¥] for k > n.
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2. The dependence of [B2]"] on D" for k > n is by

d b d 1]
RN R

and it does not depend on D”’GH‘] fork > n.

Let us now prove the second statement of the lemma by induction on k. Suppose that
forall 0 < k < ko

Dd—2k—2(~;[k] 0, Dd —2k— 3 (x) =0, (92)
then taking up to d — 2kg — 2 derivatives of [Eb][ko—l] =0andup tod — 2kg — 3
derivatives of [B2]%0—1] = 0 we get due to (92)
Dd—ZkO—Zcho] —0, Di-3plkaliey =, 93)
which shows the induction together with a trivial statement for ko = 1. O
As a result, we obtain:
Lemma 8. Suppose that E w = O (p?/%) and on the initial surface
Gulz = 31Gulz = 00", 7z = a7z = 007D, 94)
then G = 0(p??) and 7 = O(p??~1).

Proof. 1t follows from Proposition 30 that B1 = 0(p?/?) and B® = 0(p%/*~ 1) and by
generalized hyperbolicity the solution is umque From linearity, it is just zero. O

Additionally, we have

1
Sld/2=11 _ _ Ohuv gld/2] 4 95
Y 2djz—né  Su 95)

where . .. denote terms depending only on g["] forn < d/2 — 1. By modifying g[d/ 2l

we can assume that y[4/2=11 = 0.

4.1.2. Gauge fixing conditions We assume that on the initial surface
DGy =0, D5 =0, (96)
and prove that in such a case
Gulz = 0Guly = 0(p"?), Pz =07ls = 07>, 97)

We show it by noticing that the equations E’:L = 0(p4/?), B = 0(p?/*>~ 1) hold. We
can invoke Lemma 7 to show that

. d d
Dd72k72G%<]|): —0, k< 3 1, DSy —0 k< 5~ 2. (9%)

Comparing with (97) we see that the missing condition is 9 Gﬁi/z_l] |y =0.
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Lemma 9. Suppose that EW = O(,od/z) and on the Cauchy surface ¥

H(N. )z =0, 3fGWx =0, ofp" |z =0, k+2n<d -2, (99
then BIG;,L/Z 1]|E 0 and Dd—Zk—lgl[fg Dd 2k— lH(k) ( [0])|

Proof. We will assume for simplicity that N = d1. The modification of the proof for the
general case is minor. We have the identity for jets

o as o _ 1 ~ -~ o . . [n]
D438y = pi=n 3|:EW+§(VMG,,+VVGM)+gW7/} s =0 (100

From Lemma 4 the jets of the expansion of the ambient metric

Dd 2k—1 ~ [k]| (101)

agree with the Fefferman—Graham ambient metric construction. As Sld/ 2-1] depends

only on first derivatives of g, [d/2-1] in x! direction, we deduce
d/2—1] L _joald/2—2 sld/2—1
0=HuMlz = 55"z = —ga S e =507 s a0

by using (65) and St |z = 0 (due to 74/2~ 1|5, = 0). Additionally, from 7|5 =
0(pd/2) and G[L|Z = 0(,Od/2) it follows that

d/2—1] ~[d/2—1 [d/2—1
0=3W2 g = gl o ([VlG]d/z s + 19,6192 Y5 + 13, 711821

= Lyglern-ng, (103)

for v # 1. Similarly, for v = 1 we get

0= §lrns  glazn 1 UG g 4191614/ Dig) + 1z 7121
=, Gl g, (104)
showing the statement of the lemma. O

We can combine the results obtained so far to prove a proposition about existence
of the solution in the Anderson—Chrusciel gauge. We consider initial data ai‘h wlzs
k =0,...d — 1 subject to the conditions on the initial surface X:

DI2([@xY)|g =0, D 3(R)|x =0, H(N, )|s =0. (105)

The conditions are well-defined because [lx* depends on jets of the metric up to the
first order, R depends on jets of the metric up to the second order and H (N, -) depends
on d — 1 order jets of the metric on X (see [4] p. 564-565 for a thorough discussion).

Proposition 10. We consider initial data thlw s, k =0,...d—1. Suppose that on the
initial surface T conditions (105) are satisfied. Then there exists a unique solution to
AFG system H,,, = 0 with the given initial data and which satisfies (x" =0, R = 0.
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Proof. As E wv 1s recursive till order d /2 — 1 we compute by Lemma 4 the initial value
data for the system by

Rl = HY (D¥hwlp). dikldle = 0 HE (D% hyls). k<d/2—1.

(106)
This allows us to determine the initial data for the equation E=0 (pd/ 2). We consider
a unique solution g, of this equation. Since the system is generalized hyperbolic, we
get

318 s = o huvlz. n<d-—1, (107)

by Lemma 5. Thus, the solution has prescribed initial data.
In particular, it is true that

D260y = D2 (h,whéx ng) = —D%2(h,,,0x") =0, (108)
and by (55), (75) and (73)

_ d -

[0]
= p3 [E,w+ V.G, +V, GM)} =0.

by
(109)
We take the trace of this equality to derive
pi-3501; = pa-3 [ Lzl Z _pas R | _ g (110)
2 S |l d—2|gy

This means that the condition (96) is satisfied. From Lemmas 8 and 9 we conclude
Gu=00", 7=00"". (111)

We can always assume )7[d/ 2-11 = 0 (see (95) and (653)). Taking this into account, we
obtain

Sl = Elnl 4 ([v G +1v,G 0" + 12, 71" =0, (112)

forn < d/2 — 1. We have a solution with S, = 0 (p9/?). O

4.2. The AFG equation in the Anderson—Chrusciel gauge. In this section, the corre-
spondence of our gauge functions to R = 0 and Ox* = 0 gauge will be investigated.
This gauge was proposed in [3] and [4].

4.2.1. Uniqueness of the solution of the AFG equation Assume that we have a solution
H,,(h) = 0 with the given initial conditions at X.

Lemma 11. [3,4] Suppose that we have a local coordinate system y*,...y? on .
Locally there exists a coordinate system x* and a conformal factor o such that for
h,, =€ h

nv Hv>

1.Ox* =0, R =0,
2.x8 s =yiforE=2,...d, x5 =0,
3. 01 is a unit normal vector to %
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Here [0 is a scalar d’Alembert operator with respect to the metric h'. Function o is
freely specified by initial data o |x, and 010|x.

Proof. First we find o as a solution of Yamabe problem (that is R[e?? 1] = 0), which
is a nonlinear hyperbolic system for o (see [4] for discussion). Define x5 for E>2asa
unique solution to [1'¢p = 0 with initial conditions (local development)

¢lu =5, NHa.plu =0, (113)

where N* is a unit normal to . Finally, we define x! as a unique solution with initial
value

¢lu =0, N'3,¢ly =1. (114)
One can check that on U’ C U this new coordinates are independent, so it is also true
in the small neighborhood of the Cauchy surface. O

We can thus work in this gauge. From the solution to H,, = 0 we now construct
iteratively

gl n<dj2-2. (115)
by (61). Let us notice that g,[?ﬂ = hyy and g}}& =2Py
where Py, = ﬁ (R/w — mRhw,) is the Schouten tensor [6]. Due to the gauge
condition, one obtains

. 1
qg:hwﬁn?xz_mﬂhvza ﬁmz—MW@uz_erﬁRzo.
. 5 (116)
Moreover, from S,00 = O(,od/z_l) and Sooco = O(,od/z_l) we have’
Gu=00"%, 7=00". (117)
Additionally, S,,, = O(p?/?) and so
Ep = 0(p"). (118)

From the uniqueness of the solution of (118) we obtain the uniqueness of the solution
of AFG equation (in the given gauge).

4.2.2. Existence of the solutions of the AFG equation Let us now assume that the initial
data is given by
Mhuwls, n=0,...d—1, (119)

which satisfies the constraints H (N, )|z = 0 and the gauge is satisfied:
0"Oxtg =0, n=0,...d—2, (120)
O"Rls =0, n=0,...d—3. (121)

The conditions are well-defined because [lx* depends on the jets of the metric up to
first order and R depends on the jets of the metric up to the second order.

5 Notice that the additional normalization in the Fefferman-Graham ambient metric allows us to obtain
vanishing of y to one order higher than from propagation equation. This should be compare with (95).
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By a formal coordinate change on ¥ C M we can always assume these conditions

together with N = a1 where N is a normal vector. In this way, the constraints take the
form

Hiuls =0. (122)
We also compute
o _ 3~ 1 _
DGy = =D (h XMz =0, D ps = DRIz =0,
2(d —2)
(123)

by (120) and (121). The existence of the solution of AFG equation would follow from
Proposition 10 if we were able to use this gauge globally on a compact . However, it
is not possible (see [4] Remark 4.4 for discussion), so we need to apply some version of
a gluing argument.

4.2.3. Proof of the Theorem 1 The harmonic gauge is well-suited for & = RY~!_ If we
want to apply our result, we need to extend the notion of this gauge to compact Cauchy
surfaces. This can be done in the case of ¥ being a torus, where x* for u = 2,...d
are defined modulo 27. Due to the finite speed of propagation, the method provides an
existence and uniqueness result also for open subsets of the torus. Uniqueness of the
development allows to apply the standard gluing argument [12] to obtain Theorem 1.

4.3. Infinite order extension of the ambient metric. Suppose that the obstruction tensor
vanishes. The results of [6] show that Taylor expansions of the metrics, which are Ricci
flat of the order O (p°°), are in one-to-one correspondence with the traceless symmetric
tensors k,,,, satisfying

V¥kuw = Dy, (124)
where D, is a certain 1-form (defined in eq. 3.36 in [6]). The tensors k,,, define trace-free
part of g,[fv/ ?I since the trace is already determined. In the case of Euclidean signature
manifolds, it is not obvious that such a tensor exists. We will prove that this is the case
for any globally hyperbolic spacetime.

Proposition 12. There exists k;,, satisfying (124) on a AFG globally hyperbolic space-
time.

Proof. We will look for the tensor given in a special form
2 o
kv = Vyu, + Vyu, — Ehwv Up, (125)

for some covector field u,. It is already symmetric, traceless and the equation (124)
takes a form

2
D, = V*V,u, + R’u, + (1 - 3> Vo (VPu,). (126)

Taking the divergence, we obtain an additional equation

2
VYD, = VAV, (V'u,) + ZVM(R;‘iu,,) + (l — g> VEVL(V'uy), (127)
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where we used VVVH#V,u, = VFV,(V'u,) + V"(Rl‘iuu). We now introduce a new

variable A = %V“u « and a system of equations (equivalent to (126) and (127), respec-
tively)

VAV, + RPu, +(d —2) V,A = D, (128)
2(d — DV*V, A +2V*(RVu,) = V' D,. (129)

It is indeed a hyperbolic second-order linear system if we regard variables A and u,, as
independent. Thus, with any given initial data on a Cauchy surface, it has a solution.
We need to show that A and u, obtained by evolution satisfies dA = V"u,, if the initial
data is chosen properly. Substracting (129) from the divergence of (128) we obtain an
equation:

VAV, (VPu, —dA) =0, (130)

which is satisfied for every solution of the system (128), (129). If we choose the ini-
tial data such that A|ly = d’]Vpupb: and 91Aly = d*‘alvpu,,m (computed by
the Cauchy—Kovalevskaya algorithm), then A = le/’ u, in the whole spacetime and
V. = Dy. O

We can thus always assume that the metric is Ricci flat to an infinite order, but it is
not uniquely defined except terms g,ﬁ"& forn <d/2 —1and tr gl4/2,

5. GJMS Type Operators for Tractor Bundles

We will now concentrate on various linear systems, which arise by the ambient metric
construction in a recursive fashion simlar to the way the gauge fixed AFG equations
are obtained from E wv system. They share the common property with the gauged fixed
AFG equation, that the principal symbol is a power of the d’ Alembert operator. In this
part of the paper, we will also shortly describe Graham—Jenne—Mason—Sparling (GIMS)
type systems. A quite general method of introducing this type of operators is by tractor
calculus [21,22]. We will only focus on the essential parts of this theory in terms of the
ambient metric construction (see [23]). For the short review of the tractor calculus in
application to general relativity, we refer the reader to [17]. We only use tractors with
lowered indices.

5.1. Tractors from the ambient metrics. We work on manifold M = R x M, T =t is
a conformal Killing vector with property that for every vector field F/ it satisfies

ViT=F, V,T;=g. (131)

We also introduce £ = %TI T; = pt? with the properties:
Ve=T'V,T,=T;, VIV,2@=V/T,=d+2), V,eV/e =29 132
An important submanifold N = { = 0} = {p = 0} is preserved by T. It can be

identified with a tautological bundle of conformal scales over M [6]. Results of [23]
allows us to define tractors in the following way.
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Definition 5. An n-tractor of weight w € R, Uy, ., is a section of a bundle (T*M|N)®"
over N C M with the property

LrUy,..1, = (w+n)Uy, g, (133)

Simplifying the notation, we will often skip tractor indices if it does not cause confu-

sion. By evaluating U, . j, att = 1 we can identify tractors with sections of the bundle
T

Upo1, =Un . 1, li=1 € T(T®"), where T = T*M|;1 p—0 = ROT*M SR, (134)

We used symbol R to denote the trivial 1-dimensional vector bundle over M. The fiber
basis of 7 is dt, dx*, dp. We will call both Uy, j, and Uy, ., tractors, but to avoid
confusion we denote the tractors as functions over N by caligraphic letters. We will
work mostly with the restrictions to ¢t = 1. Importance of the tractors is based on their
simple transformation law under conformal change of the metric. Let us remind that
every conformal transformation 4, —> e*h wv induces a (formal) diffeomorphism of
the ambient space [6].% This diffeomorphism W is uniquely determined by conditions
(see [6] Theorem 2.3 and Proposition 2.6):

1. It preserves submanifold N = {p = 0} and
YIn(t, xH,0) = (71, x", 0). (135)

2. It preserves the form of the ambient metric described in (52).

This diffeomorphism preserves not only submanifold N, but also the function €2 and the
vector field T. As a consequence, it induces also transformation of the tractor. It is easy
to check that this transformation is linear (see [17] for direct derivation by the Cartan
method).

There is a natural way to obtain tractors. For every n-covector U in the ambient space
satisfying

LrUy, .1, = w+n)Uy g, (136)

its restriction to N = {p = 0} is an n-tractor of weight w, namely
U = Ul ,— or in our identification U := Ul;=1,p—0. (137)

Using our identification we can regard U="U|_ asa p-dependent family of tractors.
It should be stress that this identification is not conformally covariant except for p = 0.

A choice of homogeneity w + n in the definition of the weight will simplify certain
computations as it is explained by the following lemma:

Lemma 13. Suppose that L1Uy, 1, = (w+n)Uy, 1, then VU = wU, where n is a
valency of the field.

6 It is a formal diffeomorphism defined by a series in p. In the even dimension the ambient metric is
determined uniquely only till the order 0(p?/2). The extension to the infinite order is an additional data,
which also need to transform accordingly under conformal transformations.
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Proof. We use induction on n. For n = 0 (that means U is a functions) Lie derivative
and covariant derivative agrees. Suppose that the result is true for n < ng. Consider a
vector field F/ with homogeneity 0 (L1F = 0). We have

VtF = LTF + V§T =F. (138)

For any Uy, .. Iy > 110 covector with weight w, we denote by FLU

Uy, g, F. (139)
Itis a ng — 1 covector with weight w + 1, thus
(w+ DHF.U = Vr(FLU) = F.(V1U) + (VTF)LU = FL(V1U) + FLU. (140)

So FL[wU — VU] = 0. As the restriction to t = 1, F!is arbitrary, we show the
induction. O

5.2. GJIMS operators. The GIMS operators were introduced in [13] (initially for scalar
functions) as conformal powers of the Laplacian. They are constructed with the help of
the d’ Alembert operator in the ambient space M. We consider an operator [-] defined on
n-covectors:

OU =v/v,u. (141)
The result has the weight w — 2. We can thus define
(U = [[HU]|;= for U = Ul,—;, L1U = (w +n)U. (142)

Proposition 14. For any n, the operator [y on p-dependent n-tractors U of weight w
has the property

[0 = §"78,0,0 + (d — 2+ 2w — 2pds0) dooU + F, (143)
where FU"1 depends only on D'U™ for k < m.
In other words
[, U1 = [8#78,0,01"™ + (d — 2+ 2w — 2m) (m + DO 4 Flm - (144)
Proof. Clearly, we can write
0,0 = §"9,8,0 + G, (145)

where G depends on D'U! for k < m + 1 and U"+2!,

We need to determine the dependence of [[JU ]! on D'U¥! for k > m. This can
be done by considering fields that depend only on the Taylor expansion coefficients
for k > m. The most convenient way is to use & = pt” in the expansion instead
of p, because R is covariantly defined. We consider U = Q"IF = 0(p™*") where
LTF = (w+n — 2(m + 1))F (in order that U has the proper weight) and thus

V1F = (w —2(m + 1))F. (146)
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We substitute the special form of U to obtain the following formula

VIV, U=@m+1He"! [F (mv’szv,sz + n(v’v,sz)) + 2szv’szv,F} + @yl F.
(147)
We use the known form of derivatives of €2 to get the nice expression:

VIV, U= (n+DQ" (2m +d +2)F + 2V7F) + 0(p")) =
= (m+ 1)Q"F (d — 2+ 2w — 2m) + O (p"*). (148)
This shows that

HplU = (d — 242w — 2pds0) docU + H (149)
where H'"! depends on D2U™! for k < m. Together with the previous expansion (145)
it proves the lemma. o

Together with Proposition 3 this result leads immediately to a corollary:

Corollary 15. Let n € Z, U {0} and w € Z such that N = d/2 — 1 +w € Z, U {0},
then the system

BuU + D) = 0" for UM, k=0,....N (150)

for UM (n-tractors of weight w) is generalized hyperbolic, recursive and linear. Here
D is linear transformation on the space of n-tractors. In particular, the Cauchy problem
with smooth initial data is well-posed.

Proof. The assumption about the metric is sufficient to satisfy the requirements for the
linear generalized hyperbolic system to be well-posed in Proposition 3. O

Remark 5. The ambient metric construction determines g}fJ fork=0,...,d/2—1and
tr §14/21. Consequently, only equations depending on this part of the metric expansion
are defined uniquely. They provide conformal equations on the spacetime M. This holds
if 0 > w > 1 — d/2. Interestingly, it is also true for (o on scalars of weight 0, where
the operator depends on the aforementioned trace. If n > 1 and w > 0, then the system
of equations explicitly depends on the choice of the extension of the ambient metric.

The initial data for the derived equation H = = 01is given by Bk O, k <2N+1

and we get from Lemma 5 and Proposition 3 ‘the unique global development Let us
remind that [13]7

. d
H@w(U):cdDN+1U+..., N=5—1+wez+u{0}, ca €R (151)

In particular, the scalar GIMS operators P, are (up to a nonzero constant depending
only on dimension and k) derived operators for [, acting on scalar tractors of weight
w=k-— %,

Py f =cHy (f), cx€R. (152)
We thus obtain a corollary (due to Lemma 5 and Proposition 3):

Corollary 16. The equation Py f = 0 involving scalar GIMS operators for k > 0 is
well-posed in the smooth category.

Let us remark that operators P, are also well-defined for k > % (the so called
supercritical case), but they depend on the choice of the ambient metric extension.

7 In [13] only the scalar case was considered, but the method applied in [13] extends almost verbatim to
the general tractor case.
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5.3. Spacetimes with vanishing Q curvature. We can apply the Corollary 15 to the
problem of finding a conformal factor, which yields the vanishing Branson Q curvature
[7]. This is an important and quite mysterious object in conformal geometry (see [24,25]
for an introduction to the application and meaning of the Q curvature). In particular Q
curvature has an interesting affine type of conformal transformation [7]

¢!” Q[e** h] = Q[h] + Pyo, (153)
where the critical GIMS operator Py, is defined with respect to the metric % (in fact, Py

for metric €2 h differs only by a factor of ¢??). In order to find metric in the conformal
class with vanishing Q curvature one needs to solve inhomogeneous equation

Pyo = —0. (154)

The existence (and classification) of solutions will follow from the following proposition:

Proposition 17. Consider an equation I:I‘j (U) =V for U, where V is given. Here U
and V are n-tractors of weight w. This system is well-posed in the smooth category.

Proof. The equation Hz (U) — V = 0 is the derived equation for the system for J*],
k=0,...N

. d
B,U — pVV = 0oV, N=§—1+w. (155)

It is a recursive, decoupled and generalized hyperbolic equation by Corollary 15. The
well-posedness of the derived equation follows from Lemma 5 and Proposition 3. O

We can apply Proposition 17 to equation (154).

Corollary 18. On every globally hyperbolic spacetime, there exists a function o such
that Q[e** h] = 0.

The proof raises a question whether other forms of source terms than considered in
(155) are interesting. In fact, we can show that all of them can be reduced to the case
used in the proof of Proposition 17. Suppose that we would like to solve (N = % —1+w)

B,U =V + 0N, (156)

for a fixed p-dependent n-tractor V of weight w. By recursive property of the equation,
there exists F' such that

CF=V+0(pY), F9=o, (157)
and it is locally determined. If we write W = [\7 — @w F 1™7 then
[u(U = F) = oMW+ 0(p"*h, (158)

which is the form considered in the proof of Proposition 17.
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5.4. Almost Einstein condition. Itis astandard computation [22,26] that the conformally
rescaled metric f~2h wv forasmooth function f € C°° (M) satisfies Einstein’s equations
with a cosmological constant if and only if f # 0 and

tf(V Vo f+ Py f) =0, (159)

where tf denotes the trace-free part. It is natural to skip the non-degeneracy condition
f # 0. Following [27] we call a spacetime almost Einstein if there exists a non-trivial
(i.e. not everywhere zero) solution of (159). We will say that such solution f defines an
almost Einstein structure. The condition of being almost Einstein describes in a uniform
way physical space and its conformal boundary { f = 0}. It turns out that this condition
has also a very nice interpretation in terms of 1-tractors of weight 0, introduced in [22]
(see [26] for an alternative derivation).’

Tractors of weight 0 have especially nice properties. In particular, we can introduce a
connection on the tractor bundle. The tractor derivative for 1-tractor U; of weight O (see
tractor derivative, for example, in [16] and [17] with a version for covectors) is defined
by the formula:

Uy VU — Uy,
VI Uy | = | VuUs + huUso + PuulUo | . (160)
Uso VU — PJU,

It is a conformally covariant object. It is shown in [22] that the metric is almost Einstein
if there exists a non-trivial 1-tractor of weight 0, Uy which is covariantly constant

ViU, =0. (161)

Indeed, this condition is equivalent to

1
Up=f. Uy=0,f, U = —g(VMVMU + Pl f), (162)
for some function f satisfying (159).

The conformal factor rescaling the metric to Einsteinian is given by ¢° = Up and
the cosmological constant is equal A = c¢,U!U; where ¢y is a dimension dependent
constant [26]. The conformally invariant scalar product for weight O tractors is given by

Uu! = 2U0yUs + U, UM (163)

Conformal boundary corresponds to Uy = 0. This set is a hypersurface (apart from
possibly some isolated point in the case of A = 0) with vanishing extrinsic curvature
and it enjoys very special properties [27]. In almost Einstein spaces, the Fefferman—
Graham obstruction tensor vanishes.

It turns out that the tractor derivative has a natural interpretation from the ambient
point of view. Namely, let V; be a covector field on M such that (weight 0)

LV =V, Vil=1,p=0="V1, (164)

then (see [23])

VIV =[V.Vi] (165)

t=1,p=0"
The identity extends to the case of tensors of higher valency.

8 We are working in a specific metric [26,27] and not in a framework of conformal densities [22].
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This point of view raises a natural question about ambient metric version of the
condition (161). It is shown in [16] that one can prolong the covariant tractor from
p = 0 surface. We will need a detailed statement of this result. We remind the following
fact (proven in [16], see also [27])

Proposition 19. Suppose that VZ U = 0 for a tractor of weight O, then there exists Uy
on the ambient space such that Uy |;=1, p=0 = Uy and

ViU; = 0(p??Y, LyU; = Uy (166)

In general, we cannot ensure vanishing of the error term O (,od/ 2-1y (see [16], Propo-
sition 4.5) unless the metric is so-called even with respect to the conformal boundary.

Our goal is to find a propagation equation for Uj. It is useful to remind first the
structure of U; in the case of the odd dimension, which was analyzed in details in
[27] (see also [28,29] for the case of Einstein metrics). In this case we can assume
ViU; = O(p®>), where U; = 9;f for some function f, such that

fli=1,p=0 = 1. (167)

This function satisfies LIf = O (p°°). In fact, this harmonicity condition together with
(167) determines f uniquely due to recursive property of the equation.

We will look for a similar description in the case of even dimension. In the even
dimension d the recursive relation breaks at order %, thus in general we can only assume

[If = O(p?/?). This allows us to determine f up to order O (p?/?>*') and then Pyys f =
cr[CIf | =1 ][d /2, Although, the supercritical GIMS operator P4, depends on a choice of
the extension of the ambient metric, one can check that f + O (p?/2*1) does not depend
on this choice (see Appendix B).

We will first need an auxiliary result allowing us to determine vanishing of
VU;li=1,p=0 from properties of function f. For future applications, we will state it
in a local form (a symbol D" denote jets on M):

Lemma 20. Let x € M. Suppose that f satisfies D* [tf(VH Vo f+ P,wf)] (x) =0and
function f is such that

[ =1 = 0(0Y?), Lrf=f, fli=1 0 = f. (168)
Then V1V1f|,:1,p:0(x) =0.

Proof. We compute using [V ; V] = 0
1
k= [0 = =5 (V'Y f + PILE). (169)
Let us now define Uy = 9;f, Uy = [U;]!)],—;. We notice that
Uo=f. Up=0uf Uss =k (170)

Due to S;; = 0 (p%/*~1) we obtain

LU, =V, VIV, E =V, (V; V) + 00?1 =0p!?. 171)
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It is useful to introduce Thomas ﬁ—operator [22], which in such case is proportional
to covariant derivative (see [23] for the ambient metric definition of this operator for
tractors of weight 0)

DU :=[d -2V, U;+T; B0 Y =@ -2 (v, U112, (172)

The advantage is that this operator depends only on the value of U; on N. The formula
for D operator acting on weight O tractors is given by (see [17])

DoU; =0 (173)
DUy =d-2)VIU, (174)
DU, = 07Uy, 175)

where 07 U J = h’“’VZ M ®TV3— Uy is the d’ Alembert operator on the tractor bundle.

We need to show that D; U (x) =0.
The condition D? [tf(V,,V, f + Py, f)] (x) = 0 gives by (160)

D'VIU,(x) =0. (176)

The nontrivial condition for VHT U is shown by divergence of (159) (see [17]). For this

reason, we only get the condition for D! jets.
We can now show by (176)

DooUy(x) = ~07 U (x) = =" VI METVT U, (x) = 0. Aa77)

Finally we see that V; Uy [\, (x) = 755D, U, (x) = 0. O

We remind that on almost Einstein spacetimes, the obstruction tensor vanishes (AFG
equations are satisfied) and by Proposition 12 we have a distinguished class of exten-
sions that are Ricci flat to infinite order in p. We can now state our enhancement of
Proposition 19.

Proposition 21. Let f be a non-trivial solution of (159). Then there exists f satisfying
the following conditions

L Lrf =1 £ = 1.

2. In an arbitrary extension of the ambient metric that is Ricci flat to infinite order in p
Cf = 0(p?/**). (178)

In particular Py f = 0.
3. The covector Uy := 0;f satisfies (166), that is

VvV U; = 0. (179)

The proof of the proposition will be based on some relation which we will use also for
propagation of the almost Einstein condition. Let us record an identity for an arbitrary
function F

B(V;V,F) =V,;V,(OF) +(V,;SF +v,;8X - vXS,,)VkF, (180)
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where SII( JL, Sf are the Riemann tensor and Ricci tensor on M and we introduced an

operator H on 2- covectors K;; on M
B(K;y) = VEV Ky + 288 FKg — SKKg s — SKKk . (181)
Similarly as in the case of wave operator we define
BuKrs = BE D=1, Kisli=1 =K1y, L1Kp = w+2)Ky. (182)
We will be mainly interested in ;. By Corollary 15, H_; is recursive till order % —2.

Remark 6. Let us notice that both @1 and ETH_l depend on the choice of the extension of
the ambient metric. Once such an extension is chosen, they are well-defined operators.
Nonetheless, in their definition we need more structure than just the conformal class of
the metric.

Proof of Proposition 21. We define f up to O (p9/?>*!) order by
Of = 0(p"%), Lrf =f, fi— -0 = f. (183)

As we said earlier, f does not depend on the choice of Ricci flat extension of the ambient
metric. Let us choose such an extension. Then from (180) and S;; = O (p°) it follows
that

BD;) =V V() + 0(p®) = 00?7, Dyj=V,V,f. (184)
Thus, [EH(D”)|t:1][d/2—2] - I:IETHq(D”) (derived operator) where Dj; =

V1V f]i=1,p=0. However, by Lemma 20, D;; = 0 and by recursive property of B~3_1

Dy =0 = vV U; = 0?7, (185)

Additionally I-AIEE_1 (D7) = 0and hence B(D;;) = O(p%/2~1). We obtain by equation
(180) and S;; = O(p™)

V V(@) =BDy) +0(0™) = 0(p"* ™) = B = 0(p**). (186)

This property holds independently of the chosen ambient metric extension provided it
is Ricci flat to infinite order. It means that Py f = 0. O

Itis a bit surprising that although P,,, depends on a choice of the Ricci flat extension,
Pji+> f = 0 independently of this choice. It is explained by the following fact proven in
Appendix B.

Proposition 22. Let gffv be two extensions of the ambient metric of h,,, which are Ricci
flat to infinite order in p. Denote

d

~ d o 74
ko = 85,0120 = (g, 1120, (187)

It is a symmetric, traceless and divergence-free tensor. Let Pﬁz denote the supercritical
GJIMS operators defined by extensions gfw. Then

Plod — Pryd = —cik™ (VuVig + Pund) (188)

where constant ci is defined in (152). In particular, for functions ¢ satisfying (159), the
right-hand side vanishes.
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5.5. Propagation of the almost Einstein structure. Proposition 21 is an important ob-
servation. As f is a scalar of weight 1, (178) is a generalized hyperbolic system for

f = fl;=1. We will use it to evolve f from the Cauchy surface to the whole globally
hyperbolic development. We will prove that this f defines an almost Einstein structure.
Indeed, identity (180) shows that if (178) holds, then V ;U satisfies a linear hyperbolic
equation too and then what remains is to show that the initial data for this system van-
ish. In order to define evolution of f we need to specify the choice of extension of the
ambient metric. We will choose an arbitrary extension that is Ricci flat to all orders. In
principle, the solution may depend on this choice, but we will see that this particular one
does not.

Proposition 23. Let us consider a metric satisfying the AFG equation. We also choose
an extension of the ambient metric which is Ricci flat to infinite order in p. Suppose that
we have initial data D! f|s. such that

DTNV, Vo f + P f)lz = 0. (189)

Then the metric is almost Einstein with a covariant tractor given by
1
Upo=f, Us=0,f, UOO:—E(V“V,Lf+PI’jf), (190)

where f is the solution of the scalar supercritical GIMS equation:

Py f =0, (191)

with the given initial data. The solution f does not depend on the choice of the Ricci flat
extension.

Proof. We define now f as a solution to generalized hyperbolic system
Of = 0(0%*Y), Lrf =t, (192)

that is [ f = O(p4/?>*1) for f = f|;—;. The initial data D' f|5 are prescribed by
DA+l flx according to Lemma 5. Equation (180) together with S;; = O(p*°) and
(192) gives the following system for D;; = V;V ;f|;=1

B_1Dry = 0(p?*71h. (193)

By proposition 14, this is a generalized hyperbolic and recursive equation for 2-tractors
of weight —1, DEkJ], k=0,...d/2 — 2. We thus need to show that

Diyls = 0(p"*™Y), 91Dyl = 0(p"*7H). (194)
From recursive property (see Lemma 5), this is equivalent to showing that
DIV, VY, 5 =0 (195)

A symbol D" denote jets in directions of M. We can now apply Lemma 20 to show that
(195) holds if (189) is satisfied.

Finally, although we used a specific ambient extension to obtain f, the result does
not depend on this choice. In fact, we can now check that Pz, f = 0 for every Ricci
flat extension by Proposition 21. O

9 Such method of propagation equations is widely used in General Relativity (see [30]).
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Remark 7. In the case f # 0 on the Cauchy surface, we can change conformally the
metric such that it satisfies Einstein constraints on the initial surface. Therefore, we can
evolve Einstein equations. The result needs to agree with the metric evolved with AFG
equation up to conformal rescaling and diffeomorphism. In this way we obtain propa-
gation of the Einsteinian condition up to the conformal boundary (see [3]). Prescribing
initial data on a surface with f = 0 is more delicate. Our method has the advantage that
it allows to treat all cases simultaneously. For example, the initial Cauchy surface can
cross the conformal boundary.

Remark 8. Appearance of non-conformally invariant operators may seem a bit puzzling
in propagation of a conformally invariant condition. However, these are only auxiliary
systems used for this purpose. As in the case of Killing initial data, there may exist other
equations which can be used in this context. However, it is not obvious if one can find
conformally invariant equations of this kind. We expect it to be unlikely, at least in the
class of generalized hyperbolic systems, in light of non-existence of conformal operators

of the form O3+ + ... [31].

5.6. Application to stability of asymptotically de Sitter spacetimes. Theorem 1 together
with Proposition 23 allow us to prove various results about asymptotic properties of
solutions to Einstein’s equations with a positive cosmological constant. This was the
initial motivation for studying the AFG equations. We will state some of these results,
refering readers to [3,4] for various extensions. Let us notice that we proved well-
posedness in the smooth category. The case of Sobolev spaces would demand various
shifting with respect to what is stated in [3,4]. We are working in even dimension d.
Well-posedness of the AFG equation together with propagation of the almost Einstein
condition proves:

Theorem 24 (cf. [4] Thm. 6.1). Let ¥ be a compact Cauchy surface. The initial data on
Y that correspond to the future (or past) asymptotically simple solutions of the Einstein’s
equations form an open set in C* topology.

In particular, initial data close to de Sitter spacetime develop a complete future and
past asymptotically simple solution. We can also define initial data at a conformal bound-
ary. It is known (see for example [6] Theorem 4.8) that the initial data on conformal
boundary ¥ for the Einstein equation is given by a smooth pair (y; . Kij) where y is an
Euclidean metric and « is a symmetric two form satisfying

Vikij =0, k=0 (196)
We use latin indices for tensors on X. Such data define a formal solution of the Einstein
equations with a positive cosmological constant.'” Namely, there exists a smooth func-
tion f, vanishing at Y and a metric wv such that g, = f “2p wv satisfies Einstein’s
equations up to infinite jets at X. The metric y is a restriction of & v 1O %, whereas «
is equal to the so-called holographic stress-energy tensor which is an object obtained
from high derivatives of &, and f at T (see [6,32]). Let us notice that existence of a
formal solution to the Einstein equations allow us to compute from (196) the initial data
for AFG equations. The data satisfy AFG constraints. Similarly we can compute initial

10 The value of the cosmological constant is fixed, but arbitrary.
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data for the scale f and this initial data satisfy assumptions of Proposition 23. We can
thus replace the formal expansion by an analytic result.

If two pairs (hffv, f¥) are related by a diffeomorphism W then corresponding initial
data transform by a restriction of W to X. The other gauge tranformation is given by
conformal rescaling

hh,=eCh,,. fr=ef". (197)

This induces the following tranformation of the initial data (see [32])

yl.‘;. = ezooyij_., K;-j = ef(df3)z70Ki;' (198)

where oy = o|5. We see that two initial data (yij#, K;) give equivalent solutions if and
only if there exist diffeomorphism ® on = and a smooth function oy such that

Yt =20y, kT =e U0k, (199)

Lemma 11, Proposition 23 and Theorem 1 now show (A > 0 is chosen):

Theorem 25. Let (y;j, k;j) on a compact surface Y satisfy constraints (196). There exist
(on a neighbourhood of T C M) a metric h wv and a function [ such that

1.X={f=0}
2. y is the metric h restricted to X and « is the holographic stress energy tensor,
3. f2h wv satisfies Einstein’s equations with cosmological constant A.

+

Two initial data (y; kD) give locally equivalent solutions if and only if there exist

J iy
diffeomorphism ® on ¥ and a smooth function o such that (199) is satisfied. Solutions

are unique up to diffeomorphism and conformal transformation.

6. Summary

The Fefferman—Graham obstruction tensor and GJIMS operators are very special objects.
One additional nice property is related to their behavior as evolution systems. Both GIMS
as well as Fefferman—Graham tensor in the suitable gauge have multiple characteristics,
thus they are in principle only weakly hyperbolic. However, we proved that still they
enjoy well-posed Cauchy problem. In addition, the property of being almost Einstein
propagates from the initial surface. We proved it in the smooth category, but with an
arbitrary Cauchy surface. Namely, the Cauchy surface can cross or partially coincide
with the conformal boundary of the spacetime. This allows to use AFG equation for
proving the stability of asymptotically simple solutions (as was done in [3,4]). We
should notice that this is not the most effective proof of stability as the metric needs to
be of high regularity. However, it provides some advantages: it is a Lagrangean theory,
which allows to apply various techniques like Noether charge definition, Hamiltonian
formulations on the level of conformally compactified spacetime. The meaning of such
defined charges for Einsteinian solutions is still unclear. The relation to GR charges
should be investigated in future.



2992 'W. Kaminski

Declarations

Conflict of interest This work was supported by Project OPUS 2017/27/B/ST2/02806 of Polish National
Science Centre. Data sharing not applicable to this article as no datasets were generated or analysed during
the current study. The author has no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

A Bianchi identities

For convenience of the reader, we provide here a proof of the Bianchi identities in the
ambient space. Our first goal is to show that

Proposition 26. The following holds

. /. 1. . 3 3 o
% (S;w - Eg;ws) + P9 Sooco +(d —2 —20000) Spico — pgsxgéxsuoo =0,
(200)

I - o - 1., =~ 1 -
VMSMOO +(d =2 — pdoo)Socco — pgﬂ‘)gl/wsoooo - Eg:“)S:"LV - anos =0, (201)

where § = Sl

The proof will be divided in a series of lemmas. Let us denote by g;;, V;, S;; metric
covariant derivative and Ricci tensor respectively in the ambient space M . Indices are
I = 0, 0o or u in the case of index on M.

Lemma 27. Let 1:"“ be a p-dependent one-form and Fss a function on M. Define a
one-form ¥y on M by

F,=F,, Fo=Fx, Fo=0. (202)
Then
VIF, =12 (Wﬁﬂ +(d =2 = 2p00) Fog — pgﬂ“glgvﬁoo) . (203)

Proof. Let us notice the identity

1

1J 1J

gV F; = —a,(/gg" ' F)). (204)
NG Ve
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Now g0 = g>0 = =1 g®% — _25r=2 and g"¥ = g the rest of the components
vanishes. Moreover, ,/g = td+1\/§. Thus, remembering that Fy = 0 it follows that

1 — ~
g 'V F; = ;*27%( 88" F)
8

1 1

d+l [z —1F Y PPN
iyl Var ' Foo) + \/anoME( 201%) Frx)
=2 (Wﬁﬂ +(d — 2 — 2pB0) oo — pgﬂ”g;vﬁw) , (205)
where we used ﬁau(\/gg“"l:}) = VHF,. O

Lemma 28. Let D;; be a symetric tensor and U a vector field, then
1
(VDU = VD1, U7) = oD Lugy, (206)

where Ly is a Lie derivative
Proof. Follows from Lyg;; = V;U; + V ;U; and symmetry of Dy ;. O

Lemma 29. We have

vis;, =12 (6“&“ +(d =2 — 2p00)Spoo — pg““g;USM) , (207)
e . I 1. By
VIS]oo =1 2 (vvsvoo +(d =2 —2p00)Sooc0 — Pglwglwsoooo - ESVMg;w - Soooo) .
(208)

Proof. Let us choose first U* = UH, U0 = 0 and U™ = 0 for some UH, vector field
on M. The form S; JUJ satisfies assumptions of Lemma 27, thus

v/ (S;,U7) =2 (ﬁf(SguU”) +(d =2 — 2pB00) Socp U" — p§“”g;u§ooguf) —
— 2 (Uﬂ@fsgu + 860 (VEU) +(d — 2 — 2p800) S UM — pgﬂ”gl’wiwsuf) .
(209)
Moreover, we have
(Lugrdx'dx’ = t*(Lyge)dxdx’ = 1*2(VeU,)dx* dx”, (210)
By Lemma 28 we derive
u/vis;, =1 2un (65 Seu + (d — 2 — 2pB00) Soop — pg‘f”ggﬁw) RNGIT))
which shows (207). Similarly choosing U’ = 8! we have
(Cugrydx'dx’ =2dr* + 28], dx"dx", (212)

where g, is the derivative in p. Finally, we obtain

v, U =177 (655@0 +(d = 2 = 2pB0) Socoo — pgﬂ”ggvs‘m) . (13)
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Thus we conclude

ey = v~ = 1
VIS1OO =t 2(Vvsvoo +(d =2 = 2p00)Socco — Pgﬂvg//wsoooo Eslwg,w - Soooo>

(214)
which shows the result. O
Proof of Proposition 26. Let us now notice that
g'/81y = 172" Sy — 2080000)- (215)
Now we use identity
I 1 KL
VS — §3J(g Skr) =0, (216)

to get

S B 3 B o
VH (S;w - zguvs) + 00 Socc0 + (d —2 = 20000) Spco — pggxgéxsuoo =0,

217)
R ~ - 1
V100 + (d — 2 — psg) Ssooe — pg“”ngoooo—zgqu“”—gaoos 0, (218)
which is the result. o
Let us remind
- lopn -~ 1~ -~ d
1
B! = —EVSVSGM — 5R.Gy — (5 —1- paoo> e
AT T S (219)
) Ex PP 2 ExTHT
<5 Lo, d
B” = —5VHauy — | 5 =2~ pdeo | 0¥ + 88}, 00007
(PP PO P
+507Gut 58, VG + 58,877 (220)

where Q" = 04 (g"EF” ). We will prove the following important properties of these
objects.

Proposition 30. Suppose that E,,=0(p?/?) then B),=0(p?/*) and B*=0 (p?/*71).

Proof. We will use the Bianchi identity (200) and (201). Let us now also notice

U (960 + VG = 3V Ge ) = V0 Gy + UG, 221)
Then we compute
- 1. - - | T d .
\g SW—Eg,wS = VH EW—Eg/wE +§(V VeGy+ R, Gp) — 5—1 Ay -
(222)
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Moreover, differentiating (73) and (74) with respect to p we get
- - 1 ~ -
Sooce = 00V, Suoco = 5(3ooGu +0,7). (223)
Remembering that E = O (p?/?) and combining (223) with (200) and (222) we obtain
lese ~ 1=~
EV VSGN + ERMGU

d T I
+ (5 —1- paoo) 90a Gy — Eg“géxpaooG,L -~ gpg“géx%y = 0(p?).

(224)
Similar computation with
S=E+VIG, +dy = VG +dy + 0(p"?), (225)
S = Gl EM 4+ 8, VG 4 8,8 = 8, VG 4 8,87 + 0 (0,
(226)

reveals after inserting it into (201)

FVHOu7 + 900G ) +(d =2 = pioc)dooy = 8" 8 P07
1. -~ - d. . 1. ~ = 1., - -
+ =50V Gy = 007 = 581, VMG = 28,87 = 00T 27)

Taking into account that

000 VEGyy — V'00o G = 0 G, Q" = 303" T (228)
we conclude
1 ~ " ~ d ~ SV =/ ~
EV oy + 5~ 2= pioo | 00V — &7 81y PO0Y
1"“" 1~/ L YV 1~/ ~UV d/2—1
and the proposition is proven. O
B Scalar GJMS Operators

We will prove some basic properties of supercritical scalar GIMS operator P4, which
were recalled in the main part of the paper. By direct computation we obtain

(i = 0¢ + (d — 20000)¢" + (800 In /) (—20@ + ). (230)

This shows that [@143]["] depends only on the g,[fv] for k < n and tr g"*1 In particular,
recursive determination of ¢ + O (p%/**!) involves beside ¢!") only g,[j‘ﬂ fork < % -1

~rd . . . .
and tr g'2). This part of the metric is determined by the Fefferman—Graham construction.
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~ ~.rd . . .
Proof of Proposition 22. Let us now analyze [[J;¢]'2). We consider the metric A v With
vanishing obstruction tensor and let g, be an extension of the ambient metric for /4,
which is Ricci flat to infinite order in p. For any tensor &, satisfying

V=0, trk=0, (231)
we can consider a Ricci flat extension g, (s) defined by the property that
(810 12 = 1800 12 + sk (232)

The higher order expansion is uniquely determined by this property [6]. Our goal is to
compute %[@u{)][%].

Lemma 31. The following holds

d _ d

T8 O)ls=0 = —p2k" + 0 (p?/**h (233)
d — 2

I VRO im0 = == p K P+ 0072 (234)

where P, is the Schouten tensor.

Proof. The first equation is shown by direct computation

d . e d . - - d -
T8 )lim0 = =" T Fea (9)]s=08”" = =" (02 keo + 0(p"?*)) 57

— Tk 4 O (pY*), (235)

Let us introduce Al (s) 1= gHé ()84, (s). We remark that AlL(s) = 2800 In\/2(s). The

condition Sepeo (s) = O (™) gives
1. - 1. ~
—SeAli(s) = ZAL A} (5) = 0(o™). (236)

by (57). We now differentiate (236) to obtain

—% (%ln @) - %A‘v‘(s)%/i;(s) = 0(p™). (237)
We now notice that
AY(s) =2P) + O(p), %A;(s) = %lp%—lk; +0(p'), (238)
thus by (237)
82 (;—s In \/g(T)> - —%lp%*‘P;jkf; +0(p??). (239)

(0] (1]
As [j—é lnw/g(s)] = % ln\/§ = 0and [f—é ln,/g(s)] = %P[f = 0 we conclude
(234) by integrating twice (239). O
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From (230)

(15) 50 s g 2y
_(dsD>¢+Dds+(d ZpBOO)dS

d ~ -~
gmld’(s) o

d . - d - -
+ (aood— In JE) (—2p¢' + ) + (aoo In JE) —(=2p¢ + ).
s ds

(240)
Let us remind that %d;(s)‘ 0" 0 (p?/2+1), thus ﬂ% = 0(p4/**1. Moreover,
‘ .
d
dé' 4] d ol
(d —2p0oc) —— =0, [=(=2p¢ +¢) =0. (241)
ds ds

The two remaining terms in (240) can be computed:

d - 1
= ,Od/z_a,u (_kﬂl}\/gav) + 0(pd/2+1) — pd/zvﬂ (_kﬂvvv) + O(pd/2+l)
ds N
(242)
However, V, k" = 0 thus
d ~
aD = —p? 2KV, Y, + 0 (p?/*. (243)
Similarly,
d = d
<8°°£ In \/§) = —pZklP)+ O(p?**h. (244)
Finally,
d - - d 1% d 5,
—[Ehg@I3) = [—D] Pl + [aoo— In \/E} [-20¢" + 1"
ds =0 ds ds
= k" (V9,00 + Pygl”). (245)
We can now integrate the result over s from 0 to 1 assuming g,, = g,, and ky, =
[g;v][d/ 2l _ [g;u][d/ 21 to obtain Proposition 22. O
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